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Abstract

Multinomial choices of individuals are likely to be correlated. Nonetheless, eco-
nometric models for this phenomenon are scarce. A problem of multivariate mul-
tinomial choice models is that the number of potential outcomes can become very
large which makes parameter interpretation and inference difficult. We propose a
novel Multivariate Multinomial Logit specification, where (i) the number of para-
meters stays limited; (ii) there is a clear interpretation of the parameters in terms
of odds ratios; (iii) zero restrictions on parameters result in independence between
the multinomial choices and; (iv) parameter inference is feasible using a composite
likelihood approach even if the multivariate dimension is large. Finally, these nice

properties are also valid in a fixed-effects panel version of the model.
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1 Introduction

It is common practice in applied research to use Multinomial Logit [MNL] models to
describe multinomial choice data (McFadden, 1983, Chapter 24). These MNL models
are suited to describe single multinomial choices. In practice we are often dealing with
multiple correlated multinomial decisions. Answers to survey questions with two or more
choice possibilities are likely to be correlated. The choice for job location may be correlated
with residence choice. In corporate finance one may want to model simultaneously the
strategy to takeover another company and the ways to finance this takeover. In marketing
one may be interested in dependencies in brand choices for several product categories.
Hence, simultaneous multinomial decisions occur in different areas of research.

In this paper we propose a relatively straightforward model to describe simultaneous
multinomial decisions. As far as we know there are hardly any models available to model
correlated multinomial decisions, see de Rooij & Kroonenberg (2003) for a similar conclu-
sion. An obvious way to model simultaneous multinomial decisions is to use a correlated
Multinomial Probit [MNP] approach, see Hausman & Wise (1978). Parameter estimation
of such models implies solving high-dimensional integrals using numerical integration or
simulation methods. Given the computational burden in univariate MNP models (Geweke
et al., 1994, 1997), frequentist inference in a multivariate MNP model is unlikely to be
feasible. Another option is to use mixed Logit models (Hensher & Greene, 2003) and let
unobserved heterogeneity capture correlation among decisions. Again, computation of the
choice probabilities implies solving integrals which becomes infeasible when the number
of simultaneous decisions is already moderately large. A Nested Logit specification (Mad-
dala, 1983, Chapter 3) is perhaps a more feasible approach. However, this model handles
the data as if decisions are made sequentially, which is often not the case in practice.
Finally, one may consider an MNL model for all possible combinations of the multino-
mial variables. The number of choice combinations however becomes easily large, see also
Amemiya (1978) and Ben-Akiva & Lerman (1985, chapter 10). Clearly, the number of
parameters and model interpretation get out of hand. Furthermore, parameter estimation
becomes infeasible as the computation of choice probabilities requires summation over all
potential outcomes.

As far as we know the multivariate MNL model of de Rooij & Kroonenberg (2003) is
the only recent contribution to the simultaneous multinomial choice modelling literature.

Their model is however specially designed for the problem and data set at hand and



cannot be applied in general. The work in Burda et al. (2008) is related although in their
paper individuals make numerous choices on the same attribute. We focus on numerous
separated multinomial choices. To fill the gap in the literature, we propose a general and
novel Multivariate Multinomial Logit [MV-MNL] specification to describe simultaneous
multinomial decisions. In essence, we extend the Multivariate (binary) Logit [MVL] model
of Cox (1972) and Russell & Petersen (2000) to multivariate multinomial decisions. The
advantages of this multivariate multinomial model specification are that (i) the number
of parameters stays limited; (ii) there is a clear interpretation of the model parameters
in terms of odds ratios and (iii) zero restrictions on a subset of parameters result in
independence between the multinomial choices.

The model is related to the multivariate MNL specification of Amemiya (1978) and
Ben-Akiva & Lerman (1985, chapter 10) but in contrast to these specifications we ex-
plicitly focus on the dependence structure in the multinomial choices. Furthermore, our
proposed MV-MNL specification allows for an easy and computationally feasible para-
meter estimation method. Due to its special structure we can avoid the summation over
all potential combinations of the multivariate multinomial choices by considering condi-
tional probabilities in the estimation approach. Parameter estimates are obtained from
a Composite Likelihood function (Lindsay, 1988) containing conditional probabilities, see
Bel et al. (2014) for a similar approach in MVL models. Hence, the Composite Likelihood
method avoids the computation of the joint probabilities over all possible combinations.
Finally, the novel multivariate MNL specification can easily be extended to a fixed-effects
specification for panel data. Parameter estimation stays feasible by using sufficient stat-
istics in combination with the composite likelihood approach.

The remainder of this paper is organized as follows. In Section 2, we introduce the
new MV-MNL specification. We also discuss parameter identification, interpretation and
parameter inference. A small Monte Carlo study shows the accuracy of the parameter
estimates and a small loss in efficiency due to the use of the composite instead of the
true likelihood. An extension to panel data is discussed in Section 3. Section 4 provides
two illustrations of the use of MV-MNL models. The first illustration concerns a cross-
sectional survey on satisfaction about life and the second illustration deals with the choice

for tuna using a household panel scanner data set. Finally, Section 5 concludes.



2 Model Specification

In this section we discuss the model specification for the Multivariate Multinomial Logit
model. This model is an extension of the Multivariate Logit model introduced by Cox
(1972) and Russell & Petersen (2000). To start the discussion, we first consider briefly this
MVL specification in Section 2.1. The extension to a multinomial specification is proposed
in Section 2.2. We discuss model specification, parameter identification and interpretation
of the model parameters. Finally, Section 2.3 shows the model representation for the
choice probabilities in a simple bivariate trinomial Logit model to clarify the structure of
the model.

