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1. General Introduction

1.1 Motivating Case Studies

1.1.1 Background of Aortic Valve Disease

The heart is one of the most important organs in the entire human body. Specifically, it is

a pump composed of muscle which pumps blood throughout the blood vessels to various parts

of the body by repeated rhythmic contractions. The four heart valves determine the pathway

of blood flow through the heart and they normally allow blood flow in only one direction

through the heart. Moreover, they open or close incumbent upon differential blood pressure

on each side. Specifically, the four valves are: the tricuspid valve, the pulmonary valve, the

mitral valve and the aortic valve. Figure 1.1, represents graphically the heart anatomy. The

blood flows from the right atrium to the right ventricle through the tricuspid valve. Thereafter,

the blood flows through the pulmonary valve to the lungs, where oxygenation takes place.

Next, the blood re-enters the heart into the left atrium, through the mitral valve into the left

ventricle. Finally, it enters the aorta through the aortic valve. Another important part of the

heart is the aortic root which connects the heart to the systemic circulation.

Heart valve disease occurs when one or more valves are not functioning properly due

to stenosis and/or regurgitation. Valve stenosis is the disease in which the opening of the

valve is narrowed, while valve regurgitation or insufficiency is the leaking of the valve that

causes blood to flow in the reverse direction during ventricular diastole. Echocardiography is

an excellent tool to evaluate patients with suspected heart valve disease. All four valves can

develop the diseases mentioned above, however, in this thesis we focus on the aortic valve

which lies between the left ventricle and the aorta.

The treatment for severe aortic valve disease is to replace or repair the diseased valve.

Only a minority of the heart valves can be repaired, the majority requires replacement. There

are two types of prosthetic heart valves, namely biological heart valves (homograft/allograft,

bioprosthetic) and mechanical heart valves. Homograft or allograft valves are donated human

aortic valves. Bioprosthetic valves are generated from animals (porcine, bovine). The

advantage of a biological valve replacement is that patients typically do not need lifelong use

of blood-thinning medications (anticoagulant). However, the duration of the valves is 10-15

years and patients, especially younger patients, may need follow-up surgeries. Mechanical

valves are more durable than biological valves and usually do not have to be replaced.

However, blood-thinning medication is required in order to prevent blood clots from forming

on or around the new valve.

As mentioned before, aortic allograft implantation has been used for a variety of aortic

valve or aortic root diseases mainly in non-elderly patients. Initial reports on the use of

either fresh or cryopreserved allografts date from the early years of heart valve surgery

(Ross, 1962; Barrat-Boyes, 1964; O’Brien, 1995). Major advantages ascribed to the use

of an allograft are the excellent hemodynamic characteristics as a valve substitute; the low

rate of thrombo-embolic complications and, therefore, absence of the need for anticoagulant

2



1.1 Motivating Case Studies

Figure 1.1: Heart

treatment; and the resistance to endocarditis. Furthermore, the aortic allograft has proven its

value in complex aortic root pathology such as endocarditis with aortic annulus destruction. In

particular, the aortic annulus is a ring of tough fibrous tissue which is attached to and supports

the leaflets of the heart valve. An aortic allograft can be used as a simple valve substitute, using

a subcoronary implantation technique, in which only the valve is being replaced or as a full

root replacement with coronary artery reimplantation. A major disadvantage of using human

tissue valves, as with all biological valve substitutes, is susceptibility to (tissue) degeneration

and the potential need for reinterventions. The durability of a cryopreserved aortic allograft is

age dependent, leading to a high life-time risk for reoperation, especially for young patients

(Lund et al., 1999; O’Brien et al., 2001; Smedira et al., 2006; Takkenberg et al., 2003). Thus,

reoperation after aortic allograft root implantation will be required in a substantial number

of patients, especially in the second decade after initial operation. Patient monitoring is

therefore essential in detecting allograft dysfunction in an early stage. Echocardiography

plays an important role in early detection, allowing for careful monitoring of aortic stenosis

(AS) and regurgitation in a non-invasive manner. Reoperation can then be performed before

the onset of severe symptoms or before heart failure develops.

Although the current ESC and ACC/AHA guidelines state that aortic valve replacement

Joint Models of Longitudinal and Survival Data 3
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Figure 1.2: Cumulative Incidence function for reoperation and death

is indicated in patients with severe symptomatic AS (Nishimura et al., 2014; Vahanian et al.,

2007), not all patients undergo aortic valve replacement. In particular, elderly patients with

multiple comorbidities are often treated medically instead of surgically. Advanced cancer

and permanent neurological defects, as a result of stroke or dementia, may make cardiac

surgery inappropriate. Furthermore, patients with a downslide of overall physical strength and

endurance often do not return to an active life, and the presence of other comorbid disorders

could have a major impact on outcome. Valve replacement is technically possible at any

age, but the decision to proceed with such surgery depends on many factors, including the

patient’s wishes and expectations. The biomarker brain natriuretic peptide (BNP) is helpful in

determining disease severity and progression of severe AS and may be helpful in therapeutic

decision making, especially when repeatedly measured.

1.1.2 Datasets

The first study was conducted in the Erasmus Medical Centre in The Netherlands and

includes all patients who received a human tissue valve allograft in the aortic position in the

Department of Cardio-Thoracic Surgery in a period of 21 years. Specifically, patients were

4
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Figure 1.3: Smooth longitudinal profiles for aortic gradient and aortic regurgitation for 12 randomly

selected patients
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Figure 1.5: Longitudinal profiles for brain natriuretic peptide for 9 randomly selected patients

followed prospectively over time by annual telephone interviews and biennial standardized

echocardiographic assessment of the valve function, Bekkers et al. (2011). Particularly,

echocardiographic examinations were scheduled at 6 months and 1 year postoperatively and

biennially thereafter. From 1987 until 2008, 286 patients who survived aortic valve or root

replacement with an allograft valve were followed until 08-Jul-2010. During follow-up 57

(20%) patients died and 74 (26%) patients required a reoperation on the allograft. Figure 1.2

illustrates the cumulative incidence functions for the two events. We observed that patients

showed a higher hazard of death the first nine years and a higher hazard of reoperation

afterwards. A total of 1,252 echocardiographic measurements of aortic gradient and aortic

regurgitation were performed. Specifically, aortic gradient is a quantification of AS severity

and aortic regurgitation of aortic regurgitation severity. Each subject was monitored at

different time points and had a different number of visits (median number = 4, range = 1 to

11) and median years of follow-up equal to 6.7 (range from 0 to 19.5 years). Aortic gradient

(mmHg) is a continuous variable, while aortic regurgitation has an ordinal scale (grade: 0

(none), 0.5 (trace), 1+, 2+, 3+, and 4+). In Figure 1.3, the subject-specific evolutions for

aortic gradient and aortic regurgitation are presented of 12 randomly selected patients, while

in Figure 1.4, the smooth average longitudinal profiles of all patients for the two types of
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operation are shown.

The second study was also conducted in the Cardio-Thoracic Surgery department of

the Erasmus Medical Centre in The Netherland and consists of patients from a dataset of

a previously reported prospective cohort study of 191 adult patients with severe AS. These

mostly elderly patients were diagnosed with severe aortic valve disease in seven cardiology

clinics, in the wider Rotterdam area, between 2006 and 2009 and were prospectively followed

for 2 years, Heuvelman et al. (2012). Inclusion criteria were aortic valve area ≤ 1 cm2,

peak transaortic jet velocity ≥ 4 m/s, or aortic valve / left ventricular outflow tract velocity

time integral ratio ≥ 4. The patients were followed clinically, including BNP measurements

and echocardiographically at baseline and then after at 6, 12 and 24 months. Particularly,

BNP is a 32-amino acid polypeptide secreted by the ventricles of the heart in response to

excessive stretching of heart muscle cells (cardiomyocytes) and thus, is a biomarker reflecting

the severity of stenotic aortic valve disease. During the follow-up period, 15% of the patients

(N=28) died and 48% (N=91) received a transcatheter aortic valve implantation. In total 561

BNP measurements were collected over a 2-year period (with mean follow-up duration equal

to 0.9 years and range from 0 until 2.5 years). In Figure 1.5 we illustrate the subject-specific

evolution for BNP of 9 randomly selected patients, while in Figure 1.6, the smooth average

Joint Models of Longitudinal and Survival Data 7



1. General Introduction

longitudinal BNP profile of all patients is shown.

High values of aortic gradient, aortic regurgitation and BNP indicate a worsening of

the patient’s condition, with an increased risk of death or reoperation. Moreover, they are

all measurements of the valve function, and hence, it is expected that they are biologically

interrelated. Finally, the occurrence of death or reintervention (reoperation) induces missing

of longitudinal measurements. Statistical methods, such as simple regressions (linear

regression and Cox regression), are not always appropriate when dealing with datasets as

described above (Akins et al., 2008). Specifically, these methods do not account for the

correlation between the measurements within the same patients. Moreover, the analysis of

the progression of the disease with survival is not applicable using such approaches. Mostly,

the last available follow-up measurement is assumed, however, this may lead to invalid results.

1.1.3 Clinical Question

Standard regression models contain several limitations in describing valve function over

time and coupling valve function with outcome measures like death and reoperation. This

thesis aims to appropriately analyze longitudinal and survival data and thereafter derive

accurate risk predictions for future patients. Physicians decide for a reintervention based on

their clinical experiences and on general guidelines. For a patient with a biological prosthetic

valve, such as an allograft, a prediction tool that helps to assess valve function over time

and couples this information with reoperation and/or survival probabilities would be valuable

in everyday medical practice. That is, medical experience combined with the appropriate

statistical model would enable physicians to make better informed decisions regarding their

actions and thus improve clinical output.

1.2 Introduction to Joint Models of Longitudinal and Survival
Data

In medical studies, often longitudinal data are collected together with time-to-event

outcomes. Examples of such studies are the valve datasets described in Section 1.1.2, where

high risk patients with heart valve abnormalities are followed-up echocardiographically. Other

examples can be found in HIV clinical trials, where for each subject biomarkers, such as

CD4 cell counts are measured over time together with time-to-AIDS or death (DeGruttola

and Tu, 1994; Tsiatis et al., 1995; Faucett and Thomas, 1996). Yet another example is the

prostate cancer study, where patients are followed-up over time and during that period death

or metastasis can occur (Yu et al., 2004; Proust-Lima and Taylor, 2009). The two types of

outcomes are generally analyzed separately. However, in some settings a joint modelling

approach is required. Specifically, in (1) longitudinal studies, when we wish to account for

possible outcome dependent dropout and in (2) survival analysis when we wish to investigate

the effect of a time-dependent covariate measured with error, and also (3) when the association

8



1.2 Introduction to Joint Models of Longitudinal and Survival Data

between longitudinal and survival outcomes is of interest. In the following Sections we

describe in more detail the motivation of the joint modelling approach.

1.2.1 Mixed-Effects Models for Longitudinal Data

A standard modelling framework for the analysis of longitudinal data is the mixed-effects

model. These models are based on the idea that each subject in the population has his

own evolution over time. To introduce these models, we let yi(t) denote the follow-up

measurements for the i-th individual (i = 1, . . . ,n) at time t. Furthermore, these measurements

could be obtained at specific time points ti j , j = 1, . . . ,ni. The mixed-effect model can be

written as ⎧⎨
⎩

yi(t) = xi(t)�β + zi(t)�bi + εi(t),
bi ∼ N(0,D),
εi ∼ N(0,σ2),

where β denotes the vector with the regression coefficients of the design matrix for the fixed

effects x�i and z�i denotes row vectors of the design matrix for the random effects bi. In

particular, the fixed and the random effects refer to the population-average and subject-specific

effects, respectively. Furthermore, D is the covariance-variance matrix of the random effects,

εi j(t) are the error terms and σ is the variance of the error. The nice feature of these models

is that they explicitly account for the correlation within the measurements obtained from the

same patients and can handle unequally spaced visit times.

A major challenge for the analysis of longitudinal outcomes is the fact that these outcomes

are often incomplete. Although patients are assigned to visit the physician at specific time

points, in practice, they often miss some visits for a variety of reasons. Missing values in

longitudinal studies occur in basically two different ways. The first type is when patients

are missing at intermittent times, meaning that other measurements are observed following

missing values. The second type of missing data occurs when data is not available for a subject

after some time point, and the patient is said to have dropped-out of the study. The main

concern in longitudinal analysis with missing data arises when there is an association between

the longitudinal profile and the missing process. The appropriateness of different methods

of analysis of incomplete longitudinal data is determined by the missing data mechanism.

Specifically, there are three types of mechanisms (Little and Rubin, 2002), namely,

• Missing Completely at Random (MCAR): when the probability that the responses are

missing, is unrelated to the longitudinal outcome. For example, when a patient forgets

to attend an appointment or moves to another city.

• Missing at Random (MAR): when the probability of missingness depends on the set

of observed longitudinal responses, but is unrelated to the outcomes that should have

been obtained. For example, the patient leaves the study on doctor’s advice based on

previously observed longitudinal measurements.

Joint Models of Longitudinal and Survival Data 9
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• Missing Not at Random (MNAR): when the probability that the longitudinal responses

are missing depends on observed and unobserved data. For example, a patient leaves

the study due to an event (death/reoperation), and the event is related with his aortic

gradient and aortic regurgitation measurements, including those that would have been

observed if they would have kept on going to the appointments.

So in the case of MCAR, the incomplete observed data could be considered as a random

sample of the complete data. Therefore, under this assumption, we could proceed with the

analysis by using only the observed data. In the case of MAR mechanism, the missing

observations are no longer random samples that are generated from the same sampling

distribution as the observed values. Hence, the missing process must be modeled together

with the longitudinal process. However, in the context of likelihood inference, and when

the parameters describing the measurement process are functionally independent of the

parameters describing the missingness process, data under the MAR assumption could be

ignorable, while deriving valid inferences. MNAR is more general and represents the most

complex missing data scenario. In this case, a joint distribution of the longitudinal and the

missing processes is required in order to obtain valid inferences. In the literature different

types of modelling frameworks for handling missing data in the longitudinal setting have been

considered. Namely, selection models, pattern mixture models and shared-parameter models

(Little, 1995; Molenberghs and Kenward, 2007). Selection and pattern mixture models are

applied for discrete times, however, in reality, often patients do not adhere to the posited

study schedule and may skip visits and dropout from the study at random time points (such as

in the heart valve data). Thus, in this context, we need a joint distribution for the longitudinal

and the missing processes that is applicable for continuous time.

1.2.2 Cox Models for Survival Data

When interest is on an event outcome, survival models such as Cox regressions are

routinely used. To formally introduce this type of models, we let the T∗
i denote the true

failure time for the i-th individual and Ci the censoring time, then Ti = min(T∗
i ,Ci) represents

the observed failure time for the i-th patient. In the Cox model the hazard function is assumed

to satisfy the following relationship

hi(t) = lim
dt→0

Pr(t ≤ T ∗ < t +dt | T ∗ ≥ t)
dt

= h0(t)exp(γ�wi), t > 0,

where wi are covariates that are associated with the hazard, γ is the corresponding vector of

regression coefficients and h0(t) is the baseline hazard. In its basic form, we assume that the

hazard ratio (hi(t)/h0(t)) depends only on covariates, whose value is fixed during follow-up,

such as age, sex and randomized treatment (baseline covariates). However, when interest

is also in investigating whether time-varying covariates are associated with the risk for an

event, the extended Cox model could be employed (Therneau and Grambsch, 2000). Further
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extensions allow the Cox model to handle multiple baseline hazard strata and clustered data

where the failure times of interest are clustered into groups (such as patients in the same

centre).

The use of time-dependent covariates is much more complicated in practice than the

fixed ones. Thus, their inclusion in a survival model significantly complicates the analysis.

There are two types of time-dependent covariates, namely, external or exogenous covariates

and internal or endogenous covariates. Specifically, endogenous covariates require special

treatment compared to exogenous ones. A time-varying covariate is exogenous if its value at

any time point t is not affected by an event occurring at an earlier time point s < t. Standard

examples are the period of the year (e.g., winter, summer) and environmental factors (e.g.,

temperature, humidity, pollution levels). Another example of exogenous covariates are those

whose complete path is predetermined from the beginning of the study, such as a treatment

dose. On the other hand, all covariates measured on the patient (e.g., biomarkers), are

endogenous. Suppose there are two time-varying covariates, namely aortic gradient values

that have been measured during follow-up and the air pollution levels. In addition it is

known that a reoperation is required for a particular patient after 5 years since the initial valve

replacement. It is evident that at a future time point (5.2 years) the level of aortic gradient will

be affected from the fact that this patient underwent reoperation, whereas the air pollution

levels at the same future time point would not be affected by this reoperation.

Unfortunately, the time-dependent Cox model is only theoretically valid for exogenous

time-varying covariates, meaning that it is not appropriate when it comes to studying

biomarkers or other patient parameters. The reasons behind the inadequacy of the Cox model

is that it assumes that from one visit to the next, the marker’s level remains constant and a

sudden change in the levels occurs when the patients comes for a visit. It is obvious that

such an assumption is reasonable for covariates such as treatment dose, but leads to a crude

approximation of the path of biomarkers such as aortic gradient and BNP. In particular, we

expect that aortic gradient and patient parameters in general, would continuously change over

time. Ignoring these special characteristics and fitting the extended Cox model, would result

in bias for the estimated effect of a biomarker.

1.2.3 Basic Joint Models

To analyze the heart valve datasets while addressing all issues mentioned in Sections

1.2.1 and 1.2.2 in this thesis, we utilize the framework of joint models for longitudinal and

time-to-event data. The idea behind these models is to couple a survival model for the

continuous time-to-dropout process with a mixed-effects model for the longitudinal outcome.

The basic joint model is written as

{
yi(t) = xi(t)�β + zi(t)�bi + εi(t),
hi(t) = h0(t)exp [γ�wi +α{xi(t)�β + zi(t)�bi}], t > 0,
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where α quantifies the effect of the underlying longitudinal outcome to the risk for an event.

Moreover, it is assumed that the risk for an outcome dependent dropout is associated with the

true and unobserved value of the longitudinal outcome. Following on the previous discussion,

such a model is more realistic from a biological point of view compared to the time-dependent

Cox models due to the fact that they explicitly assume that biomarkers evolve smoothly over

time and do not remain constant between visits.

The key assumption of a joint model is that the random effects underlie both the

longitudinal and survival processes. This means that these random effects account for both

the association between the longitudinal and event outcomes, and the correlation between the

repeated measurements in the longitudinal process (conditional independence assumption).

When approached from the missing data point of view, the joint model implicitly makes

assumptions for the complete longitudinal outcomes including measurements that would have

been observed after the event or censoring. Formally we have that,

P(Ti | yo
i ,y

m
i ) =

∫
p(Ti,bi | yo

i ,y
m
i )dbi

=
∫

p(Ti | bi,yo
i ,y

m
i )p(bi|yo

i ,y
m
i )dbi,

where yo
i and ym

i are the observed and the missing longitudinal measurements, respectively.

Under the conditional independence assumption we observe

P(Ti | yo
i ,y

m
i ) =

∫
p(Ti | bi,yo

i ,y
m
i )p(bi|yo

i ,y
m
i )dbi

=

∫
p(Ti | bi)p(bi|yo

i ,y
m
i )dbi.

We obtain that the dropout process depends on the missing observations through the posterior

distribution of the random effects p(bi|yo
i ,y

m
i ). This implies that the joint models correspond

to a MNAR missing data mechanism. Since under the joint model the longitudinal and

the survival submodels share the same random effects, the joint models belong to the

shared-parameter models.

1.3 Joint Modelling of Longitudinal and Survival Data in the
Literature

Excellent overviews of the joint modelling literature are given by Tsiatis and Davidian

(2004), Yu et al. (2004) and Rizopoulos (2012). The basic joint model which consists of one

longitudinal and one survival outcome was introduced by Self and Pawitan (1992), DeGruttola

and Tu (1994), Tsiatis et al. (1995), Faucett and Thomas (1996) and Wulfsohn and Tsiatis

(1997).

Specifically, Self and Pawitan (1992) proposed a two-step method for parameter

estimation where they condition on the survival information when computing expected

12



1.3 Joint Modelling of Longitudinal and Survival Data in the Literature

values of the covariates. They also used partial likelihood to obtain estimates of the risk

parameters, but they derived corresponding variances, to account for the uncertainty in the

expected covariate values. To obtain these variances, they assumed that the variance of

the covariate random effects is fixed and known. DeGruttola and Tu (1994) considered

a joint model in which the time-to-event is modelled parametrically, which facilitates

straightforward likelihood inference. Tsiatis et al. (1995) proposed also a two-step procedure

(different from Self and Pawitan) for fitting their model. First, they assumed a growth curve

random components model with normal errors for the biomarker and they used the modified

expectation maximization (EM) algorithm for estimation. Then, they substituted these

estimates into the proportional hazards model and used Cox regression to obtain estimates

of the survival parameters. Faucett and Thomas (1996) assumed the Markov Chain Monte

Carlo (MCMC) method of Gibbs sampling, to generate the joint posterior distribution of all

unknown parameters of the comprehensive model given only the observed data. Wulfsohn

and Tsiatis (1997) considered a full likelihood approach for the joint model based on a linear

mixed model for the longitudinal process and a proportional hazards model. Thereafter,

numerous extensions of the standard joint model have been published.

Henderson et al. (2000) proposed a more general model by postulating two stationary

Gaussian processes, including both random effects and serial correlation for the longitudinal

measurements and survival times, respectively. The serial correlation processes allow the

trend to vary with time and induce a within subject autocorrelation structure that may be

thought of as arising from evolving biological fluctuations in the process about smooth trend

(Wang and Taylor, 2001; Henderson et al., 2000). Tsiatis and Davidian (2004) provided an

interesting contradiction between the random effects and serial correlation assumption.

Tsiatis and Davidian (2001) and Song et al. (2002) focused on minimizing the impact

that erroneous distributional assumptions for the random effects could have on the derived

inferences. Specifically, Tsiatis and Davidian proposed a conditional score approach and

developed a set of unbiased estimating equations. Song, Davidian and Tsiatis considered the

model of Wulfsohn and Tsiatis (1997) by relaxing the assumption of normality of the random

effects to a distribution with a smooth density.

Brown and Ibrahim (2003) considered a flexible specification of the subject-specific

profiles and Brown et al. (2005) and Rizopoulos and Ghosh (2011) presented joint models

considering multiple longitudinal outcomes. In addition, Brown (2009), Rizopoulos and

Ghosh (2011) and Rizopoulos (2012) assumed different association structures of the

longitudinal and survival outcomes. In many clinical studies, patients may experience

multiple events during the follow-up period. Elashoff et al. (2008), Williamson et al. (2008),

Hu et al. (2009) and Huang et al. (2011) focused on the competing risks and multiple failure

types problems. Moreover, joint models that combine recurrent and terminating events with

longitudinal endogenous covariates, are proposed by Liu et al. (2008) and Liu and Huang

(2009). Li et al. (2010) proposed a joint model with longitudinal ordinal measurements

and competing risks, in which a partial proportional odds model for the longitudinal ordinal

outcome is linked to the event times by latent random variables.
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When it comes to using these models in practice, a prerequisite step is to validate the

model’s assumptions. A standard tool to assess these assumptions, are the residual plots.

Dobson and Henderson (2003) used the conditional residuals and Rizopoulos et al. (2010)

the multiple imputation residuals. Finally, Taylor et al. (2005), Garre et al. (2008), Yu et al.

(2008), Proust-Lima and Taylor (2009) and Rizopoulos (2011) considered the joint modelling

framework to derive individualized predictions for a longitudinal and a survival outcome that

are updated at each new visit.

1.4 Joint Models Described in the Thesis

1.4.1 Multiple Longitudinal and Survival Outcomes

Case studies, such as the ones presented in Section 1.1.2, may consist of multiple

longitudinal and survival outcomes. From the definitions of these markers it is clear that they

measure different aspects of the heart valves’ functioning, and it is strongly expected that they

are biologically interrelated. Therefore, it is medically relevant to measure the association

of each biomarker with the risk events, after having adjusted for the effects of the others.

Specifically, in the first case study aortic gradient, which is a continuous outcome, is collected

together with aortic regurgitation which is an ordinal outcome. Furthermore, in both case

studies an individual is at risk of failing in multiple ways. In particular, the patients could die

or require a new heart valve. Thus, in Chapters 3 and 5 we extended the basic joint model

to handle a continuous and an ordinal longitudinal outcome together with a competing risks

setting.

1.4.2 Investigation of Association Structure

An important assumption for the joint models is the functional form of the time-dependent

covariates. Misspecification in any part of the model could affect the accuracy of the

derived estimates. Thus, after appropriately postulating the evolution of the biomarkers

and the confounders, the focus lies on the association structure of the longitudinal and

survival outcomes (Brown, 2009; Rizopoulos and Ghosh, 2011; Rizopoulos, 2012). The basic

joint model includes the standard parameterization, which connects the underlying value of

the markers with the time-to-events at a specific time point. Particularly, this functional

form is followed in Chapters 2, 4 and 5. Additional time-dependent parameterizations are

presented in Chapter 5, where we allow the risk of the events to depend on both the current

value and the slope of the trajectories of aortic gradient and aortic regurgitation at a time

point. Furthermore, we assume the survival outcomes to depend on the entire history of the

biomarkers by including the integral of the longitudinal profile in the linear predictor of the

survival submodels (cumulative effect). A more frequently used approach, is to postulate

a time-independent parameterization, where the survival submodels are connected with the
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random effects of the longitudinal submodels. This parameterization is presented in Chapter

3.

1.4.3 Dynamic Risk Prediction

1.4.3.1 Prediction from a Single Model

To more accurately guide clinical decision making, physicians require prognostic tools

that can incorporate the complete biomarker information. The motivation behind this, is that

an inherent characteristic of many medical conditions is their dynamic nature. That is, the

rate of progression is not only different from patient to patient but also dynamically changes

with time for the same patient. Hence, it is medically relevant to investigate whether repeated

measurements of a biomarker could provide a better understanding of disease progression and

a better prediction of the risk for death or reintervention than a single biomarker measurement.

Joint models have recently gained increasing interest for subject-specific predictions (Taylor

et al., 2005; Garre et al., 2008; Yu et al., 2008; Proust-Lima and Taylor, 2009; Rizopoulos,

2011). Subject-specific risks predictions based on the joint model, would clearly be a useful

tool in everyday clinical practice and therefore would guide more accurately clinical decision

making regarding the prevention of valve diseases. Thus, in Chapter 5, we extend the concept

of predictions, in the setting where we have multiple longitudinal outcomes and competing

risk survival outcomes and derive dynamically updated cumulative incidence functions.

1.4.3.2 Predictions using Bayesian Model Averaging

As motivated in Section 1.4.2, there are several ways to link the longitudinal and the

survival outcomes. Moreover, we could even perform additional joint models with different

structures for each submodel. For instance, in a mixed-effect model the average and the

subject-specific evolutions over time may be nonlinear, while an alternative model would be

to use a nonlinear structure only for the average evolution over time. In practice, one usually

chooses the final model from a list of candidate models. The selection of the best prognostic

model is an important task and is most often obtained using standard algorithms, such

as, backward, forward and stepwise methods or likelihood-bases information criteria, such

as Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance

information criterion (DIC). However, these approaches do not account for model uncertainty.

For instance, if two or more models are correct, the selection on a single model is not certain

to be the true model. In addition, when interest lies in predictions for a new patient, there

could be several models that offer accurate predictions. More important, each patient is

unique, thus assuming a single prediction model for all future patients may not be appropriate.

To overcome this problem, we propose, in Chapter 5, to suitably combine predictions from

different models using the Bayesian model averaging (BMA) approach (Hoeting et al., 1999).
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The advantage of using BMA in our application is that predictions are tailored to each

individual patient, because the model weights are both subject- and time-dependent. Hence

for different future patients from the study population but also for the same patient but at

different time points, the models may differ in weight.
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2A. An Introduction to Mixed Models and Joint Modelling: Analysis of Valve Function Over Time

Abstract

An important target of many clinical studies is to identify biomarkers, including risk

scores, with strong prognostic capabilities. While biomarker evaluations are commonly

utilized to predict the progress of the disease at single time points, appropriate statistical

tools to assess the prognostic value of serial biomarker evaluation are rarely used. The

goal of this Chapter is to demonstrate flexible and appropriate statistical methodology to

assess the predictive capability of serial echocardiographic measurements of allograft aortic

valve function. Moreover, the concept of joint modelling of longitudinal and survival

data to optimally utilize the relationship between repeated valve function measurements

and time-to-death or time-to-reoperation, is introduced and illustrated. Optimal and

suboptimal methods are illustrated using a prospective cohort of patients who survived aortic

valve or root replacement with an allograft valve and who were followed clinically and

echocardiographically over time.

2A.1 Introduction

Presently, biomarkers, including risk scores, play a prominent role in medical decision

making. It is recognized that compared with the use of only a baseline biomarker

measurement, serial biomarker evaluations may carry important additional information

regarding the progression of the disease under study, Wolbers et al. (2010). During the course

of a disease, clinicians use both baseline and accumulated serial biomarker information for

a patient to gain a better understanding of the disease dynamics. Thus, when using only

single-moment biomarker values, potentially important information is not utilized to guide

medical actions. This is an important issue after heart valve surgery. After heart valve

surgery, valve function is monitored periodically over time. Not only initial or current valve

function, but also the rate at which valve function deteriorates, provide important prognostic

information regarding, for example, the hazard of a reoperation or death. Because clinicians

use this serial information on valve function intuitively in clinical practice, it seems logical

that this is also done when we statistically analyze outcome of patients after cardiac valve

interventions.

The 2008 guidelines for reporting mortality and morbidity after cardiac valve

interventions recommend the use of longitudinal data analysis to assess valve function over

time, Akins et al. (2008). The guidelines state the following: “Longitudinal data analysis

of a series of assessments is superior to analyzing only condition at last follow-up. This

methodology is also superior to dichotomizing outcomes and analyzing them with actuarial

methods as if they were events, such as freedom from grade 3+ mitral regurgitation after

repair.” Nevertheless, many authors still use “condition at last follow-up” or actuarial methods

to describe valve function.

