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l)CLEARING BARTER EXCHANGE MARKETS

KIDNEY EXCHANGE AND BEYOND

Advanced computer assisted markets, otherwise known as smart markets, are becoming
an important part of our modern society. This dissertation considers smart barter exchange
markets, which enable people to trade a wide range of goods: from shifts, to houses, to
kidneys. Centralized and computerized clearing is what makes these markets ‘smart’. The
market clearing problem is to match demand and supply so as to maximize the gains of
trade. Trades, in this regard, need not be limited to pairwise swaps but may consist of
trading cycles and chains involving multiple agents.

This dissertation presents several sophisticated market clearing algorithms that enable
optimal clearing in large real-life barter exchange markets. With a particular focus on
kidney exchanges, it shows how these algorithms can enable a significant alleviation of the
present shortage of kidney donors and an improvement in health outcomes for kidney
patients. State-of-the-art techniques are developed to allow the algorithms to be scalable,
even when there are bounds on the number of simultaneous transactions, multiple
objective criteria, and side constraints. Furthermore, innovative models and solution
approaches are presented to allow market uncertainty, such as transaction failure, to be
taken into account.

The research presented in this dissertation contributes to the advancement of scientific
knowledge in combinatorial optimization and market design, particularly in the domains of
mathematical programming and market clearing, and aids the establishment and operation
of smart barter exchange markets in the field of kidney exchange and beyond.
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Chapter 1

Introduction

1.1 Smart barter exchange markets

Advanced computer assisted markets, otherwise known as smart markets, are becoming

an important part of our modern society (Bichler et al., 2010). Smart markets rely on

computers for operation, for ubiquitous access (e.g. through the internet), for trustworthy

intermediation, and for determining market outcomes. Typically, all agents report their

preferences to a centralized market operator or clearing house, and the operator or clearing

house then provides an allocation and transfer prices so as to optimally match demand

and supply (Roth, 2008). The problem of determining the optimal allocation and transfer

prices is known as the market clearing problem. In this thesis we consider the clearing

problem for barter exchange markets.

Barter exchange is one of the oldest and most straightforward forms of economic

activity (Smith, 1937). It concerns the direct trading of one product or service for another.

Nearly everyone will, over the course of their lives, have engaged in some form of barter or

another. Trivial examples include trading collectibles such as marbles or sports pictures,

trading books, or perhaps, trading a shift with a colleague. Typically, these forms of

barter are bilateral and involve two agents whose disposable possessions mutually suit

each other’s wants. This reveals an important di�culty of barter exchange: there must

be a coincidence of wants (Jevons, 1875). To quote Jevons:

There may be many people wanting, and many possessing those things wanted;

but to allow for an act of barter, there must be a double coincidence, which

will rarely happen. ... The owner of a house may find it unsuitable, and

may have his eye upon another house exactly fitted to his needs. But even if

the owner of this second house wishes to part with it at all, it is exceedingly
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unlikely that he will exactly reciprocate the feeling of the first owner, and wish

to barter houses.

(Jevons, 1876, chapter 1)

Digital marketplaces can overcome the complexities of finding a coincidence of wants

(Roth, 2008). Even opportunities for multilateral exchanges, involving many agents

and many goods, can now be identified using computer algorithms. Examples of

digital barter markets include house exchanges (in which agents seek to simultane-

ously buy each others houses, see for example www.besthouseswap.com), service ex-

changes (e.g., www.swapright.com), intra-organizational skilled worker exchanges (e.g.,

www.sta↵share.co.uk), and book exchanges (see for example www.readitswapit.co.uk).

Arguably, the most advanced barter exchange markets operated today are kidney ex-

change markets, which aim to enable transplants between incompatible patient-donor

pairs (Rapaport, 1986; Roth et al., 2004; de Klerk et al., 2005).

1.2 Kidney exchange

In the United States alone, over 640,000 patients are presently su↵ering from end-stage

renal disease (United States Renal Data System (USRDS), 2013). 430,000 of these pa-

tients are being treated with dialysis, which means their blood has to be filtered several

times a week for multiple hours. The quality of life on dialysis is low and the annual

mortality rate is over 20 % (United States Renal Data System (USRDS), 2013). Kidney

transplantation has been established as the preferred alternative treatment (Wolfe et al.,

1999). Compared to dialysis, it o↵ers substantial advantages in terms of quality of life,

patient survival, and costs (Port et al., 1993; Franke et al., 2003; Winkelmayer et al.,

2002): on average, patients who receive a kidney transplant live 10 years longer than

patients who remain on dialysis (Port et al., 1993), while the long term costs of trans-

plantation are 4 to 5 times lower (Winkelmayer et al., 2002). Unfortunately, the number

of kidneys available for transplantation is still largely insu�cient to meet demand: only

about 17,000 US patients can receive a transplant each year (SRTR, 2011).

Kidney transplants can come from both deceased and living donors. Deceased donor

kidneys are allocated to patients by means of a waiting list, which in the US currently

contains 108,571 patients and has an average waiting time of 4 years (SRTR, 2011). Living

donors, such as a brother or sister of the patient, can provide a direct transplant. Grafts

taken from living donors generally function twice as long as grafts taken from deceased
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donors (SRTR, 2011). However, in over 30 % of the cases, a living donor and his or her

intended recipient are medically incompatible (Segev et al., 2005b).

Kidney exchanges allow incompatible patient-donor pairs to swap donors in order to

proceed with transplantation. If a patient’s donor is compatible with some other patient,

and the donor of the other patient is compatible with the first patient, the patients

can swap donors so that both patients can obtain a transplant (de Klerk et al., 2005;

Roth et al., 2004). Due to the large potential for increasing the number of transplants,

many countries have developed kidney exchange programs. Leading examples are the

Netherlands, the US, the UK, Australia, and South Korea (Keizer et al. (2005), Manlove

and O’Malley (2012), Park et al. (1999), Delmonico et al. (2004)).

Compatibility in kidney exchange is determined by two factors: blood type compat-

ibility and human leukocyte antigen (HLA) compatibility. In both cases, a patient and

donor are incompatible if the patient has antibodies against an antigen contained in the

donor’s cells as then the patient’s immune system will reject the donor’s tissue. There

are four blood types, A, B, AB, and O, corresponding to the presence of the antigens A

and B. If the donor’s blood contains an antigen that is not present in the patient’s blood,

the patient will have antibodies against the donor. The HLA system contains many anti-

gens, and testing for antibodies against any of the donor’s HLA is done by a so-called

crossmatch test, which combines the patient’s and donor’s serum. If the crossmatch test

is positive, the donor and patient are incompatible.

In kidney exchange, the trading preferences of agents are directly related to the com-

patibility structure. In most kidney exchange markets agents are assumed to be indi↵erent

between compatible donors. However, because of the compatibility structure, some pa-

tients will have a disadvantaged position. These are in particular blood type O patients

and highly sensitized patients, i.e. patients with antibodies against a large part of the

donor population. Patient sensitization is measured by the percentage of panel reactive

antibodies (PRA), which provides an estimate of the percentage of donors with whom the

patient will have a positive crossmatch test. Patient’s with a PRA of 80 % or more are

considered to be highly sensitized.

1.3 The clearing problem

Given a set of agents, the objects they brought to the market, and the agent’s reported

preferences over objects, the clearing problem in barter exchange markets is to determine

an allocation of objects to agents so as to maximize the gains of trade. In general, there

may be side payments to compensate for unequal exchanges. Every agent may for instance



16_Erim Glorie[stand].job

4 Introduction

have an asking price for the good he brought to the market and a maximum buying price

for every good he is interested in.

As barter exchange markets are a special case of matching markets in which one

side (e.g. patients) is matched to another (e.g. donors) (Demange and Gale, 1985),

the clearing problem in barter exchange markets is related to the maximum matching

problem (Edmonds, 1965) which is a classic combinatorial optimization problem. The

fundamental aspect in clearing barter exchange markets is that if an agent’s object is

allocated to another agent, the first agent should be allocated another object. Of course,

there may be agents that provide goods without requiring goods in return and agents that

want to obtain goods without providing any, but the actual barter takes place between

agents that both provide and demand goods.

Barter exchange need not be limited to pairwise exchanges but may involve trading

cycles in which each participant gives an object to the next participant in the cycle and

receives an object from the previous participant (Shapley and Scarf, 1974; Roth et al.,

2007). Alternatively, agents that only provide a good without requiring a good in return

may initiate a trading chain which ends with an allocation to an agent that does not

provide any good. In practice, there typically is a constraint on the number of participants

in a trading cycle or chain. For example, to avoid reneging of donors, transplants in kidney

exchange cycles are typically required to be performed simultaneously and the number

of logistically feasible simultaneous transplants is limited. It is precisely this constraint

that makes the clearing problem in barter exchange markets substantially more di�cult

to solve than the classical maximum matching problem (Abraham et al., 2007).

The clearing problem in barter exchange markets can also be related to the winner

determination problem in combinatorial auctions (Cramton et al., 2006). The di↵erence

is that in barter exchange markets agents are not assumed to have preferences over com-

binatorial structures (i.e. packages) of objects, but the selected allocation must consist of

combinatorial structures of agents (i.e. cycles and chains).

Solving the clearing problem for barter exchange markets in an acceptable amount of

time requires the aid of sophisticated algorithms and significant computing power. This

is particularly the case when the market contains hundreds or even thousands of agents

and there are many complex constraints or objectives. In kidney exchange, for example,

the primary objective is typically to maximize the number of transplants, but there can

be many secondary objectives, such as minimizing waiting times or inequity (De Klerk

et al., 2010). The most successful exact algorithms in the scientific literature to solve the

clearing problem are so-called ‘branch-and-price’ algorithms (Abraham et al., 2007).
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In practice, the clearing problem is typically considered in a static or o✏ine context, in

which exchanges are conducted at fixed time intervals and the assignment is optimized for

the present state of the market. Of course, current agents and objects may disappear from

the market and new agents may arrive. An alternative would therefore be to consider a

dynamic or online context, in which the timing of exchanges is explicitly taken into account

and the allocation is optimized with respect to the future evolution of the market. Such

a dynamic context may have implications for what is considered an optimal allocation.

1.4 Incentives

In order to select an optimal allocation, accurate information regarding the agents, the

objects, and the preferences is required. In case this information is self reported by

the agents, there may be opportunities for agents to manipulate the information they

reveal in order to try to achieve a better market outcome. Depending on the nature and

severity of the manipulations, it may be necessary to implement incentive constraints that

ensure that agents can never obtain a better outcome by providing false or incomplete

information.

There are two main types of incentive constraints considered in the market design

literature: individual rationality constraints (Roth, 1977) and incentive compatibility

constraints (Myerson, 1979). Individual rationality constraints, which are alternatively

known as participation constraints, guarantee that agents or groups of agents will not be

worse o↵ if they participate in the market than they would be if they did not participate

in the market. Hence, under individual rationality constraints agents have no incentive to

completely withhold themselves or their objects from the market. Incentive compatibility

constraints, on the other hand, guarantee that no agent in the market can achieve a better

market outcome by misrepresenting its information. Hence, under incentive compatibility

constraints it is optimal for agents to truthfully report all their information.

Given a set of agents, objects and preferences, imposing incentive constraints on the

clearing problem restricts the set of possible allocations. Solving the clearing problem

with these constraints may therefore result in a lower objective value compared to solving

the unrestricted clearing problem. However, when using the unrestricted clearing problem

the set of agents, objects and preferences used in the optimization problem may not be the

full or true set of agents, objects and preferences, and this may have even more negative

consequences on the objective.
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1.5 Market uncertainty

After an allocation has been selected, it may not always find continuation. In some barter

exchange markets proposed transactions must be verified before they can proceed. Pro-

posed transactions may fail to go forward if verification fails or if a participant withdraws.

In housing markets, for example, it should be checked whether the participants in a trans-

action meet the financing requirements for side payments. In kidney exchange, proposed

‘transactions’ must be checked with a final crossmatch test (in addition to the initial

virtual crossmatch test) to ensure the success of eventual transplants, and patients and

donors may withdraw at the last moment due to medical, psychological or other reasons

(Delmonico et al., 2004; de Klerk et al., 2005; Glorie et al., 2013).

In case one or more transactions fail, it may be possible to select a new allocation

based on the updated information. Ideally, this new allocation is as close as possible to the

initial allocation in order to minimize the material and emotional costs of the alteration.

In kidney exchange markets, patients who are highly sensitized have an increased risk

of match failure (besides having limited opportunities to be matched in the first place).

Recovering solutions after failure may be particularly beneficial to these patients.

1.6 Contribution and thesis outline

This thesis considers the clearing problem in barter exchange markets. It focuses in

particular on kidney exchange markets, but the findings are easily applicable to other

types of barter exchange markets. The contributions made in this thesis are the following.

In Chapter 2 we first provide an extensive literature review of the state of the art in

kidney exchange clearing. In particular, we discuss the underlying principles of matching

and allocation approaches, the combination of kidney exchange with other strategies such

as ABO incompatible transplantation, the organization of kidney exchange, and important

future challenges.

Next, in Chapter 3, we consider solving the clearing problem with multiple objective

criteria. We show that to achieve the best possible score on all criteria long trading

cycles and chains are often needed, particularly when there are many hard-to-match

patients. Long cycles and chains can be achieved by allowing some transactions to be non-

simultaneous. We indicate why long cycles and chains may pose di�culties for existing

approaches to clearing barter exchanges. We then present a generic iterative branch-and-

price algorithm which can deal e↵ectively with multiple criteria and side-constraints and
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we show how the pricing problem may be solved in polynomial time in the cycle and chain

length for a general class of criteria and constraints.

We also study multi-center coordination of unspecified living kidney donation and

ABO incompatible transplantation in kidney exchange (Chapter 4). We address questions

such as whether such coordination should utilize domino paired donation (DPD) or non-

simultaneous extended altruistic donor (NEAD) chains, what the length of the segments

in such chains should be, when they should be terminated, what can be done to convince

transplant centers to participate, and what the time interval should be between clearing

rounds. To this end we integrate our aforementioned clearing algorithm with a newly

developed kidney exchange simulator based on actual data from the Dutch national kidney

exchange program.

Chapter 5 considers the health outcomes of various allocation policies used in kidney

exchange clearing. In order to analyze health outcomes, we introduce an individualized

health value model for kidney exchange. This model is a Markov process with patient-

donor specific transition probabilities. We also propose a new policy intended to maximize

health value. This model links the individualized Markov model to the branch-and-

price algorithm described in Chapter 3. We conduct long term simulations with kidney

exchange data from the Netherlands. Policies are evaluated in terms of quality adjusted

life years, equity, and number of transplants.

Chapter 6 considers the clearing of barter exchange markets in which proposed trans-

actions must be verified before they can proceed. Proposed transactions may fail to go

forward if verification fails or if a participant withdraws. In case one or more matches fail,

a new allocation may be selected. The new allocation should be as close as possible to

the initial set in order to minimize the material and emotional costs of the alteration. We

present a robust optimization approach that intends to maximize the number of agents

selected in both the first and second allocation in a worst case scenario. Our methodol-

ogy allows in particular to protect the transactions for highly-sensitized kidney exchange

patients, which unfortunately are often left without a transplant using the present al-

gorithms employed to clear kidney exchanges. In addition to protecting against failure,

we explicitly consider the option of flexible response to failures. We do this by allowing

recourse actions. We consider three recourse policies that can be easily implemented in

practice. Our clearing algorithm selects an optimal planned solution taking the possibil-

ity of recourse into account. If actual failures occur, our algorithm selects the optimal

recourse action.

Finally, in Chapter 7 we summarize and discuss the main findings of this thesis and

draw some general conclusions. A Dutch summary is also provided.
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The chapters in this thesis can be read individually. Consequentially there is some

overlap in the introduction to each of these chapters. The chapters are based on pa-

pers that were written with various coauthors and are either published in or are (to be)

submitted to scientific journals. The references to these papers are given below.

Chapter 2 K. Glorie, B. Haase-Kromwijk, J. van de Klundert, A. Wagelmans, and W.

Weimar, “Allocation and matching in kidney exchange programs”. Transplant In-

ternational, 27(4):333-43 (2014).

Chapter 3 K. Glorie, J. van de Klundert, and A. Wagelmans “Kidney exchange with

long chains: an e�cient pricing algorithm for clearing barter exchanges with branch-

and-price”. Manufacturing & Service Operations Management, 16(4):498-512 (2014).1

Chapter 4 K. Glorie, M. de Klerk, A. Wagelmans, J. van de Klundert, W. Zuidema,

F. Claas, and W. Weimar, “Coordinating unspecified living kidney donation and

transplantation across the blood-type barrier in kidney exchange”. Transplantation,

96(9):814-20 (2013).

Chapter 5 K. Glorie, G. Xiao, and J. van de Klundert, “Health value analysis of allo-

cation policies in kidney exchange”. Submitted to Operations Research (2014).

Chapter 6 K. Glorie, M. Carvalho, M. Constantino, P. Bouman, and A. Viana, “Robust

barter exchange”. Working Paper (2014).

Appendix A K. Glorie, “Estimating the probability of positive crossmatch after nega-

tive virtual crossmatch”. Econometric Institute report, 2012-25 (2012).

Summary in Dutch K. Glorie, A. Wagelmans, and J. van de Klundert, “Ethisch opti-

maliseren van het ruilen van nieren”. STAtOR, 13(3-4) (2012).

1
A previous version of this paper has appeared as (Glorie et al., 2012b).
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Chapter 2

Literature review: clearing in kidney

exchange1

2.1 Introduction

Living kidney donation is an obvious strategy to increase the number of kidney transplants

(Spital, 1988; Wolfe et al., 1999; Port et al., 1993; Franke et al., 2003; Winkelmayer

et al., 2002; Lopes et al., 2013). Moreover, grafts taken from living donors generally

function twice as long as grafts taken from deceased donors (SRTR, 2011). Clinical

advances such as laparoscopic nephrectomy and vaginal extraction have helped increase

the number of living donor kidney transplants over recent years (Segev, 2012). In the

Netherlands for instance, more than half of the transplants now involves a living donor

(Nederlandse Transplantatie Stichting (NTS), 2012). Nevertheless, the number of kidneys

available for transplantation is still largely insu�cient to meet demand: in Europe and

the United States together approximately 30 patients die each day while waiting for a

kidney transplant (European Society for Organ Transplantation (ESOT), 2010; United

States Organ Procurement and Transplantation Network (OPTN), 2011). A major part

of the problem is that, even when a living donor is willing to donate, in over 30 percent of

the cases, the donor is incompatible with his or her intended recipient due to blood type

or crossmatch incompatibility (Segev et al., 2005b).

Several strategies have emerged to improve the utilization of living donors by mitigat-

ing or overcoming the causes of incompatibility. Kidney paired donation (KPD) (Rapa-

port, 1986), alternatively known as kidney exchange (Roth et al., 2004), is a strategy that

allows incompatible patient-donor pairs to be matched with other incompatible pairs in

1
This chapter is based on (Glorie et al., 2014b).
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order to proceed with transplantation through an exchange procedure. Other strategies

include patient desensitization, living donor-deceased donor list exchange, and altruis-

tic (unspecified or non-directed) donation (Montgomery et al., 2005; den Hartogh, 2010;

Montgomery et al., 2006a).

This review compares and discusses the various approaches to matching and allocation

in kidney exchange as published in the international transplant community. In particular,

it focuses on the underlying principles of market clearing and allocation approaches, the

combination of KPD with other strategies such as ABO incompatible transplantation, the

organization of kidney exchanges, and future challenges.

2.2 History of kidney exchange

The concept of kidney exchange was first proposed by Rapaport in 1986 (Rapaport,

1986). The initial idea was to facilitate exchange between pairs with reciprocal blood type

incompatibilities (A-B and B-A), but this would later be expanded to other blood type

combinations and crossmatch incompatible pairs. The first actual exchange procedure

was performed in South Korea in 1991 (Kwak et al., 1999), followed by Europe in 1999

(Thiel et al., 2001), and then the US in 2000 (Zarsadias et al., 2010), the slow acceptance

being mainly due to ethical and legal considerations (Ross and Woodle, 1998, 2000).

After these first procedures, KPD has developed rapidly. In 2004, the Netherlands was

first to launch a nationwide KPD program (de Klerk et al., 2005). Various countries have

since then begun to develop national KPD programs, including the US (United Network

for Organ Sharing Web Site, 2013), Australia (Ferrari et al., 2009), Canada (Canadian

Blood Services Web Site, 2013), Romania (Lucan et al., 2003), and the UK (Johnson

et al., 2008b,a). International exchanges, although on an ad hoc basis, have also been

documented (Flanagan, 2013; La Vanguardia Ediciones, 2012).

2.3 Transplant modalities

2-Way KPD

Since the inception of KPD various transplant modalities have become available to incom-

patible pairs. The simplest modality is a pairwise exchange, or 2-way KPD, between two

pairs with reciprocal incompatibilities (see Figure 2.1a). In this exchange the donor of the

first pair donates to the patient of the second pair, and vice versa. Usually transplants

take place simultaneously so as to prevent donors from withdrawing consent after their
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Figure 2.1: Transplant modalities. Solid arrows indicate matches between donors and

recipients. D
i

= donor i, R
i

= recipient i, A = altruistic donor, W = waitlist.
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intended recipient has received a transplant, but before they have donated themselves

(Kwak et al., 1999; de Klerk et al., 2005).

k-Way KPD

Exchange can also take place between more than two pairs by generalizing the above

concept to a so-called k-way KPD (Figure 2.1b). k-Way KPD which involves k pairs

allows more benefits of trade to be captured as reciprocal matching is no longer required

(Roth et al., 2007; De Klerk et al., 2010). In most cases, k is limited to 3 or 4 because

of logistical reasons such as the simultaneous availability of operating rooms (Ferrari and

de Klerk, 2009; Johnson et al., 2008b; Roth et al., 2007; De Klerk et al., 2010; Lee et al.,

2009; Lucan, 2007; Montgomery et al., 2008). Although this limit is su�cient to provide

full benefits of trade for blood type incompatible pairs in the pool (Roth et al., 2007),

highly sensitized patients could benefit if k were allowed to be larger (Ashlagi et al., 2012).

Unspecified donor chains

As an alternative to the cyclic exchange procedures described above, transplants can be

organized in chain procedures. One option is to initiate a chain with an unspecified

donor. Instead of donating to a patient on the deceased donor waitlist, as has been

common in many countries (Johnson et al., 2008b; Gilbert et al., 2005), an unspecified

donor donates to a patient of an incompatible pair (Woodle et al., 2010; Dor et al.,

2011). Subsequently, the donor of that pair donates to a patient of another pair, and so

forth, until the donor of the last pair in the chain donates to a patient on the deceased

donor waitlist. This modality is referred to as domino-paired donation (DPD)(Figure

2.1c)(Montgomery et al., 2006a). Since it is possible to arrange the transplants in a

chain such that no donor-recipient pair needs to donate a kidney before having received

one, donor withdrawal can do less harm in a chain than in a k-way KPD. Therefore, the

requirement of simultaneous transplants could be relaxed in chains. Non-simultaneous

extended altruistic donor (NEAD) chains (Figure 2.1d) do this by recruiting ‘bridge donors

who instead of donating to the deceased donor waitlist like the last donor in a DPD chain

may continue the chain at a later moment in time (Rees et al., 2009). The relaxation

of simultaneity allows chain procedures to involve more incompatible pairs than k-way

KPD (if there is no donor withdrawal), potentially benefitting highly sensitized patients

(Ashlagi et al., 2012). There has been an ongoing debate on whether it is best to use

DPD or NEAD chains (Gentry et al., 2009; Ashlagi et al., 2011b; Gentry and Segev, 2011;

Ireland, 2011). A recent study shows that the answer depends on the composition of the
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KPD pool and that benefits of NEAD chains are limited in case of low numbers of highly

sensitized patients and su�cient unspecified donors (Glorie et al., 2013).

List exchange

Another option is to initiate a chain with a list exchange (Figure 2.1e), in which the first

patient in the chain does not directly receive a transplant, but instead receives priority on

the deceased donor waitlist for a future deceased donor kidney, which is usually a blood

type O kidney (Roth et al., 2004, 2006). The last donor of the chain again facilitates a

transplant to a patient on the waitlist. However, the procedure is controversial because

the latter transplant usually involves a non-blood type O kidney. Therefore list exchanges

can produce disadvantages to blood type O patients on the deceased donor waitlist (den

Hartogh, 2010). List exchanges have only been used in several regions in the US, where

the procedure has been declared acceptable by the American Society of Transplantation

(Ferrari and de Klerk, 2009).

Altruistically unbalanced exchange

All of the procedures described above can also take place with compatible pairs (Figure

2.1f). This is known as ‘altruistically unbalanced exchange donation (Ross and Woodle,

2000; Kranenburg et al., 2006). It allows incompatible pairs a better chance of finding a

match, while at the same time o↵ering compatible pairs the opportunity of obtaining a

better quality kidney (Gentry et al., 2007; Ratner et al., 2010; Roth et al., 2008). Studies

suggest that 45 % of recipients in compatible pairs can obtain a kidney from a younger

donor or a 0 mismatch kidney by participating in KPD (Gentry et al., 2007), and that

approximately one third of compatible pairs would indeed be willing to do so (Kranenburg

et al., 2006). Therefore altruistically unbalanced exchanges could result in both a higher

number of transplants and a higher quality of transplants. Nevertheless, this form of

exchange is ethically complicated as it involves asking otherwise suitable patient-donor

pairs to exchange kidneys with strangers (Gentry et al., 2007).

Desensitization

Finally, there is the possibility of using desensitization techniques to overcome blood type

or tissue type incompatibility. Although these techniques are costly and technically de-

manding, several programs have reported promising short-term and intermediate-term

results and using such techniques has become an acceptable procedure in selected indi-
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viduals (Montgomery et al., 2005; Montgomery, 2010; Montgomery et al., 2006b; Warren

and Montgomery, 2010; Gloor et al., 2003; Jordan et al., 1998; Tanabe et al., 1998). In

particular, desensitization for ABO incompatibility has been shown to provide good long-

term graft survival, while still comparing favorably to dialysis in terms of costs (Wilpert

et al., 2010; Gloor et al., 2010; Haririan et al., 2009). Combining desensitization with KPD

can provide transplant opportunities to patients that would otherwise have been deemed

contra-indicated and would have waited indefinitely for a suitable kidney (Claas and Dox-

iadis, 2009; Montgomery et al., 2011; Sharif et al., 2012; Crew and Ratner, 2010; Glorie

et al., 2014b). This is particularly true if the modalities are not just o↵ered separately to

patients, but are coordinated such that hard-to-match patients can be desensitized after

identifying a more favorable donor in a KPD (Glorie et al., 2013; Montgomery et al.,

2011).

2.4 Imbalance

Not all incompatible patient-donor pairs have equal chances of success through KPD (Roth

et al., 2007; de Klerk et al., 2011; Zenios et al., 2001; Gentry et al., 2005; Roodnat et al.,

2012). This is primarily due to blood type imbalance. Because most blood type O donors

can donate directly to their intended recipients, O donors will only need to enter a KPD

pool if they have a positive crossmatch with their recipient. This leads to a scarcity of

blood type O kidneys in KPD pools. At the same time, almost all patients are compatible

with O donors. Consequentially, there will be higher demand for O kidneys than A or B

kidneys, and, similarly, higher demand for A or B kidneys than AB kidneys. This leaves

patient-donor pairs of types O-A, O-B, O-AB, A-AB and B-AB at a disadvantage since

they need a kidney that is in higher demand than the kidney they o↵er (Roth et al., 2007).

Table 1 provides a characterization of the pair types by blood type in terms of whether

they are over-, under-, self-, or reciprocally-demanded (Roth et al., 2005b), and typical

match results.

Another imbalance is due to patient sensitization. Highly sensitized patients are at a

disadvantage since they can only accept a small fraction of kidneys, mostly from donors

with few HLA types, which are in high demand. Patients who are both highly sensitized

and have formed an under-demanded pair will be most di�cult to match.

Success rates of KPD are further largely dependent on pool size and pool composition

(Johnson et al., 2008b; Roth et al., 2007; Ferrari and de Klerk, 2009; Roodnat et al., 2012).

The number of potential matches increases considerably with pool size. However, even

in large pools typically only 50 % of pairs can be matched through KPD alone (de Klerk
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et al., 2011) (see Table 1). In the Netherlands under-demanded pairs comprise 40 % of

the national pool and they have a 19 % chance of finding a match. Other pairs, which

comprise 60 % of the pool, have a 73 % chance of finding a match. Because compati-

ble pairs, altruistic and deceased donors typically represent the blood type frequencies of

the general population, allocating these donors to KPD programs permits better match-

ing. Furthermore, because blood type and tissue type distributions may di↵er between

countries, international exchanges may provide benefits for selected patient-donor pairs

(Flanagan, 2013; La Vanguardia Ediciones, 2012). For instance, in the Dutch KPD pro-

gram 17 % of the patients have a PRA > 80 with respect to the KPD donor population,

whereas in the program of the Alliance for Paired Donation in the US over 50 % of the

enrolled patients have a PRA > 80 (Ashlagi et al., 2012). Part of the reason for these

di↵erences may be the use of di↵erent techniques to detect unacceptable HLA specificities.

2.5 Allocation criteria

In KPD procedures, patient-donor pairs do not select the pairs with which they exchange

kidneys. Instead, the allocation of donors to recipients is determined centrally. For this

reason, the authority that oversees the KPD procedures must carefully consider the allo-

cation criteria it will use. There can be many di↵erent perspectives as to what constitutes

the best allocation.

European agreements governed in the convention on human rights and biomedicine

(Council of Europe, 2002) prescribe that allocation of organs should be both ‘optimal

and ‘fair, without stipulating precisely what is meant by those terms. Similarly, in the

United States the National Organ Transplantation Act states that donated organs should

be allocated ‘equitably among transplant patients (The National Organ Transplantation

Act 42, 1984). The United Network for Organ Sharing (UNOS) defines ‘equitably as a

balance between utility and justice (United Network for Organ Sharing (UNOS), 1992).

While ‘optimality and maximum utility is generally interpreted as achieving the maximum

number of transplants, defining ‘fairness and justice is less straightforward, particularly

in light of the imbalance described earlier.

Although initial KPD programs have matched patient-donor pairs on an ad hoc ba-

sis taking in account the above principles, most programs have now formulated precise

guidelines for the allocation process (Ashlagi et al., 2011b; Keizer et al., 2005; Glorie

et al., 2014d; Ferrari et al., 2011; Böhmig et al., 2013; Kim et al., 2007; Manlove and

O’Malley, 2012). In this regard it is important to make a distinction between allocation

requirements that limit the number of feasible allocations, and thereby transplants, (e.g.
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requiring donors to be in the same age category or have the same CMV-EBV serology as

their recipients) and actual allocation criteria that determine the selection of an allocation

from the set of feasible allocations (e.g. maximum number of transplants between donors

and recipients of the same blood type).

Traditionally, deceased donor organs have been allocated to recipients in priority order.

Several KPD programs have also specified a priority order for KPD allocation criteria.

These include the programs operated in the Netherlands, the UK, Australia, Austria, and

Korea (Keizer et al., 2005; Glorie et al., 2014d; Ferrari et al., 2011; Böhmig et al., 2013;

Kim et al., 2007; Manlove and O’Malley, 2012). Here the criteria are hierarchical and

include such factors as: maximizing the number of matched recipients, maximizing the

number of blood type identical matches (to maximize the likelihood of O patients receiving

a kidney and to help overcome their disadvantage), prioritizing allocations based on the

number of involved recipients with a low match probability, minimizing the length of

the cycles and chains, and prioritizing allocations based on waiting time of the involved

recipients. Simulations show that thanks to the inclusion of the above secondary criteria,

the number of highly sensitized patients matched may increase by 10% (Glorie et al.,

2014d).

Alternatively, criteria could also be weighted as is for example done in the UNOS KPD

pilot program and the program of the Alliance for Paired Donation in the US (Ashlagi

et al., 2011b; United Network for Organ Sharing (UNOS), 2012). These programs have

specified weights for factors as waiting time, HLA match, PRA, prior crossmatch history,

pediatric status and preferences of the incompatible pairs and their transplant centers (e.g.

the distance the pair is willing to travel and whether the transplant center would accept a

shipped kidney) and select the allocation that has the largest total weight (Ashlagi et al.,

2011b; United Network for Organ Sharing (UNOS), 2012).

Other programs have formulated requirements and criteria with regard to age, travel

distance, etc. (Lucan, 2007; Kim et al., 2007; Kute et al., 2013; Ycetin et al., 2013). Two

unconventional possibilities are worth mentioning. The first is the use of quality adjusted

life years from transplant. Use of quality adjusted life years is commonly accepted as a

prime decision criteria for many medical interventions, following the framework of Health

Technology Assessment (Hutton et al., 2006; Guindo et al., 2012). However, it may

conflict with commonly accepted criteria such as maximizing the number of transplants

(Wolfe et al., 2008; Zenios, 2002). Another possibility is to consider long term instead of

short term criteria (Ünver, 2009; Awasthi and Sandholm, 2009; Dickerson et al., 2012).

These two do not necessarily coincide. For example, to maximize the long term number

of matched patients it may be necessary to allow for some match runs in which matches
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are postponed (e.g. to allow for a future 3-way KPD to take place instead of a current

2-way KPD).

After an allocation has been selected, it may not always find continuation. Proposed

matches may fail due to positive crossmatch tests or patient or donor illness. In such

cases a new allocation can be determined based on the updated information, as is for

instance done in the Netherlands, but this requires appropriate organization of cross-

matching (see Section 2.8). An alternative solution is to maintain the initial allocation

as much as possible and only reallocate pairs that are part of procedures that are dis-

continued. For instance, a discontinued k-way KPD could still result in multiple 2-way

KPDs going forward (see Figure 2.2). The KPD program in the UK utilizes a set of hier-

archical allocation criteria that aims to maximize the number of transplants that can take

place after such a discontinuation (Manlove and O’Malley, 2012), by first maximizing the

number of potential 2-way KPDs (including ‘back-up 2-way KPDs), and as a secondary

priority maximizing the total number of transplants (Manlove and O’Malley, 2012).

Figure 2.2: Match failure. Initially a 3-way KPD is selected. If the match between

donor 3 and recipient 1 fails, it is still possible to perform a 2-way KPD, either between

pair 1 and pair 2, or between pair 2 and pair 3.

It can happen that di↵erent allocations rank the same on all of the selected allocation

criteria. In order to select an allocation then, most programs use a deterministic tie-

breaking rule (Keizer et al., 2005; Manlove and O’Malley, 2012). However, an interesting

alternative for such cases is to use a stochastic rule, i.e. a lottery which selects an allocation
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randomly (Roth et al., 2005b). A stochastic rule can provide several fairness properties,

in particular because the probability of selecting a recipient need not be the same for all

recipients and can be set in a way that alleviates the imbalance due to blood type and

tissue type distributions (Roth et al., 2005b).

2.6 Participation constraints

KPD programs benefit from the participation of as many centers as possible to create

a large pool. However, multi-center cooperation has brought about several di�culties.

Firstly, it requires consensus between participating transplant centers on the allocation

requirements and criteria. Secondly, centers may judge that it is not in the interest of

(some of their) patients to participate, and hence may prefer to not cooperate (fully).

Thirdly, financial, scientific, or other incentives may exist, which cause cooperation to

be potentially suboptimal. Thus, transplant centers may prefer to match some donors

and patients locally instead of submitting them to the national pool (Glorie et al., 2013;

Ashlagi and Roth, 2011a) (see Figure 2.3). One way to overcome such incentive issues is

by implementing participation constraints which ensure that each transplant center can

perform at least the same number of transplants in a national pool as that it can achieve

on its own. Although such constraints limit the set of feasible allocations, it has been

shown that they do not negatively a↵ect the long-term benefits of KPD programs (Glorie

et al., 2013; Ashlagi and Roth, 2011a).

Figure 2.3: Potential participation problems. An unspecified donor (A) is registered at

center A, which can generate 3 in-house transplants. In a nationally optimized program,

4 transplants are generated, but only 1 of those transplants is performed by center A.
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2.7 Clearing algorithms

Initially most KPD programs manually selected the allocation that best fit their criteria.

However, given that the number of possible allocations grows exponentially with the size

of the KPD pool, manually evaluating all possible allocations is only feasible for very

small pools. In the US, the process of finding a match therefore originally followed a

‘first-accept scheme, which involves matching an incompatible patient-donor pair to the

first pair that meets the acceptance requirements, even though matching with another

pair might yield a better outcome (Segev et al., 2005a).

Most KPD programs today use computer software to identify the best allocation with

respect to their criteria (Ashlagi et al., 2011b; Keizer et al., 2005; Ferrari et al., 2011;

Böhmig et al., 2013; Kim et al., 2007; Manlove and O’Malley, 2012; Kaplan et al., 2005;

Hanto et al., 2008). Such software typically compares all possible allocations and can

perform virtual crossmatching based on known donor HLA types and patient unacceptable

HLA mismatches. However, as KPD programs expand and start to be combined with

other transplant modalities, the number of possible allocations becomes so large, that

even for computer programs, it becomes intractable to enumerate all feasible allocations.

In these situations mathematical optimization algorithms are required to guarantee the

selection of the best possible allocation (Glorie et al., 2014d; Manlove and O’Malley,

2012; Abraham et al., 2007; Constantino et al., 2013). The best current algorithms use a

technique known as ‘branch-and-price’ which enables them to select an optimal allocation

within minutes because they only need to consider a small subset of all possible allocations

(Glorie et al., 2014d; Abraham et al., 2007).

There are several aspects which provide challenges for the future. The first is that

as KPD programs continue to evolve, highly sensitized and hard-to-match patients are

likely to accumulate in the pool (Ashlagi et al., 2012). In such pools, the use of long

chain procedures becomes essential to achieve the full benefits of exchange (Ashlagi et al.,

2012). However, this renders the process of computing an optimal allocation substantially

more di�cult. Fortunately, recently developed algorithms have been shown to perform

well even when pools are large and long chains are required (see Chapter 3).

Another aspect is that taking into account the probability of match failure by maximiz-

ing the expected number of transplants (which is di↵erent from maximizing the number

of matches) may become more important as this will eventually lead to more transplants

going forward (Pedroso, 2013; Dickerson et al., 2014; Glorie et al., 2014a). Although this

still poses computational challenges, it may be an opportunity to significantly increase

the success rates of KPD programs (Dickerson et al., 2013; Glorie et al., 2014a).
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Similarly, considering online or dynamic instead of static optimization of kidney ex-

changes, takes into account the timing of exchanges and the fact that patients and donors

enter and leave the KPD pool over time, to optimize the desired allocation criteria in the

long run (Ünver, 2009; Awasthi and Sandholm, 2009; Dickerson et al., 2012; Ashlagi et al.,

2013). Essentially, this better represents the real decision problem underlying KPD. As

of yet, because of computational complexity, it is only possible to find approximate solu-

tions to the dynamic problem, but even these are often significantly better than solutions

achieved through static optimization. Figure 2.4 illustrates how dynamic optimization can

provide benefits. Shifting focus from static to dynamic optimization and thereby from

short term to long term goals raises questions as to what defines optimality and what is

equity in a dynamic setting. Full answers to these questions await further research.

Figure 2.4: Dynamic optimization. There are 5 pairs in the current KPD pool. Two

2-way KPDs are performed involving pairs 1 and 2, and pairs 3 and 4. One month later

pairs 6 and 7 enter the pool. In hindsight it would now have been better to perform one

4-way KPD between pairs 1, 2, 3, and 5, and one 3-way KPD between pairs 4, 6, and 7.

Dynamic optimization anticipates such situations and maximizes the expected number of

transplants.
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2.8 Organization

Several countries have now implemented or pursue a national KPD program. However,

there are several di↵erences in how these programs are organized. Primarily this is be-

cause of geographical di↵erences: for example, the US has 244 kidney transplant centers

spread out over a large area (United Network for Organ Sharing (UNOS), 2012), while the

Netherlands has 8 kidney transplant centers which are relatively close together (de Klerk

et al., 2005). This has immediate implications for the coordination between transplant

centers and donor travel. In the Netherlands, it is feasible to move donors to the center

where the matched recipient will receive the transplant. This is preferable as the recipi-

ent’s home institution can provide the recipient with continuity of care and follow-up, and

avoids long cold ischemic times. In the US, the retrieval surgery typically takes place at

the donor center and the kidneys are shipped to the recipient’s center for transplantation.

Even though this requires longer cold ischemic times and risks transportation delays, re-

cent studies show comparable graft survival rates of shipped kidneys and non-shipped

kidneys (Montgomery et al., 2008; Rees et al., 2009; Butt et al., 2009; Simpkins et al.,

2007; Segev et al., 2011).

