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Abstract
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1 Introduction

Since the introduction of cointegration tests by Engle and Granger (1987), the usage of
these tests on long-run relationships between non-stationary variables have grown in pop-
ularity amongst applied econometricians. A major fallacy of cointegration tests, however,
is the need for a considerable span of the data. Shiller and Perron (1985) have shown that
indeed the span of the data matters for the power of tests on non-stationary variables and
not the number of observations. One way of dealing with this “time span” problem is
to analyze time series across similar cross-sections in panel data sets. This approach has
recently been applied on a large scale in testing the validity of purchasing power parity
for exchange rates, as amongst others in Papell (1997) and O’Connell (1998). The panel
data approach is the main focus of our paper.

One can distinguish two viewpoints in the literature on cointegration analysis within
panels. The first approach can be typified as a panel version of the Engle and Granger
(1987) residual-based two-step procedure. In that approach one estimates a long-run
relationship on panel data and conduct Levin and Lin (1992)-type panel unit root tests
on the residuals. This panel Engle-Granger procedure implies homogeneous long-run
coefficients and the adjustment parameters, only the serial correlation in the residual
panel unit root test is assumed to be heterogeneous. Variants of this approach can be
found in Pedroni (1995) and Kao (1999), which differ in the way they deal with serial
correlation. Groen (1999) has succesfully applied the panel Engle-Granger procedure on
the monetary exchange rate model for 14 OECD countries. The main disadvantage of
this approach is that differences in adjustment speeds and dynamics across the different
individuals are not taken into account.

An opposite viewpoint is an approach in which all the model parameters and statis-
tics are assumed to be heterogeneous in nature and independent of each other. In this
case the panel cointegration tests are based on cross-sectional averages of the individual
parameters and statistics.1 Such an approach is only valid if one assumes that the indi-
vidual model parameters and test statistics are determined independently of each other,
and therefore does not use the panel dimension of the data. In our view the usage of the
panel dimension is crucial in enhancing the power of cointegration testing, i.e. one should
allow for interdependencies between the different individuals.

Our panel cointegration framework uses elements of both the pure time series-based
cointegration approach and the pure panel data-based approaches as sketched above.
We stack vector error correction (VEC) models of the different individuals into a joint
panel VEC model. Within this panel VEC model we conduct cointegration rank tests
on all the individual VEC models simultaneously, based on a common cointegration rank
value. The corresponding likelihood ratio tests have limiting distributions which are
based on a summation of the limiting behaviour of Johansen (1991, 1996) trace statistics
across the individual VEC models. This is valid as long as one assumes a fixed cross-

1Like averages of residual Augmented Dickey-Fuller t-statistics in Pedroni (1995) and Kao (1999) or
averages of likelihood ratio cointegration rank tests in Larsson et al. (1998).
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section dimension. The accompanying canonical correlation-based maximum likelihood
estimators, however, have unknown analytical expressions. We use iterated estimators
based on the Generalized Method of Moments (GMM) framework of Hansen (1982) to
construct maximum likelihood estimators of the cointegrating vectors. These iterative
GMM estimators can be interpreted as analytical expressions of the appropriate maximum
likelihood estimators, and these are used to construct likelihood ratio panel cointegration
rank test statistics. The iterative GMM approach is based on the standard time series
framework of Kleibergen (1999).

Our framework adds several novel features to the existing literature on panel cointe-
gration. First, we use a maximum likelihood framework where we allow for an unrestricted
disturbance covariance matrix within our panel. As such we allow for an instantaneous
feedback between the different individuals in our panel. Contrary to this, existing studies
assume an absence of cross-section correlation across the individual disturbances.2 As-
suming a (block) diagonal cross-section covariance structure can severely distort the size
of test procedures when this assumption is inappropriate,3 which at least is the case for
exchange rate studies. A second novel feature is that the researcher is able to test how
many cointegrating vectors the different individuals have in common within a panel. With
respect to this only Larsson et al. (1998) has this feature, although they make use of the
restrictive assumption of a block-diagonal cross-section covariance matrix. Finally, our
framework can be used to test for the possibility of homogeneous long-run parameters
combined with heterogeneous short-run dynamics.4

We proceed as follows. In section 2 we construct our panel VEC model by stacking the
vector error correction models of each individual, and we show what the implications are
of cointegration. We use in section 3 an iterated GMM framework to construct maximum
likelihood estimators for both reduced rank and full rank panel VEC models, and we
use these estimators to implement likelihood ratio panel cointegration testing. We also
derive in this section the corresponding limiting distributions. Section 4 extends the panel
VEC model to include higher order dynamics and several specifications of deterministic
components. Our panel cointegration frame work is illustrated in section 5 through a test
on the appropriateness of the monetary exchange rate model. Section 6 concludes.

In the remainder of this paper we use the following notations. The symbol “⇒”
indicates weak convergence in probability measure. The trace of a matrix M is indicated
with tr(M) and vec(M) indicates vectorization of matrix M by stacking the columns
of M . The integral

∫ 1
0 Bj(t)dB′j(t)dt is for short denoted as

∫
BjdB

′
j, where Bj(t) is a

j-dimensional vector Brownian motion with 0 ≤ t ≤ 1 and an identity covariance matrix.
2An exception is Park and Ogaki (1991) who develop a seemingly unrelated regression analog for a

system of canonical cointegrating regressions based on the approach of Park (1992). However, they only
deal with cointegrating vector estimation and not with cointegration testing.

3This is shown in Monte Carlo experiments in O’Connell (1998) and Groen (1999) for the Levin and
Lin (1992) panel unit root test and the panel Engle-Granger approach respectively.

4Pedroni (1996) based on the “Fully Modified OLS” approach of Phillips (1995), and Pesaran et al.
(1998) based on single equation error correction models also has this feature, but they do not focus on
cointegration testing.
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2 The Panel Vector Error Correction Model

In this section we show how the vector error correction framework of Johansen (1991,
1996) can be adapted for use within dynamic panels. The panel vector error correction
(VEC) model is build around standard VEC models for each of the individuals in the
panel and we therefore start off with the standard time series VEC model.

In testing for cointegration between the k I(1) variables z1t, . . . , zkt for the standard
time series case, we test the number of stationary linear relationships between these k
variables. The standard time series framework for cointegration testing is to consider an
unrestricted vector error correction model,5

∆yt = Πyt−1 + ηit. (1)

In (1) ∆yt = yt − yt−1, yt = (z1t · · · zkt)′ and ηt = (η1t · · · ηkt)′ are k × 1 vectors. Note
that the coefficient matrix Π has dimension k × k, the disturbances ηt are distributed as
ηt ∼ N(0,Σ) and t = 1, . . . , T . As in Johansen (1991, 1996), the number of cointegrating
relationships for the k I(1) variables in yt is tested using a reduced rank version of (1),

∆yt = αβ′yt−1 + ηt. (2)

Matrix α is the k × r matrix of adjustment coefficients and β is the k × r matrix of
cointegrating vectors. The matrix of cointegrating vectors β can be normalized as,

β =
(

Ir
−β2

)
, (3)

where Ir is an r×r identity matrix and β2 is a (k−r)×r matrix of unrestricted elements.
The column dimension r of β indicates the cointegrating rank, i.e. the number stationary
linear combinations of yt.

The validity of reducing the rank of Π in (1) can be tested through likelihood ratio
statistics LR(r|k) for each of the restrictions r = 0, . . . , k − 1 versus full rank k, where a
full rank Π indicates that all k variables are I(0). In Johansen (1991, 1996) it is shown
that the asymptotic distribution of LR(r|k) is a function of (k − r) Brownian motions,

LR(r|k)⇒ tr

(∫
dBk−rB

′
k−r

[∫
Bk−rB

′
k−r

]−1 ∫
Bk−rdB

′
k−r

)
, (4)

with Bk−r is a (k − r)-dimensional Brownian motion with an identity covariance matrix.
Within a panel of N individuals we are interested in cointegration testing with respect

to the k I(1) variables in vector yit of the ith individual. In order to be able to do that,
5Higher order dynamics and deterministic components are not included at this stage. Section 4 deals

with this issue.
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we construct for each individual i a VEC model comparable with (1) and stack these into
one system,

∆Yt =

 Π1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 ΠN

Yt−1 + εt,

= ΠAYt−1 + εt.

(5)

The sub-matrices Πi within the Nk×Nk matrix ΠA are of dimension k×k for i = 1, . . . , N
and relates ∆yit to yi,t−1. The panel VEC model in (5) consists of the Nk × 1 vectors
Yt−1 = (y′1,t−1 · · · y′N,t−1)′, ∆Yt = Yt − Yt−1 and εt = (η′1t · · · η′Nt)′, with t = 1, . . . , T . The
disturbance vector εt contains the k × 1 disturbance vectors ηit for each individual VEC
model and εt ∼ N(0, Ω) with the Nk ×Nk non-diagonal covariance matrix structure,

Ω =

 Ω11 · · · Ω1N
... . . . ...

ΩN1 · · · ΩNN

 . (6)

The sub-matrix Ωij is of dimension k × k and Ωij ≡ Cov(ηit, ηjt) 6= 0 for i, j = 1, . . . , N .
The panel VEC model in (5) can be considered as a restricted version of the unre-

stricted full system VEC model,

∆Yt =

 Π11 · · · Π1N
... . . . ...

ΠN1 · · · ΠNN

Yt−1 + εt

= ΠurYt−1 + εt,

(7)

which is a high dimensional version of VEC model (1) with Πur is Nk × Nk. In (7) a
k × k sub-matrix Πij relates ∆yit to yj,t−1 for i 6= j and Πii equals Πi in (5). The block
diagonal coefficient matrix ΠA in (5) implies a restriction on Πur which does not restrict
the rank value and thus rank(ΠA) = rank(Πur) = Nk.

As we have (Nk)2 parameters in Πur it is not efficient to estimate a VEC model like (7),
even for moderate sizes of N and k, due to a large number parameters and the presence
of spurious correlations. Next, we can observe that panel VEC model (5) imposes on
VEC model (7) the restriction of no Granger causality between the different individuals
in our panel. Toda and Phillips (1993) have shown that the limit distributions of test
statistics for Granger causality within unrestricted VEC models depends on the rank of
the true and a priori unknown long-run multiplier matrix. Therefore, as long as the true
rank of Πur is unknown, test statistics for the hypothesis of zero values of the off-diagonal
sub-matrices in Πur have an unknown asymptotic distribution. Hence, we base our panel
cointegration analysis on the following assumption:

Assumption 2.1 There is no linear dependence between the k I(1) variables of individual
i and lags of the k I(1) variables of individual j for i 6= j, i.e. Πij = 0 for i 6= j in (7).
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The block-diagonal structure of the long-run multiplier matrix implied by (5) is assumed
to be valid a priori.

Note that the non-diagonal disturbance covariance structure (6) does allow for contem-
poraneous dependence between the variables in yit and yjt for i 6= j, i.e. we allow for
instantaneous causality in the sense of Lütkepohl (1993, Proposition 2.3).

Cointegration within our panel of N individuals now imposes rank reduction on the
different Πi’s in (5). The imposed rank reduction is such that the cointegration rank is
identical for all N individuals. We therefore obtain the following reduced rank specifica-
tion of panel VEC model (5),

∆Yt =

 α1β
′
1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 αNβ

′
N

Yt−1 + εt

= ΠBYt−1 + εt.