This Chapter aims to demonstrate how longitudinal data can be analyzed according to the
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recommendations stated above. Moreover, it shows how longitudinal data may be combined

with time-to-event analysis. This is done using the example of a prospective cohort of patients

who survived aortic valve or root replacement with an allograft valve and were followed

clinically and echocardiographically over time. To emphasize the benefits of the methods

that are going to be proposed, simplistic approaches ignoring the special structure of the data

will also be applied for comparison.

Table 2A.1: Descriptive statistics for the baseline characteristics

Characteristics Descriptive Statistics

Age, years; median (IQR) 47 (34–56)
Male gender, n (%) 212 (72%)
Marfan syndrome, n (%) 15 (5%)
LV function, n (%)

Good 219 (75%)
Impaired 51 (18%)
Moderate 6 (2%)
Bad 14 (5%)

Type of operation, n (%)
Subcoronary implantation 78 (26%)
Root replacement 218 (74%)

Donor age, years; median (IQR) 59 (42–69)
Allograft diameter, mm; median (IQR) 23 (21–24)

IQR = interquartile range; LV = left ventricular

2A.2 Patients and Methods

2A.2.1 Patients

All patients who receive a human tissue valve in the aortic position in Erasmus University

Medical Centre (Department of Cardio-Thoracic Surgery) are followed prospectively over

time by annual telephone interviews and biennial standardized echocardiographic assessment

of valve function in patients 16 years and older (Bekkers et al., 2011). Approval from the

Institutional Review Board was obtained for this prospective follow-up study (MEC 00-813);

the Institutional Review Board waived informed consent.

From 1987 until 2008, 275 patients who survived aortic valve or root replacement with

an allograft valve were followed until July 8, 2010. The total number of follow-up years is

3,292 and the completeness of follow-up is 98%. Table 2A.1 displays patient and operative

characteristics. During follow-up 61 patients died and 78 patients required a reoperation on

the allograft. Cumulative survival at 18 years was 69% (95% confidence interval 62% to 77%)
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Figure 2A.1: Kaplan-Meier curves for survival and reoperation

and freedom from reoperation on the allograft was 53% (95% confidence interval 45% to

63%). Figure 2A.1 provides the Kaplan-Meier estimates of survival and allograft reoperation,

including the number of patients at risk at each year of follow-up.

In the 275 patients, a total of 1,228 echocardiographic measures of aortic gradient and

aortic regurgitation were performed for each patient at different time points (median number

of measurements 4, range 1 to 11; median echocardiographic follow-up 6.7 years, range 0

to 19.5 years). Aortic gradient (mm Hg) was collected as a continuous variable while aortic

regurgitation was collected using an ordinal scale (grade: 0 [none], 0.5 [trace], 1+, 2+, 3+,

and 4+).

Using this dataset we performed the following analyses: (1) Longitudinal analysis of

aortic gradient over time; (2) longitudinal analysis of aortic regurgitation over time; and

(3) joint modelling for patient survival and aortic gradient over time. All approaches were

compared with more simple methods that are typically used in everyday clinical papers.

2A.2.2 Methodology for Analysis of Serial Data Over Time

To account for the special features of serial evaluations of clinical parameters over time, a

class of statistical models (known as mixed-effects models) has been developed (Verbeke and

Molenberghs, 2000). The nice feature of these models is that they can work with unbalanced

datasets (ie, datasets with an unequal number of follow-up measurements between subjects
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Figure 2A.2: Graphical representation of mixed-effects models. The solid line shows the fixed effects,

which describe the average evolution in time of the aortic gradient; the dashed-lines show the random

effects (patient-specific), which describe the evolution in time for each patient

and varying times between repeated measurements of each subject), and that they explicitly

take into account that measurements from the same patient may be more correlated than

measurements from different patients. The intuitive idea behind these models is described

by Figure 2A.2. It shows that mixed-effects models have 2 parts; namely, a fixed effects

and a random effects part. The fixed effects part (solid line in Figure 2A.2) describes the

average evolution in time of a specific clinical parameter under study (in this example aortic

gradient), where this average is taken overall from the subjects in the sample at hand and is an

estimate of the evolution of the clinical parameter in the target population. The random effects

(patient-specific) part (dashed lines in Figure 2A.2) describes the evolution in time for each

of the patients under study, and it is in fact this part that accounts for the correlation in the

data within patients. An alternative approach to account for the dependencies in the response

of each patient is to directly include a serial correlation term in the residual errors. Even

though a combination of the two approaches (random effects and serial correlation terms) is

mathematically possible, in the applications of real data it often leads to estimation problems.

Therefore, it is advisable to rely and expand on either of the two approaches but not both.
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Figure 2A.3: Fitted longitudinal profiles for four patients in the study. The solid line is based on the

mixed-effects model analyses for aortic gradient and the dashed line is based on the regression model

analyses for aortic gradient

In Figure 2A.2 and all of the following analyses, the square root of the aortic gradient was

used because the assumption that the variance of the error terms is constant (homoscedasticity)

was not satisfied in the original scale. One important aspect when applying this methodology

is to carefully study the shapes of the patient-specific evolutions in time. For example, for the

two patients depicted in Figure 2A.2 the square root of the aortic gradient seems to follow a

linear profile in time. However, as will be shown later (Fig 2A.3), this may not hold for all

patients. In order to obtain valid results, it is important to postulate a mixed model that is

capable of appropriately capturing such nonlinear evolutions.

Depending on the nature of the clinical parameters of interest, there are different versions

of mixed-effects models that can be used. Namely, linear mixed-effects models for continuous

data and generalized linear mixed models for categoric data (Verbeke and Molenberghs,

2000).
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Figure 2A.4: Graphical representation of joint models. (A) Contains the hazard function for an event. In

(B), the dashed line describes a time-dependent covariate as used in the time-dependent Cox model, and

the solid line the mixed-effects model reconstruction of the covariate path

2A.2.3 Methodology for Longitudinal Data Analysis Combined With
Survival Analysis

In addition to analyzing the trend over time in valve function, it may also be of interest to

investigate the predictive capability of serial valve function measurements in relation to patient

survival. Figure 2A.4 illustrates the challenge of combining time-to-event measures (in this

case patient risk for an event, panel A) and longitudinal data (in this case aortic gradient,

panel B). To estimate the association between a single echocardiographic valve function

measure and the risk for death, standard statistical tools such as Cox regression are applicable.

However, when it comes to the analysis of serial valve function measurements in relation

to event occurrence (eg, patient survival), the time-dependent Cox model is not appropriate

(Tsiatis and Davidian, 2004; Ibrahim et al., 2010; Kalbfleisch and Prentice, 2002). Problems

arise from the fact that the aortic valve measurements contain biological variation; that is,

aortic valve function does not remain constant in between two successive measurements of the

patient, which is what the Cox model assumes (Figure 2A.4(B), dashed line). The problem
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with ignoring this biologic variation and using the time-dependent Cox model is that derived

results may be substantially biased (Sweeting and Thompson, 2011; Prentice, 1982).

A relevant modelling framework capable of resolving these issues is the joint model for

longitudinal and survival data described by Tsiatis and Davidian (2004). This is a relatively

new and powerful method that takes into account special features. The basic idea behind these

models is to construct a suitable mixed-effects model to describe the evolution in time for the

marker, and then to use these estimated evolutions as a time-dependent covariate in a Cox

model instead of the observed marker. This idea is depicted graphically in Figure 2A.4, where

at each time point we associate the level of the marker as estimated from the mixed-effects

models (panel B, solid line) with the risk for an event (panel A). In Section 2A.5 we present

the mathematical formulation of this model in more detail.

2A.2.4 Statistical Software

Suitable software is available for applying mixed-effects models and joint modelling in

R (see Section 2A.5 for R codes). Appropriate software can be found for the mixed-effects

models also in SAS (SAS Institute, Cary, NC).

All analyses have been performed with the statistical software package R (free download

from www.rproject.org) version 2.13.0, using the following packages.

• Fitting linear and generalized linear mixed-effects models; Package: lme4 (version:

0.999375-39).

• Regression modelling strategies. We used this package to transform the data in a

specific format in order to fit the continuation ratio (CR) model; Package: rms (version:

3.3-1).

• Data analysis using regression and multilevel/hierarchical models; Package: arm

(version: 1.4-11).

• Joint modelling of longitudinal and survival data; Package: JM (version: 0.8-3).

2A.3 Results

2A.3.1 Longitudinal Analysis of Aortic Gradient Over Time

To illustrate the advantages of the mixed-effects analyses we contrast it with a simplistic

regression analysis that ignores the correlation between the measurements of each patient. All

results are summarized in Table 2A.2.

First, a suitable mixed-effects model was constructed for the aortic gradient data. The

patient-specific profiles of aortic gradient (see examples in Figure 2A.3) were allowed to be

nonlinear in time using natural cubic splines with two internal knots (placed at the quartiles of

the distribution of the observed follow-up times) in both the fixed effects (likelihood ratio
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Table 2A.2: Wald test from the mixed-effects and the regression models

Mixed-Effects Model Regression

Variable DF Numerator/Denominator p-value DF p-value

Aortic gradient
intercept 1/952 < 0.0001 1 < 0.0001
Effect of time 3/952 < 0.0001 3 < 0.0001
Type of operation 1/266 0.0007 1 0.003
Sex 1/266 0.654 1 0.097
Age 1/266 0.028 1 0.149
Marfan 1/266 0.109 1 0.0005
LV function 3/266 0.761 3 0.172
Donor age 1/266 0.0001 1 < 0.0001
Diameter (mm) 1/266 < 0.0001 1 < 0.0001
Effect of time: type of operation 3/952 0.393 3 0.725
Effect of time:age 3/952 < 0.0001 3 < 0.0001

Generalized Linear Mixed-Effects Model Generalized Linear Model

Aortic regurgitation
Effect of time 5 < 0.0001 5 0.0006
Age 1 0.0004 1 < 0.0001
Type of operation 1 < 0.0001 1 < 0.0001
Sex 1 0.091 1 0.005

DF = degrees of freedom; LV = left ventricular

test for nonlinearity: p-value < 0.001) and random effects part of the model (likelihood

ratio test for nonlinearity: p-value < 0.001). The splines approach has the advantage that it

allows for nonlinear evolutions in time but can also accommodate simple linear relationships.

In addition, we allowed in our analyses for separate average evolutions of aortic gradient

for the two operation types (root replacement and subcoronary implantation) and for patient

age. Moreover we also controlled at baseline for gender, Marfan syndrome, left ventricular

function, donor age, and allograft valve diameter.

To communicate the results from the nonlinear plot more easily we used effect plots that

illustrate the average evolution of the aortic gradient in time for various combinations of the

other covariates. Figure 2A.5 presents the effects plot for the two types of operation, for males

with median age (47 years), median donor age (59 years), and median valve diameter (23 mm),

with no Marfan syndrome and a good left ventricular function. From this plot we observe that

the square root of aortic gradient increases steadily in time and with an almost similar rate for

the two types of operation. Moreover, it is shown that the subcoronary implantation technique

is associated with an overall greater aortic gradient, but that an increase in aortic gradient over

time does not differ statistically between the subcoronary implantation technique versus root

replacement (Table 2A.2, mixed-effects model). Additionally, older patient age is associated
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Figure 2A.5: Effect plot based on the mixed-effects model analyses. The 47-year-old male patients

without Marfan syndrome, median allograft diameter (23 mm), and donor age (59 years), and good left

ventricular function are presented

with a lower overall aortic gradient and this decrease is statistically significant over time.

Furthermore, older donor age and smaller allograft diameter are associated with higher aortic

gradients.

To illustrate the added value of the mixed-effects model, we repeated the analysis using a

simplistic regression analysis that ignores the correlation between the repeated measurements

of the patients. In order to compare the two approaches, in the regression model we used

exactly the same formulation as for the fixed effects part of our mixed model. Particularly, we

used the transformed aortic gradient (into the square root) and the nonlinearity spline function

for time.

Table 2A.2 presents the Wald tests for each variable in our analysis under both approaches.

As can be seen, we obtain different p-values and therefore different conclusions for some

covariates, although all repeated measurements are used (and not only the last measurement)

but the correlation within patients is ignored. Furthermore, from Figure 2A.3 we can observe

that the fit of the simple linear regression is inferior to the fit of the mixed-effects model.
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Figure 2A.6: (A) Marginal probabilities from the mixed-effects continuation ratio model for aortic

regurgitation. Profiles represent male patients who underwent subcoronary implantation at a median

age of 47 years. (B) Marginal probabilities from the mixed-effects continuation ratio model for aortic

regurgitation. Profiles represent male patients who underwent root replacement at a median age of 47

years

2A.3.2 Longitudinal Analysis of Aortic Regurgitation Over Time

We continued the mixed-effects analyses in a similar manner for the aortic regurgitation

measurements. The longitudinal information for each patient was summarized, while

accounting for the correlation in the aortic regurgitation serial measurements, by a

mixed-effects CR model (Harrell, 2001; Agresti, 2002). This model accommodates the

conditional probability that a patient does not move beyond a stage once a particular stage

is reached (see Section 2A.5). For aortic regurgitation, the data did not support nonlinear

evolutions over time. Therefore, linearity was assumed for both the fixed effects and random-

effects part. The covariates type of operation, baseline patient age, and gender were included

in the model.

In Figure 2A.6 we illustrate for male patients with a median age of 47 the probability

of a particular aortic regurgitation grade at a particular time after operation according to the

subcoronary implantation technique and the root replacement technique. For example, the
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probability of having grade 2 aortic regurgitation at 10 years postoperative is approximately

70% with the subcoronary implantation technique and approximately 20% with the root

replacement technique. Moreover, Figure 2A.6 underlines that the transition from grade 1

to grade 2 after operation is taking place earlier when using the subcoronary implantation

technique. Furthermore, longer time since operation, younger patient age, and subcoronary

implantation technique are significantly associated with aortic regurgitation (Table 2A.2,

mixed-effects model). Specifically, with increasing time since operation, aortic regurgitation

increases. In addition, aortic regurgitation is greater in patients who underwent subcoronary

implantation.

Similar to the previous Section, we illustrated the added value of the mixed-effects model

by comparing it with a simplistic model (a standard CR model without random effects)

including the same covariates. Here we again used all repeated measurements but ignore

the correlation within patients.

The Wald tests for each variable and under both approaches are presented in Table

2A.2. As in the previous analysis, it can be seen that ignoring the correlation between the

measurements of the patients yields different results. For instance, gender is found statistically

significant from the simplistic analysis (male gender is statistically significant associated with

aortic regurgitation), whereas the mixed models approach does not corroborate this result

(Fitzmaurice et al., 2004).

Table 2A.3: Comparison of the estimates between Cox model and joint modelling for reoperation and

death

Cox Model Joint Modelling

Variable Hazard ratio p-value Hazard ratio p-value

Reoperation
Type of operation (root replacement) 1.66 0.062 1.35 0.254
Age 0.97 0.0001 0.97 0.002
Aortic gradient 1.02 < 0.0001 1.75 < 0.0001

Death
Type of operation (root replacement) 1.11 0.732 1.38 0.281
Age 1.06 < 0.0001 1.07 < 0.0001
Aortic gradient 0.97 0.024 0.94 0.607

2A.3.3 Joint Modelling for Patient Survival and Aortic Gradient
Over Time

Now that we have shown that through mixed models it is possible to optimally utilize

serial data on valve function, we will illustrate how joint models use serial valve function

data to predict discrete outcomes such as death and reoperation. To illustrate the virtues of the
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joint modelling approach, first a simple analysis was performed, in which a Cox model is fitted

including only the last measurement of aortic gradient, baseline age, and type of operation as

potential predictors of reoperation and death. We then specified a joint model that explicitly

postulates a linear mixed-effects model for aortic gradient. This mixed model controls for

time, type of operation, and age. Moreover, separate average evolutions of aortic gradient for

the two operation types were assumed. The survival component of the joint model consists

of a Cox model adjusting for type of operation and age. The same type of joint model was

assumed for both death and reoperation.

We should mention that different baseline covariates could be included in the Cox and the

mixed-effects models depending on the interest of the analysis.

Table 2A.3 represents the parameter estimates and the p-values for both methods. In the

Cox model for reoperation a higher aortic gradient and younger patient age are associated with

an increased reoperation hazard. However, under the joint modelling approach the strength

of the association between the aortic gradient and the risk of reoperation is much greater. In

the Cox model for mortality, older patient age and lower aortic gradient are associated with

an increased death hazard. Using the joint model for mortality older patient age is the only

factor that remains significantly associated with an increased death hazard. Again, by using

serial echo data instead of only the last echo measurement the model outcome changes and

different conclusions are drawn.

2A.4 Comment

This Chapter aimed to illustrate how serial measurements over time, in this case

echocardiographic valve function after allograft aortic valve surgery, can be adequately

analyzed using longitudinal data analysis. We have shown that valuable extra information can

be obtained by using longitudinal data analysis for prognostication in comparison with using

“condition at last follow-up” or actuarial methods. It is obvious that the models required for

this type of analysis are more advanced compared with simple counts and actuarial methods,

but they are comprehensible, reproducible, and require only standard available software. In

addition, we have shown that it is feasible to effectively incorporate longitudinal responses

in time-to-event models, allowing for more adequate prognostication of time-related event

occurrence by utilizing serial measurements instead of single measures.

2A.4.1 Why Should We Use Longitudinal Data Analysis?

The hazard of death or reoperation is the focus of many papers on outcome after cardiac

valve interventions. However, many important variables that are utilized to prognosticate

are measured more than once over time. For instance, measures of valve dysfunction after

implantation of a biologic valve substitute (like aortic gradient and aortic regurgitation) are

collected repeatedly at several time points. The statistical analysis of these repeated measures
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poses several important challenges. Measures may not always be obtained at the same time

for all patients and, in addition, different patients may have a different number of follow-up

visits. Thus, if serial biomarkers change rapidly then little information is recorded and

therefore the analysis may lead to bias. Furthermore, the fact that measurements obtained

for the same patient will be more correlated than measurements between individuals may be

an important factor for predicting the endpoint. It is evident that such serial evaluations of

clinical parameters may carry important information regarding the progression of the disease.

The goal of a longitudinal data analysis is to investigate the rate of progression

using all provided information. The example given in this Chapter illustrates that proper

longitudinal data analysis accounts for the correlation of repeated measurements within

patients, unbalanced follow-up, and biologic variation. Ignoring all these special features

(as the simplistic models described in this Chapter do) may typically result in bias and loss

of the predictive capability of the covariates (Verbeke and Molenberghs, 2000; Fitzmaurice

et al., 2004).

More simplistic methods mentioned and applied for the dataset described in this Chapter

could be appropriate in a different setting. For example, if the mode of valve failure is not

gradual over time as it is with the degenerating allograft, but quite sudden as in the case of

prosthetic valve endocarditis, then a more simplistic methodological approach that does not

take into account serial measurements may be more appropriate.

2A.4.2 Why Combine Longitudinal Data With Time-To-Event Data?

An additional challenge is not only to adequately use longitudinal data analysis to

assess valve function over time, but also to take into account that valve function cannot be

seen independent from death or reoperation. Often, longitudinal and time-to-event data are

collected together. Thus, it may be of interest to investigate the relationship between serial

biomarkers and time-to an event. For instance, a higher aortic gradient may indicate a higher

or lower risk of reoperation or death. To resolve this issue joint models for longitudinal and

survival data are increasingly used in clinical studies (Henderson et al., 2000; Wulfsohn and

Tsiatis, 1997). Joint models are the appropriate statistical tool for assessing the progression of

serial biomarker accounting for the dropout of patients due to reasons that are related with the

repeated endpoint. This is a new and fast developing field in biostatistics that shows promising

results in the analyses of serial biomarker measurements (Fitzmaurice et al., 2008). Of note,

we have not presented the joint modelling of the analysis of aortic regurgitation with death

and reoperation due to the lack of freely available software to perform joint modelling of an

ordinal longitudinal outcome in conjunction with a time-to-event.

In conclusion, using inappropriate methods and ignoring special characteristics of

longitudinal data lead to underuse of potential variable information, and may bias the results

and conclusions. Particularly, this has been shown with theoretical work and simulations in

the statistical literature (Tsiatis and Davidian, 2004; Prentice, 1982; Agresti, 2002). Therefore,
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serial biomarker data such as valve function are preferably analyzed using the mixed models,

as illustrated in this Chapter. This allows for proper description of serial measurements over

time and provides a foundation for joint modelling of mixed-effects models and time-to-event

analysis.

2A.5 Appendix

A data frame “Age, Sex, Marfan, LVfunction, Diameter..mm, DonorAge,

TypeoOperation, AoGradient, AoI, Time, Death., LastFUP, Reoperation., FUPreop,”

with the following variables was used in the following code:

Age: Age when received the aortic valve

Male: Male gender

Marfan: Marfan syndrome

LVfunction: Left ventricular function before operation

Diameter: Diameter of the aortic valve in mm before operation

DonorAge: Age of the donor

TypeoOperation: Type of operation

AoGradient: Aortic gradient

AoI: Aortic Regurgitation

Time: Time of the echo test in years after implant

Death

Reoperation

LastFUP: The longest follow-up year about the status of survival

FUPreop: The longest follow-up year about the status of reoperation

Mathematical formulations

• Cox model: hi(t) = h0(t)exp{γ�Wi},
where h0(t) is the baseline hazard, Wi denotes the baseline covariates for the Cox

model, and γ� is a vector including the coefficients.

• Linear mixed-effects model: Yi = Xiβ +Zibi + εi,
where β is the vector of fixed effects coefficients, X is the design matrix for the fixed

effects for observations in groups, Z is the design matrix for the random effects for

observations in groups, b is the vector of random-effect coefficients for groups and ε
is the vector of errors for observations in groups.

• In Joint Modelling, the hazard function of the survival submodel is:

hi(t) = h0(t)exp{u�Hi +αmi(t)},

where mi(t) = x�i (t)β + z�i (t)bi denotes the value of the time-dependent covariate at

time t, α quantifies the effect of this covariate at time t to the hazard for an event at
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the same time point, Hi denotes the baseline covariates from the Cox model, and u the

coefficients.

The likelihood of the joint modelling is:

P(yi,Ti,δi | bi;θ) = P(yi | bi;θ)P(Ti,δi | bi;θ)dbi,

where yi denotes the longitudinal outcome for the i-th subject, Ti denotes the observed

failure time (Ti = min(T ∗
i ,Ci), where Ci is the censoring time), δi is the event indicator,

and bi is a vector including the random effects.

The idea behind the joint models is that the random effects bi account for both

correlation between the same patients and the association between the longitudinal

and survival outcomes. Thus the longitudinal and the survival submodels share the

same random effects.

The method described above is one of the possible approaches to model longitudinal

and survival data. Different joint models have been illustrated in the statistical literature

but are beyond of the scope of this manuscript.

• Continuation Ratio Model
As described by Harrell (2001), the CR model is based on conditional probabilities.

The forward continuation ratio model is formulated as follows for Y = 1, . . . ,k (k

categories of the outcome)

P(Yi = j | Yi ≥ j,X) =
1

1+ exp[−(α +θ j +Xiτ +Ziui)]
,

where again τ is the vector of fixed effects coefficients, X is the design matrix for the

fixed effects for observations in groups, Z is the design matrix for the random effects

for observations in groups, u is the vector of random-effect coefficients for groups, α
is an overall intercept, and θ j are increments from α .

We continue with the presentation of part of the syntax that has been used to apply the

analyses described in this Chapter.

1. R code for mixed-effects models:

## With the library() function we load the package needed each time.

library(nlme)

## To fit a mixed-effects model we use the function lme(). We use the “random”

## argument to specify the random effects and the “na.action” argument to specify if

## missing values will be excluded or not. In the following code we assume that the

## covariance matrix for the random effects is diagonal and the missing values should

## be excluded. Moreover, we use the function ns() from the package “splines” to

## include natural cubic splines.

fm <- lme(sqrt(AoGradient) ∼ ns(Time, 3)TypeoOperation + TypeoOperation + . . . ,
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data = mergeData22, na.action = na.exclude, random = list(IDnr = pdDiag(form = ∼
ns(Time, 3))))

## With the function summary(), R prints the results.

summary(fm)

2. R code for the CR model (generalized linear mixed-effects model):

library(lme4)

library(“rms”)

library(“arm”)

## First we transform the dataset to the specific format using the formula cr.setup()

## from “rms” package (as described by Harrell (2001)).

u <- cr.setup(data2$AoI)

cohort <- u$cohort

y <- u$y

data <- attach(data2[u$subs,])

data <- data.frame(y, cohort, data$Time, data$IDnr, data$Age,. . . )

## Following, we fit a generalized linear mixed model using the function glmer()

## from “lme4” package. The “family” argument is used to specify the distribution of

## the response variable.

glmer(y ∼ cohort Time + Age + . . . + (Time | IDnr), data = data, family = binomial)

3. R code for joint modelling:

library(JM)

## To fit a joint model we first fit a mixed-effects model.

lmeFit.av <- lme(sqrt(AoGradient) ∼ TimeTypeoOperation + Age, data + data1,

random = ∼ Time | IDnr)

## Following, a Cox model is fitted.

a. For Death
coxFit.avD <- coxph(Surv(LastFUP, Death.) ∼ Type.of.operation + Age, data =

data1.id, x = TRUE)

a. For Reoperation
coxFit.avR <- coxph(Surv(FUPreop, Reoperation.) ∼ Type.of.operation + Age,

data = data1.id, x = TRUE)

## For the joint modelling approach the formula jointModel() is used from “JM”

## package.

jointFit.avD <- jointModel(lmeFit.av, coxFit.avD, timeVar = “Time”, method =

“piecewise-PH-aGH”, iter.EM = 80)
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summary(jointFit.avD)

jointFit.avR <- jointModel(lmeFit.av, coxFit.avR, timeVar = “Time”, method =

“piecewise-PH-aGH”, iter.EM = 80)

summary(jointFit.avR)
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Abstract

Background: Congenital aortic stenosis (AS) is the most common obstructive left-sided

cardiac lesion in young adults, however little is known about the progression in adults.

Therefore, we aimed to evaluate the progression rate of AS and aortic dilatation in a large

multicenter retrospective cohort of asymptomatic young adults with congenital valvular AS.

Methods: Data were obtained from chart abstraction. Linear mixed-effects models were

used to evaluate the progression of AS and aortic dilatation over time. A joint model

combining longitudinal echocardiographic and survival data was used for survival analysis.

Results: A total of 414 patients (age 29±10 years, 68% male) were included. Median

follow-up duration was 4.1 (2.5–5.1) years (1,587 patient-years). Peak aortic velocity

was 3.4±0.7 m/s at baseline and did not change over time in the total patient population

(-0.01±0.03 m/s/year). Increased left ventricular (LV) mass was significantly associated with

faster AS progression (p-value<0.001). Aortic dilatation was present in 34% at baseline and

48% at follow-up (p-value<0.001). The aortic diameter linearly increased over time with

a rate of 0.7±0.2 mm/year. Rate of aortic dissection was 0.06% per patient-year. Seventy

patients required an aortic valve intervention (4.4% per patient-year), with AS progression

rate as most powerful predictor (HR 5.11 (95% CI 3.47–7.53)).

Conclusions: In the majority of patients with mild-to-moderate congenital AS, AS

severity does not progress over time. However patients with LV hypertrophy are at risk

for faster progression and should be monitored carefully. Although aortic dissections rarely

occur, aortic dilatation is common and steadily progresses over time, warranting serial aortic

imaging.

2B.1 Introduction

Congenital valvular aortic stenosis (AS) represents 4% of all congenital heart defects

(CHD) (van der Linde et al., 2011a). It is the most frequent indication for aortic valve

replacement (AVR) in adults under the age of 60 years, with subsequently a restraint life

expectancy (Puvimanasinghe et al., 2001). Clinical outcome of congenital AS considerably

varies, and includes a wide spectrum ranging from a lifelong asymptomatic course to

progressive disease in childhood requiring repeated interventions. So far, research on

evolution of AS and predictors of progression mainly focused on calcified AS, or congenital

AS in childhood (Otto et al., 1997; Rosenhek et al., 2000; Ten Harkel et al., 2009). Only

limited serial echocardiographic data are available describing the natural course of AS and

identifying predictors of progression and outcome of AS in young adults (Yap et al., 2007;

Beppu et al., 1993).

The underlying cause for congenital AS is often a bicuspid aortic valve (BAV), which

is strongly associated with aortic dilatation (Siu and Silversides, 2010; Yap et al., 2005).

Several studies report about the progression rate of aortic dilatation and associated predictors
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in mixed-groups of BAV patients (normally functioning, regurgitant and stenosed valves), but

none of these studies specifically focus on patients presenting with AS (Ferencik and Pape,

2003; Novaro and Griffin, 2004; La Canna et al., 2006; Thanassoulis et al., 2008; Davies et al.,

2007). Continuing controversy still exists as to whether BAV-associated proximal ascending

aortic dilatation is caused by intrinsic aortic wall pathology or haemodynamic factors, or

perhaps a combination of both (Fedak et al., 2002; Hope et al., 2010).

The aim of the present study was to determine the stenosis and aortic dilatation

progression rate and identify risk factors for fast disease progression in a large cohort of

asymptomatic young adult patients with congenital valvular AS.

2B.2 Methods

All adult patients with congenital valvular AS, who attended the outpatient clinic for

adult CHD of a participating centre, between January 2005 and October 2011, were identified.

