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General introduction

We continue to live longer. Low-income countries currently gain about 10 
hours in life-expectancy per day,1 while global maximum life expectancy 
continues to increase linearly, as it has over the past 160 years.2 As Alz-

heimer’s disease occurs more frequently with higher age, the number of persons 
diagnosed will therefore rise dramatically.3 This will affect quality of life for more 
patients and more relatives, but will also increase healthcare spending. Early diag-
nosis and, ideally, prevention of AD is therefore urgent. There is increasing evidence 
that, decades before the clinical diagnosis of Alzheimer’s disease, early signs of the 
disease are present, and may be detectable. In this respect, neuroimaging techniques 
are promising, as they allow for non-invasive and sensitive assessment of subclini-
cal tissue damage. However, in order to discriminate presymptomatic stages of neu-
rodegenerative disease from a broad spectrum of age related changes, more insight 
in these ‘normal’ changes with age is essential.

Neuroimaging studies of the aging brain have for many years focused primarily on 
the role of grey matter anatomy, function and pathologies in the development and 
diagnosis of dementia. With the introduction of new technologies and increased 
understanding of neurodegenerative disorders, we have learned that white matter 
pathologies are more important in neurodegeneration than previously thought, 
leading to an increased interest to study different aspects of brain white matter in 
ageing and neurodegeneration. Initial studies focused on macrostructural white 
matter changes such as white matter atrophy and white matter lesion formation. 
These studies established associations between many vascular risk factors and these 
macrostructural white matter changes,4,5 which in turn have been associated to in-
creased risk of stroke, dementia and death.6–8 Macrostructural brain changes how-
ever, are thought to occur later in disease than changes to tissue microstructure.9,10 
Diffusion imaging, which can be used to investigate tissue microstructure in vivo, 
therefore has the potential to provide insight in the early changes we are after.

Diffusion imaging of brain white matter

The axons that provide connectivity between brain regions are the main constitu-
ent of brain white matter. Signal transmission along these axons is sped up by my-
elin sheaths that wrap around and insulate the axons. These sheaths form gradually 
during neurodevelopment, with most myelin formed between birth and young 
adulthood with some (e.g. deep) regions myelinating earlier than others.11,12 With 
increasing age there is gradual myelin breakdown and loss in myelinated fibers, pro-
cesses which exacerbate in neurodegenerative diseases.13–15 
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Diffusion magnetic resonance imaging is a non-invasive MRI technique that is sen-
sitive to the random movement of water molecules. Within the highly organized 
white matter, cell and myelin membranes, among other structures, affect this ran-
dom motion. Diffusivity thereby depends on tissue properties such as myelination, 
axon diameter and axon count, but also on the measurement orientation with re-
spect to the tissue. Diffusion MRI probes diffusion in specified directions by mea-
suring signal attenuation relative to non-diffusion weighted images. In its simplest 
form, diffusion MRI allows quantification of the (non-directional) apparent diffu-
sivity coefficient. When six or more directions are probed, a diffusion tensor that 
describes the orientational dependence of the local water diffusion can be estimat-
ed. In diffusion tensor imaging (DTI), this orientational dependence is reflected in 
the fractional anisotropy (FA). Additionally, DTI provides an estimate of the mean 
diffusivity (MD), and the directed diffusivities: axial diffusivity along the main fiber 
direction, and radial diffusivity perpendicular to the latter. The FA can be consid-
ered to reflect the degree of microstructural organization in case all axons inside a 
voxel are aligned and straight, and is often used in brain research. A decrease in FA 
could be caused by damage to the myelin sheaths, axonal loss or even changes in 
the size of the axons. The anatomy of the white matter is however much more com-
plicated, with fibers e.g. crossing, bending or merging at resolutions beyond what 
can be resolved with diffusion MRI. The diffusion tensor model has therefore often 
been expanded to model more complex configurations, taking into account multiple 
fiber populations, or even directly estimating microstructural parameters such as 
axon diameter.16–20 Besides for the characterization of tissue microstructure, diffu-
sion MRI can also be used to reconstruct white matter pathways. These connections 
between brain regions and e.g. to the spinal cord, can be identified by following the 
estimated fiber directions using tractography.21,22 Tractography can be performed on 
the estimated diffusion tensor, but also on more detailed models of diffusion.20,23

Diffusion image analysis: novel analytical approaches

The wealth of anatomical and microstructural information in diffusion MRI has been 
studied in relation to many diseases and conditions, including neurodevelopment 
and (age related) neurodegeneration. Traditionally, many studies analyzed diffusion 
measurements in anatomical regions by (manually) placing regions of interest (ROI). 
While simple and effective, ROI definition is often time-intensive and observer-de-
pendent and thereby a limiting factor for larger sample sizes or when many regions 
are investigated. Voxel based analysis (VBA) similarly compares corresponding an-
atomical regions at the voxel level, but uses automated approaches to establish this 
correspondence. While straightforward to apply, VBA suffers from a conceptual 
complication that would require a-priory knowledge of the effect size,24 but is also 
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especially prone to registration errors that may occur in the periphery of white mat-
ter tracts. Therefore, in 2006, tract-based spatial statistics (TBSS) was introduced 
to mitigate the drawbacks of VBA while simultaneously increasing power to detect 
differences in the centers of white matter tracts.25,26 Voxel wise analyses, includ-
ing TBSS, can however not yet incorporate anatomical knowledge of white matter 
pathways in a way that would allow aggregation of measurements over connections 
rather than spatial clustering  For this type of analysis, tractography based methods 
have been developed that aggregate measurements over each tract or use a param-
eterization technique to incorporate anatomical information into the analysis.27–29 

 

 

Diffusion imaging in population-based cohort studies

The Rotterdam study is a population-based study that investigates causes and con-
sequences of diseases in the elderly. It was initiated in 1990, and prospectively fol-
lows nearly 15,000 inhabitants of Ommoord, a suburb of Rotterdam. In addition to 
rich phenotyping and close monitoring of health status, multi-sequence brain MRI 
is acquired in all participants to investigate brain aging. The multisequence imag-
ing protocol includes measures of both macrostructural and microstructural tissue 
changes. Participants are scanned at regular intervals to investigate changes with age 
and in imaging markers over time, and well over 11 thousand imaging sessions have 
been acquired for over five thousand participants till date. Investigating this large 
population requires (fully) automated tools and analysis approaches that may not be 
readily available. 

Aims and outline

The first aim of this thesis was to develop new analysis approaches for the investiga-
tion of white matter microstructure in elderly subjects. The second aim of this thesis 
was to provide new insights into microstructural changes of brain white matter with 
increasing age, which could be achieved by large-scale application of these methods 
to the diffusion data from the Rotterdam Study. These insights should contribute to 
a better understanding of the preclinical stages of dementia, which should ultimate-
ly enable early detection and with that enable disease modification. 

In chapter 2, I describe new analysis approaches for diffusion imaging, focused on 
large-scale analyses. Chapter 2.1 explores an iterative tract-pruning approach aimed 
to investigate the cingulum. Further development of these automated tractography 
protocols is undertaken in chapter 2.2, to support a novel registration-evaluation 
framework in order to compare 639 registration settings. Longitudinal analysis of 
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structural images in relation to diffusion parameters is presented in chapter 2.3, in 
which I investigate normal-appearing white matter that later converts to a white 
matter lesion in a population of 689 persons. 

Chapter 3.1 adopts the automated tractography approach presented in chapter 2.2 
and focuses on tract microstructure in relation to age and cardiovascular risk factors. 
This chapter investigates various DTI measures in 4,532 non-demented participants 
from the Rotterdam Study. Chapter 3.2 integrates the symmetric intra-subject reg-
istration from chapter 2.3, with the optimized TBSS of chapter 2.2, and focuses on 
longitudinal analysis of microstructure in relation to age in a population of 501 par-
ticipants that were scanned on two visits with an interval of 2.0 years.

Chapter 4 describes the application of diffusion imaging within studies on cerebral 
small vessel disease. In chapter 4.1, the relationship between small vessel disease, 
aging and microstructure is explored, focusing on white matter lesions and white 
matter atrophy as macrostructural manifestations of white matter change in 832 
persons. Chapter 4.2 focuses on the relation between cerebral microbleeds as re-
flection of cerebral small vessel disease and systemic white matter microstructure 
in a population of 4,493 participants. Chapter 4.3 investigates white matter micro-
structure and cerebral small vessel disease, specifically in relation to mild cognitive 
impairment in a patient population of 74 persons. 

Finally, in chapter 5, I discuss our findings in the context of existing research, and I 
discuss how future investigations could benefit from the work presented.
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We present a method for the fully automated extraction of the cingu-
lum using diffusion tensor imaging (DTI) data. We perform whole-
brain tractography and initialize tract selection in the cingulum with 
a registered DTI atlas. Tracts are parameterized from which tract 
co-linearity is derived. The tract set, filtered on the basis of co-lin-
earity with the cingulum shape, yields an improved segmentation of 
the cingulum and is subsequently optimized in an iterative fashion to 
further improve the tract selection. We evaluate the method using a 
large DTI database of 500 subjects from the general population and 
show robust extraction of tracts in the entire cingulate bundle in both 
hemispheres. We demonstrate the use of the extracted fiber-tracts to 
compare left and right cingulate bundles. Our asymmetry analysis 
shows a higher fractional anisotropy in the left anterior part of the 
cingulum compared to the right side, and the opposite effect in the 
posterior part.

Introduction

The use of diffusion tensor magnetic resonance imaging (DTI) for analyzing 
brain microstructure is well established.1 The diffusion tensor, estimated 
from multiple diffusion weighted image volumes, captures the local orga-

nization of the brain. The fractional anisotropy (FA), derived from this tensor, de-
scribes the microstructural tissue organization in terms of the degree of diffusion 
directionality.2 Comparing differences between neuroanatomical structures across 
subjects requires one to establish correspondence between these subjects. This may 
involve a common white matter skeleton,3 or the identification of separating man-
ifolds between white matter structures4 for the projection of individual measures 
onto a reference frame. Compared to FA extraction, streamline tractography in the 
tensor field provides a richer description of the local white matter structure. Trac-
tography based comparison between subjects will therefore be more sensitive to 
subtle differences, provided, of course, that the abundance of data in the tracts can 
be interpreted.

In this paper, we develop a method to automatically analyze the cingulum in a large 
cohort using streamline tractography.  
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The Cingulum 

The cingulum is a tube-like structure that courses from the hippocampal formation 
and bends around the ventricles and the corpus callosum (cc) up to the genu of the cc. 
The anterior cingulate is thought to be primarily involved in executive functioning, 
whereas the posterior cingulate is assumed to play a role in memory processes. Its 
role in cognitive functioning has generated a large interest in the analysis of various 
aspects of the cingulum. Due to high curvature in its local anatomy, the cingulum is 
difficult to reconstruct with streamline tractography past the bending point around 
the splenium of the cc.5 This may explain why most previous research focused on 
tracking only the anterior part of the cingulum. Research aiming to study the cin-
gulum with the use of tractography in multiple subjects, has often relied on man-
ual ROI definition to allow tract selection (e.g. 6–8). O’Donnell et al. use a spectral 
embedding function to identify tracts similar to a template tract.9 Their ‘tract based 
morphometry’ can robustly capture tracts in the anterior cingulate bundle, but has 
not been able to identify tracts when every tract only overlaps partly with the an-
atomical structure of interest. Depending on DTI data quality, the high curvature 
in the cingulum may pose a particular challenge for tractography. We propose an 
automated method that does not rely on individual tracts coinciding with the entire 
cingulum, but rather on extracting the parts of all tracts that describe at least some 
part of the cingulum. The complete filtered set of all (partial) tracts then has more 
power to capture the actual cingulum anatomy, in particular the posterior part.

Methods

In short, after performing whole-brain tractography, we propose to identify partial 
tracts that make up the cingulate bundle with the use of a registered anatomical atlas. 
We derive a parameterization, which allows for a more accurate selection of tracts 
that belong to the cingulum, and facilitates inter-subject comparison. The iterative 
approach, outlined in Figure 2.1.1, consists of the following steps: tract selection, 
derivation of the parameterization, projection of tracts and co-linearity filtering. In 
the method description, all parameters that need to be set are printed in italic.

Tractography and atlas registration 

Deterministic streamline tractography is performed using the ‘ExploreDTI’ pack-
age (www.exploredti.com).10 Tracts are described by cubic B-splines, and stored as 
equally spaced points. We adopted the neuroanatomical ICBM-DTI-81 atlas of Mori 
et al.11 for the initial tract selection. This atlas is created by manual segmentation of 50 
neuroanatomical structures. We nonrigidly registered the atlas’ FA image towards 
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output

iterate tract selection
and filtering until
 masks converge

1

0

inputs
registered atlas whole-brain tract set

initial masking

parameterization

correspondence 
and co-linearity

co-linear tracts

updated brainmask

iterative masking

Figure 2.1.1. Schematic overview of the tract selection procedure.
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all subjects’ FA image using ‘elastix’, a publicly available software package that uses 
an efficient stochastic gradient descent optimization method.12 The registration is 
used to transform the atlas’ labels to each subject’s native space, resulting in an ini-
tial three-dimensional segmentation of the cingulate bundle. In following iterations, 
an improved segmentation is used, which is derived after filtering for co-linearity. 
 
 
Tract selection 

The cingulate template is used to identify tracts running inside the cingulum. Ow-
ing to the absence of nearby co-linear structures, we assume that fiber tracts which 
are partially within the cingulum before they divert due to, e.g., partial voluming ef-
fects, can be included in the analysis.9 Tracts are cut off when leaving the segmented 
region unless they reenter the segmentation within a maximum distance (maxDist). 
In this case they are considered part of the cingulum and included in the filtered tract 
set. A tract-density map is generated from the identified tracts at a 1mm cubic grid, 
indicating the number of cingulum tracts visiting each voxel. 

Derivation of the centerline and projection of tracts 

By extracting the centerline of the cingulum, we establish a parameterization axis 
for the tract set. We achieve this by treating the tract-density map as a reciprocal 
cost image, and find the minimum cost centerline from one end of the cingulum to 
the other. To bridge potential gaps in the tract sets, we allow background voxels to 
be part of the centerline, but only at high costs (backgroundWeight). The parame-
terization should permit direct inter-subject comparison and should therefore not 
depend on individual performance of the fiber tracking. Especially at the far ends of 
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the cingulum, tracts are often hard to reconstruct, leading to decreased tract density, 
which in turn could lead to problems in establishing correspondence across sub-
jects. We therefore add the registered atlas mask to the tract density map with a fixed 
weight (atlasWeight), prior to converting it to the cost image. In dense regions, this 
has little effect, but in sparse regions, this allows to find the centerline aided by the 
registered atlas. The centerline is smoothed by fitting a Bspline with a fixed number 
of control points (controlPoints). The parameterization is then super sampled using 
parSegments equally spaced segments.

We then use the planes normal to the parameterized centerline to associate every 
tract segment to one of the parameterization segments. 

Co-linearity filtering

Because of the linear structure of the cingulum, it is safe to assume tracts running 
inside the cingulum are to a certain extent co-linear. Therefore, for every tract seg-
ment, we use the local direction to calculate co-linearity defined as the absolute dot 
product of the tract and parameterization segment direction vectors. A filtering step 
is then applied to exclude tract segments that are not co-linear (less than minColin) 
with the parameterization for a prolonged segment length (maxDist). After filter-
ing, we construct a binary segmentation of all voxels containing tract(s). 

Iterative approach

The binary tract mask can be regarded as an improved segmentation of the cingulate 
bundle. It has been allowed to expand, by tracts locally exiting and re-entering the 
previous segmentation. And it has been allowed to shrink, by the local absence of 
co-linear tract segments. The mask is used as an updated segmentation for the entire 
procedure. The whole procedure is performed iteratively, until either follow-up it-
eration masks disagree on less than a fixed number of voxels (maxVoxels), or when a 
maximum number of iterations (maxIt) has been performed. 

Statistical analysis 

Measures describing tracts and tract locations, such as FA, tract curvature etc, are at 
this point associated with a single linear parameterization and can thus be compared 
across subjects. In our application study, we chose to study hemispheric asymmetry 
in FA of the cingulum. The FA is a well-established measure and allows comparison 
of our results with previously published findings. 
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Experiments and results

DTI data from the population based Rotterdam Scan Study is used.13 From this pro-
spective cohort study, a random subset of 500 datasets was selected. Mean age of 
participants was 54.9 years, with an SD of 5.52; 52 percent of participants was fe-
male. All subjects were scanned on a 1.5 tesla GE MRI system, with the following 
DTI acquisition parameters: 25 diffusion gradient directions, FOV= 210x210 mm2, 
scan matrix= 96x64 (zero padded in k-space to 256x256), slice thickness 3.5 mm, 
35 contiguous slices, TR= 8,000 ms, TE= 68.7 ms, b-value= 1000 s/mm2 and 3 vol-
umes acquired without diffusion weighting. Datasets were preprocessed using the 
FDT toolbox in FSL14 to correct for head motion and Eddy currents and to calcu-
late FA images for the atlas registration. Atlas registration was performed using a 
10 mm B-spline control point spacing using mutual information for similarity and 
took 8 minutes per subject on a single standard CPU. Streamline tractography was 
performed seeding tracts in a 2 mm cubic grid; and ending tracts when FA dropped 
below 0.2, taking 2 minutes per subject to compute.

The applied setpoints have been determined empirically by visual inspection of 
resulting tract sets. The maxDist length of a tract part that is allowed outside the 
segmentation, as well as the maximum non-collinear length has been set to 3mm. 
The backgroundWeight, allowing the parameterization to cross over gaps, is set to 
5 times the maximum costs encountered in the individual cost image. The atlas-
Weight is set to 1. The number of controlPoints of the parameterization is 15, later 
super sampled to 200 parSegments. Tract segments need to have a minColin of 0.8 
to be considered co-linear with the parameterization. Iteration stops once the tract 
mask changes at most maxVoxels, 10, in a single iteration, or after reaching maxIt, 5, 
iterations. Iterative filtering took 9 minutes to compute; per subject per hemisphere.

The tract selection method does not require a tract to be mapped at every parame-
terization segment. Figure 2.1.2(a) shows a histogram of the number of associated 
parameterization segments per subject. Ideally, all subjects should have no miss-
ing segments, this is however not the case. For the worst performing subject, the 
rightmost element in Figure 2.1.2(a), the tract set is shown in Figure 2.1.2(b). The 
procedure identified a very limited number of tract segments; yet it did not make 
any apparent mistakes in corresponding the tract set. A typical tract set is shown in 
Figure 2.1.3(a).

The FA is compared between the left and right cingulum for every segment of the 
parameterization, using a two-tailed paired t-test. Data analysis is performed per pa-
rameterization segment. Subjects therefore need to have a mean FA value associated 
with a particular segment on both the left and the right side. Failure in either or both 
hemispheres leads to exclusion of that subject from the analysis at that particular pa-
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rameterization segment. Figure 2.1.4(a) shows the number of subjects included for 
every tract segment. Resulting log(p)-values, shown in Figure 2.1.4(b), show highly 
significant differences in both the anterior and posterior part of the cingulum. Mean 
parameterization coordinates are presented in Figure 2.1.3(b) for reference, the mean 
FA along the left and right cingulate bundles is presented in Figure 2.1.5(a). 

As we are studying hemispheric asymmetry, it is important to rule out asymmetric 
influence of the atlas. To verify our findings, we flipped the atlas over the sagittal 
plane and repeated the registrations to the subjects’ FA images. These new registra-
tions were used to again measure FA profiles in cingulate bundles for all subjects. 
The blue lines in Figure 2.1.5(a) present the mean FA profiles for left and right cin-
gulate bundles, extracted with the flipped atlas, where left means subject-left. The 
profiles appear nearly identical to the original results, ruling out a bias by the atlas. 

To investigate robustness of our findings, we evaluated the mean left – right FA in a 
subset of 50 subjects, repeatedly drawn random from the full set; shown in Figure 
2.1.5(b). 

Discussion

We have developed a novel method for selecting tracts of interest from a whole brain 
tract set. The approach is especially useful in large datasets and is aimed at investigat-
ing tracts that are difficult to follow with more conventional region of interest tract 
selection approaches. The present work allows tracking of tube-like structures such 
as the cingulate bundle or the fornix. We acknowledge that the method contains 
a number of thresholds, albeit most of them having a physical, intuitive meaning, 
which have to be predefined. These were determined by qualitative evaluation of 
the resulting tract selections. To validate our method we compared analysis results 
with published findings. To this extent we have studied inter-hemispheric differ-
ences in cingulate FA using a large sample of 500 subjects from the general popu-
lation. We have shown that our findings are not caused by a bias in the initial atlas 
segmentation. In the anterior part of the cingulum, we observe a very significant 
difference with the FA being higher left than right. This is in agreement with results 
from other analyses that also used some form of tract selection.6,7,9 Less is known, 
however, for the posterior cingulate. Malykhin et al.7 selected tracts in this region 
in 24 healthy subjects. They found no significant difference between left and right 
tracts, possibly lacking statistical power. As the anterior and posterior cingulate are 
involved in different processes, the left/right difference in FA between the anterior 
and posterior cingulum might be hypothesized to reflect a difference in function 
between left and right hemispheric processes. 
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We tested for differences using a paired t-test on the parameterization-segment 
level, and reported p-values for every segment. To correct p-values for the num-
ber of tests performed (we tested on 200 segments), a permutation based correction 
method would be appropriate.15 Applying a Bonferroni correction results in an over-
ly conservative upper bound to the multiple comparison correction, but still leaves 
our findings highly significant, as indicated by the green threshold in Figure 2.1.4(b). 

The method allows capturing the difficult connection between the posterior and 
anterior cingulate, but it does so with varying success along the pathway. For the 
most problematic segment, about half of the subjects give problems in either or both 
of the cingulate bundles, as shown in Figure 2.1.4(a). 

Conclusion

We have developed a fully automated method for the robust extraction and param-
eterization of the cingulum including the posterior cingulate. As an example appli-
cation, we studied asymmetry of FA in the cingulum. Our findings in the anterior 
part, where FA was found to be higher left than right, are in agreement with previous 
research. Our analysis also found right higher than left FA in the posterior part. This 
structural asymmetry might relate to functional differences between hemispheres.

References 
1.  Basser PJ, Mattiello J, LeBihan D. MR diffu-

sion tensor spectroscopy and imaging. Bio-
phys J. 1994;66(1):259-67.

2.  Basser PJ, Jones DK. Diffusion-tensor 
MRI: theory, experimental design and data 
analysis - a technical review. NMR Biomed. 
2002;15(7-8):456-467.

3.  Smith SM, Jenkinson M, Johansen-Berg H, 
et al. Tract-based spatial statistics: voxelwise 
analysis of multi-subject diffusion data. 
Neuroimage. 2006;31(4):1487-1505.

4.  Kindlmann G, Tricoche X, Westin C-F. 
Delineating white matter structure in dif-
fusion tensor MRI with anisotropy creases. 
Med Image Anal. 2007;11(5):492-502.

5.  Melonakos J, Mohan V, Niethammer M, 
Smith K, Kubicki M, Tannenbaum A. Finsler 
tractography for white matter connectivity 
analysis of the cingulum bundle. Int Conf 
Med Image Comput Comput Assist Interv. 
2007;10(Pt 1):36-43.

6.  Gong G, Jiang T, Zhu C, et al. Asymmetry 
analysis of cingulum based on scale-invari-
ant parameterization by diffusion tensor 
imaging. Hum Brain Mapp. 2005;24(2):92-
98.

7.  Malykhin N, Concha L, Seres P, Beaulieu 
C, Coupland NJ. Diffusion tensor imaging 
tractography and reliability analysis for lim-
bic and paralimbic white matter tracts. Psy-
chiatry Res. 2008;164(2):132-142.

8.  Nakata Y, Sato N, Nemoto K, et al. Diffu-
sion abnormality in the posterior cingulum 
and hippocampal volume: correlation with 
disease progression in Alzheimer’s disease. 
Magn Reson Imaging. 2009;27(3):347-354.

9.  O’Donnell LJ, Westin C-F, Golby AJ. Tract-
based morphometry for white matter group 
analysis. Neuroimage. 2009;45(3):832-844.

10.  Leemans A, Jeurissen B, Sijbers J, Jones D. 
ExploreDTI: a graphical toolbox for pro-
cessing, analyzing, and visualizing diffu-
sion MR data. In: Proceedings 17th Scientific 
Meeting International Society for Magnetic 
Resonance in Medicine.Vol 17.; 2009:3537.



28

chapter 2 | improving cross-subject diffusion analysis

11.  Mori S, Oishi K, Jiang H, et al. Stereotaxic 
white matter atlas based on diffusion tensor 
imaging in an ICBM template. Neuroimage. 
2008;40(2):570-582.

12.  Klein S, Staring M, Pluim JPW. Evaluation of 
optimization methods for nonrigid medical 
image registration using mutual informa-
tion and B-splines. IEEE Trans Image Pro-
cess. 2007;16(12):2879-90.

13.  Hofman A, Breteler MMB, van Duijn 
CM, et al. The Rotterdam Study: objec-
tives and design update. Eur J Epidemiol. 
2007;22(11):819-829.

14.  Smith SM, Jenkinson M, Woolrich MW, et 
al. Advances in functional and structural 
MR image analysis and implementation as 
FSL. Neuroimage 23 S1. 2004;23 Suppl 1:208-
219.

15.  Nichols TE, Holmes AP. Nonparametric 
permutation tests for functional neuroim-
aging: a primer with examples. Hum Brain 
Mapp. 2002;15(1):1-25. 

 



NeuroImage 2013 Marius de Groot
Meike W. Vernooij

Stefan Klein
M. Arfan Ikram

Frans M. Vos
Stephen M. Smith 

Wiro J. Niessen
Jesper L.R. Andersson

2.2 
Improving alignment in Tract-based spatial  

statistics: Evaluation and optimization of  
image registration



30

chapter 2 | improving cross-subject diffusion analysis

Anatomical alignment in neuroimaging studies is of such impor-
tance that considerable effort is put into improving the registration 
used to establish spatial correspondence. Tract-based spatial statis-
tics (TBSS) is a popular method for comparing diffusion character-
istics across subjects. TBSS establishes spatial correspondence using 
a combination of nonlinear registration and a “skeleton projection” 
that may break topological consistency of the transformed brain im-
ages. We therefore investigated feasibility of replacing the two-stage 
registration-projection procedure in TBSS with a single, regularized, 
high-dimensional registration.

To optimize registration parameters and to evaluate registration per-
formance in diffusion MRI, we designed an evaluation framework 
that uses native space probabilistic tractography for 23 white mat-
ter tracts, and quantifies tract similarity across subjects in standard 
space. We optimized parameters for two registration algorithms on 
two diffusion datasets of different quality. We investigated repro-
ducibility of the evaluation framework, and of the optimized regis-
tration algorithms. Next, we compared registration performance of 
the regularized registration methods and TBSS. Finally, feasibility 
and effect of incorporating the improved registration in TBSS were 
evaluated in an example study.

The evaluation framework was highly reproducible for both algo-
rithms (R2 0.993; 0.931). The optimal registration parameters de- 
pended on the quality of the dataset in a graded and predictable 
manner. At optimal parameters, both algorithms outperformed the 
registration of TBSS, showing feasibility of adopting such approach-
es in TBSS. This was further confirmed in the example experiment.

Introduction

Diffusion imaging of the brain provides insight into architectural properties, 
and developmental and degenerative processes of the white matter.1–3 Quan-
titative features derived from diffusion imaging, such as fractional anisot-

ropy (FA) and mean diffusivity (MD), allow for comparison of diffusion properties 
across different subjects.4 This can be achieved in a number of ways, for example 
region of interest-based or voxel-based.
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Voxel-based analyses offer a fast and automated means of analyzing diffusion  
data.5–7 They do however require the images to be in a common space in which ana-
tomical correspondence across subjects is assured. Establishing correspondence by 
bringing images into a common space is a non-trivial task, for which image registra-
tion techniques are commonly employed. However, image registration approaches 
in general do not achieve perfect anatomical correspondence due to anatomical vari-
ability. In an attempt to account for the residual misalignment, increase sensitivity 
and to satisfy the assumptions of parametric tests (if applied), voxel-based analyses 
often rely on smoothing. The extent of this smoothing ideally needs to be matched 
to the expected effect size, which can be spatially varying and not known a-prio-
ri.8 In 2006, an alternative approach for anatomical alignment of diffusion data was 
proposed. Tract-based spatial statistics (TBSS)9,10 was introduced to mitigate the 
influence of residual misalignment in registration of diffusion data, and to over-
come the need to set smoothing extent in voxel-based analyses. In TBSS, following 
an initial nonlinear registration step (of “medium” dimensionality), voxels that are 
local maxima for FA are mapped onto a skeleton composed of sheets of maximum 
FA voxels, and statistical analysis is performed on skeleton voxels. Constraining the 
analysis to the white matter skeleton results in a dimensionality reduction, amelio-
rating the issue of multiple testing. Over the past years, TBSS has been widely ad-
opted, aided by its availability within FSL11,12 and ease of use. The projection stage in 
TBSS however, is a spatially local operation, with the voxels containing locally max-
imal FA projected onto the skeleton independently; therefore it does not enforce 
spatial consistency of the warped images. This may result in an undesirable loss of 
anatomical topology of tracts in the projection stage. The main aim of this work is 
to investigate if it is feasible to replace the two registration + projection stages by a 
single regularized high-dimensional registration approach inside the TBSS method 
(while still aiming to carry out cross-subject voxelwise testing on the skeleton, to 
help minimize correspondence errors).

Since even small errors in correspondence may substantially influence results,9 con-
siderable effort has been put in improving the registration of diffusion data.13–18 In 
registration, a spatial transformation is determined by optimizing a similarity met-
ric. For evaluating registration performance across algorithms, such as performed for 
diffusion imaging by Wang et al.,19 or to optimize different registration parameters, 
a similarity metric must be employed as well. This is necessary since we do not know 
the ground truth anatomical correspondence of two images. To objectively mea-
sure registration performance however, we cannot use the same similarity metric 
that was optimized in the registration process, since this would bias the evaluation. 

Similarity metrics in diffusion image registration can be based on scalar images such 
as FA or structural images. Metrics can, alternatively, be based on higher dimen-
sional image features, e.g., on the full diffusion tensor or a number of its compo-
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nents. A third category of similarity metrics is defined on the results of white matter 
tractography. These three classes of similarity metrics have all been used in the 
objective functions of image registration approaches for diffusion images.14,17,18,20–22 
Analogously, similarity metrics in all three categories have been employed in order 
to evaluate registration performance.14,16,17,19,23,24

An important advantage of a performance measure based on similarity of tractog-
raphy results is that it is independent of any particular similarity metric, defined on 
a scalar or higher order image, which is employed in most registration approaches. 
Also, optimal white matter tract alignment is most closely linked to the eventu-
al registration aim of obtaining anatomical correspondence in white matter.25 We 
therefore developed a framework to evaluate scalar or higher-order similarity met-
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Figure 2.2.1. Schematic overview of the evaluation framework. Diffusion data in subject-na-
tive space (box 1) for N subjects are registered to an appropriate template image (box 2). This 
registration can be based on FA images, the full tensor, or on any other DTI metric. This set of 
N registrations obtained with a particular registration algorithm is the registration under eval-
uation. Separately, standard space seed, target, stop and exclusion masks (box 3) that initial-
ize the probabilistic tractography are transformed to subject native space using a conservative 
nonlinear registration. Tractography for the total set of 23 structures is performed in subject 
native space (box 4). The registration under evaluation is used to warp the tract-density images 
to standard space for all N subjects (box 5). The similarity of the warped tract-density images 
in standard space is quantified via spatial correlation, for each structure and for each pair of 
subjects (NxN). The similarity is averaged over all structures (box 6), and then averaged over 
all subject pairs to yield the registration performance for the particular registration under eval-
uation (box 7).
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ric based registrations using tractography. Previous work using white matter trac-
tography for this purpose was based either on whole brain tractography14 or only 
on a small selection of tracts.16,18,24,26,27 Furthermore, all previous work depended on 
deterministic tractography, which has more difficulty in coping with complex fiber 
architecture (e.g., crossing fibers) and signal noise than probabilistic tractography.28

In this work, we extended the use of tractography for image registration evaluation 
to a broader range of white matter tracts, and we used a probabilistic model for trac-
tography. Parameters for two nonlinear registration algorithms were optimized us-
ing similarity of different subjects’ warped tracts as the registration performance 
measure. The optimization was performed on two datasets acquired at different in-
stitutions with different spatial resolution. Registration performance for these opti-
mized approaches was then compared to the registration performance of the TBSS 
method on a white matter skeleton. We show that the optimized registration re-
producibly improved the alignment of white matter structures compared to TBSS.

Methods

The evaluation framework consists of an automated approach to perform probabi-
listic tractography and a tract-based evaluation metric. A schematic overview of the 
process is provided in Figure 2.2.1.

Tractography
Tractography was performed with PROBTRACKX,28,29 a Bayesian approach to pro- 
babilistic tractography available in FSL.

Tractography was initialized by defining standard space “seed”, “target”, “stop” and 
“exclusion” ROIs (masks). These masks were based on the protocols described by 
Mori et al.,30 Stieltjes et al.,31 and Wakana et al.,32,33 but had to be adapted to cope 
with the more dispersing nature of probabilistic tractography. Most importantly, ex-
clusion masks were added, e.g., the mid-sagittal slice was added in all but the com-
missural tracts. All masks were transferred to subject native space using nonlinear 
registrations obtained with FNIRT34 with default settings for FA images as available 
in FSL.

Tracts that could robustly be identified and which would lead to a reasonably uni-
form sampling across brain regions were selected. These tracts are listed in Table 
2.2.1. Two tracts, the posterior thalamic radiation and the inferior fronto-occipital 
fasciculus, were excluded from the final set because of considerable overlap with 
other tracts. Exclusion of these tracts prevented uneven weighting of different re-
gions in the registration evaluation. The final set therefore consisted of 23 tracts.
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Tractography was performed in subject native space while recording tract density 
at a 1 mm3 resolution and using between 2,000 and 30,000 samples per seed ROI 
voxel to account for differences in the number of seed voxels and tract geometry. 
These parameter settings were selected to aim for robust extraction of the tracts, and 
were based on the observed number of fiber-particles that were included in the tract 
together with visual inspection of tractography outputs. Commissural tracts and 
the middle cerebellar peduncle were tracked a second time (adding both runs) with 
inverted seed-target ROIs to ensure symmetry of the resulting tract. The acoustic 
radiations and the superior longitudinal fasciculus were also tracked in both direc-
tions to increase robustness. After tracking, the tract density image was normalized 
by dividing with the total number of particles.

Tracts in brainstem

Middle cerebellar peduncle - 2 + a,b

Medial lemniscus + sup. 4 - a,b

Projection fibers

Corticospinal tract + 10 - a,b,d

Acoustic radiation + med. 10 +

Anterior thalamic radiation + post. 2 - b,c,d

Superior thalamic radiation + inf. 2 - b

Posterior thalamic radiation + 30 - b,c

Association fibers

Superior longitudinal fasciculus + 2 + b,c,d

Inferior longitudinal fasciculus + ant. 2 - b,c,d

Inferior fronto-occipital fasciculus + 4 - b,c,d

Uncinate fasciculus + 4 - b,c,d

Limbic system fibers

Cingulate gyrus part of cingulum + ant. & post. 30 - b,d

Parahippocampal part of cingulum + sup. & inf. 4 - b,d

Callosal fibers

Forceps minor - 2 + b,d

Forceps major - 2 + b,d

l/r stop inv. refs
seed #

(×1000)

Table 2.2.1
Overview of tracking protocols for different tracts in the evaluation framework. Tracts with 
left/right homologues are listed under ‘l/r’. If a stop mask is used, its relative location to the tract 
is given under the ‘stop’ column. The number of seed points per voxel is listed under ‘seed #’. 
Tracts that were generated twice with inverted target-seed regions are listed under ‘invert’. Ref-
erences (‘refs’) translate to a: Stieltjes et al.,31 b: Wakana et al.,32 c: Mori et al.,30 d: Wakana et al.33 
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An example of an individual subject’s tracking result, thresholded for the purpose of 
visualization, for all tracts is shown in Figure 2.2.2. Tractography was performed for 
each subject and for each structure. The resulting maps of white matter structures 
reside in subject native space, and were used for all evaluations.

Tract-based evaluation metric
The registration performance measurement was based on cross-subject similarity 
of the warped tract maps. Non-thresholded tract density images in subject native 
space were warped to common space, and then tract similarity was assessed.

To avoid differences in image characteristics between individual and group mean 
tract maps influencing the results, tract similarity was evaluated on a subject- 
to-subject basis. Tract similarity was assessed for each structure individually, and 
then averaged for all structures in each pair of subjects. In order to provide an even 
weighting over tracts in this averaging, similarity of left–right homologue struc-
tures was jointly given an equal weight as that of the commissural tracts and the 
middle cerebellar peduncle. If a particular tract could not be identified in one of the 
subjects with the automated tractography approach (i.e. no particles fulfilled the cri-
teria imposed by the protocol masks), the tract was omitted in the aggregation of the 
subject–subject similarity score.

Similarity was assessed with the spatial correlation similarity metric,

 

which is similar to the Pearson correlation coefficient, and provides a measure of 
voxelwise similarity of the continuous tract density image intensities (J and K) for 
two subjects, computed over all voxels (i), and is bound on a 0 – 1 scale. Similarity 
was calculated on the tract density images.

The probabilistic nature of tractography means that the intensity in the tract map 
varies; more support for the tract will translate into higher intensity. Increased un-
certainty will conversely translate into lower tract-density. The information that is 
thereby encoded in the tract-density image is related to the anatomy of the tract. 
The similarity, as measured by the spatial correlation similarity metric, across two 
subjects therefore provides valuable feedback on alignment of the tracts in those 
subjects.
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Evaluation on the skeleton
To investigate the feasibility of replacing the registration-projection in TBSS with a 
regularized, high-dimensional registration, we compared registration performance 
for both registration algorithms with the standard TBSS approach. The registration 
evaluation framework described above was therefore further tailored for both ap-
proaches to enable this comparison.

First, for the high-dimensional registrations, the registration performance measure-
ment had to be constrained to the TBSS skeleton. Hence, the warped continuous 
tract-density images that resulted from the regularized high-dimensional registra-
tion were masked using the TBSS white matter skeleton mask, producing skeleton-
ized tract density images for each structure, for each subject, which were used to 
evaluate registration performance.

Next, for assessing registration performance of TBSS, the measurement also needed 
to be constrained to the skeleton. Hence, the continuous tract density images for 
all structures were (separately) projected onto the white matter skeleton using the 

R

>3 <0.01
 tract density (%)

a) b)

Figure 2.2.2. Automated tractography result for one individual in the Rotterdam dataset. 
The same subject is shown in seven different views. (a). Continuous probabilistic tractography 
output used in the evaluation for all structures combined. (b). Probabilistic tractography out-
put thresholded for visualization purposes only. The threshold was applied on the normalized 
tract-density images, rejecting voxels containing less than 0.5% of the total number of tracts per 
structure.
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non-FA-image pipeline available within TBSS9; this allows the initial registration 
and the skeleton projection, both derived from the FA data, to be applied to other 
scalar images starting in the same space as the FA data. This produced skeletonized 
tract density images for each structure, for each subject, which were used to evalu-
ate registration performance.