(8)

In (8) the matrices of adjustment parameters αi and cointegrating vectors βi are of di-
mension k × r for all the i = 1, . . . , N individuals. Cointegration testing within panel
VEC model (5) is therefore based on the following necessary cross-section restriction:

Assumption 2.2 When rank reduction of the Πi’s in (5) is appropriate, this rank reduc-
tion is identical for each individual i. Panel cointegration therefore implies a common
cointegration rank: rank(Πi) = r for each i = 1, . . . , N and r < k. Panel cointegra-
tion rank tests are therefore identical to testing the restrictions implied by (8) on (5) and
it reduces the rank value of the coefficient matrix ΠA in (5) from Nk to Nr.

Next to the restriction of a common cointegration rank we can have the optional
cross-section restriction of common cointegrating vectors,

βi = β for i = 1, . . . , N. (9)

Both βi and β are of dimension k × r. Based on (9) we can rewrite (8) with common
cointegrating vectors, i.e.

∆Yt =

 α1β
′ 0 · · · 0 0

0 . . . 0
0 0 · · · 0 αNβ

′

Yt−1 + εt

= ΠCYt−1 + εt.

(10)

Johansen (1991, 1996) and Phillips (1991) derive that as long as the cointegration rank
r is given, likelihood ratio tests of hypotheses on α and β within a pure time series VEC
model like (2) have asymptotically a χ2 distribution. As the restrictions in (9) do not alter
the value of the common cointegration rank implied by panel VEC model (8), a likelihood
ratio test of the restrictions in (9) also has a χ2 distribution. Using normalization (3) for
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the individual cointegrating vectors, each βi has r(k− r) unrestricted elements, implying
(N − 1)r(k − r) degrees of freedom in the χ2 distribution. The likelihood ratio statistic
LR(ΠC|ΠB), which test the restrictions implied by (10) on (8), therefore has the following
asymptotic distribution,

LR(ΠC|ΠB) = 2[`max(ΠB,Ω)− `max(ΠC,Ω)]⇒ χ2 ((N − 1)r(k − r)) . (11)

In (11) `max(ΠB,Ω) and `max(ΠC,Ω) are the maximized log-likelihood functions corre-
sponding with (8) and (10) respectively.

Using assumptions 2.1 and 2.2, panel cointegration testing in our framework is identical
to testing the following null hypotheses versus the alternative hypothesis implied by panel
VEC model (5):

H0 : ΠB versus H1 : ΠA,

H0 : ΠC versus H1 : ΠA.
(12)

The null hypotheses in (12) can be tested using likelihood ratio test statistics denoted
with LR(ΠB|ΠA) and LR(ΠC|ΠA) respectively. The panel VEC models in (5), (8) and
(10) can be considered as composed of N standard time series k-variate VEC models.
Hence, the asymptotic behaviour of LR(ΠB|ΠA) and LR(ΠC|ΠA) can thus be based on
the asymptotic behaviour of standard time series-based likelihood ratio cointegration rank
tests as defined in (4). This result is conditional on the usage of large T asymptotics with
cross-section dimension N being fixed. We deal with this issue in the next section.

3 Estimation and Testing of Panel Vector Error Cor-
rection Models

We construct in this section an iterative Generalized Method of Moments (GMM) frame-
work to conduct likelihood ratio cointegration testing in panel VEC models and to con-
struct maximum likelihood estimators of the cointegrating vectors. First, we establish in
section 3.1 the link between maximum likelihood estimation and GMM-based estimation.
We utilize GMM in section 3.2 to construct maximum likelihood estimators of the coin-
tegrating vectors for our panel VEC models. In section 3.3 we use the iterated GMM
estimates of both reduced rank and full rank panel VEC models to construct likelihood
ratio test statistics for cointegration testing within our panel VEC models. We also derive
in section 3.3 the corresponding asymptotic distributions.

3.1 GMM and Maximum Likelihood Estimation

The log-likelihood function for any of our panel VEC models can be specified as,

`(Π∗, Ω) = −NkT
2

ln(2π)− T

2
ln|Ω| − 1

2
tr
(
Ω−1(∆Y − Y−1Π)′(∆Y − Y−1Π)

)
, (13)
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where Π∗ = ΠA, ΠB or ΠC, Π = Π′A, Π′B or Π′C and Ω has an identical structure as (6),
all of which are defined in section 2. In (13) ∆Y and Y−1 are T ×Nk matrices

∆Y =

 ∆Y ′1
...

∆Y ′T

 and Y−1 = (Y1,−1 · · ·YN,−1) =

 Y ′0
...

Y ′T−1

 ,

with the T × k matrix Yi,−1 for i = 1, . . . , N and from section 2 Yt−1 is Nk × 1 for
t = 1, . . . , T .

Log-likelihood function (13) can be rewritten as proportional to:

`(Π∗,Ω) ∝ −T
2

ln|Ω| − 1
2
tr
(
Ω−1(∆Y − Y−1Π)′(∆Y − Y−1Π)

)
∝ −T

2
ln|Ω| − 1

2
vec(∆Y − Y−1Π)′(Ω−1 ⊗ IT )vec(∆Y − Y−1Π)

∝ −T
2

ln|Ω| − 1
2

vec(∆Y − Y−1Π̂ur)(Ω−1 ⊗ IT )vec(∆Y − Y−1Π̂ur)

− 1
2

vec(Y−1(Π̂ur −Π))′(Ω−1 ⊗ IT )vec(Y−1(Π̂ur −Π)),

(14)

with the T × T identity matrix IT and the parameter estimate of VEC model (7) Π̂ur =
(Y ′−1Y−1)−1Y ′−1∆Y . Note that in (14) we have expressed the log-likelihood for our panel
VEC models in terms of the high-dimensional unrestricted VEC model (7). Using

vec(Π̂ur) = (Ω−1 ⊗ Y ′−1Y−1)−1(Ω−1 ⊗ Y ′−1)vec(∆Y ),

the third part of the last expression in (14) can be rewritten further as

vec(Y−1(Π̂ur −Π))′(Ω−1 ⊗ IT )vec(Y−1(Π̂ur −Π))
= vec(Y ′−1ε)

′(Ω⊗ Y ′−1Y−1)−1vec(Y ′−1ε), (15)

where ε = ∆Y − Y−1Π.
Using (14), the conditional maximum likelihood estimator of Ω given Π∗ equals:

Ω̂(Π∗) =
1
T

(∆Y − Y−1Π)′ (∆Y − Y−1Π) . (16)

Expression (15) can be interpreted as a GMM objective function with all variables in Y−1

acting as instrument variables (see Kleibergen 1999):

G(Π, Ω) = vec(Y ′−1ε)
′(Ω⊗ Y ′−1Y−1)−1vec(Y ′−1ε). (17)

For the unrestricted system (7) the optimized objective function (17) is equal to zero,
because the model is exactly identified in that case, i.e. the number of instruments and
regressors are equal. Consequently, vec(Y ′−1ε) is then equal to zero. For the panel VEC
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models (5), (8) and (10), however, we have non-zero values for the optimized objective
functions.

Based on (14) we can see that our GMM objective function is part of log-likelihood
function (13),

`(Π∗, Ω) = −NkT
2

ln(2π)− T

2
ln|Ω| − 1

2
tr
(
Ω−1∆Y ′MY−1∆Y

)
− 1

2
G(Π, Ω), (18)

where MY−1 = IT−Y−1(Y ′−1Y−1)−1Y ′−1. In (18) we can estimate the disturbance covariance
matrix Ω conditional on Π∗ through estimator (16), and Π∗ can be estimated given Ω
using GMM objective function (17). Hence, we can maximize log-likelihood function (18)
through sequentially applying the aforementioned estimation procedures of Ω and Π∗ until
convergence of the resulting estimators.

3.2 GMM-Based Estimation of Panel Vector Error Correction
Models

In the unrestricted standard VEC model maximum likelihood estimators of the cointe-
grating vectors result from the canonical vectors associated with the canonical correlations
as in Johansen (1991, 1996). The relationship between maximum likelihood and canoni-
cal correlations breaks down when we impose the restrictions implied by the panel VEC
models (5), (8) and (10) on the unrestricted full-system VEC model (7) of section 2. Con-
sequently, analytical expressions of the maximum likelihood estimator of the cointegrating
vector cannot be obtained and one has to rely on numerical optimization. However, we
can use GMM objective function (17) and covariance matrix estimator (16) to construct
analytical expressions of the maximum likelihood cointegrating vector estimators.

Full Rank Estimation

GMM objective function (17) corresponding with panel VEC model (5) equals:

G(ΠA) = vec(Y ′−1(∆Y − Y−1ΠA))′(Ω⊗ Y ′−1Y−1)−1vec(Y ′−1(∆Y − Y−1ΠA)), (19)

where

ΠA = Π′A =

 Π′1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 Π′N

 .

In (19) we use Yt−1 and not yi,t−1 as instrument variables for each of the Nk equations of
panel VEC model (5). The matrix of disturbances ε = ∆Y − Y−1ΠA and the matrix of
instrument variables across the Nk equations each must have identical structured cross-
product matrices. If this is not the case we end up with unknown limit distributions of the
GMM objective function and estimators. As we use Yt−1 as instruments for each equation
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in the panel VEC model, we can base our estimates and tests on a non-diagonal covariance
matrix of the disturbances εt = (η′1t · · · η′Nt)′. Hence, in (19) the instruments Y−1 and the
non-diagonal covariance matrix Ω correct for any contemporaneous correlation between
the Nk I(1) variables in our panel.

We can specify in our objective function (19) the following:

vec(Y ′−1(∆Y − Y−1ΠA)) =

vec
(
Y ′−1∆Y

)
− vec

(
Y ′−1Y1,−1Π′1 . . . Y

′
−1YN,−1Π′N

)
= vec

(
Y ′−1∆Y

)
− F

 vec(Π′1)
...

vec(Π′N)

 ,

(20)

where

F =
(

(e1 ⊗ Ik)⊗ (Y ′−1Y1,−1) · · · (eN ⊗ Ik)⊗ (Y ′−1YN,−1)
)
. (21)

In (21) ei is the ith N -dimensional unity vector and Ij is an j × j identity matrix, with j
either equal to the number of variables k per individual VEC model or the total number
of variables Nk. Objective function (19) can be minimized conditional on a consistent
estimate of covariance matrix Ω for which we use the conditional maximum likelihood
estimator Ω̂(ΠA), as defined in (16).

Minimizing objective function (19) with respect to Π′1, . . . ,Π
′
N given Ω̂ = Ω̂(ΠA) and

(20) results in the following GMM-based estimator of ΠA, which equals estimation based
on Seemingly Unrelated Regression Estimation (SURE), in panel VEC model (5):6 vec(Π̂′1)

...
vec(Π̂′N)

 = (F ′(Ω̂⊗ Y ′−1Y−1)−1F )−1F ′(Ω̂⊗ Y ′−1Y−1)−1vec(Y ′−1∆Y )

= (F ′SURE(Ω̂−1 ⊗ Y ′−1Y−1)FSURE)−1F ′SURE(Ω̂−1 ⊗ IT )vec(Y ′−1∆Y ),

(22)

where

F =
(
INk ⊗ Y ′−1Y−1

)
FSURE,

and

FSURE =
(

(e1 ⊗ Ik)⊗ (e1 ⊗ Ik) · · · (eN ⊗ Ik)⊗ (eN ⊗ Ik)
)
. (23)

To get maximum likelihood estimates of ΠA and the disturbance covariance matrix Ω
we start off with a consistent initial estimate of Ω equal to

Ω̂(Π̂A,OLS) =
(

Ω̂ij

)
i,j=1,... ,N

with Ω̂ij =
1
T

T∑
t=1

η̂itη̂
′
jt. (24)

6The first order condition equals: −F ′(Ω̂⊗ Y ′−1Y−1)−1[vec(Y ′−1∆Y )− F (vec(Π′1) · · · vec(Π′N ))′] = 0.
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In (24) η̂it and η̂jt are the OLS residuals from estimating the unrestricted VEC model in
(1), see section 2, for each individual i and j separately with i, j = 1, . . . , N . Using (24)
we can estimate the Πi’s based on (22) and use these estimates to construct the following
estimate of Ω:

Ω̂(Π̂A) =
(

Ω̂ij

)
i,j=1,... ,N

with Ω̂ij =
1
T

(∆Yi − Yi,−1Π̂′i)
′(∆Yj − Yj,−1Π̂′j). (25)

Estimates of the Πi’s can now be constructed through (22) based on (25). We iterate
this procedure until convergence of the estimators and the minimized GMM objective
function. This iterative procedure yields maximum likelihood estimates of both the Πi’s
and Ω, as we maximize likelihood function (18) with respect to both the Πi’s and Ω.