2.1 A Multivariate Binomial Logit Model

First, we consider the Multivariate Logit model to describe correlated binary decisions
following the ideas in Russell & Petersen (2000). Let Y; denote the K-dimensional random

variable describing the joint set of choices for individual : = 1,..., N, defined as
Y; = {}/;Lla"'a}/;'K}7 (1)

where Y, describes the k-th binary choice for individual ¢ for £ = 1,..., K. Note that
there are 2% possible realizations of the random variable Y;. The set of possible realizations
is called S.

The K choices in Y; may be correlated. The starting point for modeling these depend-
encies is the conditional probabilities for each choice decision k given all choice decisions
[ # k, see Russell & Petersen (2000). These conditional probabilities are a Logit func-
tion of the individual characteristics X;, the model parameters «, # and ¢ and the other
choices y;;, that is

eXp(Zlk)

Pr[Yj, = 1y for I # k, Xi] = H‘eX—p(Z'k)

(2)
with
Zi = o+ XiBe+ Y yithu, (3)
14k
where y;; are the actual realizations of Y;;, X; is a vector of explanatory variables with

corresponding parameter vector [, oy are alternative-specific intercepts, and where 1y,

are association parameters for [ # k. Hence, the correlation between Yj;, and Yj; is captured



by the association parameter. Association means the relative change in the exponent Z;
if choices k£ and [ move together compared to being opposite. When ;; > 0 this implies
positive association and when v < 0 we have negative association. For 1, = 0 we
have independence between Y;;, and Y;;. As we can only describe correlations, we have to
impose 1 = Yy, for symmetry.

The theorem of Besag (1974) states that all properties of the joint distribution follow
from the full set of conditional distributions. Russell & Petersen (2000) use this result
to show that the conditional distributions in (2) imply the following Multinomial Logit
model for the joint distribution of Y;:

exp(fiy,)
PY[Y; B yz‘XZ] B ZSZ’ES eXp(:uSi)7 (4)
where y; is a possible realization from the outcome space S, and where p,, is defined as
K
My = Z yik(ak + Xiﬁk) + Z YikYi Vsl (5>
k=1 1>k

Hence, the parameters a; and (i only occur if the corresponding choice equals 1. Fur-
thermore, the association parameter v, only occurs if both y;, = 1 and y; = 1.
It can be shown that the association parameters v equals the log odds ratio

Pr[Y; = (0,...,0,4,0,...,0,4,0,...,0)|X;] Pr[Y; = (0,...,0)| X}] (6)
Pr[Y; = (0,..,0, 4,0, 0)|X,] Pr[Y, = (0, ...,0, 51,0, ., 0)|X]

Y = 111(

which again illustrates that the parameter describes the simultaneity in the binary de-
cisions. In the next subsection we will extend the idea of this section to the situation of
simultaneous multinomial decisions and we will derive a Multivariate Multinomial Logit

model.

2.2 A Multivariate Multinomial Logit Model

Assume now that we have K multinomial choices and that the k-th choice decision has
Ji. potential outcomes. Again we define a vector of random variables Y; as in (1) but now
Yir = j if individual ¢ chooses j = 1,..., J; for the k-th choice. The number of potential
outcomes of Y] is Hle Ji. Let S again denote the set of possible realizations of Y;. We
consider the conditional probabilities for the k-th choice given all other choices y;;, that

18

. eXp(Zik j)
Pr[Yy, = jlya for l £ k, X;] = ’ (7)
S exp(Zina)

5



with

Zirg = Okj+XiBrj+ > Criiyar (8)
12k

where a4, ; are alternative- and choice-specific intercepts, X; a vector of explanatory vari-
ables with corresponding parameter vector 3 ;, yi the choice decision of individual ¢ for
the [-th choice and where 1y, ;;, are association parameters between choosing j for the
k-th choice and choosing h for the [-th choice. Not all parameters in (7) are identified. It
is easy to see that when all 1y, j,-parameters are 0, the conditional probabilities simplify
to standard multinomial logit probabilities where the K choices are independent. Hence,
to identify the parameters we have to impose the standard identification restrictions of
the Multinomial (binary) Logit model, that is, a3 = 0 and i1 = 0 for all k. Further-
more, using similar arguments as in the Multivariate Logit case we impose the symmetry
restriction on the association parameters, that is ¥y jn, = ¥ »; for all j and h.

Finally, as utility differences determine choice, we cannot identify all association para-
meters. Without loss of generality we impose that ¥y i = Y1, = 0 for all j and h.
Note that it is possible to impose other identification restrictions. Our choice however
(i) is a straightforward extension to the binomial example in the previous section; (ii) is
universal, that is, can be applied for all possible values of K and J; and (iii) yields direct
interpretations of the association parameters via odds ratios.

The model in (7) is a straightforward extension of the MVL model discussed in Sec-
tion 2.1. In Appendix A.1 we show that Besag (1974)’s Theorem can also be used in this

multinomial setting leading to the joint probabilities given in (4) but now with

K
My, = Z Ay + Xi/Bk’,yikz + Z wkl7yikyil' (9>
k=1

>k

It is easy to see that the equation contains «y, and [ corresponding to the specific choice
for the k-th choice and 1)y, ;, corresponding to the observed choice pairs y;, and y;. The
base alternative in this model is y; = (1, ..., 1) where under the identification restrictions
the corresponding u equals 0.

The discussion can easily be extended to a Multivariate Conditional Logit specifica-
tion where the explanatory variables instead of parameters vary over alternative choices.

Hence, the exponent in (7) then writes

Zikg = upj+ Wi+ Z Yk jya» (10)
£k



where W, ; denotes the value of the explanatory variables which now differs over ¢, k and

7 and 7, denotes the corresponding parameter. The joint probabilities are then given by
(4) with

Z b + Wik Ve + D Ukt gy (11)

>k

The proof directly follows from the proof for the MV-MNL specification in Appendix A.11'.