Optimization experiments

Diffusion MRI data

Two sets of scans from two different MRI centers were used in the experiments. 
The first dataset represents a “low-end” diffusion acquisition; the second dataset is 
representative of a state-of-the-art, though still relatively “off-the-shelf”, high res-
olution, high signal-to-noise diffusion acquisition.

Lower resolution: Rotterdam data
The first dataset was derived from the Rotterdam Scan Study,35 a neuroimaging 
study embedded in the larger, prospective population-based Rotterdam Study36 
composed of middle aged and elderly subjects. The diffusion data is part of a 
multi-sequence MRI protocol on a 1.5 tesla GE Signa Excite scanner. For DTI, single 
shot, diffusion-weighted spin echo-planar imaging data were acquired (repetition 
time (TR) = 8,575 ms, echo time (TE) = 82.6 ms, field-of-view (FOV) = 210 × 210 mm, 
matrix = 96 × 64 (phase encoding) (zero-padded in k-space to 256 × 256) slice thick-
ness = 3.5 mm, 35 contiguous slices). b-value was 1000 s/mm2 in 25 non-collinear 
directions (number of excitations (NEX) = 1), and three volumes with no diffusion 
weighting were acquired. Acquisition time was 5 min. A sample of 30 subjects from 
the study population was rescanned on average 19.5 (SD 10.0) days after the baseline 
scan. These subjects were on average 76.7 years old (SD 4.8); 15 were female. The set 
of 30 baseline scans was used in the registration optimization experiments; the set 
of rescanned data (30 scans) was used to evaluate reproducibility of the evaluation 
framework. This dataset will be referred to as the Rotterdam data, with the time-
points being labeled as “baseline” and “rescan”. 

Higher resolution: Oxford data
The second dataset was acquired in healthy adults, described in Jbabdi et al.37 Scan-
ning was performed on a 1.5 tesla Siemens Sonata scanner. As described in Tomas-
sini et al.,38 diffusion-weighted data were acquired using echo planar imaging (72 × 
2-mm-thick axial slices; matrix size, 128 × 104 (phase encoding); field of view, 256 × 
208 mm; giving a voxel size of 2 × 2 × 2 mm). Diffusion weighting was isotropically 
distributed along 60 directions using a b-value of 1000 s/mm2. For each set of dif-
fusion-weighted data, five volumes with no diffusion weighting were acquired at 
evenly spaced points throughout the acquisition. Three sets of diffusion-weighted 
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data were acquired for later averaging to improve the signal-to-noise ratio. The total 
scan time for the diffusion-weighted imaging protocol was 45 min. Data from 30 
subjects were used. Mean age for this group was 32.0 years (SD 8.5); 12 were female. 
This dataset will be referred to as the Oxford data.

Diffusion data preprocessing

Diffusion data was preprocessed using the FDT toolbox included in FSL. Prepro-
cessing included affine co-registration of all acquired volumes in order to compen-
sate for subject motion and eddy currents. Non-brain tissues were removed with 
the Brain Extraction Tool. A tensor was fitted to log-transformed data using a linear 
least squares approach. The tensor image was then upsampled to 1 mm3 resolution, 
using cubic spline interpolation of the tensor components; note that upsampling of 
the tensor image is not currently done in TBSS. A high resolution FA image was 
then derived from the upsampled tensor image. Interpolating the tensor instead of 
the FA values allows the resulting FA image to contain more spatial detail that could 
aid the FA based registration algorithms, as visible in Figure 1b and e in Kindlmann 
et al.39 Higher registration accuracy (as measured with the evaluation framework) 
for the tensor-upsampled FA images was confirmed in preliminary experiments.

Separately, following the motion and eddy current correction, a probabilistic model 
of fiber orientations was fitted for each voxel using BEDPOSTX.28 BEDPOSTX was 
run with default parameters, as a preprocessing step for the probabilistic tractogra-
phy.

Registration algorithms

For two registration algorithms, FNIRT34 and Elastix,40 the evaluation framework 
was used for parameter optimization and performance comparison.

FNIRT,34 the nonlinear image registration algorithm in FSL, optimizes a B-spline 
deformation field,41 and is specifically developed for brain imaging. The objective 
function is minimization of the sum of squared differences, and incorporates an 
intensity modulation term to compensate for intensity differences between the 
moving and reference images. FNIRT uses a multi-resolution strategy to increase 
robustness against local minima in the optimization. Following each resolution lev-
el, diffeomorphic warps are enforced. By concatenating multiple (each itself being 
multi-resolution) calls to FNIRT in a cascade, registration parameters can be var-
ied over the course of the optimization. For evaluation, warp fields obtained with 
FNIRT were used to warp tract density images using the Applywarp utility in FSL. 
Tract density images were warped using cubic spline interpolation.
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Elastix40 (version 4.5) also includes B-spline based nonlinear deformations, and is 
based on the open source ITK platform. Elastix is designed to run in a cascade of res-
olutions, and offers the choice between multiple objective functions and multiple 
optimizers including an efficient adaptive stochastic gradient descent optimizer.42 
When using the sum of squared differences (SSD) similarity metric, the intensi-
ty distributions of the moving and reference image are assumed to be equal. While 
FNIRT incorporates rescaling of the image intensities to compensate for differenc-
es, Elastix does not. In order to apply the SSD, we performed a linear intensity trans-
formation as a preprocessing step. Based on the observed FA intensity histograms 

Parameter Stage 1 Stage 2 Stage 3

Number of substages 4 1 1

Warp field resolution (cubic) 10 mm 

varied: 

steep = 600,125,80,40

medium = 300,75,50,40

flat = 150,60,50,40

varied in stages 2 and 3: 4; 2; 1 mm
Regularization at each 
substage

fixed (100) varied: 70-10 
(steps of 10)

Table 2.2.2
Settings varied in the registration optimization of FNIRT. FNIRT is run as a cascade of three 
sets of parameters. Parameters are varied in one or two of these stages, as indicated. Stage 1 in 
itself contains a series of 4 substages, in which an initial regularization relaxation is performed. 
Warp field resolution is jointly varied in stages 2 and 3, and the final regularization level is varied 
in stage 3 alone

Parameter Setting

Warp field resolution (cubic) 15 mm / 10 mm / 5 mm / 3 mm

– normalized cross correlation

– mutual information

– sum of squared differences

– none

– pyramidal downsampling moving image

– pyramidal downsampling both images
Regularization weight none / 1 /  10 / 100

– stochastic gradient descent

– adaptive stochastic gradient descent
Localized metric yes / no

Similarity metric

Multiresolution strategy                     
(of the image data)

Optimizer

Table 2.2.3
Settings varied in the registration optimization of Elastix. Elastix is run as a single cascade of 
substages
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Figure 2.2.3. Scatterplot of registration performances for all settings evaluated on the Oxford 
data with the Elastix registration algorithm. Each point represents registration performance 
(vertical axis) on the entire Oxford dataset as a function of the most influential parameters: 
warp field resolution (horizontal axis), regularization weight (symbol) and similarity metric 
(color). Repeated appearance of the same symbol and color corresponds to variations in multi-
resolution strategy, optimizer and localization of the similarity metric. Abbreviations: NCC = 
normalized cross correlation, MI = mutual information, SSD = sum of squared differences. 
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for each 30-subject dataset, we matched the 25 and 75 percentile points with those 
of the template image. Elastix furthermore offers the option to localize the behav-
ior of the similarity metric by employing a regional sampling technique.43 Spatial 
transformations obtained with Elastix were applied to the tract density images with 
Transformix, which is distributed with Elastix. As with FNIRT, we used a cubic 
spline interpolation.

Optimization experiments

All registrations were performed with the subject FA images as moving image and 
with the FMRIB-58 FA template as reference image.

For both registration algorithms, the parameters to be optimized were varied in an 
exhaustive fashion. For FNIRT, the parameters varied in the optimization strategy 
are listed in Table 2.2.2; fixed parameters are listed in the parameter supplement, 
which is available online*. All registrations with FNIRT contained some degree of 
regularization at all stages. The parameter space selected for the optimization result-
ed in a total of 63 settings of the algorithm.

For the Elastix optimization, parameters and settings that were varied are listed in 
Table 2.2.3; again, a parameter supplement is available online. This parameter space 
resulted in a total of 576 settings of the algorithm.

All trials were performed on both datasets. Registration performance, as measured 
by the tract based similarity measure, was compared between the optimized regis-
tration settings for both registration algorithms. To statistically examine the differ-
ence between two different sets of registrations, we computed, for each subject, the 
average similarity to all other subjects in the dataset as defined in the Tract-based 
evaluation metric section. We then performed paired t-tests, pairing subjects across 
both algorithms (30 pairs).

To be able to interpret the registration performance measure, we investigated the 
relationship between warp distance and this measure. Hereto, we applied the (op-
timum) nonlinear transformation obtained with FNIRT, but scaled it by a fraction 
between 0.8 and 0.995, and computed the resulting impact on the registration per-
formance. For each subject in the Rotterdam and Oxford datasets, the spline coef-
ficients of the warp field were multiplied by the warp fraction, leaving the affine 
component of the transformation unchanged. All tract density images were trans-
formed with these fractional warps. Then, for each subject, tract similarity was 
computed between the partially and fully warped tracts.

* http://dx.doi.org/10.1016/j.neuroimage.2013.03.015
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We also compared deformation fields obtained with both registration algorithms 
operating at optimal parameters. This was done to investigate the difference be-
tween the algorithms.

Reproducibility of the performance measurement

As optimization introduces the risk of overfitting to the specific data used in the 
optimization, we used the unseen rescan data, available for 30 subjects in the Rot-
terdam data, to test reproducibility of the evaluation framework. This evaluation 
involved running the pre-processing, the tractography, and the registrations for 
all settings of both algorithms, and all evaluations on this set of scans. Two tests 
were performed on these reproducibility measurements. First, for both algorithms 
we measured the correlation between the performance measurements on the two 
sets of scans. Second, we focused on the optimal settings for both registration al-
gorithms, and compared the performance with the performance obtained on the 
rescan data.

Comparison with TBSS

To test feasibility and effect of replacing the registration-projection approach in 
TBSS (v1.2) with a regularized high-dimensional registration method, we per-
formed three experiments. First we determined whether constraining the perfor-
mance measurement to the white matter skeleton (as described in Evaluation on the 
skeleton) altered the behavior of the performance measure for the two registration 
approaches. Second, we compared the skeletonized registration performance to the 
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Figure 2.2.4. Registration performance (vertical axis) of FNIRT, for each of the parameters 
around the optimum parameter setting. Shown for the Rotterdam data (dashed) and the Ox-
ford data (solid). The optimum points are indicated with dots. Registration performance is sep-
arately shown as a function of warp field resolution, regularization relaxation speed and final 
regularization (higher means more regularization).
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TBSS performance on both datasets (Rotterdam and Oxford), and also between the 
registration algorithms. Third, we conducted an example analysis to investigate the 
influence of replacing the registration and projection stages with the improved reg-
istration, in a real-life study setting. For this experiment, we used MRI data of 50 
female subjects from the Rotterdam Scan Study, aged 68–80 (mean 74.8, SD 2.9). 
These data were acquired and processed in a manner identical to the Rotterdam data 
that was used for the registration optimization but the subjects used for this exam-
ple application were not included in the optimization experiment. We investigated 
the established44,45 association between age and FA, with head size as a confound 
regressor, with both TBSS and TBSS using the improved registration using FNIRT. 
Further details are provided in the caption Figure 2.2.10.

Figure 2.2.5. Registration performance (vertical axis) of Elastix, for each of the parameters 
around the optimum parameter setting. Shown for the Rotterdam data (dashed) and the Ox-
ford data (solid). The optimum points are indicated with dots. Registration performance is sep-
arately shown as a function of warp field resolution, similarity metric, multiresolution strate-
gy, regularization weight, optimizer, and localization of the similarity metric. Abbreviations: 
NCC = normalized cross correlation, MI = mutual information, SSD = sum of squared differenc-
es, pyr = pyramidal downsampling, sub = subject (moving) image, all = both images.
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Results

Optimization experiments

For optimization of the two registration algorithms, 639 registration settings (63 
for FNIRT, 576 for Elastix) on both the Rotterdam data and Oxford data were per-
formed and evaluated, adding up to a total of 639 sets of 60 registrations each. For 
Elastix, some combinations of parameters resulted in aborted registrations due to 
non-convergence for one or more subject images. In this case, the particular setting 
of the registration algorithm (30 for the Rotterdam data, 34 for the Oxford data) was 
completely excluded from the analysis. The resulting 1,214 performance measure-
ments therefore contained no cases of non-convergence, and are presented in three 
ways.

To illustrate the results of the optimization procedure for one of the four combina-
tions of registration algorithm and dataset, the optimization of Elastix on the Ox-
ford data, performance as a function of the most influential parameters is shown in 
Figure 2.2.3. This graph shows all performance measurements for the combination 
of algorithm and dataset, as a function of the parameters that influenced registra-
tion performance most (three parameters are not discernible in this figure). Warp 
field resolution is presented on the horizontal axis, regularization is indicated with 
a symbol, and registration similarity metric is indicated by color. The graph shows 
that the optimal amount of regularization depended on the similarity metric. The 
graph also shows that robustness with respect to the indiscernible parameters (mul-
tiresolution strategy, optimizer and localization of the similarity metric) depended 
on warp field resolution, as indicated by the distribution of similar marks general-
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Figure 2.2.6. Maximum registration performance (vertical axis) for both algorithms and both 
datasets, as a function of regularization (horizontal axis) and warp field resolution (color). For 
each point on the graph, the maximum performance as a function of the other parameters is 
plotted. Performance for FNIRT is shown on the left, Elastix on the right. The dashed lines indi-
cate Rotterdam data, the solid lines Oxford data.
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ly fanning out for increasing resolution. For conciseness, graphs for the other three 
combinations of registration algorithm and dataset are omitted and summarized 
results are presented in Figs. 2.2.4 and 2.2.5. To visualize parameter dependence, 
the marginal variation of the performance measurement when varying parameters 
around the optimum point is shown in Figs. 2.2.4 and 2.2.5. Based on the optimal 
registration parameters, these graphs show the influence of each of the parameters 
under investigation. These figures show that the warp field resolution, regulariza-
tion, and, for Elastix, similarity metric were the most influential parameters in the 
optimization.

Optimal registration parameters for FNIRT depended on the resolution of the data 
that was being registered (Figure 2.2.4), even though the optimum settings for 
both datasets are located in relatively flat segments of the parameter-performance 
curves and the dependence is therefore fairly weak. For the Rotterdam data, optimal 
resolution for the final B-spline grid was 4 mm, compared to 2 mm for the high-
er-resolution Oxford data, although in both cases either choice would not result in 
a large change in performance. The optimal regularization at the last cascade of the 
registration was 60 for the Rotterdam data, compared to 30 for the Oxford data. The 
relaxation speed for the regularization was the least influential parameter, but was 
different for both datasets nonetheless; flat for the Rotterdam data compared to me-
dium steep for the Oxford data.

Optimal registration parameters for Elastix also depended on the dataset being op-
timized. Two of the most influential parameters were the same for both datasets; 
warp field resolution was optimal at 3 mm and normalized cross correlation (NCC) 
was the optimal similarity metric. Optimal regularization weight depended on the 
dataset; for the Rotterdam data a weight of 10 was optimal, and for the Oxford data 
a weight of 1. Of the least influential parameters, two parameters had the same op-
timum for both datasets; the optimal optimizer (adaptive stochastic gradient de-
scent), and localization of the similarity metric (yes). One parameter differed; for 
the Rotterdam data, the optimal multiresolution strategy was to not smooth any 
of the images, and for the Oxford data, decreasing smoothing for the subject image, 
with no smoothing of the template image, was the optimal strategy.

To center on the aforementioned optimization results, Figure 2.2.6 shows the max-
imum performance as a function of the two most influential parameters (warp field 
resolution and regularization) for both datasets and both algorithms. Each point on 
these graphs represents the maximum performance across a set of 36 settings for 
Elastix, or three settings for FNIRT.
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The performances with optimal parameter settings are listed in Table 2.2.4. The ta-
ble shows that optimal registration performance for Elastix was slightly higher than 
for FNIRT with a difference in performance of 0.004–0.006. Although the differ-
ences were very small, they were statistically significant (Table 2.2.4; p-values for all 
datasets < 10− 4).

To be able to interpret these differences, the relationship between registration per-
formance and deformation distance is shown in Figure 2.2.7. A difference in perfor-
mance of 0.01 translates to an average deformation difference of about 0.2 mm; this 
is twice the difference in registration performance between FNIRT and Elastix.

For both algorithms operating at the optimal parameters for both datasets, the mean 
deformation distance is shown in Figure 2.2.8. For each dataset, the figure also 
shows the Euclidean difference between the optimal deformations of FNIRT and 
Elastix, including group wise differences in registration along white matter struc-
tures. The median difference for the Rotterdam data was 1.19 mm (IQR 0.91–1.71) 
and for the Oxford data 1.70 mm (IQR 1.14–2.52). Confined to the TBSS skeleton this 
corresponded to 1.10 mm (IQR 0.91–1.39) and 1.48 mm (IQR 1.03–1.98).

Figure 2.2.7. The relationship between tract similarity difference (based on spatial correlation 
between two aligned tract density images) and warp deformation difference for the Rotter-
dam data (dashed) and the Oxford data (solid), computed for FNIRT operating at optimum 
parameters for each dataset. The largest difference is obtained when scaling the warp with a 
factor of 0.8. This translates into a similarity drop between fully and partially warped tracts. 
Deformation difference is computed by taking the deformation difference (vector) image for 
each subject, comparing the full and partial warps. The deformation difference in the graph is 
then the median Euclidean deformation difference distance (vector length), averaged over all 
subjects in each dataset.
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Reproducibility of the performance measurement

The optimization experiment was repeated on the rescan data. This resulted in a 
second, independent performance-measurement for each of the registration param-
eter settings of FNIRT and Elastix, calculated on a different set of scans of the same 
subjects. Scatterplots of performance measurements for both datasets are shown in 
Figure 2.2.9. For FNIRT the scatterplot shows that the absolute performance on the 
rescan data was slightly reduced (mean difference 0.0105), but this difference was 
very consistent (SD 6.4×10−4), indicating a slightly lower data quality in the rescan 
data. Both measures showed an excellent correlation, which is reflected in the R2 
value of the OLS regression of 0.993. For Elastix the scatterplot shows that a similar 
performance difference was obtained (mean difference 0.0099), but at an increased 
variability (SD 8.9×10− 3) which is reflected in a lower R2 value of 0.931.

For the rescan data, registration performance was also measured for the optimal 
parameters determined on the baseline data. Performance measurements are listed 
in Table 2.2.4, showing that the small FNIRT – Elastix difference was exactly re-
produced, albeit that the absolute performance measures for both algorithms were 
again slightly reduced.

Comparison with TBSS

Constraining the evaluation to the TBSS skeleton had little influence on the optimal 
parameters, especially around the optimal settings. While the optimal registration 
parameters evaluated on the whole tract did not exactly match the optimal param-
eters evaluated on the skeleton, this had very little influence on performance. The 

Algorithm Rotterdam     
baseline 

Rotterdam       
rescan

Oxford data

FNIRT 0.588 0.577 0.600

Elastix 0.594 0.583 0.604

FNIRT - Elastix (p-value)             -6-0.006 (< 10-4) -0.006 (< 10-4) -0.004 (< 10-5)

Table 2.2.4
Registration performance for all datasets at the optimal registration parameters for both 
FNIRT and Elastix. Performance on the Rotterdam rescan data is computed using the registra-
tion settings determined to be optimal based on the Rotterdam baseline data. p-values listed are 
computed for paired t-tests, comparing the registration performance for all 30 subjects across 
both registration algorithms
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difference in registration performance between parameters obtained in the registra-
tion optimization (Optimization experiments), and the optimal registration accord-
ing to a skeletonized optimization was at maximum 2.6×10−3.

To compare the performance of both FNIRT and Elastix to TBSS, Table 2.2.5 lists 
the registration performance for both DTI datasets restricted to the white matter 
skeleton. Performance differences between FNIRT or Elastix and TBSS were all sig-
nificant and ranged from 0.038 to 0.046 (all p-values for paired t-tests between both 
nonlinear registration algorithms and TBSS were <10−6). This indicates that registra-
tion performance was significantly better on the white matter skeleton for FNIRT 
and Elastix than for TBSS; the difference in performance between FNIRT and Elas-
tix (in different directions in different datasets) was an order of magnitude smaller 
than the extent to which both performed better than TBSS.

Table 2.2.5 also contains a comparison between FNIRT and Elastix in the skeleton-
ized evaluation. For the Rotterdam data, Elastix reproducibly outperformed FNIRT, 
but for the Oxford data, FNIRT was significantly better than Elastix.

← optimal parameters for each dataset, the individual deformation vector images are used to 
compute Euclidean deformation images, which are then averaged over all subjects to produce 
the images shown. For both algorithms we included the affine transformation in the deformation 
field, and then subtracted the mean displacement within the template image in order to account 
for differences in the coordinate definitions. The distance for both FNIRT and Elastix is shown in 
mm, the bottom panel in each graph shows the mean Euclidean deformation difference between 
both algorithms at their respective optimum settings.

Algorithm Rotterdam baseline Rotterdam rescan Oxford data

FNIRT 0.685 0.674 0.690

Elastix 0.689 0.677 0.686

TBSS 0.643 0.636 0.647

FNIRT – Elastix (p-value)                   -6-0.004 (0.002)                    -6-0.003 (0.01)                      -60.005 (< 10-6)

FNIRT – TBSS (p-value)                  -60.04 (< 10-6) 0.04 (< 10-6) 0.04 (< 10-6)

Elastix – TBSS (p-value)                   060.05 (< 10-6) 0.04 (< 10-6) 0.04 (< 10-6) 

Table 2.2.5
Skeletonized performance at the optimum parameter settings for each dataset, compared to 
registration performance of TBSS. Performance on the Rotterdam rescan data is computed us-
ing the registration settings determined to be optimal based on the Rotterdam baseline data. 
p-values listed are computed for paired t-tests, comparing the registration performance for all 
30 subjects across both registration algorithms and between registration algorithms and TBSS
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Figure 2.2.10 shows the results of the association between age and FA in the 50 aging 
female subjects, comparing TBSS to TBSS with improved registration using FNIRT. 
Replacing the registration-projection approach in TBSS with the improved regis-
tration yielded more symmetry in the clusters of significant association between 
higher age and lower FA. Also, clusters were larger and more clusters were found 
(50% more voxels) when using the improved registration. Bland–Altman plots of 
the t-values and the cluster enhanced t-values for both approaches (Figure 2.2.10) 
further show that at the cluster level, TBSS with improved registration rendered on 
average higher t-values than TBSS.

Discussion

We developed a method to determine the accuracy of established anatomical corre-
spondence of white matter tracts between different subjects. Using this method, we 
optimized parameters for two registration algorithms, and showed that alignment 
in TBSS can be improved by using a regularized high-dimensional nonlinear regis-
tration approach rather than the registration-projection procedure.

We reproducibly observed substantially better alignment of white matter struc-
tures on the white matter skeleton with the optimized registration algorithms than 
with the current approach in TBSS. This indicates feasibility of replacing the reg-
istration-projection approach in TBSS with a finely optimized nonlinear registra-
tion. This replacement would improve alignment, but also topological consistency 
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Figure 2.2.9. Reproducibility of the registration performance measurements for FNIRT (a) 
and Elastix (b) experiments on the Rotterdam data. Each point represents the registration per-
formance for one registration parameter setting, as measured on two different sets of scans of 
the same subjects.
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in white matter tracts, since this is explicitly preserved in the diffeomorphic regis-
tration of FNIRT, and almost always preserved by the regularized registration per-
formed with Elastix.

The example analysis showed that TBSS with improved registration produced more 
symmetric, larger and more clusters of significant association between age and FA, 
and that clusters common to both approaches had smaller p-values using TBSS with 
improved registration. These observations do not prove that the improved registra-
tion yields higher sensitivity, as we do not know the ground-truth association in this 
experiment. However, the results are in line with the common notion of widespread 
degeneration of white matter with age,44,45 and as such serve as an illustration of the 
potential benefit offered by the improved registration and maintained topological 
consistency, in the analysis of diffusion data in future studies.

There are several methodological considerations to be discussed. First, the optimi-
zation experiments showed that optimal registration parameters were different for 
both imaging datasets (low-end and high-resolution) used. Most notably the opti-
mal regularization was different in both algorithms, for the Rotterdam data (low-
end diffusion acquisition) this meant a higher final regularization of FNIRT and a 
larger regularization weight for Elastix compared to the Oxford data (high-resolu-
tion diffusion acquisition). For FNIRT this was coupled with a lower optimal warp 
field resolution for the Rotterdam data. With the quality of the Oxford data being 
higher than that of the Rotterdam data, this shows that there is a coherent relation 
between data quality and the optimal effective number of degrees of freedom of the 
registration, and that this relation can effectively be investigated with the registra-
tion evaluation framework presented here. The two datasets used for the optimiza-
tion can be argued to encompass a large part of the range of diffusion data qualities 
commonly acquired. For a new dataset, interpolating optimal registration param-
eters with respect to e.g. acquisition time, allows making an informed decision on 
selecting optimal registration parameters. This allows future studies to benefit from 
improved registration accuracy without the need to redo the optimization for each 
new dataset.

The reproducibility of the registration, as measured with the evaluation on the 
rescan data shown in Figure 2.2.9, is influenced by the individual reproducibility 
of the tractography, the registration, and the optimization/evaluation framework 
itself. The observed dispersion of the difference between performances calculated 
on baseline and rescan data is therefore a combination of variances. Assuming in-
dependence of the registration evaluation variance from the registration algorithm 
means that the excellent reproducibility of the registration performance measures 
for FNIRT (Figure 2.2.9 a) provides a lower bound for the reproducibility of the reg-
istration evaluation framework. It should be noted that the performance ranges for 
the two registration algorithms across the parameter ranges are nearly one order of 
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Figure 2.2.10. Comparison of TBSS (A) with the proposed TBSS (B) with the improved →
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← registration using FNIRT. The top panel (i) shows overlapping clusters where FA was signifi-
cantly lower with increase in age for both approaches (p-value 0.05), overlaid on the mean FA 
images obtained with each approach. The standard skeleton supplied with FSL was used with 
the default FA threshold of 0.2. Colors indicate the p-value for each voxel, adjusted for multiple 
comparisons using permutation testing (10k permutations), and using the TFCE clustering op-
tion available in the Randomise tool of FSL. 47,48 As shown, p-values were smaller for the TBSS 
method using the improved registration compared to the standard TBSS method. Analyses were 
performed with head size as confound regressor. Head size was computed by summation of ce-
rebral tissue volumes (including cerebral spinal fluid) as determined by a standardized tissue 
segmentation procedure. 49 

The second panel (ii) shows which regions of significance were common to both approaches or 
unique to either of the two approaches, overlaid on the FA template supplied with FSL. Yellow 
voxels indicate the voxels significant for both approaches; Green voxels indicate significance 
only using TBSS with the registration-projection approach; Red voxels indicate significance 
only for TBSS using the proposed improved registration approach. For TBSS with improved 
registration, statistics were computed on the non-upsampled FA images for each subject, trans-
formed to standard space using linear interpolation, identical to what is performed in standard 
TBSS. Results for TBSS with optimized registration were more symmetric, especially in the cir-
cled regions of slices Z=70 and 80. Also, TBSS with improved registration, in this experiment, 
showed 50% more significant voxels for the association between age and FA than TBSS with 
registration and projection. The opposite association (higher FA with increase in age) produced 
no significant voxels for either TBSS approach (not shown).

The third panel (iii) shows Bland-Altman plots for the skeletonized t-statistics comparing TBSS 
to TBSS with improved registration. The left plot shows voxelwise t-values, the right plot shows 
TFCE enhanced t-values. Each dot corresponds to a single skeleton voxel, presenting the aver-
age statistic for the two approaches on the x-axis, and the difference in statistic (TBSS with 
improved registration – TBSS) on the y-axis. For TFCE enhanced t-values, TBSS with improved 
registration produced on average larger cluster enhanced t-values than TBSS. For larger TFCE 
enhanced t-values, this is visualized in the figure by the cluster of voxels that have positive t-val-
ue differences (above the orange zero-difference line).
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magnitude apart. With Elastix spanning a larger performance range, this also means 
that part of the range is covering registrations that are so far away from optimal that 
reproducibility is less informative. Even so, it seems that reproducibility for FNIRT 
was slightly better than for Elastix.

It is interesting to see that for Elastix, the sum-of-squared-differences (SSD) simi-
larity metric, which is the similarity metric implemented in FNIRT, was consistent-
ly outperformed by the mutual information (MI) and normalized cross correlation 
(NCC) metrics. This might have been caused by nonlinear intensity differences be-
tween subjects across tracts. With different tracts having slightly different intensity 
across subjects, the assumptions of the SSD cannot be met. This might explain the 
difference in registration performance between Elastix and FNIRT observed on the 
full tract evaluation.

Registration performance on the skeleton for both registration algorithms showed 
heterogeneous behavior amongst the datasets, with Elastix performing slightly 
better on the worse data, and FNIRT performing slightly better on the better data. 
Comparison of both algorithms using the whole tract evaluation showed Elastix to 
perform slightly better than FNIRT with absolute deformation differences in the 
order of 1–2 mm. These differences will be a composition of deformation differenc-
es that do, and deformation differences that do not translate into registration per-
formance differences (think e.g. of two sets of transformations, each with an equal 
amount of different random perturbations). By scaling the optimal deformations, 
we found that the obtained difference in registration performance between opti-
mal warp fields of both algorithms would translate to deformation differences in 
the order of 0.1 mm, had all deformation differences translated into registration per-
formance differences. While performing slightly worse, FNIRT is diffeomorphic 
and therefore produces invertible warps. Invertibility of the warp field is a desir-
able property in a neuroscience context such as TBSS as this allows back-projecting 
points in standard space to subject-native space and preserves topological consis-
tency of the white matter through the transformation of native space to standard 
space.

The masks that initialize the probabilistic tractography (seed, target, exclusion, and 
stop) are defined in standard space, and transformed to subject space. The registra-
tion that is used for this transformation is obtained with a medium degree-of-free-
dom registration, i.e., the same registration that is used in the initial alignment of 
TBSS. This registration is inverted to obtain a standard space to subject transforma-
tion. The use of a registration inside a registration-evaluation framework can poten-
tially bias the evaluation metric. However, this bias would favor trans- formations 
similar to the one used in the tractography initialization, i.e. conservative, medi-
um degree-of-freedom transformations. It should also be noted that tractography is 
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only run in a preprocessing stage, and that the same tract-sets are used to evaluate 
all different registration parameter settings. We therefore consider bias due to this 
registration step not to be a major factor in our results.

In this evaluation we have included two nonlinear registration algorithms that were 
developed in the groups that contributed to this study and for which primary devel-
opers were involved in the project. Though not the aim of this study, the developed 
framework may lend itself to a comprehensive comparison of more registration al-
gorithms. Such a comparison of registration algorithms could e.g. include a broad 
selection of algorithms out-of-the-box, such as carried out in Wang et al.,19 or could 
include a full optimization in which case we recommend involvement of developers 
of each algorithm to design the algorithm-specific optimization scheme. Such an 
optimization would inherently be very computationally intensive. Computing the 
registration performance for a single registration parameter setting, for a group of 30 
subjects, took on average around 50 CPU-hours. This included the actual registra-
tion, warping the tract maps, and computing the spatial correlation. Computations 
were performed on the LISA cluster in Amsterdam (www.sara.nl/systems/lisa) 
and on a local cluster in Rotterdam. The optimal registrations of the Rotterdam data 
required on average 51 min (FNIRT), and 68 min (Elastix) of CPU time on 2.1 Ghz 
AMD Magny Cours processors, compared to 12 min for the registration + projection 
of TBSS. For the Oxford data this was 71 min for FNIRT, 71 min for Elastix, and 12 
min for TBSS.

We used probabilistic tractography for fiber tracking and evaluated registration 
performance using a spatial correlation similarity metric. This is different from 
previous work that used fiber tracts to quantitatively measure registration per-
formance,14,16,18,24,27 which were based on deterministic tractography. As a result, 
metrics for comparing similarity of warped tract maps in those methods were over-
lap-based, using similarity metrics such as the Dice, Jaccard and Cohen’s Kappa 
metric,31,46 or distance-based metrics, related to the Hausdorff distance or the mean 
absolute surface distance.14,16,18,24 The near-continuous density information that re-
sults from probabilistic tractography is not so well suited for these similarity met-
rics. Most importantly, tract-density contains information about the tract, which 
would be lost if a thresholded, binary tract-mask was used. Secondly, setting a den-
sity threshold for binarization would introduce an- other parameter that requires 
setting. Spatial correlation as a similarity measure does not suffer from these draw-
backs. Also, we have shown that when using the framework presented, based on 
multiple tracts identified with probabilistic tractography, using spatial correlation 
as similarity measurement allows for a precise and reproducible evaluation of regis-
tration quality. Investigating other evaluation metrics would be possible within this 
framework, but this is beyond the scope of the current research.
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Registration performance measurements on the rescan data showed the difference 
between both nonlinear registration algorithms to be highly reproducible. Further-
more, performance measurements were highly reproducible themselves. This is an 
important observation, as it shows that using the tractography output to measure 
registration performance in the framework presented is not prone to overfitting 
registration parameters on the dataset that is used for training the registration pa-
rameters. This in turn allows one to train registration parameters without the ex-
plicit need to evaluate performance on a separate dataset that was not used in the 
optimization.

The optimized parameter sets that resulted from our experiments are available 
online for both registration algorithms. For Elastix, parameters can additionally 
be downloaded from the parameter file database on the Elastix wiki page (http://
elastix.bigr.nl/wiki). For FNIRT, optimized parameter files will be distributed with 
FSL. Scripts and masks, developed for the automated tractography, will be made 
available for release with FSL.

Conclusions

In conclusion, firstly, we demonstrate that optimized nonlinear image registration 
algorithms produce better image alignment on the white matter skeleton than the 
registration-projection approach currently in TBSS.

Secondly, registration quality of diffusion imaging data can be assessed using prob-
abilistic tractography and thus used for optimization of registration parameter set-
tings and for comparison of registration algorithms. This evaluation is not in general 
biased towards any particular tensor or tensor metric based registration approach, 
and highly reproducible.

Thirdly, optimal registration parameters depend on the quality (resolution, number 
of averages etc.) of the diffusion dataset in a graded and predictable manner.

Future studies investigating cross-subject diffusion data with TBSS are expected to 
benefit from the improved anatomical alignment.

Supplementary data to this article can be found online at: 
http://dx.doi.org/10.1016/j.neuroimage.2013.03.015.
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Background and Purpose – It is unknown whether white matter le-
sions (WML) develop abruptly in previously normal brain areas, 
or whether tissue changes are already present before WML become 
apparent on MRI. We therefore investigated whether development 
of WML is preceded by quantifiable changes in normal-appearing 
white matter (NAWM).

Methods – In 689 participants from the general population (mean 
age 67 years), we performed 2 MRI scans (including diffusion tensor 
imaging and Fluid Attenuation Inversion Recovery (FLAIR) sequenc-
es) 3.5 years apart using the same 1.5 T scanner. Using automated 
tissue segmentation, we identified NAWM at baseline. We assessed 
which NAWM regions converted into WML during follow-up and 
differentiated new WML into regions of WML growth and de novo 
WML. Fractional anisotropy, mean diffusivity, and FLAIR intensity 
of regions converting to WML and regions of persistent NAWM were 
compared using 3 approaches: a whole-brain analysis, a regionally 
matched approach, and a voxel-wise approach.

Results – All 3 approaches showed that low fractional anisotropy, 
high mean diffusivity, and relatively high FLAIR intensity at baseline 
were associated with WML development during follow-up. Com-
pared with persistent NAWM regions, NAWM regions converting to 
WML had significantly lower fractional anisotropy (0.337 vs 0.387; 
p <0.001), higher mean diffusivity (0.910×10–3 mm2/s vs 0.729×10–3 
mm2/s; p <0.001), and relatively higher normalized FLAIR intensity 
(1.233 vs –0.340; p <0.001). This applied to both NAWM developing 
into growing and de novo WML.

Conclusions – White matter changes in NAWM are present and can 
be quantified on diffusion tensor imaging and FLAIR before WML 
develop. This suggests that WML develop gradually, and that visu-
ally appreciable WML are only the tip of the iceberg of white matter 
pathology. 

Background and Purpose

Cerebral white matter lesions (WML) in the elderly are frequently seen on MRI. 
They are considered to reflect subclinical vascular brain disease and are asso-
ciated with an increased risk of dementia and stroke.1,2 Preventing or slowing 

down WML development may thus have the potential to decrease disease burden. 
To date, several potentially modifiable risk factors, such as smoking and high blood 
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pressure, have been associated with WML development.1,3 Yet, the pathogenesis of 
WML is still poorly understood. Most important, it is unknown whether WML de-
velop abruptly in previously normal brain regions or whether development of WML 
on MRI is a gradual process, in which tissue changes are already present before they 
become apparent on MRI as WML. This is especially important to identify in which 
persons and at what moment preventive measures should be installed.

On MRI, WML are best visualized by the Fluid Attenuation Inversion Recovery 
(FLAIR) sequence, on which WML appear as hyperintense regions in the white 
matter. WML can be quantified using visual rating scales or automated measure-
ments. Both methods measure visually appreciable WML, that is, the macrostruc-
tural changes of the white matter that are clearly distinguished on a FLAIR scan.  
However, pathology studies suggest that these WML are only the tip of the iceberg 
of white matter pathology.4 If WML development is indeed a gradual process, early 
stages of its development might be accompanied by subtly increased FLAIR inten-
sities.

Diffusion tensor imaging (DTI) is a relatively recent MR imaging technique that al-
lows in vivo study of tissue microstructure, and is often applied to study cerebral 
white matter. DTI provides multiple imaging metrics, such as fractional anisot-
ropy (FA) and mean diffusivity (MD). These metrics have been shown to detect 
changes in white matter microstructure that are not distinguished on conventional 
MRI.5 Performing DTI in longitudinal MR imaging studies enables investigation of  
normal-appearing white matter (NAWM) microstructure before WML develop.6

New WML form either as lesion growth (ie, adhering to already present WML) or as 
de novo WML. It is important to take this distinction into account. First, this allows 
investigation of potentially different pathogenecities. Second, around the border 
of existing WML, NAWM voxels can contain a fraction of WML tissue that affects 
measurements in that voxel (so-called partial volume effect). This introduces a po-
tential bias, which is not present for de novo WML.

It is also important to take into account that DTI measurements vary considerably 
across brain regions because of neuronal tract-width and tract-geometry, and that 
WML preferentially occur in specific brain regions. These observations demand that 
longitudinal analyses of NAWM features and WML development take spatial loca-
tion into account. Finally, to investigate the generic pathophysiology of WML devel-
opment, this should preferably be studied in the general population.
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Therefore, in 689 participants from the population-based Rotterdam Scan Study, 
we investigated whether DTI measures and the FLAIR intensity of NAWM at base-
line are associated with growing WML and de novo WML over a period of 3.5 years. 
To take into account the lesion location of measurements in the white matter, we 
used regional matching and a voxel-based approach.