Heterogeneous Cointegrating Vectors

Panel VEC model (8) implies the following GMM objective function,

G(ΠB) = vec(Y ′−1(∆Y − Y−1ΠB))′(Ω⊗ Y ′−1Y−1)−1vec(Y ′−1(∆Y − Y−1ΠB)), (26)

where

ΠB = Π′B =

 β1α
′
1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βNα

′
N

 . (27)

In (27) βi and αi are k × r for i = 1, . . . , N , where r equals the number of cointegrating
vectors.

Within the objective function (26) we can write,

vec(Y ′−1(∆Y − Y−1ΠB)) =

vec
(
Y ′−1∆Y

)
− vec

(
Y ′−1Y1,−1β1α

′
1 . . . Y

′
−1YN,−1βNα

′
N

)
= vec

(
Y ′−1∆Y

)
− E

 vec(β1)
...

vec(βN)

 ,

(28)

with

E =
(

(e1 ⊗ α1)⊗ (Y ′−1Y1,−1) · · · (eN ⊗ αN)⊗ (Y ′−1YN,−1)
)

=
(
INk ⊗ Y ′−1Y−1

)
ESURE,

(29)

using

ESURE =
(

(e1 ⊗ α1)⊗ (e1 ⊗ Ik) · · · (eN ⊗ αN)⊗ (eN ⊗ Ik)
)
.

The usage of selection matrix ESURE in (29) indicates that we can interpret our GMM-
estimator of β1, . . . , βN as a SURE-type estimator. Under the null hypothesis of a common
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cointegration rank r covariance matrix estimator (25) yields a consistent estimate of Ω for
panel VEC model (8). Using normalization (3) from section 2 for β1, . . . , βN , and under
the true cointegration rank value r, a consistent estimator of αi equals

α̂i ≡ the first r columns of Π̂i from (22) for i = 1, . . . , N. (30)

Substituting (28), α̂1, . . . , α̂N and Ω̂ = Ω̂(Π̂A) in objective function (26), minimizing
this objective function with respect to β1, . . . , βN result in the GMM-estimates vec(β̂1)

...
vec(β̂N)

 = (Ê ′(Ω̂⊗ Y ′−1Y−1)−1Ê)−1Ê ′(Ω̂⊗ Y ′−1Y−1)−1vec(Y ′−1∆Y )

= (Ê ′SURE(Ω̂−1 ⊗ Y ′−1Y−1)ÊSURE)−1Ê ′SURE(Ω̂−1 ⊗ IT )vec(Y ′−1∆Y ),

(31)

where Ê and ÊSURE equals (29) based on consistent estimates of the αi’s as defined in
(30).

Given the estimate of the cointegrating vectors β̂1, . . . , β̂N and α̂1, . . . , α̂N from (30)
we construct the estimate of ΠB which we use in the conditional maximum likelihood
estimator (16) of Ω to obtain Ω̂(Π̂B). Jointly with β̂1, . . . , β̂N , Ω̂(Π̂B) is used to construct
the GMM estimator of the αi’s. Minimizing GMM objective function (26) with respect
to the αi’s conditional on the estimates β̂i of βi and Ω̂ = Ω̂(Π̂B) yields: vec(α̂′1)

...
vec(α̂′N)

 = (Φ′B(Ω̂⊗ Y ′−1Y−1)−1ΦB)−1Φ′B(Ω̂⊗ Y ′−1Y−1)−1vec(Y ′−1∆Y ),

= (Φ′B,SURE(Ω̂−1 ⊗ Y ′−1Y−1)ΦB,SURE)−1Φ′B,SURE(Ω̂−1 ⊗ IT )vec(Y ′−1∆Y ),
(32)

where,

ΦB =
(

(e1 ⊗ Ik)⊗ (Y ′−1Y1,−1β̂1) · · · (eN ⊗ Ik)⊗ (Y ′−1YN,−1β̂N)
)

=
(
INk ⊗ Y ′−1Y−1

)
ΦB,SURE,

based on

ΦB,SURE =
(

(e1 ⊗ Ik)⊗ (e1 ⊗ β̂1) · · · (eN ⊗ Ik)⊗ (e1 ⊗ β̂N)
)
.

In (32) ΦB results from a similar respecification as in (28).
To obtain the maximum likelihood estimates of Ω, αi and βi for i = 1, . . . , N , we

sequentially apply estimators (31), Ω̂(Π̂B) and (32) in an iterative way until convergence
of the estimators. This iterative scheme can be outlined as follows:

0. Construct initial estimates of Ω and α1, . . . , αN through (25) and (30) respectively.
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1. Construct the estimate of β1, . . . , βN through (31) given the estimates of α1, . . . , αN
and Ω.

2. Construct estimator (16) for Ω given the estimated ΠB which results from the estimates
of α1, . . . , αN and β1, . . . , βN from step 1.

3. Construct estimator (32) for α1, . . . , αN given the estimates of β1, . . . , βN and Ω̂(Π̂B)
from steps 1 and 2.

4. When the objective function and estimators have not converged, go back to step 1.

The asymptotic behaviour of the maximum likelihood estimator of β1, . . . , βN that
results from the above mentioned iterative scheme can be typified as follows:

Proposition 3.1 Let,

(a) the cointegrating vectors βi and loading factors αi for i = 1, . . . , N not span orthog-
onal spaces, such that α′⊥iβ⊥i is of full rank value,

(b) the estimators of αi, βi and Ω for i = 1, . . . , N be fully converged estimators that
result from our iterative estimation scheme,

(c) the true common cointegration rank equal r,

(d) the cross-section dimension N be fixed and the time series dimension T →∞.

Then the maximum likelihood cointegrating vector estimator based on (31) converges
with rate T to its true value and its limiting distribution is a mixed normal distribution.

Proof: See Appendix B.

Homogeneous Cointegrating Vectors

The GMM objective function for panel VEC model (10), equals:

G(ΠC) = vec(Y ′−1(∆Y − Y−1ΠC))′(Ω⊗ Y ′−1Y−1)−1vec(Y ′−1(∆Y − Y−1ΠC)), (33)

where

ΠC = Π′C =

 βα′1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βα′N

 .
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In (33) we can rewrite vec(Y ′−1(∆Y − Y−1ΠC)),

vec(Y ′−1(∆Y − Y−1ΠC)) =

vec
(
Y ′−1∆Y

)
− vec

(
Y ′−1Y1,−1βα

′
1 . . . Y

′
−1YN,−1βα

′
N

)
= vec

(
Y ′−1∆Y

)
−

 α1 ⊗ Y ′−1Y1,−1
...

αN ⊗ Y ′−1YN,−1

 vec(β).

(34)

Based on (34) and the consistent estimates α̂1, . . . , α̂N and Ω̂, as defined in (30) and
(25), minimization of (33) with respect to β yields the following estimate of β:

vec(β̂) =
(
D̂′
(

Ω̂⊗ Y ′−1Y−1

)−1
D̂

)−1

D̂′
(

Ω̂⊗ Y ′−1Y−1

)−1
vec
(
Y ′−1∆Y

)
=
(
D̂′SURE

(
Ω̂−1 ⊗ Y ′−1Y−1

)
D̂SURE

)−1
D̂′SURE

(
Ω̂−1 ⊗ IT

)
vec
(
Y ′−1∆Y

)
,

(35)

where D̂ and D̂SURE equal

D =

 α1 ⊗ Y ′−1Y1,−1
...

αN ⊗ Y ′−1YN,−1

 =
(
INk ⊗ Y ′−1Y−1

)
DSURE,

DSURE =

 α1 ⊗ (e1 ⊗ Ik)
...

αN ⊗ (eN ⊗ Ik)


(36)

in which we substitute estimates of α1, . . . , αN . Given the estimates of α1, . . . , αN and β,
through (30) and (35), we can then construct the estimated ΠC which we use in estimator
(16) for Ω.

Conditional on the estimates β̂ and Ω̂ = Ω̂(Π̂C), minimization of objective function
(33) with respect to α1, . . . , αN yields a GMM estimator of the αi’s: vec(α̂′1)

...
vec(α̂′N)

 = (Φ′C(Ω̂⊗ Y ′−1Y−1)−1ΦC)−1Φ′C(Ω̂⊗ Y ′−1Y−1)−1vec(Y ′−1∆Y )

= (Φ′C,SURE(Ω̂−1 ⊗ Y ′−1Y−1)ΦC,SURE)−1Φ′C,SURE(Ω̂−1 ⊗ IT )vec(Y ′−1∆Y ),
(37)

where,

ΦC,SURE =
(

(e1 ⊗ Ik)⊗ (e1 ⊗ β̂) · · · (eN ⊗ Ik)⊗ (eN ⊗ β̂)
)
,

ΦC =
(
INk ⊗ Y ′−1Y−1

)
ΦC,SURE

=
(

(e1 ⊗ Ik)⊗ (Y ′−1Y1,−1β̂) · · · (eN ⊗ Ik)⊗ (Y ′−1YN,−1β̂)
)
.

14



Maximum likelihood estimation of β, Ω and α1, . . . , αN can be done in an analogous
way as in the case of heterogeneous cointegrating vectors through (iterative) sequential
estimation of β, Ω and the αi’s based on (35), (16) and (37) respectively.

3.3 Likelihood Ratio Testing

The maximized value of log-likelihood function (18) in section 3.1 can be obtained by
substituting the optimized GMM objective functions and the conditional maximum likeli-
hood estimates of Ω in (18). Likelihood ratio cointegration rank testing within our panel
VEC models can then be conducted based on these maximized log-likelihood functions.

The discussion in section 3.1 indicates that we can write, given estimate Π̂∗ of Π∗, in
(18)

tr
(

Ω̂(Π̂∗)−1∆Y ′MY−1∆Y
)

+G(Π, Ω̂(Π̂∗)) =

tr
(

Ω̂(Π̂∗)−1(∆Y − Y−1Π)′(∆Y − Y−1Π)
)
,

and based on this result it is straightforward to show that the maximized value of (18)
given Π∗ equals:

`max(Π̂∗, Ω̂(Π̂∗)) = constant− T

2
ln|Ω̂(Π̂∗)|, (38)

with Π̂∗ = Π̂A, Π̂B or Π̂C. The maximized log-likelihood functions, as defined in (38), can
be used to conduct likelihood ratio testing of the coefficient matrices implied by the panel
VEC models (8) and (10) versus the coefficient matrix ΠA in (5), as summarized under
(12) in section 2:

LR(ΠB|ΠA) = 2[`(Π̂A, Ω̂(Π̂A))− `(Π̂B, Ω̂(Π̂B))] = T [ln|Ω̂(Π̂B)| − ln|Ω̂(Π̂A)|], (39)

and

LR(ΠC|ΠA) = 2[`(Π̂A, Ω̂(Π̂A))− `(Π̂C, Ω̂(Π̂C))] = T [ln|Ω̂(Π̂C)| − ln|Ω̂(Π̂A)|]. (40)

In (39) and (40) Ω̂(Π̂A), Ω̂(Π̂B) and Ω̂(Π̂C) result from the iterative estimation procedures
of section 3.2.