The role of the intercept parameters and X; follows from the log odds ratio

o (Pl = il X o
1( PrlY; = (1, >|Xz-]> Z won + Xiflea + 3 Vit (12)

>k

where we use that under the identification restrictions Pr[Y; = (1,...,1)|X;] o 1. Clearly,
this odds ratio equals i, in (9) and provides the probability to observe y; relative to the
base set of choice decisions.

The parameters 1)y, 5, indicate the associations between choices k and [. 1y 5 is in
theory an unbounded parameter and thus does not directly resemble correlation between
choices 7 and h. To give a direct interpretation to these associations, we use log odds
ratios. It is easy to show that

PrlY;=(1,..., Ly 1,..., Ly, 1,.... )| X, Pr]Y; = (1, ..., 1)|X}]
Vit = 10 (Prm —(1,.. . Lyel,. . [X]PY;=(1,.. ., Ly 1,..., 1)’|Xi}) (13)

Hence, a positive vy j, implies that the choices j and h more often move together than
apart. Hence, this indeed implies positive 1y, ;; for positive correlations and negative
association parameters for negative correlations.

Finally, the model can easily be extended with individual-specific association para-

meters by replacing the expression for ¢ j, in (9) by

Vi kih = &k jn + XiOkijn, (14)

where & 5, and dy j, are additional parameters. The association between decisions j and
h now depends on individual characteristics X;. The resulting model comes closer to the
specifications of Amemiya (1978) and Ben-Akiva & Lerman (1985, chapter 10).

!The proof requires that Z; 1 = 0 which does not hold for this specification. We can however rewrite
the model such that Ziy ; = ayj + (Wik,j — Wik, 1)k + D22k Ykt jys With Zy1 = 0 such that the proof

is similar as in Appendix A.1.



2.3 A Bivariate Trinomial Logit Model

To illustrate the properties of the proposed Multivariate Multinomial Logit model and the
need for identification restrictions we consider a bivariate trinomial Logit specification.
Hence, we assume that K = 2 and J; = Jy = 3. The conditional probabilities with the

proper identification restrictions imposed are defined as

Pr[Yi = 1|ys, Xi] o

Pr[Yin = 2lyin, Xi] o exp(ais + XiBr2 + Y122,)

Pr[Yi = 3lyi, Xi] o exp(aiz + Xif13 + ¥i2,3y.,) (15)
Pr[Yie = 1]y, Xi] o« 1

PrYio = 2|yi1, Xi] o< exp(ags + XifBoo + Y12,4,2)

Pr[Yip = 3lyi, Xi] o exp(ags + Xifl2z + ¥i2,,3)-

These conditional probabilities imply the following 9 choice probabilities:

Pr[Y; = (1,1)'|X;] o< 1

Pr[Y; = (1,2)'|X;] o« exp(azs+ X;022)

PrY; = (1,3)'|Xi] o exp(ags + Xifa3)

Pr[Y; = (2,1)'|X;] o« exp(ais+ X;012)

Pr[V; = (2,2)'|X;] o exp(ais+ ass + Xi(Br12+ B22) + Yi2,22) (16)
PrlY; = (2,3)|Xi] o< exp(ong + ags + Xi(Br2 + Bo3) + h12,23)

PrlY; = (3,1)'|Xi] o exp(ais+ Xifi3)

Pr[Y; = (3,2)'|Xi] o< exp(aig+ ags + Xi(B13 + B22) + Y1232)

PrlY; = (3,3)'|Xi] o exp(ais—+ aos+ Xi(f13 + Ba3) + Y12,33)-

As we have 9 probabilities we can only identify 8 different intercept parameters. The im-
posed identification restrictions result in exactly 4 a-parameters and 4 -parameters and
thus cause identifiability. It is easy to see that imposing 112,22 = V12,23 = V12,32 = Y1233 =
0 implies that the joint probabilities can be written as the product of two independent
Multinomial Logit probabilities. Furthermore we see that

(Pr[Yi = (J,h)'|Xi] PrlY; = (1, 1)’|Xz]) . (17)

=1
Y12jn = In PrY; = (5,1)|X,] Pr[Y; = (1, )| Xi]

Hence, a positive value of 5 j, implies positive association between choosing j for choice
1 and h for choice 2.



2.4 Parameter Inference

To estimate the parameters of the Multivariate binary Logit model Russell & Petersen
(2000) suggest to use Maximum Likelihood using a log-likelihood function based on the
joint probabilities that is

Z[ = y;| PrlY; = vi| Xi], (18)

where [[A] =1 1f A holds true and 0 otherwise, Pr[Y; = y;| X;] is given in (4) and where
f summarizes the model parameters.

The same approach is of course possible for our MV-MNL specification. The disad-
vantage is however that the computation of these joint probabilities may be a burden if
the dimensions of the Logit specification are large. For example, for K = 10 and J, =5
for all k& we have to take the sum of 5'° different terms in the denominator of the joint
probabilities. The outcome space of the multivariate multinomial random variable rapidly
grows large and the computation time thereby increases exponentially with the number
of choices.

To avoid this large computation time, we propose another estimation approach based
on the ideas in Bel et al. (2014) for the MVL specification. Bel et al. (2014) propose to
use a Composite Likelihood approach (Lindsay, 1988) using all conditional probabilities
(2) in the likelihood specification (Molenberghs & Verbeke, 2005, chapter 12) instead
of the joint probabilities (4). The resulting Composite Conditional Likelihood [CCL]
representation only uses conditional probabilities and hence it avoids summation over the
complete outcome space. It can be shown that the CCL approach provides consistent
estimators (Varin et al., 2011) but at the cost of loss in efficiency.

