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l)INFORMATION AGGREGATION EFFICIENCY OF PREDICTION MARKETS

The increased complexity of the business environment, such as globalization of the
market, faster introduction of new products, more interdependencies among firms and
financial crises, has reduced the forecasting accuracy of conventional prediction methods
based on historical data or experts. How can we predict the future? Where can we find
information about the future? 

Over the past decade, some in the business world have come to believe that the best
forecasts emerge from neither past behavior patterns nor far-removed experts who ana -
lyze markets, but rather crowds; the front-line employees who are working directly with
new products and services and interacting daily with buyers, sellers and customers in the
field, as they have the most relevant and updated information and knowledge required for
forecasting. A prediction market, an elegant and well-designed method for capturing the
wisdom of crowds and predicting the outcome of a future event, has been, therefore, intro -
duced. Its promising forecasting results have inspired much enthusiasm among both
researchers and practitioners in recent years.  

This dissertation adopts the information-based view to investigate the effect of
information transparency on traders’ behavior and prediction market performance. The
research consists of three empirical studies. The case study investigates the activity of and
dynamic interactions between traders in an internal prediction market. The subsequent
laboratory experiment examines the effect of price information transparency on market
performance via traders’ behavior. The final field experiment further investigates different
levels of price information transparency in an internal prediction market in a real business
environment. The dissertation distinguishes clearly between information aggregation
efficiency and market predictive accuracy for the analysis of prediction market performance
by defining and developing a measurement of information aggregation efficiency. This
research, as a whole, contributes to the academic literature on information transparency
and prediction markets, and also demonstrates the considerable potential of prediction
markets in managerial decision-making. 
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CHAPTER 1 INTRODUCTION 

Forecasting is a fundamental activity of  management within a company, because a forecast is 

often required when a decision is made (Armstrong 1985). Poor forecasting may lead to 

disastrous decisions and huge financial losses. Risk and uncertainty are central to forecasting. 

Nowadays, substantial changes to business and economic environments have increased risks 

and uncertainties for companies.  

 

Within a company, a significant proportion of  financial resources and managerial attention is 

now spent to develop and launch more and more new products every year, as new products 

can increase a company’s long-term financial performance and market value (Ho and Chen 

2007). Demand forecasts are critical to supply, production and launch date planning for each 

new product, and hence, the increased introduction of  new products leads to more frequent 

forecasting. Poor demand forecasts prevent companies from capitalizing on the successes of  a 

new product blockbuster, such as the huge shortage when the Nintendo Wii was launched and 

the delay of  the international launch date of  the iPod Mini (Ho and Chen 2007). 

 

To seek and choose the most promising new product ideas in which to invest, companies have 

become increasingly proactive in sourcing ideas from front-line employees, managers and 

other personnel beyond the boundaries of  research and development departments. Therefore, 

companies now seek agile and easily deployable means to collect and evaluate ideas for new 

products and services, addressing the challenges of  intense and timely innovation (Botho et al. 

2012). In other words, forecasting the success of  a new product idea now requires more 

opinions from a wider variety of  people.  

 

Moreover, the globalization of  markets brings higher complexity into forecasting. Companies 

need to know their home market but also understand unfamiliar overseas markets, including 

competitors, customer behavior, and culture. Particularly, the global market involves more 

complicated logistics management, and companies must be able to accurately forecast demand 

and to target resources (Page 2008).  

 

Outside a company, financial crises, economic recessions, inflation, shortages, changes to 

commercial laws or treaties, and the occurrence of natural disasters all increase the uncertainty 

of management. Accordingly, these dynamic environments have added to the difficulty of 

forecasting (Zhang et al. 1998), though they have focused renewed attention on forecasting 

and the benefits it can provide (Makridakis and Wheelwright 1977). 
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Conventional forecasting methods become less accurate in the aforementioned environments. 

For instance, when a new product is launched statistical forecasting of  demand has no sales 

data on which to base the demand estimate. Thus, statistical forecasting based on historical 

data does not perform as well for new products as it does for existing products (Berg et al. 

2003b; Armstrong 2001).  Likewise, target customers in a survey may not be able to give 

unbiased purchase intentions without learning from early adopters (Ho and Chen 2007), and 

opinion variance between experts is limited if  they are few in number or if  social pressure 

influences their appraisal (Hahn and Tetlock 2006; Ray 2006). Consequently, forecasts based 

on these methods are less accurate.  

 

Over the past decade, some in the business world have come to believe that the best forecasts 

emerge from neither past behavior patterns nor far-removed experts who analyze markets 

(Malone 2004b). Rather, the best forecasts come from crowds; the front-line employees who 

are working directly with new products and services and interacting daily with buyers, sellers 

and customers in the field, as they have the most relevant and updated information and 

knowledge required for forecasting (Hahn and Tetlock 2006; Malone 2004b; Surowiecki 2004). 

The aggregation of  information dispersed in groups is referred to as “the wisdom of  crowds” 

(Surowiecki 2004) and companies are recommended to use it (also called “collective wisdom” 

or “collective intelligence”) to make forecasts and decisions (Bonabeau 2009; Davenport and 

Harris 2009; Malone 2004a; Malone and Klein 2007; Malone et al. 2010; Surowiecki 2004).   

 

1.1 INTRODUCTION OF PREDICTION MARKETS 

A prediction market is an elegant and well-designed method for capturing collective wisdom 

and predicting the outcome of  a future event (Surowiecki 2004). They can be powerful 

information-processing mechanisms that aggregate the views of  multiple market traders to 

generate a prediction of  the future (Kambil and Van Heck 2002). The use of  prediction 

markets for aggregating information about the future is based on the efficient market 

hypothesis (e.g. Chen and Penncok 2010; Wolfers and Zitzewitz 2004), which asserts that 

financial markets are informationally efficient, and the rational expectations hypothesis (e.g. 