A major contributor to the success of the Dutch program in establishing consistent

high match rates, is its use of a national centralized tissues typing laboratory (Ferrari and

de Klerk, 2009; de Klerk et al., 2008). In this laboratory potential donors and recipients

are tested for HLA crossmatch. Having a centralized laboratory substantially enhances

coordination between centers as it removes dispute about crossmatch outcomes by setting

a uniform crossmatch standard.

Finally, the frequency of match runs and thereby the timing of exchanges also is

a di↵erentiating element between KPD programs. Some programs perform match runs

on demand such as Korea whereas others perform them once per month, or once per

three months as in the Netherlands (Glorie et al., 2013; Ferrari and de Klerk, 2009;

Kim et al., 2007). Although frequent performance of match runs may result in shorter

waiting time for matched recipients, it risks removing only easy-to-match pairs as the

pool may not always be saturated enough for the procedures involving hard-to-match

pairs to take place. Deciding when to match is therefore an important decision for KPD

programs (Glorie et al., 2013). New matching software is able to advice on the optimal

timing based on the composition of the pool (Ünver, 2009; Awasthi and Sandholm, 2009;

Dickerson et al., 2012; Ashlagi et al., 2013).
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2.9 Outlook

Since its inception in 1986, KPD has greatly expanded and has become an accepted

method of transplantation at transplant centers throughout the world. Many advances

have been made in terms of surgical technique, shipping donor kidneys and international

exchanges. Nevertheless, many blood type O and highly sensitized patients still remain

without a transplant. Important factors that have limited the success of KPD programs

are logistical issues, basic trust between the various participants, and match failures.

Innovative transplant modalities as altruistic donor chains and desensitization can help

ameliorate the problem for critical patient groups. However, to achieve the best possible

outcomes, these modalities should be coordinated jointly with KPD (Glorie et al., 2013).

In this regard, this review has summarized di↵erent allocation and matching strategies.

While there are many other issues that could be explored in the evolving field of KPD,

matching is a key element in KPD, and by selecting the right matching strategy many

patients can benefit. Future opportunities and challenges include making full use of the

various modalities that are now available through integrated and optimized matching

software, encouragement of transplant centers to fully participate, improving transplant

rates by focusing on the expected long run number of transplants, and selecting uniform

allocation criteria to facilitate international pools.
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Chapter 3

An e�cient pricing algorithm for

clearing barter exchanges with

branch-and-price: enabling

large-scale kidney exchange with

long cycles and chains1

3.1 Introduction

Barter exchange markets are markets in which agents seek to directly trade their goods

with each other. The trades in such markets consist of cycles in which each agent gives a

good to the next agent in the cycle. Alternatively, the trades may consist of chains which

are started by an agent that provides a good without requiring a good in return and end

with an agent that receives a good without providing one. There are numerous examples

of barter exchange markets: house exchanges (in which agents seek to simultaneously

buy each others houses, see for example www.besthouseswap.com), shift exchanges (e.g.,

between nurses in hospitals), intra-organizational skilled worker exchanges (e.g., between

projects or departments), and book exchanges (see for example www.readitswapit.co.uk).

In the present paper we focus specifically on so-called kidney exchanges but our findings

are easily applicable to other types of barter exchange markets.

1
This chapter is based on (Glorie et al., 2014d). A previous version of it has appeared as (Glorie et al.,

2012b).
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Kidney exchanges aim to help end-stage renal disease patients with a living and willing,

but medically incompatible donor to obtain a kidney transplant, which is the preferred

treatment for these patients. In particular, kidney exchanges enable patients to exchange

their donor with another patient: if a patient’s donor is compatible with some other

patient, and the donor of the other patient is compatible with the first patient, the

patients can switch donors so that both patients can obtain a transplant (see e.g. Roth

et al. (2004), de Klerk et al. (2011) and Glorie et al. (2014b)). Due to the large potential

for increasing the number of transplants, many countries have developed kidney exchange

programs. Leading examples are the Netherlands, the US, the UK, Australia, and South

Korea (Keizer et al. (2005), Manlove and O’Malley (2012), Park et al. (1999), Delmonico

et al. (2004)).

Kidney exchange need not be limited to two patient-donor pairs but may involve cycles

in which the donor of each pair donates, simultaneously, a kidney to the patient of the

next pair in the cycle. The simultaneity is required to prevent donors from reneging after

their intended recipient has received a transplant from another donor. Because of simul-

taneity, the length of cycles is limited to the number of logistically feasible simultaneous

transplants. Alternative to cycles, unspecified donors - i.e. donors without a specified

recipient - may initiate a chain of transplants in which the last donor is allocated to the

deceased donor wait list or is preserved for a future exchange. Because in a chain no

patient-donor pair needs to donate before the patient in the pair has received a kidney,

donor reneging in a chain would be less harmful than in a cycle. For this reason it is

sometimes allowed to have one or more non-simultaneous transplants in a chain, allowing

chains to be longer than cycles. Chains are increasingly common and important in clinical

practice (e.g. Ashlagi et al. (2012), Glorie et al. (2013)).

Presently, over 30 percent of living donors are incompatible with their intended re-

cipient (Segev et al., 2005b). A patient and donor are incompatible if the donor’s blood

contains an antigen that is not present in the patient’s blood, because the patient will have

antibodies against such an antigen. Two cases of incompatibility can be distinguished.

The first case, known as blood type incompatibility, revolves around two major antigens:

A and B (blood types are denoted as AB, A, B, and O, representing the presence of these

antigens). The second case, known as crossmatch incompatibility, revolves around all

other antigens against which the patient may have preformed antibodies.

The clearing problem in kidney exchange is to determine an assignment of donors

to recipients that is feasible with respect to the medical compatibilities and maximizes

one or more criteria such as the number of transplants. In practice, this problem is

typically considered in a static or o✏ine context, in which exchanges are conducted at
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fixed time intervals and the assignment is optimized for the present population, as opposed

to a dynamic or online context, in which exchanges are conducted continuously and the

assignment is optimized with respect to the future evolution of the population. The

di�culty of the clearing problem arises from the requirement that all transplants in a

cycle must be performed simultaneously and that therefore cycles are limited in length.

Whenever this limit is finite and larger than 2, the static clearing problem is NP-hard

(Abraham et al., 2007).

Abraham et al. (2007) present a mixed integer programming formulation for the clear-

ing problem with the objective of maximizing a weighted sum of transplants. They solve

this formulation by a branch-and-price algorithm (see Barnhart et al., 1998), in which they

identify positive price variables by depth-first search. Abraham et al. (2007) show that

when each transplant has equal weight in the objective function and when exchanges are

limited to cycles or chains involving at most 3 patients and 3 donors, this approach works

well even when the instance size is large. The main argument for limiting cycles and chains

to length 3 is that initially in many pools the maximum possible number of transplants

can be achieved using only cycles and chains up to length 3 (Roth et al., 2007). As we will

show, however, when kidney exchange programs continue to evolve, cycles and chains up

to length 3 are often not enough to attain the maximum possible number of transplants

(see also Ashlagi et al. (2011b)). Moreover, when heterogenous objective weights are used

or when an objective other than maximizing the sum of transplants is desired, allowing

longer cycles and chains may improve the objective function. Unfortunately, with long

cycles and chains depth-first pricing becomes a major bottleneck. In this paper we will

show how this problem can be overcome.

In practice, maximizing the (weighted) sum of transplants is not the only relevant

objective criterion (see e.g. de Klerk et al. (2011)). Instead of a single weighted objective

criterion, several existing kidney exchange programs use a hierarchically ordered set of

criteria (e.g., De Klerk et al. (2010), Manlove and O’Malley (2012), and Kim et al. (2007)).

The Dutch national kidney exchange program, in particular, uses the following hierarchical

set:

Definition 3.1. Hierarchical criteria used in the Dutch kidney exchange program:

(i) Maximize the number of transplants;

(ii) Maximize the number of blood type identical transplants;

(iii) Match the patients in priority order based on ‘match probability’ (see Keizer et al.,

2005);
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(iv) Minimize the length of the longest cycle or chain;

(v) Maximize the spread over transplant centers per cycle and chain;

(vi) Match the patient with the longest waiting time.

The Dutch criteria are based on European agreements governed in the convention

on human rights and biomedicine Council of Europe (2002), which determines that the

allocation of organs should be both ‘optimal’ and ‘fair’. For this reason the criteria

include factors related to the probability of obtaining a transplant (criteria (ii) and (iii))

and waiting time (criterion (vi)). The exact aim of criterion (ii) is to help establish a fair

allocation across patient blood types by ensuring that patients of disadvantaged blood

types, such as blood type O, receive as many transplants as possible (donors of the same

blood type will be reserved for them whenever this is viable). Criterion (iii) establishes

such fairness in a broader sense by taking into account the total match probability (as

defined in Keizer et al. (2005)). The priority order within criteria (iii) and (vi) is based

on the traditional priority mechanisms for allocating deceased donor kidneys. Criteria

(iv) and (v) are of a logistical nature. The hierarchy among the criteria implies that

every criterion should be optimized subject to the best possible score on previous criteria.

For example, the number of blood type identical transplants (criterion (ii)) should be

maximized under the condition that the total number of transplants is maximum (criterion

(i)).

Because of the evolution of kidney exchange pools and the ways in which exchange can

take place, and because of the advent of large multi-center exchanges and the requirement

of multi-criteria optimization, there is a need for new techniques for kidney exchange

clearing that facilitate long chains. The work presented in this paper makes the following

contributions:

1. We develop a generic iterative branch-and-price algorithm for clearing kidney ex-

changes with a weighted or hierarchically ordered set of objective criteria;

2. We propose a polynomial solution method for the pricing problems as they result

for a general class of criteria (which includes all criteria of the Dutch exchange);

3. The presented approach accommodates long, possibly non-simultaneous, unspecified

donor chains at running times that are feasible in practice;
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4. The approach allows for optimization for a set of transplantation centers, such as

at a (inter-) national level, while taking individual rationality constraints of the

participating transplantation centers into account.

This paper is organized as follows. First, Section 3.2 describes the multi-criteria

kidney exchange problem mathematically. Section 3.3 details our iterative branch-and-

price algorithm used to solve the multi-criteria kidney exchange clearing problem. In

particular, Section 3.3.2 describes a new branching scheme and Section 3.3.3 describes

how the pricing problem can be solved in polynomial time for a wide range of criteria.

Section 3.4 discusses the setup of our simulations using actual kidney exchange data and

Section 3.5 presents the computational results. Finally, Section 3.6 concludes the paper.

3.2 A kidney exchange model

In this section we formalize the concepts used in kidney exchanges and we mathematically

define the problem under consideration.

3.2.1 Problem definition

Definition 3.2. A kidney exchange pool N consists of two sets, i.e. N = N
U

[N
S

, where

N
U

refers to the set of all unspecified donors and N
S

to the set of all incompatible specified

donor-recipient pairs.

Definition 3.3. A kidney exchange graph D = (N,A) has as its node set a kidney ex-

change pool N . There is an arc a
i,j

= (n
i

, n
j

) 2 A from node n
i

2 N to node n
j

2 N
S

if

the donor corresponding to node n
i

is compatible with the recipient corresponding to node

n
j

.

Note that in any kidney exchange graph D = (N,A), nodes in N
U

, which correspond

to donors without recipients, have no incoming arcs. We define a transplant cycle and a

transplant chain as follows

Definition 3.4. In any given kidney exchange graph D = (N,A), a length-k cycle is an

arc traversal hn1, . . . , nk

i such that {n1, . . . , nk

} ✓ N
S

and such that (n
k

, n1) 2 A and,

for every 1  i < k, (n
i

, n
i+1) 2 A.
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Figure 3.1: Kidney exchange example

Definition 3.5. A length k chain is an arc traversal hn0, . . . , nk

i such that n0 2 N
U

and

{n1, . . . , nk

} ✓ N
S

and for every 0  i < l, (n
i

, n
i+1) 2 A.

In practice, there exist limits on the number of transplants that can be performed

simultaneously within a cycle or chain segment. This implies a natural bound on the

maximum cycle and chain length.

Definition 3.6. For kidney exchange graph D = (N,A) and K 2 N,

C(K) :=
n

c ✓ N : c is a cycle or chain in D with length at most K
o

Note that, because chains can allow for the requirement of simultaneity to be relaxed,

in general the limit on chains is greater than or equal to the the limit on cycles. Typi-

cally, chains use one or more non-simultaneous transplants to link several simultaneous

segments of transplants. For ease of exposition, we use a single limit parameter in our no-

tation. However, it is straightforward to use separate parameters and in the experiments

in Section 3.5 we will do exactly this.

Definition 3.7. Let D = (N,A) be a kidney exchange graph, K 2 N, and C(K) be

defined as above. Then, any subset M =
�

c1, c2, . . . , c|M |
 ✓ C(K), is called an exchange

if c
i

\ c
j

= ; for all, 1  i, j  |M |, i 6= j.

Thus, an exchange is a collection of interdependent kidney transplants which can be

feasibly performed together. In the remainder of the paper, we assume a kidney exchange

graph D = (N,A), and K 2 N are given, and we denote with M the exchange set, i.e.
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the set of all exchanges M as defined above. Thus, an exchange set M always implicitly

defines a kidney exchange graph D = (N,A), and K 2 N . Now that we have formally

defined exchanges, and the exchange set, we proceed by considering the criteria by which

exchanges M 2 M are evaluated.

Definition 3.8. For any given exchange set M, a criterion is a function f : M ! R.

We now arrive at the formal definition of the problem under consideration:

Definition 3.9. For any given exchange set M and ordered set of criteria I = {f1, . . . , f|I|},
a hierarchical multicriteria clearing problem is to find an exchange M⇤ 2 M such that,

for each i = 1, . . . , |I|, M⇤ 2 M
i

where M
i

is recursively defined as M
i

:= {M 2 M
i�1 :

f
i

(M) � f
i

(M 0), 8M 0 2 M
i�1} with M0 := M.

Note that the set of criteria used in the Dutch kidney exchange program are an or-

dered set of kidney exchange criteria which fit the above definition, as would be the sole

criterion of maximizing the (weighted) number of transplants. Because any minimization

criterion can be rewritten as a maximization criterion, the definition also accomodates for

minimization criteria. Moreover, the definition also accommodates for individual ratio-

nality (or participation) constraints for hospitals as sometimes required in multi-hospital

settings (Glorie et al., 2013).

Figure 3.1 illustrates an example of a kidney exchange clearing problem with 5 donor-

recipient pairs, n1, . . . , n5. The bound on the length of exchange cycles K is 4. The

graph has 4 feasible cycles, c1 = hn1, n2i , c2 = hn2, n3i , c3 = hn3, n4i , c4 = hn1, n2, n3, n5i.
There are two maximal exchanges given by M1 = {c1, c3} (highlighted) and M2 = {c4}.
Although both exchanges have the same number of transplants, in the Dutch system

exchange M1 could be preferable over exchange M2 by, for example, criterion (iv) in

Definition 3.1: the maximum cycle length is 2 instead of 4.

3.2.2 Complexity of the clearing problem

We will now prove that the clearing problem is NP-hard. Although this was first proved

by (Abraham et al., 2007), we present here an alternative proof which is an extension of

the reduction from X3C to PARTITION INTO TRIANGLES given in Garey and Johnson

(1979).
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Consider the following decision problem:

Static k-EXCHANGE (SkE)

INSTANCE: A directed graph D = (N,A) and a positive integer k  |N |.
QUESTION: Is there a partition of N into disjoint sets C1, C2, . . . , Cm

, such that each

C
i

, i = 1, . . . ,m forms a directed cycle in D of length at most k?

We have the following theorem.

Theorem 3.1. For 3  k  |N | SkE is NP-Complete.

Proof. We transform EXACT COVER BY 3-SETS (X3C) to SkE. The NP-Complete

problem X3C is defined as

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X| = 3q and a collection C of 3-element subsets of X.

QUESTION: Does C contain an exact cover for X, that is, a subcollection C 0 ✓ C such

that every element of X occurs in exactly one element of C 0?

Let the set X and the collection C of 3-element subsets of X be an arbitrary instance

of X3C. We shall construct a graph D = (N,A), such that a partition of N into disjoint

sets C1, C2, . . . , Cm

, with each C
i

, i = 1, . . . ,m a directed cycle in D of length at most k,

exists, if and only if C contains an exact cover for X.

The basic units of the X3C instance are the 3-element subsets in C. We can locally

replace each such subset c
i

= {x
i

, y
i

, z
i

} 2 C with the collection A
i

of edges shown in

Figure 3.2. Then D = (N,A) is defined by

N = X [
|C|
[

i=1

{a
i

[j
l

] : 1  j  n, 1  l  9}

A =
|C|
[

i=1

A
i

Notice that the only nodes that appear in the edges belonging to more than a single

A
i

are those that are in the set X. In every A
i

there are n diamond like structures of

nodes, where n =
⌃

k�1
12

⌥

. It is not hard to see that this instance of SkE can be constructed

in polynomial time from the X3C instance.



45_Erim Glorie[stand].job

3.2 A kidney exchange model 33

Figure 3.2: Local replacement for c
i

= (x
i

, y
i

, z
i

) 2 C for transforming X3C to SkE.
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If c1, c2, . . . , cq are the 3-element subsets from C in any exact cover for X, then the

corresponding partition N = C1 [ C2 [ . . . [ C
m

of N is given by taking

{a
i

[11], ai[12], xi

} , {a
i

[14], ai[15], yi} , {ai[17], ai[18], zi} , {ai[n3], ai[n6], ai[n9]}
�

a
i

[j
l

], a
i

[(j + 1)
l�1], ai[(j + 1)

l�2]
 

, j = 1, . . . , n� 1, l = 3, 6, 9

from the nodes meeting A
i

whenever c
i

= {x
i

, y
i

, z
i

} is in the exact cover, and by

taking

{a
i

[j
l

], a
i

[j
l�1], ai[jl�2]} , j = 1, . . . , n, l = 3, 6, 9

from the nodes meeting A
i

whenever c
i

is not in the exact cover. This ensures that

each element of X is included in exactly one 3-node cycle in the partition. Notice that

cycles containing more than 3 nodes are never feasible because of the choice of the number

n. Indeed, if there would be a cycle C 0 of length > 3, then the shortest such C 0 involves

a directed path P1 from s
i

to t
i

through the gadget corresponding to some subset p and a

directed path P2 from t
i

to s
i

through the gadget corresponding to some subset p0, where

s
i

2 {x
i

, y
i

, z
i

} and t
i

2 {x
i

, y
i

, z
i

} \ {s
i

}. The length of each of P1 and P2 is at least

3n + 1 + 3n, so the length of C 0 is at least 12n + 2. Because we have chosen n = dk�1
12

e,
it easily follows that 12n+ 2 � k + 1 and that hence C 0 is infeasible.

Conversely, if N = C1 [ C2 [ . . . [ C
m

of N is any partition of D into cycles of

size k or less, the corresponding exact cover is given by choosing c
i

2 C such that

{a
i

[n3], ai[n6], ai[n9]} = C
j

for some j, 1  j  m. We leave to the reader the straightfor-

ward task of verifying that the two partitions we have constructed are as claimed.

Corollary 3.1. For 3  k  |N | the hierarchical multicriteria clearing problem is NP-

hard.

3.2.3 Integer programming formulations

The clearing problem can be formulated as a mixed integer linear program. For example,

for the single criterion of maximizing the number of transplants the clearing problem can

be formulated using the so-called cycle formulation, which we describe below. Although

alternative mixed integer programming formulations for the kidney exchange problem have

also been investigated, the linear programming (LP) relaxation of the cycle formulation

provides the strongest upper bound (Constantino et al., 2013).
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Cycle formulation

The cycle formulation, which was first presented in Abraham et al. (2007), uses a binary

decision variable x
c

for each cycle and chain c 2 C(K) that is defined as:

x
c

=

(

1 if c 2 M⇤,

0 otherwise.

Setting x =
⇥

x1, . . . , x|C(K)|
⇤

T

, the integer program is given by:

P0:

max z0(x) =
X

c2C(K)

|c| · x
c

(3.1)

s.t.
X

c2C(K):n2c

x
c

 1 8n 2 N (3.2)

x
c

2 {0, 1} 8c 2 C(K)

In P0, the objective (3.1) is to select a collection of cycles and chains that maximizes

the number of transplants. The constraints (3.2) ensure that no patient or donor is

contained in more than one selected cycle or chain.

The number of variables in the cycle formulation can be very large (see Table 3.1 which

shows the number of cycles and chains in pools based on actual data from the Dutch

kidney exchange program), particularly because the number of chains grows rapidly with

the number of nodes. In an exchange pool with 200 nodes there can be over a billion

chains up to length 6, thus the formulation requires at least that many variables. In

contrast, Abraham et al. (2007) showed that, when dealing only with cycles up to length

3, this number of variables is often not even attained in pools of 5,000 nodes or more (see

Table 2 in Abraham et al. (2007)).

Generalized cycle formulation

The cycle formulation above can be generalized to allow for many other practically relevant

criteria, including each of the criteria (i)-(vi) mentioned in the introduction.

Consider a criterion f
i

2 I. As before, let x =
⇥

x1, . . . , x|C(K)|
⇤

T

denote the vector of

decision variables that indicate whether a cycle/chain c 2 C(K) is selected. In addition,

for n
i

,m
i

2 N, let y
i

denote a n
i

⇥ 1 vector of auxiliary variables which are allowed

to assume values in some subspace F
i

✓ Rni . Then, for w
i

2 R|C(K)|, v
i

2 Rni , A
i

2
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Nodes Arcs Cycles  4 Chains  4 Chains  6

10 50 0 1.0e+1 5.4e+1
20 192 8.00e+1 2.21e+2 1.34e+2
50 1087 2.04e+2 9.87e+3 2.51e+5
100 4443 5.07e+3 1.84e+5 2.44e+7
200 16412 1.00e+5 2.23e+6 1.34e+9
500 99501 8.58e+6 1.02e+8 5.83e+11

Table 3.1: Average number of cycles and chains over five random kidney exchange pools

of the indicated size sampled from historical data of the Dutch national kidney exchange

program

Rmi⇥|C(K)|, B
i

2 Rmi⇥ni , and b
i

2 Rmi , the generalized cycle formulation is given by the

following integer program:

P
i

:

max z
i

(x, y
i

) = wT

i

x+ vT
i

y
i

(3.3)

s.t. (3.2)

A
i

x+ B
i

y
i

 b
i

(3.4)

x 2 {0, 1}|C(K)|

y
i

2 F
i

Here, the objective (3.3) is to maximize z
i

(x) with respect to f
i

(note that if f
i

were

to be a minimization criterion, it can be rewritten as a maximization criterion by mul-

tiplying the objective coe�cients with �1). As before, the constraints (3.2) ensure that

no patient or donor is contained in more than one selected cycle or chain. The general

constraints (3.4) allow for various relationships between the selected cycles x and the

auxiliary variables y
i

that are required to model f
i

.

Ostensibly, the above formulations can also allow for multiple criteria by including a

separate term in the objective function for each criterion under consideration. Each term

is then multiplied with the relative weight attached to the criterion it models. As long as

the weights are relatively close to each other this approach works well. However, if the

criteria are hierarchically ordered, the required scaling of the weights will quickly lead to

numerical instability which renders the program to be infeasible. This is, for example,

the case with the six criteria used in the Dutch national program. Therefore, in the next

subsection, we present a recursive formulation which models the criteria in the hierarchy

without leading to numerical instability.
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Recursive cycle formulation

In this subsection we present a recursive formulation modelling hierarchical criteria that

does not su↵er from numerical instability: the recursive cycle formulation. The idea

is not to capture the hierarchical multi-criteria structure into a single integer program,

but instead recursively define multiple programs R1, . . . , R|I| which are linked together

by ‘objective propagation’ constraints. This corresponds to a lexicographic optimization

approach (see e.g. Isermann (1982); Rentmeesters et al. (1996)).

The first program in the recursion sequence is the generalized cycle formulation of

criterion f1. In case of the Dutch criteria, we have R1 := P0, where P0 is the program we

have defined before for the maximization of the number of transplants.

Then, denoting, in addition to the notation introduced above, the optimum value of

R
i

by z⇤
i

, the programs R
i

, i = 2, . . . , |I|, are recursively defined as:

R
i

:

max z
i

(x, y
i

) = wT

i

x+ vT
i

y
i

(3.5)

s.t. (3.2)

A
j

x+ B
j

y
j

 b
j

j = 1, . . . , i (3.6)

z
j

(x, y
j

) � z⇤
j

j = 1, . . . , i� 1 (3.7)

x 2 {0, 1}|C(K)|

y
j

2 F
j

j = 1, . . . , i

As in the generalized cycle formulation, the objective (3.5) is to maximize the single

criterion f
i

. However, the constraints (3.6) now include all the relationships required for

modeling criteria f1, . . . , fi. Constraints (3.7) are the objective propagation constraints,

which link the program R
i

to the programs R1, . . . , Ri�1, by propagating their correspond-

ing objective function values.

The recursive cycle formulation naturally fits the definition of the hierarchical multi-

criteria kidney exchange clearing problem. Indeed, the constraints (3.6) and (3.7) directly

describe the sets M
i

, i = 1, . . . , |I|. The exchange corresponding to the solution of

program R|I| is the solution to the hierarchical multi-criteria kidney exchange clearing

problem.
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Step 0 Initialize C(K) and x =
⇥

x1, . . . , x|C(K)|
⇤

T

FOR i = 1, . . . , |I| DO

Step i Solve R
i

on D:
z⇤
i

:= max
x2{0,1}|C(K)| f

i

(x)

s.t. (3.2), f1(x) � z⇤1 , . . . , fi�1(x) � z⇤
i�1

END FOR

Output x⇤ := argmax
x2{0,1}|C(K)|f|I|(x)

s.t. (3.2), f1(x) � z⇤1 , . . . , f|I|�1(x) �
z⇤|I|�1

M⇤ := {c 2 C(K) : x⇤
c

= 1}

Table 3.2: Iterative algorithm for solving the hierarchical multi-criteria kidney exchange

clearing problem

3.3 Iterative solution approach

In this section we will develop an iterative branch-and-price algorithm for solving the

hierarchical multi-criteria kidney exchange problem based on the recursive cycle formu-

lation. The idea is to iteratively solve integer programs corresponding to the criteria in

the hierarchy. If a program is solved, its objective function value is propagated to the

integer program corresponding to the next criterion by means of an objective propaga-

tion constraint. Table 3.2 gives a schematic overview of this iterative approach, where

R
i

and f
i

(x) := f
i

({c 2 C(K) : x
c

= 1}) respectively denote the integer program corre-

sponding to criterion f
i

and the objective function value of the exchange corresponding to

x =
⇥

x1, . . . , x|C(K)|
⇤

T

under criterion f
i

. Note that the algorithm is also valid when there

is no hierarchy between the criteria and the criteria are captured into a single integer

program. The algorithm then requires a single iteration.

3.3.1 Branch-and-price methodology

Because the integer programming formulations described in Section 3.2 with one variable

per cycle and chain grow exponentially in the size of the exchange pool, the (recursive)

integer programs R1, . . . , R|I| included in the approach of Table 3.2 are solved using

branch-and-price. The branch-and-price method starts with a limited subset C ✓ C(K)
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of cycles and chains and solves the linear program (LP) relaxation of the integer program

(IP) under consideration using the corresponding restricted variable set. Whenever linear

programming duality conditions imply that adding variables may improve the solution

value, corresponding cycles and chains are generated and added to C. This process

repeats until strong duality conditions are satisfied. By doing this repeatedly for each

node in a branch-and-bound tree, an optimal integral solution can be obtained.

Generating columns for any of the LP relaxations to R1, . . . , R|I| corresponds to gen-

erating cycles and chains in the kidney exchange graph. Let �
n

denote the dual value

of the constraint corresponding to node n 2 N in (3.2). For the LP relaxation of R
i

,

i = 1, . . . , |I|, we have the following reduced cost ri
c

of a cycle or chain c 2 C(K) \ C:

ri
c

= w
i

[c]�
X

n2c
�
n

�
i

X

j=1

mi
X

k=1

A
j

[k, c] · µ
j,k

�
i�1
X

j=1

w
j

[c] · ⌫
j

(3.8)

where, as before, �
n

denotes the dual value of the constraint corresponding to node n 2 N

in (3.2), µ
j,k

denotes the dual value of the k-th constraint modeling criterion j in (3.6),

and ⌫
j

denotes the dual value of the j-th objective propagation constraint in (3.7).

In order to establish LP-optimality we search for cycles with positive reduced cost in

the kidney exchange graph (see Section 3.3.3 for details on how this can be accomplished).

If no such cycle can be found, the LP has been solved to optimality. If the LP solution

is fractional, we branch, restricting one or more variables in the values they can assume,

and then resolve the LP. At each node of the branching tree, the LP solution provides

an upper bound on the restricted problem of that node. An integral lower bound can be

obtained by solving the IP with the columns generated for the LP. If, at any node, the

LP upper bound is no better than the best lower bound, its subtree can be pruned. If the

IP lower bound matches the upper bound at the root node, the problem has been solved

to optimality.

3.3.2 Branch-and-bound

Branching

An important and essential part of any branch-and-price procedure is the branching

scheme. In the best branching scheme investigated in Abraham et al. (2007) branch-

ing is performed on the cycles and chains in the kidney exchange graph. Whenever the

LP solution is fractional, the cycle or chain whose corresponding variable has an LP value

closest to 0.5 is selected and two branches are created, one in which the cycle’s corre-

sponding variable is set to 0, and one in which it is set to 1. Branches are then explored
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using depth-first search. As there are are up to
P

K

i=2 |N |i cycles of length K or less in D,

the branching tree may have exponential depth. We therefore propose to branch on the

arcs, of which there can be only up to N2. We consider two branching schemes based on

the following definition:

Definition 3.10. An arc a 2 A is fractional if

x
a

:=
X

c2C(K):a2c

x
c

is fractional.

The existence of fractionally selected cycles need not immediately imply that a frac-

tional arc exists. For instance, multiple fractional cycles might overlap, such that x
a

= 1

for every arc a 2 A. Fortunately, Theorem 3.2 establishes that this can never be true for

all arcs whenever the LP solution is fractional.

Theorem 3.2. There exists a fractional arc if and only if the LP solution is fractional.

Proof. The first implication is trivial: if a 2 A is a fractional arc, then by definition

of x
a

, there must be at least one c 2 C(K) : a 2 c for which x
c

is fractional. To

prove the other implication, suppose c1 is a fractionally selected cycle containing arcs

a1, a2, . . . , a|c1|. If any arc a 2 c1 is not also covered by at least one other fractionally

selected cycle, then x
a

= x
c1 and hence a is fractional. Therefore suppose there are

one or more other fractional cycles which have at least one arc in common with cycle

c1. Now, let c2 be such a fractional cycle containing, without loss of generality, arc

a1 = (n1, n2) but not arc a2 = (n2, n3), and let c3, . . . , cm be all other fractional cycles

containing arc a1. There are two options: either
P

m

i=1 xci = 1 or
P

m

i=1 xci < 1. In the

first case, x
a1 =

P

m

i=1 xci = 1 so arc a1, and hence node n2, is totally covered, implying

that no positively valued cycle c 2 C(K)\ {c1, c3, . . . , cm} can cover arc a2 = (n2, n3),

and that therefore x
a2 2 [x

c1 , 1 � x
c2 ], making arc a2 fractional. In the second case,

x
a1 =

P

m

c=1 xc

< 1 and thus arc a1 is fractional. This completes the proof.

In our first branching scheme, we branch on groups of multiple arcs. If the LP solution

is fractional, we select the node with the largest number of fractional out-arcs and then

divide its out-arcs in two subsets, S1 and S2, and create a branch for each subset. In each

branch, all the arcs of its corresponding subset are banned. The subsets S1 and S2 are
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determined by adding arcs to S1 in non-decreasing order of x
a

value, until the sum of x
a

values of arcs in S1 is at least 0.5. The remainder of the arcs are added to S2. Theorem

3.2 guarantees us that we can always find a node with at least one fractional out-arc.

In the second branching scheme, we branch on only one arc at a time. If the LP

solution is fractional, we select the arc with fractional value closest to 0.5. We then create

two branches: one in which the arc is banned, and one in which it is enforced. Again,

Theorem 3.2 guarantees that a fractional arc always exists, and, moreover, that when we

have branched on all fractional arcs, we have an integer solution.

In order to enforce an arc a 2 A in the master problem, we need to add the following

constraint:

X

c2C(K):a2c

x
c

= 1 (3.9)

Adding constraint (3.9) to the master problem changes the reduced cost of a cycle or

chain. In particular, if A⇤ ✓ A is the set of enforced arcs, the reduced cost ri
c

of a cycle

or chain c 2 C(K) \ C in problem R
i

is now given by:

ri
c

= w
i

[c]�
X

n2c
�
n

�
i

X

j=1

mi
X

k=1

A
j

[k, c] · µ
j,k

�
i�1
X

j=1

w
j

[c] · ⌫
j

�
X

a2A⇤

1
a2c⇠a (3.10)

where, in addition to the previously introduced notation, ⇠
a

is the dual value of con-

straint (3.9) and 1
a2c is an indicator function which is 1 if a 2 c and 0 otherwise.

Note that banning an arc in the master problem is trivial, because that arc can simply

be removed from the graph.

Bounding

In all cases, before branching, integral upper and lower bounds can be derived from the

last iteration of the algorithm. For example, in Step 2 of the iterative solution algorithm,

the maximum number of blood type identical transplants can not be higher than the

total number of transplants determined in Step 1. Nor can it be lower than the number

of blood type identical transplants in Step 1’s solution. These derived bounds are used to

prune the irrelevant parts of the branching tree as soon as they violate the bounds.

If the objective is to maximize the number of transplants, an upper bound can be

derived by determining in polynomial time the maximum number of transplants when

K = 1. If there is a low number of highly-sensitized patients (i.e. patients who are
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crossmatch incompatible with many donors), Roth et al. (2007) have shown that this upper

bound is tight.2 As in Abraham et al. (2007) such an upper bound can be determined

by finding a maximum weight matching in a bipartite graph with donors on one side and

patients on the other. Let us denote this bipartite graph asG = (U, V,E), with U denoting

the patients, V denoting the donors, and E denoting the edges. Donors are connected to

their own patients with a zero-weight edge and to all other compatible patients with an

edge of weight 1.

For each edge e 2 E, let x
e

be defined as:

x
e

=

(

1 if e is selected,

0 otherwise.

A maximum weight matching can then be found in polynomial time by solving the

following LP3:

max
X

e2E

w
e

· x
e

s.t.
X

e={u,v}2E

x
e

= 1 8u 2 U

s.t.
X

e={u,v}2E

x
e

= 1 8v 2 V

x
e

2 [0, 1] 8e 2 E

During the branching process the initial bounds may be improved upon by the LP

solutions (which provide an upper bound), or by a primal heuristic for constructing a

feasible integer solution (which provides a lower bound). In all branching schemes, we

use, as a primal heuristic, the solution to the IP with the columns generated for the LP.

If, at any node of the branching tree, the LP upper bound is no better than the best lower

bound, that node’s subtree can be pruned. If, at any node, the IP lower bound matches

the upper bound at the root node, the problem has been solved to optimality.

2
In their simulations Roth et al. (2007) use instances in which 10 % of the patients is highly sensitized,

which in their study implies that these patients are crossmatch incompatible with 90 % of the donors.

3
Although in principle a graph-based algorithm for maximum weight matching could also be used,

for large instances it is often faster to solve the indicated linear program, possibly with delayed edge

generation
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3.3.3 Pricing

In Abraham et al. (2007) the pricing problem is solved by traversing the kidney exchange

graph D in search for a positive price cycle. In the worst case, this procedure enumerates

all cycles in D and therefore is of order O(|N |K), which is exponential in the size of the

input. In this section we present a polynomial algorithm to solve the pricing problem in

O(K |N | |A|) time.

The algorithm requires that the reduced cost of a cycle can be expressed as a linear

function of arc weights. Therefore, we first formulate the following lemma on the reduced

cost of a cycle or chain in the recursive cycle formulation.

Lemma 3.1. If the objective coe�cients w
j

[c] and the constraint coe�cients A
j

[k, c],

j = 1, . . . , i, k = 1, . . . ,m
j

for each cycle or chain c 2 C(K) in problem R
i

can be

described as linear functions of arc weights, then there exist weights ⇡i

a

2 R, for all arcs

a 2 A, such that, for every cycle and chain c 2 C(K),

ri
c

=
X

a2c
⇡i

a

(3.11)

i.e. the reduced cost of c can also be described as a linear function of arc weights.

Proof. Let w
i

[c] =
P

a2c ↵i

!
i,a

and A
j

[k, c] =
P

a2c �i,j

!0
j,k,a

for j = 1, . . . , i and k =

1, . . . ,m
j

, then by (3.10),

ri
c

= w
i

[c]�
X

n2c
�
n

�
i

X

j=1

mi
X

k=1

A
j

[k, c] · µ
j,k

�
i�1
X

j=1

w
j

[c] · ⌫
j

�
X

a2A⇤

1
a2c⇠a

=
X

a2c
↵
i

!
i,a

�
X

n2c
�
n

�
i

X

j=1

mi
X

k=1

X

a2c
�
i,j

!0
j,k,a

· µ
j,k

�
i�1
X

j=1

X

a2c
↵
j

!
j,a

· ⌫
j

�
X

a2A⇤

1
a2c⇠a

=
X

a={n,n0}2c

 

↵
i

!
i,a

� �
n

0 �
i

X

j=1

mi
X

k=1

(�
i,j

!0
j,k,a

) · µ
j,k

�
i�1
X

j=1

(↵
j

!
j,a

) · ⌫
j

� 1
a2A⇤⇠

a

!

=
X

a={n,n0}2c

⇡i

a

where
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⇡i

a

= ↵
i

!
i,a

� �
n

0 �
i

X

j=1

mi
X

k=1

(�
i,j

!0
j,k,a

) · µ
j,k

�
i�1
X

j=1

(↵
j

!
j,a

) · ⌫
j

� 1
a2A⇤⇠

a

(3.12)

with �
n

the dual value of the constraint (3.2) for node n, µ
j,k

the dual value of the k-th

constraint modeling criterion j in (3.6), ⌫
j

the dual value of the j-th objective propagation

constraint in (3.7), and ⇠
a

the dual value of constraint (3.9).

The linear relationship between the objective and constraint coe�cients and the arcs

in D holds for most criteria used in practice. In particular, all of the Dutch criteria have

this property. Also, the constraints required for branching on arcs have this property.

Note, however, that the constraints required to branch on cycles (as used by Abraham

et al. (2007)) do not satisfy this relationship, because they require constraints to enforce

the inclusion of a single cycle.

Now, let us define a reversion operator as follows:

Definition 3.11. For any directed cycle or chain c =
⌦

n1, n2, . . . , n|c|
↵

, the directed cycle

(respectively chain)

c�1 :=
⌦

n|c|, n|c|�1, . . . , n1

↵

is the reverse of c.

The pricing problems can now be solved in polynomial time through the algorithm

given in Table 3.3. The algorithm first constructs the arc set eA ✓ A of arcs that are not

banned and then determines for each starting node n 2 N a shortest path up to length K

in eD = (N, eA) (depending on whether node n corresponds to an unspecified donor or not)

using an adapted version of the Bellman-Ford method (Bellman, 1958)(Ford, 1956). For

each node n 2 N and k = 0, 1, . . . , K the algorithm calculates functions fn

k

: N ! R[{1}
and gn

k

: N ! N that respectively provide the weight of the shortest path between n and

any other node n0 2 N using at most k arcs, and the predecessor of node n0 2 N on such

a shortest n� n0 path.

The algorithm consists of four main steps. Before executing the main steps, Step

0 transforms the arc specific weights obtained from Lemma (3.1) such that the pricing

problem becomes a minimization problem. Then, for each node n 2 N , Step 1 initializes

the functions fn

k

and gn
k

, Step 2 calculates the function values of fn

k

and gn
k

in case of

a cycle (i.e. n 2 N
S

), and Step 3 calculates the function values in case of a chain (i.e.
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n 2 N
U

). The final step, Step 4, checks whether there are cycles or chains with positive

reduced cost and, if there are, constructs them in reverse from the function values of gn
k

.

As stated in Theorem 3.3 below, the algorithm is exact, i.e. it always finds a positive

price cycle or chain if one exists. In fact, for each starting node it finds the maximum

weight cycle or chain of length at most K. However, it might be the case that a cycle

or chain returned by the algorithm contains a subcycle (and hence is not feasible for the

master problem). In the case of such a compound cycle or chain, Theorem 3.3 guarantees

us that the subcycle will always have a positive price. We can choose to abort the

algorithm as soon as a positive price cycle or chain is found, or it can be run to completion,

possibly resulting in multiple positive price cycles and chains being identified (Nota bene,

if run to completion, the algorithm will output each cycle c⇤ up to |c⇤| times, therefore it

may be desirable to filter the generated cycles for duplicates).