The conditional probabilities in (7) lead to the composite log-likelihood function of
the MV-MNL specification, that is

N K
=3 ) (0 ym) (19)
=1 k=1
K Jg
:ZZ I[Yix = j]log P[Yy, = jlya for | # k, Xi].
i—1 k=1 j=1

The estimator 6 which follows from maximizing (19) is consistent. Varin et al. (2011) show

that standard errors in CCL can be computed using the Godambe (1960) information

9



matrix, which has a sandwich form and writes

Gé = HéJé_IHé (20)
with
| MK
H, = NZZ °(0: yir) VL (0: yir,) (21)
i=1 k=1
and
1 & A ;
J; = NZVEC(Q;%)V” (0;v:)- (22)
i=1

where V(¢(0;y3,) and V£¢(0;y;) denote the first derivatives of the corresponding log-
likelihood contributions in (19). The covariance matrix of the parameter estimates is

then given by
(=Gj) (23)

To test for independence in the multinomial decisions one can use a Likelihood Ratio
[LR] statistic for the restriction that the association parameters ¢ equal 0. This LR-
statistic does not have a standard distribution when the CCL estimation approach is
used. Based on results by Satterthwaite (1946) and Kent (1982), Varin et al. (2011)
propose to use an adjusted LR-statistic which for our test for independence boils down to

LR = @2 (€0 — (@ Biy)) (24)

where ¢¢(0;y) is the value of the CCL evaluated in the estimate under the alternative
hypothesis and ¢¢(& 5 ;) the value of the CCL evaluated in the estimate under the null
and where @ is the number of 1 parameters. This LR-statistics is asymptotically x?(v)
distributed with

(ZQ )2
where Ay, ... ,)\Q are eigenvalues of (Gy(H1'),)~! with G, the @ x @ submatrix of the
Godambe information matrix corresponding to 1. Moreover, A denotes the average of the
eigenvalues.
Although the Composite Conditional Likelihood does not correspond to the true like-

lihood function, it still takes the correlation between choice decisions in the Multivariate

10



Multinomial Logit model into account. The advantage over the full multinomial repres-
entation in (4) is that CCL avoids the large summation in the denominator. Therefore,
CCL will be more robust in computation time in case of a large number of choices and
alternatives. Nonetheless, since the composite instead of the true likelihood function is
used, the estimator is not efficient. Bel et al. (2014) show that the loss in efficiency is
quite small for MVL models. In the next subsection we conduct a small Monte Carlo

study to analyze the efficiency loss for the MV-MNL specification.

2.5 Monte Carlo Study

In this section we conduct a Monte Carlo study to investigate the properties of the Com-
posite Likelihood estimator for the parameters of a Multivariate Multinomial Logit spe-
cification. We focus on potential small sample bias and loss in efficiency caused by using
the composite instead of the exact log-likelihood specification in the estimation procedure.
Finally, we check whether the normal distribution can be used to approximate the small
sample distribution of the CCL estimator.

For our Monte Carlo study we consider the MV-MNL specification (4) with (9). The
number of choices K is fixed to 3 and the number of choice alternatives per choice are
J1 =3, J, =4 and J3 = 5. We consider a relatively small sample size N = 250 and a large
sample N = 5000. As explanatory variables X; we take two positively correlated random
variables; one continuous and one discrete. Both variables are drawn from a bivariate
normal distribution with variances 0.25 and correlation 0.75. The second variable is made
discrete based on a zero threshold. The parameters of our DGP are chosen such that
there is an unequal distribution over the choice alternatives but still substantial choice
probabilities for every choice combination, see Tables 1 and 2 for the values of our DGP
parameters.

Tables 1 to 4 display the mean and root mean squared error of the CCL estimator.
The final two tables show that for N = 5000 the bias in the estimator is quite small. For
a smaller sample size N = 250, the deviation from the DGP parameters is larger. Unre-
ported results? show that the bias is almost the same as the bias in a regular Maximum
Likelihood approach. The RMSE shows that there is a large variance of the estimator for
small sample sizes. This is not a surprise as we in fact try to estimate the parameters of

an MNL model with 3 x 4 x 5 = 60 choice alternatives using only 250 observations.

2Detailed results are available upon request.
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To analyze the loss in efficiency between CCL and the regular likelihood approach,
we consider the ratio of the RMSEs of both approaches. Table 5 shows that the ratios
are close to 1 and hence the loss in efficiency is rather limited even in small samples. For
example, for the largest difference, CCL is only 1.3 percent worse in RMSE than regular
ML. Hence, CCL seems to be a valid alternative for Maximum Likelihood to estimate
the parameters of an MV-MNL model. The small sample bias is similar and the loss in
efficiency is very small.

Apart from bias and efficiency, we also consider the validity of using a normal distri-
bution for testing for significance of the parameters. Table 6 displays the empirical size
of the t-tests for N = 250 for both tails of ¢-statistics. The table shows that even for
N = 250 size distortions are rather small. For example, a theoretical 90 percent confid-
ence interval for 13 33 turns out to have coverage of 88.8 percent. This size distortion is
still acceptable.

In sum, the simulation study shows that the Composite Likelihood estimator has
similar small sample biases as the Maximum Likelihood estimator and that efficiency
losses are limited. Inference based on ¢-statistics seems to be valid even in relatively small
samples. Because of the advantages of CCL over ML when dimensions increase, CCL is
a good alternative for the estimation of parameters in a Multivariate Multinomial Logit

specification. In Section 4.1, we will use the CCL approach in a small application.