Eligible patients were selected from prospective databases: the CONCOR database (the Dutch

registry for adult patients with CHD), Van de Velde et al. (2005), and the Leuven and Toronto

database for adults with CHD. Inclusion criteria were: age 18–55 years old and a baseline

peak aortic velocity >2.5 m/s. Patients had to have serial echocardiographic examinations

at least 1 year apart. Exclusion criteria included subvalvular or supravalvular AS, previous

AVR, history of acute rheumatic fever, or mitral valve condition (mitral insufficiency >2+

or mitral valve area <1.5 cm2). Demographic, clinical and surgical data were obtained

from chart abstraction. All available transthoracic echocardiograms, electrocardiograms and

exercise tests were collected. The collected information was registered in a dedicated research

database. Indications for surgery included severe AS with any valve-related symptoms,

symptoms during exercise testing and left ventricular (LV) ejection faction <50%, or an

ascending aortic diameter >50 mm.

The study protocol was approved by the Medical Ethical Committee of the participating

centres, and conducted according to the Helsinki Declaration. Informed consent was waived.

2B.2.1 Echocardiographic Data

AS severity was objectified by measurements of peak aortic velocity, mean gradient

and continuity equation aortic valve area (Baumgartner et al., 2009). The degree of aortic

regurgitation was graded by experienced sonographers and cardiologists as mild, moderate,

or severe (Zoghbi et al., 2003). LV mass was calculated using the modified Devereux formula

(Devereux et al., 1986). Left ventricular hypertrophy (LVH) was defined by a body surface

area (BSA)-indexed threshold of >115 g/m2 for men and >95 g/m2 for women (Lang et al.,

2006). BSA was calculated with the Mosteller formula (Mosteller, 1987). We defined the

aortic valve as calcified if there was calcified thickening and increased echogenicity of the

cusps in the parasternal long or short axis views. The ascending aorta diameter was measured
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at end-diastole from leading edge to leading edge at four levels: annulus, sinus of Valsalva,

sinotubular junction (STJ) and proximal ascending aorta. If the aortic diameter was more than

two standard deviations (SD) above normal values by gender, the aorta was considered dilated

(Hiratzka et al., 2010).

2B.2.2 Statistical Analysis

The Statistical Package for Social Sciences, version 19.0 (SPSS, Inc., Chicago, Illinois)

was used for descriptive data analysis. Normally distributed continuous variables were

summarized using the mean±SD. Non-normally distributed continuous variables were

summarized using the median and interquantile range (IQR). Categorical variables were

summarized using the frequency and percentage. The McNemar test was used to compare

the frequency of aortic dilatation at baseline and follow-up. p-value <0.05 were considered

statistically significant.

For advanced statistical analyses, R (version 2.14.1, available at: www.r-project.org)

was used. Linear mixed-effects models were used to assess changes in peak aortic velocity

and proximal ascending aortic diameter over time while accounting for the correlation

between repeated follow-up measurements in each patient. Annual progression rates were

calculated while taking into account all echocardiograms for each patient. The following

covariates were included in the models: baseline peak aortic velocity, age, gender, prior

aortic valve intervention (balloon valvuloplasty or open valvulotomy), smoking, aortic valve

calcification, LV mass, total LV load (peak aortic valve gradient + systolic blood pressure),

aortic regurgitation and baseline aortic diameter. Residual plots were used to validate the

models’ assumption. Wald tests were used to assess which parameters were most associated

with the progression over time.

Probabilities of intervention-free survival from baseline were obtained by the

Kaplan-Meier method. Survival of the congenital AS patients was compared to the expected

survival of the age-matched general Dutch population (Survival data for the Dutch population,

2012). An event was defined as AVR or death. The linear mixed-effects model predicting peak

aortic velocity progression was inserted into a Cox regression survival model as a time-varying

covariate. The purpose of this joint modelling approach is to account for any biological

variation in aortic valve function and repeated measurements within patients. Benefits of joint

modelling include reduction of bias and improvement of efficiency, and resulting in more

precise estimates (Tsiatis and Davidian, 2004).

2B.3 Results

A total of 1,318 patients were assessed for eligibility to participate in this study. Nine

hundred and four patients were excluded, mainly due to previous AVR (n=484), peak aortic

velocity <2.5 m/s (n=374), or lack of serial echocardiographic examinations (n=31). A total
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of 414 patients were included in this study.

Table 2B.2: Predictors for peak aortic velocity progression over time

Covariates Coefficient SE p-value

(Intercept) 3.136 0.125 0.000
Time −0.008 0.027 0.774
Main effect

Age (years) 0.006 0.003 0.067
Gender −0.028 0.074 0.706
Prior aortic valve intervention −0.102 0.069 0.137
Aortic valve calcification −0.089 0.064 0.162
Left ventricular mass (gram) 0.001 0.001 0.366
Aortic regurgitation 0.180 0.078 0.004
Smoking 0.137 0.083 0.181
Total left ventricular load −0.002 0.002 0.438

Interaction effect
Age (years) 0.001 0.001 0.717
Gender −0.012 0.015 0.430
Prior aortic valve intervention −0.002 0.013 0.892
Aortic valve calcification 0.013 0.018 0.471
Left ventricular mass (gram) 0.001 0.001 < 0.001
Aortic regurgitation −0.026 0.021 0.413
Smoking −0.034 0.017 0.082
Baseline peak aortic velocity (m/s) −0.009 0.014 0.521
Total left ventricular load −0.001 0.001 0.860

SE = standard error; Main effect = effect of a covariate on the outcome at baseline (intercept); Interaction effect = effect of a covariate on

the outcome over time (slope)

Baseline characteristics are shown in Table 2B.1. All patients were asymptomatic at

baseline and 98% was in sinus rhythm. Associated CHD were encountered in 45 patients

(11%): aortic coarctation (n=37, repaired in 34 patients), ventricular septal defect (n=7),

patent ductus arteriosus (n=6), and atrial septal defect (n=2) (not mutually exclusive). Aortic

valve calcification was present in 91 patients (22%). Five patients (1.2%) were known with

the diagnosis diabetes mellitus.

Median follow-up duration was 4.1 (2.5–5.1) years, yielding a total of 1,587 patient-years.

On average 3.3±1.8 echocardiographic studies were available for each patient.

2B.3.1 Progression Rate of Aortic Stenosis Severity and Its
Predictors

Peak aortic velocity was 3.4±0.7 m/s at baseline and did not progress significantly over

time in the total study population (-0.01±0.03 m/s per year; p-value=0.774). However, fast

progression (≥0.2 m/s/year) was noted in 56 patients (13.5%). In 13 patients (3.1%) the
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Figure 2B.1: Progression of congenital aortic stenosis over time by LV mass (p-value<0.001) and patient

age (p-value=0.717). The dashed lines denote 95% confidence intervals. LV = left ventricular

progression was even ≥0.5 m/s per year. An increased LV mass was the only independent

factor associated with faster progression of peak aortic velocity (p-value<0.001). The

presence of an aortic coarctation was not significantly related to an increased LV mass

(200.3±89.5 g with coarctation versus 204.6±65.4 g with no coarctation; p-value=0.720).

Progression rate was not influenced by prior intervention, gender, age, smoking history,

aortic valve calcification, baseline peak aortic velocity, total LV load or aortic regurgitation

(Table 2B.2). The effects of LV mass and age on peak aortic velocity progression over time

are demonstrated in Figure 2B.1.

2B.3.2 Progression Rate of Aortic Dilatation and Its Predictors

Aortic dilatation mainly occurred at the level of the proximal ascending aorta: 142

patients (34%) showed dilatation at baseline, rising to 197 patients (48%) at follow-up

(p-value<0.001). Increased age, prior intervention, presence of moderate-to-severe

regurgitation and increased LV mass were associated with an overall larger proximal

ascending aorta (Table 2B.3). There was no significant difference in ascending aortic
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Table 2B.3: Predictors for ascending aortic dilatation progression over time

Covariates Coefficient SE p-value

(Intercept) 24.900 1.184 0.000
Time 0.982 0.360 0.006
Main effect

Age (years) 0.170 0.032 < 0.001
Gender 1.097 0.702 0.119
Prior aortic valve intervention 1.555 0.657 0.019
Baseline aortic velocity (m/s) 0.810 0.656 0.218
Left ventricular mass (gram) 0.010 0.003 < 0.001
Aortic regurgitation 2.348 0.705 0.004
Smoking 0.583 0.787 0.723

Interaction effect
Age (years) −0.006 0.006 0.316
Gender 0.224 0.131 0.089
Prior aortic valve intervention 0.050 0.113 0.659
Baseline peak aortic velocity (m/s) −0.115 0.090 0.201
Left ventricular mass (gram) −0.001 0.001 0.728
Aortic regurgitation −0.311 0.181 0.212
Smoking −0.131 0.141 0.275
Baseline aortic diameter >40 mm 0.179 0.133 0.181

SE = standard error; Main effect = effect of a covariate on the outcome at baseline (intercept); Interaction effect = effect of a covariate on

the outcome over time (slope)

diameters between patients with bicuspid valves (94%) and patients with tricuspid, unicuspid

or uncertain valve morphology (p-value=0.556).

The proximal ascending aortic diameter significantly increased over time with a

rate of 0.66±0.23 mm per year (p-value=0.005). Fast progression (≥3 mm/year) was

noted in 12 patients (2.9%), while 6 patients (1.4%) showed very fast progression (≥5

mm/year). The aortic dilatation progression rate tended to be faster in men compared

to women (p-value=0.089; Figure 2B.2). Age, prior intervention, smoking, presence of

moderate-to-severe regurgitation, baseline aortic dilatation >40 mm and LVmass did not

influence aortic dilatation progression rate (Table 2B.3). Furthermore, aortic growth was not

influenced by baseline peak aortic velocity (p-value=0.201; Figure 2B.3).

2B.3.3 Clinical Outcome

During the follow-up period 5 deaths occurred at a mean age of 48±10 years (0.32%

per patient-year). Clinical cause of death was: 1 leukaemia, 3 sudden deaths and 1

arrhythmia (no detailed information available). No autopsies were performed. A 36-year-old

patient presented in the emergency room with a Type A aortic dissection (last measured

proximal ascending aortic diameter 51 mm), but was operated on successfully (rate 0.06%
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Figure 2B.2: Proximal ascending aortic dilatation progression rate over time by gender. The dashed lines

denote 95% confidence intervals

Table 2B.4: Joint model (combining longitudinal and survival data) for intervention-free survival

Hazard ratio (95% CI) p-value

Age (>30 years) 1.04 (1.02–1.07) < 0.001
Gender 1.51 (0.86–2.63) 0.150
Prior aortic valve intervention 1.77 (1.04–3.02) 0.036
Left ventricular mass 1.01 (0.99–1.02) 0.084
Former smoking 1.17 (0.48–2.85) 0.726
Current smoking 0.91 (0.50–1.65) 0.751
Aortic stenosis progression rate 5.11 (3.47–7.53) < 0.001

(mixed-effects model)

CI = confidence interval

per patient-year of follow-up). In addition, 4 patients experienced an episode of endocarditis

at a mean age of 27±6 years (0.25% per patient-year). Three patients were hospitalized for
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Figure 2B.3: Proximal ascending aortic dilatation progression rate over time by AS severity. The dashed

lines denote 95% confidence intervals. AS = aortic stenosis; Vmax = peak aortic velocity in m/s

left-sided heart failure due to severe AS at a mean age of 32±8 years (0.19% per patient-year).

Seventy patients underwent AVR at a mean age of 36±10 years (4.4% per patient-year).

Peak aortic velocity at the final echocardiographic study before intervention was 4.4±0.7 m/s.

Performed operations included: 25 mechanical valves (35%), 25 Bentall procedures (35%),

10 tissue valves (14%), 5 Ross procedures (7%), 4 balloon valvuloplasties (6%) and 1 surgical

valvulotomy (1%). In addition, 2 patients underwent aortic valve-sparing operations.

Overall estimated intervention-free survival was 87±2% at 3 years and 78±4% at 5 years

(Figure 2B.4(A)). Median intervention-free survival for patients with an aortic peak velocity

>4 m/s was 5 years (Figure 2B.4(B)). AS progression rate was the most powerful predictor
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Figure 2B.4: Kaplan–Meier curves. (A) Cumulative Kaplan–Meier survival and intervention-free

survival for the congenital AS patients and expected survival of the age-matched Dutch population. (B)

Cumulative Kaplan–Meier intervention-free survival for congenital AS patients according to baseline

peak aortic velocity (p-value<0.001). (C) Cumulative Kaplan–Meier intervention-free survival for

congenital AS patients aged according to age at baseline (p-value<0.001). (D) Cumulative Kaplan–Meier

intervention-free survival for congenital AS patients with and without prior aortic valve intervention

(p-value=0.036). The grey-toned areas denote the 95% confidence intervals. AS = aortic stenosis; Vmax

= peak aortic velocity in m/s

for AVR (Table 2B.4). Increased age (>30 years) and prior aortic valve intervention were

also found to be significant predictors of outcome (Table 2B.4; Figures 2B.4(C) and (D)). In

addition, an increased LV mass tended to influence intervention-free survival (Table 2B.4).

Joint Models of Longitudinal and Survival Data 53



2B. Congenital Valvular Aortic Stenosis in Young Adults

2B.4 Discussion

To our knowledge this is the first large multicenter cohort study evaluating the progression

rate of asymptomatic congenital valvular AS in young adults. Given the scarcity of data

about the progression of congenital AS in young adults, these results will contribute to

our understanding of the clinical course of congenital AS in adulthood and guide clinical

management.

2B.4.1 Progression of AS Severity

Overall, peak aortic velocity did not change over time in our cohort during the median

follow-up of 4.1 years, though a subset of patients did show fast progression. This seems

to be comparable to previously reported slow progression rates around 0.08 m/s per year in

young adults with congenital AS (Yap et al., 2007; Beppu et al., 1993; van der Linde et al.,

2011b). This accumulated evidence shows that in general the progression rate in congenital

AS is lower than in degenerative calcific AS with reported progression rates around 0.3 m/s

per year (Rosenhek et al., 2004). In contrast to the study by Yap et al. (2007) according to our

results older age is not associated with faster progression in these young adult patients.

Interestingly, we identified LV mass to be strongly associated with progression of

congenital AS, irrespective of total LV load or the presence of an aortic coarctation.

Ventricular remodelling and development of LVH have classically been interpreted as a

physiological mechanism used by the LV to compensate for the chronic pressure overload

(Sasayama et al., 1976). However, recent insights have questioned whether this hypothesis

is true. Perhaps LVH is not just a consequence of AS, but otherwise involved in the disease

mechanism. Many studies have reported that the hypertrophic response to AS is not uniform

in patients with comparable AS severity and regression of LVH after surgical correction is

also variable (Tzikas et al., 2011; Petrov et al., 2010; Morris et al., 1994; Dellgren et al.,

1999). Perhaps other factors than the pressure overload play a role in the adaptive hypertrophic

response, for example gender and genetic predisposition (Morris et al., 1994; Dellgren et al.,

1999; Piro et al., 2010). Furthermore, one might even argue whether evolution of LVH is

adaptive or inappropriately maladaptive. Recently, the unfavourable prognostic implications

of LVH were elegantly demonstrated in patients with severe degenerative AS (Cioffi et al.,

2011; Kupari et al., 2005). In our young adult patients with congenital AS, the association

between increased LV mass and faster AS progression emphasizes the unfavourable impact

of LVH on clinical outcome. Nowadays controversy exists about how the degree of LVH

should influence timing of surgery. The current European guidelines carefully state that

asymptomatic patients with severe congenital AS and excessive LVH (≥15 mm), unless this

is due to hypertension, may be considered for AVR; while the North American guidelines do

not mention LVH as consideration for AVR (Baumgartner et al., 2010; Warnes et al., 2008;

Silversides et al., 2010). Basic research is warranted to elucidate the mechanisms behind the

development of LVH in order to identify those patients that are at risk of LVH-related worse

54



2B.4 Discussion

outcome and will benefit from more aggressive thresholds to proceed to surgery.

2B.4.2 Progression of Aortic Dilatation

As expected, proximal aortic dilatation was present in almost half of our study population.

Older age, history of prior aortic valve intervention, moderate-to-severe aortic regurgitation

and LVH were all associated with the presence of proximal aortic dilatation, but none of these

factors influenced the rate of aortic dilatation. Since previous studies only investigated aortic

dilatation in mixed groups of BAV patients (inclusion not restricted to patients presenting with

AS), it is incorrect to directly extrapolate those findings to our study group. However, these

studies agree regarding the fact that patients of older age or with moderate-to-severe aortic

regurgitation are more likely to have a dilated aorta (Thanassoulis et al., 2008; Della Corte

et al., 2007; Keane et al., 2000).

Table 2B.5: Predictors for BSA-indexed ascending aortic dilatation progression over time

Covariates Coefficient SE p-value

(Intercept) 16.411 0.688 0.000
Time 0.338 0.124 0.007
Main effect

Age (years) 0.055 0.019 0.004
Gender −1.670 0.407 < 0.001
Prior aortic valve intervention 0.574 0.381 0.134
Baseline peak aortic velocity >3.5 m/s 0.404 0.382 0.291
Left ventricular mass (gram) 0.003 0.001 0.055
Aortic regurgitation 0.543 0.280 0.053
Smoking 0.070 0.458 0.879

Interaction effect
Age (years) −0.003 0.003 0.383
Gender 0.078 0.070 0.265
Prior aortic valve intervention 0.026 0.059 0.659
Left ventricular mass (gram) −0.001 0.001 0.948
Aortic regurgitation −0.141 0.964 0.145
Smoking −0.045 0.075 0.544
Baseline aortic diameter >40 mm 0.037 0.071 0.604
Baseline peak aortic velocity >3.5 m/s −0.075 0.063 0.234

SE = standard error; Main effect = effect of a covariate on the outcome at baseline (intercept); Interaction effect = effect of a covariate on

the outcome over time (slope)

We found that proximal aortic dilatation steadily progressed with a rate of 0.7 mm per

year. This seems to be comparable to other studies in BAV patients, which report rates ranging

from 0.2 to 1.9 mm/ year (Ferencik and Pape, 2003; Novaro and Griffin, 2004; La Canna et al.,

2006; Thanassoulis et al., 2008; Davies et al., 2007). Furthermore, our results are in line

with the rate of progression (0.4 mm per year) reported in a small prospective study of adult
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congenital AS patients (van der Linde et al., 2011b). Interestingly, the rate of progressive

aortic dilatation was faster in male than in female patients. When we indexed the aortic

diameter for BSA (Table 2B.5), this gender difference no longer existed and no other risk

factors for faster aortic dilatation were identified. Therefore we speculate that the faster aortic

growth in men is associated with their larger absolute aortic size. Despite evidence supporting

the use of relative rather than absolute aortic size (Davies et al., 2006) our results suggest that

absolute aortic size is an important predictor for aortic growth and might be the preferred

measurement for clinical management of adult congenital AS patients. In addition, the

gender difference in aortic growth rate might be explained by hormonal differences, genetic

predispositions, hypertension or other gender differences, as remains to be elucidated in the

future.

Surprisingly, the presence or progression of aortic dilatation was not related to AS

severity in this large cohort of adult congenital AS patients. This argues against the so called

haemodynamic theory, stating that aortopathy in BAV is caused by abnormal haemodynamic

stress on the aortic wall due to turbulent flow as a result of abnormal valve morphology and

cusp orientation (Girdauskas et al., 2011). There are conflicting data on this topic, since

some studies did find a correlation between the degree of AS and aortic size (Della Corte

et al., 2007), whereas others did not (Ferencik and Pape, 2003; Hahn et al., 1992). Our data

strengthen the upcoming theory that aortic dilatation in BAV patients is not solely dependent

on haemodynamics, but rather is a result of aortic wall fragility secondary to genetic factors

and a common developmental defect involving both the aortic valve and the aortic wall

(Girdauskas et al., 2011).

2B.4.3 Aortic Dissections

Aortic dissection is, without any doubt, the most feared complication of BAV-associated

aortic dilatation. Therefore it is remarkable that only 1 case of aortic dissection occurred

in our large cohort with almost 1,600 patient-years of follow-up. This converts to an aortic

dissection risk of 0.06% per patient-year of follow-up in asymptomatic young adult patients

with congenital AS. Although the prevalence of aortic dissection was estimated to be much

higher in the past, two other large cohort studies with BAV patients also reported a low rate

of aortic dissections (respectively 0.09% and 0.06% per patient-year of follow-up) (Tzemos

et al., 2008; Michelena et al., 2011). Whether these low rate estimates indicate that we really

do not have to fear aortic dissections, or reflect that prophylactic aortic surgery >50 mm

efficiently prevents aortic dissections, remains a point of debate.

2B.4.4 Survival

Survival was good compared to the expected survival of the general population, but the

3 sudden deaths remain worrisome. Unfortunately no autopsy was performed to establish the
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cause of death. A close look at the last available data before sudden death suggests that these

patients were slightly older and had a slightly higher peak aortic velocity, greater LV mass

and lower LV fractional shortening than the total cohort, but had a normal aortic diameter.

However, these 3 cases do not allow statistical assessment of risk factors for sudden death.

2B.4.5 Clinical Implications

In the total study population of patients with predominantly mild-to-moderate AS, AS

severity remained stable over time. However, patients with LVH showed faster disease

progression, and should be monitored cautiously. In addition, LVH might be useful as

an indicator for timing of earlier aortic valve intervention. Furthermore, while proximal

ascending aortic dilatation was common, the risk for aortic dissection in adult congenital

AS patients was low (0.06% per patient-year of follow-up). Noteworthy, proximal ascending

aortic dilatation progressed steadily over time, and faster in male than in female patients.

Consequently, these results stress the importance of careful and serial monitoring of the aorta

patients with congenital AS. Aortic valve intervention rate is high, in particular in patients

with progressive AS and history of prior aortic valve intervention.

2B.4.6 Study Limitations

This study inherits all limitations of a retrospective study design. A selected group of

patients was included: patients with prior AVR and those without serial echocardiographic

measurements were excluded. By including patients with a history of balloon valvuloplasty

and open valvulotomy in childhood, one might question whether this is truly a natural history

study. Furthermore, our study population consisted of patients receiving care in specialized

CHD centres and might not be representative owing to referral bias. The use of prospective

databases has limited the survival bias and extent of missing data. A potential limitation,

caused by the fact that echocardiography was not performed precisely every year, was

dissolved by the use of the linear mixed-effects models that take different lengths of follow-up

into account. We admit that echocardiography might not have been the best tool for aortic

diameter follow-up; however availability of computed tomography or magnetic resonance in

this large cohort was limited. Finally, we did not assess the impact of BAV morphology or

pregnancy on progression.

2B.5 Conclusions

In patients with mild-to-moderate congenital AS, AS generally does not progress over

time. However patients with LVH are at risk for fast disease progression and should be

monitored cautiously. Aortic dissections were rare despite the presence of proximal ascending

aortic dilatation in half of the patients. The aorta grows steadily over time and thus needs to
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be monitored repeatedly. Despite an excellent overall survival, intervention-free survival is

impaired, particularly in patients >30 years old with a history of prior aortic valve intervention

and severe or fast progressing AS.
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2C. Autograft and Pulmonary Allograft Performance in the Second Post-Operative Decade After the Ross Procedure

Abstract

Aims: The objective of the present study was to report our ongoing prospective cohort of

autograft recipients with up to 21 years of follow-up.

Methods and results: All consecutive patients (n = 161), operated between 1988 and

2010, were analysed. Mixed-effects models were used to assess changes in echocardiographic

measurements (n = 1,023) over time in both the autograft and the pulmonary allograft. The

mean patient age was 20.9 years (range 0.05–52.7) and 66.5% were male. Early mortality

was 2.5% (n = 4), and eight additional patients died during a mean follow-up of 11.6±5.7

years (range 0–21.5). Patient survival was 90% (95% confidence interval (CI), 78–95) up

to 18 years. During the follow-up, 57 patients required a reintervention related to the Ross

operation. Freedom from autograft reoperation and allograft reintervention was 51% (95%

CI 38–63) and 82% (95% CI 71–89) after 18 years, respectively. No major changes were

observed over time in autograft gradient, and allograft gradient and regurgitation. An initial

increase of sinotubular junction and aortic anulus diameter was observed in the first 5 years

after surgery. The only factor associated with an increased autograft reoperation rate was

pre-operative pure aortic regurgitation (hazard ratio 1.88; 95% CI 1.04–3.39; p-value = 0.037).

Conclusion: We observed good late survival in patients undergoing autograft procedure

without reinforcement techniques. However, over half of the autografts failed prior to the end

of the second decade. The reoperation rate and the results of echocardiographic measurements

over time underline the importance of careful monitoring especially in the second decade

after the initial autograft operation and in particular in patients with pre-operative aortic

regurgitation.

2C.1 Introduction

The Ross procedure (or pulmonary autograft procedure), first introduced by Donald Ross

in 1967, has become a widely accepted option for aortic valve replacement in a selected group

of patients (Ross, 1967; Ross et al., 1992; Kouchoukos et al., 1994).

Although the operative mortality and long-term survival have been satisfactory, a major

drawback of this procedure is the progressive dilatation of the autograft root, often combined

with autograft valve insufficiency, necessitating reoperation (Kouchoukos et al., 2004; Luciani

et al., 2003; Klieverik et al., 2007a; Stulak et al., 2010; Bekkers et al., 2010).

Data on patient survival, durability of the autograft and the pulmonary allograft, and

the incidence of potential risk factors for valve dysfunction and reoperation after the Ross

procedure are scarce beyond the first decade (Klieverik et al., 2007b; David et al., 2010b). In

this regard, we report the results of the longest and most complete ongoing prospective cohort

of autograft recipients, with a follow-up now reaching up to an unprecedented 21 years.
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2C.2 Methods

2C.2 Methods

2C.2.1 Patient Population

Between September 1988 and November 2010, 161 consecutive patients underwent the

autograft procedure in our institution. The patients included in this study are also part of the

German-Ross registry (Sievers et al., 2010). Approval from the Institutional Review Board

was obtained for this prospective follow-up study; all patients gave their written informed

consent.

2C.2.2 Operative Techniques

Timing of surgery was determined in a regular heart team meeting between (congenital)

cardiologists and cardiac surgeons during which all cases were discussed. The decision

whether to operate or not was based on contemporary clinical practice. Most procedures

(72%) were performed by two surgeons. The remainder of the procedures was performed

by another four surgeons. The surgical procedures were performed using standard

cardiopulmonary bypass with moderate hypothermia, myocardial protection with crystalloid

cardioplegia (St Thomas Hospital solution), and topical cooling. Additional deep hypothermia

with total circulatory arrest was employed for surgery on the aortic arch.

In 155 patients, the root replacement technique was employed, and the pulmonary

autograft was inserted at the level of the anulus, with care taken to reduce the subannular

muscular rim of the autograft to 3 to 4 mm. The proximal suture line of the autograft was

constructed, with interrupted sutures in 19% (n=30) of the procedures and running sutures in

the remainder. In 159 of the 161 patients, no root reinforcement measures were taken. In two

patients, an autologous pericardial strip supported the proximal suture line.

Three patients required concomitant coronary artery bypass grafting due to a procedural

complication. The details of these patients have been previously reported (Klieverik et al.,

2007a).

2C.2.3 Allograft Properties

In all patients, the right ventricular outflow tract (RVOT) was reconstructed using an

allograft. The Rotterdam Heart Valve Bank provided most of the allografts (n=131), which

were allocated by Bio Implant Services, Leiden, The Netherlands. The remaining allografts

were shipped from Hospital Clinic I, Barcelona, Spain (n=16), Deutsches Herzzentrum,

Berlin, Germany (n=7), the Karolinska Homograft Bank, Stockholm, Sweden (n=4), and the

National Heart Hospital, London, UK (n=3). In 98%, a pulmonary allograft was used and

99% of the allografts were cryopreserved. Patient’s body surface area was used as a guideline

to determine the allograft diameter. No attempt was made to achieve ABO blood type or HLA
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type matching. Previous publication from our centre showed that blood group compatibility

and assignment of quality codes do not have an impact on allograft durability (Mokhles et al.,

2011b).

2C.2.4 Data Collection

Hospital mortality and morbidity were registered and the causes of death were

documented. Hospital mortality was defined as death of the patient within hospital or within

30 days after surgery. All patients were followed-up prospectively, contacted annually, and

interviewed over telephone. Patients >16 years underwent standardized echocardiography

biannually (Willems et al., 2001). In case of suspected complications, the attending physician

was contacted for verification. The total follow-up was 1,875 patient-years and was 98.1%

complete. Three patients moved abroad and were lost to follow-up (data from these patients

were included in the analyses until the moment when they moved abroad). Valve-related

events were defined according to the guidelines for reporting morbidity and mortality after

cardiac valvular operations (Akins et al., 2008). Sudden, unexplained, unexpected deaths

(SUUD) without further clinical data or autopsy were classified as valve-related deaths

according to these guidelines (Akins et al., 2008). Failure of the autograft or pulmonary

allograft was determined at the time of reoperation or death. Patient survival started at the

time of Ross operation and ended at the time of death or at the last follow-up. Survival of the

autograft or pulmonary allograft started at the time of operation and ended when a reoperation

or reintervention was done, when the patient died, or at the last follow-up. Echocardiographic

measurements were systematically and prospectively obtained for all patients until the time

of death or autograft explant. The echocardiographic follow-up was 94% complete. The

database was frozen on 31 December 2010.

2C.3 Statistical Analyses

2C.3.1 Analyses of Clinical Data

Patient data were entered into a computerized relational database (Microsoft Access

2000). The statistical software SPSS for Windows version 10 (SPSS, Inc., Chicago, IL,

USA) was used for data analysis. Patient survival was estimated using the Kaplan–Meier

method (Kaplan and Meier, 1958). The log-rank test was used to assess the effect of potential

risk factors on patient survival, freedom from valve-related reoperation, and freedom from

valve-related events. To investigate independent risk factors for mortality and morbidity

caused by allograft failure, the Cox proportional hazard model was used. Risk factors

were selected with a backward stepwise method (required significance of p-value>0.10 for

elimination from the model and p-value<0.05 for retention in the model). Given the relatively

small number of deaths, no multivariable analysis was performed for mortality in our patient
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population. Kaplan–Meier survival estimates were compared with the survival of the general

population matched for age, sex, year of surgery, and years of follow-up, using the Dutch

population life table (Dutch Life Tables, 2009).