Before providing the theorem, we first introduce the following definition:

Definition 3.12. For any directed cycle c composed of simple cycles �1, . . . , �m

in D =

(N,A), and arc weights ⇡i

a

8 a 2 A, the maximum simple cycle S(c) is the cycle given by

S(c) = argmax
�2{�1,...,�m}

(

X

a2�
⇡i

a

)

Theorem 3.3. C⇤ 6= ;, and, for all c⇤ 2 C⇤, S(c⇤) 2 C(K) and ri
S(c⇤) > 0, if and only if

9c 2 C(K) : ri
c

> 0.

Proof. Analogous to the Bellman-Ford method, we have, for each n, n0 2 N
S

, k =

0, . . . , K, that

fn

k

(n0) = min

(

X

a2P

w0
a

: P is an n� n0 walk traversing at most k arcs

)

= max

(

X

a2P

w
a

: P is an n� n0 walk traversing at most k arcs

)

Then, obviously,

c⇤(n) := {n0, gn(n0), gn(gn(n0)), . . . , n}�1 (3.13)

= argmax

(

X

a2P

⇡i

a

: P is an n� n walk traversing at most k arcs

)
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Step 0 Set w0
a

:= �⇡i

a

8 a 2 eA as in (3.12), C⇤ = ;

FOR EACH Node n 2 N DO

Step 1 Set fn

0 (n) := 0 and, 8 n0 2 N\ {n}, fn

0 (n
0) := 1 and gn0 (n

0) := ;

Step 2 IF n 2 N
S

THEN

set, for k = 0, . . . , K � 2, and for all n0 2 N ,

â = (n00, n0) := argmin
a=(u,n0)2 e

A

{fn

k

(u) + w0
a

},

fn

k+1(n
0) := min {fn

k

(n0), fn

k

(n00) + w0
â

},

gn
k+1(n

0) :=

⇢

n00 if fn

k

(n00) + w0
â

< fn

k

(n0),
gn
k

(n0) otherwise.

Step 3 ELSE IF n 2 N
U

THEN

set, for k = 0, . . . , K � 1, and for all n0 2 N ,

â = (n00, n0) := argmin
a=(u,n0)2 e

A

{fn

k

(u) + w0
a

},

fn

k+1(n
0) := min {fn

k

(n0), fn

k

(n00) + w0
â

},

gn
k+1(n

0) :=

⇢

n00 if fn

k

(n00) + w0
â

< fn

k

(n0),
gn
k

(n0) otherwise.

END FOR

Step 4 For n, n0 2 N
S

, if (n0, n) 2 eA and fn

K�1(n
0) + w0

{n0
,n} < 0,

C⇤ ! C⇤ [ ⌦n0, gn
K�1(n

0), gn
K�2(g

n

K�1(n
0)), . . . , n

↵�1
,

and, for n 2 N
U

, n0 2 N
S

, if fn

K

(n0) < 0,

C⇤ ! C⇤ [ ⌦n0, gn
K�1(n

0), gn
K�2(g

n

K�1(n
0)), . . . , n

↵�1

Table 3.3: Polynomial pricing algorithm
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is a, possibly compound, maximum weight cycle with length at mostK. Let �1(n), . . . , �m

(n)

be the simple cycles composing c⇤(n) (if c⇤(n) itself is a simple cycle, m = 1 and

�1(n) = c⇤(n)). By definition, S(c⇤(n)) 2 {�1, . . . , �m

} ✓ C(K). Therefore, it remains to

prove that 9n 2 N
S

: c⇤(n) 2 C⇤ and that, for all n 2 N
S

: c⇤(n) 2 C⇤,
P

a2S(c⇤(n)) ⇡
i

a

> 0.

To prove the first part, let c 2 C(K) be a cycle with
P

a2c ⇡
i

a

> 0 and let n 2 c. By

(3.13) we then have that
P

a2c⇤(n) ⇡
i

a

�P
a2c ⇡

i

a

> 0, and, therefore

fn

K�1(n
0) + w{n0

,n} =
X

a2c⇤(n)

w0
a

= �
X

a2c⇤(n)

⇡i

a

< 0

which implies that c⇤(n) 2 C⇤ as desired.

To prove the second part, let n 2 N
S

: c⇤(n) 2 C⇤. Then

X

a2c⇤(n)

⇡i

a

=
X

a2�1(n)

⇡i

a

+ . . .+
X

a2�m(n)

⇡i

a

> 0.

Because of this, 9� 2 {�1(n), . . . , �m

(n)} :
P

a2� ⇡
i

a

> 0, and, by definition 3.12,
P

a2S(c⇤(n)) ⇡
i

a

> 0 as desired. The proof for chains is analogous.

Corollary 3.2. Given a kidney exchange graph D = (N,A) and arc weights ⇡i

a

8 a 2
A, a positive weight cycle or chain up to length K, if one exists, can be found in time

O(K |N | |A|).

Proof. The proof follows directly from the description of the algorithm in Table 3.3.

3.4 Simulations

We test our algorithm using several realistic simulators. The first is a kidney exchange

simulator based on historical data from the Dutch national kidney exchange program.

This simulator is described in detail in (Glorie et al., 2013). The second is the simulator

described in (Saidman et al., 2006) (and used in (Abraham et al., 2007)), which is the

most commonly used generator for kidney exchange pools. This second simulator is based

on US population data. We use the simulators to generate both static kidney exchange

pools (individual pools sampled from the available patient-donor population) as well as

dynamic sequences of pools and exchanges (pools that dynamically evolve by simulating

arrivals sampled from the patient-donor population and by simulating removals due to

exchanges and, for example, patient illness). In this section we will briefly explain the

main aspects of the data and simulation procedures. Tables 3.6, 3.7 and 3.8 give an

overview of the pool composition under the various simulators.
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3.4.1 Static simulation with Dutch clinical data

The data for our first simulator is obtained from the Dutch Transplant Foundation Neder-

landse Transplantatie Stichting (NTS) (2012) and originates from the empirical registry of

the Dutch national kidney exchange program. It includes 438 incompatible patient-donor

pairs who participated in Dutch kidney exchanges between October 2003 and January

2011. In addition it contains 109 unspecified donors who were screened at one of the

seven Dutch transplant centers during that period. Each patient and donor has a blood

type as well as a registration center. Donors also have a record of their antigen types,

while patients have a record of the antigen types that are medically unacceptable to them.

Patients and donors are marked as blood type or crossmatch (in)compatible based on the

data. A static kidney exchange pool is generated at random from the data using sampling

with replacement.

Using Table 3.6, which details the characteristics of the patients and donors in the

data set described above, a pool with similar characteristics as the Dutch pool can be

easily constructed by generating pairs and unspecified donors by sampling randomly from

the categories listed in the table. Each category should then have a probability of being

sampled equal to the percentage listed in the table.

3.4.2 Static simulation with US population data

We also perform simulations with US population data using the simulator described in

(Saidman et al., 2006). The simulation is based on data from the United Network for

Organ Sharing (UNOS) in the US. The simulator generates patients with a random blood

type, sex, and probability of being crossmatch incompatible (this probability is called the

percentage Panel Reactive Antibody (PRA)) with a randomly chosen donor. Each patient

is assigned a potential donor with a random blood type and relation to the patient. If the

patient and the potential donor are incompatible, they are added to the kidney exchange

pool. Blood types and probabilities of crossmatch failure are then used to determine

the compatibilities in the pool. Table 3.4 summarizes the probabilities as described in

(Saidman et al., 2006). Because the original simulator did not include unspecified donors,

we add to each pool a fixed percentage of unspecified donors (generated as above but

without assignment to a patient).
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Prob. blood type A .3373
Prob. blood type B .1428
Prob. blood type AB .0385
Prob. blood type O .4814
Prob. low PRA (5 %) .7019
Prob. medium PRA (10 %) .2
Prob. high PRA (90 %) .0981
Prob. female .409
Prob. spousal donor* .4897
% unspecified donor** 4.5
* Applies to female patients only.
Spousal PRA := 1 - .75 (1 - PRA )

** Original simulator did not have
altruistic donors

Table 3.4: Probabilities in Saidman simulator
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3.4.3 Sparse pools

Ashlagi and Roth (2012) recently found that the percentage of highly sensitized patients

(i.e. patients with a high probability of crossmatch incompatibility with a randomly

chosen donor) in practice can be significantly higher than assumed in (Saidman et al.,

2006). A possible reason for a higher percentage of highly sensitized patients could be

the use of more sensitive crossmatching techniques. Ashlagi and Roth (2012) describe an

empirical distribution in which half of the patients have a very high PRA - between 95

and 100 % - and the other half have a very low PRA - between 0 and 5 % (see Table

1 in Ashlagi and Roth (2012)). Because of this a kidney exchange pool can in practice

be much sparser than the pools generated by the Saidman simulator. We make some

modifications to the Saidman simulator to reflect this phenomenon of sparse pools. In

particular, we adjust the value for low PRA to 2.5 % and the value for high PRA to 97.5

% and we modify the frequencies such that the simulated pool contains approximately

50% highly sensitized patients. Table 3.5 summarizes the probabilities in the modified

simulator.

Prob. blood type A .3373
Prob. blood type B .1428
Prob. blood type AB .0385
Prob. blood type O .4814
Prob. low PRA (2.5 %) .7
Prob. high PRA (97.5 %) .3
Prob. female .409
Prob. spousal donor* .4897
% unspecified donor 4.5
* Applies to female patients only.
Spousal PRA := 1 - .75 (1 - PRA )

Table 3.5: Probabilities in modified Saidman simulator

3.4.4 Dynamic simulations

We use the static simulators described above to perform dynamic kidney exchange simu-

lations as described in (Glorie et al., 2013). The dynamic simulation procedure consists

of repeated simulated arrivals and exchanges.

For the Dutch simulator we generate a population by sampling from the historical

population (we generate the same number of arrivals as in the data set) and then assign

each pair and each unspecified donor in the population a random arrival date. Arrival



63_Erim Glorie[stand].job

3.4 Simulations 51

D
u
tc
h

si
m
u
la
to
r

D
on

or
b
lo
od

ty
p
e

Patientbloodtype

O
A

B
A
B

%
P
R
A

0-
80
:

10
.6

%
P
R
A

0-
80
:

24
.1

%
P
R
A

0-
80
:

3.
8

%
P
R
A

0-
80
:

.6
O

%
P
R
A

80
-9
5:

.9
%

P
R
A

80
-9
5:

1.
1

%
P
R
A

80
-9
5:

.1
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

.7
%

P
R
A

95
-1
00
:

1.
3

%
P
R
A

95
-1
00
:

.2
%

P
R
A

95
-1
00
:

.0
%

P
R
A

0-
80
:

5.
8

%
P
R
A

0-
80
:

6.
8

%
P
R
A

0-
80
:

5.
3

%
P
R
A

0-
80
:

.4
A

%
P
R
A

80
-9
5:

.9
%

P
R
A

80
-9
5:

2.
0

%
P
R
A

80
-9
5:

.3
%

P
R
A

80
-9
5:

.2
%

P
R
A

95
-1
00
:

.6
%

P
R
A

95
-1
00
:

1.
4

%
P
R
A

95
-1
00
:

.3
%

P
R
A

95
-1
00
:

.0
%

P
R
A

0-
80
:

2.
3

%
P
R
A

0-
80
:

6.
1

%
P
R
A

0-
80
:

1.
0

%
P
R
A

0-
80
:

.2
B

%
P
R
A

80
-9
5:

.4
%

P
R
A

80
-9
5:

.5
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

.6
%

P
R
A

95
-1
00
:

.6
%

P
R
A

95
-1
00
:

.2
%

P
R
A

95
-1
00
:

.0
%

P
R
A

0-
80
:

.2
%

P
R
A

0-
80
:

1.
0

%
P
R
A

0-
80
:

.0
%

P
R
A

0-
80
:

.0
A
B

%
P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

.0
%

P
R
A

95
-1
00
:

.0
%

P
R
A

95
-1
00
:

.0
%

P
R
A

95
-1
00
:

.0
-

%
U
n
sp
ec
ifi
ed

10
.3

%
U
n
sp
ec
ifi
ed

7.
7

%
U
n
sp
ec
ifi
ed

.8
%

U
n
sp
ec
ifi
ed

.8

T
a
b
le

3
.6
:
P
oo

l
co
m
p
os
it
io
n
in

th
e
D
u
tc
h
si
m
u
la
to
r
(a
ve
ra
ge
s
ov
er

10
in
st
an

ce
s)
.
%

P
R
A

re
fe
rs

to
th
e
p
er
ce
nt
ag
e
of

th
e
p
oo

l

w
it
h
w
h
ic
h
th
e
p
at
ie
nt

is
cr
os
sm

at
ch

in
co
m
p
at
ib
le
.



64_Erim Glorie[stand].job

52
An e�cient pricing algorithm for clearing barter exchanges with branch-and-price:

enabling large-scale kidney exchange with long cycles and chains

S
a
id
m
a
n

sim
u
la
to
r

D
on

or
b
lood

typ
e

Patient blood type
O

A
B

A
B

%
P
R
A

0-80:
4.5

%
P
R
A

0-80:
29.1

%
P
R
A

0-80:
12.3

%
P
R
A

0-80:
2.7

O
%

P
R
A

80-95:
4.0

%
P
R
A

80-95:
3.2

%
P
R
A

80-95:
1.4

%
P
R
A

80-95:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

0-80:
3.2

%
P
R
A

0-80:
2.2

%
P
R
A

0-80:
8.5

%
P
R
A

0-80:
2.2

A
%

P
R
A

80-95:
2.7

%
P
R
A

80-95:
2.0

%
P
R
A

80-95:
.9

%
P
R
A

80-95:
.2

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

0-80:
1.3

%
P
R
A

0-80:
8.6

%
P
R
A

0-80:
.4

%
P
R
A

0-80:
1.0

B
%

P
R
A

80-95:
1.1

%
P
R
A

80-95:
1.0

%
P
R
A

80-95:
.4

%
P
R
A

80-95:
.1

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

0-80:
.4

%
P
R
A

0-80:
.3

%
P
R
A

0-80:
.1

%
P
R
A

0-80:
.0

A
B

%
P
R
A

80-95:
.3

%
P
R
A

80-95:
.2

%
P
R
A

80-95:
.1

%
P
R
A

80-95:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

%
P
R
A

95-100:
.0

-
%

U
n
sp
ecifi

ed
2.2

%
U
n
sp
ecifi

ed
1.5

%
U
n
sp
ecifi

ed
.6

%
U
n
sp
ecifi

ed
.2

T
a
b
le

3
.7
:
P
ool

com
p
osition

in
th
e
S
aid

m
an

sim
u
lator

(averages
over

10
in
stan

ces).
%

P
R
A

refers
to

th
e
p
ercentage

of
th
e

p
ool

w
ith

w
h
ich

th
e
p
atient

is
crossm

atch
in
com

p
atib

le.



65_Erim Glorie[stand].job

3.4 Simulations 53

M
o
d
ifi
ed

S
a
id
m
a
n

si
m
u
la
to
r

D
on

or
b
lo
od

ty
p
e

Patientbloodtype

O
A

B
A
B

%
P
R
A

0-
80
:

2.
4

%
P
R
A

0-
80
:

16
.3

%
P
R
A

0-
80
:

7.
1

%
P
R
A

0-
80
:

2.
6

O
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

11
.9

%
P
R
A

95
-1
00
:

9.
1

%
P
R
A

95
-1
00
:

3.
1

%
P
R
A

95
-1
00
:

1.
1

%
P
R
A

0-
80
:

1.
3

%
P
R
A

0-
80
:

1.
1

%
P
R
A

0-
80
:

5.
6

%
P
R
A

0-
80
:

1.
5

A
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

7.
8

%
P
R
A

95
-1
00
:

5.
4

%
P
R
A

95
-1
00
:

2.
3

%
P
R
A

95
-1
00
:

.7
%

P
R
A

0-
80
:

.5
%

P
R
A

0-
80
:

5.
7

%
P
R
A

0-
80
:

.2
%

P
R
A

0-
80
:

.6
B

%
P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

3.
2

%
P
R
A

95
-1
00
:

2.
4

%
P
R
A

95
-1
00
:

1.
0

%
P
R
A

95
-1
00
:

.3
%

P
R
A

0-
80
:

.1
%

P
R
A

0-
80
:

.1
%

P
R
A

0-
80
:

.0
%

P
R
A

0-
80
:

.0
A
B

%
P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

80
-9
5:

.0
%

P
R
A

95
-1
00
:

.9
%

P
R
A

95
-1
00
:

.6
%

P
R
A

95
-1
00
:

.3
%

P
R
A

95
-1
00
:

.1
-

%
U
n
sp
ec
ifi
ed

2.
1

%
U
n
sp
ec
ifi
ed

1.
5

%
U
n
sp
ec
ifi
ed

.6
%

U
n
sp
ec
ifi
ed

.2

T
a
b
le

3
.8
:
P
oo

l
co
m
p
os
it
io
n
in

th
e
m
od

ifi
ed

S
ai
d
m
an

si
m
u
la
to
r
(a
ve
ra
ge
s
ov
er

10
in
st
an

ce
s)
.
%

P
R
A

re
fe
rs

to
th
e
p
er
ce
nt
ag
e

of
th
e
p
oo

l
w
it
h
w
h
ic
h
th
e
p
at
ie
nt

is
cr
os
sm

at
ch

in
co
m
p
at
ib
le
.



66_Erim Glorie[stand].job

54
An e�cient pricing algorithm for clearing barter exchanges with branch-and-price:

enabling large-scale kidney exchange with long cycles and chains

dates are drawn uniformly, corresponding to a Poisson arrival process. In each exchange

round, the optimization algorithm described in Section 3.3 implemented with the Dutch

hierarchical criteria identifies a matching. The last donor of each chain in an exchange

round donates to the waiting list (hence, this donor is not available for future exchange

rounds). Proposed matches may fail with a probability depending on patient and donor

characteristics. If matches fail this information is incorporated in the compatibility matrix

and the optimization algorithm is rerun for the present exchange round. This process is

repeated until a feasible matching is found. Patients and donors may leave the pool over

time due to simulated attrition and reneging. For the precise probabilities we refer to

(Glorie et al., 2013).

When using the simulator with US data we generate a population of size 10,000 and

then, for every exchange, we generate a fixed number of arrivals by sampling with replace-

ment from this population. In each exchange round, the optimization algorithm described

in Section 3.3 implemented with the maximum number of transplants criterion identifies a

matching. Match failure is simulated as above. We use this dynamic simulation to study

the clearing time of pools in a dynamic state. We do this by considering the clearing time

of the tenth exchange round.

3.5 Computational results

Our experiments were performed on a Windows 7 64-bit computer with a 3 GHz AMD

Athlon II X2 processor and 4 GB of RAM. The iterative branch-and-price algorithm has

been implemented in C#.NET and LP’s and IP’s are solved using CPLEX 12.5.

Table 3.9 displays the run time performance of our algorithm with the single objective

of maximizing the number of transplants (all transplants have equal weight) on instances

constructed by the simulator with Dutch clinical data described in Section 3.4.1. The

performance of the di↵erent pricing and branching strategies described in Section 3.3 is

compared on instances of various sizes. The cycle length limit is set to either 3 (short

cycles) or 4 (long cycles) and the chain length limit is set to either 3 (short chains) or 6

(long chains).

In our comparisons we include the depth-first pricing algorithm with cycle branching

as described in Abraham et al. (2007). In this algorithm, the kidney exchange graph is

traversed for positive price cycles by exploring nodes in non-decreasing dual value order.

Intermittently, the search path is pruned based on the fact that new nodes will have dual

value as least as large as the current node.
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In all instances the master problem is seeded with a starting collection of 10,000

random cycles and chains (generated by random walks from a randomly chosen node in

the kidney exchange graph until a feasible cycle or chain is found). The collection of cycles

and chains is managed such that whenever the problem contains more than 400,000 cycles

and chains, the cycles and chains with the lowest reduced cost are deleted (excepting those

that are branched on or have a non-zero LP value). Per pricing iteration up to 100 new

cycles and chains are added (except in the depth-first pricing algorithm, where we adhered

to the setting of 1 new cycle or chain per iteration, as advised in Abraham et al. (2007)

and which, after tuning, we found to work best for this pricing algorithm).

The first column in Table 3.9 indicates the pool size. The second column contains

the total run time in seconds. The third and fourth column respectively contain the time

spent on solving LP’s and IP’s for the master problem. When branching is applied, the

fifth column reports the number of processed nodes in the branch-and-bound tree over

the total number of nodes in the tree; the sixth column reports the total time required

for solving pricing problems.

As can be seen from the table, our algorithm is able to find optimal solutions in

instances with 500 nodes – which contain around 5.83e+11 chains up to length 6 (see

Table 3.1) – within two minutes. In almost all instances the polynomial pricing algorithm

performs better than the depth-first pricing algorithm. In fact, using depth-first pricing,

the algorithm is not able to solve the larger instances within the imposed time-limit of

three hours (see the instance with 500 nodes), because the pricing takes too much time.

Using polynomial pricing all instances can be solved fast. Subset arc branching appears

to require the least amount of branching decisions of the various branching strategies,

although the di↵erence in performance is small. Often the optimal solution is already

found in the root of the branch-and-bound tree.

Next, we perform experiments with instances constructed by the simulator with US

population data described in Section 3.4.2-3.4.4. When we consider only cycles and chains

up to length 3 all algorithms perform similarly, therefore we directly proceed and report

results for cycles up to length 4 and chains up to length 6 (K = 4 and L = 6). We

generate various instances using both static and dynamic simulation with the Saidman

simulator and the modified Saidman simulator.

Tables 3.10 and 3.11 summarize the average performance characteristics over, respec-

tively, the static and the dynamic instances. The columns in Table 3.10 and 3.11 are

similar to the columns in Table 3.9, except that now, as not all versions of the algorithm

are able to solve all the instances, the percentage of solved instances is reported in the

last column.
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The findings reported in Tables 3.10 and 3.11 are in line with the findings reported in

Table 3.9 for static instances generated with Dutch data. Both for the instances generated

by the Saidman simulator and the sparser instances generated by the modified Saidman

simulator the polynomial pricing algorithm performs much better than the depth first

algorithm, regardless of whether they are simulated as static or dynamic. In fact, when

using depth-first pricing with cycle branching, many of the larger instances cannot be

solved within the imposed time limit of three hours (this is the case for 20 percent of

the instances with 500 nodes, and 80 percent of the instances with 1,000 nodes) while all

of these instance can be solved within reasonable time when using polynomial pricing.

As before, many instances can be solved in the root of the branching tree, but, in total,

branching is now required for more instances. When branching is required, arc branching

appears to be slightly more e↵ective than subset arc branching because it leads to fewer

branches on average (see the 1,000 node instances).

As (Ashlagi et al., 2011b) have shown, allowing longer cycles and chains is important

to increase the number of transplants for the hardest to match patients. This is especially

true if the pool is sparse. Allowing long cycles and chains may also be important for

objectives other than maximizing the number of transplants, whether they are captured

through a hierarchical objective function or through a single weighted objective function.

By allowing longer cycles and chains these objectives may be improved.

Table 3.12 and Figure 3.3 display the long term e↵ects of using the multiple hierar-

chical criteria used in the Netherlands. In particular, Table 3.12 shows the percentage of

instances showing improvement in the i-th objective criterion and Figure 3.3 shows the

relative di↵erence on the total number of transplants, the average wait time, the num-

ber of highly sensitized patients (patients with PRA > 80) transplanted, and O patients

transplanted versus (a) a policy using only the single criterion of maximizing the number

of transplants, and (b) a policy using only short cycles and chains.

As we can see from Table 3.12, additional criteria often make a di↵erence, even if they

have a low hierarchical ranking. For instance, in our simulations, Dutch criterion (vi)

constitutes an improvement in 34.5 % of the instances. While the long run improvement

in the total number of transplants versus a single criterion policy aimed at just maxi-

mizing the number of transplants is small (see Figure 3.3), the improvement in terms

of highly sensitized patients transplanted is significant. This - normally disadvantaged -

group can receive up to 4.5 percent more transplants when using the Dutch allocation

criteria. Also O type patients, which are another disadvantaged group, benefit by over

3 percent. Furthermore, Figure 3.3 shows how long cycles and chains may lead to a 9

percent improvement of average waiting time.
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Figure 3.3: Long term e↵ects using Dutch hierarchical criteria. Cycle limit is 4, chain

limit is 6. Dark bars: comparing the 6-criteria policy versus the 1-criteria ’maximum

transplants’ policy. Light bars: comparing the 6-criteria policy versus the 6-criteria policy

with cycles and chains limited to 3.

3.6 Conclusions

In this paper we have shown how to clear large multi-criteria kidney exchanges with

long chains using a general and scalable exact algorithm. This is particularly important

because, over the last years, kidney exchange has quickly increased as a modality for

transplanting end stage renal disease patients with an incompatible living donor and long

exchange chains have turned out to be increasingly important to help the most disad-

vantaged patients. Most kidney exchange programs not only seek to maximize directly

the number of transplants, but also seek to optimize other objectives, such as fairness

prescribed in international treaties (e.g. Council of Europe (2002)). For this reason many

programs use a set of multiple, often hierarchical, optimization criteria. Using our algo-

rithm, we can e↵ectively deal with such criteria, even in large and sparse exchange pools

that now begin to arise in practice.

To maximize the benefits from exchange it should be coordinated at an (inter-)national

level. However, participation barriers for transplant centers may prevent such nationally

coordinated kidney exchange from being established. To make such coordination possible

then, participation constraints must be included. Our algorithm can also deal with such

constraints by including them as a hierarchical objective at the highest level.

Mathematically, the algorithm consists of an iterative branch-and-price procedure.

By using a general but e↵ective class of integer programming formulations we are able to
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optimally clear exchange pools with billions of cycles and chains within minutes. The key

part of our algorithm is a polynomial pricing procedure for this class of formulations in

combination with a branching strategy that branches on arcs or on subsets of arcs. These

elements allow us to e�ciently deal with long chains which would not be possible with

depth-first pricing techniques suggested in previous research.

We hope our algorithm may serve as a reference solution framework for other re-

searchers, so that solution methods and data can be shared, to the benefit of the patients

su↵ering from end stage renal disease across the globe. Our approach is also easily appli-

cable to other types of barter exchange markets besides kidney exchange and can therefore

have implications for a broader class of allocation issues.
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Pool Total LP IP # nodes proc. / Pricing
size time (s) time (s) time (s) # nodes time (s)

Depth first pricing with cycle branching, short cycles and chains
10 .61 .04 .00 1 / 1 .00
20 .21 .04 .00 1 / 1 .00
50 1.11 .26 .00 7 / 13 .00
100 .78 .09 .28 1 / 1 .06
200 1.81 .52 .47 1 / 1 .36
500 54.92 32.59 .47 28 / 55 12.17

Depth first pricing with cycle branching, long cycles and chains
10 .28 .05 .00 2 / 3 .00
20 .83 .17 .00 5 / 9 .00
50 .42 .13 .00 2 / 3 .00
100 7.52 .14 .27 1 / 1 6.81
200 730.65 9.30 .20 16 / 31 713.17
500 >10,800 - - - -

Polynomial pricing with arc branching, short cycles and chains
10 .33 .03 .00 1/1 .00
20 .20 .03 .00 1/1 .00
50 2.97 .91 .00 20/39 .00
100 .80 .09 .25 1/1 0.13
200 1.58 .17 .30 1/1 0.64
500 21.98 1.09 .69 1/1 18.08

Polynomial pricing with arc branching, long cycles and chains
10 .27 .06 .00 2 / 3 .00
20 .94 .19 .00 6 / 11 .00
50 1.61 .53 .00 10 / 19 .00
100 .83 .13 .31 1 / 1 .08
200 2.78 .67 .30 1 / 1 1.33
500 103.67 21.44 4.53 24 / 47 35.72

Polynomial pricing with subset arc branching, short cycles and chains
10 .16 .05 .00 1 / 1 .00
20 .16 .03 .00 1 / 1 .00
50 .50 .13 .00 3 / 5 .00
100 .70 .08 .22 1 / 1 .11
200 1.59 .17 0.30 1 / 1 .64
500 22.06 1.08 0.67 1 / 1 18.13

Polynomial pricing with subset arc branching, long cycles and chains
10 .42 .09 .00 3 / 5 .00
20 .91 .22 .00 6 / 11 .00
50 1.20 .39 .00 7 / 13 .00
100 .88 .14 .31 1 / 1 .08
200 2.78 .67 .30 1 / 1 1.31
500 95.02 15.59 7.64 12 / 23 35.61

Table 3.9: Average performance characteristics over 10 randomly sampled static in-

stances from historical data from the Dutch national kidney exchange program. The

cycle length limit is set to either 3 (short cycles) or 4 (long cycles) and the chain length

limit is set to either 3 (short chains) or 6 (long chains).
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Pool Total LP IP # nodes proc. / Pricing
size time (s) time (s) time (s) # nodes time (s) % Solved

Saidman simulator, Depth first pricing with cycle branching
100 3.67 2.16 .11 1.8 / 2.6 1.26 100
200 180.26 24.41 .39 3.0 / 5.0 154.51 100
500 1270.82 191.80 .43 25.0 / 49.0 1067.03 80
1000 4109.97 556.64 1.81 58.5 / 116.0 3383.05 40

Modified Saidman simulator, Depth first pricing with cycle branching
100 2.14 1.59 0.07 1.0 / 1.0 0.40 100
200 121.01 31.76 .30 1.0 / 1.0 87.98 100
500 2948.91 311.19 1.18 2.4 / 3.8 2634.55 80
1000 1760.15 120.33 15.36 11.0 / 6.0 416.34 20

Saidman simulator, Polynomial pricing with arc branching
100 1.40 .84 .15 5.6 / 10.2 .09 100
200 1.58 .53 .53 1.0 / 1.0 .36 100
500 9.66 3.43 1.29 3.6 / 6.2 3.46 100
1000 102.36 23.78 13.94 10.8 / 20.5 52.07 100

Modified Saidman simulator, Polynomial pricing with arc branching
100 .87 .35 .11 1.0 / 1.0 .31 100
200 92.08 34.36 .87 1.0 / 1.0 56.43 100
500 740.31 131.38 1.46 1.0 / 1.0 606.38 100
1000 1111.98 705.45 29.99 301.5 / 602 76.28 100

Saidman simulator, Polynomial pricing with subset arc branching
100 .93 .48 .15 3.4 / 5.8 .09 100
200 1.59 .52 .56 1.0 / 1.0 .36 100
500 8.50 3.04 1.26 2.8 / 4.6 3.32 100
1000 180.55 43.06 21.20 30.0 / 59.0 79.07 100

Modified Saidman simulator, Polynomial pricing with with subset arc branching
100 .90 .36 .12 1.0 / 1.0 0.31 100
200 33.92 9.94 .47 1.0 / 1.0 23.17 100
500 24.83 12.18 1.84 1.0 / 1.0 10.21 100
1000 1717.42 857.50 16.14 363.0 / 725.0 203.52 100

Table 3.10: Average performance characteristics over 10 randomly generated static

instances generated with US population data. Cycle limit is 4, chain limit is 6.
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Pool Total LP IP # nodes proc. / Pricing
size time (s) time (s) time (s) # nodes time (s) % Solved

Saidman simulator, Depth first pricing with cycle branching
100 52.57 1.82 .25 4.8 / 8.6 49.32 100
200 117.55 3.97 .58 4.4 / 7.8 110.70 100
500 6644.83 20.40 .77 1.0 / 1.0 6609.75 50

Modified Saidman simulator, Depth first pricing with cycle branching
100 1.37 .76 0.04 4.0 / 7.0 0.06 100
200 790.68 3.45 .56 1.0 / 1.0 785.65 80
500 2449.93 187.54 2.18 93.0 / 47.0 2258.44 80

Saidman simulator, Polynomial pricing with arc branching
100 4.98 .65 .24 3.8 / 6.6 3.41 100
200 9.95 .68 .38 1.0 / 1.0 7.68 100
500 1731.53 18.39 2.31 19.3 / 37.7 1685.6 100

Modified Saidman simulator, Polynomial pricing with arc branching
100 1.24 .33 .14 2.6 / 4.2 .35 100
200 13.78 .82 .64 1.0 / 1.0 11.33 100
500 54.47 3.62 1.49 1.0 / 1.0 40.98 100

Table 3.11: Average performance characteristics over 10 randomly generated dynamic

instances generated with US population data. Cycle limit is 4, chain limit is 6.

Criterion i ii iii iv v vi
% of instances showing
improvement at step i 99.3 24.5 52.1 .3 .3 34.5

Table 3.12: Percent of instances showing improvement at step i in the i-th objective

criterion of the Dutch hierarchical criteria. Cycle limit is 4, chain limit is 6.
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Chapter 4

Coordinating unspecified living

kidney donation and transplantation

across the blood type barrier in

kidney exchange1

4.1 Introduction

Living donor kidney transplantation is the preferred treatment for patients with end-

stage renal disease. However, due to blood type and crossmatch incompatibility over 30

percent of living donors are incompatible with their intended recipient. Kidney exchange

is a modality that identifies matches between such incompatible donor-recipient pairs

that allow them to proceed with transplantation through a cyclic transplant procedure

(de Klerk et al., 2011; Montgomery et al., 2006a, 2005; Park et al., 1999; Rapaport,

1986; Roth et al., 2006; Saidman et al., 2006; Segev et al., 2005b; De Klerk et al., 2010).

Over recent years various countries have pursued nationwide implementation of kidney

exchange (Wallis et al., 2011; Irwin et al., 2012).

Not all pairs can be matched through kidney exchange however. Alternative transplant

modalities available to incompatible pairs include unspecified living donation and ABO

incompatible (ABOi) transplantation. Unspecified living donation (Dor et al., 2011), al-

ternatively known as altruistic or non-directed donation, facilitates chains of transplants in

which each pair is further matched to another pair (Montgomery et al., 2006a; Roth et al.,

2006). ABOi transplantation utilizes desensitization techniques to overcome ABO incom-

1
This chapter is based on (Glorie et al., 2013).
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patibility as a contraindication for transplantation (Tyden et al., 2005; Shin and Kim,

2011). However, despite the availability of these alternative modalities transplantation

rates of highly sensitized patients and blood type O patients have remained persistently

low (Roodnat et al., 2012).

This paper studies central coordination of unspecified donation and ABOi transplanta-

tion in kidney exchange. Important questions are whether such coordination should utilize

domino paired donation (DPD) (Roodnat et al., 2010) or non-simultaneous extended al-

truistic donor (NEAD) chains (Rees et al., 2009), what the length of the segments in such

chains should be, when they should be terminated, and how much time should be allowed

between matching rounds. Furthermore, this paper compares the e↵ects of coordinating

the di↵erent modalities centrally or locally and independently.

In DPD, an unspecified donor donates to a recipient of an incompatible pair, and

simultaneously the donor of the pair donates to the recipient of another pair, and so on,

until the donor of the last pair in the resulting chain donates to a recipient on the wait-

list (Roodnat et al., 2010). In NEAD chains, the donor of the last pair in the chain is

recruited as a bridge donor who can start a new chain segment of incompatible pairs at

a later time (Rees et al., 2009). Gentry et al. (Gentry et al., 2009) showed that, when

the monthly renege rate of bridge donors is above 4 percent, DPD strategies yield more

transplants than NEAD strategies. In their simulations DPD chain segments involved

at most 2 incompatible pairs and NEAD chain segments involved at most 3 pairs. In-

terestingly, Ashlagi et al. (Ashlagi et al., 2011b,a) showed that when chain segments of

longer length are allowed, non-simultaneous chains almost always outperform simultane-

ous chains. However, due to computational di�culty of optimization with longer chain

segments, they only perform the analysis on an eight month time period.

Incentive problems appear to play an important role in establishing multi-center coor-

dination (De Klerk et al., 2010). Fear for loss of in-house transplants, for example, might

cause transplant centers to want to match some donors and patients locally so as to guar-

antee a certain number of in-house transplants (see Figure 4.1). One way to overcome

such incentive issues is by implementing participation constraints which ensure that each

transplant center can perform at least the same number of transplants in a national pool

as that it can achieve on its own. Policies that implement such constraints are called

individually rational (IR) (Curiel, 2010; Ashlagi and Roth, 2011b; Glorie et al., 2014d).

In this research we use specifically developed exact mathematical optimization software

(Glorie et al., 2014d) to simulate and analyze multiple kidney exchange policies over a

complete seven year time period. Our simulation uses actual data from the Dutch national

kidney exchange program and features an accurate modeling of various types of match
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Figure 4.1: Potential incentive problems. An unspecified donor (A) is registered at

center A, which can generate 3 in-house transplants. In a nationally optimized program,

4 transplants are generated, but only 1 of those transplants is performed by center A.
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failure. Sensitivity analysis is performed on the composition of the population, the time

unspecified and bridge donors wait before donating to the waitlist, the time between

matching rounds, and donor renege rates.

Our analysis includes the policies investigated in Gentry et al. (Gentry et al., 2009)

and Ashlagi et al. (Ashlagi et al., 2011b) for which, under the same settings, we find

comparable results but we show that the benefits of longer chains depend considerably on

the composition of the patient and donor population. Additionally, our analysis considers

a variety of new IR policies that feature central coordination of both unspecified donation

and ABOi transplantation for highly sensitized patients (with panel reactive antibody

[PRA] > 80) (Tyden et al., 2005). We show that, by using these new policies, substantially

more transplants can be obtained than under any of the previously investigated policies

and than could be expected from any of the transplant modalities independently. We also

show the importance of allowing the exchange pool to build up by allowing su�cient time

between matching rounds.

4.2 Materials and methods

4.2.1 Data

This study uses empirical data from the Dutch national kidney exchange program. The

data include 438 ABO blood type or crossmatch incompatible patient-donor pairs who

participated in Dutch kidney exchanges between October 2003 and January 2011, as well

as 109 unspecified donors who donated during that period. There are eight transplant

centers with pair registrations ranging between 4-123 (median 47) and unspecified donor

registrations ranging between 3-64 (median 7). Donor HLA types and unacceptable HLA

mismatches are provided by the national reference laboratory for histocompatibility test-

ing. The national reference laboratory identifies unacceptable HLA specificities on basis of

a combination of a complement dependent cytotoxicity (CDC) and a solid phase antibody

screening. Antibody specificities leading to a positive CDC crossmatch are considered to

be a contraindication for transplantation and the HLA antigens recognized are defined

as unacceptable mismatches. Table 4.1 details the patient and donor characteristics. In

addition to center-reported PRA levels (which are based on the general population), the

table includes kidney exchange donor population PRA levels which are computed using

virtual crossmatches between each patient and all donors in the data set. In this paper,

whenever we refer to a PRA level, we refer to these kidney exchange donor population

based PRA levels.



79_Erim Glorie[stand].job

4.2 Materials and methods 67

ABO blood type
A B AB O

Patients (%) 30 15 1 54
Donors (%) 56 14 2 29

PRA level w.r.t. general population (at time of entry)
0-9 10-79 80-100

Patients (%) 78 17 5
PRA level w.r.t. kidney exchange donor population
0-9 10-79 80-100

Patients (%) 48 35 17

Table 4.1: Patient and donor characteristics

4.2.2 Simulation

Monte Carlo simulations (Ross, 2006) are used to compare di↵erent policies for unspecified

donation in kidney exchange. Each simulation spans the period between 1 October 2003

and 23 December 2010 and involves a population of size 547 generated from the empirical

data using sampling with replacement.

The arrivals of patient-donor pairs and unspecified donors are determined by assigning

each pair and each unspecified donor in the population a random date in the simulation

period. Arrival dates are drawn uniformly, corresponding to a Poisson arrival process.

This appears to be a more realistic arrival process than the constant-size batch arrivals

assumed in (Gentry et al., 2009) and (Ashlagi et al., 2011b): a Chi Square goodness of

fit test on historical arrivals in our data set significantly rejects a fit with batch arrivals

(p < 0.0001) but not with Poisson arrivals (p=0.47).

Kidney exchanges are conducted at regular time intervals (once per 3 months in our

base case). Compatibility between patients and donors is based on blood type and virtual

crossmatching. ABO incompatible transplantation may be considered for highly sensitized

(PRA>80) patients with isoagglutinin titer of at most 1:256 (which corresponds to 60 %

of these patients).

4.2.3 Market clearing

In each exchange, an exact optimization algorithm, described in (Glorie et al., 2014d), is

run on the pool of incompatible pairs, unspecified donors and bridge donors in order to

determine an allocation. The algorithm allows cycles involving up to 4 pairs and, depend-

ing on the analyzed policy, DPD chains or NEAD chain segments involving up to 6 pairs

and 1 unspecified or bridge donor. In determining an allocation, the algorithm adheres
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the allocation criteria used in the Dutch national kidney exchange program (Keizer et al.,

2005). That is, the algorithm ranks solutions on six hierarchical criteria: (i) number of

transplants, (ii) number of blood type identical transplants, (iii) match probabilities of

matched patients (inverse ranking), (iv) longest cycle and chain length (inverse ranking),

(v) smallest spread per cycle and chain over transplant centers, and (vi) longest wait time;

the algorithm returns the highest ranking solution.