3 A Panel Specification

The MV-MNL model can easily be extended to a fixed-effects panel data specification.
Let Y;; denote the K-dimensional random variable describing the joint set of choices for
individual ¢ = 1,..., N at time ¢t = 1,...,T and let Y;; = 7 if individual ¢z chooses
7 =1,...,Jg for the k-th choice at time ¢t. The choice probabilities are given by

exp(fiy,, )
P =Xl = ) 2
where y;; is a possible realization from the outcome space S and where i, is defined as
K
Hyie = Z ity + Xit Bryiar, Z Vikl,ysonyin- (27)
k=1 1>k

Hence, both the intercepts and the association parameters are individual specific. A spe-
cial case of the model is where the association parameters are pooled across the individuals

in which case we replace Viki g,y 1 (27) BY Ukt yireyin-

12



3.1 Parameter Estimation

In practice the number of cross sections is usually limited and hence parameter estimation
suffers from the incidental parameter problem. To solve this, we follow Chamberlain
(1980) and Lee (2002, Chapter 6) who condition on a sufficient statistic which eliminates
the fixed effects from the model specification. We extend the solution of Chamberlain
(1980) for a univariate panel MNL model to our multivariate multinomial setting in (26).
The appropriate sufficient statistics are given by

T
/().(1) = Z [D/;t = 8] = Ci,s VS € S, (28)

i,s
t=1
where ¢; s is the number of times the combination of choices s occurs for individual i.
Thus, only the alternatives containing the same choice sets over time as observed for
individual ¢ are used in the logit specification. That is, only the permutations of choices
of individual i over time are taken into account. Since no permutations can be made for
individuals where no change takes place over time, these observations are not of interest
and discarded. Appendix A.2 shows that the choice probabilities conditionally on these

sufficient statistics are given by

T K
exp <Zt:1 Zk:l Xitﬁk,ym)
T; K
ZdieB exp (Zt:l Zk:l Xitﬁk:ditk)

Pr[Y; = y;|o", X|] : (29)

where B is the set of alternatives for which vfl) holds. Hence, the individual-specific
parameters (intercepts and association parameters) are removed from the probabilities
and the J-parameters can be estimated consistently using a log-likelihood function where
we condition on the sufficient statistics. Note that this approach only works if X;; does
not depend on lagged dependent variables.

In case the association parameters are of core interest, these should not be discarded
from the specification. Therefore, we make 1)y, ;, not individual-specific and we have to

consider other sufficient statistics
T
2 , ,
t=1
where ¢; . ; now is the number of times that individual ¢ chooses option j for the k-th

choice. Appendix A.2 shows that when we condition on these sufficient statistics the

13



choice probabilities are given by

T K
exp (thl Zk:l Xit By + Zl>k ¢klvyitkyitl>
T K
ZdieB exp (Zt:l Zk:l Xitﬁk:ditk + Zl>k wkladitkditl)

where 9y, ;5 does not drop out since the combination of choices may differ over the al-
(2)

i

PrY; = yio®, X

, (31)

ternatives in set B where v;”’ holds. Hence, we now can find estimates of both /3 ; and
the association parameters vy, ;, describing the relation of the choices in the Multivariate
Multinomial Logit specification. Again this approach is only valid if X;; does not contain
lagged dependent variables.

The disadvantage of using the log-likelihood function conditional on the sufficient stat-
istics for parameter estimation is again the sum over the alternatives in the denominator
of the choice probabilities. In Appendix A.3 we however show that the Composite Like-
lihood method can also be applied in a panel data setting thereby avoiding the extensive

sum and making parameter estimation of MV-MNL models feasible in a panel context.

In the next section we illustrate the possibilities of the MV-MNL model by applications
of its panel version discussed in this section and its cross-sectional counterpart from

Section 2 to household panel scanner data and a survey on life satisfaction, respectively.

4 Illustration

This section considers two illustrations of our newly proposed MV-MNL model. First, we
apply the model on cross sectional survey data on satisfaction. Satisfaction is measured
at an ordinal scale and satisfaction on different items are likely to be correlated. Hence,
the MV-MNL model specification from Section 2 and the CCL estimation procedure from
Section 2.4 can be used. Second, we investigate the product choice of canned tuna fish
in a household panel scanner data set. Various multinomial choices on the characteristics
of canned tuna fish are made. As these decisions are made simultaneously the model

presented in Section 3 is highly applicable.

14



4.1 Survey Data on Satisfaction

To illustrate the MV-MNL model discussed in Section 2, we consider modeling satisfaction
of 2012 Dutch respondents to an extensive survey from 20043. Satisfaction is represented
by 5 ordinal dependent variables: Satisfaction about Life, Income, the Social security
system, Democracy and the Government. For Life, Income and Democracy respondents
can be Satisfied, Unsatisfied or In between. Social and Goverment have two options: either
the respondent is Satisfied or (s)he is Unsatisfied. The base category is Satisfied such that
a positive f-parameter indicates less satisfaction if x; is large and positive. To describe
relations in satisfaction level we consider the MV-MNL model of Section 2.2 with K = 5,
Ji=Jo=Jy=3and J3 = J; = 2. As explanatory variables we have Gender, Age,
Unemployment, (self-reported) Health status, Religion, Political interest and Income.
Since our dependent variables are ordered multinomial variables we opt for a Stereo-
type Logit specification (Anderson, 1984). That is, we adjust our model specification
in (9) such that the parameter estimates are restricted to be monotically increasing or

decreasing over the choice options. Formally, we change (9) into

K
Hy; = Z ki, T Pl (Xlﬁk) + Z Vkl iy (32>
k=1

1>k
where 0 = ¢p1 < -+ < ¢y, = 1 for ordering and identification purposes. This addition
to the model specification does not change the general setup of our proposed estimation
procedures.

We use the Composite Likelihood method to estimate the model parameters in (32).
First, we test for independence among the five satisfaction levels. The LR-statistic for
the restriction that all 1y, are 0 equals 1808.94. Since the degrees of freedom of the
approximate y?-distribution is 50.44, independence is clearly rejected. Hence, we find
positive support for association between the levels of satisfaction under consideration.

Tables 7 and 8 display the parameter estimates and estimated standard errors from the
CCL method. The majority of respondents is satisfied about life, income, social security
and the government, which results in negative estimates of the choice-specific intercepts
although the effect for Government is modest. The positive estimate of the as intercept

shows less baseline satisfaction on democracy.