Methods

Study Population

This study is based on participants from a large, prospective, population-based 
cohort study in the Netherlands that investigates determinants of various chronic 
diseases in elderly people.7 The original study population consisted of 7,983 people 
in the general population, aged ≥55 years and all residents of the Ommoord suburb 
of Rotterdam. In 2000 to 2001, the cohort was expanded with 3,011 people aged 
≥55 years of age.7 The institutional review board approved the study, and written 
informed consent was obtained from all participants.

In 2005, 1,073 from these 3,011 people were randomly selected for MRI scanning.8 

After exclusion of demented people (n=4) and people who had MRI contraindica-
tions (n=94), 975 were eligible, of whom 907 (93%) participated. Physical inabilities 
precluded image acquisition in 12 individuals. Imaging was incomplete for 3 subjects, 
leaving 892 people with complete MRI examinations. In 2008, these people were 
invited for a follow-up MRI scan. After exclusion of people who had died (n=21) 
or had new MRI contraindications (n=7), 864 people were eligible. From these, 
770 (89%) were willing to participate, of whom 754 had complete MRI examina-
tions. After exclusion of people with cortical infarcts at either baseline or follow-up  
(n= 32), 722 people were included in this study.

MRI Protocol

The MRI protocol performed at both time points was identical and was performed 
on the same 1.5T GE Signa Excite MR scanner in a standardized way. Details of this 
protocol have been described previously.8 In short, structural imaging included a 
T1-weighted 3D Fast RF Spoiled Gradient Recalled Acquisition in Steady State with 
an inversion recovery prepulse sequence, a proton density weighted sequence, 
and a T2-weighted FLAIR sequence. For DTI, we performed a single shot, diffu-
sion-weighted spin echo echo-planar imaging sequence. Maximum b-value was 
1000 s/mm2 in 25 noncollinear directions; 1 volume was acquired without diffusion 
weighting (b-value=0 s/mm2).



65

2.3 | development of new white matter lesions

Tissue Segmentation

Brain tissue was classified into NAWM, WML, grey matter, and cerebrospinal fluid. 
For classification of all tissues except WML, a multispectral tissue classification9 was 
used, incorporating a multiatlas strategy with 6 manually labeled atlases for learning 
subject-specific tissue intensities. The FLAIR intensity was used to identify WML 
in an automated postprocessing step.10 Tissue segmentations were visually inspect-
ed. Subjects with artifacts in the segmentation of either scan (eg, because of motion) 
were excluded (33), leaving 689 subjects for analysis.

Spatial and Intensity Normalization

Nonrigid image was used to align the T1w structural images of both time points. 
Registration was performed using FMRIB’s Linear and Non-linear Image Regis-
tration Tools (FLIRT11 and FNIRT12) part of the FMRIB Software Library (FSL).13 To 
prevent biasing toward a particular time point,14 both scans were transformed to the 
(subject-specific) intermediate space by inverting half the deformation fields of the 
transformations between both scans. For each subject, the mean intermediate T1w 

N = 689

Age, y 66.9 (5.0)

Female 52 % (355)

Baseline WML volume, ml* 3.4 (2.1 - 6.5)

New WML volume, ml* 1.4 (0.8 - 2.8)

De novo WML volume, ml* 0.2 (0.1 - 0.3)

Growing WML volume, ml* 1.1 (0.6 - 2.4)

Lost WML volume, ml* 0.8 (0.5 - 1.3)

Baseline NAWM volume, ml 397 (53)

NAWM FA                                                                                                                                                                   0-32           0.387 (0.017)                                            0-32

NAWM MD, 10-3 mm2/s            0.730 (0.028)                                                0-32

NAWM FLAIR                                                                                                                                                                   0-32        -0.0332 (0.194)                                                  0-32

Follow up time, y                                                                                                                                                                   0-32                3.5 (0.2)                                        0-32

Table 2.3.1
Population characteristics

Values are means (standard deviation) or percentages (numbers). *median [interquartile 
range]. Abbreviations: WML = white matter lesion, NAWM = normal-appearing white matter, 
FLAIR = Fluid Attenuated Inversion-Recovery (normalized signal intensity).
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images were registered to the 1-mm MNI_152 template, supplied with FSL using 
FNIRT. A schematic overview of the spatial normalization process is given in Figure 
2.3.1. WML were masked to minimize their influence on the registration.

FLAIR intensities were normalized across subjects by matching grey matter intensi-
ty histograms for each subject (matching peak and full width at half maximum using 
linear transformations). This normalization was driven by grey matter intensities 
to avoid potential influence of subclinical white matter pathology. Nonuniformi-
ty correction (before normalization) and coregistration to the T1w image were per-
formed as described by de Boer et al.10

Figure 2.3.1. Schematic overview of the spatial normalization procedure for two scans of the 
same subject. The baseline and follow-up scans are nonlinearly registered towards one another 
allowing creation of an intermediate image. This intermediate image is then non-linearly regis-
tered to standard space. WML segmentations for both scans, transformed to standard space, are 
automatically categorized into persistent WML and new WML. New WML are further distin-
guished into WML growth if the new lesion is connected to a baseline WML or de-novo WML if 
it is not. Abbreviation: WML = white matter lesion.

baseline scan follow-up scan

intrasubject
coregistration

registration to
standard space

WML

De novo WML

WML growth

Persistent WML
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Diffusion Data Processing

Diffusion data were corrected for motion and eddy currents by affine coregistra-
tion of the diffusion-weighted volumes to the b=0 volume. Registrations were 
performed with Elastix.15 The rotation component of each transformation was used 
to realign each gradient vector to compensate for motion during the acquisition.16 
Transformed diffusion-weighted images were resampled at an isotropic resolution 
of 1.0 mm. The Brain Extraction Tool17 from FSL was used to mask out nonbrain tis-
sue. Tensor fits were performed with a Levenberg-Marquard nonlinear least squares 
optimization algorithm, available in ExploreDTI.18 Data quality was examined by 
visual inspection of axial FA slices, every 4 mm, combined with 2 coronal and 2 sag-
ittal slices around the center of the brain. Resampling of diffusion data in standard 
space was performed in 1 pass by concatenating an affine coregistration of the FA to 
the baseline T1w image, the nonlinear transformations of T1w space to mean struc-
tural space, and the transformation from that space to standard space. All registra-
tions were checked by visually inspecting the warped structural and FA images in 
standard space. No unacceptable misregistrations were found.

Definition of New WMLs, Growing and De Novo WMLs 

WMLs were defined as each group of voxels, classified as WMLs in the tissue seg-
mentation, connected in a 3-dimensional 18-voxel-neighborhood (spherical kernel 
with a diameter of 3 voxels). In standard space, brain tissue segmentations for both 
time points were combined per subject to obtain voxelwise persistent NAWM, per-
sistent WML, and new WML (ie, converting from NAWM to WML) tissue class-
es (Figure 2.3.1). Every WML in the follow-up image was then checked for overlap 

FA 0.387 (0.017) (Ref) 0.337 (0.030) p<0.001 0.335 (0.033) p<0.001 0.346 (0.038) p<0.001

MD 0.729 (0.027) (Ref) 0.910 (0.054) p<0.001 0.919 (0.055) p<0.001 0.866 (0.073) p<0.001

FLAIR -0.340 (0.190) (Ref) 1.233 (0.150) p<0.001 1.295 (0.151) p<0.001 0.920 (0.191) p<0.001

Persisting NAWM NAWM converting to WMLs 

Total Growing De Novo

Table 2.3.2
DTI and FLAIR parameters of persisting NAWM versus NAWM converting to WMLs; whole 
brain analysis

Values are means (SD). p-Values are based on the paired-samples t-test results of the compar-
isons of mean FA, MD (× 10-3 mm2/s )and FLAIR values of persisting NAWM versus the values 
of NAWM converting to WMLs. Abbreviations: WMLs = white matter lesions, NAWM= nor-
mal-appearing white matter, FA = fraction anisotropy, MD = mean diffusivity, FLAIR = Fluid 
Attenuated Inversion Recovery (normalized signal intensity).
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with WML in the baseline image. The new WML voxels were subdivided into WML 
growth and de novo WML tissue, according to this overlap. New WML voxels were 
identified as WML growth, if they were part of a WML that overlapped with a WML 
at baseline. Accordingly, if not overlapping with a baseline WML, new WML voxels 
were classified as de novo WML.

Regional Matching

A schematic overview of the approach is given in Figure 2.3.2. To take into account 
that diffusion metrics and WML formation depend on anatomic location, we per-
formed an analysis in which regions developing into WML were compared with 
anatomically corresponding regions of persistent NAWM. Regional matching was 
completed by confining measurements to the overlap between new WML in the 
driving subject and persistent NAWM in the matched subject to account for regis-
tration errors and potential (new) WML in the matched subject in those locations. 
In those regions in standard space, we averaged FLAIR and DTI metrics in the base-
line scans. This process was repeated 4 times with different age- and sex-matched 
subjects for each driving subject for additional robustness.

← Figure 2.3.2. Schematic overview of the regional matching procedure, illustrated with en-
larged axial cutouts for 5 subjects. The left panel shows how the new WML in standard space for 
the driving subject are treated as objective region of interest (ROI). This objective ROI is distin-
guished into WML growth and de-novo WML (not shown). For age and gender matched subjects 
in the same population, the overlap between the matched subject NAWM and the objective ROI 
is determined. The matching is performed four times to increase robustness, e.g. to be robust 
against a situation where new lesions in the driving subject overlap with WML in the matched 
subject. The repetition also means that every subject is driving-subject once, and matched sub-
ject exactly four times in the analysis. In the graph, matched subjects 1 and 3 show a complete 
overlap between the objective ROI and the persistent NAWM. For subject 2, the enlarged ven-
tricle is not perfectly registered, leading to part of the ventricle overlapping with the objective 
ROI. Subject 4 shows WML overlapping with the objective ROI. The unmatched regions are ex-
cluded from the objective ROI in calculating the average baseline DTI and FLAIR metrics. The 
four resulting measurement pairs for each metric are averaged across the pairs. Abbreviations: 
WML = white matter lesion, NAWM = normal-appearing white matter, ROI = region of interest, 
DTI = diffusion tensor imaging, FLAIR = fluid attenuated inversion recovery.
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Statistical Analyses

We investigated baseline tissue properties of NAWM developing into WMLs during 
follow-up using 3 approaches. First, we performed a whole-brain analysis without 
regional matching. We averaged FLAIR intensity and diffusion metrics in all per-
sistent NAWM voxels and compared these with measures inside NAWM convert-
ing into WML, further partitioned into WML growth and de novo WMLs. Hereto, 
we used paired-samples t tests (2-sided; α-value=0.05) using SPSS statistical soft-
ware (version 20).

Second, we used regional matching to compare baseline measurements in NAWM 
developing into WML with those in regionally matched persistent NAWM of age- and 
sex-matched controls. Persistent NAWM and WML measurements were averaged 
across the 4 repetitions to generate the measurement pairs to be used in paired-sam-
ples t tests. To test the added information of DTI metrics over FLAIR intensity and 
vice versa, we added measures from both modalities as independent variables and 
fitted a conditional logistic regression model with new lesion status as outcome 
measure, and DTI or FLAIR measurements in baseline NAWM as determinant. 
 
Third, to investigate regional dependence of the associations, we tested for voxel-
wise differences in diffusion and FLAIR measurements between new WML and 
persistent NAWM. For each voxel, a regression was performed using the metric of 
interest as dependent variable, and age and lesion status as (voxelwise) independent 
variables provided that each tissue class was represented by at least 10 subjects. This 
constraint effectively limited the analysis to the periventricular watershed area. 
Analyses were performed using t tests in Randomise,19 available in FSL, using 5,000 
permutations to correct for multiple comparisons (α-value=0.05). Threshold-free 

FA (Ref) -0.0327 (-0.0339, -0.0315) p<0.001 -0.0340 (-0.0353, -0.0326) p<0.001 -0.0233 (-0.0246, -0.0219) p<0.001

MD (Ref) 0.0646 (0.0625, 0.0668) p<0.001 0.0678 (0.0656, 0.0700) p<0.001 0.0435 (0.0413, 0.0456) p<0.001

FLAIR (Ref) 0.895 (0.884, 0.906) p<0.001 0.942 (0.931, 0.953) p<0.001 0.682 (0.671, 0.693) p<0.001

NAWM converting to WMLs

Total Growing De Novo

Persisting 
NAWM

Table 2.3.3
Difference in DTI and FLAIR parameters between persisting NAWM and NAWM converting to 
WMLs; regionally matched analysis

Values are mean differences (95%-CI) of FA, MD (× 10-3 mm2/s) or normalized FLAIR signal 
intensity of NAWM converting regions and NAWM persisting regions, matched on age, sex and 
anatomical region. p-values are based on paired-samples t-tests. NAWM = normal-appearing 
white matter, FA = fraction anisotropy, MD = mean diffusivity, FLAIR = Fluid Attenuated In-
version Recovery (normalized signal intensity).
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cluster enhancement20 was used to cluster significant results. We repeated the test 
for added information of diffusion metrics over FLAIR intensity and vice versa on 
a voxelwise level, by adding measures from both modalities as voxelwise-indepen-
dent variable in the same model.

Results

Characteristics of the study population are presented in Table 2.3.1. The median 
WML volume at baseline was 3.4 ml. After an average of 3.5 years of follow-up, 
we observed a net increase in WML volume in 81% of the participants and a net de-
crease in WML volume in the remaining 19% of the participants (median increase 
1.4 ml; loss 0.8 ml). Table 2.3.2 represents the DTI and FLAIR parameters of per-
sisting NAWM versus NAWM converting to WML for the whole-brain analysis. 
Compared with persistent NAWM regions, NAWM regions converting to WML 
had significantly lower FA (0.337 [standard deviation: 0.030] vs 0.387 [standard de-
viation: 0.017]; p <0.001), higher MD (0.910×10–3 [0.054×10–3] mm2/s vs 0.729×10–3 
[0.027×10–3] mm2/s; p <0.001) and relatively higher normalized FLAIR intensity 
(1.233 [0.150] vs –0.340 [0.190]; p <0.001). This applied to both NAWM regions of 
growing and de novo WML.

Model I

FA 0.31 (0.29, 0.34) p<0.001 0.33 (0.30, 0.36) p<0.001 0.42 (0.39, 0.46) p<0.001

MD 3.99 (3.66, 4.35) p<0.001 3.85 (3.54, 4.19) p<0.001 2.83 (2.61, 3.08) p<0.001

FLAIR 25.96 (19.37, 34.79) p<0.001 25.45 (19.05, 34.01) p<0.001 17.65 (14.36, 21.69) p<0.001

Model II

FA 0.84 (0.74, 0.95) p=0.008 0.78 (0.69, 0.88) p<0.001 0.81 (0.72, 0.92) p<0.001

MD 1.19 (1.03, 1.39) p=0.02 1.42 (1.22, 1.65) p<0.001 1.04 (0.95, 1.15) p=0.4

FLAIR* 23.99 (17.66, 32.58) p<0.001 23.97 (17.48, 32.87) p<0.001 16.75 (13.55, 20.69) p<0.001

De NovoGrowthTotal

Table 2.3.4 
Odds Ratios of WML development per SD increase in baseline DTI and FLAIR parameters of 
NAWM

Values are Odds Ratios (95%-CI) per SD increase in FA, MD or normalized FLAIR signal inten-
sity. Model I: conditional logistic regression with age, sex and region matched converting and 
persisting NAWM regions, adjusted for time between scans. Model II: as Model I with additional 
adjustment for normalized FLAIR signal intensity. *adjusted for FA and MD. Abbreviations: 
NAWM = normal-appearing white matter, FA = fraction anisotropy, MD = mean diffusivity, 
FLAIR = Fluid Attenuated Inversion Recovery (normalized signal intensity) 
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Figure 2.3.3. Voxel-wise comparison of baseline DTI measures →
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In Table 2.3.3, the difference in DTI and FLAIR parameters is shown between con-
verting NAWM versus persisting NAWM with respect to the regionally matched 
analyses, using 689 sets of matched subjects. Again, compared with persistent 
NAWM regions, NAWM regions converting to WML had lower FA (difference [95% 
confidence interval]: –0.0327 [–0.0339, –0.0315]; p <0.001), higher MD (0.0646 
[0.0625, 0.0668]×10-3mm2/s; p <0.001), and relatively higher normalized FLAIR in-
tensity (0.895 [0.884, 0.906]; p <0.001). This also applied to both NAWM regions 
of growing and de novo WML. In addition, we found that low FA and high nor-
malized FLAIR intensity were associated with WML development (growing and de 
novo WML) after adjustment for one other (Table 2.3.4). MD was not significantly 
associated with WML development after adjustment for the normalized FLAIR in-
tensity.

Results for the voxelwise analysis are displayed in Figure 2.3.3. All measures were 
indicative of deteriorated microstructure in the NAWM converting to WML com-
pared with persistent NAWM. Differences were significant, bilaterally along the full 
span of the ventricles. However, using threshold-free cluster enhancement, cluster 
size of the associations did vary for the different measures. The cluster for higher 
MD was broader than that for lower FA. Relatively higher normalized FLAIR in-
tensity was significant in almost the entire analyzed region. Adjusting for alternate 
measures only slightly reduced significance, mostly visible in the FA analysis cor-
rected for FLAIR intensity (Figure 2.3.3).

Discussion

In this longitudinal MRI study over 3.5 years, we found that visually not apprecia-
ble but quantifiable changes of the white matter precede the development of WML. 
More specifically, we found that baseline DTI measures and FLAIR signal intensity 

← and FLAIR intensity in NAWM converting to WML versus persisting NAWM. Only voxels 
in which there were at least 10 subjects in both categories were analyzed (shown in red and 
blue). This effectively constrained the analysis to the periventricular watershed area. Shown 
in blue are voxels in which DTI and/or FLAIR measures at baseline were significantly related 
to WML development during follow up. For the FA, the left panel shows regions of significantly 
lower FA, corrected for age. The right panel shows the same analysis, additionally corrected for 
voxel-wise FLAIR intensity. Left panels in MD and FLAIR show regions of significantly higher 
MD or relatively higher normalized FLAIR intensity related to WML development adjusted for 
age. The right panel for the MD is additionally adjusted for FLAIR intensity. The right panel for 
the FLAIR is additionally adjusted for FA values. FLAIR adjusted for MD showed similar results 
(not shown). Abbreviations: WML = white matter lesion, NAWM = normal-appearing white 
matter, FA = fractional anisotropy, MD = mean diffusivity, DTI = diffusion tensor imaging, 
FLAIR = fluid attenuated inversion recovery.
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were associated with both growing WML (ie, new WML adhering to already present 
WML at baseline) and de novo WML (ie, new WML not adhering to an already pres-
ent WML at baseline). Furthermore, we found that DTI measures and FLAIR signal 
intensity were associated with WML development independently from each other.

Strengths of this study are its longitudinal design, large sample size, popula-
tion-based setting, and use of the same scanner and imaging protocol at baseline and 
follow-up. Additionally, we accounted for the spatial dependency of both WML and 
diffusion metrics in 2 ways: by using regional matching and a voxel-based approach. 
Furthermore, we distinguished between growing WML and de novo WML. This 
not only enabled us to study potential differences in pathogenicity, but also contrib-
uted to the validity of our study because analyses regarding de novo WML are less 
likely to suffer from biases. For example, the dichotomization of segmenting voxels 
into WML and NAWM based on FLAIR intensity leads to a so-called partial-volum-
ing effect in the voxels on the interface between both tissues. For de novo WML, the 
absence of such an interface in the baseline NAWM avoids a potential partial-volu-
ming bias for these lesions.

A limitation of our study is that although we know which voxels have developed 
into WML over 3.5 years of follow-up, we do not know at exactly which moment 
during follow-up these lesions developed; this may have been days, months, or 
years after the baseline scan. Nevertheless, this does not change our primary obser-
vation that NAWM changes precede the appearance of visually appreciable WML. 
Another consideration is that the WML burden in our study was relatively low be-
cause of the population-based setting. Yet, we expect that our conclusions also ex-
tend to a patient population with high WML burden because large WML have been 
reported to be surrounded by a penumbra of abnormal NAWM.21

We found an apparent net decrease of WML volume in 19% of our population, like-
ly attributable to misclassification of tissues and measurement error at baseline or 
follow-up, which is in line with previous research.22,23 Because we performed our 
analyses in standard space, the increase or decrease of WML could also be assessed 
at a voxel level. This not only showed new WML voxels in all subjects, but also a 
loss of one or more WML voxel in all subjects, which again is likely to result from 
misclassification or measurement error in either time point. Because these voxels 
did not qualify as new WML in our definition, they were not included in the analy-
sis. Therefore, if anything, this misclassification will either not have influenced our 
results or may have led to a slight underestimation.

Only one other study reported on the relationship between changes of the NAWM 
at baseline and the development of WML in a longitudinal MR study, but it did not 
distinguish between growing and de novo WML.6 In line with our findings, it found 
FA and FLAIR intensity to be independently associated with the development of 
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WML in a heterogeneous population of 119 people with Alzheimer disease, mild 
cognitive impairment, and normal cognitive function. Together with our findings, 
this further corroborates that WML are the result of a gradual process because we 
now assess that this also applies to the general population, and that it holds for both 
growing as well as de novo WML. In addition, using the voxelwise analysis, we 
found no evidence that this process is spatially varying along the ventricles.

WML in the elderly are considered to be mainly vascular in origin. This is based on 
numerous epidemiological studies that found vascular risk factors, such as high 
blood pressure, to be associated with WML, and pathology studies that found 
damage of the cerebral small vessels, signs of blood–brain barrier dysfunction, and 
ischemic pathology in WML.1,24,25 Previous longitudinal studies have shown that 
baseline WML load is strongly associated with WML progression,26,27 and cross-sec-
tional studies found abnormalities in the NAWM to be related to WML burden.4,21,28 
Yet, it was unknown whether the disease process develops gradually or abruptly. 
This information is essential because if WML would develop abruptly, other causes 
would be more likely (eg, acute ischemia) than when WML develop over a longer 
period (eg, chronic ischemia). In addition, it was unknown whether WML growth 
and de novo WML development have a similar pathophysiology. Our findings sug-
gest that both growing and de novo WML develop gradually. Therefore, a shared 
pathophysiological process is likely. Our results also suggest that DTI measures and 
FLAIR signal intensity provide some information independently from each other, 
implying that both measures partially capture different elements of tissue patholo-
gy. Furthermore, our findings confirm that WML are the extremes, or the tip of the 
iceberg, of white matter pathology.4,21,26,28

Our findings may have clinical implications. A clinician should take into account 
that the true white matter pathology may be more extensive than what is visually 
appreciable on structural MRI. This could lead to an improved estimate of a patients’ 
risk of stroke, dementia, and death.2,29 However, further research is needed to con-
firm these hypotheses.

In summary, in this longitudinal MRI study, we found NAWM changes to be pres-
ent before WML develop. This suggests that the pathophysiology of WML is a 
gradual process. Furthermore, our results suggest that WML are only the tip of the 
iceberg of white matter pathology.
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Background – Loss of brain white matter microstructure is presumed 
to be an early sign of neurodegenerative disease. Yet, little is known on 
microstructural changes of various white matter tracts with normal 
aging. 

Methods – In 4,532 non-demented elderly persons, we studied age-re-
lated changes in tract-specific diffusion characteristics for 25 tracts 
using probabilistic tractography. We studied how diffusion differs 
across tracts with aging, whether this depends on macrostructural 
white matter changes, and whether cardiovascular risk factors affect 
microstructure. 

Results – With increasing age, loss of microstructural organization 
occurred in association, commissural and limbic tracts. White matter 
lesions and atrophy each partially explained this loss. We observed 
worse microstructure with severe hypertension, current smoking 
and diabetes mellitus, independent from age and macrostructural 
white matter changes.

Conclusions – Microstructure of white matter tracts changes with 
age, and may mark neurodegeneration more sensitively than white 
matter lesion load and atrophy. Cardiovascular factors relate to loss 
in microstructural organization.

Background

With population aging, neurodegenerative diseases will become more prev-
alent and will pose a higher burden on individuals and on society. Both for 
additional insight into the pathophysiology of neurodegenerative diseas-

es, and for identification of persons at increased risk, a better understanding of the 
early brain changes in neurodegeneration is needed. Previous research has primarily 
focused on changes that occur in neuronal grey matter. With imaging studies, in 
particular magnetic resonance imaging (MRI), grey matter atrophy, and more spe-
cifically hippocampal atrophy has been studied extensively in relation to manifesta-
tions of neurodegeneration such as cognitive deterioration and Alzheimer’s disease 
(AD).1–4 More recently, the role of cerebral white matter in neurodegeneration has 
increasingly been acknowledged. Imaging studies investigating cerebral white mat-
ter changes have initially focused mainly on macrostructural changes, such as white 
matter atrophy or the formation of white matter lesions (WML), which have both 
been linked to cognitive decline and dementia (e.g., Brickman et al., 20085). Howev-
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er, these macrostructural changes are likely only the tip of the iceberg of the white 
matter pathology present,6,7 and are thought to be preceded by microstructural 
changes.8,9 Investigating tissue microstructure in a population-based setting of ag-
ing could thereby offer insight into earlier stages of neurodegeneration, potentially 
before irreversible damage has occurred. 

Diffusion MRI is a non-invasive method that can quantitatively characterize tissue 
microstructure. Diffusion measurements in white matter have for example been 
shown to differ between patients with AD and controls.10 Because the white matter 
is composed of distinct tracts, and tracts are thought to subserve particular brain 
functions, investigating individual tracts may highlight tract-specific differences in 
vulnerability to degeneration. Diffusion tractography,11 which integrates directional 
diffusion information, can be used to identify and delineate these tracts. 

Despite the evidence of loss of white matter microstructural organization in a vari-
ety of neurological diseases,12–14 little is known on tract degeneration in normal ag-
ing. Previous studies on white matter changes in aging in asymptomatic individuals 
primarily included wide age ranges, spanning childhood until old age,15–19 instead of 
persons in middle and old age who are at greatest risk for neurodegeneration. Ad-
ditionally, although there is increasing insight into risk factors for macrostructural 
white matter pathology, very little is known on how these factors affect white mat-
ter microstructure. 

Therefore, in 4,532 middle aged and elderly participants from the population-based 
Rotterdam Study, we investigated how tissue microstructure in 25 white matter 
tracts changes with age. Secondly, we studied how common (cardiovascular) risk 
factors relate to tract alteration. In both analyses we took macrostructural markers of 
white matter pathology (i.e. atrophy and WML) into account to study the indepen-
dent contribution of aging and risk factors on microstructure.19 

Methods

Study population

This study is based on participants from the Rotterdam Study, an ongoing, pro-
spective, population-based cohort study investigating causes and consequences of 
age-related diseases among 14,926 persons.20 From 2005, all participants have been 
invited for additional brain imaging.21 Between 2006 and 2011, of the 5,430 non-de-
mented participants who were eligible for scanning and had no contraindications 
for MRI (including claustrophobia) 4,841 underwent a multi-sequence MRI acqui-



84

chapter 3 | diffusion imaging in aging

sition of the brain. After excluding incomplete acquisitions (53), scans with artifacts 
hampering automated processing (112) and participants with MRI-defined cortical 
infarcts (144), 4,532 scans were available for analysis. The Rotterdam Study has been 
approved by the medical ethics committee according to the Population Study Act 
Rotterdam Study, executed by the Ministry of Health, Welfare and Sports of the 
Netherlands. Written informed consent was obtained from all participants.

MRI acquisition

Multi-sequence magnetic resonance imaging (MRI) was performed on a 1.5 tesla MRI 
scanner (GE Signa Excite). Throughout the study period, imaging was performed on 
the same scanner without major hardware or software updates.21 In short, structur-
al imaging included a T1-weighted 3D fast RF spoiled gradient recalled acquisition 
in steady state with an inversion recovery pre-pulse (FASTSPGR-IR) sequence, a 
proton density (PD) weighted sequence, and a T2-weighted fluid-attenuated in-
version recovery (FLAIR) sequence.21 For diffusion weighted imaging (DWI), we 
performed a single shot, diffusion-weighted spin echo echo-planar imaging se-
quence (repetition time (TR)=8,575 ms, echo time (TE)=82.6 ms, axial field-of-view 
(FOV)=210 × 210 mm, matrix=96 × 64 (phase encoding) (zero-padded in k-space 
to 256×256) slice thickness=3.5 mm, 35 contiguous slices). Maximum b-value was 
1000 s/mm2 in 25 non-collinear directions; three volumes were acquired without 
diffusion weighting (b-value = 0 s/mm2). Between February 2007 and May 2008, a 
technical issue caused 1,398 participants to be scanned with the phase and frequency 
encoding directions swapped for the diffusion acquisition. This rotated acquisition 
scheme led to a mild ghost artifact in the phase encoding direction and was treated 
as a covariate in the analyses (see analysis section). 

Brain tissue segmentation

Brain tissues were segmented into grey matter, white matter, cerebrospinal fluid 
(CSF) and background tissue using an automated segmentation approach.22 An au-
tomated post-processing step identified WML based on the FLAIR image and the 
tissue segmentation.23 After co-registration to the diffusion space this segmentation 
was combined with the tract segmentation described below to obtain tract-specific 
WML volumes. Intracranial, cerebral volume (ICV) (excluding the cerebellum and 
surrounding CSF) was estimated by summing total cerebral grey and white matter 
and CSF volumes. 
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Diffusion image processing

Diffusion data were pre-processed using a standardized pipeline.24 In short, all dif-
fusion-weighted volumes were co-registered to compensate for misalignment due 
to subject motion and eddy currents. The rotation component of the co-registration 
was used to realign each gradient vector to its effective direction.25 Diffusion ten-
sors were estimated using a non-linear Levenberg Marquardt estimator, available in 
ExploreDTI.26 Diffusion tensor imaging (DTI) measures of tissue microstructure, 
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, radial diffusivi-
ty (average of the two minor eigenvalues) and mode of anisotropy,27 were computed 
from the estimated tensor images. Transformations were also used to resample the 
DWI data in a 2.5 mm cubic resolution for the ball and stick diffusion model re-
quired for the probabilistic tractography.

Probabilistic tractography

Tractography was performed using PROBTRACKX,28 a probabilistic Bayes-
ian framework for white matter tractography, available in FSL (version 4.1.4).29  
PROBTRACKX uses a diffusion model estimated using BEDPOSTX, also available 
in FSL. Protocols for identifying 14 white matter tracts, 11 of which were defined 
for left and right hemispheres were defined as previously described30 and were 
made available as the AutoPTX plugin for FSL* (version 0.1.1). Tracts were catego-
rized in association, commissural, limbic and sensorimotor tracts. The 25 tracts 
included for analysis are listed in Appendix Table A.3.1.1, which also lists the seed 
number parameter of the tractography plugin. The diffusion model estimation and 
tractography algorithm were run with default settings. The resulting tract-density 
(visitation count) images for each tract were normalized by division with the total 
number of particles (tracts) in the tractography run. To account for partial coverage 
of the medial lemniscus at the lower border of the scan, alternative seed masks were 
selected (increasingly more cranially positioned) until reasonable coverage was  
achieved (seed mask volume >0.7 ml). This variable position of seed masks was tak-
en into account as confound regressor in analyses in which the medial lemniscus 
was studied. 

*  http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
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White matter tract segmentation

White matter tract segmentation was achieved by thresholding the normalized tract 
density images. To account for differences in geometric complexity, tract-specific 
thresholds were selected by optimizing the reproducibility of FA measurements on 
a subset of 30 participants who had been scanned twice, with a mean interval of 
19.5 days (mean age 76.7 years (standard deviation 10.0)).30 Reproducibility and op-
timal thresholds are listed in Appendix Table A.3.1.1. Resulting tract volumes were 
computed to correct analyses for tract-specific atrophy and confounding by partial 
volume effects in the segmentations. Visual inspections were performed for tract 
segmentations with volumes most dissimilar from the mean tract volume. Segmen-
tations that did not cover the majority of the mean tract anatomy, and segmenta-
tions that veered off into neighboring tracts were rejected and coded as missing. We 
inspected the 50 most dissimilar segmentations per tract, or more until less than 
one in 20 segmentations was rejected. 

N = 4532

63.8 (11.1)

2509 (55.4)

No 1783 (39.5)

Mild 818 (18.1)

Severe 1915 (42.4)

Never 1394 (30.9)

Former 2147 (47.6)

Current 968 (21.5)

1108 (24.8)

406 (9.1)

1215 (28.7)

1126 (119)

2.9 (1.6, 6.1)

APOE ε4 carriership

Intracranial volume (ml)

WML volume (ml)*

Age

Female

Hypertension

Smoking

Hypercholesterolemia

Diabetes mellitus

APOE indicates apolipoprotein E, WML white matter lesions. Data are presented as mean 
(standard deviation) for continuous variables and number (%) for categorical variables. * WML 
volume is presented as median (interquartile range). The following variables had missing data: 
hypertension (n=16), smoking (n=23), hypercholesterolemia (n=62), diabetes (n=63), APOE ε4 
carriership (n=297).

Table 3.1.1
Population characteristics
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Assessment of risk factors

The following cardiovascular risk factors, based on information derived from home 
interviews and physical examination were assessed.20 Blood pressure was measured 
twice in sitting position using a random-zero sphygmomanometer. Hypertension 
was classified into mild (systolic blood pressure >= 140 mmHg and <160 mmHg, or 
diastolic blood pressure >= 90 and <100 mmHg) and severe (systolic blood pressure 
>= 160, or diastolic blood pressure >= 100, or the use of blood pressure lowering med-
ication).31 Smoking was assessed by interview and coded as never, former and cur-
rent. Diabetes mellitus status was determined based on fasting serum glucose level 
(>= 7.0 mmol/l), or if unavailable non-fasting serum glucose level (>=11.1 mmol/l) 
or the use of anti-diabetic medication. Hypercholesterolemia was defined as serum 
total cholesterol level (> 5.17 mmol/l)32 and/or the use of lipid lowering medication. 
Apolipoprotein E (APOE) ε4 allele carriership was assessed on coded genomic DNA 
samples. APOE genotype was in Hardy-Weinberg equilibrium. Measurements for 
the most recent visit to the research center, prior to imaging, were used.

Statistical analysis

Median measures of tract microstructure were computed for voxels inside the tract 
segmentations. We computed FA, MD, and the additional diffusion measures: axial 
diffusivity, radial diffusivity and the mode of anisotropy. White matter tracts that 
were left/right homologues were (volume wise) averaged if both segmentations 
were available. Next, diffusion measurements were standardized (zero mean, unit 
standard deviation) across participants to facilitate comparison of associations with 
age and risk factors across tracts. 

For each tract, the relation between age and standardized diffusion measures was 
investigated using linear regression for four different models. In the first model, 
we adjusted for sex and ICV. Next, we additionally adjusted for tract-specific white 
matter volume (model 2) or tract-specific WML volume (model 3). In model 4 we 
adjusted for both tract-specific volume and tract-specific WML load. 

We investigated the association between cardiovascular risk factors and white mat-
ter tract diffusion characteristics using analyses of variance, adjusting for age, sex, 
ICV and tract-specific volume and WML volume (corresponding to model 4). We 
computed estimated marginal means for the different risk factor groups, and com-
puted the associated difference in standardized diffusion measurement for each 
tract. For hypercholesterolemia, we additionally corrected for the use of lipid low-
ering drugs and serum high-density lipoprotein cholesterol level. We also tested 
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for potential differences between the two risk groups defined in the analyses with 
smoking and hypertension (i.e., former versus current smoking and severe versus 
mild hypertension). In post-hoc analyses we added an interaction term between 
risk factor and age to the analyses with cardiovascular risk factors, to test whether 
the association between age and the diffusion measurements was different among 
risk-groups.

Mean SD Mean SD Mean SD

Association

ATR 7.37 1.09 0.33 0.02 0.75 0.04

IFO 4.07 0.43 0.44 0.03 0.76 0.04

ILF 6.82 0.79 0.41 0.02 0.76 0.04

PTR 4.34 0.65 0.39 0.03 0.77 0.05

SLF 12.17 1.44 0.38 0.02 0.71 0.04

UNC 2.13 0.37 0.37 0.02 0.76 0.03

Commissural

FMA 6.80 0.98 0.48 0.04 0.76 0.04

FMI 3.45 0.51 0.46 0.05 0.77 0.04

Limbic

CGC 1.09 0.17 0.43 0.04 0.72 0.02

CGH 0.73 0.08 0.32 0.03 0.75 0.03

Sensorimotor

CST 5.13 0.69 0.47 0.03 0.69 0.03

MCP 19.50 6.79 0.29 0.05 0.69 0.04

ML 1.99 0.22 0.42 0.02 0.71 0.02

STR 4.81 0.60 0.41 0.03 0.69 0.03

Volume FA MD

Table 3.1.2
Average tract-specific volume and diffusion measurements. Tract volume represents the aver-
age volume for each tract obtained by the probabilistic tractography segmentation. For each 
individual, median FA and MD is computed inside the (segmented) tracts and then averaged 
over all participants

Volume in ml, MD × 10-3 mm2/s. SD indicates standard deviation, FA fractional anisotropy, MD 
mean diffusivity, ATR anterior thalamic radiation, IFO inferior fronto-occipital fasciculus, 
ILF inferior longitudinal fasciculus, PTR posterior thalamic radiation, SLF superior longitudi-
nal fasciculus, UNC uncinate fasciculus, FMA forceps major, FMI forceps minor, CGC cingu-
late gyrus part of cingulum, CGH parahippocampal part of cingulum, CST corticospinal tract, 
MCP middle cerebellar peduncle, ML medial lemniscus, STR superior thalamic radiation.
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All analyses were performed with the phase encoding direction of the diffusion 
scan as a covariate. In a sensitivity analysis we repeated all analyses excluding the 
1,398 participants who had a swapped acquisition. 

For all analyses, we used an alpha level of 0.05, while controlling the family wise 
error by applying a Bonferroni correction, taking into account the three eigenvalues 
tested in five compositions (FA, MD and three additional diffusion measures) (150 
models, correcting for 450 tests, Bonferroni adjusted p-value 1.1×10-4). All analyses 
were performed using IBM SPSS (version 20.0.0) and the accompanying Python in-
tegration package. 

Results

Characteristics of the study population are presented in Table 3.1.1. Mean age of 
participants was 63.8 years with age range 45.7-100.0 years. Tract-specific average 
volumes and diffusion measures are presented in Table 3.1.2 (additional diffusion 
measurements in Appendix Table A.3.1.2). Due to tractography failures or (visually) 
rejected segmentations, measurements were missing for on average 6 participants 
(ranging from 0 to 23) per tract. Mean FA ranged from 0.29 to 0.48 and MD from 
0.69 to 0.77 (×10-3 mm/s2). 