The main implication of the restrictions implied by panel VEC model (8) on (5)
in section 2 is that we test for identical rank reduction in N individual VEC models
simultaneously.7 Therefore, based on T → ∞ one can motivate the limiting distribution
of LR(ΠB|ΠA) as the sum of (k− r)-dimensional Brownian motion functionals, as defined
in (4) in section 2, across N individuals. This line of reasoning is valid as long as one
uses a maximum likelihood estimation procedure which takes into account the correlations
across all Nk variables in our panel. The asymptotic behaviour of the LR-statistic in (39)
can thus be defined as:

7This is also indicated by the representation theorem of panel VEC model (8) in Appendix A.
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Proposition 3.2 Given the conditions from proposition 3.1, the limiting distribution of
LR(ΠB|ΠA) in (39) equals:

LR(ΠB|ΠA)⇒
N∑
i=1

tr

(∫
dBk−r,iB

′
k−r,i

[∫
Bk−r,iB

′
k−r,i

]−1 ∫
Bk−r,idB

′
k−r,i

)
. (41)

In (41) Bk−r,i is a (k− r)-dimensional Brownian motion for individual i with an identity
covariance matrix.
Proof: See Appendix C.

The likelihood ratio statistic LR(ΠC|ΠA) for testing the restrictions implied by panel
VEC model (10) on panel VEC model (5) can be decomposed as follows:

LR(ΠC|ΠA) = LR(ΠC|ΠB) + LR(ΠB|ΠA). (42)

In (42) the asymptotic distribution corresponding with LR(ΠB|ΠA) equals (41) in propo-
sition 3.2. The conditional likelihood ratio statistic LR(ΠC|ΠB) which tests the restriction
of homogeneous cointegrating vectors given the common cointegration rank has a limiting
distribution as defined in (11) in section 2. We can therefore define the limiting behaviour
of LR-statistic (40) as:

Proposition 3.3 Given the conditions from proposition 3.1, the limiting distribution of
LR(ΠC|ΠA) in (40) equals:

LR(ΠC|ΠA)⇒

χ2 ((N − 1)r(k − r)) +
N∑
i=1

tr

(∫
dBk−r,iB

′
k−r,i

[∫
Bk−r,iB

′
k−r,i

]−1 ∫
Bk−r,idB

′
k−r,i

)
.

(43)

Proof: This result follows from decomposing LR(ΠC|ΠA) as in (42). We normalize the
cointegrating vectors as in (3): β′i = (Ir − β′2i). In Appendix B we show that the maxi-
mum likelihood cointegrating vector estimator of the β2i’s based on (31) is asymptotically
distributed as a mixed normal distribution. The assumption of homogeneous cointegrat-
ing vectors restricts the values of the r(k − r) elements in the β2i parameter matrix for
(N − 1) individuals. Hence, the quasi-likelihood ratio test statistic LR(ΠC|ΠB) tests a
restriction on (N − 1)r(k − r) parameters and this statistic is asymptotically distributed
as a χ2((N−1)r(k−r)) random variable. The limiting distribution of LR(ΠB|ΠA) results
directly from proposition 3.2.

4 Deterministic Components and Higher Order Dy-
namics

The panel VEC models as defined in (5), (8), and (10) have no higher order dynamics and
deterministic components. In practice, however, VEC models contain these components
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and in this section we discuss how the analysis changes when we include them. We
first discuss in section 4.1 the issue of the deterministic components. In section 4.2 the
estimation of higher order dynamics is discussed.

4.1 Deterministic Components

Several specifications of the deterministic components are possible and each of them in-
fluence the limiting distribution of the LR statistics of section 3.3. Consider the VEC
model of individual i,

∆yit = αiβ
′
iyi,t−1 + δ′ixt + εit, (44)

where δi is m×k and i = 1, . . . , N . The vector xt is m×1 and it contains the deterministic
components that are identical across the individuals. Using (44) we can distinguish several
different specifications of the deterministic components:

B.1. Heterogeneous cointegrating vectors and unrestricted deterministic components, i.e.
in (44) βi and δi are unrestricted for i = 1, . . . , N .

B.2. Heterogeneous cointegrating vectors and the deterministic components are restricted
to lie in the cointegration space, i.e. in (44) βi is unrestricted for i = 1, . . . , N and
δi = µiα

′
i with µi is m× r.

C.1. Homogeneous cointegrating vectors and unrestricted deterministic components, i.e.
in (44) βi = β for i = 1, . . . , N and δi is unrestricted.

C.2. Homogeneous cointegrating vectors and the deterministic components are hetero-
geneous and restricted to lie in the cointegration space, i.e. in (44) βi = β for
i = 1, . . . , N and δi = µiα

′
i, with µi is m× r.

C.3. Homogeneous cointegrating vectors and the deterministic components are homoge-
neous and restricted to lie in the cointegration space, i.e. in (44) βi = β and δi = µα′i
for i = 1, . . . , N , with µ is m× r.

We only briefly discuss the consequences of specifications B.1-C.3 for the GMM-
estimators and the limiting distributions of the LR statistics. This discussion is based on
the discussion in sections 3.2 and 3.3. Only a constant is used in our discussion of the
deterministic components as other cases follow straightforwardly, i.e. in (44) we have the
k×1 vector δ′i = ci for the unrestricted case and for the restricted case µi and µ are 1× r.

Including constants in the full rank panel VEC model (5) from section 2, implies that
these constants are always unrestricted and the corresponding (Nk + 1)×Nk coefficient
matrix equals:

ΠA.1 = Π′A.1 =


Π′1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 Π′N
c′1 · · · c′N

 . (45)
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Analogous to Johansen (1991, 1996), we can concentrate out these unrestricted constants
through OLS regressions of ∆yit and yi,t−1 on a constant. Therefore, we can define

∆Ỹi = Mι∆Yi and ∆Ỹ = (∆Ỹ1 · · ·∆ỸN),

Ỹi,−1 = MιYi,−1 and Ỹ−1 = (Ỹ1,t−1 · · · ỸN,−1),
(46)

where Mι = IT − ι(ι′ι)−1ι′ with the T × 1 vector of ones ι. Hence, the minimized GMM
objective function G(ΠA.1, Ω̂) equals (19) from section 3.2 based on Π1, . . . ,ΠN from (45)
and the variables in (46). The estimator of the Πi’s in (45) now equals estimator (22)
from section 3.2 with ∆Ỹi, Ỹi,−1 and Ỹ−1.

In the remainder of this subsection, we construct the GMM cointegrating vector esti-
mator using consistent estimates of α̂1, . . . , α̂N and Ω̂ from (30) and (25) based on (46).
These estimators can then be used in an iterative scheme jointly with estimators for Ω
and α1, . . . , αN based on (16) and (32) or (37) respectively, as in section 3.2. Upon con-
vergence of the estimators and the objective function, the resulting estimates can then
be considered as maximum likelihood estimates. We only discus the GMM estimators for
the cointegrating vector as the GMM estimators for α1, . . . , αN are identical to those of
section 3.2.

Unrestricted constants: specifications B.1 and C.1

For specification B.1, the corresponding panel VEC model is similar to (8) from section 2
based on the (Nk + 1)×Nk parameter matrix

ΠB.1 = Π′B.1 =


β1α

′
1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βNα

′
N

c′1 · · · c′N

 . (47)

The optimal estimates of β1, . . . , βN in (47) follow from a GMM objective function
G(ΠB.1, Ω̂) which is identical to (26) from section 3.2 based on the variables in (46).
The estimator for the heterogeneous cointegrating vectors is now identical to (31) from
section 3.2 where ∆Y , Yi,−1 and Y−1 are replaced with ∆Ỹ , Ỹi,−1 and Ỹ−1 from (46). The
corresponding LR cointegration rank test can be calculated in an analogous way as in
section 3.3, based on iterative estimation.

In a similar way specification C.1 implies a long-run multiplier matrix

ΠC.1 = Π′C.1 =


βα′1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βα′N
c′1 · · · c′N

 . (48)

The appropriate GMM objective function G(ΠC.1, Ω̂) is based on (33) from section 3.2
with the variables from (46). GMM estimates of the homogeneous cointegrating vectors
in (48) are equal to (35) from section 3.2 based on the variables of (46).
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Restricted constants: specifications B.2, C.2 and C.3

The GMM objective function with restricted constants, resulting from adjusting the log-
likelihood function from section 3.1 for this case, is similar to:

G(Π, Ω̂) = vec(Z ′−1(∆Y − Z−1Π)′(Ω̂⊗ Z ′−1Z−1)−1vec(Z ′−1(∆Y − Z−1Π)), (49)

with Z−1 = (Y−1 ι), the T × 1 vector of ones ι and the (Nk + 1)×Nk matrix Π.
If we have specification B.2, the corresponding GMM objective function G(ΠB.2, Ω̂)

equals (49) with Π replaced by

ΠB.2 = Π′B.2 =


β1α

′
1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βNα

′
N

µ1α
′
1 · · · µNα

′
N

 . (50)

Minimizing with respect to the βi’s and µi’s yields the following estimates, vec(γ̂1)
...

vec(γ̂N)

 = (Ê ′(Ω̂⊗ Z ′−1Z−1)−1Ê)−1Ê ′(Ω̂⊗ Z ′−1Z−1)−1vec(Z ′−1∆Y )

= (Ê ′SURE(Ω̂−1 ⊗ Z ′−1Z−1)ÊSURE)−1Ê ′SURE(Ω̂−1 ⊗ IT )vec(Z ′−1∆Y ),

(51)

where γi = (β′i µ
′
i)
′ and Ê is identical to Ê in (31) from section 3.2 with Y−1 and Yi,−1

replaced by Z−1 and Zi,−1 = (Yi,−1 ι) for i = 1, . . . , N . In (51) ESURE equals

ESURE =
(

(e1 ⊗ α1)⊗
(

(e1 ⊗ Ik) 0Nk
0′k 1

)
· · · (eN ⊗ αN)⊗

(
(eN ⊗ Ik) 0Nk

0′k 1

) )
,

where 0Nk is a Nk-dimensional vector of zeros and 0k a k-dimensional vector of zeros.
Next, specification C.2 implies a GMM objective function G(ΠC.2, Ω̂) identical to (49),

based on

ΠC.2 = Π′C.2 =


βα′1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βα′N

µ1α
′
1 · · · µNα

′
N

 . (52)

The corresponding GMM-estimates of β and µ1, . . . , µN equals:
vec(β̂)
µ̂1
...
µ̂N

 = (Ê ′(Ω̂⊗ Z ′−1Z−1)−1Ê)−1Ê ′(Ω̂⊗ Z ′−1Z−1)−1vec(Z ′−1∆Y )

= (Ê ′SURE(Ω̂−1 ⊗ Z ′−1Z−1)ÊSURE)−1Ê ′SURE(Ω̂−1 ⊗ IT )vec(Z ′−1∆Y ),

(53)
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where

Ê =


 α̂1 ⊗ Z ′−1Y1,−1

...
α̂N ⊗ Z ′−1YN,−1

 (
(e1 ⊗ α̂1)⊗ Z ′−1ι · · · (eN ⊗ α̂N)⊗ Z ′−1ι

)  ,

and

ÊSURE =


α̂1 ⊗

(
(e1 ⊗ Ik)

0′k

)
...