3This data is freely available at the website of the The Netherlands Institute for Social Research:
http://www.scp.nl/Onderzoek/Bronnen/Beknopte_onderzoeksbeschrijvingen/Culturele_veranderingen_in
_Nederland_CV
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Several relations between the explanatory variables and satisfaction are found. Note
that since Satisfied is the base category, a negative [S-parameter indicates that the prob-
ability to be satisfied gets larger when x; increases. For example, individuals with low
(high) self-reported Health status are ceteris paribus more likely to report low (high) sat-
isfaction about life. Furthermore, both women and respondents of higher age are more
satisfied about their income than respectively men and respondents of average age. Unem-
ployed respondents are more likely to report low satisfaction on the social security system.
Respondents with low political interest tend to have ceteris paribus less satisfaction on
democracy. Finally, religious respondents report to be more satisfied about the (at that
time Christian-Liberal) government than nonreligious respondents.

The estimates of the association parameters 1) in Table 8 indicate the relation between
reported satisfaction levels for the five dependent variables. Clear interpretations can be
given. All parameter values that are significantly different from 0 are positive. That is,
there is a positive relation between the reported satisfaction levels of respondents. For
example, @rite meome,33 indicates that respondents who report Unsatisfied on Income are
likely also to be unsatisfied about life. Respondents unsatisfied about the social security
system are more likely also to be unsatisfied about both Democracy and Government.
This can be explained by the Labor party ending second in the previous elections with

27% of the votes but not being in charge.

4.2 Household Panel Scanner Data

To illustrate the MV-MNL model in a panel data setting we consider product choices
of canned tuna in 21 supermarkets belonging to 4 chains for 1092 individuals during the
period 1986(week 25)-1987(week 23) in Springfield, Missouri?. For each household we take
the first 5 purchases in the sample and hence T = 5. The product choice of canned tuna
concerns choosing from four characteristics: Brand (Chicken of the Sea, Star-Kist, CTL),
whether it is Oil-based or not, whether it is a Light-product or not and Volume of the can.
There are three choice options for Brand and two for the remaining characteristics. We
assume that individuals make choices for these characteristics simultaneously and hence
the Multivariate Multinomial choice model of Section 3 is applicable. That is, we consider
a panel data MV-MNL model with K =4, J, =3 and J, =--- = J;, = 2 with N = 1092

4This data set is from the ERIM Database and publicly available at
http://research.chicagobooth.edu/kilts/marketing-databases/erim /erim-dataset
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and T = 5. The base category for each of the 4 choices is taken to be the characteristic
of the market leader.
As explanatory variables for product choice, we take the product-specific marketing-

mix variables Price of the product, Display and Feature. Hence, (27) becomes

K
Hyie = Z Wity T WitV + Z Vikl,yseryin (33)
k=1

>k
where Wi, are now choice-specific variables. We consider two model specifications. In
the first specification the y-parameters are individual-specific. The second specification

(? and UEQ)

contains ¢-parameters for all households. Hence, we respectively use v; e
Table 9 displays the parameter estimates and estimated standard errors from the
model specification with individual-specific association parameters. Parameter estimates
are obtained using a likelihood approach using (28) as sufficient statistic. Hence, the
individual-specific association parameters v are not estimated.
To interpret the parameter estimates, we opt for the conditional marginal effects
8P1"[Y;tk = j‘yitl for I # k, Xy, I/Vityit]

awityit

= ’YPI"[Y;tk: = j|yitl for [ 7é k, Xit, Wityit]x
(1 - Pl"[Y;tk = j|yitl for [ 7é k, Xit, I/Vityit]) . (34)

By averaging these over y;; (I # k) and the explanatory variables, that is,

N T .
1 1 OPr|[Yir = jlyin for I # k, W]
N ; T ; ow (35)

we obtain an estimate for the average marginal effects. Table 10 reports these effects.
An increase in Price leads to a decrease in the probability for each product character-
istic. Equation (34) shows that the maximum marginal effect takes place when Pr[Y, =
71 Xit, Wity,,] = 0.5 and equals 1/4 of the parameter estimate in Table 9. The effect is
on average larger for the probability to buy large Volume products and relative small for
water-based canned tuna. Both increases in Display and Feature have a positive effect
on the probability for each product characteristic, where the effect of Feature is larger.
A product with characteristics Brand Star-Kist, Oil-based, Light and large volume would
especially gain from advertisements, given the relatively large marginal effects.

Table 11 displays the parameter estimates and standard errors from the model specific-
ation with fixed association parameters. The parameter estimates of the marketing-mix
variables are very similar to the previous specification. The advantage of this specific-

ation is that we also can interpret the association between characteristics of tuna sales.
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For example, given that @12722 = 1.548, it is likely that if individuals buy Brand Star-
Kist they also choose for the Oilbased tuna. The opposite conclusion holds for Brand
CTL (1232 = —1.491). Obviously, the choice for Oilbased tuna is negatively associated
with the Light product. Given the large association parameter estimate for 390 Brand

Star-Kist apparently is market leader in low fat tuna.

To conclude, the two examples in this section show that the MV-MNL model can
be used to model simultaneous multinomial decisions in a cross-sectional and in a panel

context.

5 Conclusion

In this paper we have introduced a novel Multivariate Multinomial Logit specification
to describe simultaneous multinomial decisions. The advantages of the new model spe-
cification over other potential model specifications are that (i) the number of parameter
stays limited; (ii) there is a clear interpretation of model parameters and; (iii) parameter
estimation is feasible even if the multivariate dimension is large.

To estimate the parameters of the MV-MNL model we have proposed to use a Com-
posite Likelihood function. This method limits the computational burden of a regular
likelihood approach and is computationally feasible even if the multivariate dimension is
large. The resulting maximum Composite Likelihood estimator is consistent. A small
Monte Carlo study shows that the small sample bias of this estimator is comparable with
a regular Maximum Likelihood estimator and that the loss in efficiency is small.