Associations between age and tract-specific diffusion measurements are presented 
in Table 3.1.3 and Appendix Table A.3.1.3 (for additional diffusion measures). Asso-
ciations are visually represented in Figure 3.1.1. For the association tracts, commis-
sural tracts and limbic fibers, age was significantly associated with both FA (lower 
with increase in age) and MD (higher with increase in age) in all models. Sensorim-
otor tracts showed only weak associations between age and FA (some higher, some 
lower with increase in age). For MD, sensorimotor tracts showed associations that 
were more consistent with other tract categories (higher with increase in age). Ad-
justing for tract volume and tract-specific WML load led to slight attenuation in the 
associations except for the limbic fibers, which showed constant associations with 
age regardless of the model used. Directional diffusivities showed increases in radial 
diffusivity with age for all tract categories and all models, and consistent increases in 
axial diffusivity for association and sensorimotor tracts. For commissural and limbic 
tracts, axial diffusivity was less clearly associated with age in the first three models, 
and not associated with any tract in the fourth model. In most tracts, the mode of 
anisotropy was lower with increasing age, but not in the sensorimotor tracts, which 
generally showed higher mode with age (Appendix Table A.3.1.3). A full set of scat-
terplots correlating diffusion measurements with age is shown in Appendix Figures 
A.3.1.1 to A.3.1.5. 
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Table 3.1.4 shows the associations between cardiovascular risk factors and tract-spe-
cific measures of white matter diffusion characteristics. Persons with severe hy-
pertension showed loss of microstructural organization, reflected in both lower 
FA and higher MD, in association tracts, commissural tracts and limbic fibers com-
pared to persons without hypertension. In contrast, persons with mild hyperten-
sion showed no significant changes in FA or MD. While no differences in FA were 
found between current and never smokers, current smokers did show lower FA in 
the forceps minor and in the corticospinal tract when compared to former smokers. 
Current smokers furthermore had higher MD in the forceps minor, the corticospi-

* WML were not segmented infratentorially. 
FA indicates fractional anisotropy, MD mean diffusivity, ICV intracranial volume, WML white 
matter lesion; refer to Table 3.1.2 for tract abbreviations.

FA β MD β FA β MD β FA β MD β FA β MD β
Association

ATR -0.033 0.058 -0.025 0.054 -0.008 0.030 -0.003 0.028

IFO -0.051 0.056 -0.048 0.056 -0.036 0.037 -0.033 0.037

ILF -0.038 0.051 -0.039 0.051 -0.021 0.030 -0.021 0.030

PTR -0.045 0.052 -0.043 0.053 -0.029 0.029 -0.024 0.028

SLF -0.041 0.052 -0.041 0.052 -0.029 0.038 -0.029 0.038

UNC -0.034 0.052 -0.027 0.050 -0.029 0.046 -0.023 0.044

Commissural
FMA -0.044 0.045 -0.029 0.039 -0.028 0.021 -0.011 0.014

FMI -0.062 0.049 -0.056 0.048 -0.060 0.046 -0.054 0.045

Limbic
CGC -0.029 0.044 -0.029 0.044 -0.029 0.042 -0.028 0.042

CGH -0.023 0.022 -0.023 0.022 -0.023 0.021 -0.023 0.021

Sensorimotor
CST -0.009 0.054 -0.003 0.050 -0.004 0.042 0.002 0.038

MCP 0.010 0.028 -0.001 0.020 * * * *

ML 0.004 0.024 0.007 0.023 * * * *

STR -0.014 0.057 -0.008 0.055 -0.004 0.038 0.003 0.036

Model 4: 1 + wm 
+ WML vol / tract

Model 3: 1 + wml 
volume / tract

Model 2: 1 + wm 
volume / tractModel 1

Table 3.1.3 
Age and tract-specific diffusion measurements. Values represent regression coefficients (β) for 
change in standardized FA or MD per year increase in age, adjusted for sex and ICV (and ad-
ditionally for tract volume and WML load in other models). Significant associations (at Bon-
ferroni corrected threshold 1.1×10-4) are printed in bold instead of italic. Tracts are grouped by 
functional role
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nal tract, the medial lemniscus and the superior thalamic radiation compared with 
either never or former smokers while no significant associations were found when 
comparing former to never smokers. Persons with diabetes mellitus displayed loss 
of microstructural organization in the association tracts and in the forceps minor, 
reflected in a decrease in FA. No changes in microstructure were found for persons 
with hypercholesterolemia or APOE ε4 allele carriers. 

Appendix Tables A.3.1.5 and A.3.1.6 show interactions between the various risk fac-
tors and age, showing higher MD, axial and radial diffusivity with increasing age for 
some tracts in hypertensives versus non-hypertensives. Additionally, axial diffu-
sivity was higher with increasing age in the superior and inferior longitudinal fas-
ciculi in persons carrying the APOE ε4 allele compared with non-carriers.

Excluding participants who had the swapped phase-frequency diffusion MRI ac-
quisition from the analyses did not change the results materially. 

Discussion

In a large sample of middle aged and elderly persons we studied age-related changes 
in tract-specific microstructure and we observed widespread loss of microstructural 
organization with age. This loss of tract microstructure was present for association, 
commissural and limbic tracts. In all tracts, except in the limbic system, this loss of 
microstructure could be partially attributed to tract atrophy and increase in WML 
load. Sensorimotor tracts were relatively spared from age related deterioration. In-
dependent from age and macrostructural white matter changes, we observed sub-
stantially worse tract-specific microstructural organization in persons with severe 
hypertension, in current smokers and in diabetics. 

Strengths of our study are the large sample size and the population-based setting. 
In contrast to previous studies that spanned very wide age ranges,15–19 the age range 
in this study was appropriate to specifically study neurodegeneration. Further-
more, we took macrostructural white matter changes into account and assessed an 
independent association between age, cardiovascular risk factors and microstruc-
tural organization. Finally, we performed tract-specific measurements of tissue 
microstructure using fully automated methods that we previously made publicly 
available,30 ensuring that our results can be used as reference values for other inves-
tigations. 
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There are a number of methodological considerations. For tract-specific diffusion 
measurements, we assessed median FA, MD and additional diffusion measures (ax-
ial and radial diffusivity and mode of diffusivity) over each entire tract. We chose to 
do so for reasons of specificity, which is lacking for global white matter measures,33 
and for efficiency, to reduce the number of multiple comparisons and to analyze 
tracts as functional entities. Analyzing complete tracts as functional entities has the 
advantage that damage along the entire tract is aggregated in the analysis, not requir-
ing exact alignment across subjects.34 Yet, aggregation over entire tracts may also 
discard some information (especially spatial information) compared to voxel-based 
analyses techniques. On the other hand, (conventional) voxel based techniques suf-
fer from potential misregistration and require an a priori hypothesis on the expected 
spatial extent of the associations.35,36 Further research needs to address whether a 
finer grained analysis or a different aggregation approach could improve sensitivity 
to detect cross-sectional differences. 

Using our population-based sample, we investigated white matter microstructure 
in aging, community-dwelling subjects. While participants were non-dement-
ed at time of imaging, pre-clinical AD pathology according to recently published 
criteria,37 may have been present in a proportion of our population. Though not all 
subjects with AD-related pathologic brain changes will eventually convert to AD, 
it may be hypothesized that our results are in part explained by these pathologies. 
Longitudinal investigations on the same population will eventually help to identify 
the contribution of incipient AD to our results.

Limitations of this study are the cross sectional design which precludes us to infer 
causality from the observed associations with age and cardiovascular risk factors. 
Due to limitations in the number of images that could be acquired in the diffusion 
sequence, the cerebellum could not be fully incorporated in the field of view (FOV) 
of the diffusion scan. We tried to take this into account in the tractography and in 
our analyses, but for both the medial lemniscus and the middle cerebellar pedun-
cle, some variance in the diffusion measurements might still be attributable to the 
individual FOV. Tractography also has some general limitations, it is influenced by 
crossing fiber regions, and subject anatomy and physiology, which in turn influence 
the segmentation, and thereby the tract volumes. While this means that we cannot 
interpret tract volume as a pure indicator of tract atrophy, it is still the best estimate 
available for tract-specific atrophy. Regions of crossing fibers were dealt with in the 
model estimation for the probabilistic tractography; however, the descriptive mea-
sures used in our analyses were based on the tensor model, which assumes only a 
single fiber population. Although the tensor model is the most widely used model 
in diffusion image analysis, this does complicate the interpretation of the results in 
regions of crossing fibers. The DTI based mode of anisotropy27 has been helpful in 
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investigating crossing fiber regions38 and we therefore also included this measure in 
our analyses. Our approach, which does not model the free water component of the 
diffusion signal, did not allow analyzing the fornix as measurements in this tract 
would have been particularly affected by CSF contamination.39

With increasing age, we observed widespread and consistent decline in all but the 
sensorimotor tracts. Different patterns of degeneration in fiber tracts have been 
shown to lead to counter-intuitive findings (e.g., increases in both FA and MD) in 
regions where these tracts cross.38,40 The observed weak associations of age with FA 
in the sensorimotor tracts, combined with consistent increases in MD in the same 
tracts may therefore well indicate relative sparing of the sensorimotor tracts in de-
generation. This is further corroborated by the higher mode of anisotropy we found 
with increasing age only in the corticospinal tract and the superior thalamic radia-
tion. This indicates the tendency of the tensors to become more needle-like in these 
regions, and less pancake-like (the prototypical shape in crossing fiber regions), i.e. 
what is expected in relative sparing of the sensorimotor tracts. 

In the commissural tracts and the limbic fibers, we found more loss of microstruc-
tural organization with age in the (anterior) forceps minor and cingulate gyrus part 
of the cingulum, and less in the (posterior) forceps major, and parahippocampal part 
of the cingulum. This supports the hypothesis of an anterior-posterior gradient in 
neurodegeneration, in which white matter networks that develop later in life are 
most affected by neurodegeneration41,42 possibly leading to functional compensa-
tion in tasks performed by the frontal lobes.43 

We observed a linear decline in tract integrity with age, in contrast to previous stud-
ies that observed higher order associations of age and DTI measures.15,16,18,19,44,45 Yet, 
those studies invariably included subjects of young age and in young adulthood, and 
therefore also modeled (proximity of) the inflection point between net develop-
ment of white matter and the degeneration observed with aging. The loss in micro-
structural organization observed with age could partly be explained by WML load 
and tract volume decrease. However, unlike in a previous voxel-based analysis,46 we 
still found a significant association with age and cardiovascular risk factors when 
correcting for these macroscopic manifestations of white matter degeneration. This 
differential portion of explained variance across tracts could highlight differences 
in susceptibility to vascular damage (predominantly association tracts) and other 
degenerative processes (e.g., in the cingulum). Furthermore, our data support the 
view that white matter microstructure may be a more sensitive or earlier marker of 
neurodegeneration than macrostructural changes.
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The widespread changes in microstructure we observed with hypertension are in 
agreement with previous studies,47 which found altered microstructure in frontal 
(including the genu of the corpus callosum), parietal and medial-temporal regions 
in hypertensives, which attenuated but persisted when additionally controlling for 
WML load. Loss of microstructure with hypertension in the splenium and the an-
terior body of the corpus callosum has also been reported,48 with differences again 
attenuating but persisting when additionally controlling for macrostructural mea-
sures of neurodegeneration including WML volume.

We did not identify a direct association between APOE ε4 allele carriership and loss 
of white matter microstructure but we did identify a stronger association between 
increasing age and higher axial diffusivity (i.e., reduced microstructural organiza-
tion) in ε4 carriers. Previous studies did identify direct associations in much smaller 
cohorts using region of interest49 and voxelwise (TBSS) analyses.50,51 Furthermore, 
there is growing evidence for systemic structural differences in the brain white mat-
ter of carriers of the risk allele.52 We therefore had anticipated finding more wide-
spread associations. Our unexpected findings might be caused by differences in the 
included populations across studies, or by variability in definitions of control and 
risk groups with respect to APOE genotype. Also, the previously suggested poten-
tial over-aggregation in analyzing whole tracts (including crossing fiber regions) 
versus smaller regions or voxels could contribute to these different results. Further 
research is needed to assess the individual impact of these differences.

A large study in persons with cerebral small vessel disease that related smoking sta-
tus to changes in global FA and MD also found strong effects for current smokers, 
which were absent for persons who had quit smoking at least 20 years prior.53 We 
also found higher diffusivity in several tracts in current smokers compared to never 
smokers, but not in former smokers. Additionally, the differences we directly ob-
served between former and current smokers further corroborate the positive effect 
of smoking cessation.53

We found marked DTI measure changes, independent from age, for persons with 
diabetes mellitus reflected in reduced FA measurements in many association tracts. 
Similar results were found in a recent tractography analysis in a case control analysis 
focused on type 2 diabetes.54 The changes we observed with diabetes translate to 
an effective age difference of between 3 and 9 years for white matter tract integrity. 
These results add to the growing body of evidence that diabetes affects the brain.55 

In conclusion, in this general aging population, we identified widespread changes 
in white matter tissue microstructure with age, which could be partly attributed 
to tract atrophy and tract-specific WML load. We also found changes associated 
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to smoking, hypertension and diabetes mellitus when controlling for the effects 
of age and global measures of white matter degeneration. These data provide the 
groundwork for future studies on white matter deterioration in aging and neurode-
generation that will specifically focus on tract-specific patterns of degeneration and 
cognition. 
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Appendices

# seeds   
(× 1k)

max      

FA R2

threshold      

at max R2
Kappa MASD 

(mm)

Association

ATR 1.0 0.90 0.002 0.74 0.70

IFO 4.4 0.94 0.01 0.69 0.55

ILF 1.2 0.93 0.005 0.70 0.64

PTR 20.0 0.88 0.005 0.61 0.86

SLF 0.4 0.94 0.001 0.72 0.80

UNC 1.2 0.87 0.01 0.69 0.58

Commissural

FMA 0.6 0.93 0.005 0.69 0.60

FMI 0.6 0.86 0.01 0.63 0.62

Limbic

CGC 20.0 0.89 0.01 0.63 0.43

CGH 3.0 0.79 0.02 0.65 0.55

Sensorimotor

CST 4.0 0.90 0.005 0.71 0.62

MCP 4.0 0.60 0.0001 0.67 1.12

ML 1.2 0.79 0.005 0.77 0.44

STR 0.8 0.92 0.005 0.67 0.64

Appendix Table 3.1.1
Tractography parameters and reproducibility measures

# seeds corresponds to the number of particles initialized per seed mask voxel. Reproducibility 
of the FA measurement was defined as the R2 value for FA measurement in both scans, computed 
for each tract, while increasing the segmentation threshold. Max FA R2 is the maximum repro-
ducibility observed on the FA, obtained at the threshold on the tract density image specified in 
the next column. Additionally, we computed Cohen’s Kappa statistic, and the mean absolute 
surface distance (MASD) for the selected thresholds after rigidly aligning the FA images to the 
halfway space in between both acquisitions which both reflect reproducibility of the tract seg-
mentations. Abbreviations: FA, fractional anisotropy; MASD, mean absolute surface distance;  
refer to Table 3.1.2 for tract abbreviations.
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Mean SD Mean SD Mean SD

Association

ATR 1.04 0.05 0.61 0.04 0.57 0.05

IFO 1.16 0.05 0.57 0.05 0.70 0.06

ILF 1.12 0.04 0.58 0.04 0.63 0.06

PTR 1.14 0.07 0.60 0.05 0.58 0.08

SLF 1.01 0.04 0.56 0.04 0.41 0.07

UNC 1.08 0.04 0.59 0.03 0.70 0.05

Commissural

FMA 1.28 0.06 0.53 0.05 0.86 0.05

FMI 1.21 0.05 0.55 0.05 0.80 0.07

Limbic

CGC 1.08 0.04 0.53 0.03 0.73 0.10

CGH 1.04 0.04 0.61 0.04 0.66 0.09

Sensorimotor

CST 1.09 0.05 0.49 0.03 0.71 0.07

MCP 0.99 0.10 0.58 0.04 0.47 0.13

ML 1.12 0.04 0.53 0.02 0.75 0.05

STR 1.03 0.05 0.52 0.03 0.58 0.09

AxD RD MO

Appendix Table 3.1.2
Average diffusion measurements for the directional diffusivities

For each individual, median axial diffusivity  (AxD, × 10-3mm2/s), radial diffusivity (RD, 
× 10-3mm2/s) and mode of anisotropy (MO) is computed inside the (segmented) tracts, and then 
averaged over all participants. Abbreviations: SD, standard deviation; refer to Table 3.1.2 for 
tract abbreviations. 
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3.1 | tract-specific white matter microstructure
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3.1 | tract-specific white matter microstructure
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chapter 3 | diffusion imaging in aging
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Appendix Figure 3.1.1. Scatterplots of the relation between age and fractional anisotropy 
(FA) for all tracts. A linear regression line and the explained variance is added for each tract; 
refer to Table 3.1.2 for tract abbreviations.   
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3.1 | tract-specific white matter microstructure
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Appendix Figure 3.1.2. Scatterplots of the relation between age and mean diffusivity  
(MD, × 10-3mm2/s) for all tracts. A linear regression line and the explained variance is added for 
each tract; refer to Table 3.1.2 for tract abbreviations.   
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Appendix Figure 3.1.3. Scatterplots of the relation between age and axial diffusivity 
(AxD, × 10-3mm2/s) for all tracts. A linear regression line and the explained variance is added for 
each tract; refer to Table 3.1.2 for tract abbreviations.   
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Appendix Figure 3.1.4. Scatterplots of the relation between age and radial diffusivity 
(RD, × 10-3mm2/s) for all tracts. A linear regression line and the explained variance is added for 
each tract; refer to Table 3.1.2 for tract abbreviations.   
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Appendix Figure 3.1.5. Scatterplots of the relation between age and mode of anisotropy (MO) 
for all tracts. A linear regression line and the explained variance is added for each tract; refer to  
Table 3.1.2 for tract abbreviations.   
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White matter degeneration in aging, 

a longitudinal diffusion MRI analysis
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The risk of neurodegenerative diseases, including Alzheimer’s disease 
(AD) increases with higher age. In neurodegenerative diseases and in 
brain aging, white matter deterioration plays an important role. Dif-
fusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) 
technique, that can detect subtle changes of white matter microstruc-
ture not visible on a structural MRI. Cross-sectional studies have 
shown that DTI parameters (fractional anisotropy (FA) and mean 
diffusivity (MD)) are altered in aging and AD. Yet, longitudinal data 
determining the rate of change in DTI parameters in aging are scarce 
and based on limited samples. We investigated, in a population of 501 
non-demented community-dwelling elderly (mean age 69.9 years, 
range 64.1-91.1 years), changes of normal-appearing white matter 
DTI characteristics, over two-years of follow-up. Over this period, 
we found that global FA decreased by 0.0042 (p <10-6), while MD 
increased by 8.1×10-6mm2/s (p <10-6) reflecting systemic loss of white 
matter microstructure. Voxelwise analysis showed a widespread de-
crease of FA in the brain, except in the sensorimotor pathway, which 
demonstrated increase of FA. MD values increased throughout the 
brain white matter. These changes suggest widespread deterioration 
of the normal-appearing white matter in aging, with relative sparing 
of sensorimotor fibers in regions of crossing fibers. Additionally, we 
found that this white matter degeneration was more pronounced in 
higher age. Cardiovascular risk factors were not associated with lon-
gitudinal changes in white matter microstructure. 

Introduction

It has been recognized that not only grey matter loss, but also white matter (WM) 
deterioration plays an important role in brain aging and cognitive decline,1,2 and 
often a vascular etiological pathway is hypothesized.3,4 Diffusion Tensor Imaging 

(DTI) is a non-invasive magnetic resonance imaging (MRI) technique that measures 
diffusion of water, and that can quantify subtle changes of white matter tissue or-
ganization not visible on structural MRI. DTI provides multiple measures of diffu-
sion, with fractional anisotropy (FA) and mean diffusivity (MD) most commonly 
used. FA describes the directionality of diffusion and a lower value typically re-
flects reduced microstructural organization in regions where white matter fibers are 
aligned. MD represents the overall magnitude of water diffusion and here a higher 
value reflects reduced microstructural organization more generally.5,6 
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Reduced microstructural white matter organization possibly impedes communica-
tion within and between neurocognitive networks which might result in cognitive 
impairment.1,2,7 In order to identify persons at a higher risk of neurodegenerative 
disease, it is therefore important to quantify changes in brain tissue in an early 
stage.8 This however also requires characterization of baseline age-related changes.

The quantitative nature of DTI makes it very suitable for longitudinal analyses, 
which are likely to be more sensitive to early detection of changes of the microstruc-
ture of the white matter. However, longitudinal data are still scarce and studies are 
mostly performed in small sample sizes and in patients with cognitive impairment 
or Alzheimer’s disease.2,9,10 The sparse longitudinal findings in ‘normal’ aging did 
however corroborate evidence from cross-sectional studies, which showed that 
during normal aging white matter demonstrates lower FA, with less uniform ob-
servations for regions with crossing fibers, combined with higher MD,2,5,9–12 and that 
those aging effects differ across brain regions.10,13,14 It is suggested that there is ear-
lier or more rapid loss of white matter organization in anterior regions including 
the corpus callosum, superior longitudinal fasciculus, uncinate fasciculus, inferi-
or fronto-occipital fasciculus and cingulate bundle, the so called anterior-posterior 
gradient.2,9,10,15 Yet, these cross-sectional results need to be corroborated in longitu-
dinal studies. 

In the current study, we investigated in the large, population-based Rotterdam 
Scan Study, age-related changes in DTI parameters over two years of follow-up. 
We investigated changes both globally and locally, using an improved version of 
Tract-Based Spatial Statistics (TBSS).16,17 Additionally, we investigated whether car-
diovascular risk factors influence longitudinal change in white matter microstruc-
ture.18 

Methods

Study population

This study is based on participants from the Rotterdam Study, a prospective, pop-
ulation-based cohort study that investigates causes and consequences of age-relat-
ed diseases.19 The original study population consisted of 7,983 participants aged 55 
years and older within the Ommoord area, a suburb of Rotterdam. In 2000, the co-
hort was expanded with 3,011 persons (≥55 years) who were living in the study area 
and had not been included before.19 Since 2005, brain MRI is incorporated in the core 
protocol of the Rotterdam Study. In 2005 and 2006, a group of 1,073 participants 
was randomly selected from this cohort expansion to participate in the Rotterdam 
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Scan Study.20 Participants were scanned three times, in 2005-2006, 2008-2009 and 
in 2011-2012. The latter two time points included an upgraded (and identical) DTI 
acquisition that was used for the current analysis, defining the 2008-2009 scan as 
baseline, and the 2011-2012 scan as follow-up. We excluded individuals who (at 
either time point) were demented or had MRI contraindications (including claus-
trophobia). For the 2008-2009 scan, 899 out of the original 1,073 persons could be 
invited, of whom 810 were eligible and 741 participated. At follow up in 2011-2012, 
649 out of 741 were re-invited, 625 were eligible and 548 participated. We excluded 
participants with an incomplete acquisition (n=5), persons with MRI-defined corti-
cal infarcts (n=20), and scans with artifacts hampering automated processing (n=22), 
resulting in 501 participants with longitudinal DTI data available for analysis. 

MRI acquisition

Multi-sequence MRI was performed with identical scan parameter settings at both 
time points on a 1.5T scanner (GE Signa Excite) dedicated to the study and main-
tained without major hardware or software updates.20 In short, imaging included a 
T1-weighted 3D Fast RF Spoiled Gradient Recalled Acquisition in Steady State with 
an inversion recovery pre-pulse (FASTSPGR-IR) sequence, a proton density (PD) 
weighted sequence, and a T2-weighted fluid-attenuated inversion recovery (FLAIR) 
sequence.20 For DTI, we performed a single shot, diffusion-weighted spin echo 
echo-planar imaging sequence (repetition time=8,575 ms, echo time=82.6 ms, field-
of-view=210  × 210 mm, matrix=96 × 64 (phase encoding) (zero-padded in k-space 
to 256 × 256) slice thickness=3.5 mm, 35 contiguous slices). Maximum b-value was 
1000 s/mm2 in 25 non-collinear directions; three volumes were acquired without 
diffusion weighting (b-value=0 s/mm2). 

Tissue segmentation

Baseline scans were segmented into grey matter, white matter, cerebrospinal fluid 
(CSF) and background tissue using an automatic segmentation method.21 An au-
tomatic post-processing step distinguished normal-appearing white matter from 
white matter lesions (WML), based on the FLAIR image and the tissue segmenta-
tion.22 Intracranial volume (ICV) (excluding the cerebellum with surrounding CSF) 
was estimated by summing total grey and white matter and CSF volumes. The seg-
mentation was mapped into DTI image space using boundary based registration23 
performed on the white matter segmentation, the b=0 and T1-weighted images.



117

3.2 | longitudinal analysis of white matter microstructure

DTI processing

Diffusion data was pre-processed using a standardized processing pipeline.24 
In short, DTI data was corrected for subject motion and eddy currents by affine 
co-registration of the diffusion-weighted volumes to the b=0 volumes, including 
correction of gradient vector directions. Diffusion tensors were estimated using a 
non-linear Levenberg-Marquardt estimator, available in ExploreDTI.25 FA and MD, 
measures of tissue microstructure, were computed from the estimated tensor im-
ages.

Image registration

Intra-subject correspondence between the two time points, and between subjects 
was achieved by image registration, and analyses were performed in standard space 
(MNI152). Improved TBSS was used with optimized high degree-of-freedom reg-
istration in lieu of the two stage registration-projection approach followed by the 
original TBSS method.16,17

Firstly, for each subject, the baseline scan was registered to the follow-up scan, and 
vice versa. Secondly, each scan was transformed to the intermediate halfway space 
by inverting half the deformation fields of both registrations.26 This procedure was 
followed to avoid asymmetry bias in longitudinal processing.27 Image registration 
was performed using FMRIB’s Linear and Non-linear Image Registration Tools 
(FLIRT28 and FNIRT29) available in FMRIB’s Software Library (FSL).30 Intra-subject 
registration parameters were optimized based on tract-density image similarity17 
and are available online. Thirdly, similar to bringing subject FA images to standard 
space, as is done in the original TBSS approach,16 the subject specific intermediate 
time points were brought to standard space using the previously determined reg-
istration parameters.17 Fourthly, transformations were concatenated to allow direct 
transformation from the acquisition spaces to standard space, where change in dif-
fusion measures could be computed on a voxel level by subtracting baseline from 
follow-up images. 

Finally, a study specific white matter skeleton was constructed by using the TBSS 
skeletonization procedure on the average FA image composed of all subject images 
at both time points combined in standard space, thresholding the FA skeleton at a 
value of 0.25. 
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Assessment of risk factors

The following cardiovascular risk factors were assessed based on information de-
rived from home interviews and physical examinations.19 Blood pressure was mea-
sured twice in sitting position using a random-zero sphygmomanometer. Use of 
anti-hypertensive drugs was collected. Diabetes mellitus status was determined 
based on a fasting serum glucose level (>= 7.0 mmol/l), or a non-fasting serum glu-
cose level (>=11.1 mmol/l) or the use of anti-diabetic medication. Smoking was as-
sessed by interview and coded as never, former and current. Total and high-density 
lipoprotein (HDL) cholesterol were determined in blood serum, while recording the 
use of lipid lowering medication. Apolipoprotein E (APOE)-ε4 allele carriership was 
assessed on coded genomic DNA samples.31 APOE genotype was in Hardy-Wein-
berg equilibrium. Assessment of risk factors was predating the baseline MRI on av-
erage 3 years. 

Statistical analysis

Changes in diffusion characteristics were investigated in two ways: globally and lo-
cally. For both approaches, we focused on the white matter skeleton as determined 
by TBSS. For the global analysis, we investigated the average change in FA and MD 
over the entire skeleton for each subject, excluding voxels labeled as WML in the 
baseline scan. We assessed whether there was a global change in diffusion measures 
with multiple linear regression models using three models. In model 1, we adjusted 
for, age, sex, scan interval and ICV. In model 2, we additionally adjusted for measures 
of white matter macrostructure: white matter atrophy (by using normal-appearing 
white matter volume) and WML load (natural log-transformed to correct for the 
skewed volume distribution). In model 3, we added the different cardiovascular risk 
factors individually to model 1. For analyses with blood pressure and cholesterol, 
medication use was considered a confounder and added to the model. All global 
analyses were performed using SPSS (version 20), using an alpha value of 0.05; con-
trolling the family wise error rate by using Bonferroni correction, correcting for 34 
tests (number of tested parameters per model: 4, 6, 7 (×2 diffusion measures)) with 
threshold for significance of 0.0015.

For the localized TBSS analyses, we performed voxelwise multiple linear regressions 
for the same models as for the global analysis, also restricting the analyses to the 
(baseline) normal-appearing white matter. If significant associations were found, 
we additionally performed an analysis correcting for measures of macrostructur-
al white matter degeneration (corresponding to model 2) to rule out confounding 
by white matter atrophy and WML. We used threshold free cluster enhancement32 
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with default settings for skeletonized data to promote spatially clustered findings 
and controlled the family wise error rate by using a permutation based approach (us-
ing 5,000 permutations).33 All analyses were performed using a modified version of 
the Randomise tool available in FSL that discarded WML voxels in every permuta-
tion, effectively performing a voxelwise available-case analysis.

N=501

Age, y 69.9 (4.3)

Female 253 (50.5)

Follow up time, y 2.0 (0.5)

NAWM baseline FA 0.322 (0.016)

NAWM baseline MD, 10-3mm2/s 0.726 (0.022)

Brain volume, ml 1125 (114)

NAWM volume, ml 394 (58)

WML volume, ml* 3.74 (2.28, 7.39)

Systolic blood pressure, mmHg 142.3 (16.5)

Diastolic blood pressure, mmHg 81.0 (9.7)

Use of blood pressure lowering medication 168 (33.7)

Diabetes mellitus 34 (6.9)

Smoking

never 162 (32.7)

former 270 (54.4)

current 64 (12.9)

Total serum cholesterol, mmol/l 5.73 (0.94)

Serum HDL cholesterol, mmol/l 1.45 (0.40)

Use of lipid lowering medication 107 (21.4)

APOE ε4 carriership 118 (23.1)

Data is presented as mean (SD) for continuous variables and number (%) for categorical vari-
ables. † White matter lesion volume presented as median (interquartile range). The following 
variables had missing data: cholesterol (n=3), blood pressure (n=2), APOE-ε4 carriership (n=15), 
diabetes (n=5), smoking (n=5). NAWM indicates normal-appearing white matter; FA fractional 
anisotropy; MD mean diffusivity, WML white matter lesion.

Table 3.2.1
Population characteristics 
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Results

Table 3.2.1 shows the population characteristics of the 501 participants. The mean 
age at the baseline MRI scan was 69.9 years (ranging from 64.1 to 91.1 years), and 253 
(50.5%) participants were female. The global analyses, corrected for age, sex, scan in-
terval and ICV, showed an average decrease of FA in normal-appearing white matter 
of 0.0042 (p<10-6) and an average increase of MD of 8.1×10-6mm2/s (p<10-6) over the 
follow-up interval (model 1). The same changes were observed when additionally 
controlling for white matter atrophy and WML load (model 2). As can be seen in 
Table 3.2.2, these two additional confounding variables were also associated with 
changes in MD (a higher WML load resulted in increase in MD) but not with FA. 

Voxelwise analyses, visualized in Figure 3.2.1 for model 2, showed decrease in FA 
over the two-years follow-up interval in the majority of the brain white matter, ex-
cept in most of the sensorimotor tracts. Change over time for models 1 and 2 was 
not materially different. Increase in FA was found in the motor tracts extending 
from the brain stem, through the internal capsule (both the anterior and posterior 
limbs) and the corona radiata up into the motor cortex (Figure 3.2.1). The MD in-
creased over the follow-up period throughout the brain, with most marked increase 
periventricularly and around the fornix. Constraining the voxelwise analysis to the 
normal-appearing white matter meant that the number of degrees-of-freedom of 
the analysis varied from voxel to voxel, but variation was smooth and the minimum 
number of subjects included per voxel was 293. 

Age -0.12 0.09 0.20 0.01

Sex 0.37 0.57 -0.07 0.93

Brain volume -0.18 0.69 0.91 0.08

NAWM volume 0.27 0.51 -1.43 2 × 10-3

ln WML volume -0.29 0.31 1.21 2 × 10-4

p-value p-value
Change in MD

× 10-6mm2/s

Change in FA

× 10-3

Table 3.2.2
Demographic characteristics and global change in white matter microstructure, corrected 
for scan interval and computed alongside the population mean change of -0.0042 in FA and  
8.1×10-6mm2/s in MD

Significant result (at Bonferroni corrected threshold of 0.0015) is shown in bold instead of italic.
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Figures 3.2.2 and 3.2.3 show how changes in FA (Figure 3.2.2) and MD (Figure 3.2.3) 
depended on various parameters included in models 1 and 2. For the (minimal) mod-
el 1, we observed an association between age and FA (decrease) and MD (increase). 
This association was reduced both in strength and in extent, when additionally add-
ing measures of macrostructural white matter changes (atrophy and WML load) in 
the model. The figures also show associations between white matter atrophy and 
WML load, and change in FA and MD in model 2. No difference in change in diffu-
sion characteristics was observed for men and women. 

Investigating cardiovascular risk factors in relation to longitudinal DTI changes, we 
only found associations for APOE ε4 carriership. Specifically, ε4 carriers showed 
localized decrease in FA to a lesser degree when compared to non-carriers, but no 
changes globally. These local differences were more prominent in the right than 
in the left hemisphere and primarily in the centrum semiovale and in the white 
matter adjacent to the trigone of the lateral ventricle. In contrast, we observed 
lower MD only in a small peritrigonal cluster in carriers compared to non-carriers. 
These observed associations became statistically non-significant when additionally 
correcting for macrostructural measures of white matter degeneration. Similarly, 
we observed that global increase in MD to a lesser degree associated with APOE 
ε4 carriership (Table 3.2.3), but this association became non-significant when cor-
recting for multiple comparisons. Other cardiovascular risk factors were associated 
with neither global nor local changes in tissue microstructure. Results on global DTI 
characteristics are represented in Table 3.2.3. 

Systolic blood pressure -0.46 0.09 0.33 0.29

Diastolic blood pressure -0.01 0.98 0.10 0.76

Diabetes mellitus 0.08 0.77 0.46 0.13

Smoking (never – current) -0.15 0.86 0.22 0.83

Total serum cholesterol -0.42 0.15 -0.09 0.78

Serum HDL cholesterol 0.31 0.28 -0.23 0.49

APOE ε4 carriership 1.12 0.07 -1.51 0.04

p-value p-value
change in MD

× 10-6mm2/s

change in FA

× 10-3

Table 3.2.3
Cardiovascular risk factors and global change in white matter microstructure computed with 
respect to the population mean change of -0.0042 in FA and 8.1×10-6mm2/s in MD

Values represent change in diffusion measure, per SD of change for continuous variables, or 
absolute for categorical variables. All associations shown are not significant (at Bonferroni cor-
rected threshold of 0.0015).
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Discussion

In this large, population based longitudinal sample of elderly persons, we found re-
duced microstructural tissue organization over a two-year follow-up interval. Loss 
of microstructure was globally reflected in decreases in FA and increases in MD, in-
dependent of severity of white matter atrophy and WML load. 

Strengths of this study are the large sample size of elderly participants, the popula-
tion based setting, and the longitudinal design. Additionally, all longitudinal imag-
ing data were acquired using the same protocol and on the same MRI scanner which 
did not receive a major hardware or software update in the study period. Also, we 
restricted our analyses to the normal-appearing white matter, ignoring identifiable 
pathologies in the form of WML. Finally, we corrected for macroscopic imaging 
measures of white matter disease to identify deterioration of white matter micro-
structure not explained by WML load and white matter atrophy.

Limitations of our study are the relatively short follow-up interval, which may limit 
sensitivity to detect differences over time. Another limitation of our study is that 
the study protocol was defined in 2005-2006 and therefore the spatial resolution 
for the diffusion acquisition was relatively poor for current day standards.17 We 
did nevertheless identify widespread deterioration of white matter microstructure 
within the studied time interval. 

On a voxelwise level, we found regional differences in white matter degeneration, 
with a decreased FA in most of the brain, but on the contrary an increased FA in 
most of the sensorimotor pathway, running from the brainstem up to the motor 
cortex. In contrast, MD was found to increase throughout the white matter skel-
eton, without any significant decreases. The seemingly paradoxical increase of FA 
in the sensorimotor pathway may relate to partial voluming of multiple, crossing 
fiber tracts within certain voxels. Selective degeneration of one crossing fiber bundle 
and at the same time relative sparing of another bundle may lead to relative increase 
in FA (directionality of diffusion) in the voxel, with concomitant increase in MD 
(mean diffusivity). This effect was previously observed in a study on Wallerian de-
generation,34 and described in detail in a cross-sectional study on Alzheimer’s dis-
ease.35 This effect would attenuate changes in global FA measurements, making MD 
more sensitive to detect global changes than FA,36 which is in agreement with our 
observations. Because in selective degeneration, FA change can occur in both direc-
tions, MD may also be more sensitive to detect changes locally. This again is in line 
with our observations.
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We found the most distinct increase in MD over time in the fornix. This may reflect 
loss of microstructural organization in this limbic fiber, but we should note that this 
tract is rather small and close to CSF, so we cannot rule out partial volume effects 
with CSF in this tract.37 

We found that white matter deterioration was locally more pronounced with high-
er age, indicating that older persons show more white matter degeneration over 
the same follow-up time than younger persons. This could partly be explained by 

Figure 3.2.2. Age and macrostructural white matter changes at baseline and change in frac-
tional anisotropy (FA) over two-years of follow-up. The top row shows in yellow-to-red re-
gions of decrease in FA that relate to higher age at baseline (adjusted for sex, scan interval and 
intracranial volume (ICV)). The second and third row show FA changes that are associated 
with respectively a decrease in normal-appearing white matter (NAWM) volume and an in-
crease in white matter lesion (WML) volume (both adjusted for age, sex, scan interval, ICV). 
The final row shows regions of decrease in FA related to higher age, when additionally adjusted 
for NAWM volume and WML volume. Inverse directions of association showed no significant 
voxels (not shown). The family wise error rate was controlled using a permutation approach. 
Results are overlaid on a population specific average-FA image in MNI coordinates, showing 
non-significant (ns) NAWM skeleton voxels in black.
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macroscopic measures of white matter degeneration, i.e. white matter atrophy and 
WML load, which also increase with age. In a cross-sectional analysis of an earlier 
time point for the same population we found a similar effect with age itself, i.e. most 
of the associations with age were driven by macroscopic measures of white matter 
degeneration.1 Both results indicate that white matter degeneration with aging is not 
intrinsically due to aging alone or driven by macroscopic measures of white matter 
degeneration. In that respect it is also interesting that we did not identify associa-
tions between known (cardiovascular) determinants of white matter atrophy and 

Figure 3.2.3. Age and macrostructural white matter changes at baseline and change in mean 
diffusivity (MD) over two-years of follow-up. The top row shows in blue regions of increase in 
MD that relate to higher age at baseline (adjusted for sex, scan interval and intracranial vol-
ume (ICV)). The second and third row show MD changes that are associated with respectively a 
decrease in normal-appearing white matter (NAWM) volume and an increase in white matter 
lesion (WML) volume (both adjusted for age, sex, scan interval, ICV). The final row shows re-
gions of decrease in MD related to higher age, when additionally adjusted for NAWM volume 
and WML volume. Inverse directions of association showed no significant voxels (not shown). 
The family wise error rate was controlled using a permutation approach. Results are overlaid 
on a population specific average-FA image in MNI coordinates, showing non-significant (ns) 
NAWM skeleton voxels in black. 
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WML load and changes in diffusion characteristics over time, neither globally nor 
locally. Perhaps this suggests additional (unmeasured, e.g. genetic) determinants for 
change in diffusion characteristics.