4.2.4 Policies

The policies considered in our simulation are distinguished by whether unspecified dona-

tion is coordinated locally or nationally (with or without IR requirement), by whether

unspecified donors initiate DPD or NEAD chains (either involving a maximum of 3 or 6

pairs), and by whether ABO incompatible transplantation for highly sensitized patients

(PRA > 80) is allowed.

If unspecified donation is coordinated locally, all pairs in a chain need to be registered

at the same transplant center as the unspecified donor who initiated the chain. If un-

specified donation is coordinated nationally, pairs in the chain may be registered at any

transplant center.

IR policies mitigate incentive problems in multi-center coordination at a potential cost

of a reduced number of transplants. Under an IR policy we first determine the maximum

number of transplants that each center can achieve individually and then impose restric-

tions to the kidney exchange optimization algorithm to ensure that each center achieves

at least this number.

4.2.5 Match failure, reneging and attrition

Incompatible pairs may leave the program if the pairs recipient gets transplanted in an-

other program or leaves the program for psychological or medical reasons. Alternatively,

the pairs donors may become ineligible or may reconsider participating. To model those

cases, simulated attrition randomly removes 2 % of the incompatible pairs at the end of

each month. This estimate is in line with earlier studies (Gentry et al., 2009; Ashlagi

et al., 2011b) and empirical findings in the Dutch national kidney exchange program.

Also, there are various types of failure that may prevent kidney exchange matches

from going forward to transplantation. These include positive crossmatch after a negative

virtual crossmatch, desensitization failure, donor withdrawal and patient illness. Based

on Dutch match failure data, we model these types of failure using both an exogenous
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probability (12.5%) and an endogenous probability calculated by the following probit

model (see Appendix A):

Pr[Failure : PRA] = � (�1.5007 + 0.0170 · PRA)

where � represents the cumulative distribution function of the standard normal distri-

bution. If a failure occurs, the optimization algorithm is rerun for the current matching

round using the updated information, as is current practice in the Netherlands.

4.2.6 Bridge donors

The last donor in a NEAD chain segment becomes a bridge donor, i.e. a donor whose

intended recipient has already received a transplant and who can start a next NEAD

chain segment in a later exchange. Bridge donors may renege if they decide not to donate

or become ineligible. At the end of each month, simulated reneging removes a percentage

of the bridge donors (e.g. 1 %). When a bridge donor does not start a new chain segment

within a specified period of time (e.g. 3 months), the NEAD chain is ended and the

bridge donor donates to the wait list. Unspecified donors are assumed not to renege, but

if they do not initiate a DPD or NEAD chain within the specified period, they donate to

the deceased donor waitlist. In concordance with (Ashlagi et al., 2011b), when we allow

for DPD or NEAD chain segments longer than length four, these involve an intermediate

short-term bridge donor after the first three transplants.

4.2.7 Base case

In the base case simulation, kidney exchanges are conducted once per three months (thir-

teen weeks), starting from 1 January 2004. There are a total of 29 kidney exchanges

during the simulation period. Chain segments are limited to 3 pairs and 1 unspecified or

bridge donor. The monthly probability of reneging for bridge donors is set to 1 %, which

corresponds to the estimate made in (Ashlagi et al., 2011b) based on clinical experience in

the US. As this may not be a reliable point estimate we also perform sensitivity analysis

(see below). Short term bridge donors have a renege probability of 0.5 %. Unspecified

donors and bridge donors are available for DPD or NEAD chains up to three months after

their entry or recruitment date, after which they donate to the waitlist. The percentage

of unspecified donors is 20 % and the percentage of highly sensitized (PRA>80) patients

is 17 %.
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4.2.8 Sensitivity analysis

Sensitivity analysis is used to assess the e↵ects of changes in uncertain or variable factors

on the simulation outcomes. This is done by performing repeated simulations while vary-

ing these factors. In particular, the patient-donor population, the bridge donor renege

rate, the availability period of unspecified and bridge donors, and the timing between kid-

ney exchanges are varied. Variety in the number of pairs and unspecified donors arriving

each month is inherent to the design of the simulation procedure. For the patient-donor

population we simultaneously vary the percentage of donors that are unspecified, con-

sidering values of 1 %, 5 %, and 20 %, and the percentage of highly sensitized patients,

considering values of 10 %, 20 %, 30 %, 40 %, and 50 %. We consider renege rates of 1

%, 2 %, 5 % and 10 %, and unspecified donor availability periods of 3 months (13 weeks),

6 months (26 weeks) and 18 months (78 weeks). When varying the timing of exchanges,

we use intervals of 1 week, 1 month (4 weeks), 2 months (8 weeks), 3 months (13 weeks),

and 6 months (26 weeks). For the last case we adjust donor availability to match the time

interval, in the other cases it is set to the default value of 3 months.

4.2.9 Statistical analysis

As in Gentry et al. (Gentry et al., 2009) 30 Monte Carlo simulations are run for each

experiment and average results are reported. The results include (i) the total number of

patients transplanted (including patients from the deceased donor waitlist), (ii) the total

number of blood type O patients transplanted, (iii) the total number of highly sensitized

(PRA > 80) patients transplanted, and (iv) the average waiting time. For NEAD chains,

any remaining bridge donors at the end of the simulation period are assumed to be able

to donate directly to the deceased donor waitlist and hence their number is added to the

total number of transplants. For all policies the improvement to Local DPD-4,3 (i.e. a

local DPD policy with a maximum of 4 pairs per cycle and 3 pairs per chain), which is

current practice in the Netherlands, is calculated. For the base case, 95 % confidence

intervals (2.5 - 97.5 percentile) are also reported. Significance of results is tested using

the sign test.
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Figure 4.2: Relative performance for various kidney exchange policies with 95 % con-

fidence intervals in a population with 20 % unspecified donors and 17 % patients with

PRA>80.

4.3 Results

4.3.1 National coordination

Figures 4.2-4.4 display the performance of the various kidney exchange policies in the

base case simulation. In particular, they show the improvement over Local DPD-4,3,

which is representative of current practice in the Netherlands. Local DPD-4,3 produced

an average of 429.2 transplants, including 109 transplants for wait list recipients, 143.2

transplants for ABO blood type O patients, and 46.5 transplants for highly sensitized

patients (PRA > 80). This is similar to the actual number of transplants achieved his-

torically in the observed time period. The average waiting time was 297.7 days (waiting

time for unmatched patients is counted until the end of the horizon).

Figure 4.2 shows that on average the number of transplants increases by about 4.1

% under national DPD-4,3 and by about 4.6 % under national NEAD-4,3 (both with
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Figure 4.3: Relative performance for various kidney exchange policies with 95 % con-

fidence intervals in a population with 20 % unspecified donors and 17 % patients with

PRA>80.

p < 0.001). Particularly highly sensitized patients (PRA > 80) benefit from national

coordination: they receive 21 % more transplants under both National DPD-4,3 and

National NEAD-4,3, constituting almost all of the gains in the total number of transplants.

Not only are patients transplanted more often, they are also transplanted faster: the

average wait time for transplantation is reduced by 15 % under national DPD (p < 0.001)

and by 18 % under national NEAD (p < 0.001).

Importantly, the restriction that national implementation is individual rational does

not lead to a significant loss of transplants or to an significant increase in wait time,

indicating that individual rational national coordination is a viable strategy (Figure 4.3).

4.3.2 Allowing longer chain lengths

Figure 4.4 shows the results of allowing unspecified donor chains to be of longer length

(up to length 6). In contrast to the findings in Ashlagi et al. (Ashlagi et al., 2011b), in
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our simulations allowing longer chains produces no significant di↵erence in the number

of transplants or waiting time (compare IR National DPD-4,6 and IR National NEAD-

4,6 with IR National DPD-4,3 and IR National NEAD-4,3 in Figure 4.3). However, the

composition of the kidney exchange population in our base case is di↵erent from theirs

due to di↵erences between the Dutch and the APD data. To understand the nature of

these di↵erences we will perform sensitivity analysis on the population composition (see

below).

4.3.3 Allowing ABOi transplantation for highly sensitized pa-

tients

Figure 4.4 also shows the e↵ect of allowing ABOi transplants for highly sensitized patients.

When coordinated locally, allowing ABOi transplantation augments the total number of

transplants with about 0.5 % (p = 0.0081). However, when utilized in a nationally

coordinated policy together with any of the unspecified donation modalities, the increase

in total transplants is approximately 10 % (p < 0.001) and the increase in transplants

for highly sensitized patients is over 55 % (p < 0.001). This brings the probability of

obtaining a transplant on par for all patient groups (the probability is 87 % for non-

highly sensitized patients and 86 % for highly sensitized patients). These benefits require

only a small number of ABOi transplants: on average 38 ABOi matches were made in

the simulated policies, whereas historically 42 pairs that took part in the Dutch KPD

program, but remained unmatched, eventually received an ABOi transplant outside the

program.

4.3.4 Sensitivity analysis population composition

Figures 4.5-4.9 provide a sensitivity analysis on the population composition. For compar-

ison, we have included the same policies as used in (Ashlagi et al., 2011b). As expected,

the number of transplants decreases with the percentage of highly sensitized patients and

increases with the percentage of unspecified donors. However, the number of transplants

under policies allowing long chains decreases less fast (with respect to the percentage of

highly sensitized patients) than the number of transplants under policies allowing only

short chains, leading to larger di↵erences. This is independent of whether the policy is

DPD or NEAD. This explains the relative e↵ectiveness of long chains in the simulations

of (Ashlagi et al., 2011b).

The benefits of allowing ABOi transplantation increase with the percentage of donors

that are unspecified. The benefits also increase with the percentage of highly sensitized
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Figure 4.5: Sensitivity analysis on the percentage of highly sensitized patients when the

percentage of unspecified donors is 20 %
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Figure 4.6: Sensitivity analysis on the percentage of highly sensitized patients when the

percentage of unspecified donors is 5 %
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Figure 4.7: Sensitivity analysis on the percentage of highly sensitized patients when the

percentage of unspecified donors is 1 %
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Figure 4.8: Sensitivity analysis on the percentage of unspecified donors while 17 % of

patients is highly sensitized.

Figure 4.9: Sensitivity analysis on the percentage of unspecified donors while 50 % of

patients is highly sensitized.
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patients (they only start decreasing slightly when the percentage of these patients is over

30-40 %). The relative e↵ectiveness of ABOi policies in populations with many highly

sensitized patients is substantial. In all cases only a small number of ABOi transplants is

required to obtain the benefits.

4.3.5 Sensitivity analysis unspecified and bridge donor availabil-

ity (chain termination)

We also perform sensitivity analysis on the period during which unspecified donors and

bridge donors are available for (continued) chain donation (see Figure 4.10). When the

period is extended from 3 months until 18 months after the unspecified donors entry date

or the bridge donors recruitment date, local DPD-4,3 achieves 1.1 % more transplants (p

< 0.001). However - and this is notable - for all national policies an extended availability

period does not have a significant e↵ect on the number of transplants. The same holds for

the number of transplants for blood type O and highly sensitized patients, as well as for

the waiting time. As before, we performed this analysis for varying pool compositions and

the pattern turns out to be independent of the number of unspecified donors. Even when

only 1% of all donors is an unspecified donor, the benefits of a longer availability period

are insubstantial and insignificant. This indicates that it is best to perform a waitlist

donation or end an ongoing chain if no kidney exchange transplant options are available

within 3 months (as this reduces the wait time for wait list recipients).

4.3.6 Sensitivity analysis timing of exchanges

Figure 4.11 presents sensitivity analysis on the time interval between exchanges. A longer

time interval increases the number of transplants. When exchanges are run once per three

months, as is currently done in the Netherlands, there are about 7 % (p < 0.001) more

transplants than when exchanges are run once per month, regardless of the policy. An

explanation for this is that additional time between kidney exchanges allows exchange

cycles and chains to be formed that involve relatively more highly sensitized patients (33

% in the case of 3 months versus 1 month). The graphs for both transplant categories are

equally concave, meaning that the increase in transplants diminishes as the time interval

increases. The di↵erence in transplants between the extremes, the near continuous weekly

exchange policy and the bi-annual exchange policy, is 31 % (and 144 % if we decompose

this to highly sensitized patients (not shown in the table)).
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Figure 4.10: Sensitivity analysis on the time unspecified and bridge donors are available

before donating to the waitlist

Figure 4.11: Sensitivity analysis on the time between exchanges
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Figure 4.12: Sensitivity analysis on the renege rate

4.3.7 Sensitivity analysis renege rate

Figure 4.12 displays a sensitivity analysis on the renege rate. When the renege rate

is under 3 %, NEAD chain policies slightly outperform equivalent DPD chain policies.

However, when the renege rate increases beyond 3-4 %, NEAD chains lose bridge donors

too frequently, resulting in a substantial advantage for DPD chain policies. These findings

are in line with (Gentry et al., 2009) and (Ashlagi et al., 2011b). Overall, NEAD chains

produce slightly more transplants for patients in the kidney exchange program, including

highly sensitized patients with PRA > 80 and O patients, but less transplants for waitlist

patients.

4.4 Discussion

In the recent history of transplantation medicine various novel modalities for transplant-

ing patients with an incompatible living donor have been introduced. In this paper we

presented a simulation study that considers the coordination of two of those modalities,

unspecified donation and transplantation across the ABO blood type barrier, in kidney

exchange. Clinical data and allocation criteria from the Dutch national kidney exchange

program (de Klerk et al., 2011) have been used to perform the simulations and to de-

termine donor-recipient matches. Our findings are therefore, at least in part, conditional
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on these data and criteria. Extensive sensitivity analysis on the population composition,

however, helps us understand the general implications.

Our results strongly suggest that there is clear synergy in the central coordination of

unspecified donation and ABOi transplantation in kidney exchange, even when the latter

is performed exclusively for highly sensitized patients. Only a few ABOi transplants are

required to substantially increase the benefits of national unspecified donation policies.

These benefits are in terms of total transplants, transplants for blood type O and highly

sensitized patients, and waiting time, and are much larger than could be expected from

any of the transplant modalities independently.

In our base case simulations the benefits of long unspecified donor chains are not

significant. This contrasts with the recent study of (Ashlagi et al., 2011b) whose simu-

lations suggest significant benefits of long chains. The di↵erence in the outcomes is the

result of di↵erences in the composition of the patient-donor populations. The benefits of

long unspecified donor chains increase with the percentage of highly sensitized patients.

When we consider highly sensitized population compositions similar to those investigated

in Ashlagi et al., we therefore do find significant benefits of long chains. Thus, whether

it is best to perform shorter simultaneous chains or longer non-simultaneous chains, will

not only depend on the risk of reneging but also on the population under consideration.

Interestingly, the benefits of allowing coordinated transplantation across the blood

type barrier are present in all population compositions we investigated, despite the in-

creased risk of match failure, and they become more substantial in populations with many

highly sensitized patients. Importantly, the benefits include more equitable transplant op-

portunities among patients.

Another observation in this study is that allocating unspecified or bridge donors di-

rectly to the waitlist if they cannot initiate a chain segment within the next exchange

round (in 3 months) reduces the waiting times for patients on the waitlist without re-

ducing the benefits for patients in the kidney exchange program. This criterion for chain

initiation and termination helps balance the fact that DPD and NEAD policies shift

transplants away from patients on the deceased donor wait list to patients in the kidney

exchange program. Finally, we find that the time between matching rounds has consid-

erable impact on the number of transplants that can be achieved. Allowing more time

means that the pool can build up and better exchange combinations can be identified.

Multi-center coordination of transplant modalities in kidney exchange is a di�cult

task. Nevertheless, the present study suggests that the synergy of simultaneously coordi-

nating at least two such modalities, unspecified donation and transplantation across the

blood type barrier, increases both the number and the equitability of transplants. Using
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individual rationality guarantees for transplant centers may help to overcome some of

the coordination di�culties with no harm to these benefits. Actual national experience

and thorough evaluation of implementation will be necessary to fully understand real life

e↵ects.



96_Erim Glorie[stand].job



97_Erim Glorie[stand].job

Chapter 5

Health value analysis of allocation

policies in kidney exchange1

5.1 Introduction

For patients su↵ering from end-stage renal disease (ESRD), kidney transplantation has

been established as the preferred treatment (Wolfe et al., 1999). Compared to alter-

native renal replacement therapies, such as dialysis, it o↵ers substantial advantages in

terms of quality of life, patient survival, and costs (Port et al., 1993; Franke et al., 2003;

Winkelmayer et al., 2002): on average, patients who receive a kidney transplant live 10

years longer than patients who remain on dialysis (Port et al., 1993), while the long term

costs of transplantation are 4 to 5 times lower (Winkelmayer et al., 2002). Living donor

transplantation (LTx) is the most e↵ective treatment because graft survival after living

donor transplantation is generally twice as good as graft survival after deceased donor

transplantation (DTx)(SRTR, 2011).

Unfortunately, even though the number of living donor kidney transplants has in-

creased over recent years (Segev, 2012) (in many countries, including the US and the

Netherlands, the number of living donors has now surpassed the number of deceased

donors2), the number of kidneys available for transplantation is still largely insu�cient to

meet demand: in Europe and the United States together, approximately 30 patients die

each day while waiting for a kidney transplant (European Society for Organ Transplan-

tation (ESOT), 2010; United States Organ Procurement and Transplantation Network

(OPTN), 2011). A major part of the problem is that, even when a living donor is will-

1
This chapter is based on (Glorie et al., 2014c).

2
In fact, in the Netherlands more than half of the transplants now involve a living donor (Nederlandse

Transplantatie Stichting (NTS), 2012)
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ing to donate, in over 30 percent of the cases, the donor is incompatible with his or her

intended recipient due to blood type or crossmatch incompatibility (Segev et al., 2005b).

Kidney exchange (KE) is a modality that allows incompatible patient-donor pairs

to be matched with other incompatible pairs in order to proceed with transplantation

through an exchange procedure. In such a procedure, the donor of the first pair should be

compatible with the patient of the second pair, and the donor of the second pair should be

compatible with the patient of the first pair. The pairs then switch donors so that both

patients are able to receive a transplant (Rapaport, 1986). Kidney exchange procedures

are not limited to pairwise exchange, but can involve exchange cycles, and exchange chains

- which are initiated by altruistic donors - of arbitrary length. However, due to incentive

reasons (in order to prevent donors from withdrawing consent after their intended recipient

has received a transplant), all transplants in a cycle must be performed simultaneously.

Because of the large potential for increasing the number of kidney transplants, many

countries have now developed kidney exchange programmes (Park et al., 1999; Delmonico

et al., 2004; Keizer et al., 2005; Petrini et al., 2007).

Typically, the allocation of donors to patients in kidney exchange programs is de-

termined by a central authority. The allocation policy used by this authority has an

important e↵ect on the outcomes of the exchanges. It determines not only which patient-

donor pairs are involved in an exchange but also with whom they exchange. In this paper

we focus on health outcomes - in terms of quality adjusted life years (QALYs) - of var-

ious allocation policies proposed in the literature. Moreover, we compare these policies

to an allocation policy that maximizes the discounted sum of the quality adjusted life

years gained. Such a policy has been envisioned since the advent of kidney exchange

programmes (Zenios, 2002; Abraham et al., 2007), but to our knowledge, this paper is

the first to thoroughly model and evaluate it to centrally determine allocations in kidney

exchange as it is available today. We calculate an upper bound on the maximum health

value that can be achieved by any policy and show that our newly proposed policy comes

much closer to this bound than the other policies investigated.

Use of quality adjusted life years is commonly accepted as a prime decision criteria for

many medical interventions, following the framework of Health Technology Assessment

(Hutton et al., 2006; Guindo et al., 2012). However, it may conflict with criteria that

are currently used in most kidney exchange programs, such as maximizing the number of

transplants (Wolfe et al., 2008; Zenios, 2002). In this paper we develop a Markov model for

assessing the quality adjusted life years associated to particular kidney exchange policies.

The transition probabilities in our Markov model are patient-donor specific functions

related to characteristics as age, antigen mismatch, and gender. Using this model, we
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conduct long term simulations with kidney exchange data from the Netherlands, which

has the longest running national kidney exchange program (de Klerk et al., 2005). We then

evaluate policies in terms of quality adjusted life years and on the outcomes for several

traditional kidney exchange criteria such as equity, mortality and number of transplants.

This paper is organized as follows. Section 5.2 describes the Markov model for de-

termining the health value outcomes. Section 5.3 describes the allocation policies under

consideration. Then, Section 5.4 details the simulation procedure by which the policies

are assessed. The results are presented in Section 5.5. Finally, Section 5.6 concludes.

5.2 An individualized health value model for kidney

exchange

In order to assess the quality adjusted life years gained from any kidney exchange alloca-

tion rule, we develop a patient and donor specific Markov chain model (see e.g. (Thijms,

2003)). Markov chain models are commonly used in the literature to analyze health out-

comes (see e.g. (de Wit et al., 1998)). A Markov chain model is a discrete statistical

process characterized by a set of states, transition probabilities between states, and an

initial distribution over states.

5.2.1 States

We define six states, consisting of five transient treatment states - (i) ‘ESRD’, (ii) ‘Renal

Function (RF) Recovery’, (iii) ‘LTx Recovery’, (iv) ‘DTx Recovery’, and (v) ‘KE Recovery’

- and one absorbing state, (vi) ‘Death’. The default treatment for ESRD is dialysis (i.e.

ESRD patients who do not receive a transplant are assumed to be treated with dialysis).

Recovery of renal function on dialysis is very rare, but may occur. In that case the

patient transitions to the ‘RF Recovery state’. The ‘LTx Recovery’ and ‘DTx Recovery’

states respectively represent recovery after a living and deceased donor transplant. The

state ‘KE Recovery’ represents the situation in which the patient successfully receives a

kidney exchange transplant. Although recovery after a kidney exchange transplant is in

principle similar to recovery after any other living donor transplant, the ‘KE Recovery’

state is added separately to allow us to capture the impact of the present matching

decision on the health outcomes by explicitly taking donor characteristics into account

in the transition probabilities (see below), whereas the ‘LTx Recovery’ state represents

a transplant from a presently unknown, future living donor. From each of the recovery

states it is also possible for patients to return to the ESRD state. This can for instance
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ESRD

RF Recovery

LTx Recovery

DTx Recovery

Death

KE Recovery

Figure 5.1: Individualized health value model: state space and transitions. The model

consists of six states with patient and donor specific transition probabilities.



101_Erim Glorie[stand].job

5.2 An individualized health value model for kidney exchange 89

happen due to graft failure. Should a patient return to the ‘ESRD’ state from the ‘KE

Recovery’ state, possible future living donor allocations (for which the involved donor is

presently unknown) are modeled as transitions to the ‘LTx Recovery’ state (so this state

also captures future kidney exchange transplants). Figure 5.1 displays the state space

and possible transitions.

5.2.2 Transition probabilities

The transition probabilities are functions of patient and donor characteristics. Let us

denote a patient-donor pair participating in kidney exchange as X-Y , where X is the

patient and Y is the donor, and let N be the set of all patient-donor pairs. (NB. Patients

without donors can be indicated as X-;, and donors without patients, such as altruistic

donors, can be indicated as ;-Y .) In kidney exchange, a patient can only receive a

transplant from another donor if the patient’s own donor donates to some other patient.

Formally, an allocation µ : N ! N [ ; is a function such that if µ(X-Y ) = W -Z then

µ(W -Z) 6= ; for all X-Y , W -Z 2 N . This implies that if µ(X-Y ) = ;, the pair X-Y is

unmatched. We define:

pµ
ij

(X-Y ) :=

Pr[transition of X from state i to state j|X receives a transplant from µ(X-Y )]

Moreover, we have

pµ
ii

(X-Y ) := 1�
X

j 6=i

pµ
ij

(X-Y )

Transitions from the ‘ESRD’ state

At the start of the horizon, if a patient does not take part in a kidney exchange, he

or she starts in the ‘ESRD’ state. From the ‘ESRD’ state patients have three recovery

options: ‘RF Recovery’, ‘LTx Recovery’, and ‘DTx Recovery’. As explained in Section

5.2.1, future kidney exchange transplants, for which the donor is unknown, are implicitly

modeled through the ‘LTx Recovery’ state. The probability of obtaining a deceased or

direct living donor kidney transplant for an ESRD patient depends on the availability of

deceased and living donors, the probability of compatibility between patient and donor,

and, for deceased and altruistic donors, the allocation policy. If a patient does not recover

and does not die, it remains in the ‘ESRD’ state.
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Transition to the ‘DTx Recovery’ state

The probability of compatibility is based on blood types and PRA level. The probability

of obtaining a deceased donor transplant in a given period can be estimated by:

Pr[DTx|X-Y ] = Pr[DTx donor is allocated to blood type BLO
X

] (1� PRA
X

)

where the allocation probability can be calculated from historical data over a given period

by:

Pr[DTx donor is allocated to blood type BLO
X

] =

#DTx transplants for blood type BLO
X

#patients of blood type BLO
X

on the waitlist

and where BLO
X

and PRA
X

respectively indicate the blood type and the PRA level

(on a 0 to 1 scale) of patient X. In order to estimate the allocation probability we use

historical Dutch data (see (Nederlandse Transplantatie Stichting (NTS), 2012)). Table

5.1 lists the annual allocation probabilities we use in our model per blood type category.

Blood type patient Probability
O .22
A .24
B .14
AB .34

Table 5.1: Annual probability that a suitable deceased donor becomes available and is

allocated to a patient of the indicated blood type

Transition to the ‘LTx Recovery’ state

The probability of obtaining a living donor kidney transplant can be calculated similarly.

However, because participants in kidney exchange programs have likely exhausted their

opportunities to find a compatible living donor (e.g. because they have asked most of

their family members and friends), the probabilities for the general patient population

are likely to be higher than the conditional probability for patients in a kidney exchange

program. Preliminary simulation experiments confirm this. In our model we therefore

adjust the general probabilities by a scaling factor. Our experiments suggest that a scaling

factor of .5 results in outcomes in concordance with historical data.
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The probability of obtaining a living donor transplant in a given period can be esti-

mated by:

Pr[LTx|X-Y ] = .5 · Pr[LTx donor is allocated to blood type BLO
X

] (1� PRA
X

)

where the annual allocation probabilities per blood type category are as listed in Table

5.2.

Blood type patient Probability
O .22
A .27
B .12
AB .18

Scaling factor .5

Table 5.2: Annual probability that a suitable living donor is available to a patient of the

indicated blood type. For patients in a kidney exchange program the probabilities should

be multiplied with the provided scaling factor.

Transition to the ‘RF Recovery’ state

The probability of recovery of renal function after dialysis treatment is estimated at 1.1

% based on recovery rates described in (Chu and Folkert, 2010).

Transition to the ‘Death’ state

Transition to the ‘Death’ state depends on patient survival. We obtain mortality rates

for patients on dialysis from historical Dutch data (Registratie Nierfunctievervanging

Nederland (Renine), 2012). The annual mortality rates for patients on dialysis depend on

patient age and are respectively 3.3%, 11.4%, 17.4% and 28.5% for age categories 16-44,

45-64, 65-74 and above 75 years old.

Transitions from the ‘KE Recovery’ state

There are two possible transitions from the ‘KE Recovery’ state, transition to the ‘ESRD’

state and transition to the ‘Death’ state. If these two do not occur, patients remain in

the ‘KE Recovery’ state.

Transition to the ‘ESRD’ state
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Transition to the ‘ESRD’ state occurs if there is a match failure preventing transplanta-

tion, or if there is graft failure subsequent to the transplant.

There are various types of failure that may prevent kidney exchange matches from

going forward to transplantation. These include positive crossmatch after a negative

virtual crossmatch, desensitization failure, and patient or donor withdrawal for medical

or other reasons. Based on Dutch match failure data and in line with the medical literature

(Ashlagi et al., 2011b; Glorie et al., 2013), we model these types of failure using both an

exogenous probability of 12.5% and an endogenous probability calculated by the following

probit model:

Pr[Failure|X-Y ] = �(�1.5007 + 0.0170 · PRA
X

) (5.1)

where � represents the cumulative distribution function of the standard normal distribu-

tion. For the derivation of these probabilities we refer to Appendix A.

In order to estimate the probability of graft failure, we build a model for graft failure

based on the medical literature. In (Laging et al., 2012) and (Laging et al., 2014) Dutch

data from 1990 to 2011 is used to identify factors influencing patient and graft survival.

Recipient age, HLA mismatch, donor type (living or deceased) and transplant year are

identified as significant factors. By employing all the parameters in (Laging et al., 2012)

and (Laging et al., 2014) to filter all the e↵ect factors except for time period after trans-

plant, we can get the estimated fit function for cumulative graft failure hazard rate. Given

a pair X-Y , the hazard rate �graft(t|X � Y ) in period t is:

�graft(t|X � Y ) = 0.0418t · exp(�0V AR(X�Y ))

where 0.0418t is the estimated baseline hazard rate, the parameters � are as specified in

Table 5.3, and V AR(X�Y ) represents the relevant explanatory variables. For the transplant

year variable the baseline is 2008, for all other variables it is 0.

Variable Coe�cient
RECIPIENT AGE -0.0160
HLA MISMATCH .1017

DUMMY LIVING DONOR -.5058
TRANSPLANT YEAR -.0263

Table 5.3: Hazard rate parameters for graft failure

Transition to the ‘Death’ state
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As before, transition to the ‘Death’ state depends on patient survival. We estimate

the survival function similarly to the graft failure function described above. Again the

relevant variables are obtained from (Laging et al., 2012). Given a pair X-Y , the hazard

rate �survival(t|X � Y ) in period t is:

�survival(t|X � Y ) = 0.00926t · exp(�0V AR(X�Y ))

where 0.00926t is the estimated baseline hazard rate, the parameters � are as specified in

Table 5.4, and V AR(X�Y ) represents the relevant explanatory variables. Again, for the

transplant year variable the baseline is 2008, for all other variables it is 0.

Variable Coe�cient
RECIPIENT AGE .06859

DUMMY LIVING DONOR 0.5749
TRANSPLANT YEAR -.0608

Table 5.4: Hazard rate parameters for patient survival

Transitions from other states

Since donor specific information is not known in the other states in the model, graft failure

and patient survival in these states are based on average donor characteristics. For the

‘LTx Recovery’ and ‘DTx Recovery’ states, we use the same graft survival and recipient

survival functions described in Section 5.2.2, but evaluate these functions using mean

values for the HLA mismatch (see Table 5.5).

Variable Mean value
HLA MISMATCH living 3

HLA MISMATCH deceased 2.6

Table 5.5: Mean values of HLA mismatch

For the ‘RF Recovery’ state we estimate mortality rates and dialysis recommencement

rates based on the numbers reported in (Craven et al., 2007). In particular, we estimate

the 3 monthly mortality rate at 4.5 % and the 3 monthly dialysis recommencement rate

at 13.5 %.
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5.2.3 Distribution over states

Let Aµ(X-Y ) = [pµ
ij

(X-Y )] be the matrix of transition probabilities and let I(k) denote

the probability distribution over states after k transitions (the entries of I(k) correspond

to the states ‘ESRD’, ‘RF Recovery’, ‘LTx Recovery’, ‘DTx Recovery’, ‘KE Recovery’,

and ‘Death’). It then holds that I(k + 1) can be recursively computed as

I(k + 1) = I(k) · Aµ(X-Y )

with I(0) = [1, 0, 0, 0, 0, 0] in case µ(X-Y ) = ; and I(0) = [Pr[Failure|X-Y ], 0, 0, 0, 1�
Pr[Failure|X-Y ], 0] otherwise. In other words, the initial distribution specifies a start

from the ‘ESRD’ state if patient X remains unmatched under µ and a start from the ‘KE

Recovery’ state if X is matched and there is no match failure, if there is match failure

X remains in the ‘ESRD’ state. The match failure probability Pr[Failure|X-Y ] is as

specified in equation (5.1).

5.2.4 Calculating QALYs gained

The Markov chain model is supplemented with information on quality of life per state.

We use two scenarios based on (de Wit et al., 1998) and (Kontodimopoulos and Niakas,

2008). The ‘optimistic’ scenario is based on (de Wit et al., 1998), which assessed quality

of life of patients with the EuroQol (EQ-5D) Instrument (EuroQol Group, 1990; Brooks,

1996) using Standard Gamble (Torrance et al., 1972) and Time Trade O↵ (Churchill et al.,

1987). The ‘pessimistic’ scenario is based on (Kontodimopoulos and Niakas, 2008), which

obtained estimates using the SF-36 Health Survey from which the preference based SF-6D

utility index was derived (Ara and Brazier, 2008). Let QoL(X) denote the quality of life

of patient X per state. The discounted quality adjusted life years gained Q(X-Y ) for

patient donor pair X-Y can be calculated as follows. Let t = 1, 2, . . . denote the time

periods, and let � indicate the discount rate. Assuming that transitions only take place

at the end of a period, we have

Q(X-Y ) =
1
X

t=0

QoL(X)T I(t) · 1

(1 + �)(t)

In our case, the ’ESRD’ state is assigned a quality of life of .63, all recovery states

are assigned a quality of life of .90 in the optimistic scenario and .72 in the pessimistic

scenario. The ’Death’ state is assigned a quality of life of 0. Following the discussions

in the medical community (Luce, 1995; Bonneux and Birnie, 2001; Rittenhouse, 1996;

Gravelle and Smith, 2001; Jacobs et al., 1995), we use a discount rate for health benefits
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that is lower than the current discount rate of costs. In particular, we use a discount rate

for health benefits of 1 % per year in our optimistic scenario and 1.5 % per year in our

pessimistic scenario.

For each patient we compute the total discounted QALYs for a period of 25 years from

entry into the kidney exchange pool. We discount to the beginning of the horizon, which

in our simulations will be 1 January 2004 (see Section 5.4). Periods before a patient’s

entry date are not counted.

5.3 Allocation policies

5.3.1 Policies

In the literature on kidney exchange, various allocation policies have been suggested

(Ashlagi et al., 2011b; Keizer et al., 2005; Glorie et al., 2014d; Ferrari et al., 2011; Böhmig

et al., 2013; Kim et al., 2007; Manlove and O’Malley, 2012; Kaplan et al., 2005; Hanto

et al., 2008). In this regard it is important to make a distinction between allocation

requirements that limit the number of feasible allocations, and thereby transplants, (e.g.

requiring donors to be in the same age category or have the same CMV-EBV serology as

their recipients) and actual allocation criteria that determine the selection of an allocation

from the set of feasible allocations (e.g. maximum number of transplants between donors

and recipients of the same blood type).

In line with current practice of kidney exchange programs, we focus on periodical

allocation policies. These are policies where patient-donor allocations are determined

periodically, i.e. after a certain amount of time has expired or after certain number of

new pairs have entered the program. These policies contrast with dynamic policies, in

which decisions are made dynamically and take into account the timing of exchanges and

the fact that patients and donors enter and leave the kidney exchange pool over time, to

optimize the desired allocation criteria in the long run.

Table 5.6 summarizes the policies under consideration. In our base case policy, we

consider the most commonly used allocation criteria, which is to maximize the total

number of transplants. The second policy we consider, is a hierarchical criterion policy,

which refines the primary criterion of maximizing the total number of transplants by

several tie breaking criteria. We consider the hierarchical criteria used in the Dutch kidney

exchange program (Keizer et al., 2005; Glorie et al., 2014d), which ranks allocations on

(i) number of transplants, (ii) number of blood type identical transplants, (iii) match

probabilities of matched patients (inverse ranking), (iv) longest cycle and chain length



108_Erim Glorie[stand].job

96 Health value analysis of allocation policies in kidney exchange

Policy Criteria Requirements*
MaxTrans Maximize # transplants None
Dutch Dutch hierarhical criteria None
MaxTrans

R

Maximize # transplants HLA mismatch < 2, age di↵erence < 10
Dutch

R

Dutch hierarhical criteria HLA mismatch < 2, age di↵erence < 10
MaxQaly Maximize QALYs None
* In addition to blood type and crossmatch compatibility

Table 5.6: Allocation policies

(inverse ranking), (v) smallest spread per cycle and chain over transplant centers, and

(vi) longest wait time, and selects the highest ranking allocation.

We consider two versions of each policy. In the first version only blood type and

crossmatch compatibility are considered as allocation requirements. In the second version,

additional requirements with respect to some common measures are formulated (see e.g.

Lucan (2007); Kute et al. (2013); Kim et al. (2007); Ycetin et al. (2013); Glorie et al.

(2014b)): in particular, we consider a maximum number of 2 HLA mismatches and a

maximum age di↵erence between donor and recipient of 10 years.

Finally we consider a policy which maximizes the total sum of discounted QALYs,

as calculated with the Markov model described in Section 5.2, for the entire patient

population.

In all policies listed above the maximum cycle and chain length is set to 3. In our

experiments we will also consider longer limits and set the cycle limit to 4 and chain limit

to 6 (except for the perfect information policy, where we set the limit to infinity). We

will indicate this by appending the policy names with ‘Long cycles and chains’.

5.3.2 Determining the allocation by mixed integer programming

Under the above allocation policies, for a given set of patient-donor pairs, the kidney ex-

change allocation problem corresponds to a cycle packing problem in a weighted directed

graph in which the nodes represent patient-donor pairs, the arcs represent the compat-

ibilities, and the weights on cycles in the graph correspond to priorities or weights on

matchings (Abraham et al., 2007; Glorie et al., 2014d). The goal is to find a maximum

weight exchange, i.e. a collection of non-overlapping cycles, such that no cycle exceeds

the bound on the number of possible simultaneously feasible transplants.

Let C(K,L) denote the collection of cycles and chains that are feasible with respect

to the bound on cycle length K and the bound on chain length L. Next, let us introduce

a binary decision variable x
c

for each cycle and chain c 2 C(K,L) that is defined as:
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x
c

=

(

1 if c is selected,

0 otherwise.

Let x =
⇥

x1, . . . , x|C(K,L)|
⇤

T

denote the vector of decision variables and let w 2
R|C(K,L)|. The basic allocation problem can then be represented by the following Mixed

Integer Program:

P1:

max z(x) =
X

c2C(K,L)

w
c

x
c

(5.2)

s.t.
X

c2C(K,L):n2c

x
c

 1 8n 2 N (5.3)

x
c

2 {0, 1} 8c 2 C(K,L)

Here, the objective (5.2) is to select a collection of cycles and chains that maximizes

z(x). The constraints (5.3) ensure that no patient or donor is contained in more than one

selected cycle or chain. When the objective is to maximize the number of transplants,

the weights w
c

are equal to |c|.
For the other objective criteria listed in Table 5.6 the weights may be di↵erent and

some additional variables and constraints may be needed. For a detailed description we

refer to (Glorie et al., 2014d). In principle, all of the criteria mentioned above can be

represented by the following general model. In addition to the decision vector x, let y

denote a n⇥ 1 vector of auxilliary variables which are allowed to assume values in some

subspace F ✓ Rn, for n 2 N. Also, for m 2 N, let v 2 Rn, A 2 Rm⇥|C(K,L)|, B 2 Rm⇥n,

and b 2 Rm. Then the following MIP solves the allocation problem for a general class of

objective criteria:

P2:

max z(x, y) = wTx+ vTy
i

(5.4)

s.t. Ax+ By  b (5.5)

x 2 {0, 1}|C(K,L)|

y 2 F

The constrains (5.5), which are formulated in a very general way, allow to model the

objective criteria at hand. For instance, for the policy of maximizing the total sum of
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discounted QALYs we set w
c

equal to the total discounted QALYs for the entire cycle c

if it is selected and define an auxiliary variable y
n

for each node n 2 N that is defined as:

y
n

=

(

1 if n is not selected,

0 otherwise.

and we set v
n

equal to the total discounted sum of QALYs for node i if it is not selected.

The MaxQaly policy can then be solved by the following model:

P3:

max z(x, y) =
X

c2C(K,L)

w
c

x
c

+
X

n2N

v
n

y
n

(5.6)

s.t.
X

c2C(K,L):n2c

x
c

+ y
n

= 1 8n 2 N

x
c

2 {0, 1} 8c 2 C(K,L)

y
n

� 0 8n 2 N

In all cases the above Mixed Integer Programs may be solved by a branch-and-price

algorithm in which the cycles and chains are generated when this is required by their

reduced cost criterion in the simplex method. For a detailed description we refer to

(Abraham et al., 2007; Glorie et al., 2014d).