2C.3.2 Analyses of Serial Echocardiographic Data

Although the statistical analysis of serial echocardiographic data is often performed

by means of the Kaplan–Meier method, the echocardiographic data in the present study

were analysed with mixed-effects models instead. Mixed-effects modelling allows for more

accurate analyses of dependent data such as hierarchical data, observations taken on related

individuals (e.g. siblings), or measurements collected over time on the same individuals

(e.g. echocardiographic measurements) (Pinheiro and Bates, 2000; Verbeke and Molenberghs,

2000). This approach of longitudinal data analyses is also proposed by the 2008 guidelines

for reporting mortality and morbidity after cardiac valvular interventions, (Akins et al., 2008).

Mixed-effects models were used to assess changes in echocardiographic measurements

over time while accounting for the correlation between repeated follow-up measurements in

each patient. For the continuous outcomes, linear mixed models were used, whereas for

the ordinal outcomes, mixed-effects continuation ratio models were employed. To allow

for more flexibility in the specification of the patient-specific longitudinal trajectories, we

utilized natural cubic splines with three internal knots placed at the corresponding percentiles

of the follow-up times. Residual plots were used to validate the model’s assumption,

and when appropriate transformations of the outcome variables were performed. Missing

echocardiogram measurements were assumed to be missing at random (Harrell, 2001; Verbeke

and Molenberghs, 2000). In both the univariable and multivariable analyses, F-tests were used

to assess which variables/prognostic factors were most associated with the echocardiographic

measurements.

All analyses were performed with the R statistical software (version 2.13.2, 2011. R

Development Core Team 2011, R Foundation for Statistical Computing, Vienna, Austria).

All statistical tests with a p-value of 0.05 or lower were considered significant.

2C.4 Results

2C.4.1 Patient and Operation Characteristics

The mean age of the patients was 20.9±13.7 years (range 0.05–52.7). Patient

characteristics are shown in Table 2C.1. Twelve patients underwent previous aortic valve

replacement (AVR): six subcoronary allografts, three biological prostheses, and three

mechanical prostheses were used. Perioperative data are shown in Table 2C.2.
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2C.4.2 Hospital Mortality and Late Survival

Hospital mortality was 2.5% (four patients) (Table 2C.2). Two patients, both female, died

perioperatively. One 26-year-old male patient died due to massive pulmonary emboli shortly

after the operation. Furthermore, one 24-year-old female patient with Turner syndrome and

extreme left ventricular (LV) hypertrophy died due to mediastinitis and sepsis 13 days after

surgery.

The mean follow-up duration was 11.6±5.7 years (range 0–21.5 years; median 12.7 years;

interquartile range 8.6–15.3 years). During the follow-up, eight more patients died. Three

were valve-related. One patient died suddenly 13.9 years after autograft operation at the age of

50 years. The other patient with SUUD died 10.7 years after autograft operation at the age of

39 years. The third patient with valve-related death was a 12-year-old girl with severe juvenile

rheumatic disease and severe aortic regurgitation and mitral valve incompetence resulting in

progressive heart failure. She died 6 months after operation. Furthermore, there were five

non-valve-related deaths, of which four were cardiac deaths. Causes of the non-valve-related

deaths included (1) septic shock (Candida albicans) in one infant 51 days after autograft

operation; (2) heart failure resulting in cardiogenic shock in another infant 1.7 years after

autograft operation; (3) gastroenteritis (Staphylococcus aureus) resulting in septic shock and

multiorgan failure 14.6 years after autograft operation; (4) heart failure due to restrictive

cardiomyopathy 16.3 years after autograft operation, and (5) an acute myocardial infarction

in an adult patient 4.7 years after autograft operation and 2 months after autograft reoperation

for structural valve deterioration with the implantation of a mechanical prosthesis.

Overall, survival was 89% (95% confidence interval (CI) 78–95) up to 18 years of

follow-up (Figure 2C.1(A)).

The instantaneous hazard of mortality was highest in the immediate post-operative period.

This hazard then declined in the first 6 years after surgery, but started to slightly increase again

after this period (Figure 2C.1(A)).

At the most recent follow-up, 81 (54%) of our patients were in New York Heart

Association (NYHA) functional class I, 38 (26%) were in NYHA functional class II, 16 (11%)

were in NYHA functional class III, and 5 (3%) were in NYHA functional class IV. NYHA

functional class was unknown in 9 (6%) patients at the most recent follow-up.

Table 2C.3 displays the risk factors associated with long-term mortality after autograft

procedure that were identified in univariate analyses.

Long-term mortality rates of our patient population are relatively low and comparable

with that of the general population in the first decade. However, the survival rate of Ross

patients shows, in our experience, a decline in the second post-operative decade compared

with the general population (Figure 2C.1(B)).
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2C. Autograft and Pulmonary Allograft Performance in the Second Post-Operative Decade After the Ross Procedure

Figure 2C.1: Kaplan–Meier plot of (A) patient survival after the autograft procedure (the asterisk

represents instantaneous hazard of death). (B) survival comparison of autograft patients with that of

general population. (C) freedom from autograft reoperation. (D) freedom from allograft reoperation. (E)

freedom from autograft or allograft reoperation. (F) freedom from any valve-related event

2C.4.3 Survival Rate in Different Age Categories

Patient survival in the age category 2 weeks to 18 years was 94% (95% CI 87–99)

at both 10 years as well as up to 18 years of follow-up. Univariate analyses indicated
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2C.4 Results

that previous aortic valve surgery (p-value=0.030) and pre-operative aortic anulus aneurysm

(p-value=0.048) were associated with impaired survival during the follow-up in this patient

group.

Figure 2C.2: Mixed-effects models of echocardiogram variables after the autograft procedure. (A)

transaortic gradients. (B) transpulmonary gradient. (C) marginal probability of aortic insufficiency

grades; (D) marginal probability of pulmonary insufficiency grades
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2C. Autograft and Pulmonary Allograft Performance in the Second Post-Operative Decade After the Ross Procedure

Figure 2C.3: Mixed-effects models of (A) aortic anulus diameter increase over time and (B) sinotubular

junction diameter increase over time

Patient survival in the age category 18 to 30 years was 98% (95% CI 84–99) after 10

years of follow-up and 95% (95% CI 80–98) up to 18 years of follow-up. Hypertension

(p-value=0.011), previous aortic valve surgery (p-value=0.030), bicuspid aortic valve

(p-value=0.007), and pre-operative aortic anulus aneurysm (p-value=0.043) were correlated

with impaired survival in this patient group.

Patient survival in the age category ≥30 years was 100% after 10 years of follow-up

and 76% (95% CI 24.95) up to 18 years of follow-up. The use of inclusion technique

(p-value=0.038) and pre-operative aortic anulus aneurysm (p-value=0.043) were associated

with impaired survival in this group of patients.

2C.4.4 Reoperation

Fifty-seven patients required a reintervention related to the Ross operation. Of

these, 33 patients required isolated pulmonary autograft replacement, 9 patients required

simultaneous replacement of both the pulmonary autograft and allograft, 5 patients required

isolated pulmonary allograft replacement, 2 patients with neo-aortic root dilatation required

reimplantation of the autograft after replacement of the aortic root with Vascutec prostheses,

1 patient underwent autograft repair according to Yacoub’s method (Yacoub et al., 1998) and

1 patient underwent reoperation after a recurrent episode of rheumatic fever involving the

autograft. Furthermore, two patients underwent a reoperation without valve replacement (one

patient underwent enlargement of the pulmonary outflow tract due to supravalvular pulmonary
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stenosis and the other patient required reoperation for constrictive pericarditis). In addition,

two patients underwent balloon valvuloplasty of the RVOT to relieve supravalvular pulmonary

stenosis.

Percutaneous pulmonary allograft replacement with the Melody valve was required in two

patients.

Progressive dilatation of the neo-aortic root was the main cause for autograft reoperation

(n=40). Causes for pulmonary allograft reintervention were mainly structural failure,

calcification, or degeneration of the valve. In our study group, four patients required a second

reintervention on the pulmonary allograft during the follow-up.

All reoperations on the autograft were performed through a median sternotomy, with

cardiopulmonary bypass and moderate hypothermia. We mostly used central canulation in

the ascending aorta and right atrium or caval veins. To anticipate possible perforation of

the heart or aorta when reopening the chest, we instituted cardiopulmonary bypass with

canulation of the femoral vessels and deep cooling in four patients before performing the

sternotomy. Crystalloid cardioplegia and topical cooling were used for myocardial protection.

Total circulatory arrest with deep hypothermia was needed in 11 patients, with ascending

aorta or arch reconstruction. In patients without aortic root dilatation, the valve leaflets were

excised, followed by mechanical valve implantation. The neo-aortic root was in most cases

dilated without any signs of root or valve calcification. After opening the autograft root,

the autograft valve leaflets were inspected, and most of them were excised and the coronary

buttons mobilized. Excess autograft wall tissue was removed, leaving parts of the autograft

at the annular level in situ. Standard valved conduit implantation was performed. When

appropriate, the valve leaflets were spared, using the aortic valve reimplantation technique.

Freedom from reoperation for autograft failure was 84% (95% CI 77–92) and 51% (95%

CI 38–62) after 10 and 18 years, respectively (Figure 2C.1(C)). Freedom from reintervention

for allograft failure was 90% (95% CI 83–94) and 81% (95% CI 71–88) after 10 and 18 years,

respectively (Figure 2C.1(D)). Freedom from reintervention for autograft or allograft failure

was 80% (95% CI 72–86) and 41% (95% CI 28–53) after 10 and 18 years, respectively (Figure

2C.1(E)).

Risk factors that were associated with autograft reoperation in the univariate analyses are

shown in Table 2C.3. There was no re-operative mortality.

2C.4.5 Reoperation Rate in Different Age Categories

In young patients up to 18 years of age at the time of the Ross procedure, freedom

from reoperation for autograft failure was 84% (95% CI 71–92) and 62% (95% CI 39–79)

after 10 and 18 years of follow, respectively. In the univariate analyses, pre-operative AR

(p-value=0.041), higher creatinine (p-value=0.031), and higher age (p-value=0.009) were

associated with autograft failure in these young patients. However, none of these factors

remained significant in the multivariate analyses. Freedom from reintervention for allograft
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failure was 86% (95% CI 71–94) and 81% (95% CI 64–91) after 10 and 18 years of follow-up,

respectively. No potential risk factors could be identified for allograft failure in this specific

patient group. Freedom from reintervention for autograft or allograft failure was 77% (95%

CI 62–87) and 49% (95% CI 25–68) after 10 and 18 years, respectively.

In young adult patients between 18 and 30 years of age, freedom from reoperation for

autograft failure was 80% (95% CI 64–90) and 37% (95% CI 19–56) after 10 and 18 years

of follow-up, respectively. Pre-operative aortic sinus aneurysm (p-value=0.025) was the only

risk factor found to be associated with autograft failure. Freedom from reintervention for

allograft failure was 87% (95% CI 72–94) and 81% (95% CI 64–91) after 10 and 18 years

of follow-up, respectively. No risk factors were found for allograft failure. Freedom from

reintervention for autograft or allograft failure was 73% (95% CI 56–84) and 32% (95% CI

15–50) after 10 and 18 years, respectively.

In patients of ≥30 years, freedom from reoperation for autograft failure was 90% (95%

CI 76-96) and 58% (95% CI 19-56) after 10 and 18 years of follow-up, respectively. Freedom

from reintervention for allograft failure was 98% (95% CI 84-99) and 76% (95% CI 40-92)

after 10 and 18 years of follow-up, respectively. No risk factors were found for autograft or

allograft failure. Freedom from reintervention for autograft or allograft failure was 90% (95%

CI 76-96) and 45% (95% CI 22-66) after 10 and 18 years, respectively.

2C.4.6 Other Valve-Related Events

Two patients developed endocarditis of the autograft during the follow-up

(0.11%/patient-year). In one patient, the endocarditis was complicated by stroke.

Furthermore, one patient developed endocarditis of the allograft (0.05%/patient-year) which

was treated with antibiotics. One patient developed pulmonary emboli (0.05%/patient-year).

Bleeding events, valve thrombosis, or non-structural failure was not observed.

Freedom from any valve-related event was 79% (95% CI 71–85) and 40% (95% CI 27–52)

after 10 and 18 years, respectively (Figure (F)).

2C.4.7 Functional Performance of the Autograft and Allograft Over
Time

During the study period, 1,023 echocardiograms were reviewed for 161 subjects. Figure

2C.2 shows time-related changes in autograft gradient (Figure 2C.2(A)), allograft gradient

(Figure 2C.2(B)), autograft regurgitation (Figure 2C.2(C)) and allograft regurgitation (Figure

2C.2(D)). Figure 2C.3 shows time-related changes in aortic anulus diameter (Figure 2C.3(A))

and sinotubular junction (STJ) (Figure 2C.3(B)).

Risk factors associated with changes in echocardiographic measurements during the

follow-up are shown in Table 2C.4. Female gender was found to be consistently associated

with better echocardiographic outcomes. Pre-operative aortic regurgitation was found to be
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consistently associated with worse echocardiographic outcomes.

2C.5 Discussion

The present study is the first to show that long-term patient survival after the Ross

procedure is relatively good in contemporary practice, even at the end of the second

post-operative decade. Compared with the original pioneer series by Donald Ross (1967–84),

which reported an early mortality of 13% and a 20-year survival of only 61% in hospital

survivors, our results illustrate the tremendous innovations that have taken place in cardiac

surgery over the past decades. The present study also shows that, with increasing follow-up

time, in particular the autograft has a limited durability. In addition, mixed-effects model

analyses of echocardiographic measurements do not show major changes in transaortic

gradients during the follow-up period. The results of mixed-effects models do, however,

show that freedom from autograft regurgitation grades 3–4 was only 66% after 18 years

of follow-up. Regarding neo-aortic dimensions, the mixed-effects model shows an initial

increase in the STJ diameter in the first five post-operative years, which was then followed

by a constant phase. Furthermore, an initial slight increase in aortic anulus diameter was

observed in the first 10 post-operative years.

2C.5.1 Survival After the Ross Procedure

Although initially there was concern about the outcome of the Ross procedure, several

short and mid-term studies have proven that the procedure can be performed with low

operative risk and survival rates comparable with the general population (Klieverik et al.,

2007a; Luciani et al., 2005; El-Hamamsy et al., 2010b).

It remains unclear whether this excellent survival is a consequence of autograft attributes

(living valve with superior haemodynamics and low valve-related event occurrence rates)

(Verbeke and Molenberghs, 2000) or the careful selection of patients for the Ross procedure

(Mokhles et al., 2011a).

The present study adds to current knowledge that although long-term mortality rates are

relatively low and comparable with that of the general population in the first decade, as

reported by several other authors (Klieverik et al., 2007a; Sievers et al., 2010; El-Hamamsy

et al., 2010b), the survival rate of Ross patients in our experience shows a decline in the second

post-operative decade compared with the general population. Of the four observed deaths in

the second post-operative decade, two were valve-related (SUUD). Although the numbers are

small, this observation suggests that valve-related mortality hazard may increase in the second

postoperative decade after the Ross procedure.
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2C.5.2 Autograft Performance

The longevity of the autograft within our patient population is a point of concern. At the

end of the second decade, over half of the patients were reoperated for autograft failure.

The main cause for reoperation after the Ross operation is dilatation of the neo-aortic root.

Owing to this dilatation, coaptation of the cusps is lost and aortic regurgitation occurs. The

exact cause of autograft root dilatation is unknown. It is speculated that several factors may

contribute to dilatation of the aortic root. Younger patient age (Luciani et al., 2005), congenital

aortic valve disease (Settepani et al., 2005), rheumatic valve disease (Sampath Kumar et al.,

2006), and pre-operative aortic regurgitation (Laudito et al., 2001) and dilatation (Luciani

et al., 2005) are the most commonly reported patient-related determinants of durability of

the autograft valve. It should also be noted that the outcome of the Ross procedure varies

considerably between different centres (El-Hamamsy et al., 2010b) and surgical techniques

employed and by individual variation of the application of the root replacement technique

(Takkenberg et al., 2009). Furthermore, due to significantly increased mechanical stress,

post-operative hypertension may potentially have a negative effect on autograft durability

(Carr-White et al., 2000; Yacoub et al., 2006).

The presence of pre-operative aortic regurgitation was an independent risk factor

of autograft failure during the follow-up. Furthermore, the longitudinal analyses of

echocardiographic data indicated that the presence of pre-operative aortic regurgitation was

significantly associated with the increased aortic anulus diameter during the follow-up.

Pre-operative aortic regurgitation was not associated with the STJ diameter during the

follow-up at all. This suggests that pre-operative aortic regurgitation might specially be a

risk factor for the dilatation of the aortic anulus after the Ross procedure.

The association between pre-operative aortic regurgitation and autograft failure is in

agreement with other recent publications on this subject (David et al., 2010b; Laudito et al.,

2001; Ryan et al., 2011; Elkins et al., 2001). Two studies hypothesize that annular dilatation

associated with aortic regurgitation may be a factor, and one suggests a role for altered

geometry and tissue characteristics of the subvalvular LV outflow tract resulting from chronic

aortic regurgitation (Laudito et al., 2001; Elkins et al., 2001).

2C.5.3 Allograft Performance

In contrast to the performance of autografts, allografts performed adequately within our

patient population, with freedom from reoperation for allograft failure of 81% after 18 years

of follow-up. Although there are no studies at the moment with such a long term follow-up as

the present study, the freedom from allograft failure that we have observed after 10 years of

follow-up in our patient population was comparable with that of the other series (Kouchoukos

et al., 2004; Elkins, 1999). The main reason for allograft reoperation in the present study was

degeneration with calcification of the allograft. Pulmonary allograft stenosis is indeed another

important issue that has to be taken into account when considering the Ross procedure. The

Joint Models of Longitudinal and Survival Data 81



2C. Autograft and Pulmonary Allograft Performance in the Second Post-Operative Decade After the Ross Procedure

stenosis appears to represent an early post-operative inflammatory reaction to the pulmonary

allograft that leads to extrinsic compression and/or shrinkage and is characterized by intimal

hyperplasia at the distal anastomosis and an inflammatory mediated external compression by

fibrous tissue (Carr-White et al., 2001).

2C.5.4 Clinical Implications

The observed high reoperation rate after the Ross procedure has tempered our initial

enthusiasm for the procedure: in our early experience, we applied the Ross procedure

generously in children and young adults, performing up to 18 Ross procedures per year,

whereas in more recent years this number has gone down to 1 or 2 per year, mainly in young

children.

In most of our patients (n=159, 99%), no reinforcement procedures were taken. It

has been shown that in patients undergoing the Ross procedure, autograft reinforcement

procedures are associated with lower aortic regurgitation development rates and reduced

reoperation rates for autograft failure (Charitos et al., 2009). This is of particular importance

since autograft reoperation rate in the present study was mainly driven by root dilatation.

Furthermore, it should be noted that surgical techniques employed can considerably influence

the outcome after the Ross procedure. A recent publication from the German–Dutch Ross

registry showed that freedom from autograft or allograft reoperation was 92% at 10 years

and 87% at 15 years in young and middle-aged patients operated with the subcoronary

technique (Charitos et al., 2012). These reported results are better than those observed in

our study population where mainly (96%) the root replacement technique was used. The

widely varying durability results obtained with different surgical techniques applied in the

Ross procedure illustrates the technical complexity of the procedure and the requirement of a

particular surgical expertise with this procedure.

The Ross procedure represents only a fraction of all aortic valve replacement in

contemporary practice (Treasure et al., 2011). Obviously, surgical expertise required to

perform a Ross procedure is a limiting factor, although one may hypothesize that by

avoiding this technically challenging procedure with potentially increased early risks, we are

withholding young adult patients from a potentially better solution in the long run (Treasure

et al., 2011). Several other options exist in replacement of the diseased aortic valve in young

adult patients: mechanical prostheses, biological prostheses, or homografts.

Although mechanical valves provide excellent durability and low re-operative hazard

(Vongpatanasin et al., 1996; Hammermeister et al., 2000), the choice for the mechanical valve

implies lifelong anticoagulation and is associated with an increased risk for thrombo-embolic

and bleeding events (Vink et al., 2003; Takkenberg et al., 2004). The use of anticoagulation

may also complicate pregnancy because of the foetal and maternal complications of taking

warfarin (Wong et al., 1993; Chan et al., 2000), and may require lifestyle adjustments in

this relatively young and active patient group. Also, the haemodynamic performance of
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mechanical valves is less favourable compared with autograft valves (Porter et al., 1999).

Furthermore, prosthetic valve endocarditis occurs in up to 6% of mechanical valve recipients

and is associated with considerable mortality (Vongpatanasin et al., 1996). However, it still

remains unclear whether the excellent survival observed in Ross patients is a consequence of

autograft attributes (living valve with superior haemodynamics and low valve-related event

occurrence) or the careful selection of patients for the Ross procedure. A recent publication

from our group showed that in comparable patients, there is no late survival difference

in the first post-operative decade between the Ross procedure and mechanical aortic valve

implantation with optimal anticoagulation self-management (Mokhles et al., 2011a).

Bioprostheses are frequently used as an aortic valve substitute and have a low

thrombogenicity and absent need for lifelong anti-thrombotic therapy. Recently published

studies reporting the results of Hancock II bioprosthesis have shown a freedom from

reoperation of only 30–50% after 20 years of follow-up (David et al., 2010a; Valfre et al.,

2010).

Homograft valves have, similar to the autograft procedure, the advantage of a low risk

for thrombo-embolism and absent need of lifelong anticoagulation. However, the results

of a recently published prospective randomized trial between the Ross procedure and the

aortic homograft, both implanted as full roots, showed that the performance of allografts was

inferior to that of autografts (El-Hamamsy et al., 2010b). Furthermore, the performance of the

homograft valves have also been shown to be inferior compared with xenografts with more

modern tissue processing including anticalcification processes (El-Hamamsy et al., 2010a).

In light of the limitations of contemporary prosthetic valve options, the optimal prosthesis

choice for young adults remains controversial. Therefore, an individualized approach is

needed in the selection of the optimal prosthetic valve. This approach should combine the

evidence on outcome with different therapeutic strategies with the preferences of the informed

patient since the inherent limitations of each prosthetic valve can be valued differently by

individual patients.

2C.5.5 Strengths and Limitations

The present study is the longest and most complete prospective cohort study allowing

for new insights into patient outcome and autograft and pulmonary allograft function well

into the second post-operative decade. In addition of reporting hard clinical endpoints, the

number of available echocardiograms and the powerful longitudinal data analysis techniques

enabled us to be the first to provide insight into autograft and allograft valve function over

time until the end of second decade. The long-term evidence of patient outcome and valve

performance is helpful in the selection of most optimal prosthetic aortic valve since it provides

an unprecedented time horizon regarding the Ross procedure.

The present study has several limitations. The survival of patients is reported at 18 years

of follow-up and future studies are required to confirm the results of the present study. An
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additional limitation is the absence of a control group in the present study. Furthermore, the

results of present study only apply to the unsupported root replacement technique, which is

both a strength and a limitation of the data. Finally, the generalizability of our study results

requires further investigation.

2C.6 Conclusions

The present study shows that, in patients who undergo autograft procedure without any

reinforcement techniques, the autograft procedure indeed meets the prospect with respect to

relatively good long-term survival. However, the observation that over half of the autografts

failed prior to the end of the second decade is a point of concern. The reoperation rate

and echocardiographic function over time underline the importance of careful monitoring,

especially in the second decade after the initial autograft operation and particularly in patients

with pre-operative aortic regurgitation.
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3. Joint Modelling of Two Longitudinal Outcomes and Competing Risk Data

Abstract

Aortic gradient and aortic regurgitation are echocardiographic markers of aortic valve

function. Both are biomarkers repeatedly measured in patients with valve abnormalities, and

thus, it is expected that they are biologically interrelated. Loss to follow-up could be caused by

multiple reasons, including valve progression related, such as an intervention or even the death

of the patient. In that case, it would be of interest and appropriate to analyze these outcomes

jointly. Joint models have recently received a lot of attention because they cover a wide range

of clinical applications and have promising results. We propose a joint model consisting of two

longitudinal outcomes, one continuous (aortic gradient) and one ordinal (aortic regurgitation),

and two time-to-events (death and reoperation). Moreover, we allow for more flexibility for

the average evolution and the subject-specific profiles of the continuous repeated outcome

by using B-splines. A disadvantage, however, is that when adopting a nonlinear structure

for the model, we may have difficulties when interpreting the results. To overcome this

problem, we propose a graphical approach. In this Chapter, we apply the proposed joint

models under the Bayesian framework, using a dataset including serial echocardiographic

measurements of aortic gradient and aortic regurgitation and measurements of the occurrence

of death and reoperation in patients who received a human tissue valve in the aortic position.

The interpretation of the results will be discussed.

3.1 Introduction

In the field of Cardio-Thoracic surgery, valve function is monitored periodically over time

after heart valve surgery. Aortic gradient and aortic regurgitation are both echocardiographic

markers that measure valve abnormalities. Moreover, because the life expectancy of the valve

is limited, patients may often require an intervention or may die during the follow-up period.

The motivation of this research comes from a study, conducted in the Erasmus Medical Centre,

which includes all patients who received a human tissue valve allograft in the aortic position

in the Department of Cardio-Thoracic Surgery in a period of 21 years. These patients were

followed prospectively over time by annual telephone interviews and biennial standardized

echocardiographic assessment of the valve function, Bekkers et al. (2011). Particularly,

echocardiographic examinations were scheduled at 6 months and 1 year postoperatively and

biennially thereafter. From 1987 until 2008, 283 patients older that 16 years who survived

aortic valve or root replacement with an allograft valve were followed until 08-Jul-2010.

During follow-up, 57 (20%) patients died and 74 (26%) patients required a reoperation on

the allograft. Figure 3.1 illustrates the cumulative incidence functions for the two events.

We observed that patients showed a higher hazard of death the first nine years and a higher

hazard of reoperation afterwards. A total of 1,252 echocardiographic measurements of aortic

gradient and aortic regurgitation were performed. Each subject was monitored at different

time points and had a different number of visits (median number = 4, range = 1 to 11) and
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3.1 Introduction

median years of follow-up equal to 6.7 (range from 0 to 19.5 years). Aortic gradient (mmHg)

is a continuous variable, while aortic regurgitation has an ordinal scale (grade: 0 (none), 0.5

(trace), 1+, 2+, 3+, and 4+). High values of aortic gradient and aortic regurgitation indicate

a worsening of the patient’s condition with an increased risk of death or reoperation. Aortic

gradient and aortic regurgitation measure the valve function, and hence it is expected that they

are biologically interrelated. Furthermore, both death and reoperation could result in missing

data not at random (Little and Rubin, 2002) because they are highly related to the disease

condition of the patient. In order to analyze this type of data we rely on the joint modelling

framework. Specifically, in this work we build on previous approaches (Li et al., 2010) and

develop a joint model for two longitudinal outcomes, one continuous and one ordinal, and

competing risk failure time data.
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Figure 3.1: Cumulative Incidence function for death and reoperation

The joint modelling of longitudinal and time-to-event data is an active area of statistics

research that has received a lot of attention in the recent years. The reason for increased

interest is that joint models can be used when focusing either on the longitudinal outcome

and we wish to correct for non-random dropout or on the survival outcome when we wish to

account for the effect of an endogenous time-dependent covariate. There are numerous papers

in the literature that have proposed several extensions of the standard joint model introduced
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Figure 3.2: Subject-specific profiles for six patients for aortic gradient and aortic regurgitation

by Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997). These extensions include,

among others, the consideration of a flexible specification of the subject-specific profiles

(Brown and Ibrahim, 2003), nonparametric modelling of the random effects distribution (Song

et al., 2002), the consideration of multiple longitudinal outcomes (Rizopoulos and Ghosh,

2011; Brown et al., 2005), competing risks problems (Huang et al., 2011; Elashoff et al.,

2008), and the calculation of dynamic predictions and accuracy measures (Rizopoulos, 2011;

Proust-Lima and Taylor, 2009). Nice overviews of some early work in this field are given by

Tsiatis and Davidian (2004) and Yu et al. (2004). Furthermore, a comprehensive introduction

and several extensions of the joint modelling framework, including applications in R, are

presented in Rizopoulos (2012).

Many patients show nonlinear longitudinal trajectories, especially for aortic gradient.

As an illustration, Figure 3.2 depicts the profiles of patients R25, R41, R78, 37, R102 and

R24. These plots indicate that wrongly assuming linearity may compromise the results of the

analysis. Therefore, we propose a flexible joint model which aims to capture the nonlinear

average evolution and subject-specific profiles of the aortic gradient. Moreover, we propose

a time-independent parametrization for the connection between the longitudinal and survival

part, in which the event times depend on the subject-specific level of the longitudinal profile.

In fact we are more interested in assessing the degree of association between the trend of

the repeated outcomes and time-to-events, than accurately determining the estimate of the

underlying process of the heart disease.
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The rest of the Chapter is organized as follows. Section 3.2 describes the joint submodels

and presents the Bayesian estimation procedure. Section 3.3 illustrates the performance of

the joint model on the cardio data, and Section 3.4 presents the results of a limited simulation

study. Finally, Section 3.5 contains a discussion.