We did not observe a significant association between global DTI changes and 
APOE ε4 carriership. Locally, we observed in APOE ε4 carriers counter-intuitive re-
duced decreases in FA comparison to non-carriers, in regions with a high prevalence 
of WML. These became non-significant when additionally correcting for WML and 
white matter atrophy. While non-significant, these observations are in contrast to 
cross-sectional studies with APOE genotype which have generally shown wide-
spread deterioration of white matter microstructure associated with the ε4 allele.38,39 
When investigating other cardiovascular risk factors, we observed no associations 
with either global or local degeneration, which is in line with another longitudinal 
study 2 but in disagreement to cross-sectional observations.3,40,41 These discrepan-
cies, both for APOE and cardiovascular factors, might be due to the relatively short 
follow-up time, lacking power in the (clustered) voxelwise and global statistics. 
Another possibility is that changes induced by cardiovascular risk factors may be 
more prominent in the periphery of WM tracts, whereas the TBSS method we used 
focused on tract centers. Most importantly however, our longitudinal design only 
probes differential effects, and not the difference accumulated over the total expo-
sure time. For accumulated exposure, this leads to reduced statistical power com-
pared to a cross sectional design. 

Cross-sectional studies of normal aging of white matter have shown lower FA and 
higher MD with higher age,5,11,13 which is in line with our results. The anterior-pos-
terior gradient in white matter degeneration, often described in cross-sectional 
studies, hypothesizes regional differences in degeneration with more rapid white 
matter deterioration in the later myelinating anterior regions compared to posterior 
regions.42–44 In a previous longitudinal analysis, this gradient has not been identi-
fied,2 and neither did our results show a clear gradient (age panels in Figures 3.2.2 
and 3.2.3). In a cross-sectional study design, a causal effect of the observed associa-
tion, and whether differences observed actually reflect change over time, can only 
be assumed. In contrast, longitudinal aging studies directly measure change over 
time, and are therefore less influenced by confounding effects of e.g. diet, education 
and lifestyle on brain microstructure measures correlated with age. Longitudinal 
studies are therefore closer to establishing causality than cross sectional studies. On 
the other hand, longitudinal imaging studies require consistency of the image ac-
quisition pipeline, which is not trivial as most scanners in clinical settings receive 
regular updates. Combined with the additional time inherently required to collect 
longitudinal data, this might explain why so few longitudinal (DTI) studies have 
been performed. 
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In conclusion, in this large longitudinal analysis of brain white matter microstruc-
ture with normal aging, we found altered diffusion characteristics widespread in 
white matter consistent with loss of tissue microstructure. We found changes to be 
more prominent in older persons, which was partly explained by concomitant mac-
roscopic white matter pathology. Cardiovascular risk factors did not relate to white 
matter degeneration. These insights into white matter degeneration in aging may 
help in understanding the pathophysiology of neurodegenerative diseases.
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The importance of macrostructural white matter changes, including 
white matter lesions and atrophy, in intact brain functioning is in-
creasingly being recognized. Diffusion tensor imaging (DTI) enables 
measurement of the microstructural integrity of white matter. Loss 
of white matter integrity in aging has been reported, but whether 
this is inherent to the aging process itself or results from specific white 
matter pathology is unknown. In 832 persons aged 60 years and older 
from the population-based Rotterdam Study, we measured fraction-
al anisotropy (FA) and directional diffusivities in normal-appearing 
white matter using DTI. All subjects’ DTI measures were projected 
onto a common white matter skeleton to enable robust voxelwise 
comparison. With increasing age, multiple regions showed signifi-
cant decreases in FA or increases in axial or radial diffusivity in nor-
mal-appearing white matter. However, nearly all of these regional 
changes were explained by either white matter atrophy or by white 
matter lesions; each of which related to changes in distinct brain re-
gions. These results indicate that loss of white matter integrity in ag-
ing is primarily explained by atrophy and lesion formation and not 
by the aging process itself. Furthermore, white matter atrophy and 
white matter lesion formation relate to loss of integrity in distinct 
brain regions, indicating the two processes are pathophysiologically 
different.

Introduction

Intact white matter connections in the brain are important for the processing 
and integration of information generated by neural networks. Loss of integrity 
of these white matter pathways is thought to cause loss of “connectivity” and 

subsequent age-related cognitive decline.1 There are two distinct macroscopic pro-
cesses affecting the white matter that are commonly seen in aging and which are 
readily recognized in both radiologic and pathologic examinations. Firstly, atro-
phy of white matter dominates brain tissue loss in aging, rather than does loss of 
grey matter neurons.2 Secondly, over 90% of elderly persons demonstrate on brain 
magnetic resonance imaging (MRI) so-called ‘white matter lesions’,3 which patho-
logically represent signs of ischemic injury.4 Although white matter atrophy and 
white matter lesion formation often coincide and have shared determinants,5 it is 
still not understood whether these are part of the same pathophysiologic spectrum 
or whether these are independent processes. Furthermore, it is unknown whether 
and how these two macroscopic processes are related to loss of microstructural in-
tegrity of normal-appearing white matter. Diffusion tensor imaging (DTI)6 enables 
non-invasive quantification of the microstructural integrity of white matter using 
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MRI.7 DTI measures the amount and directional dependence of microscopic diffu-
sion of water molecules in the brain. In white matter, diffusion is hindered by the 
high degree of structural organization, resulting in anisotropic movement of wa-
ter molecules predominantly parallel to the orientation of the fiber tracts. A lower 
fractional anisotropy (FA) as measured by DTI signifies less anisotropic diffusion 
and thus lower microstructural integrity.6 Furthermore, from animal studies, it has 
been suggested that analysis of directional diffusivities – axial diffusivity (AxD) 
and radial diffusivity (RD)– may provide additional information on the underlying 
mechanisms of loss of white matter integrity. Myelin breakdown has been associat-
ed with increased diffusivity perpendicular to the white matter tract (RD), whilst 
axonal damage is reflected in diffusivity changes parallel (AxD) to the primary fiber 
orientation.8–10

So far, FA in white matter has been shown to decrease with age,11 but it is unknown 
to what extent this represents concurrent macroscopic changes in white matter, or 
whether aging itself causes white matter microstructural changes. Furthermore, 
analysis of regional patterns in FA changes has so far been limited to manually 
placed regions-of-interest11 or to voxelwise measurement methods, both of which 
are prone to methodological constraints hindering interpretation and analysis of 
FA data.12,13 Tract-based spatial statistics (TBSS) is a new technique for aligning FA 
images from multiple subjects and constructing a common skeleton of the white 
matter tracts, enabling robust voxelwise analysis of the microstructural integrity 
of white matter across subjects.13 Using TBSS, we investigated in 832 persons aged 
60 years and older from the general population whether white matter atrophy and 
white matter lesions relate to integrity of normal-appearing white matter indepen-
dent from aging, and if so, in which brain regions these associations are strongest.

Materials and methods

Participants

This study is embedded within the Rotterdam Study, a large population-based co-
hort study in The Netherlands that started in 1990–1993 and is aimed at investigating 
determinants of various chronic diseases among elderly participants.14 The original 
study population consisted of 7,983 participants aged 55 years and older within the 
Ommoord area, a suburb of Rotterdam. In 2000, the cohort was expanded with 3011 
persons (≥55 years) who were living in the study area and had not been included 
before.14 From August 2005 to May 2006, we randomly selected 1,073 members of 
this cohort expansion for the current MRI study, the Rotterdam Scan Study. We 
excluded individuals who were demented or had MRI contraindications (including 
claustrophobia). The institutional review board approved the study. A total of 975 
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persons were eligible, of whom 907 participated and gave written informed con-
sent (response 93%). Due to physical inabilities (e.g. back pain), imaging could not 
be performed or completed in 12 individuals. A total of 895 MRI examinations were 
performed. Image quality was substandard due to motion artifacts or DTI artifacts 
in 63 scans, leaving a total of 832 scans in this analysis.

Image acquisition

We performed a multi-sequence MRI protocol on a 1.5 tesla MRI scanner (Gen-
eral Electric Healthcare, Milwaukee, WI, USA). For DTI, we performed a single 
shot, diffusion-weighted spin echo echo-planar imaging sequence (repetition 
time (TR)=8,000 ms, echo time (TE)= 68.7 ms, field-of-view (FOV)= 21 cm2, ma-
trix = 96 × 64 (interpolated to 256 × 256) slice thickness=3.5 mm, 36 contiguous 
slices, applying parallel imaging (array spatial sensitivity encoding technique) with 
acceleration factor = 2). Maximum b-value was 1000 s/mm2 in 25 non-collinear di-
rections (number of excitations (NEX)= 1), and one volume was acquired without 
diffusion weighting (b-value = 0 s/mm2). Acquisition time was 3:44 min. We fur-
ther performed three high-resolution axial MRI sequences, i.e. a T1-weighted 3D 
Fast RF Spoiled Gradient Recalled Acquisition in Steady State with an inversion re-

Figure 4.1.1. Identification of 
voxels on the white matter skel-
eton originating in white matter 
lesions. Axial mean fractional 
anisotropy image with overpro-
jection of the white matter skele-
ton (in red). Voxels that were seg-
mented as white matter lesions 
in a single individual on struc-
tural MR images are depicted in 
brown. In green, the voxels on the 
white matter skeleton that origi-
nate in a white matter lesion are 
shown. These green voxels were 
then removed from the individu-
al’s skeleton in order to obtain a 
skeleton of the normal-appearing 
white matter.
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Figure 4.1.2. Effects of age, global white matter atrophy and white matter lesions on fractional 
anisotropy values of normal-appearing white matter. Images are shown in the Montreal Neu-
rological Institute (MNI) stereotactic space, with MNI coordinates for axial levels (z) depicted 
for each column. The white matter skeleton (black) is projected onto the axial MR images. Yel-
low-to-red colors represent normal-appearing white matter regions with reduced fractional 
anisotropy (FA) in relation to (a) increasing age, adjusted for sex only, (b) global white matter 
atrophy, adjusted for age, sex and white matter lesions, (c) white matter lesions, adjusted for 
age, sex and white matter atrophy and (d) increasing age, adjusted for sex, white matter atro-
phy and white matter lesions. With increasing age, multiple regions show significant decreases 
in FA (a). However, after adjustment for white matter atrophy and white matter lesions, only 
few regions remain (d). Global white matter atrophy (b) relates to decreases in FA in the hippo-
campal region (z82), fornix (z90), corpus callosum (z90 to z108) and along the cingulate bun-
dle (z119). In contrast, white matter lesion burden (c) is associated with reduced periventricular 
FA (z82 to z108).
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covery pre-pulse (FASTSPGR-IR) sequence (TR = 13.8 ms, TE = 2.8 ms, inversion 
time (TI) = 400 ms, FOV = 25  m2, matrix = 416 × 256 (interpolated to 512 × 512), 
flip angle=20°, NEX=1, bandwidth (BW)= 12.50 kHz, 96 slices with slice thickness 
1.6 mm zero-padded in the frequency domain to 0.8 mm), a proton density (PD) 
weighted sequence (TR=12,300 ms, TE=17.3 ms, FOV=25 cm2, matrix=416 × 256, 
NEX=1, BW=17.86 kHz, 90 slices with slice thickness 1.6 mm), and a fluid-attenuat-
ed inversion recovery (FLAIR) sequence (TR = 8,000 ms, TE=120 ms, TI=2,000 ms, 
FOV=25 cm2, matrix=320 × 224, NEX=1, BW=31.25 kHz, 64 slices with slice thick-
ness 2.5 mm). All slices were contiguous.

Normal-appearing white matter and white matter lesion segmentation

For the assessment of volumes of normal-appearing white matter and white mat-
ter lesions, the structural MRI scans (T1-weighted, PD-weighted, FLAIR) were 
transferred offline to a Linux workstation. Preprocessing steps and the classification 
algorithm have been described elsewhere.15 In summary, preprocessing included 
co-registration, non-uniformity correction and variance scaling. We used a k-near-
est neighbour classifier based on multi-spectral MRI intensities to label voxels into 
cerebrospinal fluid, grey matter, normal-appearing white matter and white matter 
lesions.16 The feature space for the automated classification was created from man-
ually segmented datasets, as described elsewhere.5,15 In a postprocessing step, nor-
mal-appearing white matter was dilated with one voxel to assess overlap between 
voxels classified as white matter and those labelled as white matter lesion in order 
to remove voxels that were incorrectly classified as white matter lesion (e.g. in cor-
tical grey matter). All segmentation results were visually inspected and, if needed, 
manually corrected. To remove non-cerebral tissue, e.g. eyes, skull, and cerebellum, 
we applied non-rigid registration17 to register to each brain a template scan in which 
these tissues were manually masked. Global normal-appearing white matter and 
white matter lesion volumes were calculated by summing all voxels of the corre-
sponding tissue class across the whole brain, to yield volumes in ml. To normalize 
for head size, these tissue volumes were expressed as percentage of total intracranial 
volume (which is the summation of all tissue classes, i.e. cerebrospinal fluid, grey 
matter, normal-appearing white matter and white matter lesions). As normal-ap-
pearing white matter volume was highly correlated with total white matter volume 
(i.e. the sum of normal-appearing white matter and white matter lesions) (Pearson’s 
r = 0.991), we used relative normal-appearing white matter volume as a measure of 
white matter atrophy.

Global normal-appearing white matter volume was further subdivided into lobar 
volumes (frontal, occipital, parietal, temporal lobes and deep region) using a pre-
viously described protocol,18 in which a template brain with labels for the various 
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lobes was non-rigidly registered to all scans. Lobar white matter atrophy was de-
fined as normal-appearing white matter volume in the specific region relative to the 
total lobe volume (the summation of all tissue classes in the specific lobe).

Processing of raw DTI data

Processing of DTI data was performed with FSL19 (http://www.fmrib.ox.ac.uk/fsl).  
Eddy current and head-motion correction were performed by means of an affine 
registration to the reference (b0) volume. The corrected data was skull-stripped by 
applying FSL’s Brain Extraction Tool (BET) on both the b0 and the diffusion-weight-
ed images.20 Next, a tensor model was fitted to the diffusion data using FMRIB’s 
Diffusion Toolbox (FDT) 19 to yield FA and both axial (λ1) and radial [(λ2+λ3)/2] dif-
fusivities.

Tract-based spatial statistics processing

Voxelwise statistical analysis of the DTI data was carried out using Tract-Based 
Spatial Statistics (TBSS 1.1),13 part of FSL.19 As the mean age of our study population 
differed greatly from the FMRIB cohort from which the TBSS template brain was 
derived,13 we used the anatomically most representative subject from our dataset as 
study specific template brain. For computational reasons, a two-stage hierarchical 
search strategy was used to find this target. All 832 FA images were randomly split 
into 26 subgroups of 32 subjects each. Cross-wise nonlinear registration using the 
Image Registration Toolkit (IRTK)17 was performed on the Erasmus Computing Grid 
(Rotterdam, The Netherlands). The 26 candidate targets from each subset identified 
by the lowest summed transformation cost were subsequently cross-wise registered 
to identify the subject closest to the group mean anatomy. In accordance with the 
standard TBSS pipeline, the remaining 831 subjects were then transformed to this 
study specific template subject in a stereotactic coordinate system (MNI space) us-
ing the ICBM152 template.21 Subsequently, all FA images were averaged to produce 
a group mean FA image. Next, the mean FA image was thinned to create a mean 
FA skeleton, which represents the centres of all white matter tracts common to the 
group. This skeleton was thresholded at an FA value of 0.20,13 to include the major 
white matter pathways but exclude pathways with large inter-subject variability. 
Each subject’s aligned FA data was then projected onto this skeleton by searching 
perpendicular to the skeleton to find local maxima in FA. This step locally corrects 
for residual misalignment and lines up the centres of individual tracts. Next, values 
of AxD and RD were mapped onto the skeleton by using the projection vectors from 
each individual’s FA-to-skeleton transformation.13 Voxelwise analysis of FA and di-
rectional diffusivity data across the group of subjects was performed only on the 
data projected onto the skeleton template.
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Figure 4.1.3. Aging and reduced fractional 
anisotropy in inferior longitudinal fascicu-
lus. Coronal, sagittal and axial projections of 
mean fractional anisotropy (FA) MRI image 
on which the white matter skeleton (black) is 
projected. MNI coordinates are depicted for 
each projection. Yellow-to-red colors repre-
sent normal-appearing white matter regions 
with reduced FA in relation to increasing age. 
When adjusted for global white matter at-
rophy and white matter lesion volume, only 
very few regions in the normal-appearing 
white matter show reduced FA with age, 
most notably a small region bilateral in the 
inferior longitudinal fasciculus.

Figure 4.1.4. Global white matter atrophy 
and reduced fractional anisotropy in cingu-
late bundle. Coronal, sagittal and axial pro-
jections of mean fractional anisotropy (FA) 
MRI image on which the white matter skele-
ton (black) is projected. MNI coordinates are 
depicted for each projection. Yellow-to-red 
colors represent normal-appearing white 
matter regions with reduced FA in relation 
to white matter atrophy. Arrows indicate 
the cingulate bundle on both sides.
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Figure 4.1.5. Global white matter atrophy 
and reduced fractional anisotropy in hippo-
campal region. Coronal and axial projection 
of mean fractional anisotropy (FA) MRI 
image on which the white matter skeleton 
(black) is projected. MNI coordinates are 
depicted for both projections. Yellow-to-red 
colors represent normal-appearing white 
matter regions with reduced FA in relation 
to white matter atrophy. Arrows indicate 
the hippocampal region on both sides.
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Figure 4.1.6. White matter lesions and re-
duced fractional anisotropy in periventric-
ular regions. Coronal, sagittal and axial pro-
jections of mean fractional anisotropy (FA) 
MRI image on which the white matter skele-
ton (black) is projected. MNI coordinates are 
depicted for each projection. Normal-appea- 
ring white matter with reduced FA in rela-
tion to white matter lesions is visible in poste-
rior periventricular regions (yellow-to-red 
 colors).
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Figure 4.1.7. Global white matter atro-
phy and increased directional diffusivi-
ty. Axial projections of mean fractional 
anisotropy (FA) MRI images on which 
the white matter skeleton (black) is pro-
jected. Columns show regions where 
global white matter atrophy is associat-
ed with decreases in FA or increases in 
axial (AxD) and radial (RD) diffusiv-
ity, respectively. Rows depict the same 
axial levels as Figure 4.1.2, in MNI co-
ordinates (z). The first (z = 82) and sec-
ond (z = 90) rows show decreases in FA 
in the hippocampal region and fornix 
associated with white matter atrophy, 
accompanied by increases of both AxD 
and RD (yellow-to-red colors) in these 
regions. The third (z=101) and fourth 
row (z=108) show that reductions of FA 
in the corpus callosum and cingulate 
bundle are almost fully explained by 
increases in RD in these regions, with-
out accompanying changes in AxD. In 
contrast, AxD is increased in posterior 
periventricular regions (z=108), with-
out a marked change in RD.
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Removal of white matter lesions

White matter lesion maps (automatically classified as described above) were resam-
pled to the DTI image space and fed into the pipeline for non-FA data provided by 
TBSS.13 By applying the FA-to-skeleton transformation on this lesion map, as was 
also done for the directional diffusivities, we created a lesion mask in skeleton space. 
This mask was used to identify voxels on the skeletons that originated in lesions 
(Figure 4.1.1). These voxels were then removed from the skeleton to obtain in each 
individual a skeleton of the normal-appearing white matter.

Voxelwise statistical analysis

Skeletonized FA images created by TBSS were analyzed using a generalized linear 
model implementation in Matlab’s Statistical Toolbox (Version 6.1, Release 2007b, 
The MathWorks, Natick, MA, USA). In a voxelwise manner, a multiple linear re-
gression model was fitted to identify those voxels on the white matter skeleton that 
showed significant decrease in FA associated with age, relative global normal-ap-
pearing white matter volume and relative white matter lesion volume. Because of 
skewness of the untransformed measure, relative white matter lesion volume was 
natural log-transformed. All analyses were adjusted for sex and furthermore, if ap-
propriate, for each of the other variables in the model (age and relative volumes of 
global normal-appearing white matter and white matter lesions). We subsequent-
ly analyzed the relation between lobar white matter volumes and FA, for each lobe 
separately, adjusted for age, sex and white matter lesion volume. Finally, we investi-
gated changes in AxD and RD associated with age, relative global normal-appearing 
white matter volume and relative white matter lesion volume. For all analyses, the 
null distributions of the t-values were estimated using a permutation-based method 
(10,000 permutations), in order to correct for multiple comparisons.22 As a result, 
the displayed figures show t-statistics for each association thresholded at a multi-
ple-comparison corrected p-value of 0.05. The skeletonized results were then thick-
ened for better visibility.13 Significant results are shown in red-to-yellow colorings 
of voxels on the skeleton, with yellow representing higher t-values and color inten-
sities standardized between all figures.

Results

Mean age of the study population (n = 832) was 67.3 years and 419 (50.4%) partic-
ipants were women. Mean volume percentage of global normal-appearing white 
matter was 34.4% (SD 3.7). Median volume percentage of white matter lesions was 
0.3% (interquartile range 0.2–0.5%). A significant decrease in FA was seen in multi-
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ple regions on the white matter skeleton with increasing age (Figure 4.1.2 A), reflect-
ing a loss of microstructural integrity of normal-appearing white matter. However, 
nearly all of these regional decreases in FA were explained by either white matter 
atrophy (Figure 4.1.2 B) or by white matter lesions (Figure 4.1.2 C). When adjust-
ed for both white matter atrophy and white matter lesions, only few regions in the 
normal-appearing white matter still displayed changes with age (Figure 4.1.2 D), 
most notably a small region bilateral in the inferior longitudinal fasciculus (Fig-
ure 4.1.3). The white matter regions that showed FA changes associated with either 
white matter atrophy or white matter lesions differed clearly. White matter atrophy 
was related to loss of microstructural integrity in the body of the corpus callosum, 
the fornix and in the cingulate bundle along its complete course from anterior up to 
its posterior connection to the hippocampal region (Figures 4.1.2 B, 4.1.4 and 4.1.5). 
In contrast, a larger relative volume of white matter lesions caused FA decreases in 
periventricular regions (Figures 4.1.2 C and 4.1.6). We did not find any increases in 
FA with age, white matter atrophy or white matter lesions.

When analyzing lobar white matter atrophy, we found that for each lobe, white 
matter atrophy in that region was associated with a similar pattern in FA decreases 
compared with global white matter atrophy (Figure 4.1.9). Also, there were no dif-
ferences between left or right lobes in this respect (results not shown).

Similarly to FA changes, we found that changes in AxD and RD that occurred with 
increasing age were almost fully explained by white matter atrophy or by white 
matter lesions, apart from the region bilateral in the inferior longitudinal fasciculus. 
Also corresponding to FA changes, we found regional differences in AxD and RD 
between atrophy and lesions. White matter atrophy was associated with increases 
in both AxD and RD in fornix and hippocampal regions, the same regions where 
FA showed decreases with atrophy (Figure 4.1.7). AxD was increased in posterior 
periventricular regions with atrophy, without accompanying change in RD (Figure 
4.1.7). In contrast, significant increases in RD almost fully explained the previously 
described FA decreases in the corpus callosum and cingulate bundle (Figure 4.1.7).

Regarding white matter lesions, we found with increasing lesion load significant in-
creases in AxD lateral from the ventricles extending to the centrum semiovale and 
corona radiata, without an associated increase in RD (Figure 4.1.8) or change in FA. 
In contrast, RD was mainly increased in posterior periventricular regions with in-
creasing white matter lesion load (Figure 4.1.8). We did not find any decreases in 
AxD or RD with age, white matter atrophy or white matter lesions.
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Discussion

Using DTI, we found that independent of age, both white matter atrophy and white 
matter lesion burden are related to loss of integrity in multiple yet distinct regions of 
normal-appearing white matter.

Strengths of our study are the large sample of persons from a general elderly popula-
tion in whom both structural MRI and DTI were performed, and our automated and 
validated techniques for quantification of white matter atrophy and white matter 
lesion volume. The voxelwise analysis technique we used, TBSS,13 is an automated 
observer-independent method which has been shown to be more robust and accu-

FA AxD RD

z85

z101

z111

L

Figure 4.1.8. White 
matter lesions and in-
creased directional 
diffusivity. Axial pro-
jections of mean frac-
tional anisotropy (FA) 
MRI images on which 
the white matter skele-
ton (black) is projected. 
Columns show regions 
where relative white 
matter lesion volume 
is associated with de-
creases in FA or increas-
es in axial (AxD) and 
radial (RD) diffusivity, 
respectively. Rows de-
pict axial levels in MNI 
coordinates (z). The 
first (z = 85) and second 
(z = 101) rows show in 
the anterior periven-
tricular regions and bi-
lateral in the extreme 
capsule increases in 

both AxD and RD (yellow-to-red colors) associated with white matter lesions, but no change in 
FA. The second (z = 101) and third row (z = 111) show increases in AxD lateral from the ventricles 
extending to the centrum semiovale and corona radiata, without accompanying increases of 
RD in these regions. In contrast, RD shows marked increases in posterior periventricular re-
gions.
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 Figure 3.1.9. Lobar white matter atrophy and reductions in fractional anisotropy. Axial pro-
jections of mean fractional anisotropy (FA) MRI images on which the white matter skeleton 
(black) is projected. Images are shown in the Montreal Neurological Institute (MNI) stereotac-
tic space, with MNI coordinates for axial levels (z) depicted for each column. Axial levels cor-
respond to the levels depicted in Figure 4.1.2. Yellow-to-red colors represent normal-appearing 
white matter regions with reduced fractional anisotropy (FA) in relation to lobar white matter 
atrophy (represented in rows; respectively frontal, occipital, parietal and temporal lobes and 
the deep region), adjusted for age, sex and relative white matter lesion volume. The regions that 
show significant reductions in FA associated with lobar white matter atrophy do not differ be-
tween the lobes and are furthermore similar to the regions that show FA reductions with global 
white matter atrophy (see Figure 4.1.2).
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rate than other voxelwise analysis techniques (such as statistical-parametrical map-
ping) which are prone to residual misalignment and in which the amount of spatial 
smoothing greatly affects the results.23

Our results have several major implications for the understanding of white mat-
ter changes in the aging brain. Firstly, they confirm that FA, and thus microstruc-
tural integrity, is reduced even in normal-appearing white matter, although no 
macroscopic alterations are visible on conventional MRI. Age-related changes in 
normal-appearing white matter microstructure have previously been described 
by studies measuring FA in manually placed regions-of-interest.24–26 Also, in small 
case-control studies, FA reductions in normal-appearing white matter were found 
to be more pronounced in persons with signs of ischemic brain disease7,27,28 and in 
persons with Alzheimer’s Disease or mild cognitive impairment29,30 in comparison 
with healthy controls. We now demonstrate in a large sample of the general popu-
lation the predilection areas of age-related changes in the normal-appearing white 
matter, and we show that these changes are associated with both ischemic white 
matter lesions and with white matter atrophy.

Secondly, our data show that aging related loss of microstructural integrity of white 
matter is primarily explained by white matter atrophy and white matter lesion for-
mation. White matter breakdown in aging and associated loss of “connectivity” is 
thought to be a major factor in cognitive decline.31 Our results may therefore provide 
a better understanding of the pathophysiologic processes underlying cognitive de-
terioration in aging.

Thirdly, our results indicate that white matter atrophy and white matter lesion for-
mation, which are very common in the aging brain, are related to FA reductions 
and increases in directional diffusivities in distinct brain regions. The regions that 
showed loss of microstructural integrity associated with white matter atrophy, 
namely the fornix, cingulate bundle and hippocampal region, are those that are 
part of the limbic system which is the anatomic substrate for memory, emotion and 
learning, and which since long has been related to development of cognitive decline 
and Alzheimer disease.32 The normal-appearing white matter regions that showed 
reduced FA in relation to a larger burden of white matter lesions, the periventricular 
regions, are specifically known to be vulnerable to ischemic events.33 Furthermore, 
we found that the regions where changes in AxD and RD occurred differed for white 
matter atrophy and white matter lesions, but also that increases in AxD and RD did 
not always overlap. Several animal studies have shown that the nature of the under-
lying white matter pathology may be reflected in changes in AxD and RD. Myelin 
degradation has been shown to primarily lead to increases in diffusivity perpen-
dicular to the tracts (RD), whilst acute axonal injury in animal models led to (tran-
sient) decreases in parallel diffusivity (AxD).8,10 In the present study, we did not find 
any decreases in diffusivity, but rather increases in AxD and RD, in line with other 
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reports in humans that studied aging34–36 or trauma37 or even preterm infants with 
diffuse white matter changes.38 It has been suggested that increases in both AxD 
and RD reflect decreased packing within a voxel36 or that apparent increases in AxD 
result from loss of fiber coherence in regions with fiber crossing.38 

In summary, the regional distinction in loss of integrity of the normal-appearing 
white matter in relation to atrophy or white matter lesion formation indicates that 
the two processes are not sequential events but are rather independent and thus 
pathophysiologically potentially different. As such, our study provides new insight 
into white matter changes in aging and a starting point for further research into pre-
ventive measures.
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4.2 
Cerebral microbleeds are related to loss of 

white matter structural integrity
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Objective – To investigate whether the presence of cerebral mi-
crobleeds, which present as focal lesions on imaging, is associated 
with a diffuse loss of white matter microstructural integrity in the 
brain.

Methods – In the prospective, population-based Rotterdam Scan 
Study, a total of 4,493 participants underwent brain MRI to deter-
mine microbleed status. With diffusion tensor imaging, global frac-
tional anisotropy (FA) and mean diffusivity (MD) were measured in 
normal-appearing white matter. Multiple linear regression models, 
adjusted for age, sex, cardiovascular risk factors, white matter le-
sions, and infarcts, were applied to investigate the independent asso-
ciation between microbleeds and organization of brain white matter. 
Analyses were repeated after stratification by APOE ε4 carriership.

Results – Presence of microbleeds was related to a lower mean FA 
and higher mean MD, in a dose-dependent manner, and was already 
apparent for a single microbleed (standardized FA: 20.13, 95% confi-
dence interval 20.21 to 20.05; MD: 0.12, 95% confidence interval 0.05 
to 0.19). For lobar microbleeds, alterations in diffusion tensor imag-
ing measurements were solely driven by APOE ε4 carriers.

Conclusions – Presence of microbleeds relates to poorer microstruc-
tural integrity of brain white matter, even after adjusting for cardio-
vascular risk and other markers of cerebral small-vessel disease. Our 
data suggest that microbleeds reflect diffuse brain pathology, even 
when only a single microbleed is present.

Objective

As the elderly population is growing, cerebral small-vessel disease (CSVD) 
and its phenotypes are expected to put a larger psychosocial and economic 
burden on society.1 CSVD is, despite its diffuse character, typically recog-

nized by focal lesions such as white matter lesions (WMLs) and lacunes on conven-
tional MRI.

Recent advances in noninvasive brain imaging techniques have expanded the pos-
sibilities to study brain changes that cannot be visually appreciated on conventional 
MRI. Diffusion tensor imaging (DTI) is an MRI technique that allows for quantifi-
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cation of subtle pathology in the architecture of brain white matter.2 Indeed, with 
DTI, it has been shown that people with WMLs or lacunes on brain MRI have dif-
fuse loss of white matter integrity not seen on conventional MRI.3

In the past decade, cerebral microbleeds (CMBs) have emerged as a novel marker 
of CSVD. CMBs also appear as well-demarcated focal lesions on MRI.4–6 It may be 
hypothesized that these microbleeds, like WMLs and lacunes, mark more wide-
spread brain damage. Although there is some pathologic evidence linking CMBs to 
surrounding white matter damage,7–10 large in vivo studies on this topic are lacking. 
DTI can provide us with new insights regarding global white matter structural de-
terioration in the presence of these focal microbleeds.

We investigated whether the presence of microbleeds is related to diffuse loss of 
microstructural integrity of brain white matter in a large sample of middle-aged and 
elderly people from the general population.

Methods

Participants 

This study was conducted within the Rotterdam Scan Study, an ongoing pro-
spective population-based imaging study designed to investigate preclinical brain 
changes in the elderly. The Rotterdam Scan Study is performed in the context of the 
population-based Rotterdam Study. Its rationale and study design for both studies 
have been described extensively elsewhere.11,12 We have previously published the 
prevalence of CMBs in 3,979 Rotterdam Study participants who completed brain 
MRI scanning between 2005 and 2008.13 Since then, additional participants were 
scanned, and until 2012, a total of 5,990 participants were invited to undergo brain 
MRI. Of 5,445 eligible participants (all without dementia and MRI contraindica-
tions), 4,843 (88.9%) gave written informed consent. After excluding participants 
with the inability to complete MRI (n = 71), scans of inadequate quality (n = 125), 
and subjects with cortical brain infarcts (n = 154), data on 4,493 participants were 
available for analyses.

Brain MRI and assessments of MRI markers

We performed a multisequence MRI protocol on a 1.5T scanner (GE Healthcare, 
Milwaukee, WI) in all participants.11 All scans were reviewed by 1 of 5 trained re-
search physicians, who recorded the presence, number, and location of microbleeds 
and infarcts using a protocol that was initiated at the beginning of the study in 2005 
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with good inter- and intraobserver agreement.14 Raters were blinded to clinical data, 
including APOE genotyping. CMBs were rated as focal areas of signal loss on 3-di-
mensional T2* gradient recalled echo-weighted MRI. Presence of CMBs was cat-
egorized by location based on presumed differences in underlying etiology: deep 
or infratentorial microbleeds are thought to represent hypertensive arteriopathy 
whereas strictly lobar CMBs point toward cerebral amyloid angiopathy (CAA).14 
The presence of lacunes and cortical infarcts was rated on fluid-attenuated inversion 
recovery (FLAIR), proton density–weighted, and T1-weighted sequences. Lacunes 
of presumed vascular origin15 were defined as focal lesions of ≥3 mm and <15 mm in 
size with the same signal intensity as CSF on all sequences and a hyperintense rim 
on the FLAIR (when located supratentorially). Infarcts larger than 15 mm were iden-
tified as subcortical infarcts, irrespective of their location in the brain (subcortical 
or striatocapsular).14 Infarcts showing involvement of gray matter were classified as 
cortical infarcts. Brain tissue was segmented into gray matter, white matter, CSF, 
and background using a fully automated approach incorporating a multiatlas strat-
egy with 6 manually labeled atlases for learning specific tissue intensities. WMLs 
were automatically segmented based on the FLAIR image using a postprocessing 
step.16 This enabled identification of the normal-appearing white matter as white 
matter unaffected by WMLs. This segmentation approach was specifically devel-
oped for MRI data acquired in the Rotterdam Scan Study. The automated detec-
tion of WMLs was achieved with high similarity index (0.72) when compared with 
gold-standard manual segmentations, which is comparable to the interobserver 
variability for manual segmentation (similarity index 0.75).16

Processing of DTI data

Loss of white matter microstructural integrity is accompanied by changes in DTI- 
derived measurements. DTI measurements most frequently used are fractional an-
isotropy (FA) and mean diffusivity (MD). Higher values of FA and lower values of 
MD generally indicate better microstructural integrity. Moreover, directional diffu-
sivity measurements (axial and radial diffusivity) are thought to provide more sub-
tle insight into underlying pathophysiologic proceses, as myelin damage has been 
associated with increased radial diffusivity and axonal damage with increased axial 
diffusivity.17

Diffusion data were preprocessed using a standardized pipeline.18 In summary, to 
compensate for subject motion and eddy currents, all acquired volumes were coreg-
istered using affine registrations performed with Elastix.19 Data were resampled at 
an isotropic resolution of 1 mm3, and diffusion tensors were fitted using a Leven-
berg-Marquardt nonlinear least-squares algorithm available in ExploreDTI.20 The 
diffusion data were then coregistered to the T1-weighted image using affine reg-
istration. The tensor image, resampled in the T1-weighted space, was used to ob-
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tain FA, MD, and directional diffusivity images. These diffusion metrics were then 
combined with the tissue segmentation results to obtain global measurements in 
the normal-appearing white matter of the brain, which were used in the analyses. 
All FA images were visually inspected, and 61 subjects were excluded because of 
scanning artifacts or excessive motion.

Assessment of cardiovascular risk factors

Cardiovascular risk factors were assessed during study visits by interview and 
laboratory and physical examinations at regular visits of study participants to the 
research center.12 Risk factors corrected for in our analyses included systolic and di-
astolic blood pressure (measured twice with a random-zero sphygmomanometer), 
total cholesterol (determined by using an automated enzymatic procedure, Hitachi 
analyzer, Roche Diagnostics), diabetes (fasting blood glucose of ≤7.0 mmol/L, and/
or the use of any glucose-lowering medication), smoking (ever vs never smoked), 
and lipid-lowering and antihypertensive medication. Medication use was assessed 
during home visits. APOE genotyping was performed on coded genomic DNA sam-
ples.21 Distribution of APOE genotype and allele frequencies in this population was 
in Hardy-Weinberg equilibrium.

History of cardiovascular disease

A history of symptomatic stroke and coronary heart disease was assessed by self-re-
port, and by continuous monitoring of medical records through automatic linkage 
of general practitioners’ files with the study database, as described previously.22

Data analysis 

WML volume was natural log-transformed because of its skewed distribution. Dif-
fusion measures were aver- aged inside the normal-appearing brain white matter 
for each subject. Subject-specific mean FA, MD, and axial and radial diffusivity were 
standardized to z scores. Microbleed status was investigated dichotomously (none 
vs one or more CMBs), categorically for microbleed count (none [reference catego-
ry] vs 1, 2–4, and ≥5 CMBs), and by location (none vs strictly lobar CMBs, and none 
vs deep or infratentorial CMBs [with or without the presence of lobar CMBs]). We 
used linear regression to evaluate the association between microbleed status and in-
tegrity of brain white matter and evaluated 4 models. In the first model, analyses 
were age- and sex-adjusted. Model 2 was additionally adjusted for cardiovascular 
risk (systolic and diastolic blood pressure, total cholesterol, smoking, diabetes, and 
lipid-lowering and antihypertensive medication). We adjusted model 3 for age, sex, 
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intracranial volume, and for other markers of CSVD, namely, lacunes, white matter 
volume, and WML volume. A final fourth model was adjusted for both cardiovascu-
lar risk and other markers of CSVD. We also examined R2 in the regression models 
to evaluate the proportion of total variance in FA and diffusivity measurements that 
was attributed to microbleeds after having corrected for the other variables in mod-
els 2, 3, and 4. We additionally investigated whether adjustments for age-squared 
would give a better adjustment for confounding by age.

Quantitative risk factors such as blood pressures and total cholesterol were mod-
eled continuously per SD increase. Analyses were repeated after stratification by 
APOE ε4 carriership, and formal interaction tests were applied to determine signif-
icant differences in subgroups. Finally, apart from cortical infarcts, we additionally 
excluded persons with lacunes, subcortical infarcts, and a history of symptomatic 
stroke in sensitivity analyses. All analyses were performed using statistical software 
package SPSS 20.0 (IBM Corp., Armonk, NY), and an α value of 0.05. Additionally, 
we adjusted for multiple testing using Bonferroni correction (p-value threshold of 
0.0028) based on 18 independent tests.

Standard protocol approvals, registrations, and patient consents

The institutional review board approved the study. We obtained consent for exam-
inations from all participants. The study conforms to the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) statement guidelines.