5.3.3 Determining the maximum possible gain in health value

We would like to understand how far away the periodical policies described in Table 5.6

are from the maximum possible gain in health value over a given time horizon. To this end

we calculate an upper bound on the total discounted quality adjusted life years that could

be gained over the horizon under consideration if we were to have perfect information at

the beginning of the horizon. We do this by solving problem P3 for the entire horizon at

once. In this case, the weights w
c

are set equal to the total discounted sum of QALYs for

the entire cycle c if it is selected at the earliest possible date. This ‘perfect information

policy’ represents essentially the best possible dynamic policy over the horizon.
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5.4 Simulator

We evaluate health outcomes by simulations based on historical data from the Dutch

national kidney exchange program. This simulator is described in detail in (Glorie et al.,

2013). In this section we will briefly explain the main aspects of the data and simulation

procedures.

5.4.1 Data

The data for our simulator is obtained from the Dutch Transplant Foundation and origi-

nates from the empirical registry of the Dutch national kidney exchange program. It in-

cludes 438 incompatible patient-donor pairs who participated in Dutch kidney exchanges

between October 2003 and January 2011. In addition it contains 109 unspecified donors,

i.e. donors without a specified recipient, who were screened at one of the seven Dutch

transplant centers during that period. A patient is considered to be incompatible with

a donor whenever the donor’s blood type contains a protein that is not contained in the

patient’s blood type, or whenever the donor has a HLA type that is unacceptable to the

patient, otherwise the patient and donor are compatible.

5.4.2 Simulations

Dynamic simulations are conducted by performing repeated Monte Carlo simulations.

Each such simulation spans the period between 1 October 2003 and 23 December 2010 and

involves a population of size 547 generated from the empirical data using sampling with

replacement. The arrivals of patient-donor pairs and unspecified donors are determined

by assigning each pair and each unspecified donor in the sampled population a random

date in the simulation period. Arrival dates are drawn uniformly, corresponding to a

Poisson arrival process. Matching rounds are conducted every three months, starting

from 1 January 2004. In each matching round, an allocation is determined based on

the specified allocation policy. The underlying optimization problem is solved by the

algorithm described in (Glorie et al., 2014d) and as specified in Section 5.3. There are

a total of 29 matching rounds during the simulation period. Proposed matches may fail

to go forward to transplantation because a final crossmatch test between the donor and

the intended recipient is positive, because of desensitization failure, or because of patient

or donor withdrawal for medical, psychological or other reasons. Based on Dutch match

failure data, we simulate this with both an exogenous probability and an endogenous

probability depending on the patient and donor characteristics (see Appendix A). In
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case of match failure the optimization algorithm is rerun with the updated compatibility

information. This process is repeated until a feasible matching is found.

5.4.3 Statistical analysis

For each simulation run the total discounted quality adjusted life years gained are calcu-

lated using the model and approach described in Section 5.2. Then, for each policy the

average results over 30 simulation runs are computed. Significance of di↵erence in results

between policies is tested using the sign test.

5.5 Results

Figures 5.2-5.6 display the outcomes of our simulations using the procedure described in

Section 5.4.

Figure 5.2 shows the average health value per policy measured in discounted quality

adjusted life years for the entire patient population (both transplanted and not trans-

planted patients). It is interesting to observe that the MaxTrans policy and the Dutch

policy perform equivalently in both the optimistic and the pessimistic scenario. In the

optimistic scenario, both policies result in an average of 9.7 discounted QALYs (7.7 in

the pessimistic scenario), which is 3.6 QALYs more than if no kidney exchanges would be

performed (2.5 QALYs in the pessimistic scenario). The additional hierarchical criteria

included in the Dutch policy compared to the single criterion MaxTrans policy do not ap-

pear to result in a comparative gain in health value. Furthermore, the restricted versions

of both policies, with requirements set so as to improve the transplant quality, turn out

to be so restrictive that the average health value is comparable to not performing kidney

exchanges at all.

On the other hand, if all matching decisions would be made based on perfect infor-

mation so as to optimize the total health value, this would entail an average of 11.6

discounted QALYs gained (8.9 in the pessimistic scenario). This is a theoretical upper

bound, however, since in practice perfect information is not at hand. If we were to employ

our periodical MaxQaly allocation policy, which does not rely on perfect information and

which is like the MaxTrans and the Dutch policy but with an objective of maximizing

health value, an average of 10.3 discounted quality adjusted life years could be gained (8.0

in the pessimistic scenario). This is an increase of .6 discounted quality adjusted life years

over current practice (P < 0.0001) and it is 32 % closer to the upper bound. Allowing

longer cycle and chain lengths (up to length 4 cycles and length 6 chains) does increase
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the health value gains slightly further and preserves the di↵erences between the various

policies.

Figure 5.2: Average health value in discounted quality adjusted life years per policy in

two scenarios. Bars correspond to the optimistic scenario and error bars correspond to

the pessimistic scenario.

Next, we consider the number of transplants (Figure 5.3). The figure clearly shows that

the average number of transplants achieved under the policies MaxTrans (352.5), Dutch

(355.2), and MaxQaly (351.3) is not significantly di↵erent (P = .2923) and is similar in

both scenarios. It also becomes evident how restrictive the restricted policies are, as under

these policies almost no matches can be made. In case of perfect information however,

372.9 transplants could be achieved on average. The additional transplants achieved

under this policy account for a large part of the gain in health value observed for this

policy (Figure 5.2). Under the periodic policies (MaxTrans, Dutch and MaxQaly) there is

therefore still potential to exploit dynamics to achieve more matches and hence generate

more health value.

To provide more insights into the distribution of health value, we will also consider

the health value for each of several patient groups. Figure 5.4 displays the average health

value for matched and unmatched patients per policy. As expected, matched patients

achieve a substantially higher health value than unmatched patients under all policies.

It is interesting to see, however, that under the MaxQaly policy the unmatched patients

achieve a significantly higher health value than under the MaxTrans and Dutch policy (6.7

versus, respectively, 5.2 and 5.1 in the positive scenario (P<0.0001) and 5.7 versus 4.5 and
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Figure 5.3: Average number of matches per policy in two scenarios. Bars correspond to

the optimistic scenario and error bars correspond to the pessimistic scenario.
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4.4 in the negative scenario (P<0.0001)). Matched patients, on the other hand, achieve a

similar health value under these three policies (11.1 versus, respectively, 10.8 and 10.8 in

the positive scenario (P<0.0001), and 8.5 for all three policies in the pessimistic scenario).

This likely occurs because the patients with the worst prospects if they were to be left

unmatched are matched under the MaxQaly policy. For both matched and unmatched

patients it is theoretically possible to achieve an even higher health value, as is evidenced

by the perfect information policy.

Figure 5.4: Average health value in discounted quality adjusted life years for matched

and unmatched patients per policy in two scenarios. Bars correspond to the optimistic

scenario and error bars correspond to the pessimistic scenario.

Figures 5.5 and 5.6 provide a distribution of the average health value over blood

types and age categories. Overall, prospects are best for type AB patients and worst for

type O patients. Type A and type B patients are in between. The distribution for the

Dutch policy di↵ers only marginally from the distribution for the MaxTrans policy. The

MaxQaly policy, however, constitutes a higher health value for all blood types than under

the Dutch policy. In particular, there is a substantial gain for type O patients (9.5 versus

8.7 in the optimistic scenario (P < 0.0001) and 7.4 versus 7.1 in the pessimistic scenario

(P < 0.0001)).

For all policies we observe a substantial di↵erence in health value for patients of

di↵erent age. Even under the Dutch policy elderly patients have a substantially lower

health value than younger patients. An important question is therefore whether elderly

patients are not disproportionally disadvantaged compared to younger patients when a

policy with the objective of maximizing the discounted sum of quality adjusted life years
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is applied. Figure 5.6 shows that this need not be the case as, for short cycles and chains,

the health value of patients of 75 years and older is equivalent under the MaxQaly policy

and the Dutch policy in both scenarios. Equivalence also holds for long cycles and chains

in the pessimistic scenario, but not in the optimistic scenario.

Figure 5.5: Average health value in discounted quality adjusted life years per blood

type per policy in two scenarios. Bars correspond to the optimistic scenario and error

bars correspond to the pessimistic scenario.

Figure 5.6: Average health value in discounted quality adjusted life years per age cat-

egory per policy in two scenarios. Bars correspond to the optimistic scenario and error

bars correspond to the pessimistic scenario.
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5.6 Conclusion and discussion

In this paper we have performed a health value analysis of allocation policies for kidney

exchange. The basis for our analysis is an individualized Markov health value model which

can be linked to a mixed integer programming model. In combination with evidence based

data and survival analysis, we have used discrete event simulation to compare existing

policies to a new policy that aims to maximize health value. We have also calculated an

upper bound on the maximum health value attainable by any policy.

Interestingly, we found that policies that directly impose allocation restrictions to

increase the health outcomes - such as restrictions on the acceptable HLA mismatch or on

the age di↵erence between recipients and donors - may actually be detrimental to the total

health value. This is particularly so if the imposed restrictions severely limit the recipient-

donor matches that can be made. Also, we found that additional hierarchical allocation

criteria beyond maximizing the number of transplants, in particularly those currently used

in practice in the Dutch kidney exchange program, do not lead to a significant di↵erence

in health outcomes.

The health value policy we propose performs significantly better in terms of health

outcomes than the other policies tested. Of course, use of quality adjusted life years may

conflict with criteria that are currently used in most kidney exchange programs, such as

maximizing the number of transplants. In particular, there may be concern that a focus

on maximizing health value may be detrimental to the number of transplants that are

performed. However, our findings do not indicate a significant e↵ect on the number of

transplants if our health value maximizing policy would be adopted.

Analyzing the allocations made under our proposed policy, we find that patients with

relatively poor prospects if left unmatched are matched more often than in the other

policies we tested. The result is that our proposed policy especially benefits quality of life

for unmatched patients. In particular, type O patients benefit from the gains in health

value. Furthermore, and perhaps non-obviously, we find that elderly patients need not be

disadvantaged by using health value to determine allocations. For short cycle and chain

lengths, the simulation results yield no significant di↵erence in health outcomes for elderly

patients between the proposed policy and the present Dutch policy. Hence, the proposed

maximum health value policy need not reduce equity.

Although our health value policy improves on the other policies investigated, its per-

formance is of course dependent on the way in which health value is measured and on the

clinical data with which it is evaluated. Our individualized health value model is based on

several models described in the medical literature and their underlying assumptions. Even
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though these models and assumptions have been carefully reviewed and, where possible,

tested with clinical data, there may be factors a↵ecting health outcomes that lay beyond

our health value model such as recipient health status at time of transplant, quality of pa-

tient and donor screening and preparation, and medical and psychological follow-up after

transplant. The clinical data used in our simulations to evaluate the allocation policies is

taken from the longest running national kidney exchange program in the world and we

have used two scenarios for the parameter values for quality of life and the discount rate.

Finally, we note that even though the health value policy we propose improves sub-

stantially over current practice, further improvements in health outcomes are still possible.

This is evidenced by our perfect information policy which serves as an upper bound on the

maximum health value that can be achieved by any policy. We estimate that a further

improvement of up to 12.6 % in health outcomes is possible with respect to our pro-

posed policy. In line with what we have discussed above, further refinement of the health

model and data form one direction for improvement. Another direction is for the match-

ing algorithms to better anticipate information about future patient and donor arrivals.

This appears to be particularly promising as end stage renal disease and participation

in donor programs typically occur after lengthy health service trajectories. Optimization

algorithms, such as the algorithm used in our perfect information policy, can then take

information about future patients and donors into account when determining the alloca-

tion. The last direction we would like to mention is the inclusion of compatible pairs in

kidney exchange programs by the promise of increased quality of life compared to a direct

transplant.

In spite of the fact that the use of quality adjusted life years is commonly accepted as a

primary decision criteria for many medical interventions, its use in deciding on allocations

in kidney exchange may be controversial. We hope our research may provide guidance to

policy makers as to what the consequences in terms of health outcomes will be when health

value maximization is considered as a primary decision criterion. Conversely our study

shows the impact on (loss of) health value, when other criteria are considered instead. As

we believe that consideration of health outcomes is equally appropriate to consider as it

is for many other health problems, we hope the proposed health value model may serve

as a reference framework in future research, to the benefit of the patients su↵ering from

end stage renal disease across the globe.
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Chapter 6

Robust barter exchange1

6.1 Introduction

We consider the centralized organization of barter exchange markets. Barter exchange

markets are markets in which agents seek to directly trade their goods with each other

(Abraham et al., 2007; Glorie et al., 2014d). The trades in such markets consist of

trading cycles in which each agent gives a good to the next agent in the cycle (Shapley

and Scarf, 1974; Roth et al., 2007). Alternatively, the trades may consist of chains which

are started by an agent that provides a good without requiring a good in return and end

with an agent that receives a good without providing one (Anderson et al., 2014). Barter

exchanges find a natural application in kidney exchange programs, which aim to enable

transplants between incompatible donor-patient pairs (Rapaport, 1986; Roth et al., 2004;

Glorie et al., 2014b). Other applications include house exchanges (in which agents seek

to simultaneously buy each others houses, see for example www.besthouseswap.com),

shift exchanges (e.g., between nurses in hospitals), intra-organizational skilled worker

exchanges (e.g., between projects or departments), and book exchanges (see for example

www.readitswapit.co.uk).

In this research we focus on barter exchange markets in which proposed transactions

must be verified before they can proceed. Proposed transactions may fail to go forward if

verification fails or if a participant withdraws. In housing markets, for example, it should

be checked whether the participants in a transaction meet the financing requirements.

In kidney exchange, proposed ‘transactions’ must be checked with a so-called crossmatch

test to ensure the success of eventual transplants, and patients and donors may withdraw

1
This chapter is based on (Glorie et al., 2014a).
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at the last moment due to medical, psychological or other reasons (Delmonico et al., 2004;

de Klerk et al., 2005; Glorie et al., 2013).

In order to prevent agents from withdrawing from the market after they have received

their desired good, but before they have given up the good with which they came to the

market, trades are typically organized simultaneously (Segev et al., 2005b; Glorie et al.,

2014b). This poses a natural constraint on the length of trading cycles as they cannot

exceed the number of logistically feasible simultaneous transactions.

In our setting, the market is cleared by a central authority (Roth et al., 2005a). The

clearing problem for this authority is to select a set of agents in such a way that each

selected agent can trade with another agent in the set (Abraham et al., 2007; Manlove

and O’Malley, 2012; Constantino et al., 2013; Glorie et al., 2014d). The corresponding

transactions are then verified (i.e. in kidney exchange the patient-donor pairs involved

are notified and the final crossmatch tests are performed). In case one or more proposed

transactions fail, a new set of agents may be selected. The new set should be as close

as possible to the initial set in order to minimize the material and emotional costs of the

alteration. The objective is to maximize the number of transactions going forward.

A possible approach to market clearing in uncertain markets is to consider the ex-

pected number of transactions that can go forward (see e.g. (Pedroso, 2013; Awasthi

and Sandholm, 2009)). However, considering the expectation is not always tractable or

desirable. For instance, in kidney exchange there is a class of patients who are highly sen-

sitized, which means that these patients are compatible with only a very small fraction

of kidney donors. The rare matching opportunities that exist for these patients should

be protected against failure. Failure to match highly sensitized patients has led to the

accumulation of these patients in kidney exchange pools and in substantially longer wait-

ing times and higher mortality for these patients (Ashlagi et al., 2013). In this research

we focus on robustness metrics (see e.g. (Ben-Tal et al., 2009)) that allow us to specify

the desired level of protection from uncertainty. A substantial advantage of using robust

optimization is that it requires no assumptions on the underlying probability distribution.

We consider various recourse policies that determine the allowed actions after an ini-

tial subset of transactions is proposed for verification. In our first policy, called simple

recourse, we take into account costs (or missed gains) for failing transactions. Although

this policy does not allow failing transaction cycles to be recovered, it does allow better de-

cisions to be made regarding the set of transactions that is initially proposed because the

possibility of failure is taken into account. In the second policy, called back-arcs recourse,

we allow part of a failing transaction cycle to be recovered if the remaining participants

in the cycle can trade among themselves. In our last policy, full recourse, we allow for a
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complete recovery of the initial solution using alternative transactions. We develop robust

models for each of the recourse policies. In all cases, the optimum clearing problem is

a combinatorial optimization problem that is modeled as a vertex-disjoint cycle packing

problem in an unreliable digraph. The arcs and nodes of this graph are subject to failure.

Barter exchange has received substantial attention in recent years, particularly due

to the impact of kidney exchange. The clearing problem in barter exchange was first

presented in (Shapley and Scarf, 1974). The idea of using trading chains in addition to

trading cycles was presented in (Roth et al., 2004). (Roth et al., 2007) studied the rel-

evant bounds on trading cycles due to simultaneous exchange. (Abraham et al., 2007)

formulated the clearing problem with bounded cycles as a cycle packing problem in a di-

graph and provided a branch-and-price algorithm to solve it. Their approach worked well

for trading cycles and chains involving up to three agents. (Glorie et al., 2014d) showed

how the pricing problem could be solved e�ciently in the cycle and chain length, thereby

allowing the branch-and-price approach to scale better to longer cycles and chains. (Con-

stantino et al., 2013) did a systematic comparison of several compact and non-compact

formulations for barter exchange and concluded that the cycle packing formulation is

strongest.

Failure in barter exchange was first considered in (Awasthi and Sandholm, 2009), which

heuristically solved the online clearing problem using scenario sampling to minimize regret

over several future scenarios. (Dickerson et al., 2012) presented an alternative heuristic

learning approach to deal with uncertain future scenarios. Their approach relied on

using weighted myopia. (Dickerson et al., 2013) studied optimizing the set of proposed

transactions with probabilistic failures, but allowed no recourse to recover trading cycles.

Their approach resembles our simple recourse policy in a probabilistic setting. (Molinaro

and Ravi, 2013) and (Goel and Tripathi, 2012) considered failures in a bilateral exchange

setting where transactions that verify positively must be executed.

Possibilities for recourse were considered in (Manlove and O’Malley, 2012). They in-

troduced the notion of back-arcs recourse, as we use it in this paper, and gave preference

to cycles containing back-arcs in the clearing problem. Back-arcs recourse was also con-

sidered by (Pedroso, 2013) in a stochastic optimization setting. However, their approach

was computationally very expensive. To the extent of our knowledge, we are the first to

explicitly consider failures and full recourse policies in an optimization model for barter

exchanges.

We also would like to place our research in the general context of robust optimization.

Robust optimization was first introduced by (Soyster, 1973). Under the assumption of

‘unknown but bounded’ data, the goal was to optimize the objective value while guar-
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anteeing feasibility with respect to all realizations of the data within the considered ‘un-

certainty set’. Because Soyster’s approach tends to provide very conservative solutions,

Kouvelis and Yu (1997); Ben-Tal and Nemirovski (1997, 1998); El Ghaoui and Lebret

(1997); El Ghaoui et al. (1998) developed new robust optimization frameworks for Integer

Programming and Convex Programming that allow adjusting the size and shape of the

uncertainty set to allow for a balance between feasibility and the attainable objective

value. Both static and dynamic approaches to robust optimization have been considered

(Bertsimas and Thiele, 2006). In a static uncertain optimization problem, all decisions

have to be made before the actual realizations of the parameters are known. In a dynamic

uncertain optimization problem, some decisions - the so-called ‘recourse actions’ - may be

made after the parameters values are known (Ben-Tal et al., 2004; Atamturk and Zhang,

2007; Chen et al., 2007; Bertsimas and Caramanis, 2010). Dynamic problems are referred

to as two-stage or multi-stage problems, depending on the number of stages in which

the decisions can be made. (Ben-Tal et al., 2004) show that two-stage robust linear pro-

gramming is computationally intractable and propose a tractable alternative referred to

as a�nely adjustable robust linear programming. A�nely adjustable robustness requires

the recourse decision variables to be an a�ne function of the realizations of the uncertain

parameters.

The problem considered in this paper can be classified as a two-stage dynamic uncer-

tain optimization problem. In contrast to the robust optimization approaches discussed

above, our focus is not on maintaining feasibility in all scenarios, but instead on maximiz-

ing the gains of trade in the worst-case scenario in our uncertainty set. Transactions that

are infeasible after second stage recourse actions, are considered as lost transactions. As

our problem, including the recourse actions, can be modeled by mixed integer programs,

our solution approaches can be considered as generalizations of the above techniques for

adjustable robust mixed integer programming. However, in our solution approaches we

rely on the specific structure of our problem. The delayed scenario generation approach

we use for our full-recourse policy may be applicable to general mixed integer uncertain

optimization problems, provided that appropriate bounds can be derived for solving the

scenario generation subproblem. Scenario generation has been considered in stochastic

programming (see e.g. Casey and Sen (2005)), but to the extent of our knowledge we are

the first to consider it for adjustable robust optimization.

The remainder of this paper is organized as follows. Section 6.2 provides a math-

ematical description of the robust exchange problem. It first presents a general model

for market uncertainty and then details the simple recourse, back-arcs recourse, and full

recourse policies. Sections 6.3, 6.4, and 6.5 describe our theoretical results for each of
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these recourse policies. Section 6.6 considers a method to refine the robust solution by

embedding the robust optimization criteria in a hierarchical set of criteria. Section 6.7

then provides computational results. Finally, Section 6.8 concludes.

6.2 Mathematical problem description

6.2.1 A model for market uncertainty

We model the exchange market as follows. Let D = (N,A) denote an unreliable digraph

where the node set N represents the agents and the arc set A represents the possible

transactions (see Figure 6.1 for an example). Furthermore, let N = N
S

[ N
U

where N
S

is the set of agents requiring a good in return for their own good, and N
U

is the set of

agents that provide a good without requiring a good in return. A length-l cycle is an arc

traversal hn1, . . . , nl

i such that {n1, . . . , nl

} ✓ N
S

, (n
l

, n1) 2 A and, for every 1  i < l,

(n
i

, n
i+1) 2 A. A length l chain is an arc traversal hn1, . . . , nl

i such that n1 2 N
U

,

{n2, . . . , nl

} ✓ N
S

and for every 1  i < l, (n
i

, n
i+1) 2 A. Next, let k 2 Z+ denote the

maximum size of trading cycles and chains2. Then a solution to the clearing problem

corresponds to a set of vertex disjoint cycles and chains in D with length at most k.

Let U ✓ P(N [A), where P(N [A) denotes the power set of N [A, be the collection

of possible ‘scenarios’ of ultimately available nodes and arcs, i.e. the transactions that

can go forward after verification. In what follows we consider U := {u ✓ N [ A :

B⇣u  b, ⇣u 2 {0, 1}|N |+|A|}, where B is a given matrix, b is a given vector and where

⇣u =
h

⇣u1 , . . . , ⇣
u

|N |, ⇣
u

|N |+1, . . . , ⇣
u

|N |+|A|

i

T

with

⇣u
i

=

8

>

<

>

:

1 if i  |N | and node i is available in the recourse stage,

1 if i > |N | and arc i is available in the recourse stage,

0 otherwise.

For ease of exposition we will denote with u
⇣

the scenario specified by the vector ⇣.

Furthermore, we will denote with ⇣u
n

and ⇣u
a

the elements of ⇣u referring to, respectively,

node n 2 N and arc a 2 A. A scenario set can, for example, be characterized as the

set of scenarios in which at most p % of nodes fail. This would correspond to the set

U := {u ✓ N [ A :
P

n2N ⇣u
n

� |N |(1� p),
P

a2A ⇣u
a

� |A|, ⇣u 2 {0, 1}|N |+|A|}. We do not

require the probability distribution over the set of scenarios to be known.

2
Although, in some applications, the maximum cycle and chain length may be di↵erent, we use a single

limit in this paper. This corresponds for instance to the maximum number of simultaneous transplants

in kidney exchange.
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Figure 6.1: Example of an exchange market digraph. There are 5 agents, represented

by the nodes n1, . . . , n5. The arcs in the graph represent the possible transactions: an

arc between nodes n
i

and n
j

indicates that agent n
j

is interested in the good of agent n
i

.

The graph has 4 feasible trading cycles, c1 = hn1, n2i , c2 = hn2, n3i , c3 = hn3, n4i , c4 =

hn1, n2, n3, n5i. A solution to the clearing problem could, for instance, consist of cycles c1

and c3 since these are vertex disjoint.

N.B. If we choose U := {N [ A}, the above model corresponds to the standard determin-

istic exchange model as considered in (Abraham et al., 2007; Constantino et al., 2013;

Glorie et al., 2014d).

6.2.2 The robust exchange problem

The robust exchange problem is to determine a solution to the clearing problem that is

robust against market uncertainty.

Denote with Du = (Nu, Au) the subgraph of D induced by a scenario u 2 U. Fur-

thermore, denote with C(k) and Cu(k) the set of all cycles and chains in, respectively, D

and Du with cardinality at most k. If C⇤ ✓ C(k) is a solution to the clearing problem

in D (the planned solution which is proposed for verification) then if scenario u 2 U

occurs after verification, an alternative solution C⇤u ✓ Cu(k) in Du may be considered

(the e↵ective solution).

Let us introduce decision variables

X
c

=

(

1 if cycle c 2 C(k) is selected in the planned solution,

0 otherwise.

Then the robust exchange problem is given by
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max
X

min
u2U

R(X, u) (6.1)

s.t.
X

c2C(k):n2c

X
c

 1 8 n 2 N (6.2)

X 2 {0, 1}|C(k)| (6.3)

where R(X, u) specifies the objective value attained under the recourse policy for the

planned solution X and the scenario u 2 U. The objective (6.1) is to maximize some

objective value, as determined by the selected recourse policy (see below), in the worst

case scenario. The packing constraints (6.2) guarantee that each agent can be involved in

at most one trading cycle or chain.

Since the set of scenarios U is finite, the robust exchange problem can alternatively be

formulated as:

RE(U) :=

max
Z,X

Z (6.4)

s.t. Z  R(X, u) 8 u 2 U (6.5)
X

c2C(k):n2c

X
c

 1 8 n 2 N (6.6)

Z 2 R+ (6.7)

X 2 {0, 1}|C(k)| (6.8)

Here, Z is an auxilliary decision variable and Constraints (6.5) specify that the worst

case is taken with respect to the uncertainty set U.

6.2.3 Simple recourse

We will first consider the so-called simple recourse policy. In this policy we take into

account costs (or missed gains) for failing transactions. In other words, under this policy

the alternative solution that may be selected after verifying the planned transactions,

consists only of the cycles and chains in the planned solution for which all nodes and arcs

are available. Although this policy does not allow failing trading cycles or chains to be

recovered, it ostensibly allows better decisions to be made regarding the set of transactions

that is initially proposed because the possibility of failure is explicitly taken into account.
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Let f : A ! R be a weight function over the arcs in D, such that f(a) indicates the

benefit associated to executing the transaction represented by the arc a 2 A. Next, let

w
c

:=
P

a2c f(a) denote the benefit associated to executing a cycle or chain c 2 C(k), let

X indicate a planned solution, and let u 2 U. Then, the simple recourse policy is defined

as:

RSimple(X, u) :=
X

c2C(k)

w
c

X
c

�
X

c2C(k):c/2Cu(k)

w
c

X
c

(6.9)

=
X

c2C(k)

w
c

X
c

�
X

c2C(k)

(1�
Y

n2c
⇣u
n

Y

a2c
⇣u
a

)w
c

X
c

=
X

c2C(k)

(w
c

X
c

Y

n2c
⇣u
n

Y

a2c
⇣u
a

)

If the weights w
c

are set equal to the number of nodes in each cycle or chain c 2 C(k),

then R
Simple

(X, u) equals the number of nodes belonging to cycles and chains that are in

the planned solution X and are feasible in scenario u.

Although the simple recourse policy may appear to be very restrictive as it does not

allow failing trading cycles or chain to be recovered, this restrictiveness corresponds to

current practice in some kidney exchange programs. In these programs it is simply not

possible to recover match failures in a timely fashion and the patients and donors involved

in a failing cycle or chain are left in the exchange pool until the next matching round.

By taking the possibility of failure already into account in the primary decision stage, the

simple recourse model allows better decisions to be made even for those programs.

6.2.4 Back-arcs recourse

The next recourse policy we consider is the so-called back-arcs recourse policy (see Manlove

and O’Malley (2012)). The idea is to allow part of a failing transaction cycle to be re-

covered if the remaining participants in the cycle can trade among themselves. We begin

with the following definition:

Definition 6.1. Let D = (N,A) be a digraph and let c be a cycle in D. An arc a =

(i, j) 2 A is a back-arc for c if i 2 c and j 2 c but a /2 c.

As for the simple recourse policy, let f : A ! R be a weight function over the arcs in

D, such that f(a) indicates the benefit associated to executing the transaction represented

by the arc a 2 A. Also, let w
c

:=
P

a2c f(a) denote the benefit associated to executing a

cycle c 2 C(k).



127_Erim Glorie[stand].job

6.2 Mathematical problem description 115

Furthermore, let X indicate a planned solution, let A(X) ✓ A denote the set of arcs

included in cycles and chains selected in X, and let Â(X) ✓ A denote the set of back-arcs

for cycles selected in X. Finally, let D̂u = (Nu, Au \ (A(X) [ Â(X)) denote the recourse

graph in scenario u 2 U and denote with Ĉu(k) the set of all cycles and chains in D̂u with

cardinality at most k.

We introduce the following additional decision variables:

Xu

c

=

8

>

<

>

:

1 if cycle or chain c 2 C(k) is selected in the recourse solution

under scenario u 2 U,

0 otherwise.

Then, the back-arcs recourse policy is defined as:

RBack-arcs(X, u) :=

max
X

u

X

c2Ĉu(k)

w
c

Xu

c

(6.10)

s.t.
X

c2Ĉu(k):n2c

Xu

c

 1 8 n 2 Nu (6.11)

Xu 2 {0, 1}|C(k)|

The recourse objective (6.10) maximizes the benefit of the transactions selected in the

final solution given a specific scenario u 2 U. Constraints (6.11) ensure that agents can

be selected at most once in the final solution.

6.2.5 Full recourse

The last recourse policy we consider, called full recourse, allows for a complete recovery

of the planned solution using alternative transactions. We are interested in determining

a planned and alternative solution such that the number of nodes in the intersection of

both solutions is maximized.

As in the back-arcs recourse policy, let us use the following additional decision vari-

ables:

Xu

c

=

8

>

<

>

:

1 if cycle or chain c 2 C(k) is selected in the recourse solution

under scenario u 2 U,

0 otherwise.

Futhermore, let X indicate a planned solution and let u 2 U. Then, the full recourse

policy is defined as:
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RFull(X, u) :=

max
X

u

X

c2Cu(k)

0

@

X

n2c

X

c

02C(k):n2c0
X

c

0

1

AXu

c

(6.12)

s.t.
X

c2Cu(k):n2c

Xu

c

 1 8 n 2 Nu (6.13)

Xu 2 {0, 1}|C(k)|

The recourse objective (6.12) maximizes the number of nodes selected in both the

initial and the final solution given a specific scenario u 2 U (the quantity between paren-

thesis specifies the number of nodes of cycle c that are part of the initial solution). Con-

straints(6.13) ensure that nodes can be selected at most once in the final solution.

Alternatively, the full recourse function may be expressed directly in terms of the

uncertainty vector ⇣:

RFull(X, u) =

max
X

u

X

c2C(k)

0

@

X

n2c

X

c

02C(k):n2c0
X

c

0

1

AXu

c

s.t.
X

c2C(k):n2c

Xu

c

 ⇣u
n

8 n 2 N (6.14)

X

c2C(k):a2c

Xu

c

 ⇣u
a

8 a 2 A (6.15)

Xu 2 {0, 1}|C(k)|

Here constraints (6.14) guarantee that all nodes in the cycles in the final solution are

available. Constraints (6.15) do the same for arcs.

6.3 Solving the robust exchange problem with simple

recourse

In this section we consider solving the robust exchange problem with simple recourse. The

first di�culty in solving the robust exchange problem, regardless of the form of recourse, is

that the number of scenarios, and hence the number of constraints (6.5) in our formulation
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(6.4)-(6.8), may be too large to solve the problem directly as a mixed integer program.

However, given a planned solution X, we can compute the worst case scenario by solving:

A(X) := min
u2U R(X, u) =

min
⇣

R(X, u
⇣

) (6.16)

s.t. B⇣  b (6.17)

⇣ 2 {0, 1}|N |+|A| (6.18)

Let us call this problem the ‘adversary’s problem’. The objective (6.16) is to minimize

the benefits after recourse actions are performed. Constraints (6.17) ensure that a scenario

is selected within the uncertainty set U.

In case of simple recourse, the adversary’s problem reads as follows:

ASimple(X) :=

min
⇣

X

c2C(k)

w
c

X
c

Y

n2c
⇣
n

Y

a2c
⇣
a

s.t. B⇣  b

⇣ 2 {0, 1}|N |+|A|

Before we present our main result for the simple recourse policy, we need the following

definition.

Definition 6.2. Consider an unreliable digraph D = (N,A). The setting in which at

most p % of the nodes and arcs can fail is called homogenous failure. This corresponds

to the uncertainty set U := {u ✓ N [ A :
P

n2N ⇣u
n

+
P

a2A ⇣u
a

� (|N | + |A|)(1 � p), ⇣u 2
{0, 1}|N |+|A|}.

Observe that in case of homogenous failure and simple recourse, only a single arc or

node failure is required to completely cancel a cycle or chain. Hence, a straightforward

strategy for the adversary is to cancel the bp(|N | + |A|)c most valuable cycles. We can

simplify the adversary’s problem by replacing node and arc failure with cycle failure. We

do this by introducing an additional decision variable ⇣
c

:=
Q

n2c ⇣n
Q

a2c ⇣a for each cycle

c 2 C(k) and rewrite the adversary’s problem as:
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ASimple(X) =

min
⇣

X

c2C(k)

w
c

X
c

⇣
c

(6.19)

s.t.
X

c2C(k)

⇣
c

� |C(k)|� bp(|N |+ |A|)c (6.20)

⇣ 2 {0, 1}|C(k)| (6.21)

We are now ready to present our main result for the simple recourse policy.

Theorem 6.1. In case of simple recourse and homogenous failure, the constraint matrix

associated to the adversary’s problem A
Simple

(X) is totally unimodular.

Proof. In case of simple recourse and homogenous failure, and after relaxing the inte-

grality requirement (6.21) on the ⇣ variables, the constraint matrix associated with the

adversary’s problem as specified by (6.19), (6.20) in standard form is of the form

0

B

B

B

B

B

B

B

@

1 1 1 . . . 1

�1 0 0 . . . 0

0 �1 0 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . �1

1

C

C

C

C

C

C

C

A

. (6.22)

Theorem 13.3 from (Steiglitz and Papadimitriou, 1982), gives su�cient conditions to

prove that matrix (6.22) is totally unimodular.

The first requirement is that all the entries in the matrix belong to {�1, 0, 1}. This

can be easily verified. Second, no more than two entries in the same column may be

non-zero. This is also easy to verify. Finally, it must be possible to partition the rows of

the matrix into two sets A and B such that: i) if a column has two entries of the same

sign, their rows are in di↵erent sets; ii) if a column has two entries of di↵erent signs, their

rows are in the same set. This is easily fulfilled if A contains all the rows and B is the

empty set.

Because of Theorem 6.1 there is no need to include the binary requirement (6.21) on the

variables ⇣ that represent the cycles surviving in the worst case scenario. Every extreme

point of the feasible region is integral. Then, using strong duality on the adversary’s

problem and letting v0 denote the dual of constraint (6.20) and v
c

, c 2 C(k), the dual
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of the unit upper bounds imposed by (6.21), we can obtain an equivalent mixed integer

programming formulation of the robust exchange problem:

max
X,v

(|C(k)|� bp(|N |+ |A|)c) v0 �
X

c2C(k)

v
c

s.t.
X

c2C(k):n2c

X
c

 1 8n 2 N (6.23a)

v0 � v
c

 w
c

X
c

8c 2 C(k) (6.23b)

X
c

2 {0, 1} 8c 2 C(k)
v0 � 0

v
c

� 0 8c 2 C(k)

Although the above model is still a mixed integer program, its size is much more

compact than the size of formulation (6.4)-(6.8).

6.4 Solving the robust exchange problem with back-

arcs recourse

In this section we study how to solve the robust exchange problem with back-arcs re-

course. Similar to how we analyzed the simple recourse policy, we begin by considering

the adversary’s problem:

ABack-arcs(X) :=

min
⇣

RBack-arcs(X, u
⇣

)

s.t. B⇣  b

⇣ 2 {0, 1}|N |+|A|

Since the back-arcs recourse function RBack-arcs(X, u) as defined in (6.10)-(6.11) is

a maximization problem, the adversary’s problem is, in the general case, a non-linear

optimization problem. However, we will consider a specific setting for which it can be

solved e�ciently.
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Let us assume homogenous failure (see Definition 6.2), let k = 3 (this is the bound

used in most kidney exchange programs (Roth et al., 2007)), and let w
c

= |N
S

\ c| for
all c 2 C(k) (i.e. we want to maximize the number of agents that receive a good).

As, by definition, back-arcs cannot exist for cycles of length 2 and back-arcs recourse is

meaningless for chains of length 2, we then only have to consider recourse actions for cycles

and chains of length 3. Without loss of generality, there are four possible configurations

for back-arc reactions in cycles of size 3 that are illustrated in Figures 6.2 to 6.5, and four

possible configurations for back-arc reactions in chains of size 3 that are illustrated in

Figures 6.6 to 6.9. Note that, in the absence of failure, a length 3 cycle involves 3 agents

from N
S

, and a length 3 chain involves 2 agents from N
S

.

In the first three cases for cycles, illustrated in Figures 6.2-6.4, a single node failure is

su�cient to completely cancel the cycle (in the worst case). However, in the fourth case,

illustrated in Figure 6.5, two node failures are required to completely cancel the cycle.

Similarly, in the first three cases for chains, illustrated in Figures 6.6-6.8, a single node

failure is su�cient, but in the last case, illustrated in Figure 6.9, two failures are required.

Because of the above, in the case of homogenous failure and k = 3, it is possible

to solve the adversary’s problem using a trivial greedy algorithm (i.e. cancel cycles and

chains in order of the number of failures required per point of damage inflicted on the

objective function). However, this would not help us as we want to include the adversary’s

problem in a mixed integer program for RE(U). Therefore, using the knowledge of our

problem structure, we now proceed with the following steps:

1. Identify the cycles of length 3 with the structure of case 4; let C 0(3) ⇢ C(3) be the

set of such cycles;

2. For each c 2 C 0(3) create one auxiliary binary decision variables ⇣1
c

representing the

first failure for c;

3. Reformulate the recourse function and the adversary’s problem such that they satisfy

the following conditions for each c 2 C 0(3):

i if ⇣
c

= ⇣1
c

= 0 then the benefit from c must be 0, i.e. the adversary completely

cancels c and thus there is no back-arc recourse.

ii if ⇣
c

= ⇣1
c

= 1 then the benefit from c must be 3, i.e. the adversary does not

cancel c.

iii if ⇣
c

= 1 and ⇣1
c

= 0 then the benefit from c must be 2, i.e., the adversary cancels

c partially as two nodes can be recovered through back-arc recourse.
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Similarly, we perform the following steps for chains:

1. Identify the chains of length 3 with the structure of case 8; let C 00(3) ⇢ C(3) be the

set of such chains;

2. For each c 2 C 00(3) create one auxiliary binary decision variable ⇣1
c

representing the

first failure for c;

3. Reformulate the recourse function and the adversary’s problem such that they satisfy

the following conditions for each c 2 C 00(3):

i if ⇣
c

= ⇣1
c

= 0 then the benefit from c must be 0, i.e. the adversary completely

cancels c and thus there is no back-arc recourse.

ii if ⇣
c

= ⇣1
c

= 1 then the benefit from c must be 2, i.e. the adversary does not

cancel c.

iii if ⇣
c

= 1 and ⇣1
c

= 0 then the benefit from c must be 1, i.e., the adversary cancels

c partially as one node can be recovered through back-arc recourse.

Following these lines, we rewrite the back-arcs recourse function as:

RBack-arcs(X, u) =
X

c2C(3)�(C0(3)[C00(3))

|c|X
c

⇣u
c

+
X

c2C0(3)

X
c

(⇣1,u
c

+ 2⇣u
c

)

+
X

c2C00(3)

X
c

(⇣u
c

+ ⇣1,u
c

) (6.24)

It is straightforward to check that (6.24) satisfies the above conditions. Furthermore,

note that the recourse function now has been reformulated as a linear function, whereas

before it was a maximization problem (recall (6.10) and (6.11)).