3.2 Submodels and Definition

3.2.1 Longitudinal Outcomes

Assuming n subjects under study, we let y1i(t) and y2i(t) denote the follow-up

measurements for aortic gradient and aortic regurgitation, respectively, for patient i (i =
1, . . . ,n) and at time t. These measurements are obtained at specific time points ti j that can be

different for each subject, thus y1i j = {y1i(ti j)} and y2i j = {y2i(ti j)} where j = 1, . . . ,ni refers

to the repeated measurement of the i-th patient. To describe the subject-specific evolution

over time of the longitudinal outcomes, we rely on mixed-effects models. In particular, for

the continuous aortic gradient, we postulate

y1i(t) = x�1i(t)β1 + z�1i(t)b1i + εi(t), (3.2.1)

where β1 denotes the vector with the regression coefficients of the design matrix for the

fixed effects x�1i(t) = [{xtime
1i (t)}�,{xbase

1i (t)}�,{xint
1i (t)}�] that consist of time, baseline

covariates and their interaction respectively; and z�1i(t) = {ztime
1i (t)}� denotes row vectors

of the design matrix for the random effects b1i. The random effects are assumed to follow

a normal distribution with mean zero and covariance matrix Σb1
, independent of the error

terms εi ∼ N(0,σ2Ini). Typically, in the specification of the linear mixed model a simple

structure is assumed for the time effect, such as random intercepts and linear random slopes.

However, such a simple structure may not be adequate in our study. In Figure 3.2, it is

shown that the assumption of a linear profile for the patients is too strong and may not

capture the real aortic gradient evolution. Thus, to relax this assumption in our analysis,

a mixed-effect model with a smooth function for the time effect on aortic gradient using

for example B-spline basis functions may be more appropriate. Hence, in equation (3.2.1),

x�1i(t) = [{xbsp
1i (t)}�,{xbase

1i (t)}�,{xint
1i (t)}�] and z�1i(t) = {zbsp

1i (t)}�, where bsp represents

the B-spline function.

A standard model for aortic regurgitation is the mixed-effects proportional odds model,

which is based on cumulative probabilities. However, in our setting, a patient with a severe

aortic regurgitation has passed through the early stages of the disease conditions before,

making it more important to investigate the probability of the disease worsening by one level

when the patient has passed through the lower levels. This can be captured by the continuation

ratio (CR) model which is an alternative modelling framework for ordinal data and is based

on conditional probabilities (Harrell, 2001). Specifically, under the CR model, the probability

of being in category s conditional on being at most in category s is modeled in contrast to the
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cumulative probability of category s as assumed in a proportional odds model. The CR model

is more likely to fit ordinal responses in which subjects move incrementally from one stage to

another, which we believe is the case here. Another advantage of the CR model is that it can

be easily fitted using a mixed-effects binary logistic likelihood function, after certain rows of

the design matrix of the fixed and random effects are suitably replicated, and the response is

transformed to a Bernoulli random variable. However, a disadvantage is that more complex

calculations are required to obtain marginal probabilities. A detailed description of this family

of models is presented in Section 3.6.1.

Let πis(t) be the probability of being in category s conditional on being at most in category

s, the design matrices of the fixed and random effects, and the random effects. To account

for the correlations in the repeated aortic regurgitation measurements we postulate a CR

mixed-effects model to investigate the evolution over time, that is

πis(t) = P(y2i(t) = s | y2i(t)≤ s, .) =
exp(x�2i(t)β2 + z�2i(t)b2i)

1+ exp(x�2i(t)β2 + z�2i(t)b2i)
, (3.2.2)

where x�2i(t) denotes row vectors of the design matrix for the fixed effects regression

coefficients β2, representing the overall intercept, the dummy variables for the categories,

time, baseline covariates, and their interaction. Moreover, z�2i(t) denotes row vectors of the

design matrix for the random effects b2i ∼ N(0,Σb2). The ’.’ symbol indicates that the model

is conditional on the covariates and the random effects. For the same patient, the term exp(β2)
can be interpreted as the effect of one unit increase of the q-th covariate on the odds of category

s, holding all other covariates constant.

Furthermore, to build the correlation between the aortic gradient and aortic regurgitation

we assume a multivariate normal distribution for the random effects bi, that is

bi =

(
b1i

b2i

)
∼ N

((
0

0

)
,D =

(
Σb1 Σb12

Σb12 Σb2

))
,

where Σb12 block contains the covariances between the two sets of random effects.

3.2.2 Competing Risk Failure Times

For the survival part, let Ti denote the observed failure time for patient i, taken as Ti =
min(T∗

1i,T
∗
2i,Ci) with T∗

ki indicating the true failure time that the i-th individual experiences for

each event k = 1,2 and Ci the censored time. Moreover, let δi = 0,1,2 be the event indicator

0 = censored, 1 = reoperation and 2 = death. To model the risks of each of the competing

events, we postulate the proportional hazard models:

hik(t,θs) = h0k(t)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}, t > 0,

where θs is the parameter vector for the survival outcomes, w�
i denotes row vectors of the

design matrix of the baseline covariates, γk is the corresponding regression coefficients vector,
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and α1k and α2k are the coefficients that link the longitudinal and survival parts. Particularly,

they denote the strength of the association between aortic gradient and aortic regurgitation

with death and reoperation, respectively. We denote β̃1 and β̃2 the coefficients for aortic

gradient and aortic regurgitation from the fixed effects that correspond to the coefficients

from the random effects. Moreover, b1i and b2i denote the random coefficients from the

models for aortic gradient (3.2.1) and for aortic regurgitation (3.2.2). A piecewise constant

baseline hazard function is assumed h0k(t) = ∑m
q=1 ξqkI(tq−1 < t ≤ tq), where we consider

(m-1) intervals with tq {q = 1, . . . ,m} being the knots, and I(.) the indicator function.

To better understand the connection between the survival and longitudinal parts in our

model, we explain in the succeeding texts the meaning of the α parameters with a simple

example where we assume a linear mixed-effects model for the aortic gradient with linear

time effect and a random intercept, that is

y1i(t) = β10 + tβ11 +b10i + εi(t),

and a CR mixed-effects model with linear time and a random intercept for aortic regurgitation,

that is

πis(t) = P(y2i(t) = s | y2i(t)≤ s, .) =
exp(∑S

s=0 β2s + tβ2(S+1) +b20i)

1+ exp(∑S
s=0 β2s + tβ2(S+1) +b20i)

,

where πis(t) denotes the probability of being in category s conditional on being at most in

category s, time and the random intercept. Moreover, β2s, s = 0, . . . ,S, denotes the overall

intercept and the dummy variables for the categories.

The model for the two competing events takes the form

hik(t,θs) = h0k(t)exp{w�
i γk +(β10 +b10i)

�α1k,0 +(β20 +b20i)
�α2k,0}.

Hence, for one unit increase in the intercept of aortic gradient for patient i the hazard ratio of

the k-th event is exp(α1k,0). Similarly, exp(α2k,0) is the hazard ratio for the k-th event when

the intercept of aortic regurgitation for the i-th patient in the first category is increased by one

unit.

However, when positing nonlinear profiles for any of the two outcomes, the interpretation

of the α parameters becomes more challenging. The problem is that now, the nonlinear

time effect is not described by a single coefficient but rather multiple coefficients, which

unfortunately do not have a direct interpretation. In Figure 3.3, we present an example of

a B-spline with 4 degrees of freedom and 8 knots corresponding to 4 basis functions. The

gray-colored line represents the aortic gradient profile of a hypothetical subject, while the

black lines represent the B-spline basis functions. In each of the two panels of this plot, we

assume a higher weight for a different basis function to investigate the effect of time on the

subject-specific aortic gradient. It can be seen that different adjacent subintervals of time are

affected depending on which basis function has the higher weight (i.e. coefficient). The model
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Figure 3.3: B-splines representation with 4 degrees of freedom and 8 knots

for the two competing events assuming nonlinear aortic gradient profiles will therefore take

the form

hik(t,θs) = h0k(t)exp{w�
i γk +(β10 +b10i)

�α1k,0 +

P

∑
p=1

(β1p +b1pi)
�α1k,p +(β20 +b20i)

�α2k,0},

where P indicates the number of basis functions. The interpretation of the corresponding

coefficients of the relative risk submodels now becomes that for every unit increase of the

subject-specific aortic gradient for the i-th patient (β1p +b1pi) at a specific time interval, the

hazard ratio of the k-th event is exp(α1k,p), where p indicates the basis function.
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For the estimation of our joint model’s parameters, we adopt a Bayesian formulation,

and derive posterior inferences using a Markov chain Monte Carlo (MCMC) algorithm

assuming standard non-informative prior distributions for the parameters. More details can

be found in Section 3.6. Specifically, Section 3.6.2 provides the likelihood and the MCMC

implementation, Section 3.6.3 presents the full conditionals for all the parameters and Section

3.6.4 consist of the code for WinBUGS that has been used. The MCMC algorithm has also

been implemented using R and it is available upon request.

3.3 Analysis of the Cardio Dataset

In this Section we present the analysis of the cardio data introduced in Section 3.1. We

are mainly interested in the association between aortic gradient and aortic regurgitation with

time-to-death and time-to-reoperation. As mentioned before, the longitudinal trajectories are

nonlinear, making it interesting to investigate both a linear and a nonlinear structure for

the mixed-effects submodel of aortic gradient. Particularly for the nonlinear submodel, we

assumed a simple cubic B-spline for time with two internal knots (λ ) at 2.1 and 5.5 year

(corresponding to 33.3% and 66.7% of the observed follow-up times) in both fixed and random

part. For the model of aortic regurgitation, we assumed a simple model with linear time and a

random intercept, because the separate CR model did not converge. Moreover, we corrected

for age and gender in both submodels of aortic gradient and aortic regurgitation. Specifically,

the mixed-effects models with the linear and the nonlinear time are

y1i(t) = β10 +Ageiβ11 +Genderiβ12 + tβ13 +b10i + tb11i + εi(t),

and

y1i(t) = β10 +Ageiβ11 +Genderiβ12 +
P

∑
p=1

B(t,λ )β1(p+2) +b10i +
P

∑
p=1

B(t,λ )b1pi + εi(t),

where P is the number of the basis functions and B(t,λ ) denotes a B-spline basis matrix for

a simple cubic spline of time with λ being the knots. The CR mixed-effects model takes the

form

π∗
i (t) = P(y∗2i(t) = 1 | y∗2i(t)≤ 1, .) =

exp(∑4
s=0 β2s +Ageiβ25 +Genderiβ26 + tβ27 +b20i)

1+ exp(∑4
s=0 β2s +Ageiβ25 +Genderiβ26 + tβ27 +b20i)

,

where β2s, s = 0, . . . ,4 denote an overall intercept and the dummy variables for the categories

of the ordinal outcome and π∗
i (t) is the probability of the transformed aortic regurgitation y∗2i

being 1 at time t conditional on being at most 1. Moreover, it is conditional on age, gender,

time, and the random intercept which are denoted in the model as ’.’.
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Table 3.1: Posterior means, standard errors and the 95% equal tail credible intervals for the joint model

fitted for the cardio data when assuming linear time for aortic gradient

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 2.89 0.07 2.76 3.02
Time 0.20 0.02 0.17 0.24
Age −0.20 0.06 −0.32 −0.09
Gender (female) 0.17 0.12 −0.08 0.41
σ 0.62 0.02 0.59 0.66
Longitudinal process (aortic regurgitation)
Intercept 2.34 0.25 1.85 2.85
cohortY<=1 −1.47 0.18 −1.83 −1.12
cohortY<=2 −4.40 0.23 −4.86 −3.94
cohortY<=3 −7.58 0.33 −8.22 −6.95
cohortY<=4 −10.84 0.53 −11.92 −9.84
Time 0.12 0.02 0.09 0.15
Age −0.28 0.16 −0.58 0.03
Gender (female) 0.71 0.33 0.05 1.35
Survival process (death)
Age 1.11 0.20 0.74 1.51
Gender (female) −0.26 0.32 −0.91 0.35
αb11 −0.59 0.27 −1.16 −0.09
αb12 2.66 1.24 0.22 5.09
αb2 0.07 0.07 −0.07 0.22
Survival process (reoperation)
Age −0.41 0.15 −0.72 −0.12
Gender (female) −0.41 0.29 −0.98 0.15
αb11 0.03 0.19 −0.37 0.39
αb12 4.64 0.76 3.29 6.26
αb2 0.03 0.06 −0.09 0.14
DIC −4,412.34

SE = standard error; DIC = deviance information criterion

For the survival models we used a proportional hazards model with a piecewise constant

baseline hazard function with Q = 5 intervals at time points that correspond to the 20%,

40%, 60% and 80% quantiles of the uncensored event times. Furthermore, age and gender

at baseline were included as confounder. Specifically, the joint models that we fitted take the

form

hik(t,θs) = h0k(t)exp{Ageiγ1k +Genderiγ2k +(β10 +b10i)α1k,0 +

(β11 +b11i)α1k,1 +(β20 +b20i)α2k,0},
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Table 3.2: Posterior means, standard errors and the 95% equal tail credible intervals for the joint model

fitted for the cardio data when assuming nonlinear time for aortic gradient

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 3.14 0.14 2.86 3.43
bs(Time, 5)1 −0.25 0.21 −0.67 0.17
bs(Time, 5)2 0.41 0.15 0.12 0.71
bs(Time, 5)3 1.12 0.30 0.54 1.73
bs(Time, 5)4 3.13 0.47 2.24 4.08
bs(Time, 5)5 2.71 0.74 1.32 4.21
Age −0.21 0.06 −0.32 −0.10
Gender (female) 0.16 0.12 −0.06 0.40
σ 0.58 0.02 0.55 0.62
Longitudinal process (aortic regurgitation)
Intercept 2.33 0.24 1.86 2.81
cohortY<=1 −1.46 0.18 −1.82 −1.11
cohortY<=2 −4.37 0.23 −4.84 −3.92
cohortY<=3 −7.54 0.32 −8.19 −6.92
cohortY<=4 −10.79 0.53 −11.89 −9.79
Time 0.12 0.02 0.09 0.15
Age −0.27 0.16 −0.58 0.03
Gender (female) 0.71 0.32 0.08 1.34
Survival process (death)
Age 1.26 0.24 0.82 1.78
Gender (female) −0.38 0.42 −1.24 0.42
αb11 −1.05 0.94 −2.90 0.87
αb12a 0.004 1.46 −2.90 2.84
αb12b 0.13 0.98 −1.91 2.04
αb12c −0.53 1.38 −2.95 2.48
αb12d 0.49 1.18 −1.86 2.74
αb12e 0.33 1.34 −2.32 2.84
αb2 0.18 0.39 −0.57 1.03
Survival process (reoperation)
Age −0.50 0.19 −0.88 −0.13
Gender (female) −0.51 0.37 −1.26 0.20
αb11 −0.38 0.86 −2.12 1.34
αb12a −0.14 1.32 −2.76 2.49
αb12b 0.53 0.91 −1.32 2.34
αb12c −0.16 1.32 −2.47 2.56
αb12d 0.53 1.19 −1.88 2.70
αb12e 0.17 1.29 −2.53 2.51
αb2 0.08 0.36 −0.62 0.84
DIC −5,024.46

bs = Bsplines; SE = standard error; DIC = deviance information criterion

and

hik(t,θs) = h0k(t)exp{Ageiγ1k +Genderiγ2k +(β10 +b10i)α1k,0 +

P

∑
p=1

(β1p +b1pi)α1k,p +(β20 +b20i)α2k,0},
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Figure 3.4: Effect plot for the squared root of aortic gradient for a male patient with mean age

for the linear and nonlinear aortic gradient evolution, respectively. We used non-informative

prior distributions. Particularly, we have taken Normal(μ = 0,σ2 = 100) for the parameters

β1, β2, b1i, b2i, α1k, α2k, γk and ξqk, Gamma(α = 0.001,β = 0.001) for 1/σ2, and

Wishart(A1 = diag(1),ρ = 2) for D−1. We run the MCMC with a single chain for 550,000

iterations, and we discarded 50,000 iterations as burn-in. Convergence was monitored by

trace plots and the Geweke diagnostic test. Due to the large number of parameters to estimate,

convergence of the Markov chains was slow, in particular, for the parameters of the linear

mixed-effects models and the parameters that connect the longitudinal and time-to-reoperation

outcomes.

The results of the joint model are presented in Tables 3.1 and 3.2, for the linear and

the nonlinear terms of time for aortic gradient, respectively. Since the deviance information

criteria (DIC) of the linear model is −4,412.34 and of the nonlinear is −5,024.46, the

nonlinear profile of the aortic gradient appears to provide better fit to the data.

Due to the fact that the coefficients of the B-splines in the nonlinear mixed model do

not have a clear physical interpretation, we used plots to illustrate the shapes of the average

evolution of aortic gradient over time and therefore the association between the survival and

the longitudinal parts. An increased aortic gradient over time can be seen in Figure 3.4, which
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Figure 3.5: Effect plots for the subject-specific square root of aortic gradient for two patients (solid lines).

The dashed lines represent B-splines basis functions of the subject-specific square root of aortic gradient.

The values denote their effect on time-to-death and time-to-reoperation

presents the nonlinear aortic gradient evolution, until the 17th year. After that time point there

are few observations. Furthermore, we observe a significant effect of age on aortic gradient

and of time and gender on aortic regurgitation. For the results for the survival submodels,

we observe that young patients have a higher risk of reoperation and older with death, while

gender appears not to be an important factor. Moreover, a weak correlation was found between

aortic gradient and aortic regurgitation with the risk of an event. However, to better understand

the association between aortic gradient and the events when using nonlinear time terms, we
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present in Figure 3.5 the subject-specific aortic gradient profiles for two patients. The values

in the plots represent the effect of the particular subject-specific aortic gradient on each of the

events. Hence, for patients R96 and 63, the effect of their aortic gradient levels at baseline on

the risk of reoperation is −0.38.

The models with the linear and the nonlinear term of time for aortic gradient provide us

some opposite results (Table 3.1 and Table 3.2). Specifically, differences can be noticed at

the parameters that associate the longitudinal and survival outcomes, where in the linear case,

some of them appear to be significant.

Table 3.3: Simulation results including the true parameter values, the mean of the means (over the MCMC

samples) for each parameter and the mean of the standard deviations (over the MCMC samples) for each

parameter

True values Mean SD

β11 2.980 2.978 0.074
β11 0.170 0.175 0.018
σ 0.638 0.608 0.021

β20 −3.132 −3.139 0.278
β21 1.683 1.684 0.222
β22 4.799 4.803 0.291
β23 7.820 7.881 0.446
β24 10.591 10.671 0.994
β25 −0.142 −0.143 0.027

γD 0.0002 0.0002 0.00009
α1D −0.012 −0.012 0.015
α12D −0.003 −0.003 0.017
α2D 0.004 0.004 0.014

γR −0.048 −0.054 0.017
α1R −0.149 −0.305 0.336
α12R 2.546 2.598 1.286
α2R 0.001 0.012 0.138

D = death; R = reoperation; SD = standard deviation

3.4 Simulations

A simulation was set up to evaluate the performance of the proposed joint model. The

design of the simulated data was almost similar to the joint models that were fitted on the

cardio data. In particular, we assumed 150 patients and planned a follow-up period randomly

selected from 1 to 8 years equally spaced. The median number of visits is equal to 4, and 13%

of the patients have only a single measurement. More details can be found in Section 3.6.5.

Table 3.3 presents the results from the simulated data. As it can be seen, the proposed
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joint model is performing well with estimates close to the true values. Specifically, we find

the lowest mean absolute error to be for the time-to-death estimates. Moreover, for the CR

mixed-effects submodel and the time-to-reoperation submodel, we observe a mean absolute

error equal to 0.02, while for the linear mixed-effects model it is equal to 0.0091.

3.5 Discussion

Motivated by the clinical interest of associating the valve function with the patients’ risks,

we proposed an extended joint model which handles one continuous (aortic gradient) and one

ordinal (aortic regurgitation) longitudinal outcome and a competing risk setting (time-to-death

or reoperation). We used mixed-effects models for the longitudinal responses and particularly,

the CR mixed-effects model for analyzing the ordinal outcome. A limited simulation study

showed good performance of the proposed model. In this Chapter, the survival outcomes are

coupled with the subject-specific profiles of both longitudinal outcomes making it interesting

to investigate the connection when using flexible functions to smooth the linear assumptions

for time in the mixed-effects models. Major benefits of the proposed joint model include the

ability of the physician to investigate the progression of aortic stenosis and aortic regurgitation

of the patients and to associate it with the risk of dying or requiring a reoperation on the same

valve. Moreover, our joint model is applicable to a range of biomedical research settings that

jointly investigate a continuous longitudinal outcome, an ordinal longitudinal outcome, and

two competing risk events.

An interesting extension would be to model additional longitudinal outcomes and

time-to-event outcomes. From the clinical point of view, this will be more informative because

there are more than two potential biomarkers for investigating heart valve disorders, and often,

there is interest in additional endpoints than reoperation and death. Moreover, in this work,

we assumed that the random effects link the marker evolutions with the risk of each event by

hik(t,θs) = h0k(t)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}.

However, another frequently used parameterization is to connect the survival submodels with

the underlying value of the biomarkers at a specific time point as presented in equation

(3.5.3). Furthermore, we could also investigate whether other characteristics of the patients’

longitudinal profiles of aortic gradient and aortic regurgitation may be associated with the risk

for death or reoperation, such as the rate of increase/decrease of the biomarker’s levels (3.5.4),

or a summary of the whole longitudinal trajectories (3.5.5).

hik(t,θs) = h0k(t)exp{w�
i γk + f1i(t)α1k + f2i(t)α2k}, (3.5.3)

hik(t,θs) = h0k(t)exp{w�
i γk + f1i(t)α1k + f ′1i(t)α

d
1k +

f2i(t)α2k + f ′2i(t)α
d
2k}, (3.5.4)

hik(t,θs) = h0k(t)exp{w�
i γk +

∫ t

0
f1i(t)αd

1kds+
∫ t

0
f2i(t)αd

2kds}, (3.5.5)
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where f1i(t) = x�1i(t)β1 + z�1i(t)b1i and f2i(t) = x�2i(t)β2 + z�2i(t)b2i denote time-dependent

functions of the two longitudinal outcomes respectively that depend on the random effects

and on the true biomarkers. Moreover, f ′1i(t) =
d f1i(t)

dt and f ′2i(t) =
d f2i(t)

dt are the first order

derivatives of the f1i(t) and f2i(t) functions. Finally, a by-product of our developments is

prediction on the patient’s status for example after a medical intervention. Such predictions

could also be used to evaluate the performance of the proposed model under different

parameterizations.

Table 3.4: CR transformed data example

id visit Y cohort visit∗ Y ∗

1 1 2 �2 1 1
�3 1 0
�4 1 0

1 2 2 �2 2 1
�3 2 0
�4 2 0

1 3 1 �2 3 0
�3 3 0
�4 3 0

2 1 4 �4 1 1

2 1 3 �3 1 1
�4 1 0

3.6 Appendix

3.6.1 Continuation Ratio Model

There are two different types of CR models, the backward and the forward. For the

cardio data we assumed a backwards CR model, which is used when progression through

disease states from none to severe is represented by increasing values and the interest lies

in the estimation of the odds of more severe disease compared to less severe disease. The

restructure of the data assuming the backwards method is performed as follows. If Y is

the ordinal response with k + 1 categories (k = 0,1,2, . . . ,k) the first subset of the data of

the higher category consists of all observations. The observations with response category

equal to k are assigned the new binary response equal to 1 and the remaining observations

equal to 0. The second subset of data consists of the observation with Y � k− 1. Again the

observations of the second subset with response category equal to k−1 are assigned as 1 and

the remaining as 0. This procedure continuous until k = 1. An example of the transformed

data is given at Table 3.4. We obtain k-1 dummy variables (cohorts) where k is the number

of categories, representing the cut-point variable yields the regression coefficients of the CR
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model. Thus for the backwards method, by assuming 4 categories we obtain 3 cut-point for

the comparisons between category 4 vs categories 1 through 3, category 3 vs categories 2

through 1 and category 2 vs category 1.

3.6.2 Bayesian Approach for Parameter Estimation

3.6.2.1 Likelihood

The posterior distribution of the joint model is written as

P(θ | y1i j,y∗2i j,Ti,δi) ∝ P(y1i j | b1i,θy1
)P(y∗2i j | b2i,θy2

)P(Ti,δi | b1i,b2i,θs)×
P(b1i | θy1

)P(b2i | θy∗2)P(θy1
)P(θy∗2)P(θs),

where θ = (θ T
y1
,θ T

y∗2
,θ T

s )T denotes the parameter vector for the longitudinal and survival

outcomes. Respectively, θy1
is the parameter vector for the aortic gradient, θy∗2 for transformed

aortic regurgitation as described in Section 3.6.1 and θs for the competing risk part.

The overall likelihood contribution for the i-th subject is given by

P(y1i,y∗2i,Ti,δi | bi;θ) =
1√

2πσ2
exp

{
− 1

2σ2

ni

∑
j=1

(y1i j − x�1i jβ1 − z�1i jb1i)
2
}
×

ni

∏
j=1

{
exp(x�2i jβ2 + z�2i jb2i)

1+ exp(x�2i jβ2 + z�2i jb2i)

}y∗2i j
[

1−
{

exp(x�2i jβ2 + z�2i jb2i)

1+ exp(x�2i jβ2 + z�2i jb2i)

}]1−y∗2i j

×

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)×

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
,

where Tiq = min(Ti, tq)−min(Ti, tq−1) denote the intervals for the piecewise constant baseline

hazard, tq {q = 1, . . . ,m} the knots and mi the index of the knot for which tmi−1 < Ti ≤ tmi .

3.6.2.2 Priors and MCMC Implementation

We used standard non-informative prior distributions for the parameters. In particular, for

the regression coefficients β1, β2, the survival coefficients γk, the association coefficients α1k,

α2k and the baseline hazards for the survival submodel ξqk normal priors were taken. For the

variance-covariance matrix of the random effects we have taken inverse Wishart prior, while

for the variance of the error terms for the continuous longitudinal outcome inverse gamma

Joint Models of Longitudinal and Survival Data 105



3. Joint Modelling of Two Longitudinal Outcomes and Competing Risk Data

prior was taken. We derived the full conditional distributions of all parameters in the joint

models. Gibbs sampling was combined with Metropolis-Hastings sampling. Particularly,

for the parameters 1/σ2 and D−1 Gibbs sampling was applied since the full conditional

distributions are standard. For the other parameters the Random Walk Metropolis algorithm

was applied, tuned such that the acceptance rate lies between 20% and 40%.

3.6.3 Posteriors

3.6.3.1 Full Conditionals for the Mixed-Effects Submodels

The full conditional distribution of the coefficients of the linear mixed-effects submodel

β1 is

P(β1 | .) ∝
n

∏
i=1

exp
{
− τ

2

ni

∑
j=1

(y1i j − x�1i jβ1 − z�1i jb1i)
2
}
×

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)×

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

exp
{
− 1

2
(β1 −μβ1)

�τβ1(β1 −μβ1)
}

where μβ1, τβ1 are the parameters of the prior of β1 and τ equal to 1/σ2.

The full conditional distribution of the coefficients of the CR mixed-effects submodel β2

is

P(β2 | .) ∝
n

∏
i=1

ni

∏
j=1

π
y∗2i j
i j {1−πi j}{1−y∗2i j}×

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)×

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

exp
{
− 1

2
(β2 −μβ2)

�τβ2(β2 −μβ2)
}

where μβ2 and τβ2 are the parameters of the prior of β2.
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The full conditional distribution of the random effects of the linear mixed-effects

submodel b1i is

P(b1i | .) ∝ exp
{
− τ

2

ni

∑
j=1

(y1i j − x�1i jβ1 − z�1i jb1i)
2
}
×

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)×

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

| τb1 |1/2 exp(−1

2
b�1iτb1b1i)

where τb1 is the inverse variance of the prior of b1i.

The full conditional distribution of the random effects of the CR mixed-effects submodel

b2i is

P(b2i | .) ∝
ni

∏
j=1

π
y∗2i j
i j {1−πi j}{1−y∗2i j}×

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)×

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

| τb2 |1/2 exp(−1

2
b�2iτb2b2i)

where τb2 is the inverse variance of the prior of b2i.

The full conditional distribution of the inverse variance of the linear mixed-effects

submodel τ is

P(τ | .) ∝
n

∏
i=1

1√
2π

τ1/2 exp
{
− τ

2

ni

∑
j=1

(y1i j − x�1i jβ1 − z�1i jb1i)
2
}

τAτ−1 exp(−Bτ τ)

[τ | .]∼ Γ[Aτ +
N
2 ,∑

ni
j=1(y1i j − x�1i jβ1 − z�1i jb1)

2 +Bτ ],
where Aτ and Bτ are the parameters of the prior of τ .

The full conditional distribution of the inverse covariance-variance of the random part of

the mixed-effects submodels τb is

P(τb | .) ∝
n

∏
i=1

| τb |1/2 exp
(
− 1

2
b�i τbbi

)
| τb |

n−ρ−1
2 exp

{
− 1

2
tr(| τb | A−1

τb )
}

∝ | τb |
n−ρ

2 exp
{
− 1

2
(| τb | b�i bi+ | τb | A−1

τb )
}
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[τb | .]∼W [n−ρ +1,(b�i biA−1
τb )

−1],
where Aτb and ρ are the parameters of the prior of τb.

3.6.3.2 Full Conditionals for the Survival Submodels

The full conditional distributions of the coefficients of the baseline covariates of the survival

submodel γk are

P(γk | .) ∝
n

∏
i=1

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

exp
{
− 1

2
(γk −μγk)

�τ−1
γk (γk −μγk)

}
where μγk and τγk are the parameters of the prior of γk.

The full conditional distributions of the coefficients of the covariates that link the survival

and the longitudinal part α1k and α2k are

P(α1k | .) ∝
n

∏
i=1

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

exp
{
− 1

2
(α1k −μα1k)

�τα1k(α1k −μα1k)
}

where μα1k and τα1k are the parameters of the prior of α1k.

P(α2k | .) ∝
n

∏
i=1

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

exp
{
− 1

2
(α2k −μα2k)

�τ−1
α2k(α2k −μα2k)

}
where μα2k and τα1k are the parameters of the prior of α2k.