Results

Table 4.2.1 provides characteristics of our study population. Mean age was 63.9 years 
(range, 45.7–100.1 years) and 2,493 of the participants were female. A total of 875 
participants had at least one microbleed of whom 588 had strictly lobar and 287 deep 
or infratentorial microbleeds (with or without presence of lobar microbleeds). Mean 
brain normal-appearing white matter volume was 389.7 ml with a mean FA of 0.34, 
mean MD of 0.7×10-3 mm2/s, mean axial diffusivity of 1.0×10-3 mm2/s, and mean 
radial diffusivity of 0.6×10-3 mm2/s.

The association between the presence of one or more CMBs and diffusion measure-
ments of brain normal-appearing white matter is shown in Table 4.2.2. When ad-
justed for age and sex, there was a significantly lower mean FA and higher mean MD 
in brain white matter, reflecting loss of integrity of brain white matter in subjects 
with microbleeds compared with those who did not have any microbleeds. Addi-
tional adjustments for cardiovascular risk did not change the results meaningful-
ly (model 2). The association also remained unchanged after adjustment for other 
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markers of CSVD (WML volume and presence of lacunes, model 3), and after ad-
justing for a full model of cardiovascular risk and imaging markers of CSVD (model 
4). Both axial and radial diffusivity were higher in subjects with microbleeds com-
pared with those who did not have microbleeds. A maximum of 1.1% of the variance 
in DTI measurements was explained by microbleeds in these models. All associ-
ations described above survived multiple comparison correction. When analyzing 
microbleed count, we found that the presence of a single microbleed was associated 
with a significantly lower mean FA and higher MD. These associations became more 
prominent with increasing microbleed count (Figure 4.2).

No CMBs      
(n=3618)

CMBs               
(n=875)

Age, y 62.4 (10.7) 69.9 (10.8)

Female 2027 (56.0) 466 (53.3)

NAWM volume, ml 391.2 (47.9) 383.9 (48.5)

FA in NAWM 0.34 (0.02) 0.33 (0.02)

MD in NAWM, 10-3mm2/s 0.73 (0.02) 0.75 (0.03)

AxD in NAWM, 10-3mm2/s 1.01 (0.03) 1.03 (0.03)

RD in NAWM, 10-3mm2/s 0.59 (0.04) 0.61 (0.03)

Intracranial volume, ml 1125.3 (118.6) 1128.7 (121.3)

White matter lesion volume, ml* 2.5 (3.4) 4.9 (9.3)

Lacunar infarcts 195 (5.4) 141 (16.1)

History of symptomatic stroke 39 (1.1) 32 (3.7)

History of coronary heart disease 67 (1.9) 81 (9.3)

APOE ε4 carriers 940 (31.9) 251 (34.9)

Systolic blood pressure, mmHg 136.9 (20.8) 144.3 (21.8)

Diastolic blood pressure, mmHg 82.4 (10.8) 82.8 (11.2)

Total cholesterol 5.6 (2.2) 5.4 (1.1)

Smoking (ever in life) 289 (8.1) 92 (10.6)

Diabetes 289 (8.1) 92 (10.6)

Lipid lowering medication 783 (21.8) 267 (30.7)

Antihypertensive medication 759 (21.1) 180 (20.7)

Data are presented as mean (standard deviation) for continuous variables, and number (%) 
for categorical variables. The following variables had missing data: blood pressure (n=38), total 
cholesterol (n=67), smoking (n=14), diabetes (n=60), lipid lowering medication (n=24), antihy-
pertensive medication (n=26), APOE ε4 genotype (n=294). 
* White matter lesion volume presented as median (interquartile range).

Table 4.2.1
Baseline characteristics of the study population (N= 4493)
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Table 4.2.3 shows the association between microbleed location and integrity of 
brain white matter. Persons with microbleeds in either deep or infratentorial, or 
strictly lobar locations had lower mean FA and higher mean MD in the brain white 
matter compared with those who did not have CMBs. Again, these associations sur-
vived multiple comparison correction. Associations were stronger for microbleeds 
situated in the deep or infratentorial regions. Also, axial and radial diffusivity were 
highest in subjects with deep or infratentorial microbleeds. After additional strati-
fication by APOE ε4 carriership, we found that only persons carrying an APOE ε4 
allele showed a clear association between lobar microbleeds and loss of brain white 
matter microstructural integrity, whereas such an association was not present for 
noncarriers (p interaction FA = 0.022, MD = 0.002) (Table 4.2.4). Effect modifica-
tion by APOE ε4 carriership was not present for deep or infratentorial microbleeds.

Additional exclusion of persons with a history of symptomatic stroke or those 
with MRI-defined lacunes and/or subcortical infarcts did not change any of the 
above-mentioned results.

Discussion

We found that the presence of microbleeds was associated with a poorer global mi-
crostructural integrity of brain white matter, even when only a single microbleed 
was present. Associations were present after adjusting for important cardiovascular 

z Difference p Value z Difference p Value z Difference p Value z Difference p Value

Presence of CMBs

          Model 1 -0.27 (-0.33, -0.21) <0.001 0.25 (0.19, 0.30) <0.001 0.17 (0.11, 0.23) <0.001 0.26 (0.21, 0.32) <0.001

          Model 2 -0.25 (-0.32, -0.19) <0.001 0.24 (0.19, 0.30) <0.001 0.18 (0.11, 0.24) <0.001 0.26 (0.20, 0.31) <0.001

          Model 3 -0.15 (-0.21, -0.10) <0.001 0.15 (0.10, 0.20) <0.001 0.10 (0.05, 0.16) 0.001 0.16 (0.11, 0.21) <0.001

          Model 4 -0.15 (-0.20, -0.09) <0.001 0.15 (0.10, 0.20) <0.001 0.11 (0.05, 0.17) 0.001 0.16 (0.10, 0.21) <0.001`

MDFA RDAxD

Table 4.2.2
Microbleeds (yes vs. no) and white-matter microstructural integrity

Model 1= adjusted for age and sex. Model 2= as Model 1, additionally adjusted for systolic 
and diastolic blood pressure, total cholesterol, smoking, diabetes lipid lowering medication, 
and antihypertensive medication. Model 3= adjusted for age, sex, lacunes, normal appearing 
white-matter volume, white matter lesion volume (log transformed), and intracranial volume. 
Model 4= adjusted for age, sex, cardiovascular risk as in Model 2, and imaging markers as in 
Model 3. Abbreviations: CMBs= cerebral microbleeds. Values represent difference in z score of 
mean fractional anisotropy and mean diffusivity parameters in normal appearing white-mat-
ter for presence of any microbleeds compared to no microbleeds. Bonferroni-corrected threshold 
for significance: p-value=0.0028.
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risk factors and other MRI markers of CSVD. When investigating directional dif-
fusivity, we observed that both axial and radial diffusivity were higher in subjects 
with CMBs.

The large sample size and population-based setting increase generalizability of our 
results and are major strengths of our study. We used sensitive MRI sequences to 
detect microbleeds23 and to measure microstructural integrity of brain white mat-
ter.24 Also, because of availability of a wide range of other subject characteristics, we 
were able to investigate the association between CMBs and white matter integrity 
after adjusting for important cardiovascular risk factors and other macroscopic im-
aging markers of CSVD, i.e., WMLs and lacunes. Some limitations of our study need 
to be mentioned. Because of the cross-sectional design of our study, we were not 
able to assess temporality of associations. Also, we should note that microbleed de-
tection strongly depends on MRI acquisition parameters and field strength used.23,25 
Although our scan protocol was optimized for the detection of CMBs on a 1.5T scan-
ner,23 we may have missed small bleeds that would have become apparent when, 
for example, using higher field strengths. Furthermore, registrations of DTIs are to 
some extent susceptible to artifacts and distortions and may therefore have small 
registration inaccuracies. All registration results were, however, visually inspected 
and no registration errors caused by distortions or susceptibility artifacts were ob-
served. Finally, although we aimed to address all potential important confounders, 

z Difference p Value z Difference p Value z Difference p Value z Difference p Value

Model 1 -0.49 (-0.59, -0.39) <0.001 0.46 (0.37, 0.55) <0.001 0.33 (0.23, 0.43) <0.001 0.49 (0.40, 0.58) <0.001

Model 2 -0.48 (-0.58, -0.37) <0.001 0.46 (0.37, 0.55) <0.001 0.34 (0.24, 0.44) <0.001 0.48 (0.40, 0.57) <0.001

Model 3 -0.24 (-0.34, -0.15) <0.001 0.25 (0.16, 0.33) <0.001 0.18 (0.08, 0.28) <0.001 0.26 (0.18, 0.34) <0.001

Model 4 -0.24 (-0.34, -0.15) <0.001 0.25 (0.17, 0.34) <0.001 0.19 (0.09, 0.29) <0.001 0.27 (0.18, 0.35) <0.001

Strictly lobar

Model 1 -0.17 (-0.24, -0.10) <0.001 0.16 (0.09, 0.22) <0.001 0.11 (0.04, 0.18) 0.008 0.17 (0.10, 0.23) <0.001

Model 2 -0.15 (-0.22, -0.08) <0.001 0.15 (0.08, 0.21) <0.001 0.11 (0.04, 0.18) 0.010 0.16 (0.09, 0.22) <0.001

Model 3 -0.12 (-0.19, -0.05) 0.001 0.11 (0.05, 0.17) 0.001 0.08 (0.01, 0.14) 0.030 0.12 (0.06, 0.18) <0.001

Model 4 -0.11 (-0.17, -0.04) 0.002 0.11 (0.05, 0.17) <0.001 0.08 (0.01, 0.15) 0.028 0.11 (0.06, 0.17) <0.001

AxD RD

Deep / 
infratentorial

MDFA

 Model 1= adjusted for age and sex. Model 2= as Model 1, additionally adjusted for systolic and di-
astolic blood pressure, total cholesterol, smoking, diabetes, lipid lowering medication, and anti-
hypertensive medication. Model 3= adjusted for age, sex, lacunes, normal appearing white-mat-
ter volume, white matter lesion volume (log transformed), and intracranial volume. Model 4= 
adjusted for age, sex, cardiovascular risk as in Model 2, and imaging markers as in Model 3. 
Abbreviations: CMBs= cerebral microbleeds. Values represent difference in z score of mean frac-
tional anisotropy and mean diffusivity parameters in normal appearing white-matter for pres-
ence of any microbleeds by their location compared to no microbleeds. Bonferroni-corrected 
threshold for significance: p-value=0.0028. 

Table 4.2.3
Microbleeds by location and white-matter microstructural integrity
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residual confounding due to unmeasured confounders or measurement inaccuracy 
in variables may have affected our results to some extent. Specifically, residual con-
founding by age may have overestimated the association presented in our study.

Previously, pathology studies have suggested that the presence of microbleeds re-
flects a more diffuse pathologic process in the brain by showing that white matter 
changes surround the actual microbleeds. However, these studies were often limited 
by sample size and generalizability.8–10 Moreover, it is difficult to draw conclusions 
on diffuse brain pathology from these studies because pathologic examinations 
were not performed on the entire brain. DTI-MRI allows us to study the entire ce-
rebral white matter in vivo, and alterations in DTI parameters have previously been 
linked to both cognitive deterioration as well as neurodegenerative disease,26–28 sug-
gesting that clinically relevant white matter changes can be assessed with DTI. Our 
DTI study in the general population now provides evidence to support the hypoth-
esis that microbleeds are associated with subtle, but diffuse brain pathology in vivo, 
advocating the idea that presence of microbleeds on MRI may present merely a “tip 
of the iceberg” regarding the true extent of the underlying brain damage.

Several theories can be proposed when speculating about the underlying patho-
physiologic mechanisms that link microbleeds and white matter integrity loss. First, 
CMBs may reflect vascular pathology that leads to white matter integrity loss via 
a pathway of shared risk factors, e.g., APOE genotype, cardiovascular risk, or in-
flammatory factors. Alternatively, CMBs may be linked to white matter integrity 
loss more directly through failure of the blood-brain barrier. For example, leakage of 

Figure 4.2. Categories of CMB count and white- 
matter microstructural integrity. y-axis rep-
resents age- and sex-adjusted changes in z score 
in mean fractional anisotropy (FA) and mean 
diffusivity (MD) for each category of cerebral 
microbleed (CMB) count (x-axis), compared to 
reference group without microbleeds. Categories 
0 CMBs n=3618; 1 CMB n=530; 2 to 4 CMBs n=242; 
≥5 CMBs n=103.
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blood products due to blood-brain barrier dysfunction may result in microbleeds on 
one hand, and lead to subtle damage to the surrounding neuronal and white matter 
tissue on the other hand.29,30

We found that even the presence of a single microbleed related to a diffuse loss of 
white matter microstructure. This is particularly interesting because the presence of 
a single microbleed as isolated marker of CSVD remains an issue of debate.31,32 Our 
results support the hypothesis that microbleed presence reflects damage to func-
tional pathways more diffusively33 rather than focally,34 and thus that even a sin-
gle microbleed marks relevant underlying vascular pathology. However, we should 
bear in mind that a single microbleed threshold should be interpreted within the 
context of MRI acquisition parameters and field strength used.23,25

Subjects with deep or infratentorial CMBs had poorer global white matter micro-
structure compared with subjects with strictly lobar microbleeds. One explanation 
could be that hypertensive vasculopathy may affect the brain microvasculature 
more diffusely, whereas CAA is primarily restricted to the cortical and meningeal 

z Difference p Value z Difference p Value z Difference p Value z Difference p Value

Model 1 -0.32 (-0.44, -0.20) <0.001 0.31 (0.19, 0.43) <0.001 -0.21 (-0.30, -0.13) <0.001 0.19 (0.12, 0.26) <0.001

Model 2 -0.30 (-0.42, 0.18) <0.001 0.30 (0.18, 0.42) <0.001 -0.19 (-0.28, -0.11) <0.001 0.19 (0.11, 0.26) <0.001

Model 3 -0.22 (-0.33, -0.11) <0.001 0.21 (0.10, 0.32) <0.001 -0.13 (-0.21, -0.05) 0.001 0.11 (0.04, 0.18) 0.001

Model 4 -0.20 (-0.31, -0.09) <0.001 0.21 (0.10, 0.32) <0.001 -0.12 (-0.20, -0.04) 0.004 0.11 (0.04, 0.18) 0.001

Model 1 -0.44 (-0.63, -0.24) <0.001 0.40 (0.22, 0.58) <0.001 -0.46 (-0.60, -0.32) <0.001 0.44 (0.32, 0.55) <0.001

Model 2 -0.42 (-0.62, -0.22) <0.001 0.40 (0.21, 0.59) <0.001 -0.44 (-0.58, -0.30) <0.001 0.44 (0.32, 0.55) <0.001

Model 3 -0.20 (-0.38, -0.02) 0.027 0.19 (0.02, 0.37) 0.033 -0.26 (-0.39, -0.14) <0.001 0.25 (0.15, 0.36) <0.001

Model 4 -0.18 (-0.37, -0.001) 0.049 0.19 (0.01, 0.36) 0.043 -0.26 (-0.39, -0.14) <0.001 0.26 (0.16, 0.37) <0.001

Strictly lobar 

Model 1 -0.26 (-0.40, -0.13) <0.001 0.28 (0.15, 0.41) <0.001 -0.11 (-0.20, -0.01) 0.038 0.08 (0.002, 0.17) 0.044

Model 2 -0.24 (-0.38, -0.10) 0.001 0.26 (0.12, 0.39) <0.001 -0.09 (-0.19, 0.01) 0.079 0.08 (-0.004, 0.16) 0.061

Model 3 -0.22 (-0.35, -0.10) 0.001 0.23 (0.11, 0.36) <0.001 -0.08 (-0.17, 0.01) 0.096 0.06 (-0.02, 0.13) 0.151

Model 4 -0.21 (-0.34, -0.08) 0.001 0.22 (0.10, 0.35) <0.001 -0.06 (-0.15, 0.03) 0.179 0.05 (-0.02, 0.13) 0.175

FA MD FA MD

Carriers APOE ε4 Noncarriers APOE ε4

Deep / 
infratentorial

Presence of 
CMBs

Model 1= adjusted for age and sex. Model 2= as Model 1, additionally adjusted for systolic and di-
astolic blood pressure, total cholesterol, smoking, diabetes, lipid lowering medication, and anti-
hypertensive medication. Model 3= adjusted for age, sex, lacunes, normal appearing white-mat-
ter volume, white matter lesion volume (log transformed), and intracranial volume. Model 
4= adjusted for age, sex, cardiovascular risk as in Model 2, and imaging markers as in Model 
3. Abbreviations: CMBs= cerebral microbleeds. Values represent difference in z score of mean 
fractional anisotropy and mean diffusivity parameters in normal appearing white-matter for 
presence of any microbleeds, deep or infratentorial microbleeds, and strictly lobar microbleeds 
compared to no microbleeds. Bonferroni-corrected threshold for significance: p-value=0.0028.

Table 4.2.4
Microbleeds and white matter microstructural integrity, by APOE ε4 status
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vessels. Another consideration is that CAA pathology is known to cluster in occip-
ital lobes,35 and this may not be adequately reflected in a global brain white matter 
diffusion measurement. Future studies could use a lobar or regional approach to ac-
count for these specific focal changes.

For persons with strictly lobar microbleeds, poorer white matter integrity was con-
fined to APOE ε4 allele carriers, although results were based on a smaller study sam-
ple. White matter pathology is a frequent finding in patients with CAA,36 and the 
APOE ε4 allele is a well-known risk factor for CAA. It may be that subjects with 
strictly lobar CMBs who carry an APOE ε4 allele are more susceptible to diffuse 
white matter damage because both factors may act synergistically.

The association between CMBs and WMLs is well established, as is the association 
between WMLs and poorer white matter microstructural integrity. The novelty of 
our study is that we found a direct association between CMBs and white matter mi-
crostructure integrity loss. We showed that the relation between microbleeds and 
worse white matter microstructure remained after adjusting for burden of WMLs or 
presence of lacunes. A previous small study in patients with CAA did not find the 
same independency,33 but differences in study population and sample size compli-
cate comparison. Although the percentage of explained variance by microbleeds on 
DTI measurement in our study was only modest, the relation between microbleeds 
and white matter microstructural integrity provides important etiologic insights. 
Our finding suggests that microbleeds may reflect a more severe or unique form of 
vasculopathy that is not captured by other imaging markers of CSVD. This may im-
plicate microbleeds as an important marker of risk stratification or therapy alloca-
tion in future studies.

Finally, we found that the presence of CMBs was associated with increased axial 
and radial diffusivity. Axial diffusivity describes water movement parallel to, and 
radial diffusivity perpendicular to, the main fiber orientation. From animal stud-
ies the hypothesis arose that an increase in axial diffusivity may correlate with axo-
nal damage,37 while increased radial diffusivity better reflects myelin damage.17,38,39 
This would suggest that the presence of CMBs may indicate both axonal and myelin 
damage. However, it is known from patient-based studies that demyelination and 
axonal damage often correlate and concordantly influence directional diffusivities. 
Also, the presence of both acute and chronic tissue damage may influence measures 
of axial diffusivity.40,41 Thus, although it is tempting to extrapolate our understand-
ing of directional diffusivity from animals to humans, interpretation of directional 
diffusivity measurements in observational studies is complex and warrants caution.
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Overall, we found that CMBs may reflect a more severe or unique form of under-
lying vasculopathy because their presence associates with diffuse microstructural 
integrity loss of brain white matter even after adjusting for the presence of lacunes 
and WMLs. This subtle white matter pathology may be more severe in APOE ε4 al-
lele carriers with lobar microbleeds.
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Microstructural white matter deterioration is a frequent finding in 
mild cognitive impairment (MCI), potentially underlying default 
mode network (DMN) dysfunctioning. Thus far, microstructural 
damage in MCI has been attributed to Alzheimer’s disease patho-
physiology. A cerebrovascular role, in particular the role of cerebral 
small vessel disease (CSVD), received less interest. Here, we used 
diffusion tensor imaging (DTI) to examine the role of CSVD in mi-
crostructural deterioration within the normal appearing white mat-
ter (NAWM) in MCI. MCI patients were subdivided into those with 
(n = 20) and without (n = 31) macrostructural CSVD evidence on 
MRI. Using TBSS we performed microstructural integrity compar-
isons within the whole brain NAWM. Secondly, we segmented white 
matter tracts interconnecting DMN brain regions by means of auto-
mated tractography segmentation. We used NAWM DTI measures 
from these tracts as dependent variables in a stepwise-linear regres-
sion analysis, with structural and demographical predictors. Our 
results indicated microstructural deterioration within the anterior 
corpus callosum, internal and external capsule and periventricu-
lar white matter in MCI patients with CSVD, while in MCI patients 
without CSVD, deterioration was restricted to the right perforant 
path, a tract along the hippocampus. Within the full cohort of MCI 
patients, microstructure within the NAWM of the DMN fiber tracts 
was affected by the presence of CSVD. Within the cingulum along the 
hippocampal cortex we found a relationship between microstructure 
and ipsilateral hippocampal volume and the extent of white matter 
hyperintensity. In conclusion, we found evidence of CSVD-related 
microstructural damage in fiber tracts subserving the DMN in MCI.

Introduction

Mild cognitive impairment (MCI) is a clinical construct that identifies indi-
viduals with cognitive impairment at high risk of dementia, in most cas-
es Alzheimer’s disease (AD).1–3 Within the past decades, structural MRI 

has been used extensively to study this prodromal dementia stage, as it offers the 
opportunity to identify early structural brain changes in vivo. Numerous studies 
have identified MCI and ultimately AD related atrophy within the medial temporal 
lobe, temporal and parietal association regions, the cingulate gyrus and prefrontal 
cortex.4–6 Other commonly encountered MRI findings in MCI are white matter hy-
perintensities (WMH) and lacunar infarcts,7,8 regarded as macrostructural MRI ex-
pressions of cerebral small vessel disease (CSVD). CSVD is a condition that affects 
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the microvessels supplying the white matter and subcortical brain regions.9 There is 
increasing evidence that CSVD and AD pathophysiological changes on MRI do not 
just coincide but may be interrelated.7,8,10–14

Initially, MRI studies largely focused on region of interest analysis,15,16 while the 
more current view is that widespread brain regions form interconnected neural net-
works encompassing multiple distinct brain regions. Research regarding neurode-
generation has therefore lately been more directed at these networks and network 
connectivity.17,18 A neural network often studied in MCI and AD is the default mode 
network.19–21 This network is known to be affected in several neurodegenerative 
conditions and thought to play a role in cognitive functions such as episodic mem-
ory.18,22 Within functional networks, intact white matter representing structural 
connectivity, is very important for normal network functioning.23,24 This implies 
that conditions affecting white matter structure can affect neural network function-
ing.25,26 

While an assessment of macrostructural white matter deterioration can be obtained 
by means of T2 weighted Fluid Attenuated Inversion Recovery (T2-FLAIR) MRI, 
diffusion tensor imaging (DTI) can be used to non-invasively examine white matter 
damage on a microstructural level. DTI is an MRI technique based on the diffusion 
properties of unbound water molecules. In the presence of physical boundaries or 
restrictions diffusion becomes anisotropic, directionally dependent, as water dif-
fuses more rapidly in the direction aligned with an internal structure (axial diffusiv-
ity), instead of perpendicular to it (radial diffusivity). DTI measures are considered 
sensitive markers for white matter microstructural damage, as degradation of ax-
ons or demyelination will result in reduced restrictions, increased free diffusion of 
water, and consequently a decrease in anisotropy. Numerous previous studies have 
reported decreased fractional anisotropy (FA) and increased random or mean dif-
fusivity (MD) in MCI and AD patients within a diversity of white matter regions, 
including (para)hippocampal white matter,27–29 posterior cingulate fasciculus/pre-
cuneus white matter,28,30–32 the cingulum,28,30,33–35 the corpus callosum,30,34,36,37 the 
uncinate fasciculus28,31,33 and the inferior and superior longitudinal fasciculus.28,33 
The nature of these microstructural white matter changes in MCI or AD patients 
is still a matter of debate. Some claim that microstructural deterioration is second-
ary to neuronal – grey matter – loss, so-called Wallerian degeneration.38 But the 
frequent co-occurrence of CSVD in AD patients also points towards a role of vas-
cular pathology.37 Indeed, in MCI, microstructural white matter damage was found 
to correlate to macrostructural white matter changes such as WMH burden.37 This 
relationship, however, was examined within the global white matter without con-
trolling for WMH, like other DTI studies in MCI fail to control for the presence of 
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Figure 4.3.1. TBSS skeleton projections on white mater hyperintensity map in axial planes at 
different MNI 152 Z-levels, overlaid on the mean FA image of the study participants. White mat-
ter hyperintensities range from red to yellow, indicating respectively voxelwise low to high prev-
alence of white matter hyperintensity. TBSS skeleton projections depicted in a range from dark 
blue to light blue, indicating respectively low to high prevalence of affected TBSS skeleton voxels. 
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WMH as well.28,30,32,37,39 This is an important issue, as we know that DTI measures 
differ within WMH regions,40 and in the NAWM in relationship to the presence and 
vicinity of WMH.41,42 

In the present study we aim to gain more insight into mechanisms affecting white 
matter microstructural integrity in MCI, in particular examining the role of CSVD. 
For this purpose we used DTI, and to avoid WMH influencing our results as much 
as possible, we restricted our analyses specifically to the normal appearing white 
matter (NAWM). We compared NAWM DTI measures in MCI patients with and 
without CSVD and healthy controls globally, and furthermore examined the role of 
CSVD as well as structural AD changes in specific white matter tracts known to be 
important in default mode network functioning.23,30,43–45

Methods

Participants

We recruited MCI patients aged 65 years or older, from 2008 onwards, from out-
patient clinics of the Departments of Neurology and Geriatrics of the Erasmus MC, 
University Medical Center Rotterdam, and 7 surrounding hospitals, on the basis of 
criteria by Petersen.3 These criteria include: 1) presence of cognitive complaint by 
patient or relatives; 2) impairment of one or more cognitive domains as determined 
by neuropsychological assessment; 3) preserved overall general functioning, with 
possible increased difficulty in the performance of activities of daily living; and 4) 
absence of dementia according to the DSM-IV or NINCDS-ADRDA criteria for de-
mentia. In total 57 MCI patients were screened for study eligibility. We excluded 
patients with a previous neurological or psychiatric diagnosis negatively affecting 
cognition (e.g. major stroke, cerebral tumor or depression) or contraindications for 
MRI (e.g. pacemaker or claustrophobia). After initial screening, 55 MCI patients un-
derwent a structured interview, physical examination and brain MRI, including 3D 
T1-weighted, T2-FLAIR MRI and DTI. After MRI examinations we excluded 4 pa-
tients, 2 due to physical inability or refusal to undergo MRI when confronted with 
the MRI scanner, 1 due to incomplete DTI data collection and 1 due to excessive head 
movement and consequently obvious blurring of the acquired data. Thus, for the 
present study, data of 51 MCI patients were available. Control subjects (n = 28), aged 
65 years or older, were either relatives of MCI patients or were recruited by adver-
tisement (e.g. posters and handouts) throughout the Erasmus MC. Controls did not 
meet any of the criteria for MCI, but were otherwise excluded on the basis of the 
same exclusion criteria as MCI patients. Controls underwent the exact same work up 
as MCI patients in this study. After MRI examinations we excluded 2 control partic-
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ipants on the basis of the quality of DTI imaging, caused by poor positioning of the 
head in the MRI head coil, and thus 26 controls were included in our study. All par-
ticipants gave informed consent to the protocol of the study, which was approved by 
the medical ethics committee of the Erasmus MC.

Structured interview, physical examination 

We collected data on demographics, medical history, and vascular risk factors 
during a structured interview. Level of education was assessed with a Dutch edu-
cation scale, ranging from 1 (less than 6 years elementary school) to 7 (academic de-
gree).46 As measured twice during physical examination, we defined hypertension 
as systolic blood pressure ≥ 160 mm Hg or diastolic blood pressure ≥ 90 mm Hg, or 

Values are unadjusted means (standard deviation), number of participants (percentages), or in 
case of neuropsychological data unadjusted z-score means (standard deviation). MCI: mild cog-
nitive impairment. CSVD: cerebral small vessel disease. MMSE: mini mental state examination. 
APOE: apolipoprotein E * Prevalence current and former smoking. ‡ missing data for 2 MCI 
patients with CSVD, 1 MCI patient without CSVD and 3 healthy controls. Differences between 
groups analyzed by means of independent sample t-test, Chi-Square test, or in case of neuro-
psychological data ANCOVA corrected for age, sex and education: a p <0.05 compared with 
controls. b p <0.05 compared with MCI patients without CSVD.

Controls               
(n = 23)

Total MCI 
group (n = 51)

MCI  without 
CSVD (n = 31)

MCI with 
CSVD (n = 20)

Age, y 70.9 (5.0) 74.1 (4.9)a 73.1 (4.3) 75.7 (5.4)a

Sex, women (%) 10 (43) 14 (27) 7 (23) 7 (35)

Education 5.4 (1.2) 5.2 (1.3) 5.0 (1.4) 5.4 (1.2)

MMSE 28.9 (1.1) 27.2 (1.9)a 27.0 (2.0)a 27.4 (1.8)a

Hypertension, prevalence (%) 15 (65) 30 (59) 13 (42) 17 (85)b

Smoking, prevalence (%)* 13 (57) 34 (67) 19 (61) 15 (75)

APOE -/ε4, prevalence (%)‡  5 (25) 27 (56)a 14 (47) 13 (72)a

APOE ε4/ε4, prevalence (%)‡ 0 (0) 5 (10) 2 (7) 3 (17)

Memory 0.00 (0.72) -1.73 (0.65)a -1.70 (0.65)a -1.76 (0.68)a

Processing speed 0.00 (0.90) -0.41 (0.84) -0.40 (0.84) -0.43 (0.88)

Executive function 0.00 (0.92) -0.92 (1.34)a -0.83 (1.22) -1.07 (1.55)a

Language 0.00 (0.75) -0.98 (1.09)a -1.11 (1.26)a -0.78 (0.76)

Visuospatial ability 0.00 (1.00) -0.68 (1.54) -0.41 (1.03) -0.28 (1.21)

Visuoconstructive ability 0.00 (1.00) -0.36 (1.08) -0.56 (1.77) -0.87 (1.11)

Table 4.3.1 
Characteristics and neuropsychological test results of controls and MCI patients with and with-
out cerebral small vessel disease (N=74)
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the use of antihypertensive medication. We determined Apolipoprotein E (APOE) 
genotype in all participants. The mini mental state examination (MMSE) was em-
ployed as a global cognitive screening method, and indicator for disease severity.47 

Neuropsychological assessment

Extensive neuropsychological assessment was used both in the definition and di-
agnosis of MCI patients. Trained neuropsychologists administered tests covering 
cognitive domains including episodic memory functioning (15-word verbal learn-
ing test and the stories of the Rivermead Behavioural Memory Test), processing 
speed (Trail Making Test (TMT) part A and Stroop II), executive functioning (TMT 
part B and Stroop III), language (Boston Naming Test 60 items version and semantic 
fluency tasks, animals and occupations), visuospatial ability (Block Design of the 
Wechsler Adult Intelligence Scale III) and visuoconstructive ability (clock drawing, 
14 points). For every neuropsychological test we calculated z-scores, using the mean 
and standard deviation of the control group (z-score = individual test score minus 
mean of controls, divided by standard deviation of controls), and subsequently con-
structed compound scores by averaging z-scores for all cognitive domains. Visuo-
spatial and visuoconstructive ability were represented by a single neuropsyhological 
test. The Stroop and TMT are cognitive tests in which a higher score indicates worse 
performance; therefore we multiplied all individual z-scores for these tests with -1.

MRI acquisition

We performed MR imaging on a 3.0 T MRI scanner with an 8-channel head coil (HD 
platform, GE Healthcare, Milwaukee, WI, US). DTI data were acquired in the axial 
plane with a single shot echo-planar imaging (EPI) sequence with 25 non-collinear 
directions and the following parameters: repetition time (TR) = 14,200 ms, echo 
time (TE) = 73.3 ms, acquisition matrix 128 × 64 (phase encoding, A-P direction), 
field of view (FOV) 220 × 220 mm2, flip angle = 90°. Maximum b-value was 1000  
s/mm2 and three volumes were acquired without diffusion weighting (b-value = 0 
s/mm2). We acquired 70 contiguous slices with a slice thickness of 2.0 mm in a total 
acquisition time of 7:06 min. High resolution 3D T1-weighted structural MRI was 
acquired in the axial plane with the following parameters: TR = 10.4 ms, TE = 2.1 ms, 
TI = 300 ms, flip angle = 18°, acquisition matrix = 416 × 256, FOV = 250 × 175 mm2. 
In a total acquisition time of 4:57 min, we acquired 192 slices with a slice thickness 
of 1.6 mm and 0.8 mm overlap, resulting in an effective slice thickness of 0.8 mm. 
T2-FLAIR images were obtained with the following parameters: TR = 8,000 ms, TE 
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corrected p-value
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corrected p-value

RD CSVD > RD non-CSVD 
within MCI, corrected p-value

FA CSVD < FA non-CSVD 
within MCI, corrected p-value

Figure 4.3.2. A) Significantly lower FA in MCI patients without CSVD relative to controls. B) 
Significantly lower FA in MCI patients with CSVD relative to controls. C) Significantly lower 
FA in MCI patients with CSVD relative to MCI patients without CSVD. D) Significantly higher 
perpendicular diffusivity in MCI patients with CSVD relative to MCI patients without CSVD.
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= 120 ms, TI = 2000 ms, acquisition matrix = 256 × 128, FOV = 210 × 210 mm2. We 
acquired 64 contiguous slices with a slice thickness of 2.5 mm in a total acquisition 
time of 3:13 min. 

Visual assessment of WMH and lacunar infarcts

Blinded for all clinical information, a neurologist (NDP), experienced in the assess-
ment of CSVD on MRI, examined 3D T1-weighted and T2-FLAIR MRI images for 
the presence of lacunar infarcts and WMH. The extent of WMH was assessed using 
the semi-quantitative rating scale of Fazekas.48 This rating scale is used extensively 
in clinical practice. In line with the definition of CSVD on MRI used in previous 
studies,49 we defined the presence of CSVD as the presence of substantial WMH 
(Fazekas score 2 or higher) affecting both the posterior and anterior white matter re-
gions and/or the presence of two or more lacunar infarcts. Based on these ratings we 
classified MCI patients as MCI patients with CSVD (n = 20) and MCI patients with-
out CSVD (n = 31). In addition, we excluded three control subjects, as they met the 
criteria for CSVD on MRI, eventually including 23 controls without CSVD on MRI 
in our analyses. Although available (see below), we did not make use of automated 
brain tissue segmentation and volumetric analysis of WMH for this subdivision, as 
these ratings are highly dependent upon the studied cohort and therefore difficult to 
translate to clinical practice or compare to previous studies.

Automated MRI brain tissue segmentation and volumetric analysis of 
WMH and hippocampi

Based on the intensities of the 3D T1-weighted and T2-FLAIR MRI scans we used a 
validated k-nearest neighbour classifier to automatically segment brain tissue into 
cerebrospinal fluid, grey matter, normal appearing white matter and WMH.50,51 We 
refer to Figure 4.3.1 for the distribution of WMH in all participants. We segmented 
hippocampi on the basis of the 3D T1-weighted images by means of an automated 
method as described previously.52,53 Briefly, the two most important components 
of this method are a statistical intensity model and a spatial probability map. The 
intensity model describes the typical intensities of the hippocampus and the back-
ground. The spatial probability map is derived from the registration of multiple at-
lases and contains the probability of being part of the hippocampus for every voxel. 
In a comparison with manually traced hippocampal volumes, this method produced 
accurate results with a mean Dice similarity index of 0.867.54 Blinded for clinical 
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information, all automated segmentations were visually inspected and if necessary, 
we manually corrected the segmentations using FSLview, part of FSL.55 Finally, we 
assessed total intracranial volume (TIV).

DTI data processing 

As a first step in DTI processing, we corrected diffusion data for motion and Eddy 
currents by affine co-registration of the diffusion weighted volumes to the aver-
age b=0 s/mm2 volume. These registrations were performed using Elastix, an open 
source ITK based registration package.56 The rotation component of each transfor-
mation was used to realign the gradient vector for each diffusion-weighted vol-
ume to compensate for motion during the acquisition.57 Then, resampling of the 
transformed diffusion weighted images was performed at an isotropic resolution 
of 1.0 mm for the tensor fit, and 2.0 mm for the probabilistic tractography. For mask-
ing out non-brain tissue, we used a multi-atlas approach, which showed increased 
robustness against masking errors. This approach consists of three steps. First, we 
used the Brain Extraction Tool (BET)58 from FSL 4.1.9, to identify brain tissue in 
three random subjects, and manually corrected the resulting masks using FSLview. 
Second, the corrected masks were transformed to individual subject space using a 
nonlinear co-registration of the b=0 s/mm2 volumes obtained with Elastix (three 
registrations per subject). Third, majority voting on the three transformed brain 
masks was used to obtain a final brain mask for each individual, which was then 
used to mask the diffusion data. We fitted diffusion tensors with a Levenberg-Mar-
quard non-linear least squares optimization algorithm, available in ExploreDTI, on 
the 1.0 mm data. The eigenvalues of the fitted diffusion tensors were used to pro-
vide measures of FA, MD, axial diffusivity (AxD, or λ1, the principal eigenvalue), and 
radial diffusivity (RD,  the mean of the two smallest eigenvalues). The 2.0 mm data 
were used to fit a probabilistic model of fiber orientations for each voxel by means 
of Bedpostx.59 Afterwards, data quality was examined through visual  inspection 
of axial FA slices 4 mm apart, combined with two coronal and two sagittal slices 
around the center of the brain. 

DTI data analysis

To examine the role of CSVD in white matter microstructural damage in MCI, we 
used several DTI analysis techniques. All analyses were restricted to the NAWM 
by mapping the individual WMH segmentation masks, as obtained from automat-
ed tissue segmentation, to the DTI data and thus excluding voxels originating from 
WMH.42 The first analysis technique involved examining DTI measures within the 
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global NAWM (see ‘DTI data analysis: global NAWM measurements’). The second 
analysis technique included a whole brain explorative framework of Tract Based 
Spatial Statistics (TBSS, see ‘DTI data analysis: Tract Based Spatial Statistics’), to 
gain insight into the spatial distribution of white matter microstructural abnormal-
ities related to CSVD in MCI patients. The third analysis technique we used was 
probabilistic tractography (see ‘DTI data analysis: probabilistic tractography’), by 
which we considered specific white matter tracts which are found to subserve nor-
mal default mode network functioning, i.e. the cingulum in the cingulate cortex 
(CGC), the cingulum along the hippocampal cortex (CGH) and the superior longi-
tudinal fasciculus (SLF).23,43–45 In addition we included tracts that were found to be 
significantly affected in the whole brain TBSS analysis, as well as a control tract: the 
middle cerebellar peduncle (MCP). A control tract is a tract that remains unaffected 
by the disease process, in our case AD or CSVD.31,60 We extracted all tracts for every 
individual, and performed between group comparisons of DTI measures as well as 
regression analysis with DTI measurements within the NAWM of tracts as depen-
dent variable. All of the above described between group analyses were corrected for 
the effects of age and sex.