α̂N ⊗
(

(eN ⊗ Ik)
0′k

)

(

(e1 ⊗ α̂1)⊗
(

0Nk
1

)
· · · (eN ⊗ α̂N)⊗

(
0Nk

1

) )
 .

Finally, for specification C.3 GMM objective function G(ΠC.3, Ω̂) is based on (49)
with

ΠC.3 = Π′C.3 =


βα′1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 βα′N
µα′1 · · · µα′N

 . (54)

Minimizing G(ΠC.3, Ω̂) with respect to β and µ yields the estimates,

vec
(
β̂
µ̂

)
= (D̂′(Ω̂⊗ Z ′−1Z−1)−1D̂)−1D̂′(Ω̂⊗ Z ′−1Z−1)−1vec(Z ′−1∆Y )

= (D̂′SURE(Ω̂−1 ⊗ Z ′−1Z−1)D̂SURE)−1D̂′SURE(Ω̂−1 ⊗ IT )vec(Z ′−1∆Y ),
(55)

where D̂ is similar to D̂ in (35) from section 3.2 with Y−1 and Yi,−1 replaced by Z−1 and
Zi,−1. Matrix D̂SURE is based on

DSURE =


α1 ⊗

(
(e1 ⊗ Ik) 0Nk

0′k 1

)
...

αN ⊗
(

(eN ⊗ Ik) 0Nk
0′k 1

)


The LR statistics for panel cointegration rank tests based on above mentioned specifi-
cations, are in the limit based on the sum of N limiting distributions of the trace statistics
for the corresponding deterministic specifications as defined in Johansen (1996, Chapter
6):
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Proposition 4.1 Given the conditions from proposition 3.1, the limiting distribution of
LR(ΠB.1|ΠA.1) and LR(ΠB.2|ΠA.1) equals:

LR(Π∗B|ΠA.1) = T [ln|Ω̂(Π̂∗B)| − ln|Ω̂(Π̂A.1)|]⇒
N∑
i=1

tr

(∫
dBk−r,iS

′
i

[∫
SiS

′
i

]−1 ∫
SidB

′
k−r,i

)
. (56)

In (56) Bk−r,i is a (k− r)-dimensional Brownian motion for individual i with an identity
covariance matrix and Ω̂(Π) is defined in (16), section 3.1.

B.1: in (56) Π∗B equals (47) and Si is (k − r)-dimensional for each individual i:

Si(t) =

(
Bk−r−1,i(t)−

∫ 1
0 Bk−r−1,i(t)dt

t−
∫ 1

0 tdt

)
, (57)

where 0 ≤ t ≤ 1.
B.2: in (56) Π∗B equals (50) and Si is (k − r + 1)-dimensional for each individual i:

Si(t) =
(
Bk−r,i(t)

1

)
. (58)

Next, we have for LR(ΠC.1|ΠA.1), LR(ΠC.2|ΠA.1) and LR(ΠC.3|ΠA.1):

LR(Π∗C|ΠA.1) = T [ln|Ω̂(Π̂∗C)| − ln|Ω̂(Π̂A.1)|]⇒

χ2(df) +
N∑
i=1

tr

(∫
dBk−r,iS

′
i

[∫
SiS

′
i

]−1 ∫
SidB

′
k−r,i

)
. (59)

C.1: in (59) Π∗C equals (48), Si is identical to (57) and χ2(df) = χ2((N−1)r(k−r)).
C.2: in (59) Π∗C equals (52), Si is identical to (58) and χ2(df) = χ2((N−1)r(k−r)).
C.3: in (59) Π∗C equals (54), Si is identical to (58) and, as we have homogeneous

restricted constants, χ2(df) = χ2((N − 1)r((k − r) + 1)).
Proof: The proofs follow the proofs of propositions 3.2 and 3.3, and are not reproduced.

4.2 Higher Order Dynamics

When we add individual specific higher order dynamics to the panel VEC models of
section 2, our panel VEC models have the following general expression:

∆Yt = Π∗Yt−1 + ΓWt + εt, (60)

with the Nk × Pk matrix

Γ =

 Γ1 0 · · · 0 0

0 . . . 0
0 0 · · · 0 ΓN

 ,
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where the k × pik matrix Γi contains the parameters of the pi lagged first differences of
individual i and P =

∑N
i=1 pi. We can define Wt in (60) as

Wt =
(
∆y′1,t−1 · · ·∆y′1,t−p1

· · ·∆y′N,t−1 · · ·∆y′N,t−pN
)′
,

and we define Π∗ = ΠA, ΠB or ΠC as in section 2.
Defining the T × Pk matrix W = (W1 · · ·WT )′, Γ = Γ′ and U = ∆Y − Y−1Π−WΓ,

we are able to write the log-likelihood function of (60) as:

`(Π∗, Γ, Ω) = −NkT
2

ln(2π)− T

2
ln|Ω| − 1

2
tr
(
Ω−1U ′U

)
= −NkT

2
ln(2π)− T

2
ln|Ω| − 1

2
vec(U)′(Ω−1 ⊗ IT )vec(U).

(61)

One can write in (61) vec(U) as

vec(U) = vec(∆Y − Y−1Π)− (INk ⊗W ) vec (Γ)

= vec(∆Y − Y−1Π)− (INk ⊗W )HSURE

 vec(Γ′1)
...

vec(Γ′N)

 ,
(62)

with q1 = 0, qi =
∑i−1

j=1 pj, i = 2, . . . , N,

HSURE =
(

(e1 ⊗ Ik)⊗H1 · · · (eN ⊗ Ik)⊗HN

)
,

Hi =

 0qi ⊗ 0′pi
Ipi

0P−pi−qi ⊗ 0′pi

⊗ Ik
 ; i = 1, . . . , N.

If we concentrate out Γ from (61), we obtain the concentrated log-likelihood of (Π∗,
Ω),

`(Π∗ ,Ω) ∝ −T
2

ln |Ω| − 1
2

vec(U)′MWvec(U). (63)

where,

MW = (Ω−1 ⊗ IT )− (Ω−1 ⊗W )HSURE

×
(
H ′SURE(Ω−1 ⊗W ′W )HSURE

)−1
H ′SURE(Ω−1 ⊗W ′).

Our GMM objective function then becomes

G(Π, Ω̂) = vec(∆Y − Y−1Π)′MW (INk ⊗ Y−1)

× ((INk ⊗ Y−1)′MW (INk ⊗ Y−1))−1 (INk ⊗ Y−1)′MWvec(∆Y − Y−1Π). (64)
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The GMM estimates of the cointegrating vectors are now based on (64) and therefore
have a slightly different specification. For example, the GMM estimator for the full rank
case now equals vec(Π̂′1)

...
vec(Π̂′N)

 = (F ′SURE(INk ⊗ Y−1)′MW (INk ⊗ Y−1)FSURE)−1

× F ′SURE(INk ⊗ Y−1)′MWvec(∆Y ), (65)

where FSURE is identical to (21) in section 3.2.
Given that

(Ω−1 ⊗ INk)vec(Y ′−1∆Y ) = (INk ⊗ Y−1)′(Ω−1 ⊗ INk)vec(∆Y ),

one can see that GMM estimator (65) is a straightforward generalization of estimator
(22) from section 3.2 to the case of higher order dynamics. The maximum likelihood
estimators result from iteratively applying the different GMM estimators and the limiting
behavior of the maximum likelihood cointegrating vector estimators therefore remains the
same, i.e. mixed normal. The limiting distributions of the likelihood ratio statistics based
on (63) and (64) are identical to those from propositions 3.2 and 3.3, as higher order
dynamics only affect the short-run properties of the model.

5 Cointegration and the Monetary Exchange Rate
Model

Our emprical application considers the long-run validity of the monetary exchange rate
model. We use a particular version of this model in which the log of the exchange rate at
time t (et) is related to the differential of the logarithms of the home and foreign money
supplies (mt −m∗t ) and the log of relative real income (yt − y∗t ). More specifically,

et = µ+ (mt −m∗t )− φ(yt − y∗t ) + εt

= µ+ m̃t − φỹt + εt,
(66)

where φ > 0 and εt is a zero mean, stationary deviation at time t with respect to the
monetary model. The relationship in (66) has its origin in the work of Mussa (1976).

As the variables in (66) are known to be I(1) processes, we can analyze the monetary
model in a VEC framework. Within an individual VEC model validity of the monetary
exchange rate model implies for country i:

∆xit =

 αi1
αi2
αi3

(βr′ −µi) zi,t−1 + εit, (67)
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where ∆xt = (∆eit ∆m̃it ∆ỹit)′, zi,t−1 = (ei,t−1 m̃i,t−1 ỹi,t−1 1)′, βr = (1 − 1 φi)′ and
εit is a vector of white noise disturbances. Hence, the monetary model in (66) implies for
a VEC model of each country a reduced rank value equal to 1, equality of the parameter
values of eit and m̃it in absolute terms with opposite signs within the cointegrating vector,
and a positive value of the income elasticity φi. The last restriction fulfills the condition
−φ < 0 in the equilibrium relationship (66).

We analyze in our application US dollar rates and the corresponding monetary funda-
mentals relative to the US for France, Germany and the United Kingdom (UK), which are
the three major European economies. The data are quarterly and start in the first quarter
of 1973, with the abolishment of the Bretton Woods system, and ends in the last quarter
of 1994. As the money supply measure we use seasonally unadjusted M1 aggregates and
for real income we use Gross Domestic Product (GDP), or Gross National Product (GNP)
in the case of Germany. The data are retrieved from the International Financial Statistics
with the exception of Germany (GNP from Main Economic Indicators) and the UK (M1
from the Dutch Central Bank). See also Groen (1999, Appendix A) for a more detailed
description of the data.

We first test for cointegration for each country separately using Johansen’s maximum
likelihood approach. To guarantee white noise residuals in the individual VEC models we
allow for higher order dynamics and the lag order is selected based on information criteria
and white noise residual tests. Seasonal patterns are corrected for through the usage of
three zero mean seasonal dummies in the VEC models. Table 1 contains the results of the
cointegration tests for the analyzed data. One can infer from these results that there is no
evidence for the appropriateness of the monetary model for long-run developments in US
dollar nominal exchange rates of France, Germany and the UK. In non of the cases can we
reject at a 5% significance level the null hypothesis of a reduced rank value equal to 0, i.e.
the null hypothesis of no cointegration. These results corroborate the time series-based
cointegration test results of amongst others Sarantis (1994) and Groen (1999).

As discussed before, the monetary exchange rate model implies a common structure
for all the countries in our data-set. Next to that, the US dollar exchange rates of Euro-
pean countries have high cross-country correlations. Based on these considerations Groen
(1999) applied the panel Engle-Granger approach on the monetary model with homoge-
neous long-run parameters for m̃it and ỹit, and he indeed finds evidence for cointegration
within panels of at least nine countries. Hence, it seems worthwhile to analyze the vari-
ables of France, Germany and the UK within a panel of three VEC models.

Using the different specifications of the cointegrating vectors and deterministic com-
ponents discussed in sections 2 and 4.1, we test the following hypotheses within our three
country panel VEC model:

• B.2(r)|A.1 tests Π B.2 (50) under common cointegration rank r versus ΠA.1 (45).

• C.2(r)|A.1 tests ΠC.2 (52) under common cointegration rank r versus ΠA.1 (45).