108



3.6 Appendix

The full conditional distributions of the baseline hazards of the survival submodel ξqk are

P(ξqk | .) ∝
n

∏
i=1

K

∏
k=1

[
m

∑
q=1

ξqkI(tq−1 < Ti ≤ tq)exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]I(δi=k)

exp

{
−

K

∑
k=1

[exp{w�
i γk +(β̃1 +b1i)

�α1k +(β̃2 +b2i)
�α2k}]

mi

∑
q=1

ξqkTiq

}
×

exp
{
− 1

2
(ξqk −μξ qk)

�τ−1
ξ qk(ξqk −μξ qk)

}
where μξ qk and τξ qk are the parameters of the prior of ξqk.

3.6.4 WinBUGS Implementation

3.6.4.1 Data

Data = { list(N = number of patients, K = 15 (the points of the Guass-Kronrod quadrature rule, explained below1),
offset = specifies the number of repeated measurements of each patient for aortic gradient,
offset2 = specifies the number of repeated measurements of each patient for the transformed aortic regurgitation,
X = design matrix of the fixed effects for the aortic gradient model,
X2 = design matrix of the fixed effects of the aortic regurgitation model,
y = aortic gradient, y2 = the transformed aortic regurgitation,
Z = design matrix of the random effects for the aortic gradient model,
Z2 = design matrix of the random effects of the aortic regurgitation model,
eventR = vector with the reoperation indicator,
eventD = vector with the death indicator,
zeros = a vector of zeros,
WR = design matrix including the baseline covariates of the survival model with reoperation,
WD = design matrix including the baseline covariates of the survival model with death,
ncX = number of columns of the X matrix,
ncX2 = number of columns of the X2 matrix,
ncZ = number of columns of the Z matrix,
ncZ2 = number of columns of the Z2 matrix,
ncWR = number of columns of the WR matrix,
ncWD = number of columns of the WD matrix,
W2R = design matrix of the baseline hazard for reoperation (explained below2),
W2D = design matrix of the baseline hazard for death (explained below3),
W2sR = design matrix of the baseline hazard for reoperation with the 15-point Guass-Kronrod quadrature rule (explained below4),
W2sD = design matrix of the baseline hazard for death with the 15-point Guass-Kronrod quadrature rule (explained below5),
ncW2R = number of columns of the W2R matrix,
ncW2D = number of columns of the W2D matrix,
C = integer specifying the constant used in the zeros-trick,
P = observed failure time Ti devided by 2,
wk = Guass-Kronrod quadrature rule points (explained below1),
nb = mumber of total random effects,
mu0 = mean of random effects,
priorMean.betas = the prior mean vector of the normal prior for the fixed effects of the linear mixed-effects model,
priorMean.betas2 = the prior mean vector of the normal prior for the fixed effects of the CR mixed-effects model,
priorTau.betas = the prior precision matrix of the normal prior for the fixed effects of the linear mixed-effects model,
priorTau.betas2 = the prior precision matrix of the normal prior for the fixed effects of the CR mixed-effects model,
priorA.tau = the prior shape parameter of the gamma prior for the precision parameter of the linear mixed-effects model,
priorB.tau = the prior rate parameter of the gamma prior for the precision parameter of the linear mixed-effects model,
priorMean.gammas = the prior mean vector of the normal prior for the regression coefficients of the survival models,
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priorTau.gammas = the prior precision matrix of the normal prior for the regression coefficients of the survival models,
priorMean.alphas = the prior mean vector of the normal prior for the association parameter in the survival model,
priorTau.alphas = the prior precision matrix of the normal prior for the association parameter in the survival model,
priorMean.Bs.gammas = the prior mean vector of the normal prior for the spline coefficients of the baseline risk function,
priorTau.Bs.gammas = the prior precision matrix of the normal prior for the spline coefficients of the baseline risk function,
priorR.D = the prior precision matrix of the Wishart prior for the precision matrix of the random effects,
priorK.D = the degrees of freedom of the Wishart prior for the precision matrix of the random effects) }

3.6.4.2 Explanations and Details

1. In general, the integral of the survival function does not have a closed-form solution,

and thus a numerical method must be employed for this evaluation. To approximate this

integral we use the Gaussian quadrature rule and we assume a 15-point Gauss-Kronrod

rule (Rizopoulos and Ghosh, 2011). Particularly

S(t) = exp

{
−

K

∑
k=1

∫ Ti

0
hik(s)ds

}
= exp

{
−

K

∑
k=1

P
15

∑
u=1

wku hik((Tiq sku + T̃iq)/2),

}
,

where Tiq = min(Ti, tq) − min(Ti, tq−1), T̃iq = min(Ti, tq) + min(Ti, tq−1), P is the

observed failure time Ti devided by 2 and wku and sku denote prespecified weights

and abscissas, respectively. However, since in our case only the random effects are

included in the survival model, this numerical method is simplified.

2. The rows of the design matrix of the baseline hazard indicate the patients and the

columns the m-1 intervals of the piecewise constant baseline hazard. The column

(interval) that includes the observed failure time Ti of each patient is denoted as 1

and the rest as 0. A simple example is followed. Let as assume 2 patients with Ti =
(1.5,3.5) and the cutpoints to be tq = (0,1,2,3,4). The design matrix, then, will be:(

0 1 0 0

0 0 0 1

)
.

3. The same matrix as explained in 2.

4. The same matrix as explained in 2, however, in that case instead of Ti we use the

15-point Gauss-Kronrod rule.

5. The same matrix as explained in 4.

3.6.4.3 Code

model <- function ()
{

for (i in 1:N) {
for (j in offset[i]:(offset[i + 1] - 1)) {
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muy[j] <- inprod(betas[1:ncX], X[j, 1:ncX]) +
inprod(b[i, 1:ncZ], Z[j, 1:ncZ])

y[j] ~ dnorm(muy[j], tau)
}
for (j in offset2[i]:(offset2[i + 1] - 1)) {

muy2[j] <- inprod(betas2[1:ncX2], X2[j, 1:ncX2]) +
inprod(b[i, (ncZ + 1):(ncZ + ncZ2)], Z2[j, 1:ncZ2])

Pr[j] <- max(0.00001, min(0.99999, (exp(muy2[j])/
(1 + exp(muy2[j])))))

y2[j] ~ dbin(Pr[j],1)
}
etaBaselineR[i] <- inprod(gammasR[1:(ncWR)], WR[i, 1:ncWR])
etaBaselineD[i] <- inprod(gammasD[1:(ncWD)], WD[i, 1:ncWD])
log.h0.TR[i] <- inprod(Bs.gammasR[1:(ncW2R)], W2R[i, 1:ncW2R])
log.h0.TD[i] <- inprod(Bs.gammasD[1:(ncW2D)], W2D[i, 1:ncW2D])
log.hazardR[i] <- log.h0.TR[i] + etaBaselineR[i] +

inprod(alphasR[1:nb], b[i,1:nb])
log.hazardD[i] <- log.h0.TD[i] + etaBaselineD[i] +

inprod(alphasD[1:nb], b[i,1:nb])
for (k in 1:K) {

log.h0.sR[i, k] <- inprod(Bs.gammasR[1:(ncW2R)], W2sR[K *
(i - 1) + k, 1:ncW2R])

log.h0.sD[i, k] <- inprod(Bs.gammasD[1:(ncW2D)], W2sD[K *
(i - 1) + k, 1:ncW2D])

SurvLongR[i, k] <- wk[k] * exp(log.h0.sR[i, k] +
inprod(alphasR[1:nb], b[i,1:nb]))

SurvLongD[i, k] <- wk[k] * exp(log.h0.sD[i, k] +
inprod(alphasD[1:nb], b[i,1:nb]))

}
log.survivalR[i] <- -exp(etaBaselineR[i]) * P[i] * sum(SurvLongR[i,])
log.survivalD[i] <- -exp(etaBaselineD[i]) * P[i] * sum(SurvLongD[i,])
phi[i] <- C - ((eventR[i] * log.hazardR[i]) +
(eventD[i] * log.hazardD[i])) - (log.survivalR[i] + log.survivalD[i])
zeros[i] ~ dpois(phi[i])
b[i, 1:nb] ~ dmnorm(mu0[], inv.D[, ])

}
betas[1:ncX] ~ dmnorm(priorMean.betas[], priorTau.betas[,])
betas2[1:ncX2] ~ dmnorm(priorMean.betas2[], priorTau.betas2[,])
tau ~ dgamma(priorA.tau, priorB.tau)
gammasR[1:(ncWR)] ~ dmnorm(priorMean.gammas[], priorTau.gammas[,])
gammasD[1:(ncWD)] ~ dmnorm(priorMean.gammas[], priorTau.gammas[,])
alphasR[1:nb] ~ dmnorm(priorMean.alphas[], priorTau.alphas[,])
alphasD[1:nb] ~ dmnorm(priorMean.alphas[], priorTau.alphas[,])
Bs.gammasR[1:(ncW2R)] ~ dmnorm(priorMean.Bs.gammas[], priorTau.Bs.gammas[,])
Bs.gammasD[1:(ncW2D)] ~ dmnorm(priorMean.Bs.gammas[], priorTau.Bs.gammas[,])
inv.D[1:nb, 1:nb] ~ dwish(priorR.D[, ], priorK.D)

}

3.6.5 Simulations

For the continuous longitudinal outcome we simulated from a linear mixed-effects given

by

y1i(t) = β10 + tβ11 +b10i + tb11i + εi(t).
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The ordinal longitudinal outcome with the same number of categories as in the cardio data

was simulated from a CR model by calculating the marginal probabilities of each s category

that take the form

P(y2i(t) = s | .) =[
1−P(y2i(t) = s | y2i(t)≥ s, . . .)

][
1−

U

∑
u=1

P(y2i(t) = u | y2i(t)≥ u | . . .)
]
,

where the ’.’ symbol indicates the covariates and the random effects.

For simplicity, we adopt a linear effect of time without baseline covariates. In addition, we

chose a random intercept and slope for the mixed-effects model of the continuous outcome

and a random intercept for the CR mixed-effects model of the ordinal outcome. The visits

times were simulated from a gamma distribution with mean 2.67 and variance 8.89. For the

survival part, the baseline risk was simulated from a Weibull distribution h0(t) = ψtψ−1 with

ψ = 1.02. Moreover, an exponential censoring distribution was chosen with mean equal to

25. Finally, we included baseline age which was sampled from a U[16,70]. Under the settings

described above, we simulated 200 datasets.

For each simulated dataset we fitted the joint model with exactly the same design as the

one we used to simulate from, based on a piecewise constant baseline risk function with

internal knots at equally spaced percentiles of the observed event times. Particularly, it takes

the form

hik(t,θs) = h0k(t)exp{ageiγk +(β10 +b10i)α1k,0 +(β11 +b11i)α1k,1 +

(β20 +b20i)α2k,0},
where h0k(t) = ∑m

q=1 ξqkI(tq−1 < t ≤ tq) is the piecewise constant baseline hazard and tq{q =
1, . . . ,m} the knots.
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4. Dynamic Prediction of Outcome for Patients with Severe Aortic Stenosis

Abstract

Objective: In the prediction of prognosis for new patients suffering from severe aortic

stenosis (AS), a cardiologist considers not only the severity of the AS but also patient

characteristics, New York Heart Association (NYHA) class, and biomarkers such as brain

natriuretic peptide (BNP). Intuitively, cardiologists adjust their prognosis over time, with

the change in clinical status of the patient at each outpatient clinic visit. This study

aims to illustrate in a prospective cohort of patients with severe AS the use of novel

statistical approaches to mimic the dynamic adjustment of patient prognosis as employed

by cardiologists.

Methods: A prospective cohort of 191 patients with severe AS was followed for 2

years repeatedly collecting BNP. A 3-step approach was employed: (1) construction of

a mixed-effects model describing temporal BNP progression, (2) jointly modelling the

mixed-effects model with time-to-event data (death and aortic valve intervention), and (3)

using the joint model to build subject-specific prediction risk models.

Results: In the mixed-effects model, an increasing BNP was associated with time

(0.23±0.04years), aortic valve area (AVA) (-1.48±0.3cm2), patient age (0.05±0.007years),

left ventricular fractional ejection fraction (-0.16±0.08%), symptoms (0.43±0.18) and

creatinin (0.4±0.09micromol/L). In the joint model, an increasing BNP over time tended to

be associated with death (HR:1.64±1.35).

Conclusions: By jointly modelling longitudinal BNP data with death and intervention of

patients with severe AS it is possible to construct individualized dynamic event prediction

models that renew over time with accumulating evidence. It provides a potentially valuable

evidence-based dynamic prediction tool for everyday use in medical practice.

4.1 Introduction

In clinical practice, physicians utilize different sources of information to predict patient

prognosis. For example, in diagnosing a new patient with severe aortic stenosis (AS), a

cardiologist considers not only the severity of the AS (for example through aortic valve area

AVA measurement) but also patient characteristics such as patient age and comorbidities,

New York Heart Association (NYHA) functional class and patient history, in order to make

an assessment of patient prognosis. Additionally, biomarkers such as brain natriuretic peptide

(BNP) can be used to further assess AS severity and prognosis. A small AVA and a high

BNP are both associated with a more severe disease and a worse outcome (Katz et al., 2012;

Lancellotti et al., 2010; Otto et al., 1997).

Empirically, cardiologists adjust their prognosis over time at each outpatient clinic

visit, with the change in functional class, AVA and BNP. Based on emerging evidence on

determinants of the outcome in AS, and with the help of novel statistical approaches to model

outcomes, it is now possible to construct dynamic prediction models for patient outcome,
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employing repeatedly collected (longitudinal) data such as BNP, mimicking the dynamic

adjustment of prognosis as employed intuitively by cardiologists at each outpatient clinic

visit.

This Chapter aims to illustrate the use of joint models of longitudinal and time-to-event

data to dynamically predict individualized event occurrence severe AS. For this purpose, data

from a prospective cohort study of 191 patients with severe AS is modeled to dynamically

predict prognosis of two patients: Mr. Jones and Mr Smith; who were recently diagnosed

with severe AS.

4.2 Methods

4.2.1 Patient Dataset

We used the patient dataset of a previously reported prospective cohort study of 191

adult patients, who were diagnosed with severe aortic valve disease in seven cardiology

clinics in the wider Rotterdam area between 2006 and 2009, and who were followed for

2 years (Heuvelman et al., 2012). Inclusion criteria were AVA ≤ 1 cm2, peak transaortic

jet velocity (Vmax) ≥ 4 m/s, or aortic valve / left ventricular outflow tract velocity time

integral ratio ≥ 4. The patients were followed clinically, including BNP measurements,

and echocardiographically at baseline and then after 6, 12 and 24 months. Baseline patient

characteristics are displayed in Table 4.1. In total 561 BNP measurements were collected over

a 2-year period (mean 0.9 years; range 0-2.5 years). During the follow-up period, 15% of the

patients (N=28) died and 48% (N=91) received an aortic valve replacement of transcatheter

aortic valve implantation.

Table 4.1: Baseline patient characteristics

All patients (N= 191)

Male gender (n, %) 118, 62%
Age in years (mean, SD) 72.6, 11.4
Symptomatic at study entry (n, %) 132, 69%
Smoking (n, %) 115, 60%
Hypertension (n, %) 100, 52%
Diabetes (n, %) 39, 20%
Dyslipidemia (n, %) 93, 49%

AVA in cm2 (mean, SD) 0.74, 0.27
LV ejection fraction in % (mean, sd) 61, 6.7
Creatinin in micromol/L (mean, SD) 89, 125

AVA = aortic valve area; LV = left ventricular, SD = standard deviation
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4.2.2 Statistical Methods

The development of a dynamic event prediction model that takes into account both

baseline patient characteristics and longitudinal BNP measurement, requires that we first

describe the evolution of BNP over time, correcting for baseline variables. Second, we use

this information in a time-to-event model. Finally, using the combined model, we perform

dynamic event predictions. In the next paragraphs we describe in detail the statistical methods

that were employed in this 3-step process, and the rationale behind these methods.

First, we fitted a mixed-effects model to describe the evolution of BNP over time.

Particularly, the model included time (years) and the baseline covariates: AVA (cm2),

patient age (years), symptoms (yes/no), gender, transformed LV ejection fraction (%) and

transformed creatinin (micromol/L). Transformation was done by dividing the values with the

standard deviations of the specific covariates. Moreover, due to heterogeneity in the residuals

plot the logarithmic scale of BNP was used. An advantage of the mixed-effects models is that

they account for the positive correlation between the measurements that are observed within

the same patient. For example, the values of BNP that are observed over time from the same

patient are expected to be more correlated than between patients. Moreover, these models

account for the biological variability in the longitudinal outcome. Specifically, if we measure

BNP twice a day, we may not obtain the same result. By taking this into account using the

mixed model, more reliable results will be observed.

Second, to investigate the effect of the repeated BNP measurements on death and

intervention probabilities, a joint model of longitudinal and survival outcomes was constructed

(Rizopoulos, 2012; Andrinopoulou et al., 2012). AVA, age, symptoms, gender, LV fraction

and creatinine (all at baseline) were included as additional confounders.

Third, we considered the joint modelling framework and focused on the assessment of

the predictive ability of our survival outcomes. Specifically, it was of interest to predict

patient survival and aortic valve intervention-free for a new patient that has provided us with

a set of BNP measurements and baseline characteristics, using the fitted joint model for all

patients. Due to the fact that BNP is time-dependent and not constant between the visits and

therefore providing longitudinal measurement up to a specific time, assumes survival up to

this time, it was more relevant to calculate the probability of surviving a future time point,

given that the patient was alive until his last follow-up visit (Rizopoulos, 2011; Proust-Lima

and Taylor, 2009). Using this approach, we applied the resulting joint modelling framework

to two hypothetical patients: Mr. Jones and Mr. Smith and predicted their future survival

and aortic valve intervention-free probabilities. Specifically, Mr. Jones is a 72 year old male,

with creatinin value at baseline 92 micromol/L, AVA of 0.96 cm2, LV ejection fraction 61%

and BNP values over time 64, 70, 72 and 78 pg/ml measured at 0.5, 0.9, 1.5 and 1.5 years.

Moreover, he is asymptomatic at baseline. Additionally, Mr. Smith is a 79 year old male that

has creatinin equal to 92 micromol/L, AVA equal to 0.61 cm2, LV ejection fraction equal to

61% and he is symptomatic at baseline. Finally, his BNP values are 381, 287, 1068 and 1070

pg/ml measured at 0, 0.9, 1.2 and 2 years.
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Table 4.2: Coefficients, standard error of coefficients and p-values for the mixed-effects model describing

the evolution of BNP over time

Coefficient SE p-value

(Intercept) 2.92 0.95 0.0025
Time (years) 0.23 0.04 < 0.0001

AVA (cm2) −1.48 0.3 < 0.0001
Age (years) 0.05 0.007 < 0.0001
Symptoms 0.43 0.18 0.0188
Male gender −0.34 0.18 0.0607
*LVejection fraction (%) −0.16 0.08 0.0486
*Creatinin (micromol/L) 0.4 0.09 < 0.0001

AVA = aortic valve area; LV = left ventricular; SE = standard error. *Trasnformed LV ejection fraction and Creatinin in the models
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AVA at baseline = 0.61
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AVA at baseline = 0.96 (Mr. Jones)

Figure 4.1: Effect plot of AVA described from the joint model for Mr. Jones and another patient with the

same age, with impaired LV ejection fraction of 61, creatinin level equal to 92 and both patients with no

symptoms at baseline. AVA = aortic valve area; LV = left ventricular
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Table 4.3: Coefficients, standard error of coefficients and p-values for the joint model predicting survival

and aortic valve intervention

Coefficient Hazard ratio SE p-value

Death
BNP at specific time point (pg/ml) 0.5 1.65 0.3 0.0962

AVA (cm2) −2.61 0.07 1.5 0.0815
Age (years) 0.02 1.02 0.04 0.5674
Male gender 1.12 3.06 0.6 0.0623
Symptoms 1.87 6.49 1.05 0.0753
*LV ejection fraction (%) 0.01 1.01 0.25 0.9539
*Creatinin (micromol/L) 0.18 1.2 0.15 0.2162
Aortic valve intervention
BNP at specific time point (pg/ml) 0.18 1.2 0.25 0.4787

AVA (cm2) −1.12 0.33 1.04 0.2804
Age (years) −0.04 0.96 0.02 0.0077
Male gender 0.39 1.48 0.49 0.4287
Symptoms 1.08 2.94 0.46 0.0183
*LV ejection fraction (%) 0.24 1.27 0.21 0.2388
*Creatinin (micromol/L) −1.43 0.24 1.31 0.2761

BNP = brain natriuretic peptide; AVA = aortic valve area; LV = left ventricular; SE = standard error. *Trasnformed LV ejection fraction and

Creatinin in the models

Furthermore, we performed internal validation using a bootstrapping procedure.

Specifically, we focused on discrimination, that is, how well can the model discriminate

between patients who are about to experience the event within a time frame after the last

measurement, from patients that are going to surpass this time frame. Since the patients were

visiting their physician approximately every half year, we set this time frame. In patricularly,

we rely on the receiver operating characteristic (ROC) approach to assess the predictive ability

of the longitudinal biomarker BNP (Rizopoulos, 2011).

All analyses have been implemented in R.15.1, which can be downloaded as freeware at

http://www.r-project.org, using the JM package (Rizopoulos, 2010).

4.3 Results

As illustrated in Table 4.2 in the mixed-effects model describing the evolution of BNP

over time, all covariates have a strong association with the levels of BNP, except baseline

gender. Specifically, a longer follow-up, lower AVA at baseline, older patient baseline age,

symptomatic patient at baseline, lower baseline LV ejection fraction and a higher baseline

serum creatinin are highly associated with an increased BNP. Moreover, Figure 4.1, shows the

evolutions of BNP in time of two hypothetical patients, Mr. Jones and another patient that has

the same characteristics as Mr. Jones except for the AVA level which is 0.61. It is obvious
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Figure 4.2: Dynamic prediction for the survival probability for Mr. Jones

in Figure 4.1 that a smaller AVA is associated with a higher BNP at baseline. Furthermore,

there is no difference in the progression of BNP between the two patients. From the joint

model with the survival as outcome, in Table 4.3, we observe that smaller AVA at baseline,

male patient, symptoms at baseline and higher BNP at a specific time point (since we used

all repeated measurements in the model for the specific covariate) tend to be associated with

death. The joint model with the aortic valve intervention as outcome shows that a younger

patient and symptoms at baseline are strongly associated with aortic valve intervention-free

probabilities.

Figure 4.2, 4.3, 4.4 and 4.5 represent the dynamic prediction of survival and aortic valve

intervention-free respectively for Mr. Jones and Mr. Smith, employing the joint modelling

framework. It can be seen in Figure 4.2 that as more BNP measurements accumulated over

time for Mr. Jones, the survival curve does not show big changes. Moreover, the same

can be seen in Figure 4.3, where the intervention-free probabilities are presented. This can

be explained by the fact that Mr. Jones’ BNP measurements are relatively low and stable.
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Figure 4.3: Dynamic prediction for the aortic valve intervention-free probability for Mr. Jones

In contrast, Mr. Smith has more steep curves for both expected survival and aortic valve

intervention-free probabilities indicating that the patient should be monitored frequently.

Specifically, one year after his first follow-up visit Mr. Smith has a survival probability

of 70%, while one year after his last visit his survival probability is less than 50%. The

reason could be that Mr. Smith has a high BNP value at baseline and his progression is faster

within the 2 year period compared to Mr. Jones. Thus, Mr. Smith has a much lower survival

probability one year after his last follow-up.

Finally, from the bootstrap method we observe the area under the ROC curve for death and

reoperation to be 0.88 and 0.59, respectively. This indicates a good discriminative capability

of the BNP for death, and little added value for the prediction of reoperation.
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Figure 4.4: Dynamic prediction for the survival probability for Mr. Smith

4.4 Discussion

In this Chapter we illustrated the use of joint models of longitudinal and time-to-event

data for individualized dynamic event prediction using serial BNP measurements in patients

with severe AS. Patient prognostication may be improved by the use of such models that take

into account all available medical information that accumulates over time. In the case of Mr.

Jones and Mr. Smith, their probabilities of survival and aortic valve intervention-free were

calculated accounting for all BNP values that accumulated over time and were updated when

new BNP measurements became available. This approach provides the cardiologist with a

useful evidence-based tool to assess the impact of BNP on patient prognosis. Importantly,

the calculated probabilities for survival and aortic valve intervention can be used as an early

warning system, allowing the necessary time for the physicians to plan an intervention. Given

the impaired quality of life (QOL) of symptomatic patients with AS (van Geldorp et al.,

2013b) and the considerable improvement in QOL after the aortic valve replacement, dynamic
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Figure 4.5: Dynamic prediction for the aortic valve intervention-free probability for Mr. Smith

event predictions may be of great value in optimizing the timing of the intervention (van

Geldorp et al., 2013a).

Joint models of longitudinal and survival data (Rizopoulos, 2012) represent a powerful

statistical tool capable of capturing the association between longitudinal and survival time

data. An alternative approach is to utilize the time-dependent Cox model. However, this

model assumes a step function between the repeated measurements, which is not realistic

for biomarkers due to the fact that such cardio data as BNP values cannot be assumed to be

constant between visits.

Of course, the proposed methodology has several (potential) limitations, both from a

clinical and a statistical point of view. From a clinical point of view, every patient is

unique, and analysis based on group data may not account for the special characteristics of an

individual patient. Moreover, there are factors that are not included in the statistical models

that may play an important role and thus, influence the decision making. In this respect

we acknowledge that the proposed statistical methodology may be supportive in clinical
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decision making, but can never replace clinical expertise. From the statistical point of view,

the analysis of more than one longitudinal outcome such as BNP, AVA and symptoms over

time together with survival outcomes requires advanced computational work and standard

statistical packages do not yet provide these options. Moreover, there is not yet a package

performing dynamic event prediction accounting for the competing risk problem: specifically,

patients could die or require an intervention, in this case is aortic valve intervention. The

analysis, then, becomes more complicated by the fact that the two censored outcomes are

not completely independent, thus it is clear that analyzing the two outcomes separately is not

appropriate and may lead to bias. However, in order to keep the analysis simple and thus

to use only available packages, in this Chapter we did not account for the competing risk

problem. Furthermore, a topic that was not addressed, concerns the validation of the derived

predictions in terms of calibration. Within the joint modelling frame, some work has been

done by Rizopoulos (2011) and Proust-Lima and Taylor (2009). Specifically, they focus on

predictive accuracy measures that compare the actual value of predictions with the observed

data using simulated data. Finally, a dataset consisting of more patients that are followed for

a longer time period may provide better predictions for future patients.

Although all analyses were performed using standard statistical packages, a level of

expertise in programming may be required. Thus, interactive web applications with friendly

controls that easily incorporate plots and summaries are essential for adequate implementation

of the proposed models in clinical practice may be interesting to produce. Particularly, an easy

web application could give the opportunity to every physician to derive updated predictions

for new patients when more longitudinal outcomes are available.

From the analysis we obtained a non significant association between aortic valve

intervention and the evolution of BNP (Table 4.3). Hence, the validation showed that for

the target group of patients the BNP as a marker for intervention does not exhibit great

discrimination power. Although BNP profile is not a good predictor of intervention, it is

reliable in predicting mortality and thus can be very helpful in planning an intervention to

prevent mortality due to AS disease progression.

In conclusion, this Chapter has shown that temporal adjustment of risk prediction models

for patients with severe AS, as more measurements of BNP become available over time,

provide the physician with an evidence-based understanding of the prognostic implication

of changes in the patient’s disease condition. With the cardiovascular medical practice

increasingly moving towards personalized medicine (Vahanian et al, 2012), joint models may

provide an attractive tool for subject-specific predictions. The proposed joint model that was

built and used to predict prognosis of patients suffering from severe AS, can be easily extended

to other chronic disease entities that employ both longitudinal and survival data to dynamically

assess patient prognosis.

Joint Models of Longitudinal and Survival Data 125



BIBLIOGRAPHY

Bibliography

Andrinopoulou, E., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E., and Takkenberg, J.

(2012). An introduction to mixed models and joint modeling: analysis of valve function

over time. The Annals of Thoracic Surgery, 93:1765 – 1772.

Heuvelman, H., van Geldorp, M., Kappetein, A., Geleijnse, M., Galema, T., Bogers, A., and

Takkenberg, J. (2012). Clinical course of patients diagnosed with severe aortic stenosis in the

rotterdam area: insights from the AVARIJN study. Netherlands Heart Journal, 20:487 – 493.

Joint Task Force on the Management of Valvular Heart Disease of the European Society of

Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS), Vahanian,

A., Alfieri, O., Andreotti, F., Antunes, M., Barsn-Esquivias, G., Baumgartner, H., Borger,

M., Carrel, T., De Bonis, M., Evangelista, A., Falk, V., Iung, B., Lancellotti, P., Pierard, L.,

Price, S., Schäfers, H., Schuler, G., Stepinska, J., Swedberg, K., Takkenberg, J., Von Oppell,

U., Windecker, S., Zamorano, J., and Zembala, M. (2012). Guidelines on the management

of valvular heart disease (version 2012). European Heart Journal, 33:2451 – 2496.

Katz, M., Tarasoutchi, F., Pesaro, A., Lopes, R., Spina, G., Vieira, M., and Grinberg, M.

(2012). Natriuretic peptides and long-term mortality in patients with severe aortic stenosis.

The Journal of Heart Valve Disease, 21:331 – 336.

Lancellotti, P., Moonen, M., Magne, J., O’Connor, K., Cosyns, B., Attena, E., Donal,

E., and Pierard, L. (2010). Prognostic effect of long-axis left ventricular dysfunction and

b-type natriuretic peptide levels in asymptomatic aortic stenosis. The American Journal of
Cardiology, 105:383 – 388.

Otto, C., Burwash, I., Legget, M., Munt, B., Fujioka, M., Healy, N., Kraft, C., Miyake-Hull,

C., and Schwaegler, R. (1997). Prospective study of asymptomatic valvular aortic

stenosis. clinical, echocardiographic, and exercise predictors of outcome. Circulation,

95:2262 – 2270.

Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic

tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint

modeling approach. Biostatistics, 10:535 – 549.

Rizopoulos, D. (2010). JM: An � package for the joint modelling of longitudinal and

time-to-event data. Journal of Statistical Software, 35 (9):1 – 33.

Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for

longitudinal and time-to-event data. Biometrics, 67:819 – 829.

126



BIBLIOGRAPHY

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data with
Applications in R. Chapman and Hall/CRC Biostatistics Series, Boca Raton.

van Geldorp, M., Heuvelman, H., Kappetein, A., Busschbach, J., Cohen, D., J.J., T., and

Bogers, A. (2013a). Quality of life among patients with severe aortic stenosis. Netherlands
Heart Journal, 21:21 – 27.

van Geldorp, M., Heuvelman, H., Kappetein, A., Busschbach, J., J.J., T., and Bogers, A.

(2013b). The effect of aortic valve replacement on quality of life in symptomatic patients

with severe aortic stenosis. Netherlands Heart Journal, 21:28 – 35.

Joint Models of Longitudinal and Survival Data 127





CHAPTER�

�������� 	
����� ���������� ����� �����

������ �� �������� ������������ �������� ���

��������� ���� 	���

This Chapter is based on: Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J.J. and

Lesaffre, E. (2014). Combined dynamic predictions using joint models of multiple

longitudinal outcomes and competing risk data. Statistical Methods in Medical Research,

submitted.

129



5. Combined Dynamic Predictions using Joint Models of Multiple Longitudinal Outcomes and Competing Risk Data

Abstract

Nowadays there is increased medical interest in personalized medicine and tailoring

decision making to the needs of individual patients. Within this context our developments

are motivated from a Dutch study at the Cardio-Thoracic surgery department of the Erasmus

Medical Centre, consisting of patients who received a human tissue valve in aortic position

and who were thereafter followed echocardiographically. Our aim is to utilize the available

follow-up measurements of the current patients to produce dynamically updated predictions of

both survival and freedom from reintervention for future patients. In this Chapter we propose

to jointly model multiple longitudinal measurements combined with competing risk survival

outcomes and derive the dynamically updated cumulative incidence functions. Moreover, we

investigate whether different features of the longitudinal processes would change significantly

the prediction for the events of interest by considering different types of association structures,

such as time-dependent trajectory slopes and time-dependent cumulative effects. Our final

contribution focuses on optimizing the quality of the derived predictions. In particular, instead

of choosing one final model over a list of candidate models which ignores model uncertainty,

we propose to suitably combine predictions from all considered models using Bayesian model

averaging (BMA).

5.1 Introduction

Motivated by current increased medical interest in personalized medicine, in this work

we focus on subject-specific survival predictions (Taylor et al., 2005; Garre et al., 2008; Yu

et al., 2008; Proust-Lima and Taylor, 2009; Rizopoulos, 2011). For example in the field of

Cardio-Thoracic surgery and especially after a heart valve replacement, the main disadvantage

of human tissue valve allografts is their limited durability due to calcification with tissue

damage resulting in degeneration and dysfunction. Thus, it may be of interest for the treating

physicians to develop a prognostic tool that could inform them about a future reintervention to

their patients using all available repeated measurements. Specifically, the motivation comes

from a study that was conducted in the Erasmus Medical Centre, Rotterdam, The Netherlands.

This study includes 270 patients who received a human tissue valve allograft in aortic position

in the Department of Cardio-Thoracic Surgery in a period of 21 years. Patients were followed

prospectively over time and measurements of aortic gradient and aortic regurgitation were

obtained at 6 months and 1 year postoperatively and biennially thereafter (Bekkers et al.,

2011). The continuous variable aortic gradient measures whether the opening of the aortic

valve is narrowed, while the ordinal variable aortic regurgitation measures leakage of the

aortic valve. At the end of follow-up, 57 (20.1%) patients had died and 74 (26.1%) patients

required a reoperation on the allograft. Since aortic gradient and aortic regurgitation are both

measuring aortic heart valve abnormalities and therefore, the presence of one disease will

have an influence on the other, it is of great interest from the clinical point of view to analyze
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them together.

To evaluate the predictive value of the valve data on mortality and reoperation and

to derive the subject-specific predictions we rely on joint models for longitudinal and

time-to-event data. Joint modelling is an active area of statistics research that has received

a lot of attention in recent years (Wulfsohn and Tsiatis, 1997; Tsiatis and Davidian, 2004;

Rizopoulos, 2012). Moreover, these models can be used to objectively extract information

from multiple markers and to employ them to dynamically update risk estimates. An

advantage is that the predictions are updated as more measurements become available. Thus,

the statistical predictions can be combined with the physician’s expertise to yield improved

health outcomes eventually.

In this paper, we extend the work presented in Andrinopoulou et al. (2014), that focuses

on fitting the data using a joint model where the survival outcomes are associated with the

random effects of the longitudinal outcomes. In particular, our contribution is two-fold: first,

we postulate joint models assuming different functional forms to underlie the relationship

between multiple longitudinal and survival outcomes and second, we focus on prediction

models in the presence of competing risks. Since we are more interested in predicting future

patients than simply assessing the degree of association between the trend of the repeated

outcomes and time-to-events, it is important to accurately determine the estimate of the

underlying process of the heart disease. Thus, we go beyond the standard joint model that

utilizes only the latent value of the biomarkers and investigate whether the risk of an event

could be affected also by the slope or a summary of the whole history of the longitudinal

outcomes.

Finally, instead of deriving predictions based on a single model we suitably combine all

considered ones. It is common practice that a model is selected from a set of different possible

models upon clinical predictions are based. However, such an approach neglects model

uncertainty. In addition, different models may produce more accurate predictions for different

types of patients. We explicitly account for these issues and rely on Bayesian model averaging

(BMA, Hoeting et al., 1999; Rizopoulos et al., 2014). Previous research using that approach

in the joint modelling framework (Rizopoulos et al., 2014) derives BMA risk predictions for

one event based on one continuous longitudinal outcome. In this paper we extend this idea to

handle multiple longitudinal outcomes and a competing risk setting. Specifically, motivated

by the heart valve study where treating physicians are more interested in risk predictions

separately for reoperation and death, we derive BMA version of the cumulative incidence

functions of the two events.

The rest of the Chapter is organized as follows. Section 5.2 describes the joint submodels

and the Bayesian estimation procedure. Section 5.3 provides the individualized prediction

mechanism and the Bayesian model averaging. Finally, Section 5.4 presents the results of the

valve data and Section 5.5 closes with a discussion.
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5.2 Methods

5.2.1 Submodels

Let T∗
ki denote the true failure time for the i-th individual (i = 1, . . . ,n) for each competing

event k = 1,2, . . . ,K, and Ci the censoring time, then Ti = min(T∗
1i, . . . ,T

∗
Ki,Ci) represents the

observed failure time for the i-th patient. Moreover, δi = 0,1,2, . . . ,K is the event indicator

where 0 indicates censoring. For the longitudinal part, we let yi = (y�i1, . . . ,y
�
iP)

�, p = 1, . . . ,P
denote a vector of P outcomes for the i-th patient, where yip consists of longitudinal responses

that may be obtained at different time points ti j,p and have length nip. To describe the

subject-specific evolutions over time of the longitudinal outcomes we utilize generalized

linear mixed-effects models. In particular, the conditional distribution of the data, given the

random effects, is taken to be member of the exponential family of distributions with mean

conditional on the random effects

E(yip(t) | bip) = g−1
p { fip(t)},

where g−1
p (.) is the inverse link function and fip(.) describes the longitudinal profile for the

p-th outcome

fip(t) = x�ip(t)βp + z�ip(t)bip,

where xip(t) denotes the design vector for the fixed effects regression coefficients βp and

zip(t) the design vector for the random effects bip.

For ordinal outcomes, we propose to use the continuation ratio (CR) mixed-effects model,

postulated as

P(yip(t) = s | yip(t)≤ s,xip,zip,bip) =
exp{ fip(t)}

1+ exp{ fip(t)} ,

where s = 1, . . . ,Sp represents the categories of each ordinal outcome. This model is based

on conditional probabilities and is more appropriate when subjects move incrementally from

one stage to another. Constructing a new binary y∗ip(t) vector and replicating rows of

the xip(t) and zip(t) design vectors as described by Harrell (2001), the CR model can be

fitted using a mixed-effects binary logistic likelihood function. Finally, we assume that a

full multivariate normal distribution for the random effects describes the evolution of the

longitudinal outcomes, i.e.,

bi = (b�i1, . . . ,b
�
iP)

� ∼ Np(0,D).

For the survival process we assume that the risk for each of the K competing events

depends on the true but unobserved value of the markers at time t. Specifically, we have

hik(t,θs) = h0k(t)exp

{
γ�k wik +

P

∑
p=1

αpk fip(t)

}
, t > 0,
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where θs is the parameter vector for the survival outcomes, wik is a vector of baseline

covariates with a corresponding vector of regression coefficients γk, and αpk denotes the

strength of association between the longitudinal and survival outcomes. A B-splines baseline

hazard function is assumed logh0k(t) = γh0,0 +∑Q
q=1 γh0,qBq(t, tq), where Bq(t, tq) denotes the

q-th basis function of a B-spline with knots t1, . . . , tQ and γh0
the vector of spline coefficients.

We place the knots at equally spaced percentiles of the observed event times.

An issue that is often overlooked when building joint models, is the functional form that

describes the longitudinal outcomes that are associated with the risk for each event. Due to

the fact that different structures may provide us with different inferences and predictions, it

is important to study this component of the model. Following, Brown (2009), Rizopoulos

and Ghosh (2011) and Rizopoulos (2012) we postulate different functional forms to assess

the predictive ability of the biomarkers. Specifically, we assume the following association

structures:

M1 : hik(t,θs) = h0k(t)exp

{
γ�k wik +

P

∑
p=1

αpk fip(t)

}
, (5.2.1)

M2 : hik(t,θs) = h0k(t)exp

{
γ�k wik +

P

∑
p=1

αpk fip(t)+
P

∑
p=1

αd
pk f ′ip(t)

}
, (5.2.2)

M3 : hik(t,θs) = h0k(t)exp

{
γ�k wik +

P

∑
p=1

αd
pk

∫ t

0
fip(s)ds

}
, (5.2.3)

where f ′ip(t) =
d fip(t)

dt is the first order derivative of the fip(t) function.

Model M1 postulates that the risk for an event at time t depends on the mean level of the

markers at the same time point t. Model M2 is an extension of model M1 in which not only

the current value but also the slopes of the longitudinal trajectories at time t are related to the

hazard. Yet another option is to relate the survival outcomes with a summary of the whole

history of the markers, where as summary we take the area under the longitudinal profiles

(model M3).

Combinations of these parameterizations are possible, where in the case of P = P1 +P2

longitudinal outcomes we could have:

hik(t,θs) = h0k(t)exp

{
γ�k wik +

P1

∑
p1=1

αp1k fip1
(t)+

P2

∑
p2=1

αd
p2k

∫ t

0
fip2

(s)ds

}
,

where the risk for an event at time t is associated with the underlying value of P1 biomarkers

at a specific time point and the area under the curve for P2 biomarkers. Furthermore, different

structure could be assumed for each survival model. A big range of combined models will

improve the efficiency of BMA and therefore more accurate predictions will be provided.
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5.2.2 Bayesian Estimation and Prior Specification

For the estimation of our joint model’s parameters, we adopt a Bayesian formulation

and derive posterior inferences using a Markov chain Monte Carlo (MCMC) algorithm. The

likelihood of the model is derived under the assumption that the random effects account for

all dependencies between the observed outcomes. Specifically, given the random effects, the

longitudinal and survival processes are assumed independent and moreover, the longitudinal

responses of each subject are assumed independent. In particular,

p(yi,Ti,δi | bi;θ) =
P

∏
p=1

p(yip | bip,θyp)p{Ti,δi | fip(.),θs}, (5.2.4)

p(yip | bip;θyp) =
nip

∏
j=1

p(yip j | bip;θyp), (5.2.5)

where θ = (θ T
yp
,θ T

s )T denotes the parameter vector for the longitudinal and survival

outcomes. Thus, the posterior distribution is written as

p(θ | yip,Ti,δi) ∝
P

∏
p=1

nip

∏
j=1

p(yip j | bip,θyp)p{Ti,δi | fip(.),θs}p(bip | θyp)p(θyp)p(θs).

The likelihood contribution from the exponential family takes the form

p(yip | bip,θyp) = exp

{
nip

∑
j=1

[
yip jψip j(bip)− c{ψip j(bip)}/a(φ)−d(yip j,φ)

]}
,

where ψip j(bip) and φ denote the natural and dispersion parameters in the exponential family,

respectively, and c(.), d(.) and a(.) are known functions specifying the member of the

exponential family. The likelihood contribution of the survival model when assuming the

parametrization of model (5.2.1) is given by

p{Ti,δi | fip(.),θs}=
K

∏
k=1

[
exp

{
∑
q

γh0k,qBq(Ti, tq)+ γ�k wik +
P

∑
p=1

αpk fip(Ti)

}I(δi=k)

×

exp

(
− exp(γ�k wik)

∫ Ti

0
exp

{
∑
q

γh0k,qBq(s, tq)+
P

∑
p=1

αpk fip(s)
}

ds
)]

.

The integral in the definition of the survival function does not have a closed-form solution, and

therefore we used a 15-point Gauss-Kronrod quadrature rule to approximate it (Press et al.,

2007).
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We use standard prior distributions for the parameters. In particular, for the regression

coefficients βp, the survival coefficients γk, the association coefficients αpk and the baseline

hazards for the survival submodel γh0k,q, normal priors are taken with mean 0 and variance

100. For the variance–covariance matrix D of the random effects we take inverse Wishart

prior with an identity scale matrix and 6 degrees of freedom. Finally, for variance parameters

(e.g. for normal longitudinal outcomes) inverse gamma priors are taken with parameters that

are based on the separate analysis per outcome.

All computations have been performed in R (version 3.0.1) and JAGS (version 3.3.0) and

is available upon request from the first author.

5.3 Dynamic Survival Predictions

5.3.1 Predictions from a Single Model

Based on the joint models presented in Section 5.2.1, we focus on the derivation of the

predictions of the survival outcomes. More specifically, we would like to predict cumulative

incidence probabilities for a new patient l that has provided us with a set of longitudinal

measurements Ỹl p(t) = {yl p(sp1), . . . ,yl p(spnl);0 ≤ sp1 < sp2 < · · ·< spnl < t, p = 1, . . . ,P}.

Given that no event occurred up to t, it is more relevant to focus on the cumulative incidence

probabilities at time u > t. To account for competing risks we work with the cumulative

incidence function:

πlk(u, t) = P(T ∗
lk < u | ∪K

k=1T ∗
lk > t,Ỹl1(t), . . . ,ỸlP(t),Dn),

where Dn = {Ti,δi,yi1, . . . ,yiP; i = 1, . . . ,n} denotes the sample on which the joint model was

fitted.

Under the Bayesian formulation of the joint model, the estimation of πlk(u, t) is based on

the corresponding posterior predictive distributions, namely

πlk(u, t) =
∫

P(T ∗
lk < u | ∪K

k=1T ∗
lk > t,Ỹl1(t), . . . ,ỸlP(t);θ)p(θ | Dn)dθ . (5.3.6)

Using the full conditional independence assumption (5.2.4), the first term of the integrand in

(5.3.6) can be written as

P(T ∗
lk < u | ∪K

k=1T ∗
lk > t,Ỹl1(t), . . . ,ỸlP(t);θ) =∫

P(T ∗
lk < u | ∪K

k=1T ∗
lk > t,Ỹl1(t), . . . ,Ỹ1P(t),blp;θ)×

p(bl p | ∪K
k=1T ∗

lk > t,Ỹl1(t), . . . ,ỸlP(t);θ)db =∫
P(T ∗

lk < u | ∪K
k=1T ∗

lk > t,blp;θ)p(blp | ∪K
k=1T ∗

lk > t,Ỹl1(t), . . . ,ỸlP(t);θ)db.
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Furthermore,∫
P(T ∗

lk < u | ∪K
k=1T ∗

lk > t,bl p;θ)p(bl p | ∪K
k=1T ∗

lk > t,Ỹl1(t), . . . ,ỸlP(t);θ)db =

∫
P(T ∗

lk < u,∪K
k=1T ∗

lk > t | bl p;θ)
P(∪K

k=1T ∗
lk > t | bl p;θ)

p(blp | ∪K
k=1T ∗

lk > t,Ỹl1(t), . . . ,ỸlP(t);θ)db =

∫ CIF(u, t)
S(t)

p(blp | ∪K
k=1T ∗

lk > t,Ỹl1(t), . . . ,ỸlP(t);θ)db,

where S(.) denotes the overall survival and CIF(.) =
∫ u

t hlk(s)S(s)ds the cumulative incidence

function. The second term of the integrant (5.3.6), p(θ | Dn), is the posterior distribution of

the parameters given the observed data.

Here we can obtain a Monte Carlo estimate of πlk(u, t) using the following simulation

scheme:

1. Draw θ∗ from the MCMC sample of the posterior p(θ | Dn)

2. Draw b∗l p from p(blp | ∪K
k=1T ∗

lk > t,Ỹl1(t), . . . ,ỸlP(t);θ∗)

3. Compute πlk(u, t,b∗l p;θ∗) =CIF(u, t,b∗l p;θ∗)/S(t,b∗l p;θ∗),

We, then, repeat steps 1-3 H times and derive the estimates of the πlk(u, t) as,

π̂lk(u, t) =
1

H

H

∑
h=1

π(h)
lk (u, t)

Moreover, a 95% credible interval (CI) can be obtained using the Monte Carlo sample

percentiles.

5.3.2 Combined Predictions using Bayesian Model Averaging

As it was seen in Section 5.2.1, there are several ways to link the longitudinal and

the survival outcomes. Moreover, we could even postulate additional joint models with

different assumptions for each submodel. For instance, in some of the mixed models the

subject-specific evolutions over time may be nonlinear, or we could control for different sets

of baseline covariates either in the mixed-effects or relative-risk submodels. In this complex

setting, a common practice is to choose a single model based on information criteria and obtain

predictions from that selected model. However, this approach ignores model uncertainty. In

addition, there may be different models that provide more accurate predictions for different

types of subjects. An alternative solution to this problem is BMA, which proceeds by

estimating a number of models and constructing a weighted average of predictions (Hoeting

et al., 1999; Rizopoulos et al., 2014).
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More formally, following the notation in Section 5.3.1, we would like to obtain predictions

of the conditional probabilities πlk(u, t), u > t, for a new patient l who has provided us

with a set of longitudinal outcomes Ỹl p(t) = {ylp(sp1), . . . ,ylp(spnl);0 ≤ sp1 < sp2 < · · · <
spnl < t, p = 1, . . . ,P}. Assuming models M1, . . . ,MΩ, the averaged conditional cumulative

probabilities of patient l occurring an event at time u, given that he did not have any event up

to time t is given by:

P(T ∗
lk < u | ∪K

k=1T ∗
lk > t,Dl(t),Dn) =

Ω

∑
ω=1

P(T ∗
lk < u | ∪K

k=1T ∗
lk > t,Mω ,Dl(t),Dn)p(Mω | Dl(t),Dn),

where Dn = {Ti,δi,yi1, . . . ,yiP; i = 1, . . . ,n} denotes the sample on which the joint models

were fitted and Dl(t) = {Ỹl p(t),∪K
k=1T ∗

lk > t} denotes the data of the new patient l. The first

term of the above equation denotes the conditional cumulative probabilities per model and the

second term denotes the posterior weights of each of the models. To calculate the posterior

probability of the models we use Bayes rule as

p(Mω | Dl(t),Dn) =
p(Dl(t) | Mω )p(Dn | Mω )p(Mω )

∑Ω
q=1 p(Dl(t) | Mq)p(Dn | Mq)p(Mq)

,

where

p(Dl(t) | Mω ) =
∫

p(Dl(t) | θω )p(θω | Mω )dθω =

∫ P

∏
p=1

p(Ỹl p(t) | blp,θω )p(Tl ,δl | bl p,θω )p(blp | θω )p(θω | Mω )dθω ,

and

p(Dn | Mω ) =
∫

p(Dn | θω )p(θω | Mω )dθω =

∫ P

∏
p=1

p(yip(t) | bip,θω )p(Ti,δi | bip,θω )p(bip | θω )p(θω | Mω )dθω ,

where p(Dl(t) | θω ) and p(Dn | θω ) are the likelihood functions for the new patient and

for all the patients, respectively. Furthermore, p(θω | Mω ) is the prior density of θω under

model Mω . p(Dl(t) | Mω ) and p(Dn | Mω ) are obtained by means of Laplace approximations.

Specifically we first integrate out the random effects and then the parameters. A priori we

assume that all models are equally probable. A careful investigation of p(Mω | Dl(t),Dn)
reveals that different patients, but also different time points within the same patient could

provide different weights. Thus, compared to the choice of a single model, the BMA provides

predictions that are more accurate since for every patient and visit it uses the models that are

more probable to describe the association between the longitudinal and survival outcomes.
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Table 5.1: Posterior means, standard errors and 95 % equal tail credible intervals for the joint model fitted

for the cardio data when assuming model M11

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 2.91 0.09 2.74 3.07
ns(Time, 3)1 1.40 0.20 1.00 1.78
ns(Time, 3)2 2.86 0.34 2.22 3.55
ns(Time, 3)3 2.88 0.41 2.12 3.74
Age −0.25 0.06 −0.36 −0.13
Sex (female) 0.19 0.12 −0.04 0.41
Precision 2.88 0.18 2.54 3.24
Longitudinal process (aortic regurgitation)
Intercept 2.85 0.30 2.27 3.46
cohortY<=1 −1.90 0.21 −2.33 −1.50
cohortY<=2 −5.52 0.30 −6.14 −4.95
cohortY<=3 −9.52 0.46 −10.49 −8.63
cohortY<=4 −14.07 0.87 −16.34 −12.80
Time 0.25 0.04 0.17 0.34
Age −0.33 0.22 −0.74 0.10
Sex (female) 0.73 0.38 0.001 1.48
Survival process (death)
Age 0.88 0.17 0.56 1.22
Type of operation (root replacement) 0.75 0.36 0.06 1.48
αAoG −0.42 0.15 −0.73 −0.13
αAoR 0.09 0.03 0.04 0.15
Survival process (reoperation)
Age −0.41 0.16 −0.72 −0.10
Type of operation (root replacement) 0.57 0.31 −0.01 1.20
αAoG 0.34 0.09 0.16 0.51
αAoR 0.10 0.03 0.05 0.16
DIC −5910.9

ns = natural splines; AoG = aortic gradient; AoR = aortic regurgitation; SD = standard deviation; DIC = deviance information criterion

5.4 Analysis of the Valve Dataset

In this Section we present the analysis of the cardio data introduced in Section 5.1.

Our interest is to derive subject-specific risk predictions using all available information for a

patient. We first started our analysis by fitting a set of joint models with different association

structures and different baseline covariates. More specifically, for the linear mixed-effects

model many patients show nonlinear longitudinal trajectories and therefore, we assumed

natural cubic spline for time with two internal knots (λ ) at 2.1 and 5.5 year (corresponding

to 33.3% and 66.7% of the observed follow-up times) in both fixed and random part in

the mixed-effects model of aortic gradient. Furthermore, we corrected for age (after we

standardize it) and gender. Since there are more clinical relevant baseline covariates that

have an effect on aortic gradient, we fitted a second mixed-effects model including also:
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Table 5.2: Posterior means, standard errors and 95 % equal tail credible intervals for the joint model fitted

for the cardio data when assuming model M12

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 3.31 0.14 3.02 3.59
ns(Time, 3)1 1.42 0.19 1.05 1.80
ns(Time, 3)2 2.89 0.30 2.31 3.50
ns(Time, 3)3 2.91 0.36 2.23 3.64
Age −0.31 0.06 −0.43 −0.20
Sex (female) 0.10 0.12 −0.13 0.33
Type of operation (root replacement) −0.48 0.14 −0.74 −0.22
Marfan (yes) −0.45 0.24 −0.93 0.03
LVfunction (2) −0.01 0.13 −0.27 0.25
LVfunction (3) 0.46 0.34 −0.21 1.12
LVfunction (4) −0.13 0.24 −0.61 0.33
DonorAge 0.18 0.06 0.07 0.29
Diameter (mm) −0.29 0.06 −0.41 −0.18
Precision 2.86 0.18 2.52 3.21
Longitudinal process (aortic regurgitation)
Intercept 2.86 0.31 2.25 3.48
cohortY<=1 −1.92 0.21 −2.33 −1.50
cohortY<=2 −5.53 0.30 −6.13 −4.96
cohortY<=3 −9.51 0.45 −10.40 −8.65
cohortY<=4 −14.24 0.82 −15.92 −12.73
Time 0.25 0.04 0.18 0.34
Age −0.30 0.20 −0.70 0.08
Sex (female) 0.74 0.41 −0.04 1.55
Survival process (death)
Age 0.89 0.17 0.56 1.23
Type of operation (root replacement) 0.77 0.36 0.09 1.50
αAoG −0.43 0.15 −0.73 −0.14
αAoR 0.10 0.03 0.04 0.16
Survival process (reoperation)
Age −0.40 0.15 −0.70 −0.09
Type of operation (root replacement) 0.58 0.31 −0.02 1.19
αAoG 0.34 0.09 0.17 0.51
αAoR 0.11 0.03 0.05 0.17
DIC −5902.7

ns = natural splines; AoG = aortic gradient; AoR = aortic regurgitation; SD = standard deviation; DIC = deviance information criterion

marfan, left ventricular function, standardized donor age and standardize diameter of valve.
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Table 5.3: Posterior means, standard errors and 95 % equal tail credible intervals for the joint model fitted

for the cardio data when assuming model M21

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 2.90 0.08 2.74 3.05
ns(Time, 3)1 1.56 0.18 1.21 1.92
ns(Time, 3)2 3.59 0.37 2.88 4.34
ns(Time, 3)3 4.04 0.55 3.01 5.17
Age −0.23 0.06 −0.34 −0.11
Sex (female) 0.23 0.12 −0.01 0.46
Precision 2.41 0.17 2.11 2.78
Longitudinal process (aortic regurgitation)
Intercept 2.81 0.32 2.19 3.46
cohortY<=1 −1.91 0.21 −2.33 −1.50
cohortY<=2 −5.55 0.31 −6.16 −4.96
cohortY<=3 −9.55 0.46 −10.46 −8.70
cohortY<=4 −14.25 0.81 −15.91 −12.74
Time 0.28 0.04 0.20 0.36
Age −0.30 0.20 −0.69 0.09
Sex (female) 0.75 0.41 −0.04 1.57
Survival process (death)
Age 1.18 0.23 0.77 1.66
Type of operation (root replacement) 0.67 0.38 −0.07 1.45
αAoG −0.94 0.27 −1.52 −0.47
αAoR 0.09 0.03 0.04 0.16

αd
AoG 10.67 3.74 4.16 18.85

αd
AoR −0.36 0.32 −1.09 0.20

Survival process (reoperation)
Age −0.29 0.20 −0.67 0.10
Type of operation (root replacement) 0.64 0.36 −0.03 1.37
αAoG −0.31 0.26 −0.87 0.15
αAoR 0.12 0.03 0.06 0.19

αd
AoG 9.06 3.70 2.90 17.40

αd
AoR −0.24 0.28 −0.87 0.24

DIC −6154.6

ns = natural splines; AoG = aortic gradient; AoR = aortic regurgitation; SD = standard deviation; DIC = deviance information criterion

Particularly, the linear mixed-effects models take the form

y1i(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1ia(t)+ εi(t) = β10a +Ageiβ11a +Sexiβ12a +∑V
v=1 ns(t,λ )β1(v+2)a+

b10ia +∑V
v=1 ns(t,λ )b1via,

f1ib(t)+ εi(t) = β10b +Ageiβ11b +Sexiβ12b +TypeOpiβ13b +Mar f aniβ14b+

LV f raciβ15b +DonAgiβ16b +Diamiβ17b +∑V
v=1 ns(t,λ )β1(v+7)b+

b10ib +∑V
v=1 ns(t,λ )b1vib,
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Table 5.4: Posterior means, standard errors and 95 % equal tail credible intervals for the joint model fitted

for the cardio data when assuming model M22

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 3.34 0.13 3.08 3.59
ns(Time, 3)1 1.50 0.18 1.16 1.84
ns(Time, 3)2 3.72 0.36 3.01 4.44
ns(Time, 3)3 4.36 0.56 3.29 5.47
Age −0.30 0.05 −0.40 −0.19
Sex (female) 0.16 0.11 −0.06 0.38
Type of operation (root replacement) −0.50 0.13 −0.75 −0.25
Marfan (yes) −0.60 0.23 −1.05 −0.15
LVfunction (2) −0.04 0.13 −0.28 0.20
LVfunction (3) 0.32 0.31 −0.29 0.94
LVfunction (4) −0.13 0.23 −0.58 0.32
DonorAge 0.19 0.05 0.09 0.29
Diameter (mm) −0.29 0.05 −0.40 −0.18
Precision 2.29 0.14 2.03 2.60
Longitudinal process (aortic regurgitation)
Intercept 2.81 0.32 2.20 3.45
cohortY<=1 −1.91 0.21 −2.33 −1.50
cohortY<=2 −5.56 0.31 −6.17 −4.96
cohortY<=3 −9.56 0.46 −10.49 −8.68
cohortY<=4 −14.26 0.81 −15.90 −12.79
Time 0.29 0.04 0.21 0.37
Age −0.29 0.20 −0.68 0.11
Sex (female) 0.73 0.40 −0.05 1.51
Survival process (death)
Age 1.24 0.24 0.79 1.76
Type of operation (root replacement) 0.43 0.43 −0.40 1.27
αAoG −1.16 0.28 −1.72 −0.64
αAoR 0.09 0.03 0.04 0.16