Next, letting b = bp(|N |+ |A|)c, we rewrite the adversary’s problem as:
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ABack-arcs(X) =

min
⇣

X

c2C(3)�(C0(3)[C00(3))

|c|X
c

⇣
c

+
X

c2C0(3)

X
c

(⇣1
c

+ 2⇣
c

) +
X

c2C00(3)

X
c

(⇣1
c

+ ⇣
c

) (6.25)

s.t.
X

c2C(3)

⇣
c

+
X

c2C0(3)[C00(3)

⇣1
c

� |C(3)|+ |C 0(3)|+ |C 00(3)|� b (6.26)

⇣
c

� ⇣1
c

8c 2 C 0(3) [ C 00(3) (6.27)

⇣
c

 1 8c 2 C(3) (6.28)

⇣
c

2 {0, 1} 8c 2 C(3)

⇣1
c

2 {0, 1} 8c 2 C 0(3) [ C 00(3)

Here, the objective (6.25) is to minimize the number of agents receiving a good under

the back-arcs recourse policy as specified by (6.24). Constraint (6.26) specifies the adver-

sary’s uncertainty ‘budget’ in the homogenous failure setting. Constraints (6.27) ensure

condition (ii) and (iii) are met by guaranteeing that cycles and chains of cases 4 and 8 are

not cancelled entirely unless they contain two failures. Constraints (6.28) are redundant

but are added to aid the exposition of the remainder of our analysis.

The next step is to relax the binary requirement on the adversary’s variables ⇣
c

, ⇣1
c

and ⇣2
c

in order to get a lower bound on the robust exchange problem with back-arcs

recourse. Let us denote the relaxed adversary’s problem by A0
Back-arcs(X). Note that by

making this relaxation, the adversary has a larger set of feasible strategies and thus is

potentially capable of inflicting more damage on the planned solution. This is the reason

why we get a lower bound to the robust exchange problem by relaxing the integrality of

the adversary’s variables. Next, we can apply strong duality on A0
Back-arcs(X) to achieve

a linear formulation for the relaxed robust exchange problem:
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RE 0
Back-arcs(U) =

max
X,v

(|C(3)|+ |C 0(3)|+ |C 00(3)|� b)) v0 �
X

c2C(3)

v
c

(6.29)

s.t.
X

c2C(3):n2c

X
c

 1 8n 2 N

v0 � v
c

 |c|X
c

8c 2 C(3)� (C 0(3) [ C 00(3)) (6.30)

v0 + v1
c

� v
c

 2X
c

8c 2 C 0(3) (6.31)

v0 + v1
c

� v
c

 X
c

8c 2 C 00(3) (6.32)

v0 � v1
c

 X
c

8c 2 C 0(3) [ C 00(3) (6.33)

X
c

2 {0, 1} 8c 2 C(3)

v0 � 0

v
c

� 0 8c 2 C(3)

v1
c

� 0 8c 2 C 0(3) [ C 00(3)

The above formulation is a straightforward mixed integer program. Although we have

argued that it provides a lower bound to the original robust exchange problem, one could

question whether there exist situations in which the adversary is actually capable of using

the relaxation to inflict more damage on the planned solution (and thus whether the

integrality requirement was necessary to begin with). The following example shows us

that this is indeed the case.

Example 6.1. Consider the market digraph represented in Figure 6.10 in which at most 2

nodes can fail. We have the set of cycles C(3) = {c1 = h1, 2i , c2 = h2, 3i , c3 = h1, 3i , c4 =
h4, 5i , c5 = h1, 2, 3i , c6 = h3, 2, 1i} and C 0(3) = {c5, c6}.

1 2

3

4

5

Figure 6.10:

The optimal solution to the robust exchange problem with back-arcs recourse RE
Back-arcs

(U)

is to select cycles c4 and c5 with objective value equal to 2. Although the optimal solution

for the relaxed robust exchange problem RE 0
Back-arcs

(U) leads to the same planned solution,
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the objective value is equal to 1.5, since the adversary variables need not be binary and

will be chosen as follows: ⇣
c1 = 1, ⇣

c2 = 1, ⇣
c3 = 1, ⇣

c4 = 0, ⇣1
c5
= ⇣2

c5
= ⇣

c5 =
1
2
, ⇣1

c6
= ⇣2

c6
=

⇣
c6 = 1.

We are now ready to provide our main results for the back-arcs recourse policy.

Lemma 6.1. Let X be an arbitrary feasible solution to the robust exchange problem.

In case of back-arcs recourse, if the optimal solution value for the relaxed adversary’s

problem A0
Back-arcs

(X) is zero then the optimal solution value for the adversary’s problem

A
Back-arcs

(X) is also zero.

Proof. For the optimal value to be zero, all ⇣ variables associated with selected cycles (for

which X
c

= 1) must be zero such that these cycles are completely cancelled and cannot be

reconstructed. If this is feasible in the relaxed problem A0
Back-arcs(X), this is also feasible

under the binary requirement in ABack-arcs(X).

Lemma 6.2. Let X be an arbitrary feasible solution to the robust exchange problem and

let k = 3. In case of back-arcs recourse and homogeneous failure, the adversary’s budget

constraint (6.26) evaluated in an optimal solution to the adversary’s problem A0
Back-arcs

(X)

is either binding or the optimal objective value is zero.

Proof. By contradiction, assume that for a given X the optimal adversary’s objective

function is positive and that the optimal solution ⇣⇤ is such that constraint (6.26) is not

binding:

X

c2C(3)

⇣
c

+
X

c2C0(3)[C00(3)

⇣1
c

> |C(3)|+ |C 0(3)|+ |C 00(3)|� b

The first hypothesis implies that there is a cycle for which X
c

= 1 and ⇣⇤
c

> 0.

The second hypothesis implies that the slack variable associated to constraint (6.26) is

positive. By complementary slackness, the optimal solution of the dual problem must

have v⇤0 = 0. In particular, v⇤0 = 0 implies that the optimal objective function value of the

dual (6.29) is non-positive. On the other hand, by strong duality, the primal and dual

optimal values are to be equal which contradicts our hypothesis that the primal optimal

value is positive.

Lemma 6.3. Let X be an arbitrary feasible solution to the robust exchange problem and

let k = 3. In case of back-arcs recourse and homogenous failure, it holds that in an optimal

solution ⇣⇤ to the relaxed adversary’s problem A0
Back-arcs

(X), for all c 2 C 0(3) for which

X
c

= 1 we have ⇣⇤
c

= ⇣1⇤
c

.
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Proof. By constraint (6.27) ⇣⇤
c

� ⇣1⇤
c

. Additionally, the adversary’s optimization problem

is a minimization one and all the coe�cients in the objective function are positive for ⇣
c

and ⇣1
c

where X
c

= 1. Therefore, it is clear that in an optimal solution ⇣
c

will be as small

as possible and thus equal to ⇣1
c

.

Theorem 6.2. Consider the setting with back-arcs recourse and homogenous failure. Let

k = 3, let X be an arbitrary feasible solution to the robust exchange problem and let

b = bp(|N | + |A|)c. Furthermore, let F3 := {c 2 C(3) � C 0(3) : |c| = 3 and X
c

= 1},
F2 := {c 2 C(3) � C 00(3) : |c| = 2 and X

c

= 1}, F1.5 := {c 2 C 0(3) : X
c

= 1}, and

F1 := {c 2 C(3) : |c| = 1, X
c

= 1} [ {c 2 C 00(3) : X
c

= 1}. If the optimal objective value

is positive, there is an optimal solution ⇣⇤ to the relaxed adversary’s problem A0
Back-arcs

(X)

that satisfies:

• |F ⇤
3 := {c 2 F3 : ⇣⇤

c

= 0}| = n3 with n3 := min(b, |F3|);

• |F ⇤
2 := {c 2 F2 : ⇣⇤

c

= 0}| = n2 with n2 := min(b� n3, |F2|);

• |F ⇤
1.5 := {c 2 F1.5 : ⇣⇤

c

= ⇣1⇤
c

= 0}| = n1.5 with n1.5 := min(b b�n3�n2
2

c, |F1.5|) and

|F ⇤⇤
1.5 := {c 2 F1.5 : ⇣⇤

c

= ⇣1⇤
c

= 1
2
}| = n0

1.5 with n0
1.5 := 1{n1.5<|F1.5| and b�n3�n2 is odd}.

• |F ⇤
1 := {c 2 F1 \ C 00(3) : ⇣⇤

c

= ⇣1⇤
c

= 0} [ {c 2 F1 � C 00(3) : ⇣⇤
c

= 0}| = n1 = n0
1 + n00

1

and |F ⇤⇤
1 := {c 2 F1 \ C 00(3) : ⇣⇤

c

= ⇣1⇤
c

= 1
2
}| = n000

1 with n0
1 := |{c 2 F1 \ C 00(3) :

⇣⇤
c

= ⇣1⇤
c

= 0}| and n00
1 := |{c 2 F1 � C 00(3) : ⇣⇤

c

= 0}| and 2n0
1 + n00

1 + n000
1 =

min(b� n3 � n2 � 2n1.5 � n0
1.5, |F1|) and n000

1 := 1{2n0
1+n

00
1<min(b�n3�n2�2n1.5�n

0
1.5,|F1|)}.

• the variables associated with cycles not in F ⇤
3 [F ⇤

2 [F ⇤
1.5 [F ⇤⇤

1.5 [F ⇤
1 [F ⇤⇤

1 are equal

to 1.

Proof. Suppose that the theorem conditions are satisfied. Then, since the optimal objec-

tive value is positive, by Lemma 6.2 it holds:

X

c2C(3)

⇣
c

+
X

c2C0(3)[C00(3)

⇣1
c

= |C(3)|+ |C 0(3)|+ |C 00(3)|� b

We will prove the theorem by induction on b.

If b = 0, the equation above becomes

X

c2C(3)

⇣
c

+
X

c2C0(3)[C00(3)

⇣1
c

= |C(3)|+ |C 0(3)|+ |C 00(3)|
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and in order for the decision vector ⇣⇤ to be feasible all its entries must be equal to

one (binary). It follows that n3 = n2 = n1.5 = n1 = 0 which is in accordance with the

theorem statement.

Assume that the theorem holds for b = i � 1 > 0. Note that by the induction

hypothesis, there is a cycle c 2 F ⇤
3 [ F ⇤

2 [ F ⇤
1.5 [ F ⇤

1 [ F ⇤⇤
1.5 [ F ⇤⇤

1 such that

⇣⇤
c

= 0 if c 2 C(3) \ (F ⇤⇤
1.5 [ F ⇤⇤

1 )

or

⇣⇤
c

= ⇣1⇤
c

=
1

2
if c 2 (F ⇤⇤

1.5 [ F ⇤⇤
1 ) (applying Lemma 6.3).

Taking into account that ⇣⇤
c

< 1 for all c 2 F ⇤
3 [ F ⇤

2 [ F ⇤
1.5 [ F ⇤

1 [ F ⇤⇤
1.5 [ F ⇤⇤

1 , by

complementary slackness, v⇤
c

= 0. If we increase b by one unit, since constraint (6.26)

is binding, the value of the dual variable v⇤0 associated to the problem with b = i � 1

tell us how much the objective function decreases if b = i. Consider the cycle c 2
F ⇤
3 [ F ⇤

2 [ F ⇤
1.5 [ F ⇤

1 [ F ⇤⇤
1.5 [ F ⇤⇤

1 that is in the F ⇤
j

with smallest index. There are four

possible cases.

Case 1: F ⇤
j

⇢ F
j

and j � 2. Then, cycle c belongs to C(3)� (C 0(3)[C 00(3)). As noted

before v⇤
c

= 0 and thus, evaluating constraint (6.30) for c 2 C(3)� (C 0(3) [ C 00(3)) leads

to

v⇤0  j.

We conclude that the adversary’s optimal objective value with b = i decreases by at most

j units in comparison with the case of b = i � 1. In fact, a decrease of exactly j units

can be achieved by choosing an additional cycle c 2 (F
j

� F ⇤
j

) to be part of F ⇤
j

(i.e put

⇣
c

= 0). Note that this solution is feasible for the problem with b = i. Moreover, this

optimal solution is in accordance with the theorem statement.

Case 2: F ⇤
j

= F
j

, j = 3 and F2 6= ;. Using our induction hypothesis together with

strong duality, constraints (6.30) to (6.33) come down to
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v⇤0  3 8c 2 F3

v⇤0 = 2 + v⇤
c

8c 2 F2

v⇤0 = 1 + v⇤
c

8c 2 F1 � C 00(3)

v⇤0 = v⇤
c

8c 2 C(3)� (C 0(3) [ C 00(3) [ F1 [ F2 [ F3)

v⇤0 � v1
c

⇤ = 1 8c 2 F1.5

v⇤0 + v1
c

⇤ � v⇤
c

= 2 8c 2 F1.5 ) 2v⇤0 � 3 = v⇤
c

v⇤0 � v1
c

⇤ = 0 8c 2 C 0(3)� F1.5

v⇤0 + v1
c

⇤ � v⇤
c

= 0 8c 2 C 0(3)� F1.5 ) 2v⇤0 = v⇤
c

v⇤0 � v1
c

⇤ = 1 8c 2 F1 \ C 00(3)

v⇤0 + v1
c

⇤ � v⇤
c

= 1 8c 2 F1 \ C 00(3) ) 2v⇤0 � 2 = v⇤
c

v⇤0 � v1
c

⇤ = 0 8c 2 C 00(3)� F1

v⇤0 + v1
c

⇤ � v⇤
c

= 0 8c 2 C 00(3)� F1 ) 2v⇤0 = v⇤
c

Observe that setting v⇤0 = 2 and the v⇤
c

accordingly is a dual feasible solution. More-

over, that dual solution is optimal: by the induction hypothesis the adversary’s optimal

value is

2|F2|+ 3|F1.5|+ 2|F1 \ C 00(3)|+ |F1 � C 00(3)|

and the dual objective function evaluated at the dual solution just described takes the

same value

(|C(3)|+ |C 0(3)|+ |C 00(3)|� b) v⇤0 �
X

c2C(3)

v⇤
c

=(|C(3)|+ |C 0(3)|+ |C 00(3)|� |F3|) 2�
X

c2F2

0

�
X

c2C(3)�(C0(3)[C00(3)[{F1�C

00(3)}[{F1\C00(3)}[F2[F3)

2�
X

c2F1.5[{F1�C

00(3)}

1

�
X

c2{C0(3)�F1.5}[{C00(3)�F1\C00(3)}

4

=2|C(3)|+ 2|C 0(3)|+ 2|C 00(3)|� 2|F3|� 2|C(3)|+ 2|C 0(3)|+ 2|F2|+ 2|F3|
+2|C 00(3)|+ 2|F1 � C 00(3)|� 2|F1 \ C 00(3)|� |F1.5|� 4|C 0(3)|+ 4|F1.5|
�4|C 00(3)|+ 4|F1 \ C 00(3)|� |F1 � C 00(3)|

=2|F2|+ 3|F1.5|+ 2|F1 \ C 00(3)|+ |F1 � C 00(3)|
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Therefore, the optimal value of the relaxed adversary’s problem with b = i decreases

by 2 units in comparison with the case of b = i � 1 and that decrease can be achieved

by choosing an additional cycle c 2 (F2 � F ⇤
2 ) to be part of F ⇤

2 (i.e put ⇣
c

= 0). Note

that this solution is feasible for the problem with b = i and it is in accordance with the

theorem statement.

Case 3: F ⇤
3 = F3, F ⇤

2 = F2 and F ⇤
1.5 [ F ⇤⇤

1.5 ⇢ F1.5. The proof is analogous to the

previous case. Using the induction hypothesis together with strong duality, constraints

(6.30) to (6.33) now come down to:

v⇤0  3 8c 2 F3

v⇤0  2 8c 2 F2

v⇤0 = 1 + v⇤
c

8c 2 F1 � C 00(3)

v⇤0 = v⇤
c

8c 2 C(3)� (C 0(3) [ C 00(3) [ F1 [ F2 [ F3)

v⇤0 � v1
c

⇤ = 1 8c 2 F1.5 � F ⇤
1.5 [ F ⇤⇤

1.5

v⇤0 + v1
c

⇤ � v⇤
c

= 2 8c 2 F1.5 � F ⇤
1.5 [ F ⇤⇤

1.5 ) 2v⇤0 � 3 = v⇤
c

v⇤0 � v1
c

⇤ = 0 8c 2 C 0(3)� F1.5

v⇤0 + v1
c

⇤ � v⇤
c

= 0 8c 2 C 0(3)� F1.5 ) 2v⇤0 = v⇤
c

v⇤0 � v1
c

⇤ = 1 8c 2 F1 \ C 00(3)

v⇤0 + v1
c

⇤ � v⇤
c

= 1 8c 2 F1 \ C 00(3) ) 2v⇤0 � 2 = v⇤
c

v⇤0 � v1
c

⇤ = 0 8c 2 C 00(3)� F1

v⇤0 + v1
c

⇤ � v⇤
c

= 0 8c 2 C 00(3)� F1 ) 2v⇤0 = v⇤
c

Observe that setting v⇤0 = 3
2
and the v⇤

c

accordingly with the updated system of

equations leads to a dual feasible solution. Moreover, that dual solution is optimal: by

the induction hypothesis the adversary’s optimal value is

3|F1.5|� 3|F ⇤
1.5|+ 2|F1 \ C 00(3)|+ |F1 � C 00(3)|� 3

2
|F ⇤⇤

1.5|

Additionally, the dual objective function evaluated at the dual solution just described

takes the same value:
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(|C(3)|+ |C 0(3)|+ |C 00(3)|� b) v⇤0 �
X

c2C(3)

v⇤
c

=(|C(3)|+ |C 0(3)|+ |C 00(3)|� |F3|� |F2|� 2|F ⇤
1.5|� |F ⇤⇤

1.5|)
3

2

�
X

c2C(3)�(C0(3)[C00(3)[{F1�C

00(3)}[F2[F3)

3

2
�

X

c2F1.5�F

⇤
1.5

0

�
X

c2C0(3)�F1.5

3�
X

c2F1�C

00(3)

1

2
�

X

c2F1\C00(3)

1�
X

c2C00(3)�F1

3

=
3

2
|C(3)|+ 3

2
|C 0(3)|+ 3

2
|C 00(3)|� 3

2
|F3|� 3

2
|F2|� 3|F ⇤

1.5|�
3

2
|F ⇤⇤

1.5|

�3

2
|C(3)|+ 3

2
|C 0(3)|+ 3

2
|F2|+ 3

2
|F3|+ 3

2
|F1 � C 00(3)|+ 3

2
|C 00(3)|

�3|C 0(3)|+ 3|F1.5|� 1

2
|F1 � C 00(3)|� |F1 \ C 00(3)|� 3|C 00(3)� F1|

=3|F1.5|� 3|F ⇤
1.5|+ 2|F1 \ C 00(3)|+ |F1 � C 00(3)|� 3

2
|F ⇤⇤

1.5|

Therefore, the optimal value of the relaxed adversary’s problem with b = i decreases

by 3
2
units in comparison with the case of b = i � 1 and that decrease can be achieved

by making ⇣1
c

0 = ⇣
c

0 = 0 for the c0 2 F ⇤⇤
1.5 if |F ⇤⇤

1.5| > 0, and otherwise, by adding a cycle

c 2 F1.5 � F ⇤
1.5 to F ⇤⇤

1.5 (i.e put ⇣1
c

= ⇣
c

= 1
2
). Note that this solution is feasible for the

problem with b = i and that it is in accordance with the theorem statement.

Case 4: F ⇤
3 = F3, F ⇤

2 = F2, F ⇤
1.5 = F1.5 and F ⇤

1 [ F ⇤⇤
1 ⇢ F1. Again the proof is

analogous. Using the induction hypothesis together with strong duality, constraints (6.30)

to (6.33) now come down to:
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v⇤0  3 8c 2 F3

v⇤0  2 8c 2 F2

v⇤0 = 1 + v⇤
c

8c 2 F1 � (C 00(3) [ F ⇤
1 )

v⇤0 = v⇤
c

8c 2 C(3)� (C 0(3) [ C 00(3) [ F1 [ F2 [ F3)

v⇤0 � v1
c

⇤  1 8c 2 F1.5

v⇤0 + v1
c

⇤ � v⇤
c

 2 8c 2 F1.5

v⇤0 � v1
c

⇤ = 0 8c 2 C 0(3)� F1.5

v⇤0 + v1
c

⇤ � v⇤
c

= 0 8c 2 C 0(3)� F1.5 ) 2v⇤0 = v⇤
c

v⇤0 � v1
c

⇤ = 1 8c 2 (F1 \ C 00(3)) � (F ⇤
1 [ F ⇤⇤

1 )

v⇤0 + v1
c

⇤ � v⇤
c

= 1 8c 2 (F1 \ C 00(3)) � (F ⇤
1 [ F ⇤⇤

1 ) ) 2v⇤0 � 2 = v⇤
c

v⇤0 � v1
c

⇤ = 0 8c 2 C 00(3)� F1

v⇤0 + v1
c

⇤ � v⇤
c

= 0 8c 2 C 00(3)� F1 ) 2v⇤0 = v⇤
c

Observe that now setting v⇤0 = 1 and the v⇤
c

accordingly with the updated system of

equations leads to a dual feasible solution. Moreover, that dual solution is optimal: by

the induction hypothesis the adversary’s optimal value is

2|F1 \ C 00(3)|+ |F1 � C 00(3)|� 2|F ⇤
1 \ C 00(3)|� |F ⇤

1 � C 00(3)|� |F ⇤⇤
1 |

Additionally, the dual objective function evaluated at the dual solution just described

takes the same value:
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(|C(3)|+ |C 0(3)|+ |C 00(3)|� b) v⇤0 �
X

c2C(3)

v⇤
c

=(|C(3)|+ |C 0(3)|+ |C 00(3)|� |F3|� |F2|� 2|F1.5|� 2|F ⇤
1 \ C 00(3)|� |F ⇤

1 � C 00(3)|� |F ⇤⇤
1 |) 1

�
X

c2C(3)�(C0(3)[C00(3)[{F1�C

00(3)}[F2[F3)

1

�
X

c2C0(3)�F1.5

2�
X

c2F1�C

00(3)

0�
X

c2F1\C00(3)�F

⇤
1 [F ⇤⇤

1

0�
X

c2C00(3)�F1

2

=|C(3)|+ |C 0(3)|+ |C 00(3)|� |F3|� |F2|� 2|F1.5|� 2|F ⇤
1 \ C 00(3)|� |F ⇤

1 � C 00(3)|� |F ⇤⇤
1 |

�|C(3)|+ |C 0(3)|+ |C 00(3)|+ |F1 � C 00(3)|+ |F2|+ |F3|
�2|C 0(3)|+ 2|F1.5|� 2|C 00(3)|+ 2|F1 \ C 00(3)|

=2|F1 \ C 00(3)|+ |F1 � C 00(3)|� 2|F ⇤
1 \ C 00(3)|� |F ⇤

1 � C 00(3)|� |F ⇤⇤
1 |

Therefore, the optimal value of the relaxed adversary’s problem with b = i decreases by

1 unit in comparison with the case of b = i�1 and that decrease can be achieved by making

⇣1
c

0 = ⇣
c

0 = 0 for the c0 2 F ⇤⇤
1 if |F ⇤⇤

1 | > 0, otherwise, by adding a cycle c 2 (F1\C 00(3))�F ⇤
1

to F ⇤⇤
1 (i.e put ⇣1

c

= ⇣
c

= 1
2
) or by adding a cycle c 2 (F1 � C 00(3)) � F ⇤

1 to F ⇤
1 (i.e put

⇣
c

= 0). Note that this solution is feasible for the problem with b = i and that it is in

accordance with the theorem statement.

Corollary 6.1. In case of back-arcs recourse, homogenous failure and k = 3, the optimal

value for the robust exchange problem RE
Back-arcs

(U) is equal to the optimal value of the

relaxed robust exchange problem RE 0
Back-arcs

(U) rounded up.

Proof. The optimal value of the relaxed adversary’s problem A0
Back-arcs(X) rounded up

gives a lower bound to the adversary’s problem. By Theorem 6.2, there always exists

an optimal solution to the relaxed adversary’s problem in which at most 3 variables are

fractional. In case of fractional variables, that optimal value is equal to some integer,

say OPT , plus 1
2
and thus the lower bound is OPT + 1. By making ⇣

c

0 = 1 = ⇣1
c

0 and

⇣2
c

0 = 0 we get a binary feasible solution for the adversary which has objective value equal

to OPT+1. Since the objective values of REBack-arcs(U) and RE 0
Back-arcs(U) respectively

coincide with ABack-arcs(X) and A0
Back-arcs(X), the corollary follows.
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6.5 Solving the robust exchange problem with full

recourse

In this section we consider solving the robust exchange problem with full recourse. The

methodology we develop works equally well for the forms of recourse discussed previously,

particularly when the considered setting does not allow the theorems presented in the

previous sections to be applied.

6.5.1 Delayed scenario generation

As discussed in Section 6.3, the first di�culty in solving the robust exchange problem,

regardless of the form of recourse, is that the number of scenarios and hence the number

of constraints (6.5) is typically prohibitively large. Therefore, in this section, we develop

the concept of delayed scenario generation. The main idea is to start out with only a

small set of scenarios and to generate additional scenarios only when required (i.e. when

the corresponding constraint (6.5) is violated). As we will see, the scenario generation

algorithm involves simultaneous row and column generation.

The delayed scenario generation algorithm is as follows:

Delayed scenario generation algorithm

1. Let Ū := {N [ A}.

2. Solve RE(Ū).

3. Check if there exists a scenario u 2 U\Ū such that RE(Ū [ {u}) < RE(Ū). If yes,

go to 4, otherwise go to 5.

4. Set Ū := Ū [ {u} and go to 2.

5. Done.

Proposition 6.1. The delayed scenario generation algorithm described above returns the

optimal solution to the robust exchange problem RE(U).

Proof. Because of the finiteness of U the procedure terminates in a finite number of

iterations. When it terminates, because of step 3, there exists no u 2 U\Ū such that

RE(Ū [ {u}) < RE(Ū). Hence, all constraints (6.5) are satisfied and the procedure

returns the optimal solution to RE(U).
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Proposition 6.2. Let {Z⇤, X⇤} denote an optimal solution to the robust exchange problem

RE(Ū). Furthermore, let ⇣⇤ denote an optimal solution of the adversary’s problem A(X⇤)

with objective value z⇤. There exists a scenario u 2 U\Ū such that RE(Ū[{u}) < RE(Ū)

if and only if z⇤ < Z⇤.

Proof. The proof follows directly from the observation that

A(X) = min
⇣

{R(X, u
⇣

) : B⇣  b, ⇣ 2 {0, 1}|N |+|A|} = min
u2U

R(X, u)

6.5.2 Full recourse linearization

Step 2 in the scenario generation algorithm requires solving RE(Ū) for a subset Ū ✓ U.

For the case with full recourse we begin by substituting the full recourse function (6.12)-

(6.13) in the robust exchange problem (6.1)-(6.3). The resulting robust exchange problem

with full recourse is:

REFull(U) =

max
Z,X

Z

s.t. Z 
X

c2Cu(k)

0

@

X

n2c

X

c

02C(k):n2c0
X

c

0

1

AXu

c

8 u 2 U

X

c2C(k):n2c

X
c

 1 8 n 2 N

X

c2Cu(k):n2c

Xu

c

 1 8 u 2 U, n 2 Nu

Z 2 R+

X 2 {0, 1}|C(k)|

Xu 2 {0, 1}|C(k)|

Observe that this is a non-linear mixed integer program. However, we can linearize it

by introducing the following additional decision variables:

Y u

n

=

8

>

<

>

:

1 if node n 2 N is selected in both the planned solution and the final

solution under scenario u 2 U,

0 otherwise.
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Then we can rewrite the full recourse function as:

RFull(X, u) =

max
X

u
,Y

u

X

n2N

Y u

n

(6.35)

s.t. Y u

n


X

c2C(k):n2c

X
c

8 n 2 N (6.36)

Y u

n


X

c2Cu(k):n2c

Xu

c

 1 8 n 2 Nu (6.37)

Y u 2 R|N |
+

Xu 2 {0, 1}|Cu(k)|

As before, the objective (6.35) is to maximize the number of nodes in the intersection

of the planned and the final solution given the scenario u 2 U. Constraints (6.36) check

whether a node is in the planned solution and constraints (6.37) check whether a node

is in the final solution. The advantage of this formulation is that we can now again

substitute the recourse function in the robust exchange problem (6.1)-(6.3) and write it

as the following linear problem:

REFull(U) =

max Z

s.t. Z 
X

n2N

Y u

n

8 u 2 U (6.38)

Y u

n


X

c2C(k):n2c

X
c

 1 8 u 2 U, n 2 N (6.39)

Y u

n


X

c2Cu(k):n2c

Xu

c

 1 8 u 2 U, n 2 Nu (6.40)

Z 2 R+

Y u 2 R|N |
+ 8 u 2 U

X 2 {0, 1}|C(k)|

Xu 2 {0, 1}|Cu(k)| 8 u 2 U

Here, constraints (6.2) and (6.5) are replaced by constraints (6.38), (6.39) and (6.40).

The formulation above is a regular mixed integer program, albeit with a prohibitively

large number of variables and constraints if the complete set U is considered. Adding a
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scenario u to the above formulation corresponds to simultaneously generating the relevant

rows in (6.38), (6.39) and (6.40) and the relevant columns associated with the variables

Y u and Xu.

6.5.3 The scenario generation subproblem

Proposition 6.2 implies that step 3 in the delayed scenario generation algorithm - the

scenario generation subproblem - is equivalent to solving the adversary’s problem. We

will now first study the complexity of the adversary’s problem in case of full recourse.

In case of full recourse, the adversary’s problem reads as follows:

AFull(X) =

min
⇣

RFull(X, u
⇣

) (6.41)

s.t. B⇣  b (6.42)

⇣ 2 {0, 1}|N |+|A| (6.43)

The adversary’s problem as presented by (6.41) - (6.43) belongs to the class of ‘inter-

diction problems’, in particular it is a directed cycle interdiction optimization problem.

Let us consider the following decision variant of the problem:

Problem 1. Directed Cycle Interdiction

Input: A digraph G = (V,A), a budget b, an integer m.

Output: A subset V 0 ✓ V such that |V 0|  b and such that the maximum number

of nodes covered by a disjoint collection of directed cycles in G \ V 0 is at most m.

We will now first consider membership of the NP-class.

Theorem 6.3. A solution for the Directed Cycle Interdiction problem can be verified in

polynomial time.

Proof. Given a set of nodes V 0, it can be verified in polynomial time that V 0 ✓ V and that

|V 0|  b. Furthermore, G \ V 0 can be computed in polynomial time. Since the maximum

number of nodes covered by disjoint directed cycles can be computed in polynomial time

(for example by transforming G \V 0 to a perfect matching problem in a bipartite graph),

it can be verified whether this number does not exceed m in polynomial time as well.
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Next we only need to consider NP-hardness. Let us consider the Feedback Vertex Set

problem:

Problem 2. Feedback Vertex Set

Input: A digraph G = (V,A), an integer l.

Output: A set of nodes V 0 ✓ V with |V 0|  l such that if we remove V 0 from G

the remaining graph does not contain any directed cycles.

It is well known that the Feedback Vertex Set problem is NP-complete.

Theorem 6.4. Feedback Vertex Set is a special case of Directed Cycle Interdiction.

Proof. Let us take a Feedback Vertex Set instance and create a Directed Cycle Interdiction

instance with the same graph, budget b = l and parameter m = 0. Now the Directed

Cycle Interdiction instance is a YES-instance if and only if there exists a Feedback Vertex

Set.

We now obtain our final complexity results for the Directed Cycle Interdiction problem

and, subsequently, the adversary’s problem.

Corollary 6.2. In case of full recourse, the adversary’s problem is NP-hard.

Proof. From Theorem 6.3 and Theorem 6.4 it follows that the Directed Cycle Interdiction

problem is NP-complete. Since the adversary’s problem is a directed cycle interdiction

optimization problem, the adversary’s problem is NP-hard.

6.5.4 Solving the scenario generation subproblem

Let X⇤ denote an optimal solution to the robust exchange problem RE(Ū). In case of full

recourse, the adversary’s problem AFull(X⇤), which is equivalent to the scenario generation

subproblem, may be solved exactly by branch-and-bound. Branching can be performed

on the nodes and arcs in the exchange digraph D.

For any node t of the branch-and-bound tree let u(t) denote any scenario in which the

branching decisions made in t are respected, i.e. enforced nodes and arcs are available

in the recourse stage and banned nodes and arcs are not. Then note that RFull(X⇤, u(t))

provides an integral upper bound for node t in the branch-and-bound tree. Furthermore,

note that if B⇣u(t)  b a lower bound can be obtained by solving either the adversary’s

problem for simple recourse ASimple(X⇤) or the adversary’s problem for back-arcs recourse



149_Erim Glorie[stand].job

6.5 Solving the robust exchange problem with full recourse 137

ABack-arcs(X⇤) under the settings for which these can be solved e�ciently (recall Section

6.3 and Section 6.4). If B⇣u(t) > b a lower bound is equal to +1. Whenever for any node

in the branch-and-bound tree the lower bound is no better than the best upper bound

found so far, that node’s subtree can be pruned. If, at any node, the upper bound matches

the lower bound at the root node, the adversary’s problem AFull(X⇤) has been solved to

optimality.

For some nodes in the branch-and-bound tree it is possible to obtain substantially

better upper bounds than those obtained by solving RFull(X⇤, u(t)). This is particularly

the case for nodes near the root of the branch-and-bound tree. In order to explain how

to achieve these improved bounds, note that if the integrality of the recourse variables

Xu in the full recourse problem RFull(X⇤, ⇣) described by (6.12), (6.14), (6.15) is relaxed,

the adversary’s problem AFull(X⇤) can be solved by rewriting the nonlinear min-max

objective as a minimization problem by using the dual of the recourse problem. The

resulting problem is a minimum vertex and arc cover problem with variable cost:

A0
Full(X) =

min
⇣,W

X

n2N

⇣
n

W
n

+
X

a2A

⇣
a

W
a

(6.44)

s.t.
X

n2c
W

n

+
X

a2c
W

a

�
X

n2c

X

c

02C(k):n2c0
X

c

0 8 c 2 C(k) (6.45)

B⇣  b

⇣ 2 {0, 1}|N |

W 2 R|N |+|A|
+

Here, the variables W are the duals of constraints (6.14) and (6.15). The objective

(6.44) is to find a minimum cost cover. Constraints (6.45) imply that all cycles that

include nodes selected in the first stage must be covered.

The nonlinear terms
P

n2N ⇣
n

W
n

and
P

a2A ⇣
a

W
a

in the objective (6.44) may be lin-

earized by introducing a variable T
n

:= ⇣
n

W
n

for each n 2 N and a variable S
a

:= ⇣
a

W
a

for each a 2 A, and by imposing the additional constraints T
n

� W
n

� M(1 � ⇣
n

) for

all n 2 N and S
a

� W
a

� M(1 � ⇣
a

) for all a 2 A, where M is some su�ciently large

number. In this case, setting M := k is su�cient because constraints (6.45) imply that

neither any W
n

nor any W
a

ever need to be larger than k. Applying these adjustments,

we obtain the following mixed integer program:
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A0
Full(X) =

min
⇣,W,S,T

X

n2N

T
n

+
X

a2A

S
a

s.t.
X

n2c
W

n

+
X

a2c
W

a

�
X

n2c

X

c

02C(k):n2c0
X

c

0 8 c 2 C(k)

W
n

+ k⇣
n

� T
n

 k 8 n 2 N

W
a

+ k⇣
a

� S
a

 k 8 a 2 A

B⇣  b

⇣ 2 {0, 1}|N |

W 2 R|N |+|A|
+

S 2 R|A|
+

T 2 R|N |
+

The di↵erence between the bound obtained by solving RFull(X⇤, u(t)) and the bound

obtained by solving A0
Full(X

⇤) is that the former accurately takes into account the recourse

actions but underestimates the adversary’s potential by using the scenario u(t), whereas

the latter overestimates the recourse actions because the recourse variables are relaxed

but accurately takes into the adversary’s potential to damage the planned solution.

Finally, note that it is possible to use the LP relaxations R0
Full(X

⇤, u(t)), A0
Simple(X

⇤),

and A0
Back-arcs(X

⇤) when determining the bounds in the branch-and-bound procedure.

While this may provide bounds that are less tight, it may save computation time. We

have the following relationships:

R0
Full(X

⇤, u(t)) � RFull(X
⇤, u(t)),

A0
Simple(X

⇤)  ASimple(X
⇤),

A0
Back-arcs(X

⇤)  ABack-arcs(X
⇤)

that hold in any branch-and-bound node t.
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6.6 Refinement of the robust solution

In barter exchanges there may be multiple solutions that are optimal with respect to

the chosen objective. This frequently occurs in kidney exchange for example, where the

objective typically is to maximize the number of transplants but there are multiple ways

in which the maximum number of transplants can be achieved (Manlove and O’Malley,

2012; Glorie et al., 2014d). Preliminary experiments suggest that this may also happen

for our robust exchange models.

The most common approach to deal with multiple optimal solutions is to use a set

of tie-breaking rules or secondary criteria (Manlove and O’Malley, 2012; Glorie et al.,

2014d). A set of multiple objectives may be combined into a single objective function

by including a separate term for each criterion under consideration. Each term is then

multiplied with the relative weight attached to the criterion it models. It is very common

in kidney exchange for the criteria to be hierarchically ordered (De Klerk et al., 2010;

Manlove and O’Malley, 2012; Kim et al., 2007). The objective weights should then be

scaled such that the first criterion is indeed more important than the second, the second

criterion more important than the third, etc. Alternatively, in case of hierarchical criteria,

an iterative lexicographic approach may be considered (Glorie et al., 2014d).

In Section 6.7, we compare the best (0 nodes fail) and worst case (p nodes fail) scenarios

in the presence of a kidney exchange program that takes into account only the best scenario

(U = {N [ A}) and a kidney exchange program that takes into account all scenarios

(U := {u ✓ N [ A :
P

n2N ⇣u
n

� |N |(1� p),
P

a2A ⇣u
a

� |A|, ⇣u 2 {0, 1}|N |+|A|}).
Frequently, an optimal solution to the optimistic program performs equally to an

optimal robust solution in the worst case scenario. This is because there are typically

multiple optimal robust solutions and thus we would like to select the one among them

that performs best in the optimistic scenario.

In order to select the optimal solution for the robust exchange problem that performs

best for the optimistic scenario we replace the objective function in (6.1) by

max
Z,X

Z + "
X

c2C(k)

w
c

X
c

with " > 0.

The value of " must be carefully chosen in order to avoid obtaining kidney exchange

programs that are not robust, i.e, the second term in the new objective function should

never be greater than the first term. Therefore, it is su�cient to set
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" =
1

P

n2N max
c2C(k):n2c

wc
|c|

(6.46)

Note that we can also add the term "
P

c2C(k)wc

X
c

to the objective function of the

adversary’s problem (6.16). This is equivalent to adding a constant, because in the ad-

versary’s problem the decision variables X are already determined/fixed. In this way

the results we obtained for solving the robust exchange problem for the various forms of

recourse still apply.

In a similar way, we can use objective weights to assign priority to specific groups

of agents, such as highly sensitized patients in kidney exchange. In case of the full

recourse policy, we can also use a more e�cient formulation than adding another term

to the objective function. Because of the structure of the recourse objective (6.35), we

can replace the unit objective weights of the Y variables by scaled weights, such that

the desired groups of agents are prioritized. In particular, in Section 6.7 we will use a

scaling that prioritizes highly sensitized patients. If N⇤ denotes the set of highly sensitized

patients, we replace the full recourse objective (6.35) by:

max
X

u
,Y

u

X

n2N⇤

Y u

n

+
X

n2N\N⇤

"Y u

n

+ "2
X

c2C(k)

w
c

X
c

(6.47)

where " is defined as above.

Given that highly sensitized patients have a particularly high probability of match

failure compared to non-highly sensitized patients (see Appendix A), we explicitly consider

arc failure for this patient group. In the next section we present the results that these

small modifications lead us to.

6.7 Computational results

6.7.1 Instance generator

To evaluate the solution approach for the robust exchange problem described in this paper,

we test it on several kidney exchange instances generated by the well known Saidman

kidney exchange simulator (Saidman et al., 2006), which we have adjusted to include

altruistic donors in addition to incompatible patient-donor pairs.

The simulator uses US population data from the United Network for Organ Sharing

(UNOS). It generates patients with a random blood type, sex, and probability of being

crossmatch incompatible (this probability is called the PRA level) with a randomly chosen
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donor. Each patient is assigned a potential donor with a random blood type and relation

to the patient. If the patient and the potential donor are incompatible, they are added to

the kidney exchange pool. Blood types and probabilities of crossmatch failure are then

used to determine the compatibilities in the pool. Table 6.1 summarizes the probabilities

as described in (Saidman et al., 2006). As the original simulator did not include altruistic

donors, we add to each pool a fixed percentage of altruistic donors (generated as above

but without assignment to a patient).