• C.2H(r)|A.1 tests ΠC.2H under common cointegration rank r versus ΠA.1 (45),
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Table 1: Cointegration tests for
the individual countries, 1973:1-
1994:4

lags rank 0 rank 1 rank 2

France
3 32.16 15.49 5.55

Germany
3 16.82 9.12 3.83

United Kingdom
3 20.85 9.59 2.14

5% Critical Valuesa

– 34.91 19.96 9.24

1% Critical Valuesa

– 41.07 24.60 12.97

a See Osterwald-Lenum (1992).

where ΠC.2H equals (52) with the parameter of ỹit in the cointegrating vector as-
sumed to be heterogeneous across the countries.

The above mentioned hypotheses are tested with the likelihood ratio statistics (LR) that
are based on the GMM estimators iterated over all the parameters, including the dis-
turbance covariance matrix, resulting in maximum likelihood estimates. Appropriate
limiting distributions are summarized in proposition 4.1. The corresponding critical val-
ues are computed using simulations based on 1,000 time series observations and 100,000
iterations, where the procedures in Johansen (1996) are used for the individual (k − r)-
dimensional Brownian motions. Note that the value of the degrees of freedom of the χ2

part of the limiting distribution of C.2H(r)|A.1 equals (N − 1)r(k − r − 1) instead of
(N − 1)r(k − r) for C.2(r)|A.1.

The corresponding test results for our data-set can be found in table 2. Within our
panel VEC models we make use of the same lag order for the lagged first differences as in
the individual cointegration analysis and again we use three zero mean seasonal dummies.
The results in table 2 indicate that we can reject the hypothesis of no cointegration across
all countries. We also cannot reject the hypothesis of a common cointegration rank value
equal to 1 based on both fully and partial (=ΠC.2H) heterogeneous cointegrating vectors.
The LR statistic for specification C.2 indicate that we cannot reject at a 5% significance
level the presence of one common cointegration vector based on homogeneous long-run
parameters of eit, m̃it and ỹit, but the statistic rejects the validity of specification C.2 at
the 10% critical value equal to 50.69. As we use the asymptotic distribution and not the
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Table 2: Cointegration rank tests in the
panel VEC models, 1973:1-1994:4

LR 95%a 99%a

B.2(0)|A.1 95.64∗ 90.64 101.20
B.2(1)|A.1 28.55 49.61 56.06
B.2(2)|A.1 3.84 20.74 25.16
C.2(1)|A.1 51.30 54.27 61.84
C.2(2)|A.1 17.21 26.59 31.56

C.2H(1)|A.1 43.64 52.31 59.32
C.2H(2)|A.1 3.25 20.74 25.16

a “95%” (“99%”) are the 95% (99%) quantiles
of the appropriate limiting distribution and
∗(∗∗) indicates a rejection of the null hypoth-
esis at these quantiles.

actual distribution of the test statistic we have a weak rejection of C.2. Thus we cannot
make a clear decision whether to accept or reject C.2 as a valid specification.

The normalized cointegating vectors which corresponds with the specifications that
we could not reject in table 2 are reported in table 3. The estimated cointegrating vector
parameters of log relative real income ỹit have the proper signs as in (67), both when
assumed to be heterogeneous and homogeneous. Specification (67) also implies for all
countries that the long-run parameters of eit and m̃it must have equal absolute values with
opposite signs. Therefore, (β̂e + β̂m̃) = 0 should be a valid restriction on the estimated
cointegrating vectors β̂ = (β̂e β̂m̃ β̂ỹ β̂µ,i)′ or β̂ = (β̂e β̂m̃ β̂ỹ,i β̂µ,i)′ for i = 1, 2, 3. We
test the restriction (β̂e + β̂m̃) = 0 conditional on homogeneous long-run parameters of eit
and m̃it and a given cointegration rank. Hence, the corresponding LR statistics have a
limiting distribution equal to a χ2(1) distribution. The results in table 3 indicate that in
none of the cases we are able to reject the null hypothesis (β̂1 + β̂2) = 0, rending support
to the cointegrating vector as implied by the monetary exchange rate model in (67).

6 Conclusions

In this paper we construct a framework for cointegration analysis in panels with a fixed
number of vector error correction models. As analytical expressions of maximum likeli-
hood estimators based on canonical correlations cannot be constructed within our panel
vector error correction model, we use maximum likelihood estimates that result from an
iterative estimation procedure based on GMM expressions of the parameters.

The GMM estimators result from an objective function that is embedded in the log-
likelihood function and these estimators can be interpreted as SURE-type estimators.
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Table 3: Normalized cointegrating
vectors within the panel VEC mod-
els

βa
C.2 βa

C.2H

eit 1 1
m̃it −1.23 −0.90
ỹit 5.58 –
ỹFR,t – 5.15
ỹGER,t – 3.26
ỹUK,t – 11.16
µFR −2.10 −2.19
µGER 2.69 1.13
µUK 9.91 23.78

(β̂e + β̂m̃) = 0b 1.40 0.22
(0.28) (0.64)

a Specifications C.2 and C.2H are de-
fined in the text.

b LR statistic testing that eit and m̃it

have opposite parameter values with
the corresponding χ2(1) p-values in
parentheses.

Iteratively applying the GMM estimators for the different parameters yields maximum
likelihood estimates after convergence of the estimators and the GMM objective function.
We use these maximum likelihood estimates to construct likelihood ratio statistics to test
for a common cointegration rank value across the individual vector error correction models
within our panel.

Our likelihood ratio tests for a common cointegration rank have a limiting distribu-
tion equal to a summation of limiting distributions of an appropriate number of Johansen
(1996) trace statistics. When we assume that the cointegrating vectors are (partly) ho-
mogeneous across the individuals, we see that the limiting distributions of the rank test
statistics are composed of a summation of Brownian motion functionals and a χ2 random
variable. We also formulate cointegrating vector estimators and rank test statistics for
different specifications of the deterministic components. These are derived in similar way
as before.

To show the importance of exploiting common structures across different individual
vector error correction models, we analyze the appropriateness of the monetary exchange
rate model for US dollar exchange rates. Within our panel-structure approach the test
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results indicates strong support for the validity of the monetary exchange rate model for
long-run developments in the US dollar exchange rates of France, Germany and the UK.
This result is indicative for the importance of using the additional information in the
cross-section dimension of economic time-series.

For future research there are many applications where our method can make a differ-
ence. Some examples are, purchasing power parity as in e.g. Pedroni (1995, 1996) and
long run import demand relationships as in Kleibergen et al. (1999). Economic appli-
cations like the above mentioned offer interesting areas for future research. One should
realize that even when common structures do not exist across individuals, it is often
more efficient to estimate a panel VEC model based on heterogeneous cointegrating vec-
tors when we have cross-section correlations. Individual vector error correction models
are only asymptotically efficient in the absence of cross-sectional correlation. When cross-
sectional correlation exists, system methods, like the panel VEC model with heterogeneous
cointegrating vectors, are asymptotically more efficient.

Appendix

A Representation Theorem
We can directly apply the Granger-Johansen representation theorem, see Johansen (1991), to the system
of the cointegrated VEC models,

∆Yt =

 α′1β1 0 · · · 0 0

0
. . . 0

0 0 · · · 0 α′NβN

Yt−1 + εt,

and obtain its stochastic trend specification,

Yt =

 β1⊥(α′1⊥β1⊥)−1α′1⊥ 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1α′N⊥

 t−1∑
s=0

εt + Zt,

where Zt is a Nk dimensional stationary time series and β′i⊥βi ≡ 0, α′i⊥αi ≡ 0, i = 1, . . . , N. The limiting
behavior of Yt is therefore such that

1√
T
Yt ⇒

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1

Λ
1
2BN(k−r),

where BN(k−r) is a N(k − r) dimensional Brownian motion with an identity covariance matrix and

Λ =

 α′1⊥ . . . 0
...

. . .
...

0 . . . α′N⊥

Ω

 α1⊥ . . . 0
...

. . .
...

0 . . . αN⊥


=

(
(e1 ⊗ α1⊥) · · · (eN ⊗ αN⊥)

)′ Ω ( (e1 ⊗ α1⊥) · · · (eN ⊗ αN⊥)
)
,

where ei is the i-th N dimensional unity vector.
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B Proof of Proposition 3.1
The maximum likelihood estimate of the cointegrating vectors β1, . . . , βN results from iteratively applying
the cointegrating vector estimator (31) based on consistent estimates of α1, . . . , αN and the disturbance
covariance matrix Ω. The error introduced by using these consistent estimators instead of the true
unknown value is, however, such that the highest order in the number of observations of the limiting
expression of the cointegrating vector estimator is not affected by it. Hence, to construct the limiting
distribution of the cointegrating vector estimator, we can treat the consistent estimators as if they are
equal to the true value of the parameter.

The GMM cointegrating vector estimator which equals, after convergence, the maximum likelihood
estimates of β1, . . . , βN reads, vec(β̂1)

...
vec(β̂N )

 = (E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E)−1E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1∆Y ),

where Y−1 = (Y1,−1 · · ·YN,−1), Yi,−1 is T × k, i = 1, . . . , N, and

E =
(

(e1 ⊗ α̂1)⊗ (Y ′−1Y1,−1) · · · (eN ⊗ α̂N )⊗ (Y ′−1YN,−1)
)

=
(
(IN ⊗ Ik)⊗ Y ′−1Y−1

) (
(e1 ⊗ α̃1)⊗ (e1 ⊗ Ik) · · · (eN ⊗ α̃N )⊗ (eN ⊗ Ik)

)
,

with Ω̂ and α̂1, . . . , α̂N as consistent estimates of Ω and α1, . . . , αN . We substitute that ∆Y = Y−1diag(βiα′i)+
ε, where diag(Ai) is a diagonal matrix with Ai on the diagonal, such that vec(β̂1)

...
vec(β̂N )

 = (E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E)−1E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1∆Y )

= (E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E)−1E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)

E
 vec(β1)

...
vec(βN )

+ vec(Y ′−1ε)


=

 vec(β1)
...

vec(βN )

+ (E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E)−1E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε).

The limiting behavior of the cointegrating vector estimator now results from the limiting behavior of the
different elements of the last part of the above expression. We therefore construct the limiting behavior
of each of these different elements.

1
T 2E ⇒ (IN ⊗ Ik)⊗

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1




(
(IN ⊗ Ik)⊗ Λ

1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

(IN ⊗ Ik)⊗

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1


′

(
(e1 ⊗ α1)⊗ (e1 ⊗ Ik) · · · (eN ⊗ αN )⊗ (eN ⊗ Ik)

)
,
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and

1
T 2Y

′
−1Y−1 ⇒ β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1

Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1


′

,

such that

T 2(Y ′−1Y−1)−1 ⇒ β1⊥(β′1⊥β1⊥)−1(α′1⊥β1⊥) 0 . . . 0 0

0
. . . 0

0 . . . βN⊥(β′N⊥βN⊥)−1(α′N⊥βN⊥)


Λ−

1
2 ′
(∫

BN(k−r)B
′
N(k−r)

)−1

Λ−
1
2 β1⊥(β′1⊥β1⊥)−1(α′1⊥β1⊥) 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(β′N⊥βN⊥)−1(α′N⊥βN⊥)


′

.

As a consequence of this,

1
T 2E

′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E ⇒(
(e1 ⊗ α1)⊗ (e1 ⊗ Ik) · · · (eN ⊗ αN )⊗ (eN ⊗ Ik)

)′(IN ⊗ Ik)⊗

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1




(
Ω−1 ⊗ Λ

1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

(IN ⊗ Ik)⊗

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1


′

(
(e1 ⊗ α1)⊗ (e1 ⊗ Ik) · · · (eN ⊗ αN )⊗ (eN ⊗ Ik)

)
=
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 Ir ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(α′N⊥βN⊥)−1


 (e1 ⊗ α1)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ αN )′ ⊗ (e′N ⊗ Ik−r)


(

Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ α1)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ αN )′ ⊗ (e′N ⊗ Ik−r)


′ Ir ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(α′N⊥βN⊥)−1


′

=

 Ir ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(α′N⊥βN⊥)−1


 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)


(

Ψ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)


′ Ir ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(α′N⊥βN⊥)−1


′

,

where Ψ =
(

(e1 ⊗ α1) · · · (eN ⊗ αN )
)′ Ω−1

(
(e1 ⊗ α1) · · · (eN ⊗ αN )

)
. The limiting behavior

of the inverse of the latter expression is therefore characterized by

T 2
(
E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E

)−1
⇒ Ir ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)

(Ψ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 Ir ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥


′

.