Values are unadjusted means (standard deviation); or number of participants (percentages). 
* Median (interquartile range). MCI: mild cognitive impairment. CSVD: cerebral small vessel 
disease. TIV: total intracranial volume. WMH: white matter hyperintensities. NAWM: nor-
mal appearing white matter. NAWM whole brain measurements within the cerebral NAWM 
mask. WMH whole brain measurements within the cerebral WMH mask. MD, AxD and  
RD ×10-3 mm2/s. Differences between groups analyzed by means of ANCOVA corrected for age 
and sex, Mann-Whitney U test or Chi Square tests: a p <0.05 compared with controls. b p <0.05 
compared with MCI patients without CSVD.

Controls (n = 23) Total MCI group    
(n = 51)

MCI  without 
CSVD (n = 31)

MCI with CSVD 
(n = 20)

WMH, Fazekas score* 1 (0; 1) 1 (1; 2)a 1 (0; 1) 2 (2; 2)a,b

Lacunar infarcts, presence (%) 2 (7.7) 12 (23.5) 3 (9.7) 9 (45.0)a,b

TIV, ml 1085.6 (88.4) 1123.7 (134.3) 1131.7 (122.2) 1111.3 (153.7)

Grey matter, ml 445.9 (56.9) 453.8 (69.2) 462.7 (60.8) 439.9 (80.5)

White matter, ml  415.9 (38.2) 402.8 (51.4)a 412.3 (49.2) 387.9 (52.4)a

WMH, ml* 13.1 (10.6, 21.4) 19.9 (14.1, 30.7)a 16.0 (10.5, 19.9) 33.8 (25.7, 50.4)a,b

Left hippocampus, ml 3.13 (0.40) 2.78 (0.53)a 2.76 (0.51)a 2.80 (0.57)

Right hippocampus, ml 3.05 (0.41) 2.80 (0.42)a 2.80 (0.43)a 2.81 (0.42)a

FA NAWM whole brain 0.39 (0.02) 0.38 (0.02) 0.38 (0.02) 0.37 (0.02)a,b

MD NAWM whole brain 0.95 (0.03) 0.99 (0.10) 0.99 (0.12) 0.99 (0.08) 

AxD NAWM whole brain 1.37 (0.03) 1.41 (0.16) 1.42 (0.19) 1.38 (0.09)

RD NAWM whole brain 0.74 (0.04) 0.79 (0.08) 0.78 (0.09) 0.79 (0.07)

Table 4.3.2 
MRI characteristics for controls and MCI patients with and without cerebral small vessel disease 
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DTI data analysis: global NAWM measurements

T1-weighted images were co-registered to the individuals’ FA images using an af-
fine registration with mutual information as similarity metric by means of FLIRT.61 
We averaged DTI measures, FA, MD, AxD and RD within the whole brain NAWM, 
using the tissue segmentation masks created in the automated MRI brain tissue seg-
mentation in diffusion space, and subsequently compared these measures between 
groups.

DTI data analysis: Tract Based Spatial Statistics

For the TBSS analysis,62 we followed the default pipeline. In short, individual sub-
jects’ FA images were co-registered to an FA template in standard MNI space. Next, 
a mean FA image was created and thinned to obtain a mean FA skeleton which rep-

Figure 4.3.3. Probabilistic tractography of tracts of interest and control tract in a single subject, 
blue: forceps minor; light and dark green: left and right cingulum cingulate part; light and dark 
purple: left and right cingulum hippocampus part; light and dark grey: left and right superior 
longitudinal fasciculus; red: middle cerebellar peduncle. 
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resented the center of all tracts common to the entire group. We thresholded the 
white matter skeleton image at an FA value of 0.2 to constrain the analyses to those 
tracts that could reliably be identified. FA measurements were projected onto the 
white matter skeleton by searching the maximum FA value in a region perpendicu-
lar to the skeleton. This projection was performed in every skeleton voxel. MD, AxD 

and RD values and WMH status were then projected onto the white matter skele-
ton, using the same projection as for the FA. Hereafter, we performed voxelwise 
group comparisons while regressing out the linear effects of age and sex. All statisti-
cal analyses were corrected for multiple comparisons using 5,000 permutations in 
Randomise as available in FSL. We implemented the WMH exclusion by supplying 
voxelwise NAWM status masks per group to Randomise. Spatial clustering of re-
sults was performed with TCFE.63

DTI data analysis: probabilistic tractography

We performed automated probabilistic tractography in subject native space by 
means of Probtrackx, available in FSL. For these analyses we used standard space 
seed, target, stop and exclusion masks, which were based on protocols described 
by Mori et al.,64 Stieltjes et al.,65 Wakana et al.,66 and Wakana et al.67 The masks were 
transferred to subject-native space using a nonlinear registration obtained with de-
fault settings for FA images in FNIRT.68 As mentioned before, tractography was 
performed for the CGC, CGH, SLF and MCP. As the TBSS group statistics indicat-
ed that the genu of the corpus callosum was particularly affected in MCI patients 
with CSVD, we also extracted the forceps minor (FMI), the most prominent white 
matter tract within the genu of the corpus callosum, as an additional tract of inter-
est. The tract density image for each tract was normalized by division with the total 
number of fiber paths recorded in the tract density image. These images were then 
thresholded at 0.005 to yield binary segmentations. Tracts that could not be iden-
tified using the automated protocols were treated as missing values. Individual dif-
fusion measurements were averaged within the NAWM, i.e. excluding voxels that 
were classified as WMH. Mean FA, MD, AxD and RD, resulting from the tractogra-
phy-based segmentations were compared between groups.

Statistical analysis

We compared demographics, neuropsychological data and imaging measures be-
tween groups using the statistical package SPSS (version 17.0 for Windows, Chicago, 
IL, US). Imaging and neuropsychological data comparisons were corrected for age, 
sex, and in case of neuropsychological data, education. Differences between groups 
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on continuous variables were assessed with ANOVA or ANCOVA and post hoc two 
sample t-tests. We compared non-parametric data using Kruskal-Wallis, followed 
by Mann-Whitney U tests. Between group analyses of nominal variables were per-
formed by means of Pearson Chi-square tests. To disentangle the role of CSVD in 
microstructural white matter damage in MCI, we performed a stepwise linear re-
gression analysis within the full cohort of MCI patients, with DTI measures within 
the NAWM of 1) ‘tracts of interest’ as obtained with probabilistic tractography, and 
2) within the whole brain, as dependent variables. ‘Tracts of interest’ were defined 
as the DTI measures within the segmented tracts that were found to show subtle 
differences between controls and the full cohort of MCI patients (p<0.10, without 
correction for multiple comparisons, represented as bold and italic numbers in Table 
4.3.3). Independent variables in the stepwise linear regression analysis were: WMH 
volume in ml (log transformed), presence of lacunar infarcts, TIV in ml, grey matter 
volume in ml, white matter volume in ml, left and right hippocampal volume in ml, 
age, sex, education and the MMSE score as a measure of disease severity. We con-
sidered the model that predicted the most variance in the dependent variable. In all 
analyses a p-value <0.05 was considered statistically significant.

Results

Participant characteristics and neuropsychological data

Characteristics and neuropsychological data of MCI patients and controls are pre-
sented in Table 4.3.1. In comparison with controls, MCI patients with CSVD were 
on average 4.8 years older (age range controls: 65.4-83.8 years; age range MCI pa-
tients without CSVD: 65.9-81.0 years; age range MCI patients with CSVD: 68.4-
88.1 years), and showed a higher prevalence of APOE4 genotyping (prevalence in 
72% of MCI with CSVD cases, and in 25% of control cases). MCI patients with CSVD 
more often had hypertension compared with MCI patients without CSVD (respec-
tively, prevalence in 85% and 42%). Summarizing the neuropsychological data, MCI 
patients with and without CSVD showed a cognitive profile of prominent memory 
impairment, dysexecutive functioning and language problems, when compared to 
controls. In addition, MCI patients without CSVD showed impairment of process-
ing speed. There were no differences in cognition between MCI patient groups.
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MRI characteristics

After correction for age and sex, MCI patients with CSVD by definition more often 
had lacunar infarcts and more severe WMH burden, as reflected by higher Fazekas 
scores and higher WMH volume, compared with controls as well as MCI patients 
without CSVD (Table 4.3.2). Relative to controls, both MCI patient groups showed 
significant lower hippocampal volumes, with no differences between MCI patients 
with and without CSVD. MCI patients with CSVD showed significantly lower FA 
of the global NAWM compared with controls as well as MCI patients without CSVD 
(Table 4.3.2). 

Tract-based spatial statistics 

After correction for age and sex, analyses within the NAWM-skeleton showed no 
differences for MD, AxD or RD in MCI patients relative to controls, but decreased 
FA in the right perforant path. This difference was driven by MCI patients with-

Structural data 

Tissue
segmentation

NAWM masks WMH masks

DWI data 

Motion & eddy
current correction

Tensor fit Probabilistic fit,
ball & stick model

Probabilistic
tractography

Analysis 3
tracts

Analysis 2
TBSS

Analysis 1
global

Figure 4.3.4. Analysis steps of DTI data.
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out CSVD, as they showed a significant FA decrease in the same region in compar-
ison with controls (Figure 4.3.2 A). Relative to controls, MCI patients with CSVD 
showed decreased FA and increased RD in the genu of the corpus callosum (CC), 
the bilateral internal and external capsule as well as periventricular white matter 
regions (Figure 4.3.2 B). Compared with MCI patients without CSVD, MCI patients 
with CSVD showed even more pronounced decreased FA (Figure 4.3.2 C) and in-
creased RD (Figure 4.3.2 D) in these same regions. 

Automated probabilistic tractography

The automated segmented tracts are shown in Figure 4.3.3. Not all selected white 
matter tracts could be identified with the automated probabilistic tractography ap-
proach, as the left and right CGC were identified in 60 out of 74 participants. All 
other tracts were identified in all subjects. Table 4.3.3 summarizes the DTI measures 
within the extracted tracts’ NAWM. The primary goal of this table was to use it as a 
signal detection tool to select those tracts and DTI measures that showed subtle dif-
ferences between the total MCI patient group and controls (p<0.10, without correc-
tion for multiple comparisons, represented as bold and italic numbers in Table 4.3.3). 
None of the comparisons between the control group and the total MCI group were 
significant using a Bonferroni multiple comparisons correction (32 comparisons for 
FA, MD, AxD and RD; controls vs. total MCI group). 

Regression analyses of tracts of interest and whole brain NAWM

We analyzed the predictive value of several determinants on white matter micro-
structure within the full cohort of MCI patients. The analyses for the tracts of inter-
est were restricted to tracts and DTI measures that differed (p <0.10) between the 
full cohort of MCI patients and controls (bold and italic numbers in Table 4.3.3). For 
the left and right CGH, left and right hippocampal volume respectively were the 
most important determinants for FA and RD, with WMH volume as second most 
important determinant in left CGH FA and RD (Table 4.3.5). In these tracts lower 
hippocampal volumes and higher WMH volume were associated with lower FA and 
higher RD values (Table 4.3.5). Within the FMI, WMH volume was the most im-
portant determinant for FA, followed by age. In this tract, higher WMH volume and 
higher age were associated with lower FA values. The stepwise regression analyses 
within the whole brain NAWM showed that WMH volume and left hippocampal 
volume were significant predictors of FA within whole brain NAWM, and age at 
scan for RD within whole brain NAWM.
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Discussion

In the present study we examined the role of CSVD, represented by the extent of 
WMH and the presence of lacunar infarcts, in white matter microstructure dete-
rioration in MCI. We found microstructural changes in several NAWM regions 
throughout the brain in MCI patients with CSVD as compared with controls and 
MCI patients without CSVD. Moreover, the presence of macrostructural manifes-
tations of CSVD on MRI in patients with MCI was found to be one of the most im-
portant determinants of microstructural deterioration within the NAWM of fiber 
tracts interconnecting several brain regions involved in the default mode network, 
as well as within the whole brain NAWM. 

Strengths of the present study are first, that all our analyses were restricted to the 
NAWM. As it is known that the white matter microstructure is affected in WMH 
regions,40 global white matter analyses would be biased by WMH load. Second, the 
subdivision of MCI patients into MCI patients with and without CSVD was based 
on a semi-quantitative rating scale often used in clinical practice.48 Therefore, our 
results can easily be translated to common clinical practice and other studies. While 
this is an important advantage of the use of this rating scale, it has to be noted that 
WMH on FLAIR MRI are recently found to represent the tail of a continuous dis-
tribution of white matter damage,41,69 and dichotomization of CSVD on the basis 
of visually appreciable WMH can therefore be questionable. A final strength of this 
study was the fact that we used several advanced DTI post processing techniques as 
well as automated MRI tissue segmentation. By using an automated tractography 
procedure based on standard masks, we avoided the subjectivity and reproducibili-
ty issues of manually drawing and placing ROIs as a starting point for tractography. 
A limitation of our study is the lack of information on biomarkers reflecting amy-
loid β in our MCI population, as suggested by Albert et al.1 While this information 
may have aided in our knowledge of etiology in our clinical cohort of MCI patients, 
the use of particularly amyloid positron emission tomography in a clinical setting is 
hampered by the fact that it still requires further longitudinal research, and is not 
widely available for clinical practice. The information we have on APOE4 status in 
the MCI patient groups is difficult to interpret, as prevalence is higher in MCI pa-
tients with CSVD as compared with MCI patients without CSVD (respectively 72% 
and 47%). This can be explained by the fact that APOE4 status is associated with 
AD pathophysiology as well as arteriosclerosis70 and cerebral infarction.71 The role 
of APOE4 in vascular or mixed (AD and vascular) conditions however, has yet to 
be further elucidated. Another limitation is the age difference between controls 
and MCI patients, as a result of our inclusion method. Although control subjects 
had to be at least 65 years of age, they were not specifically age or sex matched with 
MCI patients. While we expect that we have dealt with this potential problem by 
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regressing out the effects of age and sex in all between group analyses, there is a 
possibility that there are still residual confounding effects of age. A final possible 
limitation is the use of relatively new analysis techniques like probabilistic tractog-
raphy, as there are no gold standards yet for these advanced methods. For example, 
we made use of a threshold of 0.005 on the basis of apparent similarity between 
the resulting masks and delineations as obtained with deterministic tractography 
protocols of Mori et al.,64 Stieltjes et al.,65 Wakana et al.66 and Wakana et al.67 While 
we have to aknowledge that this may affect our segmentation results, it is import-
ant to note that probabilistic tractography is less constrained by thresholds on the 
diffusion measurements than deterministic tractography approaches, which adds 
to its robustness.

Table 4.3.4 
Tract volumes and percentages of WMH per tract in controls and MCI patients

Values are unadjusted means of tract volumes in mm3, or mean percentages (standard devia-
tion); refer to Table 4.3.3 for tract abbreviations.

Tracts Controls Total 
MCI

MCI 
without 
CSVD

MCI with 
CSVD Controls Total 

MCI

MCI 
without 
CSVD

MCI with 
CSVD

CGC l 1490.3 
(302.4)

1474.4 
(230.3)

1465.6 
(263.2)

1492.0 
(152.2)

0.02 
(0.06)

0.06 
(0.20)

0.04 
(0.18)

0.10 
(0.24)

CGC r 1392.8 
(228.1)

1404.1 
(262.3)

1412.3 
(274.8)

1388.9 
(246.4)

0.01 
(0.05)

0.20 
(0.82)

0.01 
(0.03)

0.56 
(1.34)

CGH l 1362.9 
(225.4)

1367.8 
(268.0)

1349.8 
(244.7)

1395.8 
(305.0)

0.18 
(0.27)

0.41 
(0.92)

0.23 
(0.48)

0.70 
(1.32)

CGH r 1345.0 
(190.0)

1344.4 
(235.7)

1308.4 
(243.7)

1400.3 
(216.8)

0.09 
(0.11)

0.39 
(0.70)

0.22 
(0.31)

0.66 
(1.01)

SLF l 4416.4 
(478.4)

4279.7 
(815.0)

4512.2 
(760.4)

3919.4 
(781.3)

1.61 
(1.95)

5.69 
(10.50)

1.52 
(1.67)

12.16 
(14.6)

SLF r 4087.6 
(533.6)

3986.0 
(795.5)

4096.1 
(731.4)

3815.5 
(877.8)

1.68 
(2.18)

6.02 
(11.3)

1.41 
(1.61)

13.15 
(15.67)

FMI 6813.9 
(948.1)

6040.9 
(1184.8)

6235.3 
(1005.1)

5739.5 
(1393.5)

0.73 
(0.87)

0.19 
(0.40)

0.61 
(0.56)

3.78 
(5.84)

MCP 4102.9 
(923.4)

3709.4 
(1044.8)

3585.1 
(1132.6)

3902.0 
(885.0)

0.00 
(0.00)

0.00 
(0.00)

0.00 
(0.00)

0.00 
(0.00)

% WMH per tractTract Volumes
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In MCI patients with CSVD we found damage of the NAWM microstructure in 
several WM regions throughout the brain, namely within the genu of the corpus 
callosum, the internal and external capsule bilaterally and periventricular white 
matter regions. These findings are in line with a recent DTI study of patients with 
subcortical ischemic vascular dementia, in which the same fiber tracts were found 
to be affected,36 Our findings furthermore suggest that NAWM microstructur-
al changes are associated with the presence of CSVD in MCI, which is in line with 
studies in healthy elderly,42,72 and in diseased elderly.41 Most previous DTI studies 
in MCI however failed to control for WMH load or any other expression of CSVD 
on MRI,28,30,32,37,39 and subsequently attribute findings of widespread microstructural 
damage to AD-related neurodegeneration.30,37,73 Even though it was shown that the 
widespread pattern of white matter deterioration cannot be explained by grey mat-
ter atrophy.74 In line with a recent study of De Groot et al.,69 we would suggest that 

Dependent variable Predictors β Value p Value

FA CGC r 1. White matter volume 0.638 <0.001

FA CGH l 1. Left hippocampal volume 0.53 <0.001

2. WMH volume -0.327 0.012

FA CGH r 1. Right hippocampal volume 0.392 0.005

FA FMI 1. WMH volume -0.492 <0.001

2. Age at time of scan -0.343 0.004

MD CGH l 1. Age at time of scan 0.385 0.006

MD CGH r – – –

RD CGH l 1. Left hippocampal volume -0.521 <0.001

2. WMH volume 0.383 0.003

RD CGH r 1. White matter volume -0.810 0.003

2. TIV volume 0.597 0.035

FA whole brain NAWM 1. WMH volume -0.493 <0.001

2. Left hippocampal volume 0.260 0.049

MD whole brain NAWM – – –

AxD Whole brain NAWM – – –

RD whole brain NAWM 1. Age at time of scan 0.328 0.019

Table 4.3.5 
Results of the stepwise regression model in tracts of interest and whole brain NAWM

Significant predictors in a stepwise regression model. WMH: white matter hyperintensity. TIV: 
total intracranial volume; refer to Table 4.3.3 for tract abbreviations. Volumes in ml. Beta values 
are standardized coefficients. 
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the changes in the NAWM microstructure specifically found in MCI patients with 
CSVD and not in those without CSVD represent an early stage of vascular damage 
preceding the development of macrostructural lesions in the NAWM.41,72,75,76 

Relative to controls, MCI patients without CSVD showed microstructural deterio-
ration within the right perforant path, a fiber tract connecting the entorhinal cortex 
and the hippocampus,77 thought to play an important role in the limbic system.78 
This finding within a group of MCI patients with a clinical, cognitive and patho-
physiological profile of early AD without any macrostructural and clinical signs of 
vascular interference is in line with other DTI studies in MCI and AD, that report-
ed either anterior temporal lobe microstructural damage, or specific perforant path 
deterioration.29,79,80 Moreover, Damoiseaux et al.79 found DTI changes in AD con-
fined to the anterior temporal lobe in a whole brain TBSS analysis, when explicitly 
excluding subjects with macrostructural white matter abnormalities on MRI. Our 
results are furthermore consistent with current knowledge of neuropathological 
processes in AD,81 in which the entorhinal cortex, hippocampus and other regions 
in the medial temporal lobe are known to be affected early in the disease process. 

There is much debate concerning the pathophysiology underlying white matter ab-
normalities in MCI. One theory states that microstructural changes occur as a pro-
cess secondary to grey matter atrophy, so-called Wallerian degeneration.38,73 Changes 
in CGH microstructural integrity were for example found to be related to atrophy of 
the hippocampal formation.82,83 Another theory focuses on the role of microvascu-
lar changes in white matter pathology, i.e. a process directly affecting the white mat-
ter.73 Within the full cohort of MCI patients we found a relationship between CGH 
microstructure and ipsilateral hippocampal volume as well as the presence and ex-
tent of macrostructural manifestations of CSVD, in terms of WMH and lacunar in-
farcts. These results suggest that default mode network associated fiber tracts may 
be damaged in MCI as the consequence of both grey matter related Wallerian neu-
rodegenerative and vascular effects. In the present study though, other fiber tracts 
thought to be important in default mode network functioning were found only to be 
affected in MCI patients with CSVD, even when compared with MCI patients with-
out CSVD. Thus, although we did find evidence for grey matter related Wallerian 
related microstructure deterioration, vascular effects seem to be most prominent. 
The localization of a tract might be decisive here, as tracts nearby the ventricles are 
known and shown to be susceptible to vascular damage (the FMI),84,85 while tracts 
connecting degenerating grey matter regions show influence of atrophy, i.e. Walle-
rian influence (the CGH, the perforant path), and white matter near the brain stem 
was not affected (the MCP). To examine the grey matter related Wallerian influence 
more closely, a voxel based morphometry analysis, in which VBM measures within 
distinct brain regions are related to DTI measures will be particularly interesting. 
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We measured white matter microstructure not only in terms of FA and MD, but also 
with respect to the directional properties of diffusion, i.e. axial and perpendicular 
diffusivity. Studies in mice suggest that a difference in the pathophysiology under-
lies axial and perpendicular diffusivity, as axial diffusivity was found to relate to 
axonal injury while perpendicular diffusivity was linked to myelin damage.86,87 In 
the current study we found that axial diffusivity was less sensitive in distinguishing 
MCI patients from controls compared with the other DTI measures, suggesting lit-
tle axonal injury in our MCI patient cohort. Perpendicular diffusivity increase was 
found primarily in MCI patients with CSVD compared to either controls or MCI 
patients without CSVD. This indicates that the underlying pathophysiology in our 
cohort of MCI patients with CSVD would primarily be myelin loss. Interestingly, 
myelin damage was found to be associated with transmission velocity reduction,10 
which might be the link between changes in myelin basic protein and the typical 
cognitive profile of decreased psychomotor speed in elderly with CSVD.88,89

The pathological mechanisms of Alzheimer’s disease and cerebral vascular dam-
age have traditionally been considered separate, sometimes even mutually exclu-
sive.49,90 The fact that in a large proportion of dementia cases underlying pathology 
was mixed, i.e. combined vascular and neurodegenerative pathology at autopsy, as 
well as on MRI,7,11,91 contradicts this view. In the present study we show that grey 
matter atrophy related to AD and vascular damage both affect the white matter. 
Whether the different pathological processes influence each other, as suggested by 
studies reporting a reciprocal effect of vascular insufficiency promoting neurode-
generative changes and vice versa,92 are synergistic or additive to the clinical and 
cognitive syndrome has yet to be further elucidated. We however think that where 
AD pathology affects mainly the grey matter, CSVD is responsible for the majority 
of white matter damage in MCI, thereby affecting the white matter interconnecting 
important grey matter regions, and interfering with neuronal network functioning. 

Conclusion

This study indicates that in patients with MCI, CSVD affects the brain’s white mat-
ter more extensively than the macrostructural findings visible on T2-FLAIR im-
aging. We found evidence of vascular disease related microstructural damage in 
important fiber tracts that subserve the default mode network. We postulate that 
such damage interferes with the normal functioning of the default mode network 
and consequently cognitive functioning. Our results also highlight a probable role 
for atrophy driven degeneration of white matter microstructure and therefore point 
towards a neuropathological white matter substrate in MCI in which both direct 
vascular damage and grey matter atrophy related Wallerian degeneration play a role. 
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General Discussion

In this thesis, I have explored white matter microstructure using multi-subject dif-
fusion MRI data in the context of aging, small vessel disease and cardiovascular 
risk. I have developed and evaluated automated approaches for the investigation 

of diffusion MRI data in large cohorts, and have applied these to participants of the 
Rotterdam Study. In the following chapter, I will first discuss my main findings and 
will place them in the context of existing research. I will then discuss some method-
ological considerations of my work, after which I will discuss future perspectives of 
the large-scale analysis of white matter microstructure in population-based cohorts. 

Interpretation of main findings

The aims in this thesis were to develop new analysis approaches for the investigation 
of white matter microstructure in elderly subjects, and to apply these in the setting 
of large population-based cohorts. In this section I will discuss my main findings 
in the same order in which they were presented in this thesis: first methodological 
improvements, then their application in aging and finally the application in small 
vessel disease. In this last application, I separately discuss the impact of concomitant 
macrostructural white matter pathology, cerebral microbleeds and mild cognitive 
impairment with and without small vessel disease on white matter microstructure.

Improving cross subject diffusion analysis

The cingulum
The cingulum is part of the limbic system, connecting the thalamus to the hippo-
campus, and the hippocampus to multiple cortical regions along the cingulate bun-
dle. With the hippocampus affected early on in Alzheimer’s disease,1 investigating 
its most important white matter connections is highly relevant.2 The cingulum is a 
thin, wire-like structure which may be hard to identify,3 but for which protocols for 
manual initialization of tractography have been published.4,5 Different segments of 
the cingulum provide a slightly different set of connections as fibers branch off over 
most of its course. It is therefore too simplistic to assume constant microstructural 
appearance over its trajectory, leading many researchers to separate or parameterize 
the cingulum over multiple segments.6–12 To take this approach one step further, we 
investigated feasibility of seeding tractography along the entire trajectory, while it-
eratively pruning fiber tracts that do not appear to be part of the structure. Using this 
approach, we were able to identify the cingulum continuously from its hippocampal 
connection to its anterior inflection point around the genu of the corpus callosum. 
Using this method, we could confirm asymmetry findings for the cingulate gyrus 
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part of the cingulum,6–8 and newly identified an inverted (right higher than left) 
asymmetry in FA for the parahippocampal part of the cingulum.7 However, we also 
ran into the limitations of deterministic tractography in the population-based DTI 
data used. 

Deterministic tractography, elegant for its simplicity, and fast to perform, has trou-
ble accounting for the uncertainty in the direction of single fiber populations, and 
cannot cope with crossing fibers.13–16 A considerable prevalence of such complex fi-
ber anatomies has been shown in several studies.13,17 Additionally, the acquisition 
matrix of the Rotterdam Study diffusion data is relatively coarse, which further 
aggravates the problem. As a result, we especially experienced difficulty extracting 
the curved cingulum segments around the corpus callosum. We hypothesized that 
incorporating the uncertainty in the fiber direction, and modeling fiber populations 
individually, could improve results. Our next approach for automated tractography 
was therefore based on probabilistic tracking and modeling of the different fiber 
populations in each voxel. While for the cingulum this meant switching to indi-
vidual definitions of the parahippocampal and cingulate gyrus parts, this resulted 
in a much more robust extraction of fiber tracts than with the deterministic trac-
tography. In this next approach, we adopted protocols for deterministic tracking of 
white matter tracts4,5,18,19 for automated probabilistic tracking,12 to allow evaluation 
of image registration performance. 

Improving diffusion image registration 
To cope with change of a single subject’s anatomy over time or across different 
participants’ brains, image registration is commonly used to establish correspon-
dence between images. Registration essentially is an optimization problem aimed 
at getting the best image similarity across images weighed against a cost-function 
penalizing deformations and displacements. As registration approaches perform an 
essential, non-trivial task in many neuro image analysis approaches, much effort 
has been invested in improving various aspects of this task.20–28

While these improvements aim to most effectively use all available image and an-
atomical information, this poses a fundamental problem with evaluation, as the 
criterion for assessing registration accuracy should be independent of the metric 
optimized in the registration. Evaluation of image registration needs to assess the 
level of correspondence obtained, which ultimately requires the use of the ground-
truth correspondence that is generally not available.29 This leaves data-driven eval-
uation as a viable alternative.21 For diffusion MRI, this suggests a potential role for 
the anatomical information that can be extracted with tractography, provided the 
registration procedure did not use this information already. The feasibility of us-
ing tractography in registering diffusion datasets has been shown,27,30–36 but mostly 
for estimating affine transformations as the information in tractography is relatively 



194

chapter 5 | general discussion

sparse. Alternatively, tractography has also been used for evaluating the accuracy 
of registrations obtained using more conventional similarity metrics.21,22,24,28,37,38 The 
latter strategy offers an evaluation that is not biased by the similarity metric opti-
mized in the registration, and directly probes the accuracy of anatomical correspon-
dence.21,29 

In this thesis I have demonstrated that tract similarity is a highly reproducible met-
ric, which is sufficiently robust to optimize parameter settings for registration algo-
rithms. Using this evaluation framework, we were able to show that for two widely 
used image registration algorithms, FNIRT39 and elastix,40 high resolution registra-
tions outperform the registration-projection cascade used in the popular tract-based 
spatial statistics (TBSS) approach.41 This finding has since then been confirmed by 
another study.42 Tract similarity evaluation showed some general trends for image 
registration in FA images, i.e.: 1) Over a population of 30 subjects, the average reg-
istration performance was highly reproducible. 2) The optimal registration param-
eters depended on the quality of the dataset in a graded and therefore controllable 
manner. 3) It was better to use regularization to control the dimensionality of the 
optimization problem, than to lower the resolution of the transformation. 

While future studies are expected to benefit from the optimized registration param-
eters, and from the improved image alignment in TBSS, also the automated trac-
tography protocols that resulted from our study could be useful. They allow fully 
automated, unsupervised probabilistic tractography for 27 white matter structures. 
For this reason, we decided to make these protocols publicly available* and have also 
applied them ourselves in the context of a large study on tract microstructure and 
age. 

Longitudinal image analysis
White matter lesions (WML) are often seen on brain MRI in aging persons and are 
thought to reflect underlying small vessel disease. They are most commonly iden-
tified on FLAIR images, on which they appear as hyperintense signal areas. WML 
have been related to increased risk of stroke and dementia43–45 but their develop-
ment is still not fully understood. In a recent paper, Maillard et al.46 investigated 
the idea of using the continuous FLAIR intensity47 to study development of white 
matter lesions. Altered FLAIR and diffusion measurements, in both the penumbra 
around WML, as well as in the normal-appearing white matter that converted to 
WML corroborated the hypothesis of gradual lesion formation.46,48 However, influ-
ence of partial volume effects and of spatial dependencies acting on WML formation 
and on diffusion measurements could not be ruled out. Therefore, we developed 
a longitudinal analysis approach that aimed to overcome these limitations. In the 
approach, we first symmetrically49 established inter-subject correspondence, then 
intra-subject correspondence, and finally performed region-matching between cas-

*  http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
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es and controls. With this approach we investigated a population of nearly 700 par-
ticipants (mean age 66.9 years), who were rescanned after 3.5 years. We were able 
to demonstrate that the normal-appearing white matter tissue that later converts 
to WML is already different before the conversion. This was true for both WML 
growth, as well as for WML that formed de-novo in the normal-appearing white 
matter. Furthermore, we showed that whereas FLAIR and diffusion measurements 
showed similar trends, there was also an independently informative component in 
each of the measurements. The core of the longitudinal registration framework used 
in this analysis was later in this thesis adopted to create a longitudinal version of 
TBSS for the investigation of change in microstructure in relation to age and cardio-
vascular risk factors. 

Diffusion imaging in aging

With increasing myelination of axons in the developing brain, diffusion indices of 
white matter microstructure show increasing organization, peaking somewhere be-
tween the end of the second decade and the beginning of the fourth decade of life, 
depending on the region studied.50–52 After plateauing, white matter diffusion indi-
ces rather start to reflect microstructural deterioration. Generally, cross-sectional 
research in aging subjects has shown a widespread reduction of white matter mi-
crostructure, reflected in decreased FA, and increased MD with higher age.53–55 Few 
studies have however investigated microstructure in a longitudinal setting,56–58re-
quiring that we should interpret these results with care. Also, to what extent these 
changes in diffusion properties were explained by concomitant macrostructural 
white matter pathology remained understudied.59 Through our longitudinal inves-
tigation of change of microstructure in aging we could investigate whether changes 
found in a cross-sectional design are confirmed in a longitudinal study design. In 
addition, we were the first to show data that strongly suggest a relative sparing of the 
motor tracts, something that was previously described in patients with Williams 
Syndrome,60 and with Alzheimer’s disease.61 Aging research has taught us that there 
are widespread associations with age in most of the white matter. Our longitudinal 
study in over 500 persons (mean age 69.9) over a scan interval of two years found 
significant change in 79.4% of the white matter skeleton, consistent with a linear 
decline with age. These findings were much more widespread than the loss of mi-
crostructure we previously observed with higher age in the cross-sectional analysis 
of microstructure in relation to small vessel disease. We additionally identified that 
white matter degeneration was more pronounced with higher age, which we were 
not able to identify cross-sectionally, and which has not been shown before in lon-
gitudinal investigations.
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Investigating white matter microstructure in tracts with increasing age, we identi-
fied degeneration in association, commissural and limbic fibers. For all tracts, except 
for the cingulate bundle, we could attribute this loss partially to macroscopic white 
matter changes as expressed in white matter atrophy and WML load. Sensorimotor 
tracts were relatively spared with aging, as indicated by increased mode of anisotro-
py and FA, combined with increased diffusivities.61,62 Independently from age and 
macroscopic white matter changes, we observed worse tract-specific microstruc-
ture in persons with severe hypertension, diabetes mellitus, and in current smok-
ers. We also found increased rates of change with age for subjects with hypertension 
and carriers of the Apolipoprotein E (APOE)-ε4 risk allele. These findings further 
corroborate the impact of cardiovascular risk factors on brain health,63–68 and trans-
late into effective brain age differences of up to 8 years for smoking, 9 years for di-
abetes and 5 years for subjects with severe hypertension. That we did not find clear 
differences in white matter microstructure for APOE ε4 allele carriership, the stron-
gest genetic risk factor for AD in the general population,69 was however unexpected. 
While previous studies into the effect of APOE and white matter microstructure 
showed widespread changes in smaller cohorts,63,70–72 there is increasing evidence for 
structural white matter differences in APOE ε4 carriers over the lifespan.73

Functional studies have illustrated potential compensational mechanisms in 
APOE ε4 allele carriers,74,75 and as structure has been shown to follow function76 the 
observed differences in microstructure may underestimate the true impact of the 
risk allele on cell membranes. While this does not explain the apparent disagree-
ment of our observations and previous reports, it does indicate the complexity of 
the processes involved, and warrants future investigations in this matter. 

Diffusion imaging in small vessel disease

Concomitant macrostructural white matter pathology 
It is important to note that, over the lifespan, many processes simultaneously act 
on, and change the composition and structure of the white matter.77 White matter 
atrophy and WML load have been linked to various (cardiovascular) risk factors and 
pathologies and the (non-trivial) relation between these macrostructural changes to 
changes in white matter microstructure is poorly understood.44,77,78 In an attempt to 
disambiguate different aspects of tissue change, it is therefore essential to take mac-
rostructural changes into account when investigating white matter microstructure. 
In our analyses, microstructural changes could always at least partially be explained 
by macrostructural changes. 

While indeed some changes in microstructure might directly reflect changes in 
white matter macrostructure, our data on normal-appearing white matter convert-
ing to WML also corroborate that macrostructural manifestations of small vessel 
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disease are just the tip of the iceberg of white matter pathology.46,79 Furthermore, the 
variance in diffusion measurements not explained by global indices of macrostruc-
tural white matter change indicate that there is either nonlinear development of this 
pathology, or additional pathophysiology detected with DTI. Also, we have reason 
to believe that more variance in tract microstructure is explained by tract-specific 
rather than global WML load. Therefore we argue that, even though there is a com-
mon trajectory of WML development,80 there is spatial variation on this pattern that 
reflects local white matter changes.81 

Cerebral microbleeds
Cerebral microbleeds (CMB) reflect small brain bleeds that can be observed on MRI, 
owing to the paramagnetic properties of the hemoglobin deposits.82 While the 
etiology of microbleeds is still debated, they have been linked to arteriolosclero-
sis and cerebral amyloid angiopathy,83 which are both small vessel diseases. There 
is preliminary evidence that CMBs in stroke patients relate to an increased risk of 
recurrent ischemic or hemorrhagic stroke.84 However, in this debate, it is still un-
clear what CMBs in asymptomatic individuals reflect and whether in these subjects 
a single CMB has clinical relevance.85 In that respect it is relevant that we identified 
a gradually worse systemic white matter microstructure with increasing numbers 
of CMB when investigating a population-based sample of almost 4,500 participants 
(mean age 63.9). We also showed that a single microbleed was already associated 
with worse white matter microstructure. These findings further support the notion 
that CMBs reflect underlying widespread small vessel disease, even in communi-
ty-dwelling subjects.

Small vessel disease in mild cognitive impairment
Small vessel disease frequently occurs in patients at risk for, or diagnosed with Alz-
heimer’s disease.80,86 Besides this co-occurrence, there is also increasing evidence for a 
more involved role of small vessel disease in the pathophysiology of the neurodegen-
erative disease.87,88 Altered microstructure was observed in patients with mild cog-
nitive impairment (MCI), who are at high risk for developing Alzheimer’s disease.2 
However, no studies have investigated how the presence of small vessel disease affects 
white matter microstructure in this risk group. By assessing the impact of small vessel 
disease on white matter diffusion in this population, we showed that these macro-
structural changes also explain a large part of the microstructural changes observed 
with MCI. These findings suggest that future studies of white matter changes in MCI 
and Alzheimer’s disease would benefit from incorporation of both markers for small 
vessel disease markers and macrostructural white matter changes into the analysis. 
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Methodological considerations

One characteristic aspect of the work presented in this thesis is that diffusion im-
aging is used to study white matter microstructure. Another characteristic is that 
both studies were conducted within the setting of a large population-based cohort. 
There are several methodological considerations that pertain to both of these char-
acteristics and which are briefly discussed below. Firstly, to what extent diffusion 
data can be used to infer information on underlying white matter architecture is a 
point of discussion. Secondly, I discuss methodological considerations relating to 
the analytical methods used to study the diffusion data. Thirdly, I discuss consid-
erations with respect to the study design and the processing of very large datasets, 
which includes considerations brought about by the longitudinal nature of a num-
ber of studies. 