αd
AoG 14.38 3.78 7.22 22.27

αd
AoR −0.59 0.35 −1.37 0.01

Survival process (reoperation)
Age −0.26 0.22 −0.68 0.16
Type of operation (root replacement) 0.53 0.39 −0.25 1.30
αAoG −0.52 0.26 −1.07 −0.04
αAoR 0.12 0.03 0.06 0.20

αd
AoG 12.73 3.85 5.61 20.96

αd
AoR −0.47 0.32 −1.20 0.07

DIC −5981.1

ns = natural splines; AoG = aortic gradient; AoR = aortic regurgitation; SD = standard deviation; DIC = deviance information criterion

where ns(t,λ ) denotes the natural cubic spline matrix with two internal knots. For the CR

mixed-effects model of aortic regurgitation we assumed linear time at the fixed part and

a random intercept and slope at the random part. Finally, we corrected for age (after we

standardized it) and gender. The CR mixed-effects model after the transformation of the
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Table 5.5: Posterior means, standard errors and 95 % equal tail credible intervals for the joint model fitted

for the cardio data when assuming model M31

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 2.91 0.08 2.75 3.08
ns(Time, 3)1 1.39 0.18 1.04 1.76
ns(Time, 3)2 2.82 0.29 2.27 3.39
ns(Time, 3)3 2.81 0.36 2.14 3.53
Age −0.24 0.06 −0.36 −0.12
Sex (female) 0.19 0.12 −0.04 0.41
Precision 2.85 0.18 2.52 3.22
Longitudinal process (aortic regurgitation)
Intercept 2.91 0.29 2.34 3.49
cohortY<=1 −1.87 0.21 −2.28 −1.46
cohortY<=2 −5.48 0.29 −6.06 −4.93
cohortY<=3 −9.43 0.41 −10.30 −8.66
cohortY<=4 −13.85 0.71 −15.71 −12.70
Time 0.21 0.04 0.14 0.28
Age −0.31 0.20 −0.73 0.07
Sex (female) 0.86 0.41 0.09 1.69
Survival process (death)
Age 0.85 0.16 0.54 1.17
Type of Operation (root replacement) 0.30 0.32 −0.32 0.93

αd
AoG −0.05 0.02 −0.08 −0.01

αd
AoR 0.003 0.002 −0.001 0.007

Survival process (reoperation)
Age −0.62 0.14 −0.89 −0.35
Type of operation (root replacement) 0.09 0.27 −0.45 0.63

αd
AoG 0.03 0.01 0.01 0.05

αd
AoR 0.001 0.002 −0.002 0.004

DIC −6139.6

ns = natural splines; AoG = aortic gradient; AoR = aortic regurgitation; SD = standard deviation; DIC = deviance information criterion

ordinal outcome takes the form

P(y∗2i(t) = 1 | y∗2i(t)≤ 1,Age,Sex, t,b20,b21) =

exp{ f2i(t)}
1+ exp{ f2i(t)} =

exp(∑4
s=0 β2s +Ageiβ25 +Sexiβ26 + tβ27 +b20i + tb21i)

1+ exp(∑4
s=0 β2s +Ageiβ25 +Sexiβ26 + tβ27 +b20i + tb21i)

.
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Table 5.6: Posterior means, standard errors and 95 % equal tail credible intervals for the joint model fitted

for the cardio data when assuming model M32

Mean SE 2.5% 97.5%

Longitudinal process (aortic gradient)
Intercept 3.31 0.13 3.06 3.57
ns(Time, 3)1 1.40 0.18 1.06 1.76
ns(Time, 3)2 2.81 0.29 2.26 3.39
ns(Time, 3)3 2.80 0.35 2.13 3.52
Age −0.31 0.06 −0.42 −0.19
Sex (female) 0.11 0.11 −0.12 0.33
Type of operation (root replacement) −0.50 0.13 −0.76 −0.24
Marfan (yes) −0.42 0.24 −0.90 0.05
LVfunction (2) 0.02 0.14 −0.24 0.29
LVfunction (3) 0.47 0.35 −0.22 1.13
LVfunction (4) −0.11 0.24 −0.57 0.38
DonorAge 0.18 0.06 0.07 0.29
Diameter (mm) −0.29 0.06 −0.40 −0.18
Precision 2.83 0.18 2.48 3.19
Longitudinal process (aortic regurgitation)
Intercept 2.91 0.32 2.32 3.56
cohortY<=1 −1.88 0.21 −2.30 −1.47
cohortY<=2 −5.50 0.31 −6.13 −4.91
cohortY<=3 −9.48 0.46 −10.40 −8.61
cohortY<=4 −13.99 0.79 −15.63 −12.50
Time 0.21 0.04 0.14 0.29
Age −0.30 0.20 −0.70 0.08
Sex (female) 0.86 0.42 0.05 1.71
Survival process (death)
Age 0.85 0.16 0.54 1.18
Type of Operation (root replacement) 0.30 0.31 −0.31 0.93

αd
AoG −0.05 0.02 −0.08 −0.01

αd
AoR 0.003 0.002 −0.001 0.007

Survival process (reoperation)
Age −0.62 0.14 −0.90 −0.36
Type of operation (root replacement) 0.09 0.27 −0.44 0.63

αd
AoG 0.03 0.01 0.01 0.05

αd
AoR 0.001 0.002 −0.002 0.005

DIC −6240.2

ns = natural splines; AoG = aortic gradient; AoR = aortic regurgitation; SD = standard deviation; DIC = deviance information criterion
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For the survival models we used proportional hazards models assuming B-splines for the

baseline hazard function as described in Section 5.2.1. Standardized age and type of operation

are important clinical factors and thus were included as confounders. Moreover, to keep the

analysis simple we assumed the same functional form for the longitudinal outcomes and the

same model for each survival outcomes. Specifically, the joint models that we fitted take the

form

M11 : hik(t,θs) = h0k(t)exp{γ1kAgei + γ2kTypeOpi +α1k f1ia(t)+α2k f2i(t)},
M12 : hik(t,θs) = h0k(t)exp{γ1kAgei + γ2kTypeOpi +α1k f1ib(t)+α2k f2i(t)},
M21 : hik(t,θs) = h0k(t)exp{γ1kAgei + γ2kTypeOpi +α1k f1ia(t)+αd

1k f
′
1ia(t)+

α2k f2i(t)+αd
2k f

′
2i(t)},

M22 : hik(t,θs) = h0k(t)exp{γ1kAgei + γ2kTypeOpi +α1k f1ib(t)+αd
1k f

′
1ib(t)+

α2k f2i(t)+αd
2k f

′
2i(t)},

M31 : hik(t,θs) = h0k(t)exp{γ1kAgei + γ2kTypeOpi +αd
1k

∫ t

0
f1ia(s)ds+

αd
2k

∫ t

0
f2i(s)ds},

M32 : hik(t,θs) = h0k(t)exp{γ1kAgei + γ2kTypeOpi +αd
1k

∫ t

0
f1ib(s)ds+

αd
2k

∫ t

0
f2i(s)ds}.

We run the MCMC with single chains for 550,000 iterations for all models and we

discarded 50,000 iterations as burn-in. Convergence was monitored by trace plots and

the Geweke diagnostic test. Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 show the posterior

means, standard errors and corresponding 95% credible intervals for the parameters of the

longitudinal and survival submodels, respectively. As it can be seen, age is significantly

associated with death in all models and with reoperation in models M11, M12, M31 and M32

where the survival outcomes are associated with the true value and the area under the curve

of the biomarkers. Moreover, type of operation seems to be a significant factor for death in

models M11 and M12. Furthermore, the underlying value, the slope and the area under the

curve of aortic gradient seem to be associated with death in both models with the less and

extra baseline covariates in the mixed-effect model while only M21 showed a non significant

association of the underlying value with reoperation. Finally, from models M11, M12, M21 and

M22 we obtain that the underlying value of aortic regurgitation is a significant factor for death

and reoperation. In addition, we use the deviance information criterion (DIC) to compare the

models. Specifically, from Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 model M32 appears to provide

better fit to the data.
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Figure 5.1: Profile plots of aortic gradient and aortic regurgitation for patient 123 and 286

We continued by calculating dynamic predictions based on the models described above.

Under the fitted joint models, the conditional probabilities of death and reoperation were

estimated using the Monte Carlo procedure, as described in Section 5.3.1, with H = 300.

Specifically, we derived the predictions of two patients, patient 123 (47 year old male) and

patient 286 (52 year old male), that were excluded from the dataset when fitting the joint

models. In Figure 5.1, we present the longitudinal trajectories of these patients. As it can

be seen, both patients show an increasing aortic gradient profile over time, but, patient 286

has higher values than patient 123. For aortic regurgitation, only patient 286 seems to change

category at the second follow-up. We show the predictions of every joint model of death and

reoperation for patients 123 and 286 in Figure 5.2 and 5.3, as more longitudinal measurements

are available. For patient 123, when using the underlying value of aortic gradient and aortic

regurgitation in the survival models (for both the model with less M11 and more covariates

M12 as confounder in the longitudinal part), the conditional probabilities of death are much

smaller than reoperation. The same can be seen when assuming the area under the curve

model with the extra confounders M32. However, when assuming the slope parameterization

and the area under the curve parameterization (for the model without the extra clinical relevant

covariates) the difference between the survival and free intervention probabilities is smaller

(M21, M22 and M31). Specifically, the probabilities of death and reoperation seem to cross in

model M21 while, in model M22 are both really small. For patient 286, a bigger difference

between the death and survival probabilities is observed in model M31 compared to patient

123. Furthermore, in model M21 it is clear that the probability of death is higher the next five
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5. Combined Dynamic Predictions using Joint Models of Multiple Longitudinal Outcomes and Competing Risk Data

Figure 5.2: Prediction plots for patient 123 using each joint model proposed. CIF = Cumulative Incidence

Function

years at the first two visits.

Table 5.7: BMA posterior weights for the six proposed joint models for patient 123 and 286 for each

measurement

Patient Time M11 M21 M31 M12 M22 M32

123 1.09 0.00 0.00 0.00 0.00 0.00 1.00
123 3.15 0.00 0.00 0.00 0.82 0.00 0.18
123 5.27 0.00 0.00 0.00 0.89 0.00 0.11
123 7.20 0.00 0.00 0.00 0.00 0.00 1.00

286 0.67 0.00 0.00 0.00 0.67 0.00 0.33
286 2.67 0.00 0.00 0.00 0.00 0.00 1.00
286 5.10 0.00 0.00 0.00 0.00 0.00 1.00
286 9.89 0.00 0.00 0.00 0.01 0.00 0.99

Following, we computed the posterior weight for each model and calculate the BMA
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Figure 5.3: Prediction plots for patient 286 using each joint model proposed. CIF = Cumulative Incidence

Function

Figure 5.4: Prediction plots for patient 132 using Bayesian model averaging. CIF = Cumulative Incidence

Function

predictions. In Table 5.7 we present the weights of the models for each patient and visit. It is

clear that not always a single model provides the best prediction. Specifically, models M12 and

M32 seem to contribute in the BMA predictions depending on the patient and the visit. As it

can be seen, even within the same patient the choice of the best model could change over time.

In particular, for patient 123 at the first and last visit we observe that only model M32 provides
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Figure 5.5: Prediction plots for patient 286 using Bayesian model averaging. CIF = Cumulative Incidence

Function

better predictions. However, for the second and third visit we obtain a higher contribution for

model M12. This could be explained by the fact that the square root of aortic gradient of the

specific patient remains the same for visit 2 and 3, thus the underlying value provides us with

enough information. Furthermore, for patient 286 we obtain that model M12 contributes 67%

and model M32 33% at the calculation of the predictions at visit one. After the first visit M32

is chosen to be the most appropriate model. From the profile plots, we obtain a decrease of

the square root aortic gradient from visit 2 to 3 and an increased aortic regurgitation at visit 2,

therefore the whole evolution of the outcome may be a better predictor after the second visit.

In Figure 5.4 and 5.5, which present the combined predictions, we obtain high probabilities

for reoperation and low for death for both patients. This is explained by the fact that both

models M12 and M32 indicate the same behavior.

5.5 Discussion

Risk predictions for patients with severe valve diseases that are updated as more

longitudinal measurements become available over time, provide the physician with

an evidence-based understanding of disease progression. Importantly, the calculated

probabilities for survival and reintervention can be used as an early warning system, allowing

the necessary time for the physicians to plan an intervention. In this work we presented

dynamic predictions for a competing risks setting using multiple longitudinal outcomes.

Specifically, we performed different functional forms to relate the longitudinal and the

survival processes and different structure (by adding clinical relevant baseline covariates)

of one longitudinal model and investigate the predictions of two patients that we originally

excluded from the dataset. Finally, since the choice of a single model ignores the model

uncertainty issue, we combined all models and derive predictions for the survival outcomes for

the same two patients using the BMA. This method explicitly accounts for model uncertainty

and for the fact that not all future patients have the same prognostic model. Despite the

usefulness of the BMA approach, caution is needed with respect to some issues. In particular,

the specification of the prior distribution of the models is challenging and has received little
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attention. Moreover, the number of models that could be combined may be high resulting to

difficulties in calculating the summation. We should, furthermore, make clear that we cannot

identify the true model from the pool of all candidate models.

We limited our work so that the association between aortic gradient and aortic

regurgitation with the survival outcomes was the same. However, a different functional form

for each biomarker would be also possible and interesting to investigate. A disadvantage,

however, is that it will be more computational intensive, since more models should be

performed. Moreover, additional ways to link the longitudinal and survival processes,

such as the weighted area under the curve, the lag effect and the shared random effect

parameterization, were not addressed in this paper. Nevertheless, a bigger dataset with

patients followed for a longer period is probably needed in order to obtain a variety of

evolutions and capture the special characteristics of the patients. Furthermore, we performed

models including extra confounders only for the continuous longitudinal outcome. Hence,

more factors in the model of the ordinal outcome and also of the survival outcomes

could be included and further investigated. Finally, in this paper we did not perform any

formal validation of the derived predictions. Measures for the evaluation of calibration

and discrimination of prognostic survival models can be easily adapted to the competing

risks setting (Schoop et al., 2011; Gail and Pfeiffer, 2005). Within the joint modelling

framework, calibration and discrimination has been previously introduced (Rizopoulos, 2011;

Proust-Lima and Taylor, 2009). However to our knowledge these proposed measures of

calibration and discrimination are not directly applicable on competing risk settings. Thus,

validation in that setting may be an interesting topic for future research.
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6. Conclusions

6.1 Summary

In this thesis, we focused on the analysis of longitudinal and time-to-event outcomes

motivated by the aortic valve disease datasets. We proposed the joint modelling framework

which couples repeated measurements such as aortic gradient, aortic regurgitation and brain

natriuretic peptide (BNP) with survival outcomes such as death and reoperation, while

accounting for the special features of the data. In Chapter 2, we introduced the mixed-effects

and the joint models and we investigated the different inferences that could be obtained by

comparing them with simple methods that do not account for the special features of the

data. In Chapter 3, we continued with an extension of the basic joint model to handle one

continuous (aortic gradient), one ordinal (aortic regurgitation) longitudinal outcome and a

competing risk setting (death/reoperation). Specifically, the survival outcomes were coupled

with the subject-specific profiles of both longitudinal outcomes. In Chapter 4, we focused

on individualized risk predictions for future patients in the clinical setting. Specifically, we

predicted death and reoperation probabilities as more BNP values became available for two

new patients. In Chapter 5, we extended the concept of prediction to multiple longitudinal

outcomes combined with competing risk survival outcomes and we derived the dynamically

updated cumulative incidence functions. Moreover, we showed that different features of

the longitudinal processes, such as time-dependent trajectory slopes and time-dependent

cumulative effects, but also different baseline covariates could change the prediction for the

events of interest. Finally, due to the fact that the choice of a single model ignores the model

uncertainty issue, we combined all proposed models using Bayesian model averaging (BMA)

to derive predictions for the survival outcomes.

6.2 Discussion

The focus of this thesis was on both methodological and applied aspects of the joint

modelling framework. Specifically, we illustrated the properties of the basic joint model and

proposed several extensions in order to analyze the heart valve data.

In clinical practice, physicians intuitively use only a small portion of the available

information to proceed to an intervention. We showed that the whole medical history of the

patients could also be incorporated in a statistical model using the joint modelling approach

of longitudinal and survival data. Nevertheless, medical expertise is a key ingredient that

helps to define models relevant to medical practice (e.g. the choice of the covariates and

the structures). Medical experience coupled with an estimate of the survival probability of

a patient that accounts for all available information, would enable physicians to make better

informed decisions and thus improve clinical outcome.

The underlying assumptions of a joint model are important and need to be clearly

specified. In particular, these models are built under the assumption that the random effects

account for all dependencies between the observed data. That is, given the random effects

154



6.3 Future Research

both the longitudinal outcomes as well as the repeated measurements for each outcome

are independent of each other and in addition, the longitudinal outcomes are independent

of the time-to-events. This conditional independence assumption is directly related to the

missing data mechanism (as presented in Section 1.2.3 in Chapter 1). Thus, if this proves

to be incorrect, the dropout process may still depend on the unobserved responses. The key

component behind the joint models are the random effects which describe the subject-specific

evolutions. In the case where a patient has an increase aortic gradient evolution over time, it

is highly probable that the physician will decide that an intervention is required. The missing

data mechanism implies that individuals who show steep changes are more likely to occur an

event. It is obvious that after the event time point, the profile of the patient changes.

The key aspect to consider in the joint models is the association between the longitudinal

and survival outcomes. However, the choice between the different parameterizations depends

also on the clinical question of interest. That is, whether the focus of inference is on measuring

the effect of the longitudinal covariate in the survival outcome, or on investigating the

association structure between the two processes. In particular, when we are more interested

in assessing the degree of association between the trend of the repeated outcomes and

time-to-events as presented in Chapter 3, the random effects parametrization offers a great

flexibility. Nevertheless, when we wish to accurately determine the estimate of the underlying

process of the heart disease in order to obtain predictions, a further investigation is required

in order to obtain the true association (Chapter 5).

6.3 Future Research

During the research on analyzing the heart valve data appropriately and therefore deriving

predictions, we faced some issues and investigated approaches that could open discussions for

future research.

6.3.1 Translate the Joint Models into Clinical Practice

The joint model of longitudinal and survival data can be implemented in R using the JM
or the JMbayes package (Rizopoulos, 2012). Specifically, the first package performs these

models under a maximum likelihood approach. Various of options are available including

the specification of the association structure and the baseline hazard, competing risk settings,

predictions etc. However, there are some limitations such as the analysis of a categorical

longitudinal response, multiple longitudinal outcomes and recurrent events processes. The

JMbayes package fits joint models for longitudinal and survival outcomes under a Bayesian

approach and has also a various of options similar to the JM package. Even though it does

allow for more complex outcomes (e.g. categorical, left censored), it does not facilitate the

analysis of multiple longitudinal outcomes and recurrent events. In this thesis, specifically in

Chapter 2 and 4, we used the JM package to perform joint models assuming a longitudinal
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and a time-to-event outcome. For the joint models of a continuous, an ordinal longitudinal

outcome and a competing risk setting presented in Chapter 3 and 5, some extra programming

was required. Other packages for the joint models have been also developed. Specifically,

the package joineR fits joint models that consider a linear mixed-effects submodel for the

longitudinal data and a Cox-based submodel for the survival data, linking the submodels

through common random effects. Furthermore, the package lcmm performs latent class

joint models, where the correlation between the repeated measurements in the longitudinal

outcome is captured by the random effects and the association between the longitudinal with

the survival outcomes by a shared latent class indicator (Proust-Lima and Taylor, 2009).

The use of such computer intensive applications requires a high level of expertise in

programming and a sound methodological background. Hence, performing the analysis, even

with the use of the packages, may be not possible for everyone. Interactive web applications

with friendly controls that easily incorporate plots and summaries are essential for adequate

implementation of the proposed models in clinical practice. Such a tool can be build with the

shiny package. Specifically, it translates the R code into an user-interface that thereafter can

be used without requiring any knowledge in programming. A web application for obtaining

predictions for future patients under the package JMbayes already exists. Thus, this could

be extended in order to account for multiple longitudinal and survival outcomes. Such

an easy web application could give the opportunity to every physician to derive updated

risk predictions for new patients when more longitudinal outcomes (such as aortic gradient

and aortic regurgitation) are available. Integration of such a webbased tool into the patient

information system would be highly desirable to optimally support clinical decision making.

6.3.2 BMA Extensions

When investigating more than one biomarker, we assumed the same parameterization

for each of them. However, an interesting extension would be to investigate combinations

of association structures. This could provide optimal predictive ability, since more models

would be combined in the BMA. An example for P = P1+P2 longitudinal outcomes would

be

hik(t,θs) = h0k(t)exp

{
γ�k wik +

P1

∑
p1=1

αp1k fip1
(t)+

P2

∑
p2=1

αd
p2k

∫ t

0
fip2

(s)ds

}
, (6.3.1)

where k is the event, θs is the parameter vector for the survival outcomes, h0k(t) is the baseline

hazard, wik is a vector of baseline covariates with a corresponding vector of regression

coefficients γk and αp1k and αp2k are the coefficients that link the longitudinal and survival

parts. Specifically, in (6.3.1) for a set of P1 longitudinal outcomes, we assume the true

value and for another set P2 the area under the curve to be associated with the survival

outcomes. Furthermore, different submodels could be assumed per outcome. For instance,

type of operation could be a significant factor for death but not for reoperation. In addition,
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the slope of aortic gradient could have an influence on death, however, the area under the

curve of the same biomarker could affect significantly reoperation. An issue with such an

extension is that the number of models under consideration may be large and will, therefore,

make it impossible to estimate every possible model. Nevertheless, there have been several

proposals in the literature which carry out BMA without requiring the evaluation of every

possible model. Madigan and Raftery (1994) and Furnival and Wilson (1974) manage to

reduce the number of models to be estimated, using appropriate strategies (model selection

problem).

When interest is only on determining confounders for the survival outcomes, weighted

estimates for the covariates considering models with different associated structures could be

observed. The weights per model can be written as

P(Mω | Dn) =
P(Dn | Mω )P(Mω )

∑Ω
q=1 P(Dn | Mq)P(Mq)

,

where p(Dn |Mω ) is the marginal density of the original data for model ω and P(Mω ) the prior

of each model. We could then make inference for the whole universe of candidate models.

As a result, we consider not only the uncertainty associated with the parameter estimate

conditional on a given model, but also the uncertainty of parameter estimate across different

models. However, this approach will lead to wider confidence intervals for the weighted

coefficients.

Furthermore, in order to implement the BMA, prior information for each model must

be assigned. In this thesis, we worked with equally probable models apriori. However, the

specification of more flexible priors for the models may be more appropriate. Specifically,

Moral-Benito (2013) propose some alternative priors.

6.3.3 Further Extensions

In this thesis, we mostly used the Bayesian approach since it facilitates computations.

However, in the statistics research little work was done with regards to model averaging

method using the frequentist approach (FMA). The selection of the priors of the models in

the case of a large range of models may be a difficult task. Furthermore, we raise concern for

the fact that the typical application of BMA involves mixing together many conflicting prior

opinions regarding interest parameters. Specifically, we need to set priors for the parameters

of each model and for the model itself. Thus, the FMA is an alternative method to the BMA

which requires only the specification of the weights of each model. Specifically, as presented

by Wang et al. (2009) and Moral-Benito (2013), weights could be based on information

criteria, Mallows’ criteria or cross-validation criteria.

Moreover, the validation of predictions on different cohorts is of primary importance in

the process of developing a prognostic tool, especially when using a complex statistical model,

and was not addressed in this thesis. We applied the BMA approach which provided us with
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predictions that account for both model uncertainty and patients’ unique nature. Nevertheless,

we did not concentrate on how well the model predicts the observed data. Thus, standard

measurements, such as calibration, may be useful to investigate.

Finally, in the standard Cox model the effect of the covariates on survival is to act

multiplicatively on some unknown baseline hazard rate, therefore the relationship between

the event and the factors is described by the ratio. However, in some cases, the risk difference

is preferred to describe this association. Thus, in the heart valve data it may be of interest to

investigate also the risk of death or reoperation with one unit increase of the echocardiographic

measurements. An alternative to the Cox model would be the additive hazard model, where

the covariates act in additive manner on unknown baseline hazard (Aalen, 1980; Aranda-Orda

et al., 1983). Specifically, the additive hazard model can be written as

hik(t,θs) = h0k(t)+ γ�k wik +
P

∑
p=1

αpk fip(t), (6.3.2)

where αpk are the coefficients that link the longitudinal and survival parts. Specifically, the

coefficients can be interpreted as the increase in the hazard rate for every unit increase in the

corresponding component. With regards to the likelihood under the additive hazards model

(6.3.2), a further investigation is required. Even though there are many advantages in using

the additive hazard regression models, they are not widely used. One reason for this is that the

model is not readily available in statistical software packages. A further investigation of the

predictions that this approach provides in our concept, could be performed using the BMA

that includes also the additive hazard models.

6.4 Final Conclusion

We should make clear that the choice of the method should depend on the nature of the

data and the interest of the physicians rather than the complexity of the method. The joint

models are a useful tool when longitudinal outcomes are collected together with time-to-event

data. Specifically, they incorporate all information simultaneously and provide valid and

efficient inferences. Nevertheless, in the case of a cross-sectional dataset, where data are

collected by observing many subjects at the same point of time, the mixed-effects and

therefore the joint models are not longer needed. The choice of the statistical models is an

important task and needs to be done with caution.
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Nederlandse Samenvatting

Het monitoren van patiënten is essentieel bij het vroegtijdig opsporen van

hartklepaandoeningen. In het bijzonder zijn de aorta gradiënt, aorta-insufficiëntie en brain

natriuretisch peptide (BNP) metingen van belang bij het vaststellen van de ernst en progressie

van de klepziekte. Deze metingen kunnen nuttig zijn voor de therapeutische besluitvorming,

vooral wanneer deze metingen regelmatig worden uitgevoerd. Gemotiveerd door dit

klinisch belang, hebben wij gebruik gemaakt van gemengde modellen voor longitudinale-

en overlevingsdata. Het idee achter deze modellen is de veranderingen van de marker in

de loop van de tijd goed te beschrijfven. Vervolgens worden deze veranderingen van de

marker gebruikt als een tijdsafhankelijke covariaat in een overlevingsmodel. In dit proefschrift

hebben we deze modellen geïntroduceerd en meerdere extensies gepresenteerd.

Allereerst onderzochten we in hoofdstuk 2 de verschillende conclusies die kunnen

worden getrokken bij het vergelijken van het gemengde model met de eenvoudige methode,

die geen rekening houdt met de bijzondere kenmerken van de data. Meer in het bijzonder,

hebben wij gebruik gemaakt van het ’eenvoudige’ Cox model welke gecorrigeerd is voor de

laatste metingen van de longitudinale uitkomst. Uit de analyse komen verschillen naar voren

in de richtingen van de schatting, maar ook in de p-waarden. In dit hoofdstuk hebben wij

laten zien dat de gekozen benadering invloed kan hebben op de resultaten.

In hoofdstuk 3 zijn we verder gegaan met een uitbreiding van het gemengde

model dat een ononderbroken (aorta gradiënt) uitkomst, en een ordinale longitudinale

(aorta-insufficiëntie) uitkomst in een concurrerende risico setting behandelt. Wij

hebben gebruik gemaakt van gemengde modellen voor de longitudinale uitkomsten en

het zogenoemde “continuation ratio mixed-effects model” voor het analyseren van de

ordinale uitkomst. Bovendien worden de overlevingsresultaten gecombineerd met de

onderwerp-specifieke profielen van beide longitudinale uitkomsten. In dit geval is het

interessant om de relatie te onderzoeken tussen flexibele functies voor tijd en de gemengde

modellen (bijv. niet-lineaire). Groot voordeel van het voorgestelde gemengde model is dat het

de mogelijkheid geeft aan de arts om de progressie van de ziekte van de patiënt te onderzoeken

en te associëren met het risico om te sterven. Hiermee wordt de arts in staat gesteld om te

oordelen of er noodzaak is tot een nieuwe operatie aan de hartklep.

In hoofdstuk 4 hebben we ons gericht op de individuele risico voorspellingen voor

toekomstige patiënten. Specifiek hebben wij het risico om te overlijden of opnieuw

geopereerd te worden voorspeld naarmate er meer BNP waarden beschikbaar kwamen voor

twee nieuwe patiënten. Deze methode en de ervaring van de arts zorgt voor een nauwkeurige

voorspelling. Het zorgt voor een alarmsysteem voor de beoordeling van de nieuwe interventie

bij de patiënt.

In hoofdstuk 5 hebben we het voorspellingsmodel uitgebreid met meerdere longitudinale

en overlevings-uitkomsten. Daarnaast hebben we onderzocht of de verschillende kenmerken

van de longitudinale processen de voorspelling significant zouden veranderen. Dit hebben

wij gedaan door te kijken naar de verschillende soorten van vereniging structuren, zoals
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tijdsafhankelijke traject hellingen en tijdsafhankelijke cumulatieve effecten. Bovendien

hebben wij dit voorzien van extra gemengde modellen met meer klinisch relevante

factoren voor één van de uitkomsten. Dit is belangrijk want vanuit het klinisch oogpunt

kunnen verschillende combinaties van de baseline covariaten de resultaten beïnvloeden.

Omdat de keuze voor één model het modelonzekerheidsprobleem negeert, hebben we

tenslotte de voorgestelde modellen gecombineerd door middel van Bayesiaanse model

middeling. Met behulp van Bayesiaanse model middeling hebben we voorspellingen van

de overlevingskansen van twee nieuwe patiënten berekend, die we aanvankelijk uit de dataset

hadden gelaten. Daaruit blijkt dat Bayesian model middeling een vruchtbaar middel is voor

flexibele voorspellingen voor toekomstige patiënten met unieke eigenschappen.
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