The limiting behavior of vec(Y ′−1ε) is characterized by

1
T

vec(Y ′−1ε)⇒Ω
1
2 ⊗

 β1⊥(α′1⊥β1⊥)−1α′1⊥ 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1α′N⊥

Ω
1
2

 vec

(∫
BNkdB

′
Nk

)
.
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such that the limiting behavior of E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε) is characterized by

1
T
E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε)⇒ (e1 ⊗ α1)′ ⊗

(
e′1 ⊗ β1⊥(α′1⊥β1⊥)−1

)
...

(eN ⊗ αN )′ ⊗
(
e′N ⊗ β1⊥(α′1⊥β1⊥)−1

)


Ω−
1
2 ⊗

 α′1⊥ 0 . . . 0 0

0
. . . 0

0 0 . . . 0 α′N⊥

Ω
1
2

 vec

(∫
BNkdB

′
Nk

)
=

 (e1 ⊗ α1)′Ω−
1
2 ⊗

(
e′1 ⊗ β1⊥(α′1⊥β1⊥)−1α′1⊥

)
Ω

1
2

...
(eN ⊗ αN )′Ω−

1
2 ⊗

(
e′N ⊗ βN⊥(α′N⊥βN⊥)−1α′N⊥

)
Ω

1
2

 vec

(∫
BNkdB

′
Nk

)
⇒


vec

((
e′1 ⊗ β1⊥(α′1⊥β1⊥)−1α′1⊥

)
Ω

1
2
∫
BNkdB

′
NkΩ−

1
2 ′ (e1 ⊗ α1)

)
...

vec
((
e′N ⊗ βN⊥(α′N⊥βN⊥)−1α′N⊥

)
Ω

1
2
∫
BNkdB

′
NkΩ−

1
2 ′ (eN ⊗ αN )

)
 .

As
(
ei ⊗ βi⊥(α′i⊥βi⊥)−1αi⊥

)′Ω 1
2 Ω−

1
2 (ei ⊗ αi) = 0, the Brownian motions involved in the above expres-

sion are stochastically independent, see Phillips (1991), and the limiting distribution of the cointegrating
vector estimator is therefore mixed normal. Furthermore,

1
T
E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε)⇒ Ir ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(α′N⊥βN⊥)−1

 vec

(
Λ

1
2

∫
BN(k−r)dB

′
NrΨ

1
2 ′
)
,
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such that the limiting behavior of the cointegrating vector estimator is characterized by

T

 vec(β̂1 − β1)
...

vec(β̂N − βN )

⇒
 Ir ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)

(Ψ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 Ir ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥


′

 Ir ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(α′N⊥βN⊥)−1

 vec

(
Λ

1
2

∫
BN(k−r)dB

′
NrΨ

1
2 ′
)

=

 Ir ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ir ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)

(Ψ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
) (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 (e1 ⊗ Ir)′ ⊗ (e1 ⊗ Ik−r)′
...

(eN ⊗ Ir)′ ⊗ (eN ⊗ Ik−r)′

 vec

(
Λ

1
2

∫
BN(k−r)dB

′
NrΨ

1
2 ′
)
.

Although we can proof the asymptotic normality of the cointegrating vector estimator, as BN(k−r) and
BNr in the above expression are stochastically independent, we cannot construct a convenient expression
of the asymptotic covariance matrix. This is a consequence of the fact that(

(e1 ⊗ Ir)⊗ (e1 ⊗ Ik−r) · · · (eN ⊗ Ir)⊗ (eN ⊗ Ik−r)
)

is not invertible, as it is not a square matrix, which is caused by the diagonal structure of the long run
multiplier.

As we normalized βi as βi = (Ir −β′2i)′, the limiting distribution in the above expression is degenerate.
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The limiting distribution of the β̂2i, that is not degenerate is characterized by

T

 vec(β̂21 − β21)
...

vec(β̂2N − β2N )

⇒
 Ir ⊗ (β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ir ⊗ (β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)

(Ψ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
) (e1 ⊗ Ir)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ir)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 (e1 ⊗ Ir)′ ⊗ (e1 ⊗ Ik−r)′
...

(eN ⊗ Ir)′ ⊗ (eN ⊗ Ik−r)′

 vec
(

Λ
1
2

∫
BN(k−r)dB

′
NrΨ

1
2 ′
)
,

as βi⊥ = (β2i Ik−r)′.

C Proof of Proposition 3.2
Substituting the true disturbance covariance matrix Ω in log-likelihood function (18) from section 3.1 for
both the ΠB and ΠA specifications makes it possible to rewrite the LR test statistic as,

LR(ΠB|ΠA) = 2
[
`(Π̂A, Ω)− `(Π̂B, Ω)

]
= G(ΠB,Ω)−G(ΠA ,Ω),

where

G(ΠB, Ω) =

vec

Y ′−1∆Y − E

 vec(β̂1)
...

vec(β̂N )



′ (

Ω−1 ⊗ (Y ′−1Y−1)−1) vec

Y ′−1∆Y − E

 vec(β̂1)
...

vec(β̂N )


 ,

and

G(ΠA, Ω) =

vec

Y ′−1∆Y − F

 vec(Π̂1)
...

vec(Π̂N )



′ (

Ω−1 ⊗ (Y ′−1Y−1)−1) vec

Y ′−1∆Y − F

 vec(Π̂1)
...

vec(Π̂N )


 ,

with

F =
(

(e1 ⊗ Ik)⊗ (Y ′−1Y1,−1) · · · (eN ⊗ Ik)⊗ (Y ′−1YN,−1)
)

=
(
(IN ⊗ Ik)⊗ Y ′−1Y−1

) (
(e1 ⊗ Ik)⊗ (e1 ⊗ Ik) · · · (eN ⊗ Ik)⊗ (eN ⊗ Ik)

)
.

Under a true common cointegration rank value r Ω̂(ΠA), as defined in (25) in section 3.2, is a
consistent estimate of Ω. Based on the mapping theorem of Billingsley (1986, Theorem 25.7, Corollary
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2) and the line of reasoning at the beginning of Appendix B, we have that `(Π̂A, Ω̂(ΠA)) ⇒ `(Π̂A, Ω)
and `(Π̂B, Ω̂(ΠA))⇒ `(Π̂B, Ω) conditional on Ω̂(ΠA)⇒ Ω. Therefore, we can approximate LR(ΠB|ΠA)
as

LR(ΠB|ΠA) w G(ΠB, Ω̂)−G(ΠA , Ω̂),

with Ω̂ = Ω̂(ΠA).
The limiting behavior of LR(ΠB|ΠA) results from constructing the limiting behavior of the different

elements of G(ΠB, Ω̂)−G(ΠA , Ω̂). Consequently, we first analyze these different elements. We have:

vec

Y ′−1∆Y − E

 vec(β̂1)
...

vec(β̂N )


 =

(
INk − E(E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E)−1E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)

)
vec
(
Y ′−1∆Y

)
,

where we have substituted GMM estimator (31) based on Ω̂ = Ω̂(ΠA). The usage of consistent estimators
for α1, . . . , αN and Ω in the GMM objective function for the ΠB specification is asymptotically for reasons
explained in the beginning of Appendix B and the mapping theorem of Billingsley (1986, Theorem 25.7,
Corollary 2). The aforementioned leads to

G(ΠB, Ω̂) = vec
(
Y ′−1∆Y

)′ ((Ω̂−1 ⊗ (Y ′−1Y−1)−1)− (Ω̂−1 ⊗ (Y ′−1Y−1)−1)E

(E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E)−1E′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)
)

vec
(
Y ′−1∆Y

)
= vec

(
Y ′−1∆Y

)′
E⊥

(
E′⊥(Ω̂⊗ (Y ′−1Y−1))E⊥

)−1
E′⊥vec

(
Y ′−1∆Y

)
,

and

G(ΠA, Ω̂) = vec
(
Y ′−1∆Y

)′ ((Ω̂−1 ⊗ (Y ′−1Y−1)−1)− (Ω̂−1 ⊗ (Y ′−1Y−1)−1)F

(F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F )−1F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)
)

vec
(
Y ′−1∆Y

)
= vec

(
Y ′−1∆Y

)′
F⊥

(
F ′⊥(Ω̂⊗ (Y ′−1Y−1))F⊥

)−1
F ′⊥vec

(
Y ′−1∆Y

)
,

where E′⊥E ≡ 0, F ′⊥F ≡ 0. As E = FH, where

H =

 (1⊗ α1)⊗ Ik 0 · · · 0 0

0
. . . 0

0 0 · · · 0 (1⊗ αN )⊗ Ik

 : Nk2 ×Nkr,

H⊥ =

 (1⊗ α1⊥)⊗ Ik 0 · · · 0 0

0
. . . 0

0 0 · · · 0 (1⊗ αN⊥)⊗ Ik

 : Nk2 ×Nk(k − r),

a convenient specification of E⊥ is,

E⊥ =
(
F⊥ (Ω̂⊗ (Y ′−1Y−1))−1F (F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥

)
.

E
′

⊥(Ω̂⊗ (Y ′−1Y−1))E⊥ can then be specified as,

E′⊥(Ω̂⊗ (Y ′−1Y−1))E⊥ =
(
F ′⊥(Ω̂⊗ (Y ′−1Y−1))F⊥ 0

0 H ′⊥(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥

)
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and thus

E⊥

(
E′⊥(Ω̂⊗ (Y ′−1Y−1))E⊥

)−1
E′⊥ = F⊥

(
F ′⊥(Ω̂⊗ (Y ′−1Y−1))F⊥

)−1
F ′⊥ +

(Ω̂⊗ (Y ′−1Y−1))−1F (F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥

(
H ′⊥(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥

)−1
H ′⊥

(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1F ′(Ω̂⊗ (Y ′−1Y−1))−1,

such that

LR(ΠB|ΠA) w G(ΠB, Ω̂)−G(ΠA, Ω̂)

w vec(Y ′−1∆Y )′(Ω̂⊗ (Y ′−1Y−1))−1F (F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥(
H ′⊥(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥

)−1
H ′⊥

(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1F ′(Ω̂⊗ (Y ′−1Y−1))−1vec(Y ′−1∆Y )

w vec(Y ′−1ε)
′(Ω̂⊗ (Y ′−1Y−1))−1F (F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥(
H ′⊥(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1H⊥

)−1
H ′⊥

(F ′(Ω̂⊗ (Y ′−1Y−1))−1F )−1F ′(Ω̂⊗ (Y ′−1Y−1))−1vec(Y ′−1ε),

because vec(Y ′−1∆Y ) = FHvec

 β1
...
βN

+ vec(Y ′−1ε).