Diffusion imaging and white matter architecture

Characterizing white matter microstructure via the diffusion of water is rather indi-
rect. As a result, there is no explicit model of how microstructure relates to measure-
ments, and we are left with a conceptual model that relies on many assumptions. 
Early experiments using diffusion tensor imaging, showed that the major determi-
nants for anisotropy measured with DTI are membranes of the axon and myelin, 
and that fast axonal transport and the axonal cytoskeleton are much less influen-
tial.89 Among the many factors influencing the configuration of these membranes, 
are the axon packing density, the axon diameter and the distribution of axon diame-
ters, which are all thought to vary with age and anatomical location.90,91 While pre-
liminary studies on animal models have suggested that the axial diffusivity is more 
related to axonal loss, and that radial diffusivity is more related to myelination, this 
relation is likely to be much more complex.92 

In the interpretation of diffusion measurements it is generally assumed that the 
investigated anatomy is adequately sampled. With the Gaussian diffusion process 
modeled by the diffusion tensor this means that there should only be a single and 
mono-directional fiber population within each voxel. This assumption will prac-
tically only hold in a minority of the white matter voxels.17,93,94 If a voxel contains 
multiple fibers or a complex anatomy, interpretation of associations on the tensor 
should be made with caution,60,61,95–97 and, provided that sufficient directions and 
b-values can be measured, a higher order model might be considered.16 For diffusion 
data that are acquired under constraints of time or – in a clinical setting – patient fac-
tors, it will often be difficult to unequivocally solve these issues. Nevertheless there 
are some approaches, also used in this thesis, which can prove effective to better un-
derstand pathological changes that underlie diffusion properties. The tensor-based 
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mode of anisotropy, for example, is mathematically independent from the FA and 
MD, and describes the needle-ness of the diffusion tensor.62 Using this triplet of 
measurements has aided in the identification of selective degeneration in the superi-
or longitudinal fasciculus in Alzheimer’s disease, with relative sparing the crossing 
sensorimotor tracts.61 

While the simpler tensor model requires less data than higher order diffusion mod-
els, this does allow for short acquisition times which are a necessity when multi-se-
quence MRI needs to acquired in elderly volunteers. With faster acquisition schemes 
and higher magnet strength, however, more advanced models are coming in reach 
for population studies and for potential clinical use, offering measurements of bio-
physical properties such as mean axon diameter or myelin water fraction that are 
less convoluted.98

Analytical approaches for diffusion MRI

Different from the signal intensity in most routinely acquired MR imaging data, 
diffusion measures can be interpreted quantitatively. In order to characterize tissue 
properties, many analytical approaches have been proposed, with varying degrees 
of complexity, both with respect to interpretation and implementation. In this the-
sis, we have adopted existing approaches and have expanded on some of them, all 
targeted to investigate different aspects of the white matter microstructure, espe-
cially in the context of large population studies.

We investigated ‘systemic’ normal-appearing white matter changes in relation to 
aging, vascular risk factors, the occurrence of cerebral microbleeds, and in the con-
text of mild cognitive impairment and small vessel disease. By aggregation of diffu-
sion measures over the entire normal-appearing white matter, changes in the bulk 
of the white matter tissue can be investigated. The approach is straightforward to 
apply and statistically powerful. However, systemic changes over the entire white 
matter volume are assumed, which may not be in line with the underlying biologi-
cal process. Another disadvantage of the technique is that thinning of white matter 
tracts will increase partial voluming in the measurements78 because the periphery of 
the white matter is explicitly included, making it hard to disambiguate macrostruc-
tural and microstructural changes. Correcting analyses for the white matter tissue 
volume may compensate for linear effects, but higher order effects might also be 
present. Solutions could be found in the voxelwise correction for partial volume ef-
fects e.g. by using a highly accurate tissue segmentation,99,100 or in the incorporation 
of neighborhood information by means of the tensor covariance.101 
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Regional measurements are, by virtue of the matched filter theorem, most sensitive 
to change expressed in the entire region.102 They are therefore best suited to inves-
tigate conditions in which a strong regional dependency is hypothesized, e.g. with 
cerebrovascular pathology80 or Wallerian(-like) degeneration.103 Whereas manu-
ally defined regions-of-interest (ROI) are practically unfeasible for large cohorts, 
automated ROI definition can be challenging. In our research, we have used trac-
tography-based segmentation of 25 white matter tracts to (effectively) obtain ROIs 
of entire tracts to aggregate diffusion measurements per tract. While this reduces 
the complexity of the analysis considerably compared to voxel-based analysis, the 
multitude of tracts and models quickly leads to analyses that become difficult to 
interpret. For this reason, we have not yet ventured into comparing measurement 
distributions inside tracts, e.g. analyzing higher order descriptors like standard devi-
ation, skewness and kurtosis, or even the full histogram of measurements within a 
tract.104,105 Tract-based ROIs, like global measurements also contain tract periphery, 
making them also vulnerable to partial volume effects. 

Aggregation over larger areas can be adopted if white matter changes of similar 
extent are hypothesized. Investigating white matter changes in a voxelwise man-
ner relaxes the assumption of widespread involvement, but requires very accurate 
anatomical alignment of the region of change. Yet, voxelwise analysis is probably 
the most widely used approach for investigating diffusion data, especially since the 
introduction of the tract-based spatial statistics (TBSS) approach.41 Initially we ap-
plied TBSS with the recommended registration to the (population specific) most 
representative brain. However, as registration algorithms improved, the approach 
was updated (version 1.1) to support registration to an FA template, thereby great-
ly reducing the computational load. We further improved the spatial alignment in 
TBSS by introducing an optimized, high-dimensional non-rigid registration in fa-
vor of the registration-projection cascade initially used in TBSS. We evaluated this 
improvement in an example experiment and finally applied it in a large longitudinal 
analysis. TBSS is (relatively) insensitive to potentially interesting effects in the tract 
periphery, it might not extract an anatomically perfect skeleton and may hide im-
portant details from the end user,95 but it has empowered neuroscientists and clin-
ical investigators with a versatile approach that is straightforward to apply. In that 
sense, it serves as an example for algorithm developers looking to contribute more 
broadly to the neuroimaging field. 

TBSS however, lacks the incorporation of anatomical information that many trac-
tography approaches offer. The two paradigms can be seen as complimentary, with 
tractography-based analyses offering much greater power in exploring effects on the 
whole tract or effects along the tract using a parameterization similar to our approach 
in the cingulum, or much more detailed.8,11,106–109 Ideally, the approaches should be 
integrated, e.g. by building an analysis space in which tracts and regions of cross-
ing fibers are modeled explicitly. Approaches that integrate information along the 
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tract,110,111 in such a way as to identify the ‘weakest link’ do not even require damage 
to the tract to occur at the same site. These approaches do however also implicitly 
assume a uniformity of connections for all fibers within a tract, i.e. a single function 
for the entire tract, which for e.g. the cingulum may be hard to justify.

Study population

The research described in this thesis was predominantly performed in the context of 
the population based Rotterdam Study, a study aimed to investigate diseases of the 
elderly. All participants were free from clinical dementia at time of MRI, and repre-
sent a sample from the general aging population. Yet, the long prodromal phase of 
many neurodegenerative diseases undoubtedly means that also in our population, 
neurodegenerative pathology was present. For Alzheimer’s disease, population 
based studies in slightly older populations estimate the prevalence of pre-clinical 
pathology in the order of 30%.112,113 Not all participants with amyloid pathology will 
eventually develop Alzheimer’s disease, but combined with other incipient (e.g. 
vascular) diseases, this does illustrate the high prevalence of pathology in this sam-
ple of presumed ‘normal’ aging. It might even be postulated that all changes to white 
matter microstructure found on imaging in aging subjects could be attributed to 
varying degrees of underlying brain pathology. Regardless of the exact pathological 
underpinning of these imaging findings, describing observations in ‘normal’ aging 
contributes to the establishment of reference values and adds understanding to in-
vestigation of specific pathologies. 

The age range of the investigated population, 45 years and over, is just outside the 
period of neurodevelopment as observed by lifespan studies of diffusion.50,52,59,114–116 
This has some consequences for the modeling of associations with age,117 as we may 
expect some influence of the proximity of the inflection point between net devel-
opment and net degeneration identified in these lifespan studies. With higher age, 
interaction effects between risk factors might also contribute to accelerate micro-
structural deterioration. This means higher order models should always considered 
when investigating changes in this age range. In the work presented in this thesis, 
however, we only identified non-linear associations with age in our longitudinal 
analysis of microstructure.
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Automated analysis of large datasets

Whenever the volume of image data outgrows the size of what is feasible to inspect 
and handle visually and/or manually, there is a need for (semi) automated analysis 
tools. Above all, these tools need to be robust, but they can be so at the expense of 
computational cost and or generalizability with respect to heterogeneity of the type 
of input data. 

Robust, automated methods require less supervision, but unless properly managed, 
increase the risk of being used without any supervision. As population imaging 
data, acquired using strict routines will also yield incidental findings118 and imaging 
artifacts, no pipeline should be run without inspection95,119 or at the very least some 
exception detection. An approach that worked well in our research has been to ren-
der compilations of views to reduced resolution previews, enabling quick review of 
processing steps with minimal data-handling overhead. 

With large cohorts comes increased statistical power to detect differences. With 
that, estimates for effect sizes become more interesting, while raw significance be-
comes less meaningful. Especially in voxelwise statistics this issue has not yet been 
widely addressed, but this might change as more and more population imaging 
studies are being performed. 

Longitudinal data analysis
Imaging data acquired at different time points in a longitudinal study offer a much 
closer assessment on causal relationships than do cross-sectional studies, by virtue 
of much fewer assumptions on the source of explained variance. Also, investigating 
change over repeated visits effectively regards subjects as their own control, taking 
away the inter-subject variation encountered in cross-sectional analyses, thereby 
increasing the statistical power of longitudinal study designs. Intra-subject fluctua-
tion, noise in data and measurement errors are however present, which might give 
rise to implausible observations such as loss of white matter lesions. These observa-
tions can be confusing, while understandable from a technical point of view. 

Longitudinal analyses do, however, make strong assumptions on the consistency of 
the data acquisition over time. While scanners that are fully dedicated to research 
applications can be excluded from routine updates that might affect data continuity, 
hardware replacements and drift in scanner component specifications are harder to 
control. Phantom based quality control could help, but requires consistency of the 
phantoms. Also, this approach might not be able to identify all sources of change, 
and identified changes may not always be correctable. While acquisitions should 
ideally be truly quantitative and calibrated, this would still leave ambiguity in in-
terpreting results as long as the measured physical quantity is influenced by many 
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tissue properties. In that sense, striving for maximum SNR over acquisition time, 
while compensating scanner effects using image based corrections77,78 might offer a 
reasonable compromise, with a potential role for transfer learning techniques that 
are being developed to overcome scanner differences.120 

Future perspectives

Analytical approaches

Methods for analyzing cross-subject diffusion data increasingly integrate multiple 
imaging modalities (e.g. structural and functional imaging121,122) and prior knowl-
edge.123 Improved image registration techniques for example, unlock the potential of 
resources ranging from atlas based structure segmentations to gene expression brain 
maps.124,125 Atlas based tractography is available for many white matter tracts,12,126 
but further integration of anatomical prior knowledge has been limited. The goal 
of further incorporating prior knowledge would be to reduce the dimensionality 
of the analysis in a sensible way. This involves finding sensible support regions for 
associations in tracts,33,127,128 as well as simultaneously investigating changes in dif-
ferent tensor metrics.111,129 Methods analyzing multidimensional information could 
even integrate other image modalities such as the continuous FLAIR intensity or 
voxelwise partial volume estimates of white matter tissue. The multidimensional 
aspect might aid in better discrimination between macrostructural changes and mi-
crostructural changes.

Tractography has often been seeded from regions identified in voxel-based analyses. 
In this hybrid approach, strengths from tractography and voxel-based analyses are 
combined. This concept facilitates multiple novel analysis approaches. First, vox-
el-based studies could draw tract-continuity information from tractography, e.g. by 
introducing a (non-euclidean) distance in the clustering approach that has greater 
proximity for voxels inside the same tract, thereby promoting associations inside 
tracts, or even breaking clusters that run over separate tracts. This would improve 
the specificity of associations found in voxel-based analyses such as with TBSS. An-
other hybrid approach would be to incorporate spatial relations between tracts to 
identify regions of tract-overlap, and to explicitly incorporate the different patterns 
of change affecting the different fiber populations observed in these regions. Even 
if tracts are analyzed as functional entities, this might help us to better understand 
the changes occurring in these mixed fiber regions and better identify persistence 
of white matter microstructure. Thirdly, combining the deterministic tract-prun-
ing approach presented in this thesis for the cingulum with atlas based probabilis-
tic tractography could further enhance the automated delineation of white matter 
tracts. As the use of a large number of anatomical definitions for identifying single 
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tracts has been beneficial for probabilistic tractography,12 seeding and trimming over 
the entire structure could be especially helpful to deal with complex geometry such 
as sharply bending tracts. Lastly, while (advanced) segmentation approaches e.g. us-
ing region growing or graph-cuts have widely been used in medical image analysis, 
little has been done on advanced segmentation of white matter fiber bundles using 
tractography. 130–132 In this work, a hard threshold on the normalized tract-density 
maps was used, but it would be relatively straightforward to incorporate additional 
knowledge and to segment tracts using graph-cuts. The threshold-based segmenta-
tion could be used as initialization on a graph of the white matter tissue segmenta-
tion and/or atlas based prior knowledge of the tract-anatomy. Such an approach is 
expected to produce a much more accurate tract-segmentation.

Contamination of diffusion measurements by neighboring CSF is a well known phe-
nomenon,133–135 limiting the analysis of the (CSF surrounded) fornix especially.136,137 
Changes in fornix microstructure have however been shown to predict cognitive 
decline and progression to Alzheimer’s disease,138,139 which warrants inclusion of 
the fornix in future studies of age related changes. With active development of new 
models that correct for CSF contamination, this should soon enable investigation of 
fornix microstructure in the Rotterdam Study. 

Multidisciplinary collaboration

The analysis of advanced imaging data in clinical or population-based cohorts al-
most always requires multi-disciplinary teams to cover the relevant theoretical and 
practical grounds. As research interests and incentives across technical and clinical 
disciplines are not always aligned, ineffective collaborations may occur and the in-
formation in the data may not be fully exploited. While this touches on the fun-
damental difficulties of multidisciplinary collaborations, some recommendations 
could be made. First, a better focus on the final development stages of new analytical 
approaches would unlock these approaches to a wider audience of clinical research-
ers. To drive this development, the secondary (external) application of techniques 
should be incentivized. This could be achieved by introducing grants to specifically 
fund the last stage of development required for widespread application of methods, 
or by attributing more scientific impact to the adoption of techniques.140 Secondly, 
specifically for existing data that are not publically available, an analysis-hackathon, 
which compels researchers from both domains to jointly work on new analyses, 
could provide new investigations with a head start. In this context, which is espe-
cially relevant in large epidemiologic studies, an integrated analysis team could form 
naturally after an initial round of pitches. A welcome side-effect of this approach 
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would be the direct feedback of clinical researchers on pitched analytical approach-
es. This interaction will likely promote the development of better interpretable and 
more clinically applicable measures.

Data and computational aspects

Confronted with the large number of datasets in the Rotterdam Study, I have in-
vested much time in streamlining and handling of data. However, with growing 
scientific interaction at both the level of the data, as well as at the level of tools, new 
approaches are necessary. 

In the domain of data-sharing, the extensible neuroimaging archive toolkit (XNAT) 
is effectively transforming the way researchers can interact with large datasets, even 
remotely.141,142 By enabling data access over open application programming interfac-
es (APIs), much of the technical limitations in data sharing can thereby be overcome. 
Combined with far reaching anonimization of image datasets, e.g. including defac-
ing of structural images,143 privacy concerns can also be overcome. Enabling access 
to research data has thereby mostly become a political issue. With funding bodies 
and journals increasingly demanding open access to raw research data, access to 
much larger volumes of image data will thereby mostly be a matter of time. For re-
search groups developing analysis algorithms, this means there will be much more 
data for development and (independent) testing, but there will also increasingly be a 
demand for tools that were developed on the data. The popular analogy with genetic 
research, in which consortia include many thousands of participants, might suggest 
that adding participants automatically leads to novel insights. This analogy is how-
ever broken by the intrinsic limitations in establishing anatomical correspondence 
across subjects, and the absence of a brain-structure equivalent to a genetic muta-
tion. Larger datasets will however considerably aid in our understanding of ‘nor-
mal’ change with age, and thereby ultimately provide reference for investigations of 
(neurodegenerative) diseases. 

Besides access to datasets and tools, also results might be released more widely. 
Functional MRI experiments often report their findings to brainmap, an online da-
tabase for storing functional and structural associations. For associations with mi-
crostructural change this way of reporting has not yet been popularized. While it 
may be hard to overcome differences in e.g. skeletons used for analysis, such a re-
source could enable direct meta-analysis of microstructural changes with increasing 
age. A brainmap database of microstructure would therefore be very relevant.
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Concluding remarks

I have introduced new analytical approaches for diffusion and structural MRI that 
improve the correspondence that can be established across subjects. This improved 
correspondence enables detection of microstructural changes that are more subtle 
than the macrostructural pathologies on which previous studies have focused. The 
methods contributed to research in the Rotterdam Study by enabling novel, large-
scale analyses, but should also be useful and beneficial to other researchers. 

I have shown widespread reduction in the microstructural organization of brain 
white matter with increasing age and with various cardiovascular risk factors. The 
extent to which these changes are associated to macrostructural changes lead to two 
important notions. Firstly, it strengthens the hypothesis that white matter is highly 
susceptible to vascular pathology in general, and small vessel disease in particular. 
Secondly, it suggests that studies using diffusion MRI to investigate white matter 
changes should incorporate these macrostructural markers of disease progression 
in order to identify the microstructural aspects of tissue change.

The use of diffusion imaging to support clinical decision-making is still far away. 
However, clinically relevant microstructural parameters are coming within reach.138 
A process aided by the accessibility of diffusion MRI and the increasing availability 
of integrated analysis approaches. While there certainly is heated debate on various 
aspects of the technique, more and more established approaches are being intro-
duced. With this coming of age, diffusion MRI may be nearing the end of adoles-
cence making it an extremely exciting field to work in.
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English summary

As our life expectancy continues to rise, the prevalence of diseases associated 
with aging increases correspondingly. For Alzheimer’s disease, this implies 
that the number of persons affected, directly or indirectly, will rise dra-

matically. Early diagnosis, intervention, and ultimately prevention of Alzheimer’s 
disease are therefore ever more urgent research aims. Advanced neuroimaging 
techniques such as diffusion MRI, which provides non-invasive insight into brain 
changes at the microstructural level, are promising for the identification of changes 
that relate to the early stages of the disease. Disentangling these early pathological 
changes from those in ‘normal’ brain aging however requires more insight in the 
broad spectrum of brain changes that commonly accompany advancing age. In-
vestigating these changes in a population-based context poses novel challenges by 
demanding new and advanced methods for analyzing the large number of subjects 
effectively. 

In this thesis, I therefore presented novel methodology for cross subject image anal-
ysis in diffusion brain MRI. Subsequently, I presented investigations of brain white 
matter microstructure in relation to age, cardiovascular risk factors and macrostruc-
tural white matter changes. Studies focusing on changes in brain white matter mi-
crostructure in the context of small vessel disease were presented last.

Improving cross subject diffusion analysis

The rich characterization of the white matter that is encoded in a diffusion MRI ac-
quisition allows for a wide variety of methods to be applied on the data. Tractogra-
phy methods integrate as much of the local diffusion information as possible with 
the aim of identifying and segmenting entire white matter tracts. To identify the 
cingulum and at the same time parameterize this tube-like white matter structure 
for analysis, an iterative tract selection and pruning strategy was devised (in Chapter 
2.1). With this approach, left-right asymmetry in the cingulum was investigated in 
a group of 500 participants from the Rotterdam Study. The analysis revealed left 
higher than right microstructural organization in the anterior part of the cingu-
lum, and a reverse contrast in the parahippocampal part of the cingulum. The lim-
itations of the deterministic tractography used in this approach did however also 
become apparent, as the cingulum could often not be identified in its entirety. For 
the next approach that relied on extracting white matter structures (Chapter 2.2), 
a more robust strategy based on probabilistic tractography was therefore adopted. 
This chapter focused on the quantitative evaluation of registration accuracy, which 
is relevant as neuroimaging research often relies on image registration for establish-
ing correspondence across subjects. In this work, registration accuracy was defined 
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as the similarity, after registration, of white matter tracts across subjects. We used 
native space tractography that was initialized by anatomic definitions in standard 
space to extract 23 white matter tracts that covered the whole brain. The (highly 
reproducible) registration accuracy measurement was then used to optimize regis-
tration parameters for two widely used registration algorithms, FNIRT and elastix. 
Ultimately we showed that both high degree-of-freedom registration algorithms 
outperformed the registration accuracy of the popular tract-based spatial statistics 
(TBSS) method. This result demonstrates the feasibility of adopting an optimized 
registration approach instead of the registration-projection cascade that is currently 
used in TBSS. 

Establishing anatomical correspondence was also the aim in Chapter 2.3, in which 
we focused on the development of white matter lesions. For this approach, we 
aimed to establish correspondence over multiple (longitudinal) imaging sessions, 
but also across participants in standard space, using a population of just under 700 
participants and a follow-up interval of 3.5 years. By investigating tissue that at fol-
low-up had converted from normal appearing white matter to a white matter lesion, 
we were able to show that this seemingly normal white matter was already different 
before the visually appreciable white matter lesions developed. This difference was, 
furthermore, evident regardless of whether the lesion was growing or newly appear-
ing. These observations support the hypothesis that white matter lesions develop 
gradually, and that they are just the tip of the iceberg of white matter pathology. 
 
 
Diffusion imaging in aging

A better understanding of changes in tissue microstructure with age provides the 
necessary context for the interpretation of changes observed with neurodegenera-
tive diseases. Within the Rotterdam Study, we therefore investigated multiple fea-
tures of microstructural change with age. First, in Chapter 3.1, we focused on change 
in structural connections with aging in a cross-sectional design. By choosing entire 
white matter tracts as regions of interest, we investigated tract microstructure in re-
lation to age, macrostructural white matter changes and cardiovascular risk factors. 
In a population of over 4,500 participants, we measured diffusion characteristics 
in 25 white matter tracts. With increasing age, we observed loss of microstructur-
al organization in association, commissural and limbic tracts. These changes could 
partly be explained by macrostructural white matter changes. Additional loss of mi-
crostructural organization was observed with severe hypertension, current smok-
ing and with diabetes mellitus. While these changes may more sensitively mark 
neurodegenerative pathology than macrostructural white matter changes can, the 
design of the study was cross-sectional. Very few studies have actually investigated 
change in diffusion characteristics over time. In order to investigate changes in tis-
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sue microstructure with increasing age, we therefore performed a longitudinal anal-
ysis, which is described in Chapter 3.2. This analysis was performed in a group of 501 
participants with a follow-up interval of 2.0 years, using the improved version of 
TBSS developed in Chapter 2.2, and using the longitudinal registration framework 
developed in Chapter 2.3. We investigated changes in diffusion measurements over 
time and in relation to cardiovascular risk factors, while constraining the analysis 
to the normal appearing white matter. Over time, we observed reduced fractional 
anisotropy (FA) and increased mean diffusivity (MD) in the majority of brain white 
matter, consistent with reductions in microstructural organization. In the majority 
of the sensorimotor pathways however, we observed an increase in FA combined 
with an increase in MD. These are changes that may reflect relative sparing of the 
sensorimotor pathways in crossing fiber configurations with fibers that follow the 
more general trend of reduced microstructural organization. 

Diffusion imaging in small vessel disease

Cerebral small vessel disease is a condition which affects the smallest blood vessels 
in the brain and which is associated with an increased risk of stroke and dementia. 
Subclinical manifestations of the disease can be seen on imaging as macrostructural 
white matter changes (e.g. white matter lesions and white matter atrophy) and e.g. 
cerebral microbleeds. Assuming that microstructural changes accumulate over time 
into macrostructural changes, and keeping in mind that visible white matter lesions 
appear to indicate only a fraction of the total white matter pathology, it is relevant to 
further investigate how small vessel disease affects tissue microstructure. In an ini-
tial analysis (Chapter 4.1), we investigated white matter microstructure in relation 
to age and macrostructural white matter changes in a population of over 800 partic-
ipants using TBSS. We identified widespread loss of microstructural organization, 
reflected in reduced FA and increased axial and radial diffusivities with increasing 
age. This loss could however be primarily explained by macrostructural white mat-
ter changes, i.e. either by white matter atrophy, or by white matter lesion load. In a 
subsequent analysis (Chapter 4.2), we focused on cerebral microbleeds and white 
matter microstructure. We measured diffusion measurements in the entire normal 
appearing white matter of almost 4,500 participants, and visually assessed their mi-
crobleed status. We identified progressively worse white matter microstructural or-
ganization associated with both presence and number of microbleeds. Interestingly, 
worse microstructure was related to presence of even a single microbleed, suggest-
ing that also microbleeds reflect diffuse white matter pathology beyond the focal 
lesions themselves. 

Microstructural changes associated with mild cognitive impairment have often 
been attributed to Alzheimer’s disease pathologic changes. The relatively high prev-
alence of small vessel disease amongst patients with mild cognitive impairment 
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could however also allow for a vascular etiological pathway. In order to investigate 
this hypothesis, in Chapter 4.3 we compared diffusion characteristics between pa-
tients with mild cognitive impairment and controls, while subdividing the patient 
group into those with and those without evidence of small vessel disease as revealed 
by white matter lesions on MRI. Using TBSS and analyzing tracts that are part of 
the default mode network, we found reduced microstructural organization mainly 
associated with small vessel disease, and only minor differences between patients 
with mild cognitive impairment without small vessel disease and controls. Addi-
tionally, we found evidence of small vessel disease related changes in microstruc-
tural organization in tracts that subserve the default mode network. These findings 
indicate the importance of taking small vessel disease into account when investigat-
ing patients with mild cognitive impairment.

Concluding

In this thesis I have introduced analytical approaches that enable novel analyses 
of brain diffusion MRI data. The improved anatomical correspondence, both over 
time and across subjects, enable more sensitive analyses. The automated tractog-
raphy unlocks a number of advanced analysis approaches for population imaging 
studies, and holds promise for clinical applications. With increasing age and with 
vascular risk factors, we identified loss of microstructural organization in large parts 
of the brain white matter. These changes could only partially be explained by mac-
rostructural white matter changes, and more sensitively reflect subtle white matter 
pathologies. Our findings highlight the sensitivity of the white matter to vascular 
pathology in general, and small vessel disease in particular. Future investigations 
can benefit from this work by adopting or building on the presented methods, and 
also by further investigating the identified microstructural changes with age and 
vascular risk factors. 
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Nederlandse samenvatting

Omdat we steeds ouder worden komen ouderdomsziektes vaker en vaker 
voor. Zo wordt een dramatische toename verwacht van patiënten met de 
ziekte van Alzheimer. Met almaar groeiende inzet zoekt de wetenschap dan 

ook naar manieren om het ziekteproces van Alzheimer dementie te vertragen en 
eventueel zelfs te voorkomen. Voorwaarde hiervoor is echter wel dat de ziekte al 
in een vroeg stadium herkend moet kunnen worden. Met name nieuwe beeldvor-
mende technieken zijn hierbij veelbelovend. Diffusie MRI geeft bijvoorbeeld zon-
der gebruik van ioniserende straling of contrastmiddel inzicht in de veranderende 
microstructuur van de hersenen. Beter begrip van de vroege veranderingen die sa-
menhangen met neurodegeneratieve ziekten begint echter bij een goed begrip van 
de veranderingen die samenhangen met ‘normale’ veroudering. Begrip waarvoor 
bevolkingsstudies, waarin grote groepen vrijwilligers langere tijd gevolgd kunnen 
worden, cruciale inzichten kunnen verschaffen. Om diffusie MRI beelden in zulke 
studies op een effectieve manier te kunnen analyseren, zijn echter nieuwe, geavan-
ceerde methodes vereist. 

In dit proefschrift heb ik meerdere nieuwe methodes beschreven om de analyse van 
diffusie MRI beelden over grote groepen mensen mogelijk te maken. Aansluitend 
heb ik gekeken naar de relatie tussen leeftijd en microstructuur van de witte stof 
van de hersenen. Hierbij heb ik ook de invloed van risicofactoren voor hart en vaat-
ziekten, én de invloed van macroscopische veranderingen in de witte stof meegeno-
men. Macroscopische veranderingen in de witte stof zijn hierbij veel voorkomende 
veranderingen die op structurele MRI scans zichtbaar zijn, waarbij ik onderscheid 
heb gemaakt tussen atrofie (weefselverlies) en het optreden van witte stof lesies. Als 
laatste heb ik de microstructuur van de witte stof onderzocht in relatie tot schade 
aan de zeer kleine hersenvaten, ook wel cerebrale microangiopathie genoemd. Deze 
aandoening komt veel voor, en omvat een scala aan presymptomatische veranderin-
gen in de hersenen die samen hangen met beschadigingen aan de kleinste bloedva-
ten van het brein. De Rotterdam Studie, de bevolkingsstudie waar het grootste deel 
van dit proefschrift op is gebaseerd, volgt nauwgezet de gezondheidstoestand van 
de duizenden deelnemers. Sinds 2005 beschikt de studie ook over een eigen MRI 
scanner waarmee deelnemers volgens gestandaardiseerde protocollen worden ge-
scand. Inmiddels zijn er zodoende al meer dan tienduizend hersenscans gemaakt. 
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Verbeteringen in de analyse van diffusie beelden over meerdere personen

Omdat het diffusie signaal zoals we dat kunnen meten met diffusie MRI zo’n rijke 
beschrijving geeft van de onderzochte witte stof, is er een waar arsenaal aan analyse-
methoden beschikbaar voor deze data. Tractografie combineert zo veel mogelijk van 
de informatie die op iedere anatomische plek in het brein gemeten is, met het doel 
om hele witte stof banen, in feite de verbindingskabels in de hersenen, te kunnen 
onderzoeken. Hoofdstuk 2.1 presenteert een nieuwe methode om het cingulum, 
een draadvormige verbinding die onder meer belangrijk is voor het geheugen, te 
vinden en gelijktijdig te bemeten. Vernieuwend in deze aanpak was het almaar ver-
fijnen van de gevonden bundel door het toevoegen en wegknippen van (delen van) 
vezels die al dan niet onderdeel van de gezochte structuur leken uit te maken. Met 
deze aanpak hebben wij links-rechts asymmetrie onderzocht in een groep van 500 
deelnemers aan de Rotterdam Studie. Hierbij vonden we dat de microstructuur in 
het voorste deel van het cingulum meer georganiseerd was aan de linkerzijde, en een 
omgekeerd verschil vonden wij voor het cingulum ter hoogte van de hippocampus. 
In Hoofdstuk 2.2 heb ik opnieuw tractografie gebruikt om witte stof banen automa-
tisch te vinden. Van de gevonden banen konden er 23 worden gebruikt om de kwa-
liteit van het registreren van diffusie beelden te kunnen meten en verbeteren. Dit is 
belangrijk, omdat door deze registratie anatomisch corresponderende gebieden ver-
geleken kunnen worden tussen verschillende personen: hoe beter de registratie, des 
te nauwkeuriger de analyse. Door het nauwkeurig kunnen vergelijken van verschil-
lende registraties, was het mogelijk om de instellingen van twee veelgebruikte regis-
tratiealgoritmes (FNIRT en elastix) te optimaliseren. Nog belangrijker echter, was de 
bevinding dat de registratiekwaliteit van beide algoritmes hoger was dan die van de 
veelgebruikte ‘tract-based spatial statistics’ (TBSS) aanpak, en dat deze analyseme-
thode dus verbeterd kan worden door het gebruik van de meer verfijnde registraties. 
 
Ook in Hoofdstuk 2.3 richtte ik mij op het verbeteren van de registratie, maar nu 
met het doel om meer inzicht te verkrijgen in de ontstaansgeschiedenis van witte 
stof lesies. Met een nieuwe methode vonden wij anatomische correspondentie tus-
sen opvolgende scans van de deelnemers (correspondentie over tijd), maar ook tus-
sen de bijna 700 deelnemers onderling (correspondentie tussen personen). Analyse 
van de witte stof die tussen de eerste en de tweede scan, een periode van gemiddeld 
3.5 jaar, veranderde in een witte stof lesie, toonde dat deze witte stof al aan struc-
tuurverlies lijdt voordat de lesies zichtbaar worden. Dit verschil was zowel zichtbaar 
voor de aangroei aan bestaande lesies, als voor lesies die zich nieuw ontwikkelden. 
Deze observaties versterken de gedachte dat we met witte stof lesies eigenlijk slechts 
naar het topje van de ijsberg van totale witte stof schade kijken.
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Diffusie MRI in veroudering

Een beter begrip van de microstructurele veranderingen die het brein ondergaat bij 
veroudering, biedt een kader voor het bestuderen van veranderingen die optreden bij 
neurodegeneratieve ziekten. Binnen de Rotterdam Studie heb ik dan ook meerdere 
aspecten van de veroudering van witte stof van het brein onderzocht. In Hoofdstuk 
3.1 onderzocht ik microstructuur in verbindingsbanen als functie van leeftijd, vas-
culaire risicofactoren en macroscopische veranderingen. Voor 25 verbindingen ana-
lyseerden wij diffusie karakteristieken in een populatie van ruim 4,500 deelnemers. 
Met toenemende leeftijd vonden wij een verlies van microstructurele organisatie in 
witte stof banen met verschillende functies, te weten: associatieve, commissurele en 
limbische banen. Deze veranderingen werden deels verklaard door macrostructure-
le veranderingen, dus door de gelijktijdige aanwezigheid van atrofie en witte stof 
lesies. Tevens vonden wij additionele schade die samenhing met een sterk verhoog-
de bloeddruk, roken en diabetes mellitus. Deze veranderingen maken wellicht een 
gevoeliger identificatie van neurodegeneratieve processen mogelijk dan dat macro-
scopische veranderingen dit kunnen, maar de cross-sectionele studieopzet blijft een 
beperking om causale verbanden te kunnen identificeren. Omdat er tot nu toe maar 
weinig bekend was over microstructuur bij veroudering in een longitudinaal ver-
band, heb ik een dergelijke analyse beschreven in Hoofdstuk 3.2. Voor deze analyse 
onderzocht ik 501 deelnemers over een tijdsbestek van twee jaar met de verbeterde 
versie van TBSS zoals beschreven in Hoofdstuk 2.2, en met gebruikmaking van de 
longitudinale registratie zoals beschreven in Hoofdstuk 2.3. Hiermee werd gekeken 
naar veranderingen in diffusie karakteristieken over tijd en in relatie tot vasculaire 
risicofactoren. In het grootste deel van het brein nam de fractionele anisotropie (FA) 
af, en nam de gemiddelde diffusiviteit (D) toe, hetgeen overeenkomt met een afna-
me van de gestructureerdheid van de witte stof. Echter, in het grootste deel van de 
sensorimotor banen nam de FA juist toe in combinatie met een toename in D. Dit 
zou kunnen wijzen op een relatief behoud van deze banen, die betrokken zijn bij de 
belangrijkste bewegings- en gevoelsfuncties, bij veroudering. 

Analyse van diffusie MRI in cerebrale microangiopathie

Cerebrale microangiopathie is een aandoening waarbij de kleinste bloedvaten in 
de hersenen worden aangetast en die samenhangt met een verhoogd risico op be-
roerte en dementie. Geavanceerde beeldvormingstechnieken maken verschillende 
preklinische verschijnselen van de aandoening zichtbaar, zoals de eerder genoemde 
macroscopische witte stof veranderingen maar ook microbloedingen. Wij obser-
veerden eerder al een onderschatting van de totale witte stof pathologie bij bestu-
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dering van alleen witte stof lesies. Daarnaast mogen we aannemen dat opstapelende 
microstructurele veranderingen over tijd leiden tot macrostructurele veranderin-
gen. Het is dan ook van groot belang om meer inzicht te verkrijgen in de relatie tus-
sen cerebrale microangiopathie en de microstructuur van de witte stof. In een eerste 
analyse (Hoofdstuk 4.1) onderzocht ik, met TBSS de witte stof microstructuur in 
relatie tot leeftijd en de macroscopische witte stof veranderingen in een populatie 
van ruim 800 deelnemers aan de Rotterdam Studie. Wij vonden dat verlies van mi-
crostructuur, gereflecteerd in een verlaagde FA en verhoogde diffusiviteit, samen-
hing met een hogere leeftijd. Deze veranderingen werden echter vrijwel volledig 
verklaard door macroscopische witte stof veranderingen, dus ofwel door witte stof 
atrofie, ofwel door witte stof lesies. In een volgende analyse (Hoofdstuk 4.2) onder-
zochten we de relatie tussen zichtbare microbloedingen en witte stof microstruc-
tuur, gemeten over de totale witte stof van het brein. In de bijna 4,500 deelnemers 
vonden wij een sterker verlies van microstructurele organisatie bij een toenemend 
aantal microbloedingen. Opvallend genoeg was zelfs bij deelnemers met slechts één 
microbloeding al sprake van een minder georganiseerde microstructuur, hetgeen 
suggereert dat ook microbloedingen een reflectie zijn van meer uitgebreide hersen-
schade dan uitsluitend de plek van de kleine lesie zelf.

Veranderingen van de microstructuur die gevonden worden bij patiënten met een 
geringe cognitieve stoornis, ook wel mild cognitive impairment (MCI) genoemd, 
worden vaak toegeschreven aan pathologische processen van de ziekte van Alzhei-
mer. Omdat cerebrale microangiopathie bij deze patiëntengroep echter ook vaak 
voorkomt, zou een vasculaire oorzaak echter ook een mogelijke verklaring kunnen 
bieden. Om deze hypothese te onderzoeken vergeleken we in Hoofdstuk 4.3 dif-
fusie karakteristieken tussen patiënten met MCI en gezonde deelnemers, waarbij 
binnen de MCI groep onderscheid werd gemaakt tussen patiënten met, en patiënten 
zonder tekenen van cerebrale microangiopathie op MRI. Middels TBSS en een ana-
lyse van witte stof banen die onderdeel uit maken van het zogenaamde ‘functionele 
default-netwerk’ van het brein, vonden wij verminderde microstructuur die voor-
namelijk samenhing met de aanwezigheid van cerebrale microangiopathie. Slechts 
in beperkte mate werd er verschil gevonden tussen patiënten mét MCI maar zonder 
cerebrale microangiopathie en de controle groep. Tevens vonden wij aanwijzingen 
voor microstructurele veranderingen in witte stof banen van het defaultnetwerk 
samenhangend met cerebrale microangiopathie. Deze bevindingen onderschrijven 
het belang van het betrekken van cerebrale microangiopathie in hersenonderzoek bij 
patiënten met MCI.
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Concluderend

In dit proefschrift beschreef ik verschillende methoden om vernieuwende analyses 
van diffusie MRI beelden mogelijk te maken. De verbeterde correspondentie, zowel 
over tijd als tussen personen, maakt gevoeliger analyses mogelijk. De automatische 
tractografie brengt een aantal geavanceerde analyses binnen bereik van grote bevol-
kingsstudies, en zal in de toekomst ook voor klinische toepassingen relevant zijn. 
Bij veroudering van het brein, en met vasculaire risicofactoren, toonden deze tech-
nieken verlies van microstructuur in de witte stof. Deze veranderingen hingen deels 
samen met macroscopische veranderingen in de witte stof, maar niet volledig, het-
geen bevestigt dat deze metingen gevoeliger zijn voor pathologie. Deze bevindingen 
onderschrijven verder dat de witte stof zeer gevoelig is voor vasculaire pathologie in 
het algemeen, en cerebrale microangiopathie in het bijzonder. Toekomstige studies 
zullen kunnen voortbouwen op de analyse methoden enerzijds, en op de gevonden 
relaties met microstructuur bij veroudering anderzijds. 
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