The applicability of the novel MV-MNL specification is illustrated in an application to
self-reported satisfaction about life, income, social security, democracy and government.
The proposed extension to panel data is illustrated using a household panel scanner data
set, where we describe the purchase choice of canned tuna which we disentangle in several
characteristics like brand, oil/water based and can size.

Finally, the present model specification can be extended in several directions. A
possible extension is to include dynamics to the panel data model. Parameter estimation
will be straightforward unless one opts for dynamics together with individual-specific
effects (Honore & Kyriazidou, 2000; Carro, 2007). Other potential extensions are to
adjust the model for multivariate ordered and rank ordered data or to take into account

that not all choice options have to be in the consideration set of each individual.
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A Derivations

A.1 Joint probabilities in MV-MNL

In this section we derive the joint probability Pr[Y = y] in the MV-MNL model taking
as starting point the conditional probabilities. To derive the joint probability Pr[Y = y]
(from now on abbreviated as Pr[y]) in the MV-MNL model, we use the identity

K
P P U1, 1,01
I'[y] _ H r[yklyb y Yk—1, 1, ) ] (36)

PI‘[]_] Pr[1|y1a'~‘7yk—1717"'a]'] ‘

k=1
which follows from the theorem of Besag (1974). The denominator in the conditional
probabilities (7) is the same in both the numerator and denominator of (36) and hence
drops out of the ratio. Second, the numerator of Pr[l|yy,...,yx-1,1,...,1] is simply

proportional to 1 due to our identification restrictions. Therefore (36) simplifies to

K
ijﬂ = g exp (ak,yk + X Bry, + sz Ykt gy T bzk ¢kl,yk1)- (37)
Due to the restriction ¢y ,,1 = 0 we obtain after rewriting
Pr(y S
Prl] = exp <kz:; Ay + X By, + ; wkl,ykyl> . (38)

To obtain Pr[y] we use the identity
Prly]/ Pr(1]
2 s Prls]/ Pr{1]’

where S is the set of all possible choice combinations. Substituting (38) in (39) results in

(39)

Prly]

eXp(:“y)
Prly] = — ) 40
W > ses €xXp(fis) (40)
where
K
By = Y Oy + XBrg T Ukt (41)
k=1 1>k
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A.2 Choice probability conditional on sufficient statistic

In this section we derive the panel joint choice probabilities conditional on the proposed
sufficient statistics in a fixed-effects MV-MNL model of Section 3. If we condition on the
sufficient statistic in (28) or (30), only the choice alternatives where the sufficient statistic
holds are relevant, that is

Prly]
ZdieB Pr[di] 7

where r = {1,2}, and where B is the subset of alternatives which corresponds to v

Prly;|ol"] (42)

(r)

i .

Since we assume no dynamics we can write

T
r — PI' Y;
Pripfol7] = L=t (43)
ZdieB [ 1=, Prldi]
and as the denominator of the probabilities in both the numerator and denominator are

the same, this simplifies to

eXP(ZtT:1 Ilj{yit) ) (44)
ZdieB exp( - Hds,)

Prly;|o"”] =

If we opt for the sufficient statistics in (28), we can substitute (27) for j,,, and rewrite
this as

eXp(Zthl Zf:l Uik, + 215k Viklyinivin)
ZdieB eXP(Zfﬁ Zszl Qik,dyy, + Zl>k Vikl, dygdiny)

eXP(ZtT:1 Zlf:l XitBryine) (45)
ZdieB eXP(Zthl Zf:l XitBrodiry,) '

As the combination of ;i ; and ¥, is by assumption constant over time, it drops out

Priy|olV] =

of the equation and hence we obtain

eXp(Zthl Zszl Xitﬁkvyitk) (46)
174 .
ZdieB eXp(Zf:l Zk:l Xitﬁk,ditk)

For the sufficient statistics in (30), we follow the same approach and substituting (27)

Priy|olV] =

for p,,, results in

eXp(Zthl Zf:l ik i) %
ZdieB eXP(Zfa Zszl Qik,dipn )
eXp(Zf:l Zszl Xit B yin + Zl>k ¢kl,ymyitz)
> aen XDy Yoy XitBhdi + Lo Vittdidia)
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Priy|ol”] =




As now only a;, ; is constant over time, only the intercepts drop out of the equation and

we obtain

T K
eXp(Zt:l Zk:l Xit/Bkvyitk + Zl>k wklvyitk-yitl)

Priy[vf”] = .
ZdieB eXP(ZtT:1 Zf:l Xitﬁk’ditk + Zl>k wiklvditkditl)

(48)

A.3 Composite Conditional Likelihood in panel data setting

In this section we show that the composite likelihood approach is also applicable in a
fixed-effects panel MV-MNL model. This section presents a panel data analog, where
composite likelihood and the use of sufficient statistics is combined.

We use sufficient statistics to remove the individual-specific effects from the conditional
probabilities. The sufficient statistics imply that we have to consider permutations of the
choices over time. Given the panel equivalence of the specification in (7) any permutation
over time of the choices Y, k = 1, ..., K, yields the same set of intercepts but a different
set of association parameters. Hence, we can only deal with the situation of individual-
specific intercepts a; i ; but the 1y j, parameters have to pooled. Using sufficient statistic
(30) we get

(2) exp(P iy Viky)
ZdikEB eXp(thl aik,dik)

T
eXp(Zt:l Xitﬁk,yz‘k + Zl;ﬁk ¢kl,yikyil)
T .
ZdikeB exp(D ;- XitBrdy + Zl;ﬁk kit diryir)

As the set of intercepts oy ; is constant over time, they drop out of the equation resulting

(49)

in
T
exp(D_y—; XitBryu + Zl;ék kil yiryir)
7 )
> den Pty XitBrdy, + D1k Ykt dinya)

Hence, using the full set of conditional probabilities Pr{y;x|y, for | # k, X, vz.(,f)] in Com-

Prlyx|yq for I # k, Xi,vi(:)] = (50)

posite Likelihood estimation yields an approximation of the full likelihood conditional
on the sufficient statistics. As shown by the simulation study in Section 2.5 Composite
Likelihood estimation in cross-sectional data finds accurate parameter estimates with only

small loss of efficiency. Unreported results show that the same holds in panel data setting.
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B Tables

Table 1: Mean and RMSE of the estimator for the MV-MNL model parameters based
on a Monte Carlo study with N = 250 (10000 replications)?