We first discuss the limiting behavior of the different elements of the third expression of the above
mentioned definition of LR(ΠB|ΠA) w G(ΠB, Ω̂)−G(ΠA, Ω̂). The limiting behavior of F is such that

1
T 2F ⇒ (IN ⊗ Ik)⊗

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1




(
(IN ⊗ Ik)⊗ Λ

1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

(IN ⊗ Ik)⊗

 β1⊥(α′1⊥β1⊥)−1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 βN⊥(α′N⊥βN⊥)−1


′

(
(e1 ⊗ Ik)⊗ (e1 ⊗ Ik) · · · (eN ⊗ Ik)⊗ (eN ⊗ Ik)

)
,
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and given the limiting behavior of (Y ′−1Y−1)−1 from Appendix B, F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F converges as

1
T 2F

′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F ⇒ (e1 ⊗ Ik)′ ⊗
(
e′1 ⊗ β1⊥(α′1⊥β1⊥)−1

)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ βN⊥(α′N⊥βN⊥)−1)

(Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ik)′ ⊗
(
e′1 ⊗ β1⊥(α′1⊥β1⊥)−1

)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ βN⊥(α′N⊥βN⊥)−1)

 =

 Ik ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik ⊗ βN⊥(α′N⊥βN⊥)−1


 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


(

Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


′ Ik ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik ⊗ βN⊥(α′N⊥βN⊥)−1


′

.

As a consequence, the inverse of this expression converges as

T 2
(
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F

)−1
⇒ Ik ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ik ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

(Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 Ik ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 Ik ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥


′

.
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The limiting behavior of F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε) is such that

1
T
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε)⇒ (e1 ⊗ Ik)′ ⊗

(
e′1 ⊗ β1⊥(α′1⊥β1⊥)−1

)
...

(eN ⊗ Ik)′ ⊗
(
e′N ⊗ βN⊥(α′N⊥βN⊥)−1

)
 vec

(
Λ

1
2

∫
BN(k−r)dB

′
NkΩ−

1
2 ′
)

=

 Ik ⊗ β1⊥(α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik ⊗ βN⊥(α′N⊥βN⊥)−1


 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


vec
(

Λ
1
2

∫
BN(k−r)dB

′
NkΩ−

1
2 ′
)
.

Combining these results, we obtain that

TH ′⊥

(
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F

)−1
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)vec(Y ′−1ε)⇒ α′1⊥ ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 α′N⊥ ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

(Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

 vec
(

Λ
1
2

∫
BN(k−r)dB

′
NkΩ−

1
2 ′
)
.

38



The matrix H ′⊥
(
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F

)−1
H⊥ converges according to

T 2H ′⊥

(
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)E

)−1
H⊥ ⇒ α′1⊥ ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 α′N⊥ ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥



 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

(Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


′
−1

 α′1⊥ ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 α′N⊥ ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥


′

,

such that the limiting behavior of its inverse is characterized by

1
T 2

(
H ′⊥

(
F ′(Ω̂−1 ⊗ (Y ′−1Y−1)−1)F

)−1
H⊥

)−1

⇒ Ik−r ⊗ β1⊥ (α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik−r ⊗ βN⊥ (α′N⊥βN⊥)−1



 α′1⊥ ⊗ Ik−r 0 0

0
. . . 0

0 0 α′N⊥ ⊗ Ik−r



 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)

...
(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

(Ω−1 ⊗ Λ
1
2

(∫
BN(k−r)B

′
N(k−r)

)
Λ

1
2 ′
)

 (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


′
−1 α′1⊥ ⊗ Ik−r 0 0

0
. . . 0

0 0 α′N⊥ ⊗ Ik−r


′

−1

 Ik−r ⊗ β1⊥ (α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik−r ⊗ βN⊥ (α′N⊥βN⊥)−1


′

.
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Before we construct the limiting behavior of LR(ΠB |ΠA) w G(ΠB, Ω̂)−G(ΠA, Ω̂), we note that (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

(Ω−
1
2 ⊗ Λ

1
2

)(
Ω−

1
2 ⊗ Λ

1
2

)′ (e1 ⊗ Ik)′ ⊗ (e′1 ⊗ Ik−r)
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)


′

=

 Σ1 ⊗Θ1
...

ΣN ⊗ΘN


 Σ1 ⊗Θ1

...
ΣN ⊗ΘN


′

=


(
Ω−1

)
11 ⊗ Λ11 · · ·

(
Ω−1

)
1N ⊗ Λ1N

...
. . .

...(
Ω−1

)
N1 ⊗ ΛN1 · · ·

(
Ω−1

)
NN
⊗ ΛNN

 ,

where Ω−
1
2 = (Σ′1 · · ·Σ′N )′ with Σi is k ×Nk and Λ

1
2 = (Θ′1 · · ·Θ′N )′ with Θi is k ×Nk, in all cases for

i = 1, . . . , N . We can define Ω−1 and Θ as:

Ω−1 =


(
Ω−1

)
11 · · ·

(
Ω−1

)
1N

...
. . .

...(
Ω−1

)
N1 · · ·

(
Ω−1

)
NN

 , Λ =

 Λ11 · · · Λ1N
...

. . .
...

ΛN1 · · · ΛNN

 ,

(
Ω−1

)
ij

, Λij is k × k and i, j = 1, . . . , N . This covariance matrix can be specified, using a Choleski
decomposition, as 

(
Ω−1

)
11 ⊗ Λ11 · · ·

(
Ω−1

)
1N ⊗ Λ1N

...
. . .

...(
Ω−1

)
N1 ⊗ ΛN1 · · ·

(
Ω−1

)
NN
⊗ ΛNN

 = AA′,

where A is Nk(k − r)×Nk(k − r). It then results that

A−1

0B@ (e1 ⊗ Ik)′ ⊗
�
e′1 ⊗ Ik−r

�
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

1CA�Ω−
1
2 ⊗ Λ

1
2

��
INk ⊗

�Z
BN(k−r)B

′
N(k−r)

��

×
�

Ω−
1
2 ⊗ Λ

1
2

�′0B@ (e1 ⊗ Ik)′ ⊗
�
e′1 ⊗ Ik−r

�
...

(eN ⊗ Ik)′ ⊗ (e′N ⊗ Ik−r)

1CA′A−1′

= A−1

0BBB@
�
Ω−1�

11 ⊗Θ1

�R
BN(k−r)B

′
N(k−r)

�
Θ′1 · · ·

�
Ω−1�

1N ⊗Θ1

�R
BN(k−r)B

′
N(k−r)

�
Θ′N

...
. . .

...�
Ω−1�

N1 ⊗ΘN
�R

BN(k−r)B
′
N(k−r)

�
Θ′1 · · ·

�
Ω−1�

NN
⊗ΘN

�R
BN(k−r)B

′
N(k−r)

�
Θ′N

1CCCAA−1′

=

0BBB@
(Ik ⊗

�R
Bk−r,1B

′
k−r,1

�
) 0 0

0
. . . 0

0 0 (Ik ⊗
�R

Bk−r,NB
′
k−r,N

�
)

1CCCA ,

where BN(k−r) = (B′k−r,1 · · ·B′k−r,N )′ and Bk−r,i is a k − r dimensional Brownian motion with identity
covariance matrix. Using the above, we can specify the limiting behavior of LR(ΠB |ΠA) w G(ΠB, Ω̂)−
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G(ΠA, Ω̂) as

LR(ΠB|ΠA)⇒  vec(Θ1
∫
BN(k−r)dB

′
NkΣ′1)

...
vec(ΘN

∫
BN(k−r)dB

′
NkΣ′N )


′

A−1′




(Ik ⊗
(∫

Bk−r,1B
′
k−r,1

)
) 0 0

0
. . . 0

0 0 (Ik ⊗
(∫

Bk−r,NB
′
k−r,N

)
)



−1

A−1

 α′1⊥ ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 α′N⊥ ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥


′

 Ik−r ⊗ β1⊥ (α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik−r ⊗ βN⊥ (α′N⊥βN⊥)−1



 α′1⊥ ⊗ Ik−r 0 0

0
. . . 0

0 0 α′N⊥ ⊗ Ik−r

A−1′




(Ik ⊗
(∫

Bk−r,1B
′
k−r,1

)
) 0 0

0
. . . 0

0 0 (Ik ⊗
(∫

Bk−r,NB
′
k−r,N

)
)



−1

A−1

 α′1⊥ ⊗ Ik−r 0 0

0
. . . 0

0 0 α′N⊥ ⊗ Ik−r


′
−1

 Ik−r ⊗ β1⊥ (α′1⊥β1⊥)−1 0 0

0
. . . 0

0 0 Ik−r ⊗ βN⊥ (α′N⊥βN⊥)−1


′

 α′1⊥ ⊗ β1⊥(β′1⊥β1⊥)−1α′1⊥β1⊥ 0 0

0
. . . 0

0 0 α′N⊥ ⊗ βN⊥(β′N⊥βN⊥)−1α′N⊥βN⊥

A−1′




(Ik ⊗
(∫

Bk−r,1B
′
k−r,1

)
) 0 0

0
. . . 0

0 0 (Ik ⊗
(∫

Bk−r,NB
′
k−r,N

)
)



−1

A−1

 vec(Θ1
∫
BN(k−r)dB

′
NkΣ′1)

...
vec(ΘN

∫
BN(k−r)dB

′
NkΣ′N )

 .
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We note that

A−1

 vec(Θ1
∫
BN(k−r)dB

′
NkΣ′1)

...
vec(ΘN

∫
BN(k−r)dB

′
NkΣ′N )

 =

 vec(
∫
Bk−r,1dB

′
k,1)

...
vec(

∫
Bk−r,NdB

′
k,N )

 ,

where BNk = (B′k,1 · · ·B′k,N )′, Bk,i is a k dimensional Brownian motion with identity covariance matrix
for individual i. Using the above, we can simplify the limiting behavior of LR(ΠB |ΠA) w G(ΠB, Ω̂) −
G(ΠA, Ω̂) as

LR(ΠB|ΠA)⇒ 
vec(

(∫
Bk−r,1B

′
k−r,1

)−1 ∫
Bk−r,1dB

′
k,1)

...

vec(
(∫

Bk−r,NB
′
k−r,N

)−1 ∫
Bk−r,1dB

′
k,N )


′

P

P
′




(Ik ⊗
(∫

Bk−r,1B
′
k−r,1

)
) 0 0

0
. . . 0

0 0 (Ik ⊗
(∫

Bk−r,NB
′
k−r,N

)
)



−1

P


−1

P ′


vec(

(∫
Bk−r,1B

′
k−r,1

)−1 ∫
Bk−r,1dB

′
k,1)

...

vec(
(∫

Bk−r,NB
′
k−r,N

)−1 ∫
Bk−r,NdB

′
k,N )

 ,

where P = A−1

 α1⊥ ⊗ Ik−r 0 0

0
. . . 0

0 0 αN⊥ ⊗ Ik−r

 and P is Nk(k−r)×N(k−r)2. We can now further

simplify the above expression as P is a scaling parameter that essentially only affects the sizes of the
Brownian motion increments dBk,i and the Ik matrices. Using this, the limiting behavior of LR(ΠB |ΠA)
can be further simplified to

LR(ΠB|ΠA)⇒ vec(
∫
Bk−r,1dB

′
k−r,1)

...
vec(

∫
Bk−r,NdB

′
k−r,N )


′

(∫

Bk−r,1B
′
k−r,1

)−1
0 0

0
. . . 0

0 0
(∫

Bk−r,NB
′
k−r,N

)−1


 vec(

∫
Bk−r,1dB

′
k−r,1)

...
vec(

∫
Bk−r,NdB

′
k−r,N )

 =

N∑
i=1

tr

((∫
Bk−r,idB

′
k−r,i

)′(∫
Bk−r,iB

′
k−r,i

)−1(∫
Bk−r,idB

′
k−r,i

))
,

which is the sum of the limiting behavior of N Johansen trace statistics.
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