Prob. blood type A .3373
Prob. blood type B .1428
Prob. blood type AB .0385
Prob. blood type O .4814
Prob. low PRA (5 %) .7019
Prob. medium PRA (10 %) .2
Prob. high PRA (90 %) .0981
Prob. female .409
Prob. spousal donor* .4897
% altruistic donor** 4.5
* Applies to female patients only.
Spousal PRA := 1 - .75 (1 - PRA )

** Original simulator did not have
altruistic donors

Table 6.1: Probabilities in Saidman simulator

For our experiments we will generate 30 instances of 20, 50 and 100 nodes. Table 6.2

summarizes some characteristics of these instances.

We have implemented the robust exchange problem with simple, back-arcs, and full

recourse in C#.NET. All instances were run using a computer equipped with a 2.3 GHz

Intel Core i7 processor with 16 GB of RAM memory. All LPs and MIPs were solved using

CPLEX 12.5.

6.7.2 Simple recourse

Table 6.3 describes our findings for the performance and run times of the simple recourse

policy on various instances. The first column specifies the instance size in terms of the

number of nodes. The second column specifies the maximum number of failures. The

third and fifth column respectively specify the number of proposed transplants for the

robust program (which anticipates failures) and the deterministic program (which does not

anticipate failures). The fourth and sixth column specify the actual number of transplants
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for these programs. The seventh column specifies the run time and the eighth column

specifies the percent of instances in which the loss in transplants (= number of first

stage matches minus number of actual transplants in the second stage) is lower than the

maximum possible loss.

From Table 6.3 it becomes clear that all instances can be solved within very short run

times. There is no substantial di↵erence between the run times of the 1-failure and the

2-failures tests. Also, the number of transplants proposed in the robust and deterministic

program is similar.

In the worst case scenario, we could lose at most 3 transplants per failing node or arc.

Hence, in case of a single failure, at most 3 transplants can be lost. If the instance size is

small, this loss can sometimes be restricted to less than 3 transplants (see the instances

of size 20 in which 2.43 transplants are lost on average in the robust program, versus 3

in the deterministic program). However, for larger instance sizes (50 and 100) the loss

of 3 transplants cannot be avoided by anticipation of failure. In case of two failures, at

most 6 transplants can be lost. Again, this loss can be restricted if the instance size is

small enough (in the instances of size 20 and 50 on average 4.33 and 5.83 transplants are

lost respectively). Interestingly, in case the number of failures is higher, the percentage

of instances in which the loss can be reduced increases substantially.

6.7.3 Back-arcs recourse

Table 6.4 summarizes our results for the back-arcs recourse policy.

Table 6.4 shows that, also for the back-arcs policy, all instances can be solved within

very short run times. With the exception of the 20 node instance for the 1 failure setting,

the transplant numbers are identical to the transplant numbers of the simple recourse

policy. The same holds true for the percentage of instances with reduced loss. This

indicates that in the worst case scenario the additional flexibility for recovering from

failures provided by the back-arcs recourse is insu�cient to reduce the losses compared to

what could be gained by anticipating failures as by the simple recourse policy. The main

reason is that, in nearly all instances, it is not possible to select only cycles with su�cient

back-arcs to recover from a single node or arc failure. Therefore, in the worst case any of

the selected ‘non-robust’ cycles will be cancelled.

6.7.4 Full recourse

Table 6.5 describes our findings for the performance and run times of the full recourse

policy on various instances. In addition to the statistics reported for the simple and
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back-arcs recourse policies, we now also report the average number of scenarios that is

generated (column 6).

From Table 6.5 it becomes clear that, as expected, the running time for solving the

full recourse problem increases strongly with the instance size and the number of failures.

However, all instances can be solved within run times acceptable to kidney exchange

programs in practice. Interestingly, the number of scenarios that needs to be generated

is very small for all instances and does not show much variation.

Compared to the simple and back-arcs recourse policies, the number of transplants in

the worst case scenario is higher for all instances. Also the percentage of instances with a

reduced loss is substantially higher. In up to 86.67 percent of the instances it is possible

to reduce the losses by combined anticipation of failure and a flexible response to failure.

6.7.5 Protecting highly sensitized patients

Table 6.6 describes our findings for the performance and run times of the refined full

recourse policy which prioritizes highly sensitized patients on various instances. In all

instances we allow at most 30 % of the arcs to highly sensitized patients to fail. The first

row in the table reports the actual number of arc failures corresponding to this percentage.

The second and third row report the number of first stage matches in respectively the

robust and the deterministic program. The fourth and fifth row report the matches

specifically for highly sensitized patients. Rows six and seven provide the number of

transplants, i.e. the matches that can actually go forward, for highly sensitized patients.

Rows eight to ten contain the run time statistics we also reported for the previously

considered policies.

The first observation that can be made from Table 6.6 is that the total number of

matches in any of the instances is not substantially di↵erent between the robust and the

deterministic program. The deterministic program does tend to propose slightly more

matches for highly sensitized patients, but substantially less of these matches go forward

to transplantation. Moreover, the magnitude of this di↵erence increases as the instance

size grows. This indicates that the value of the robust program increases with the size of

the kidney exchange program. Another observation is that, even though the tests consider

a substantially larger number of failures than our previous tests, the run times are still

likely to be acceptable to practice. Also, the number of scenarios that need to be generated

increases when the instance grows from 20 to 50 nodes, but stays almost constant when

the instance grows further to 100 nodes. Finally, the percentage of instances in which the
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loss of transplants can be reduced also grows with the instance size. In the largest size

programs it is possible to reduce the losses in 100 % of the tested instances.

6.8 Conclusions

In this research we have considered the centralized clearing of barter exchange markets in

which proposed transactions must be verified before they can proceed. Proposed trans-

actions may fail to go forward if verification fails or if a participant withdraws. We have

modeled the clearing problem in these markets as a vertex-disjoint cycle packing problem

in an unreliable digraph. The arcs and nodes of this graph are subject to failure.

Our research has many natural and interesting applications, of which kidney exchange

is probably the most important. Deciding which donors get matched to which patients in

kidney exchange can be a matter of life and death. Unfortunately, the present algorithms

employed to clear kidney exchanges often leave highly-sensitized patients, who are hard

to match, without a transplant. It has been the need to protect the rare transplant

opportunities for these highly-sensitized patients that has motivated us in particular to

consider the concept of a ‘robust exchange’.

Other methodologies that aim to take market uncertainty into account, such as max-

imizing the expected number of transplants, typically disadvantage highly-sensitized pa-

tients as transactions involving these patients tend to have a high probability of failure.

Under our ‘robust exchange’ methodology we aim to protect transactions against a large

set of possible scenarios for failure. Our methodology allows in particular to protect the

transactions for highly-sensitized patients.

In addition to protecting against failure, we explicitly consider the option of flexible

response to failures. We do this by allowing recourse actions. We have considered three

recourse policies - simple recourse, back-arcs recourse, and full recourse - which can be

easily implemented in practice. Our clearing algorithm selects an optimal planned solution

taking the possibility of recourse into account. If actual failures occur, our algorithm

selects the optimal recourse action.

We have provided results for settings in which the problem of determining the optimal

recourse action can be solved e�ciently, whereas in general this requires time exponential

in the input size. Moreover, we have shown that for these settings also the problem of

determining the worst case scenario (taking into account the possibility of recourse) can

be solved e�ciently. These results apply to the simple recourse and back-arcs recourse

policies, when trading cycles and chains are limited to three agents and failure is con-

sidered to be homogenous. For other settings and for the full recourse policy, we have
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developed an advanced methodology for delayed scenario generation. In this methodology

row and column generation are combined with a branch-and-bound algorithm.

We have tested our algorithms on various instances generated by the most commonly

used kidney exchange simulator based on US population data. Our computational results

show that instances of realistic size (the size of current kidney exchange pools), can be

solved within run times that are acceptable to practice. More importantly, our results

show that in a substantial number of instances, it is possible to actually protect patients

against failures that prevent them from undergoing a transplant. In this regard, our

algorithms may o↵er a significant improvement over current practice.

There are several opportunities to expand the research presented in this paper. Direct

extensions include extending the experiments to di↵erent types of uncertainty sets that

reflect heterogenous failure or that tail-o↵ as scenarios become more extreme (as per

the concept of globalized robustness (Ben-Tal et al., 2009)). Another direction would be

to combine our solution approach with delayed generation of trading cycles and chains

(Abraham et al., 2007; Glorie et al., 2014d). This would be particularly advantageous if

the market size grows far beyond what it is today or if the bound on the trading cycles

and chains becomes large.

There also remain general challenges to barter exchange markets that are important to

mention. Dynamic market clearing - in which the market is not cleared by accumulating

batches of agents and then maximizing the transactions per batch as is done in present

exchanges, but in which the market is cleared while taking future arrivals into account - is

a problem that has received attention but has not yet been solved optimally. Our model

of market uncertainty can ostensibly be extended to take future arrivals into account.

Another challenge is the internationalization of markets and the conflicts of interest that

may arise between market participants (e.g. participation and incentive compatibility for

hospitals and networks of hospitals in kidney exchange). Finally, we would like to mention

that generalizations of our work could consider allowing monetary transfers and private

information regarding agent preferences. While these factors may be less important in

kidney exchange markets, they may be important in other markets such as house trading.

In conclusion, we hope our work may serve to improve allocations in barter exchange

markets. In particular, we hope it may make allocations more reliable so agents can hold

faith in the markets, and, in the case of kidney exchange, that the most disadvantaged

patient groups can benefit by having more transplants made available to them.
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1 2

3

Figure 6.2: Case 1. Cycle without back-

arcs. If one node or arc fails, the entire cycle

fails and cannot be recovered.

1 2

3

Figure 6.3: Case 2. Cycle with one back-

arc. If node 1 or node 3 fails, the entire cycle

fails and cannot be recovered. Therefore a

single failure is su�cient to completely cancel

the cycle.

1 2

3

Figure 6.4: Case 3. Cycle with two back-

arcs. If node 1 fails, the entire cycle fails

and cannot be recovered. Therefore a single

failure is su�cient to completely cancel the

cycle.

1 2

3

Figure 6.5: Case 4. Cycle with three back-

arcs. If there is a single failure, the transac-

tions can always be recovered for at least two

nodes. However, if two nodes fail, the entire

cycle fails and cannot be recovered. There-

fore two failures are required to completely

cancel the cycle.

A 1 2

Figure 6.6: Case 5. Chain without back-

arcs. If one node or arc fails, the entire chain

fails and cannot be recovered.

A 1 2

Figure 6.7: Case 6. Chain with one back-

arc. If node A fails, the entire chain fails

and cannot be recovered. Therefore a single

failure is su�cient to completely cancel the

chain.

A 1 2

Figure 6.8: Case 7. Chain with one back-

arc. If node 1 fails, the entire chain fails and

cannot be recovered.

A 1 2

Figure 6.9: Case 8. Chain with two back-

arcs. If there is a single failure, a transaction

can always be recovered for at least one node.

However, if two nodes fail, the entire chain

fails and cannot be recovered. Therefore two

failures are required to completely cancel the

chain.
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Nb Max nb Robust nb Robust nb Det. nb Det. nb Time % of instances
nodes failures proposed transplants proposed transplants (s) with reduced loss

20 1 7.43 5.00 7.43 4.43 .03 36.67
50 1 25.03 22.03 25.03 22.03 .14 .00
100 1 54.33 51.33 54.33 51.33 10.96 .00

20 2 7.43 3.10 7.43 1.43 .04 70.00
50 2 25.03 19.20 25.03 19.03 .95 16.67
100 2 54.33 48.33 54.33 48.33 10.31 .00

Table 6.3: Average performance characteristics for the simple recourse policy over 30

instances generated by the Saidman simulator with altruistic donors. The objective is to

maximize the number of transplants. Cycle and chain limit is 3 and there is homogenous

failure.

Nb Max nb Robust nb Robust nb Det. nb Det. nb Time % of instances
nodes failures proposed transplants proposed transplants (s) with reduced loss

20 1 7.43 5.03 7.43 4.43 .02 40.00
50 1 25.03 22.03 25.03 22.03 .14 .00
100 1 54.33 51.33 54.33 51.33 27.73 .00

20 2 7.43 3.10 7.43 1.43 .04 70.00
50 2 25.03 19.20 25.03 19.03 .95 16.67
100 2 54.33 48.33 54.33 48.33 9.28 .00

Table 6.4: Average performance characteristics for the back-arcs recourse policy over 30

instances generated by the Saidman simulator with altruistic donors. The objective is to

maximize the number of transplants. Cycle and chain limit is 3 and there is homogenous

failure.

Nb Max nb Nb Det. nb Time Scenarios % of instances
nodes failures transplants transplants (s) generated with reduced loss

20 1 5.20 4.43 .33 2.33 60.00
50 1 22.27 22.03 3.93 2.37 23.34
100 1 51.50 51.33 85.64 2.9 20.00

20 2 3.40 1.43 2.74 2.6 86.67
50 2 19.63 19.03 114.93 2.8 53.33
100 2 48.76 48.33 3157.84 2.7 36.67

Table 6.5: Average performance characteristics for the full recourse policy over 30 in-

stances generated by the Saidman simulator with altruistic donors. The objective is to

maximize the number of transplants. Cycle and chain limit is 3 and there is homogenous

failure.
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Nb nodes
20 50 100

Max nb arc failures .43 6.13 22.46
Nb matches 7.80 26.30 57.13
Nb matches det. 7.83 26.47 57.42
Nb matches PRA � 80 1.10 5.47 14.25
Nb matches PRA � 80 det. 1. 17 6.10 15.21
Nb transplants PRA � 80 .83 4.43 12.67
Nb transplants PRA � 80 det. .60 .20 .08
Time (s) .49 157.25 5067.80
Scenarios generated 1.37 4.43 4.13
% of instances with reduced loss 16.67 96.67 100.00

Table 6.6: Average performance characteristics for the refined full recourse policy which

prioritizes highly sensitized patients over 30 instances generated by the Saidman simulator

with altruistic donors. Cycle and chain limit is 3 and at most 30 % of the arcs to highly

sensitized patients (PRA � 80) can fail.
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Chapter 7

Summary and Conclusions

In this thesis we have considered the clearing problem in barter exchange markets. Our

research has many natural and interesting applications, of which kidney exchange is prob-

ably the most important. Deciding which donors get matched to which patients in kidney

exchange can be a matter of life and death. We have therefore focused in particular on

kidney exchange markets. Our results are, however, easily applicable to other types of

barter exchange markets.

We have started in Chapter 2 by providing an extensive literature review of the state

of the art in kidney exchange clearing. We have shown that as the transplant community

strives to balance quantity and equity of transplants to achieve the best possible outcomes,

determining the right long-term allocation strategy in kidney exchange markets becomes

increasingly important. Challenges we have identified include making full use of the

various transplant modalities that are now available through integrated and optimized

clearing software, encouragement of transplant centers to fully participate, improving

transplant rates by focusing on the expected long run number of transplants, and selecting

uniform allocation criteria to facilitate international pools.

In Chapter 3 we have considered solving the clearing problem with multiple objective

criteria and long cycles and chains. We have shown that to achieve the best possible

score on all criteria long cycles and chains are often needed, particularly when there

are many hard-to-match patients. We have presented a generic iterative branch-and-

price algorithm which can deal e↵ectively with multiple criteria and side-constraints such

as individual rationality constraints. We have shown how the pricing problem may be

solved in polynomial time in the cycle and chain length for a general class of criteria and

constraints. Our approach and its e↵ects are demonstrated using simulations with kidney

exchange data from the Netherlands and the US. We find that our algorithm is e↵ective

even for large realistic barter exchange markets.
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In Chapter 4 we have studied various policy improvements for kidney exchange. We

have shown that there is clear synergy in the central coordination of both unspecified

donation and transplantation across the blood type barrier. Transplants can be increased

by up to 10 % and by up to 22 % and 58 % for blood type O and highly sensitized patients

respectively. Transplant centers can be encouraged to participate by including individual

rationality constraints for the groups of patients and donors they represent. Implementing

these constraints has negligible consequences for the long term outcomes that can jointly

be achieved, and for individual objectives of the transplant centers, such as maximizing

the number of transplants for the patients enrolled at a center. We have further shown

that, although the best configuration of a national kidney exchange program depends

on the composition of the patient-donor population, su�cient time between matching

rounds is essential and that benefits of non-simultaneous extended altruistic donor chains

are limited in case of low numbers of highly sensitized patients and su�cient unspecified

donors. Furthermore, chains are best terminated when no further segment is part of an

optimal exchange within 3 months.

In Chapter 5 we have considered the health outcomes of various allocation policies used

in kidney exchange clearing. We have introduced an individualized health value model,

which is a Markov process with patient-donor specific transition probabilities. We found

that conventional allocation rules and criteria do not increase health value compared to

a straightforward policy intended to maximize the number of transplants. However, we

have also proposed a new policy intended to maximize health value. This model links the

individualized Markov model to the branch-and-price algorithm described in Chapter 3.

Under our newly proposed policy an improvement in quality adjusted life years of 6 %

over current practice is possible. In particular, under this policy an improvement of 31

% is possible for the group of patients that are left unmatched. Furthermore, we have

calculated an upper bound on the maximum health value that can be achieved by any

allocation policy and have shown that our newly proposed policy comes 32 % closer to

this bound than existing policies.

Finally, in Chapter 6 we have considered market failure. In particular, we have studied

the clearing of barter exchange markets in which proposed transactions must be verified

before they can proceed. For instance, in kidney exchange, patients and donors are pre-

pared and crossmatch tests between each donor and selected recipient are performed.

Proposed transactions may fail to go forward if verification fails or if a participant with-

draws. In case one or more matches fail, a new allocation may be selected. The new

allocation should be as close as possible to the initial set in order to minimize the ma-

terial and emotional costs of the alteration. We have presented a robust optimization
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approach that intends to maximize the number of agents selected in both the first and

second allocation in a worst case scenario. Our methodology allows in particular the

transactions for highly-sensitized kidney exchange patients to be protected. In addition

to protecting against failure, we have explicitly considered the option of flexible response

to failures. We have done this by allowing recourse actions. We have considered three

recourse policies that can be easily implemented in practice. Our clearing algorithm se-

lects an optimal planned solution taking the possibility of recourse into account. If actual

failures occur, our algorithm selects the optimal recourse action. We have provided results

for settings in which the problem of determining the optimal recourse action can be solved

e�ciently, whereas in general this requires time exponential in the input size. Moreover,

we have shown that for these settings also the problem of determining the worst case sce-

nario (taking into account the possibility of recourse) can be solved e�ciently. For other

settings we have developed an advanced methodology for delayed scenario generation. In

this methodology, row and column generation are combined with a branch-and-bound

algorithm. Computational results show that instances of realistic size (the size of current

kidney exchange pools), can be solved within run times that are acceptable to practice.

Our results, especially those from Chapters 3 and 6, are applicable to general barter

exchange markets, even when these markets allow for side payments. If prices are fixed

(e.g. if agents have a fixed asking price for the goods they brought to the market and a

maximum buying price for every good they are interested in) the results can be directly

applied by taking prices into account when determining the possible transactions. If prices

are not fixed but need to be determined by the market, auction techniques such as those

used in combinatorial auctions may be required.

Based on the contributions made in this thesis, we see several interesting possible

directions for future research. In addition to taking into account auction techniques

to determine transfer prices, these include considering participation and incentive com-

patibility in international markets when national markets have di↵erent characteristics;

considering the dynamic or online variant of the clearing problem to take future arrivals

into account; considering stochastic allocation mechanisms such as lotteries; and consid-

ering coordination between related markets, such as the markets for living and deceased

donor kidneys. We hope our research may serve as a reference framework to study these

challenges.

Finally, and most importantly, we hope the findings described in this thesis may benefit

the patients su↵ering from end stage renal disease across the globe.
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Appendix A

Estimating the probability of match

failure due to positive crossmatch1

In order to determine kidney exchange matches, compatibility between all patients and

donors in the kidney exchange pool is analyzed by testing blood type compatibility and by

performing a virtual crossmatch. Then, after a set of desirable recipient-donor matches is

identified by a specialized computer algorithm, actual crossmatches are performed for all

proposed recipient-donor matches. If a crossmatch is positive it means that the respective

recipient-donor match fails to go forward to transplantation. The number of positive

crossmatches after a negative virtual crossmatch can be substantial. In this appendix we

estimate the probability of positive crossmatch after a negative virtual crossmatch on an

individual level using Dutch clinical data.

Data

The available data include 438 ABO blood type or crossmatch incompatible patient-donor

pairs who participated in Dutch kidney exchanges between October 2003 and January

2011, as well as outcomes of 331 crossmatch tests performed by the national reference

laboratory for histocompatibility testing in Leiden. The data contain blood types of

all patients and donors as well as center-reported patient PRA values at time of entry

and, if available, at time of transplantation. Donor HLA types and recipient unacceptable

HLA mismatches are also included. The national reference laboratory identifies unaccept-

able HLA specificities on basis of a combination of a complement dependent cytotoxicity

(CDC) and a solid phase antibody screening. Antibody specificities leading to a positive

1
This appendix is based on (Glorie, 2012).



168_Erim Glorie[stand].job

156 Estimating the probability of match failure due to positive crossmatch

CDC crossmatch are considered to be a contraindication for transplantation and the HLA

antigens recognized are defined as unacceptable mismatches.

Because center-reported PRA levels are based on the general population, they may

not accurately reflect the di�culty of finding compatible donors in the kidney exchange

program. For that reason additional kidney exchange donor population PRA levels are

computed based on virtual crossmatches between each patient and all donors in the data

set. Throughout the rest of this appendix, whenever we refer to a PRA level, we refer to

these kidney exchange donor population based PRA levels. Table A.1 details the patient

and donor characteristics.

ABO blood type
A B AB O

Patients (%) 30 15 1 54
Donors (%) 56 14 2 29

PRA level w.r.t. general population (at time of entry)
0-9 10-79 80-100

Patients (%) 78 17 5
PRA level w.r.t. kidney exchange donor population
0-9 10-79 80-100

Patients (%) 48 35 17

Table A.1: Patient and donor characteristics

Table A.2 displays the number of positive crossmatch outcomes after a negative virtual

crossmatch for each of the PRA level categories of Table A.1. The numbers clearly

indicate that there is a relationship between the probability of a positive crossmatch after

a negative virtual crossmatch and the PRA level.

PRA level w.r.t. kidney exchange donor population
0-9 10-79 80-100

# Actual crossmatches 126 173 32
Positive (%) 6 31 44

Table A.2: Relation between positive crossmatch after a negative virtual crossmatch

and PRA level

However, the crossmatch tests reported in Table A.2 are not all independent. Regu-

larly, multiple crossmatch tests correspond to an individual patient. Multiple tests might,

for example, be required when a patient’s initial test is positive, or when a patient’s cross-

match test is negative but the proposed transplant procedure cannot take place because
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of a positive crossmatch for another patient involved in the procedure. We need to inves-

tigate the e↵ects and significance of this dependence relation before making inferences.

Analysis

Table A.3 shows the outcomes of a �2 test for independence of the probability of a positive

crossmatch test and the outcomes of previous crossmatch tests, per PRA category as in

Table A.1. For each of the PRA categories, there is no significant evidence to reject the

null hypothesis of independence. Therefore all the observed crossmatch results can be

straightforwardly used to estimate the probability of a positive crossmatch within each

PRA category, as was done in Table A.2.

Table A.4 shows the outcomes of a probit regression of the latent individual probability

of a positive crossmatch on recipient PRA, recipient age, recipient blood type and recipient

gender. Only the coe�cient of recipient PRA is highly significant. We exclude the other

factors and repeat the regression (Table A.5). Again, the coe�cient of PRA is highly

significant, as is the likelihood-ratio test for model fit. Figure A.1 shows a plot of the fitted

probabilities. The non-linear relationship between the probability of a positive crossmatch

and the PRA level is clearly visible. To assess whether this relationship is correctly

modeled, we further diagnose a plot of the standardized residuals (Figure A.2). The

standardized residuals behave nicely overall, showing only weak signs of heteroskedasticity

for PRA values close to 0 and 100. This indicates that possibly the tails of the normal

distribution do not correctly fit the distribution of the probabilities. However, a formal

Lagrange Multiplier test reveals that the amount of heteroskedasticity is not significant

(Table A.5). It therefore appears that

Pr[T
i,j

= 1 : PRA
j

] = � (�1.5007 + 0.0170 · PRA
j

)

appropriately models the individual probability of a positive crossmatch.

Conclusion

In this appendix we have estimated the probability of virtual crossmatch failure in kidney

exchange matching by relating this probability to the recipients PRA level. Our findings

indicate that highly sensitized patients have a significantly higher probability of virtual

crossmatch failure than non-highly sensitized patients. Moreover, we find that the non-

linear relationship between the PRA level and the probability of virtual crossmatch failure

is modeled appropriately by a homoskedastic probit model.
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Variable Coe�cient Std. Error t-Statistic Prob.
C -0.1970 0.4602 -1.9926 0.0463

PRA 0.0154 0.0031 4.9607 <0.0001
DUMMY A 0.1649 0.1974 0.8358 0.4033
DUMMY B 0.4868 0.2705 1.8000 0.0719
DUMMY AB 0.8269 0.4202 1.9681 0.0491

AGE -0.0133 0.0071 -1.8802 0.0601
DUMMY MALE -0.2317 0.1946 -1.1907 0.2338
Deviance 293.4677 Prob (Deviance) <0.0001

Table A.4: Probit regression involving several recipient characteristics

Variable Coe�cient Std. Error t-Statistic Prob.
C -1.5007 0.1486 -10.1007 <0.0001

PRA 0.0170 0.0026 6.5340 <0.0001
Deviance 304.5770 Prob (Deviance) <0.0001
LM-test 1.7514 Prob (LM-test) 0.1857
McFaddens R-squared 0.1342

Table A.5: Probit regression involving only recipient PRA

Figure A.1: Fitted probabilities
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Figure A.2: Standardized residuals versus PRA
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Although this model improves on the estimations made in previous literature (e.g.

(Ashlagi et al., 2011b)), we do not claim that the PRA level is the sole explanatory factor

for virtual crossmatch failures, nor that virtual crossmatch failure is the only cause of

failure preventing kidney exchange matches from going forward to transplantation. There

may be other factors which play a role, such as recipient health status and likelihood

of withdrawal of incompatible donors, but their impact will likely be smaller than the

impact of the PRA level, and as we did not have data available on these other factors,

they were not explicitly included. Instead, these exogenous factors are captured by the

constant terms in our model.

Additionally, our findings are conditional to our assumptions (although we applied

multiple statistical test to verify these assumptions) and to our data (although comparison

of our data (see Table A.3) with the data used in related literature (see Table 2 in (Ashlagi

et al., 2011b)) suggests failure rates are comparable).

Considering the practical impact of failure of kidney exchange matches, particularly

due to failure of virtual crossmatching, we hope the present findings may serve to improve

kidney exchange simulations by taking into account virtual crossmatch failure more accu-

rately, and thereby help policy makers select the best kidney exchange mechanisms.
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(Summary in Dutch)1

Vrijwel iedereen heeft weleens iets geruild. Van knikkers tot voetbalplaatjes tot wellicht

een dienst met een collega. Dit ruilen gebeurt vaak één op één: men zoekt iemand die

een object heeft dat hij of zij graag wil hebben én die gëınteresseerd is in het object dat

men aanbiedt. Dit decentraal en paarsgewijs ruilen kost vaak veel tijd en is vaak niet erg

e�cient. Een gecentraliseerde markt, waarin iedereen zijn wensen kenbaar maakt aan een

operator, kan veel tijd besparen en een betere allocatie van goederen mogelijk maken. Dit

is met name het geval als er ruilcycli worden toegestaan waarin elke deelnemer een object

geeft aan de volgende deelnemer in de cyclus en een object ontvangt van de voorgaande

deelnemer. In de praktijk is er veelal een natuurlijke beperking op het aantal deelnemers

in een ruilcyclus, bijvoorbeeld vanwege logistieke redenen. Dit proefschrift beschouwt

het allocatieprobleem voor de marktoperator in dit soort ruilmarkten. In het bijzonder

beschouwt het daarbij de markt voor nieruitwisseling, welke één van de meest impactvolle

en geprofessionaliseerde ruilmarkten van dit moment is.

Er zijn in Nederland circa 60.000 patiënten met ernstige nierproblemen (Nierstichting

Nederland, 2011). 6400 van hen zijn aan het dialyseren, wat betekent dat ze drie tot vijf

keer per week naar een dialysecentrum moeten om hun bloed gedurende vier uur te laten

zuiveren en onderworpen zijn aan een streng dieet. De kwaliteit van leven met dialyse

is erg laag en het jaarlijkse overlijdenspercentage is 20 %. Het geprefereerde alternatief,

transplantatie, is helaas niet voor iedereen beschikbaar. Per jaar kunnen slechts 860

patiënten op deze manier geholpen worden (Nederlandse Transplantatie Stichting (NTS),

2012).

De helft van het aantal transplantaties is postmortaal. Dat wil zeggen dat de trans-

plantaties plaatsvinden met een orgaan van een overleden donor, waarvoor patiënten

gemiddeld 4 jaar op de wachtlijst staan. De andere helft vindt plaats met een levende

donor, zoals een broer of zus van de patiënt. Ruim 30 % van de levende donoren is

1
Deze samenvatting is gebaseerd op (Glorie et al., 2012a).
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echter incompatibel met de patiënt waaraan ze in eerste instantie zouden willen doneren.

Om transplantatie voor deze groep patiënten toch mogelijk te maken is in 2004 een nier-

uitwisselingsprogramma opgericht. Dit programma stelt incompatibele paren in staat te

ruilen van donor om zodoende op een indirecte manier toch door te gaan met transplan-

tatie (Hoofdstuk 2).

Het nieruitwisselingsprogramma werkt als volgt. Stel, patiënt Anna heeft een nier

nodig. Haar broer Bart wil haar graag helpen en een van zijn twee gezonde nieren

doneren. Na enkele tests in het ziekenhuis blijkt echter dat de bloedgroepen van Bart

en Anna niet compatibel zijn. Een transplantatie zou vrijwel onmiddellijk tot afstoting

leiden. Elders in het land zitten Cynthia en Dirk met een soortgelijk probleem. Cynthia

heeft na haar zwangerschap antisto↵en aangemaakt tegen de cellen van Dirk. Hierdoor

kunnen ook zij niet doorgaan met transplantatie. In een nationale database kunnen trans-

plantatiedeskundigen echter constateren dat Cynthia en Bart wel compatibel zouden zijn,

evenals Anna en Dirk. Zij stellen daarom voor dat beide paren, weliswaar anoniem, ruilen

van donor via het nieruitwisselingsprogramma. Op deze manier zouden zowel Anna als

Cynthia toch een transplantatie kunnen krijgen.

Tien jaar geleden hadden Anna en Cynthia niet geholpen kunnen worden. Gelukkig

voor hen en vele andere patiënten was Nederland in 2004 het eerste land ter wereld met

een nationaal nieruitwisselingsprogramma. Maar net als bij de toewijzing van postmortale

organen rijst de vraag: wie krijgt een tranplantatie en wie niet? In ons voorbeeld ruilden

Anna en Bart bijvoorbeeld met Cynthia en Dirk. Maar wellicht hadden zij ook kunnen

ruilen met Eduardo en Floor. Wie gaat er dan voor, Cynthia of Eduardo?

Het ruilen binnen het nieruitwisselingsprogramma hoeft zich niet te beperken tot twee

patiënt-donor paren. Er kunnen ook grotere ruilcycli gevormd worden. Een risico is

echter dat een donor zich terugtrekt nadat zijn patiënt een nier heeft ontvangen. Dit

zou de andere patiënten in de cyclus die nog niet getransplanteerd zijn, maar waarvan de

donor reeds heeft gedoneerd, ernstig benadelen. Dit terugtrekken hoeft niet opzettelijk

te gebeuren en kan bijvoorbeeld veroorzaakt worden door ziekte of zwangerschap van de

donor.

Om benadeling van patiënten op deze manier te voorkomen zijn er een paar mogelijk-

heden: (1) alle transplantaties in een cyclus gelijktijdig uitvoeren, (2) in plaats van een

ruilcyclus een ruilketen vormen die start met een Samaritaanse donor (een levende donor

zonder specifieke patiënt) en eindigt met een donatie aan een patiënt op de postmortale

wachtlijst, en (3) een patiënt in plaats van een directe transplantatie voorrang geven op

de wachtlijst in ruil voor donatie door zijn levende donor. Opties (2) en (3) hebben als

voordeel dat zij de ruilmogelijkheden vergroten, dit in tegenstelling tot optie (1). Bij
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optie (1) is er namelijk een beperking op hoeveel paren kunnen deelnemen in een cyclus,

ingegeven door het aantal operatiekamers en operatieteams dat simultaan beschikbaar is.

Hoe wordt hier in Nederland mee omgegaan? Wel, simultaniteit is een standaard-

vereiste voor ruilcycli (die om logistieke redenen uitgevoerd worden met maximaal vier

paren) en Samaritaanse donorketens worden waar mogelijk regionaal per transplantatie-

centrum gecoördineerd. De derde optie, wachtlijstprioriteit, is echter bij wet verboden

omdat dit patiënten die reeds op de wachtlijst staan zou kunnen benadelen. Met deze

maatregelen wordt gepoogd te zorgen dat er binnen een van de grootste nieruitwisselings-

programma’s ter wereld ‘van ruilen geen huilen komt’.

Een belangrijk criterium bij het bepalen wie met wie ruilt is het helpen van het maxi-

male aantal patiënten. Dit kan worden bereikt door het ruilvraagstuk te formuleren als een

wiskundig optimaliseringsprobleem. Een bottleneck bij het oplossen van dit probleem is

dat het aantal variabelen zeer groot kan zijn. Er zijn namelijk zeer veel mogelijke ruilcycli

en ruilketens. Gelukkig is het door gebruik te maken van een zogeheten branch-and-price

algoritme mogelijk snel een optimale oplossing te vinden, zelfs als er veel participanten in

een ruilketen of cyclus kunnen deelnemen (Hoofdstuk 3).

Maximaliseren van het aantal transplantaties is niet het enige criterium. Want is

een maximale oplossing ethisch gezien wel juist? Op Europees niveau is afgesproken dat

er sprake moet zijn van zowel een optimale als een rechtvaardige verdeling (Council of

Europe, 2002). Dit houdt in dat factoren als de kans op transplantatie en de wachttijd

ook meegenomen moeten worden. Om op ons voorbeeld terug te komen: stel dat Eduardo

antisto↵en heeft tegen een zeer hoog percentage van alle donoren waardoor de kans op

het vinden van een geschikte match zeer klein is, dan is het wellicht eerlijker om Bart aan

Eduardo te laten doneren dan aan Cynthia.

De Nederlandse transplantatiestichting heeft de volgende zes hiërarchische beslissings-

regels opgesteld waaraan een allocatie binnen het nieruitwisselingsprogramma moet vol-

doen:

1. het aantal transplantaties is maximaal;

2. het aantal bloedtype identieke transplantaties is maximaal;

3. de patiënt met de laagste matchkans wordt gematcht (iteratief voor elke transplan-

tatie);

4. het aantal paren in de langste ruilcyclus is zo klein mogelijk;

5. de spreiding over transplantatiecentra in de minst gespreide ruilcyclus is zo groot

mogelijk;
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6. de patiënt met de langste dialysetijd wordt gematcht.

Het doel van criterium 2 is om patiënten met een lastig te matchen bloedtype te

beschermen. Dit wordt vervolgens verfijnt door criterium 3 dat rekening houdt met een

meer specifiek gedefiniëerde matchkans. Criteria 4 en 5 zijn logistiek van aard en criterium

6 spreekt voor zich. De hiërarchische opzet van de criteria sluit aan bij de traditionele

prioriteitsmechanismen die worden gebruikt bij de toewijzing van postmortale organen

aan patiënten op de wachtlijst.

Hoewel het toevoegen van deze criteria het optimalisatieprobleem computationeel

lastiger maakt, blijft het gelukkig door het op een slimme manier uitvoeren van branch-

and-price iteraties, waarbij de doelfunctiewaarden gepropageerd worden door het toevoe-

gen van restricties, ook mogelijk om dit probleem snel tot optimaliteit op te lossen (Hoofd-

stuk 3).

De hierboven genoemde criteria zijn niet de enige mogelijkheid om tot een recht-

vaardige ruil te komen. Als alternatief wordt ook wel een lotingsprocedure genoemd.

Hoewel een dergelijke stochastisch mechanisme mooie theoretische eigenschappen heeft

zoals het bieden van zoveel als mogelijk gelijke kansen voor patiënten, wordt zij in de

praktijk echter (nog) nergens omarmd.

Daarnaast is het bijvoorbeeld mogelijk te matchen op basis van gezondheidswinst

(Hoofdstuk 5). Naast het feit dat dit de voordelen van transplantatie maximaliseert,

schept het ook een mogelijkheid voor de inclusie van compatibele paren in het nier-

uitwisselingsprogramma. Stel dat een compatibel echtpaar van wat oudere leeftijd, Greet

en Henk, de mogelijkheid geboden wordt om te ruilen met de jongere Cynthia en Dirk. Dit

zou er toe kunnen leiden dat Greet een betere kwaliteit orgaan krijgt en dat Cynthia niet

ongematcht hoeft achter te blijven. Door compatibele paren een verbetering in levens-

verwachting te garanderen zouden de kansen voor alle patiënt-donor paren in het pro-

gramma zo verbeterd kunnen worden.

Bij het bespreken van degenen die door het ruilen benadeeld kunnen worden hebben

we ons direct gericht op de patiënt-donor paren. Maar zij zijn niet de enigen die er

op achteruit kunnen gaan. De transplantatiecentra zelf dienen ook in acht genomen te

worden, met name wanneer het gaat om het ruilen met Samaritaanse donoren. Een

centrum steekt namelijk veel tijd en geld in de voorbereidende onderzoeken en opwerking

van donoren. Met een Samaritaanse donor zou het centrum dan ook het liefst zoveel

mogelijk van de eigen patiënten helpen. Dit vormt in veel landen een groot praktisch

probleem bij het opzetten van een nationaal programma en is mogelijk een van de redenen

waarom ruilketens in Nederland tot op heden lokaal worden gecoördineerd.
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In Hoofdstuk 4 is gekeken naar de toevoeging van participatierestricties (garanties

dat een transplantatiecentrum in een nationaal mechanisme minstens zoveel transplan-

taties kan verrichten als in een lokaal mechanisme) voor verschillende configuraties van

het nieruitwisselingsprogramma. Hieruit blijkt dat dergelijke restricties geen negatieve

consequenties hebben op de lange termijn. Bovendien wordt aangetoond dat onder lande-

lijke multimodale coördinatie een toename in het aantal transplantaties mogelijk is van

bijna 60 % voor de meest lastig te matchen patiënten.

Hoewel we het nieruitwisselingsprogramma tot dusver in een statische toestand hebben

beschouwd, is het dat in werkelijkheid niet. Maandelijks melden zich nieuwe patiënten

en donoren aan en verdwijnen reeds aangemelde paren (bijvoorbeeld door verergering van

de ziekte, transplantatie buiten het programma om, etc). Deze dynamische context heeft

implicaties voor de optimaliteits- en rechtvaardigheidscondities van optimale oplossingen.

In Hoofdstuk 4 hebben we ook gekeken naar de e↵ecten van het veranderen van de

tijd tussen allocatiebeslissingen. We ontdekten dat het belangrijk is om niet teveel tijd

tussen beslissingen te laten zodat patiënten niet onnodig hoeven wachten, maar ook om

voldoende tijd tussen beslissingen te laten zodat er zich voldoende ruilmogelijkheden

voordoen. In het Nederlandse programma treft een drie-maandelijkse allocatiebeslissing

hierin een goede balans.

In Hoofdstuk 7 hebben we in het bijzonder gekeken naar mogelijkheden om rekening

te houden met de kans op het falen van een voorgestelde ruil, bijvoorbeeld door het

op het laatste moment terugtrekken van een patiënt of donor of door het falen van een

medische test ter controle van de compatibiliteit tussen donor en ontvanger. Wij hebben

verschillende manieren voorgesteld om te reageren op een falende ruil, afhankelijk van de

gewenste flexibiliteit. Het beschermen tegen marktfalen kan vooral belangrijk zijn voor

de meest moeilijk-te-matchen patiënten.

Het aloude gezegde “van ruilen komt huilen” hoeft niet op te gaan voor het ruilen

van nieren binnen het nieruitwisselingsprogramma. Integendeel, het programma biedt

deelnemers de kans om te overleven in betere gezondheid. Dat brengt belangrijke opti-

maliseringsvraagstukken met zich mee. Ten eerste om te zorgen dat het maximaal aan-

tal patiënten geholpen wordt, ten tweede om er voor te zorgen dat dit rechtvaardig, of

zelfs zo rechtvaardig mogelijk gebeurt. Dankzij recente ontwikkelingen op het gebied van

operations research zoals gepresenteerd in dit proefschrift blijven deze optimaliserings-

vraagstukken praktisch oplosbaar, nu en in de toekomst als nieruitwisselingsprogramma’s

verder groeien. Zo draagt operations research bij aan de kwaliteit en het behoud van

leven van een groeiende populatie van patiënten.