0 ) RMSE\ 0 0 RMSE\ 0 0 RMSE

ajp  0.15 0.165 0.684 | g2 0.15 0.172 0.758 | az2  0.150 0.164 0.827
arz 025 0.278 0.690 | g3 0.25 0.290 0.753 | az 3 0.250 0.262 0.830
a4 0375 0.426 0.757 | iz 4 0.375 0.424 0.781
ass  0.475  0.540 0.777

X, B2 105 1.110 0525 | Bop 105 1.122 0661 | B3,  1.05 1.138  0.723

Bz 145 1.533  0.526 | oz 145 1.545 0.650 | B33 145 1.556  0.710
Boa 175 1.864  0.650 | B4  1.75 1.878  0.677
Bss 195 2083  0.674

Xy B2 025 0258 0464 | Bop 025 0272 0635 | B3> 0.25 0274 0.702

Bis 045 0479 0452 | B2z 045 0490  0.602 | B33 045 0.486  0.671
Boa  0.65 0.696 0594 | B34  0.65 0.697  0.637
Bss  0.80 0.850  0.628

& The DGP is given in Section 2.5 with K =3 and J; =3, Jo =4 and J3 = 5.
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Table 3: Mean and RMSE of the estimator for the MV-MNL model parameters based
on a Monte Carlo study with N = 5000 (10000 replications)?

0 0 RMSE 0 0 RMSE\ 0 0 RMSE

a1z 0.15 0.141 0.131 | g2 0.150 0.143 0.154 | iz 0.150 0.138 0.166
oz 025 0.243 0.137 | g3 0.250 0.242 0.149 | az 3 0.250 0.241 0.167
agg  0.375  0.375 0.145 | az a4 0.375 0.367 0.149
azs 0475 0.467 0.158

X, Bro 105 1.049 0107 | fop 105 1062 0.129 | B35  1.05 1.046  0.144

Brs 145 1447 0101 | o5 145 1462 0128 | B35 145 1454  0.141
Bos 175 1762 0130 | Bs4 175 1752  0.138
B35 195 1953  0.136

Xy Bra 025 0254  0.098 | Bao 025 0.243  0.122 | B3 0.25 0.258  0.147

Biz 045 0455  0.099 | B2z 0.45 0443  0.120 | B33 045 0455  0.137
Boa 065 0.644 0121 | B34 0.65 0.658  0.132
Bss 0.80 0.806  0.133

& The DGP is given in Section 2.5 with K =3 and J; =3, Jo =4 and J3 = 5.
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Table 5: Relative RMSE

of the maximum CCL

and the regular ML
estimator?
Sample size
Parameter 250 5000
Qg2 1.007 1.003
Q2.3 1.007 1.003
Qa3 4 1.007 1.000
B1,3 1.008  1.000
1.002 1.000
B2,4 1.013  1.000
1.004 1.001
B35 1.013 1.003
1.002 1.001
12,20 1.005 1.001
113,33 1.005 1.000
123,44 1.006  1.002
& We only report results

for a subset of paramet-

ers. The results for the

other parameters are sim-

ilar and available upon re-

quest.
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Table 6: Empirical size of the distribu-
tion of the estimators based on a Monte
Carlo study with N = 250 (10000

replications)®

Theoretical 0.025 0.05 0.95 0.975

10 0.028 0.055 0.951 0.976
23 0.027 0.053 0.954 0.977
@34 0.022 0.048 0.957 0.980
B3 0.031 0.058 0.954 0.979

0.027 0.053 0.953 0.978
B2, 0.031 0.056 0.910 0.957

0.029 0.055 0.908 0.958
B35 0.029 0.054 0.962 0.982

0.031  0.055 0.961 0.982
V12,22 0.034 0.059 0.952 0.977
V13,33 0.026 0.054 0.943 0.971
23,44 0.029 0.056 0.954 0.979

& We only report results for a subset of para-
meters. The results for the other paramet-

ers are similar and available upon request.
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Table 9: Parameter es-
timates of the MV-MNL
model for a household
panel scanner data set
on canned tuna product
choice (standard errors

in parentheses)®

0 s.e.

Price  -0.366 (0.017)
Display 0.888  (0.117)
Feature 1.416 (0.087)

2 Results are obtained us-
ing sufficient statistics
(28).
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Table 11: Parameter estimates of the MV-MNL model for a panel data set on

tuna sales (standard errors in parentheses)®

Brand Oil Light Volume

Star-Kist CTL Yes Yes Large
Association parameters®
Brand
Star-Kist 1.548 (0.150) 2.862 (0.436) 1.937 (0.253)
CTL -1.491 (0.203) 0.259 (0.526) 0.275 (0.327)
Oil
Yes -1.653  (0.755) -1.190 (0.221)
Light
Yes —o0° -

Product-specific characteristics
Price -0.297  (0.014)
Display 0.882  (0.106)
Feature 1.508  (0.086)

@ Results are obtained using sufficient statistics (30).

b As the association parameters are symmetric only the upper triangular matrix is given.

¢ This combination of choices does not occur in the dataset.
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