196_Erim Glorie[stand].job



197_Erim Glorie[stand].job

About the author

Kristiaan Glorie (1987) holds a cum laude bachelor’s and cum

laude master’s degree in Econometrics and Management Science

from Erasmus University Rotterdam. In 2010 he started his PhD

research at the Econometric Institute in the Erasmus School of

Economics. Kristiaan has served as the PhD representative to the

board of the Dutch network on the Mathematics of Operations

Research (2011 and 2012) and, in the summer of 2013, he has been

a visiting researcher at the MIT Sloan School of Management.

Kristiaan’s research interests are at the intersection of Oper-

ations Research and Mechanism Design. He is particularly inter-

ested in the theory and application of combinatorial optimization

problems involving uncertainty and human interaction. In addi-

tion to the research presented in this thesis, he has collaborated with other researchers to

investigate route planning of unmanned aerial vehicles, management of sterile inventory,

and house allocation mechanisms.

Kristiaan has published in several of the leading journals in his field, including Manu-

facturing & Service Operations Management, Computers & Operations Research, Trans-

plantation, and Transplant International. He has presented his research at various interna-

tional conferences, including IFORS, MATCH-UP, INFORMS Healthcare, and OR2013,

as well as the national conferences of the Dutch transplant foundation and the Dutch

network on the Mathematics of Operations Research. For the third chapter of this thesis,

he has been awarded the second price in the 2013 Student Research Paper Contest in the

Healthcare Applications Section of INFORMS.

After having finished his PhD trajectory, Kristiaan will start as an assistant professor

in combinatorial optimization at the Department of Mathematics at the VU University

Amsterdam. He will continue to work on combinatorial optimization problems and to

apply his research in practice.

Kristiaan is married and is the father of a daughter.



198_Erim Glorie[stand].job



199_Erim Glorie[stand].job

 
ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT  (ERIM) 

 

ERIM PH.D. SERIES  RESEARCH IN MANAGEMENT 

The ERIM PhD Series contains PhD dissertations in the field of Research in Management 
defended at Erasmus University Rotterdam and supervised by senior researchers affiliated to the 
Erasmus Research Institute of Management (ERIM). All dissertations in the ERIM PhD Series 
are available in full text through the ERIM Electronic Series Portal: http://hdl.handle.net/1765/1 
ERIM is the joint research institute of the Rotterdam School of Management (RSM) and 
the Erasmus School of Economics at the Erasmus University Rotterdam (EUR). 
 

DISSERTATIONS LAST FIVE YEARS 
 

Abbink, E., Crew Management in Passenger Rail Transport, Promotor(s): Prof.dr. L.G. Kroon & 
Prof.dr. A.P.M. Wagelmans, EPS-2014-325-LIS, http://hdl.handle.net/1765/1 
 
Acar, O.A., Crowdsourcing for innovation: Unpacking Motivational, Knowledge and Relational 
Mechanisms of Innovative Behavior in Crowdsourcing Platforms, Promotor: Prof.dr. J.C.M. van den 
Ende, EPS-2014-321-LIS, http://hdl.handle.net/1765/1 
 
Acciaro, M., Bundling Strategies in Global Supply Chains, Promotor(s): Prof.dr. H.E. Haralambides, 
EPS-2010-197-LIS, http://hdl.handle.net/1765/19742 

Akpinar, E., Consumer Information Sharing; Understanding Psychological Drivers of Social 
Transmission, Promotor(s): Prof.dr.ir. A. Smidts, EPS-2013-297-MKT, http://hdl.handle.net/1765/50140 

 Alexiev, A., Exploratory Innovation: The Role of Organizational and Top Management Team Social 
Capital, Promotor(s): Prof.dr. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2010-208-STR, 
http://hdl.handle.net/1765/20632 

Akin Ates, M., Purchasing and Supply Management at the Purchase Category Level: Strategy, 
Structure, and Performance, Promotor: Prof.dr. J.Y.F. Wynstra, EPS-2014-300-LIS, 
http://hdl.handle.net/1765/1 
 
Almeida, R.J.de, Conditional Density Models Integrating Fuzzy and Probabilistic Representations of 
Uncertainty, Promotor Prof.dr.ir. Uzay Kaymak, EPS-2014-310-LIS, http://hdl.net/1765/1 

Bannouh, K., Measuring and Forecasting Financial Market Volatility using High-Frequency Data, 
Promotor: Prof.dr.D.J.C. van Dijk, EPS-2013-273-F&A, http://hdl.handle.net/1765/38240 

Benning, T.M., A Consumer Perspective on Flexibility in Health Care: Priority Access Pricing and 
Customized Care, Promotor: Prof.dr.ir. B.G.C. Dellaert, EPS-2011-241-MKT, 
http://hdl.handle.net/1765/23670 

Ben-Menahem, S.M., Strategic Timing and Proactiveness of Organizations, Promotor(s):  
Prof.dr. H.W. Volberda & Prof.dr.ing. F.A.J. van den Bosch, EPS-2013-278-S&E, 
http://hdl.handle.net/1765/ 39128 
 
Berg, W.E. van den, Understanding Salesforce Behavior Using Genetic Association Studies, Promotor: 
Prof.dr. W.J.M.I. Verbeke, EPS-2014-311-MKT, http://hdl.handle.net/1765/ 51440 



200_Erim Glorie[stand].job

Betancourt, N.E., Typical Atypicality: Formal and Informal Institutional Conformity, Deviance, and 
Dynamics, Promotor: Prof.dr. B. Krug, EPS-2012-262-ORG, http://hdl.handle.net/1765/32345 

Binken, J.L.G., System Markets: Indirect Network Effects in Action, or Inaction, Promotor:  
Prof.dr. S. Stremersch, EPS-2010-213-MKT, http://hdl.handle.net/1765/21186 

Blitz, D.C., Benchmarking Benchmarks, Promotor(s): Prof.dr. A.G.Z. Kemna &  
Prof.dr. W.F.C. Verschoor, EPS-2011-225-F&A, http://hdl.handle.net/1765/226244 
 
Boons, M., Working Together Alone in the Online Crowd: The Effects of Social Motivations and 
Individual Knowledge Backgrounds on the Participation and Performance of Members of Online 
Crowdsourcing Platforms, Promotor: Prof.dr. H.G. Barkema, EPS-2014-306-S&E, 
 http://hdl.net/1765/50711 

Borst, W.A.M., Understanding Crowdsourcing: Effects of Motivation and Rewards on Participation and 
Performance in Voluntary Online Activities, Promotor(s): Prof.dr.ir. J.C.M. van den Ende &  
Prof.dr.ir. H.W.G.M. van Heck, EPS-2010-221-LIS, http://hdl.handle.net/1765/ 21914 

Budiono, D.P., The Analysis of Mutual Fund Performance: Evidence from U.S. Equity Mutual Funds, 
Promotor: Prof.dr. M.J.C.M. Verbeek, EPS-2010-185-F&A, http://hdl.handle.net/1765/18126 

Burger, M.J., Structure and Cooptition in Urban Networks, Promotor(s): Prof.dr. G.A. van der Knaap & 
Prof.dr. H.R. Commandeur, EPS-2011-243-ORG, http://hdl.handle.net/1765/26178 

Byington, E., Exploring Coworker Relationships: Antecedents and Dimensions of Interpersonal Fit, 
Coworker Satisfaction, and Relational Models, Promotor: Prof.dr. D.L. van Knippenberg,  
EPS-2013-292-ORG, http://hdl.handle.net/1765/41508 

Camacho, N.M., Health and Marketing; Essays on Physician and Patient Decision-making, Promotor: 
Prof.dr. S. Stremersch, EPS-2011-237-MKT, http://hdl.handle.net/1765/23604 
 
Cankurtaran, P. Essays On Accelerated Product Development, Promotor: Prof.dr.ir. G.H. van Bruggen, 
EPS-2014-317-MKT, http://hdl.handle.net/1765/1 

Caron, E.A.M., Explanation of Exceptional Values in Multi-dimensional Business Databases, 
Promotor(s): Prof.dr.ir. H.A.M. Daniels & Prof.dr. G.W.J. Hendrikse, EPS-2013-296-LIS, 
http://hdl.handle.net/1765/50005 

Carvalho, L., Knowledge Locations in Cities; Emergence and Development Dynamics, Promotor: 
Prof.dr. L. van den Berg, EPS-2013-274-S&E, http://hdl.handle.net/1765/ 38449 

Carvalho de Mesquita Ferreira, L., Attention Mosaics: Studies of Organizational Attention, Promotor(s): 
Prof.dr. P.M.A.R. Heugens & Prof.dr. J. van Oosterhout, EPS-2010-205-ORG, 
http://hdl.handle.net/1765/19882  

Cox, R.H.G.M., To Own, To Finance, and to Insure; Residential Real Estate Revealed, Promotor: 
Prof.dr. D. Brounen, EPS-2013-290-F&A, http://hdl.handle.net/1765/40964 

Defilippi Angeldonis, E.F., Access Regulation for Naturally Monopolistic Port Terminals: Lessons from 
Regulated Network Industries, Promotor: Prof.dr. H.E. Haralambides, EPS-2010-204-LIS,  
http://hdl.handle.net/1765/19881 

Deichmann, D., Idea Management: Perspectives from Leadership, Learning, and Network Theory, 
Promotor: Prof.dr.ir. J.C.M. van den Ende, EPS-2012-255-ORG, http://hdl.handle.net/1765/ 31174 



201_Erim Glorie[stand].job

Desmet, P.T.M., In Money we Trust? Trust Repair and the Psychology of Financial Compensations, 
Promotor: Prof.dr. D. De Cremer & Prof.dr. E. van Dijk, EPS-2011-232-ORG,  
http://hdl.handle.net/1765/23268 

Dietvorst, R.C., Neural Mechanisms Underlying Social Intelligence and Their Relationship with the 
Performance of Sales Managers, Promotor: Prof.dr. W.J.M.I. Verbeke, EPS-2010-215-MKT, 
http://hdl.handle.net/1765/21188 

Dollevoet, T.A.B., Delay Management and Dispatching in Railways, Promotor:  
Prof.dr. A.P.M. Wagelmans, EPS-2013-272-LIS, http://hdl.handle.net/1765/38241 

Doorn, S. van, Managing Entrepreneurial Orientation, Promotor(s): Prof.dr. J.J.P. Jansen,  
Prof.dr.ing. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2012-258-STR, 
http://hdl.handle.net/1765/32166 

Douwens-Zonneveld, M.G., Animal Spirits and Extreme Confidence: No Guts, No Glory, Promotor: 
Prof.dr. W.F.C. Verschoor, EPS-2012-257-F&A, http://hdl.handle.net/1765/31914 

Duca, E., The Impact of Investor Demand on Security Offerings, Promotor: Prof.dr. A. de Jong,  
EPS-2011-240-F&A, http://hdl.handle.net/1765/26041 

Duursema, H., Strategic Leadership; Moving Beyond the Leader-follower Dyad, Promotor:  
Prof.dr. R.J.M. van Tulder, EPS-2013-279-ORG, http://hdl.handle.net/1765/ 39129 

Eck, N.J. van, Methodological Advances in Bibliometric Mapping of Science, Promotor:  
Prof.dr.ir. R. Dekker, EPS-2011-247-LIS, http://hdl.handle.net/1765/26509 

Essen, M. van, An Institution-Based View of Ownership, Promotor(s): Prof.dr. J. van Oosterhout & 
Prof.dr. G.M.H. Mertens, EPS-2011-226-ORG, http://hdl.handle.net/1765/22643 

Feng, L., Motivation, Coordination and Cognition in Cooperatives, Promotor:  
Prof.dr. G.W.J. Hendrikse, EPS-2010-220-ORG, http://hdl.handle.net/1765/21680 
 
Fourné, S. P. L. Managing Organizational Tensions: A Multi-level Perspective on Exploration, 
Exploitation, and Ambidexterity, Promotor(s): Prof.dr. J.J.P. Jansen, Prof.dr. S.J. Magala & dr. 
T.J.M.Mom, EPS-2014-318-S&E, http://hdl.handle.net/1765/21680 

Gharehgozli, A.H., Developing New Methods for Efficient Container Stacking Operations, Promotor: 
Prof.dr.ir. M.B.M. de Koster, EPS-2012-269-LIS, http://hdl.handle.net/1765/ 37779 

Gils, S. van, Morality in Interactions: On the Display of Moral Behavior by Leaders and Employees, 
Promotor: Prof.dr. D.L. van Knippenberg, EPS-2012-270-ORG, http://hdl.handle.net/1765/ 38028 

Ginkel-Bieshaar, M.N.G. van, The Impact of Abstract versus Concrete Product Communications on 
Consumer Decision-making Processes, Promotor: Prof.dr.ir. B.G.C. Dellaert, EPS-2012-256-MKT, 
http://hdl.handle.net/1765/31913 

Gkougkousi, X., Empirical Studies in Financial Accounting, Promotor(s): Prof.dr. G.M.H. Mertens & 
Prof.dr. E. Peek, EPS-2012-264-F&A, http://hdl.handle.net/1765/37170 
 
Glorie, K.M., Clearing Barter Exchange Markets: Kidney Exchange and Beyond, Promotor(s): Prof.dr. 
A.P.M. Wagelmans & Prof.dr. J.J. van de Klundert, EPS-2014-329-LIS, http://hdl.handle.net/1765/1 



202_Erim Glorie[stand].job

Hakimi, N.A, Leader Empowering Behaviour: The Leader’s Perspective: Understanding the Motivation 
behind Leader Empowering Behaviour, Promotor: Prof.dr. D.L. van Knippenberg,  
EPS-2010-184-ORG, http://hdl.handle.net/1765/17701 

Hensmans, M., A Republican Settlement Theory of the Firm: Applied to Retail Banks in England and the 
Netherlands (1830-2007), Promotor(s): Prof.dr. A. Jolink & Prof.dr. S.J. Magala, EPS-2010-193-ORG, 
http://hdl.handle.net/1765/19494 

Hernandez Mireles, C., Marketing Modeling for New Products, Promotor: Prof.dr. P.H. Franses,  
EPS-2010-202-MKT, http://hdl.handle.net/1765/19878 

Heyde Fernandes, D. von der, The Functions and Dysfunctions of Reminders, Promotor: Prof.dr. S.M.J. 
van Osselaer, EPS-2013-295-MKT,  http://hdl.handle.net/1765/41514 

Heyden, M.L.M., Essays on Upper Echelons & Strategic Renewal: A Multilevel Contingency Approach, 
Promotor(s): Prof.dr. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2012-259-STR, 
http://hdl.handle.net/1765/32167 

Hoever, I.J., Diversity and Creativity: In Search of Synergy, Promotor(s): Prof.dr. D.L. van 
Knippenberg, EPS-2012-267-ORG, http://hdl.handle.net/1765/37392 

Hoogendoorn, B., Social Entrepreneurship in the Modern Economy: Warm Glow, Cold Feet, 
Promotor(s): Prof.dr. H.P.G. Pennings & Prof.dr. A.R. Thurik, EPS-2011-246-STR, 
http://hdl.handle.net/1765/26447 

Hoogervorst, N., On The Psychology of Displaying Ethical Leadership: A Behavioral Ethics Approach, 
Promotor(s): Prof.dr. D. De Cremer & Dr. M. van Dijke, EPS-2011-244-ORG, 
http://hdl.handle.net/1765/26228 

Huang, X., An Analysis of Occupational Pension Provision: From Evaluation to Redesign, Promotor(s): 
Prof.dr. M.J.C.M. Verbeek & Prof.dr. R.J. Mahieu, EPS-2010-196-F&A, 
http://hdl.handle.net/1765/19674 

Hytönen, K.A. Context Effects in Valuation, Judgment and Choice, Promotor(s): Prof.dr.ir. A. Smidts, 
EPS-2011-252-MKT, http://hdl.handle.net/1765/30668 
 
Iseger, P. den, Fourier and Laplace Transform Inversion with Application in Finance, Promotor: 
Prof.dr.ir.  R.Dekker, EPS-2014-322-LIS, http://hdl.handle.net/1765/1 

Jaarsveld, W.L. van, Maintenance Centered Service Parts Inventory Control, Promotor(s): Prof.dr.ir. R. 
Dekker, EPS-2013-288-LIS, http://hdl.handle.net/1765/ 39933 

Jalil, M.N., Customer Information Driven After Sales Service Management: Lessons from Spare Parts 
Logistics, Promotor(s): Prof.dr. L.G. Kroon, EPS-2011-222-LIS, http://hdl.handle.net/1765/22156 

Kagie, M., Advances in Online Shopping Interfaces: Product Catalog Maps and Recommender Systems, 
Promotor(s): Prof.dr. P.J.F. Groenen, EPS-2010-195-MKT, http://hdl.handle.net/1765/19532 

Kappe, E.R., The Effectiveness of Pharmaceutical Marketing, Promotor(s): Prof.dr. S. Stremersch,  
EPS-2011-239-MKT, http://hdl.handle.net/1765/23610 

Karreman, B., Financial Services and Emerging Markets, Promotor(s): Prof.dr. G.A. van der Knaap & 
Prof.dr. H.P.G. Pennings, EPS-2011-223-ORG, http://hdl.handle.net/1765/ 22280 



203_Erim Glorie[stand].job

Kil, J.C.M., Acquisitions Through a Behavioral and Real Options Lens, Promotor(s): Prof.dr. H.T.J. 
Smit, EPS-2013-298-F&A, http://hdl.handle.net/1765/50142 
 
Klooster, E. van‘t, Travel to Learn: The Influence of Cultural Distance on Competence Development in 
Educational Travel, Promotors: Prof.dr. F.M. Go & Prof.dr. P.J. van Baalen, EPS-2014-312-MKT, 
http://hdl.handle.net/1765/151460 
 
Koendjbiharie, S.R., The Information-Based View on Business Network Performance Revealing the 
Performance of Interorganizational Networks, Promotors: Prof.dr.ir. H.W.G.M. van Heck & Prof.mr.dr. 
P.H.M. Vervest, EPS-2014-315-LIS, http://hdl.handle.net/1765/1 
 
Koning, M., The Financial Reporting Environment: taking into account the media, international 
relations and auditors, Promotor(s): Prof.dr. P.G.J.Roosenboom & Prof.dr. G.M.H. Mertens, EPS-2014-
330-F&A, http://hdl.handle.net/1765/1 
 
Konter, D.J., Crossing borders with HRM: An inquiry of the influence of contextual differences in the 
adaption and effectiveness of HRM, Promotor: Prof.dr. J. Paauwe, EPS-2014-305-ORG, 
http://hdl.handle.net/1765/1 
 
Korkmaz, E. Understanding Heterogeneity in Hidden Drivers of Customer Purchase Behavior, 
Promotors: Prof.dr. S.L. van de Velde & dr. R.Kuik, EPS-2014-316-LIS, http://hdl.handle.net/1765/1 
 
Kroezen, J.J., The Renewal of Mature Industries: An Examination of the Revival of the Dutch Beer 
Brewing Industry, Promotor: Prof. P.P.M.A.R. Heugens, EPS-2014-333-S&E, 
http://hdl.handle.net/1765/1 
 

Lam, K.Y., Reliability and Rankings, Promotor(s): Prof.dr. P.H.B.F. Franses, EPS-2011-230-MKT, 
http://hdl.handle.net/1765/22977 

Lander, M.W., Profits or Professionalism? On Designing Professional Service Firms, Promotor(s): 
Prof.dr. J. van Oosterhout & Prof.dr. P.P.M.A.R. Heugens, EPS-2012-253-ORG, 
http://hdl.handle.net/1765/30682 

Langhe, B. de, Contingencies: Learning Numerical and Emotional Associations in an Uncertain World, 
Promotor(s): Prof.dr.ir. B. Wierenga & Prof.dr. S.M.J. van Osselaer, EPS-2011-236-MKT, 
http://hdl.handle.net/1765/23504 

Larco Martinelli, J.A., Incorporating Worker-Specific Factors in Operations Management Models, 
Promotor(s): Prof.dr.ir. J. Dul & Prof.dr. M.B.M. de Koster, EPS-2010-217-LIS, 
http://hdl.handle.net/1765/21527 

Leunissen, J.M., All Apologies: On the Willingness of Perpetrators to Apoligize, Promotor:  
Prof.dr. D. De Cremer, EPS-2014-301-ORG, http://hdl.handle.net/1765/1 

Liang, Q., Governance, CEO Indentity, and Quality Provision of Farmer Cooperatives, Promotor: 
Prof.dr. G.W.J. Hendrikse, EPS-2013-281-ORG, http://hdl.handle.net/1765/1 

Liket, K.C., Why ‘Doing Good’ is not Good Enough: Essays on Social Impact Measurement, Promotor: 
Prof.dr. H.R. Commandeur, EPS-2014-307-S&E, http://hdl.handle.net/1765/51130 
 
Loos, M.J.H.M. van der, Molecular Genetics and Hormones; New Frontiers in Entrepreneurship 
Research, Promotor(s): Prof.dr. A.R. Thurik, Prof.dr. P.J.F. Groenen & Prof.dr. A. Hofman,  
EPS-2013-287-S&E, http://hdl.handle.net/1765/ 40081 



204_Erim Glorie[stand].job

Lovric, M., Behavioral Finance and Agent-Based Artificial Markets, Promotor(s): Prof.dr. J. Spronk & 
Prof.dr.ir. U. Kaymak, EPS-2011-229-F&A, http://hdl.handle.net/1765/ 22814 
 
Lu, Y., Data-Driven Decision Making in Auction Markets, Promotors: Prof.dr.ir.H.W.G.M. van Heck & 
Prof.dr.W.Ketter, EPS-2014-314-LIS, http://hdl.handle.net/1765/1 

Markwat, T.D., Extreme Dependence in Asset Markets Around the Globe, Promotor:  
Prof.dr. D.J.C. van Dijk, EPS-2011-227-F&A, http://hdl.handle.net/1765/22744 

Mees, H., Changing Fortunes: How China’s Boom Caused the Financial Crisis, Promotor:  
Prof.dr. Ph.H.B.F. Franses, EPS-2012-266-MKT, http://hdl.handle.net/1765/34930 
 
Meuer, J., Configurations of Inter-Firm Relations in Management Innovation: A Study in China’s 
Biopharmaceutical Industry, Promotor: Prof.dr. B. Krug, EPS-2011-228-ORG, 
http://hdl.handle.net/1765/22745 

Mihalache, O.R., Stimulating Firm Innovativeness: Probing the Interrelations between Managerial and 
Organizational Determinants, Promotor(s): Prof.dr. J.J.P. Jansen, Prof.dr.ing. F.A.J. van den Bosch & 
Prof.dr. H.W. Volberda, EPS-2012-260-S&E, http://hdl.handle.net/1765/32343 

Milea, V., New Analytics for Financial Decision Support, Promotor: Prof.dr.ir. U. Kaymak,  
EPS-2013-275-LIS, http://hdl.handle.net/1765/ 38673 
 
Naumovska, I. Socially Situated Financial Markets:a Neo-Behavioral Perspective on Firms, Investors 
and Practices, Promoter(s) Prof.dr. P.P.M.A.R. Heugens & Prof.dr. A.de Jong, EPS-2014-319-S&E, 
http://hdl.handle.net/1765/ 1 

Nielsen, L.K., Rolling Stock Rescheduling in Passenger Railways: Applications in Short-term Planning 
and in Disruption Management, Promotor: Prof.dr. L.G. Kroon, EPS-2011-224-LIS, 
http://hdl.handle.net/1765/22444 

Nijdam, M.H., Leader Firms: The Value of Companies for the Competitiveness of the Rotterdam Seaport 
Cluster, Promotor(s): Prof.dr. R.J.M. van Tulder, EPS-2010-216-ORG, http://hdl.handle.net/1765/21405 

Noordegraaf-Eelens, L.H.J., Contested Communication: A Critical Analysis of Central Bank Speech, 
Promotor: Prof.dr. Ph.H.B.F. Franses, EPS-2010-209-MKT, http://hdl.handle.net/1765/21061 

Nuijten, A.L.P., Deaf Effect for Risk Warnings: A Causal Examination applied to Information Systems 
Projects, Promotor: Prof.dr. G. van der Pijl & Prof.dr. H. Commandeur & Prof.dr. M. Keil,  
EPS-2012-263-S&E, http://hdl.handle.net/1765/34928 

Oosterhout, M., van, Business Agility and Information Technology in Service Organizations, Promotor: 
Prof,dr.ir. H.W.G.M. van Heck, EPS-2010-198-LIS, http://hdl.handle.net/1765/19805 

Osadchiy, S.E., The Dynamics of Formal Organization: Essays on Bureaucracy and Formal Rules, 
Promotor: Prof.dr. P.P.M.A.R. Heugens, EPS-2011-231-ORG, http://hdl.handle.net/1765/23250 

Otgaar, A.H.J., Industrial Tourism: Where the Public Meets the Private, Promotor: Prof.dr. L. van den 
Berg, EPS-2010-219-ORG, http://hdl.handle.net/1765/21585 

Ozdemir, M.N., Project-level Governance, Monetary Incentives and Performance in Strategic R&D 
Alliances, Promotor: Prof.dr.ir. J.C.M. van den Ende, EPS-2011-235-LIS, 
http://hdl.handle.net/1765/23550 



205_Erim Glorie[stand].job

Peers, Y., Econometric Advances in Diffusion Models, Promotor: Prof.dr. Ph.H.B.F. Franses,  
EPS-2011-251-MKT, http://hdl.handle.net/1765/ 30586 

Pince, C., Advances in Inventory Management: Dynamic Models, Promotor: Prof.dr.ir. R. Dekker,  
EPS-2010-199-LIS, http://hdl.handle.net/1765/19867  

Porck, J.P., No Team is an Island, Promotor: Prof.dr. P.J.F. Groenen & Prof.dr. D.L. van Knippenberg, 
EPS-2013-299-ORG, http://hdl.handle.net/1765/50141 

Porras Prado, M., The Long and Short Side of Real Estate, Real Estate Stocks, and Equity, Promotor: 
Prof.dr. M.J.C.M. Verbeek, EPS-2012-254-F&A, http://hdl.handle.net/1765/30848 

Potthoff, D., Railway Crew Rescheduling: Novel Approaches and Extensions, Promotor(s):  
Prof.dr. A.P.M. Wagelmans & Prof.dr. L.G. Kroon, EPS-2010-210-LIS, 
http://hdl.handle.net/1765/21084 

Poruthiyil, P.V., Steering Through: How Organizations Negotiate Permanent Uncertainty and 
Unresolvable Choices, Promotor(s): Prof.dr. P.P.M.A.R. Heugens & Prof.dr. S. Magala,  
EPS-2011-245-ORG, http://hdl.handle.net/1765/26392 

Pourakbar, M. End-of-Life Inventory Decisions of Service Parts, Promotor: Prof.dr.ir. R. Dekker, EPS-
2011-249-LIS, http://hdl.handle.net/1765/30584 

Pronker, E.S., Innovation Paradox in Vaccine Target Selection, Promotor(s): Prof.dr. H.R. Commandeur 
& Prof.dr. H.J.H.M. Claassen, EPS-2013-282-S&E, http://hdl.handle.net/1765/39654 

Retel Helmrich, M.J., Green Lot-Sizing, Promotor: Prof.dr. A.P.M. Wagelmans, EPS-2013-291-LIS, 
http://hdl.handle.net/1765/41330 
 
Rietveld, C.A., Essays on the Intersection of Economics and Biology, Promotor(s): Prof.dr. P.J.F. 
Groenen, Prof.dr. A. Hofman, Prof.dr. A.R. Thurik, Prof.dr. P.D. Koellinger, EPS-2014-320-S&E, 
http://hdl.handle.net/1765/1 

Rijsenbilt, J.A., CEO Narcissism; Measurement and Impact, Promotor: Prof.dr. A.G.Z. Kemna & 
Prof.dr. H.R. Commandeur, EPS-2011-238-STR, http://hdl.handle.net/1765/ 23554 

Roelofsen, E.M., The Role of Analyst Conference Calls in Capital Markets, Promotor(s):  
Prof.dr. G.M.H. Mertens & Prof.dr. L.G. van der Tas RA, EPS-2010-190-F&A, 
http://hdl.handle.net/1765/18013 

Roza, M.W., The Relationship between Offshoring Strategies and Firm Performance: Impact of 
Innovation, Absorptive Capacity and Firm Size, Promotor(s): Prof.dr. H.W. Volberda &  
Prof.dr.ing. F.A.J. van den Bosch, EPS-2011-214-STR, http://hdl.handle.net/1765/22155 

Rubbaniy, G., Investment Behavior of Institutional Investors, Promotor: Prof.dr. W.F.C. Verschoor, 
EPS-2013-284-F&A, http://hdl.handle.net/1765/ 40068 

Schellekens, G.A.C., Language Abstraction in Word of Mouth, Promotor: Prof.dr.ir. A. Smidts,  
EPS-2010-218-MKT, http://hdl.handle.net/1765/21580 

Shahzad, K., Credit Rating Agencies, Financial Regulations and the Capital Markets, Promotor: Prof.dr. 
G.M.H. Mertens, EPS-2013-283-F&A, http://hdl.handle.net/1765/39655 



206_Erim Glorie[stand].job

Sotgiu, F., Not All Promotions are Made Equal: From the Effects of a Price War to Cross-chain 
Cannibalization, Promotor(s): Prof.dr. M.G. Dekimpe & Prof.dr.ir. B. Wierenga, EPS-2010-203-MKT, 
http://hdl.handle.net/1765/19714 
 
Sousa, M., Servant Leadership to the Test: New Perspectives and Insight, Promotors: Prof.dr. D. van 
Knippenberg & Dr. D. van Dierendonck, EPS-2014-313-ORG, http://hdl.net/1765/1 

Spliet, R., Vehicle Routing with Uncertain Demand, Promotor: Prof.dr.ir. R. Dekker,  
EPS-2013-293-LIS, http://hdl.handle.net/1765/41513 

Srour, F.J., Dissecting Drayage: An Examination of Structure, Information, and Control in Drayage 
Operations, Promotor: Prof.dr. S.L. van de Velde, EPS-2010-186-LIS, http://hdl.handle.net/1765/18231 
 
Staadt, J.L., Leading Public Housing Organisation in a Problematic Situation: A Critical Soft Systems 
Methodology Approach, Promotor: Prof.dr. S.J. Magala, EPS-2014-308-ORG, 
http://hdl.handle.net/1765/50712 

Stallen, M., Social Context Effects on Decision-Making; A Neurobiological Approach, Promotor: 
Prof.dr.ir. A. Smidts, EPS-2013-285-MKT, http://hdl.handle.net/1765/ 39931 

Tarakci, M., Behavioral Strategy; Strategic Consensus, Power and Networks, Promotor(s):  
Prof.dr. P.J.F. Groenen & Prof.dr. D.L. van Knippenberg, EPS-2013-280-ORG, 
http://hdl.handle.net/1765/ 39130 

Teixeira de Vasconcelos, M., Agency Costs, Firm Value, and Corporate Investment, Promotor: Prof.dr. 
P.G.J. Roosenboom, EPS-2012-265-F&A, http://hdl.handle.net/1765/37265 
 
Tempelaar, M.P., Organizing for Ambidexterity: Studies on the Pursuit of Exploration and Exploitation 
through Differentiation, Integration, Contextual and Individual Attributes, Promotor(s):  
Prof.dr.ing. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2010-191-STR, 
http://hdl.handle.net/1765/18457 

Tiwari, V., Transition Process and Performance in IT Outsourcing: Evidence from a Field Study and 
Laboratory Experiments, Promotor(s): Prof.dr.ir. H.W.G.M. van Heck & Prof.dr. P.H.M. Vervest,  
EPS-2010-201-LIS, http://hdl.handle.net/1765/19868 

Tröster, C., Nationality Heterogeneity and Interpersonal Relationships at Work, Promotor:  
Prof.dr. D.L. van Knippenberg, EPS-2011-233-ORG, http://hdl.handle.net/1765/23298 

Tsekouras, D., No Pain No Gain: The Beneficial Role of Consumer Effort in Decision Making, 
Promotor: Prof.dr.ir. B.G.C. Dellaert, EPS-2012-268-MKT, http://hdl.handle.net/1765/ 37542 

Tzioti, S., Let Me Give You a Piece of Advice: Empirical Papers about Advice Taking in Marketing, 
Promotor(s): Prof.dr. S.M.J. van Osselaer & Prof.dr.ir. B. Wierenga, EPS-2010-211-MKT, 
hdl.handle.net/1765/21149 

Vaccaro, I.G., Management Innovation: Studies on the Role of Internal Change Agents, Promotor(s): 
Prof.dr. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2010-212-STR, 
hdl.handle.net/1765/21150 



207_Erim Glorie[stand].job

Vagias, D., Liquidity, Investors and International Capital Markets, Promotor: Prof.dr. M.A. van Dijk, 
EPS-2013-294-F&A, http://hdl.handle.net/1765/41511 
 
Veelenturf, L.P., Disruption Management in Passenger Railways: Models for Timetable, Rolling Stock 
and Crew Rescheduling, Promotor: Prof.dr. L.G. Kroon, EPS-2014-327-LIS, 
http://hdl.handle.net/1765/1 

Verheijen, H.J.J., Vendor-Buyer Coordination in Supply Chains, Promotor:  
Prof.dr.ir. J.A.E.E. van Nunen, EPS-2010-194-LIS, http://hdl.handle.net/1765/19594 

Venus, M., Demystifying Visionary Leadership; In Search of the Essence of Effective Vision 
Communication, Promotor: Prof.dr. D.L. van Knippenberg, EPS-2013-289-ORG, 
http://hdl.handle.net/1765/ 40079 

Visser, V., Leader Affect and Leader Effectiveness; How Leader Affective Displays Influence Follower 
Outcomes, Promotor: Prof.dr. D. van Knippenberg, EPS-2013-286-ORG, 
http://hdl.handle.net/1765/40076 

Vlam, A.J., Customer First? The Relationship between Advisors and Consumers of Financial Products, 
Promotor: Prof.dr. Ph.H.B.F. Franses, EPS-2011-250-MKT, http://hdl.handle.net/1765/30585 

Waard, E.J. de, Engaging Environmental Turbulence: Organizational Determinants for Repetitive Quick 
and Adequate Responses, Promotor(s): Prof.dr. H.W. Volberda & Prof.dr. J. Soeters,  
EPS-2010-189-STR, http://hdl.handle.net/1765/18012 

Waltman, L., Computational and Game-Theoretic Approaches for Modeling Bounded Rationality, 
Promotor(s): Prof.dr.ir. R. Dekker & Prof.dr.ir. U. Kaymak, EPS-2011-248-LIS, 
http://hdl.handle.net/1765/26564 

Wang, Y., Information Content of Mutual Fund Portfolio Disclosure, Promotor:  
Prof.dr. M.J.C.M. Verbeek, EPS-2011-242-F&A, http://hdl.handle.net/1765/26066 

Wang, Y., Corporate Reputation Management; Reaching Out to Find Stakeholders, Promotor: Prof.dr. 
C.B.M. van Riel, EPS-2013-271-ORG, http://hdl.handle.net/1765/ 38675 
 
Weenen, T.C., On the Origin and Development of the Medical Nutrition Industry, Promotors: Prof.dr. 
H.R. Commandeur & Prof.dr. H.J.H.M. Claassen, EPS-2014-309-S&E, http://hdl.handle.net/1765/51134 

Wolfswinkel, M., Corporate Governance, Firm Risk and Shareholder Value of Dutch Firms, Promotor: 
Prof.dr. A. de Jong, EPS-2013-277-F&A, http://hdl.handle.net/1765/ 39127 

Xu, Y., Empirical Essays on the Stock Returns, Risk Management, and Liquidity Creation of Banks, 
Promotor: Prof.dr. M.J.C.M. Verbeek, EPS-2010-188-F&A, http://hdl.handle.net/1765/18125 
 
Yang, S.Y., Information aggregation efficiency of prediction market, Promotor: Prof.dr.ir. H.W.G.M. 
van Heck, EPS-2014-323-LIS, http://hdl.handle.net/1765/1 

Zaerpour, N., Efficient Management of Compact Storage Systems, Promotor:  
Prof.dr. M.B.M. de Koster, EPS-2013-276-LIS, http://hdl.handle.net/1765/38766 

Zhang, D., Essays in Executive Compensation, Promotor: Prof.dr. I. Dittmann, EPS-2012-261-F&A, 
http://hdl.handle.net/1765/32344 

Zhang, X., Scheduling with Time Lags, Promotor: Prof.dr. S.L. van de Velde, EPS-2010-206-LIS,  
http://hdl.handle.net/1765/19928 



208_Erim Glorie[stand].job

Zhou, H., Knowledge, Entrepreneurship and Performance: Evidence from Country-level and Firm-level 
Studies, Promotor(s): Prof.dr. A.R. Thurik & Prof.dr. L.M. Uhlaner, EPS-2010-207-ORG, 
http://hdl.handle.net/1765/20634 

Zwan, P.W. van der, The Entrepreneurial Process: An International Analysis of Entry and Exit, 
Promotor(s): Prof.dr. A.R. Thurik & Prof.dr. P.J.F. Groenen, EPS-2011-234-ORG, 
http://hdl.handle.net/1765/23422 

 

 



KRISTIAAN M. GLORIE 

Clearing Barter Exchange
Markets
Kidney Exchange and Beyond

K
.M

. G
LO

R
IE

-  C
le

a
rin

g
 B

a
rte

r E
x

ch
a

n
g

e
 M

a
rk

e
ts

ERIM PhD Series
Research in Management

E
ra

sm
u

s 
R

e
se

a
rc

h
 I

n
st

it
u

te
 o

f 
M

a
n

a
g

e
m

e
n

t
-

329

E
R

IM

D
e

si
g

n
 &

 l
a

yo
u

t:
 B

&
T

 O
n

tw
e

rp
 e

n
 a

d
vi

e
s 

 (
w

w
w

.b
-e

n
-t

.n
l)

  
  

P
ri

n
t:

 H
a

ve
k

a
  

 (
w

w
w

.h
a

ve
k

a
.n

l)CLEARING BARTER EXCHANGE MARKETS

KIDNEY EXCHANGE AND BEYOND

Advanced computer assisted markets, otherwise known as smart markets, are becoming
an important part of our modern society. This dissertation considers smart barter exchange
markets, which enable people to trade a wide range of goods: from shifts, to houses, to
kidneys. Centralized and computerized clearing is what makes these markets ‘smart’. The
market clearing problem is to match demand and supply so as to maximize the gains of
trade. Trades, in this regard, need not be limited to pairwise swaps but may consist of
trading cycles and chains involving multiple agents.

This dissertation presents several sophisticated market clearing algorithms that enable
optimal clearing in large real-life barter exchange markets. With a particular focus on
kidney exchanges, it shows how these algorithms can enable a significant alleviation of the
present shortage of kidney donors and an improvement in health outcomes for kidney
patients. State-of-the-art techniques are developed to allow the algorithms to be scalable,
even when there are bounds on the number of simultaneous transactions, multiple
objective criteria, and side constraints. Furthermore, innovative models and solution
approaches are presented to allow market uncertainty, such as transaction failure, to be
taken into account.

The research presented in this dissertation contributes to the advancement of scientific
knowledge in combinatorial optimization and market design, particularly in the domains of
mathematical programming and market clearing, and aids the establishment and operation
of smart barter exchange markets in the field of kidney exchange and beyond.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onder -
zoek school) in the field of management of the Erasmus University Rotterdam. The founding
participants of ERIM are the Rotterdam School of Management (RSM), and the Erasmus
School of Econo mics (ESE). ERIM was founded in 1999 and is officially accre dited by the
Royal Netherlands Academy of Arts and Sciences (KNAW). The research under taken by
ERIM is focused on the management of the firm in its environment, its intra- and interfirm
relations, and its busi ness processes in their interdependent connections. 

The objective of ERIM is to carry out first rate research in manage ment, and to offer an
ad vanced doctoral pro gramme in Research in Management. Within ERIM, over three
hundred senior researchers and PhD candidates are active in the different research pro -
grammes. From a variety of acade mic backgrounds and expertises, the ERIM commu nity is
united in striving for excellence and working at the fore front of creating new business
knowledge.

Erasmus Research Institute of Management - 
Rotterdam School of Management (RSM)
Erasmus School of Economics (ESE)
Erasmus University Rotterdam (EUR)
P.O. Box 1738, 3000 DR Rotterdam, 
The Netherlands

Tel. +31 10 408 11 82
Fax +31 10 408 96 40
E-mail info@erim.eur.nl
Internet www.erim.eur.nl

Page 1; B&T14350-ERIM 329 omslag Glorie 01okt14