Berg et al. 2008; Bothos et al. 2012; Gruca et al. 2005; Hanson et al. 2006), which states that 

agents’ expectations equal true statistical expected values. These theories suggest that prices in 

a market reflect all available information about the future, and therefore, prices imply the 

prediction of  the future. Figure 1.1 illustrates how a prediction market works. 
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Figure 1.1 Illustration of  How a Prediction Market Works 

 

A prediction market works through a double auction mechanism, in which multiple traders are 

involved in trading contracts (Van Heck 2006). When a prediction market is used within a 

company, the traders are usually the employees of  this company. The contracts represent the 

potential outcomes of  a future event. As illustrated in Figure 1, the future event being 

predicted is a company’s sales of  televisions in the upcoming first quarter of  a new year. Each 

contract represents a possible sales figure. For instance, contract “20-30 million” indicates that 

the sales of  televisions in the first quarter will be between 20 and 30 million.  

 

Traders reflect their opinions of  the potential outcomes in the corresponding buying or selling 

prices. For instance, if  a trader believes that sales in the first quarter are likely to be between 

50 and 60 million, he or she will buy shares of  the contract “50-60 million”. Moreover, in 

order to be able to obtain this contract, he or she is willing to buy the shares of  this contract 

with a higher buying price. On the contrary, if  a trader thinks that sales in the first quarter are 

not likely to be between 50 and 60 million, he or she will sell the shares of  this contract, and 

probably at a lower price in order to execute the sell order quickly. 
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The executed trades construct a market price for the contract. This price reflects the traders’ 

consensus of  the potential outcomes of  the future event. For instance, as shown in Figure 1.1, 

the market price of  the contract “50 and 60 million” is $75 (based on the last transaction 

price), implying the likelihood of  the outcome presented by this contract is approximately 

46%, the highest among all the contracts (the detailed measurement of  the likelihood of  a 

contract is discussed in Chapter 5.) This leading position indicates the traders’ agreed opinion 

that sales of  televisions in the upcoming first quarter are most likely to be between 50 and 60 

million.  

 

The pervasiveness of  information technology (IT), particularly, the Internet, has enabled 

online prediction markets. Online prediction markets eliminate the temporal and spatial 

constraints of  participation: traders all over the world can access a market, any time, anywhere. 

In turn, today’s prediction markets are almost all online markets.  

 

1.1 RESEARCH MOTIVATION 

This dissertation entails five underlying motivations. First, prediction markets, in general, have 

inspired much enthusiasm among both researchers and practitioners in recent years by 

producing promising forecasting results. With regard to public prediction markets that are 

open to anyone (Cowgill et al. 2008; Nocera 2006), numerous markets can be listed (see 

Chapter 2). For example, in the earliest online prediction market, Iowa Electronic Market 

(IEM), 14 out of  15 markets concerning presidential elections in the United States predicted 

the winner accurately (Rhode and Strumpf  2004).  

 

Internal prediction markets, used inside companies and only open to selected traders, who are 

usually employees (Hahn and Tetlock 2006; Plott and Chen 2002; Wolfers and Zitzewitz 2004), 

have shown similarly promising performance. For instance, Hewlett-Packard (HP) used 

prediction markets to forecast its sales. The markets beat official forecasts 75% of  the time 

(Plott and Chen 2002; Spann and Skiera 2003); Eli Lilly adopted a prediction market to 

forecast the success of  drugs. The market correctly forecasted the three most successful drugs 

(Hahn and Tetlock 2006; Pethokoukis 2004); and Intel used a prediction market to determine 

which factories should produce computer chips and when, which resulted in nearly 100% 

efficiency in allocating manufacturing capacity (Malone 2004b; Hopman 2007). More 

examples can be found in Chapter 2. 

 

The second motivation is the complexity of  prediction markets. Prediction markets embrace a 

number of  noticeable advantages compared to other forecasting methods, including: (1) 
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motivation for traders to reveal their true opinions without deference to or influence by the 

majority (Ho and Chen 2007; Milgrom and Roberts 1992; Ray 2006); (2) incentives for traders 

to research and discover information (Bondarenko and Bossaerts 2000; Gruca et al. 2005; 

Malone 2004b; Rhode and Strumpf  2004); and (3) provision of  an algorithm for aggregating 

opinions (Ho and Chen 2007; Ray 2006). Elaboration on the advantages of  prediction markets 

can be seen in Chapter 2. 

 

However, prediction markets as a forecasting method have disadvantages as well. The 

prediction market may not perform well under certain circumstances, such as little relevant or 

accurate information in the market (Malone 2004b; Wolfers and Zitzewitz 2004), little variance 

of  information held by traders (Surowiecki 2004), or the possibility for traders to manipulate 

or distort the market for their own interest (Hanson et al. 2006; Sunstein 2006a). Elaboration 

on the disadvantages of  prediction markets can be seen in Chapter 2. 

 

Third, traders’ behavior in a prediction market is dynamic and has a great effect on market 

performance. The number, composition, bias and manipulations of  the traders in a prediction 

market all can have an impact on the outcome of  the market (Berg et al. 2008; Hanson et al. 

2006; Healy et al. 2010). Moreover, learning is the underlying activity of  traders in a prediction 

market (Wolfers and Zitzewitz 2004). Traders keep learning from different information 

sources (Bondarenko and Bossaerts 2000; Gruca et al. 2005; Rhode and Strumpf  2004) and 

each other (Chen et al. 2009; Davis and Holt 1993). However, in a prediction market, not 

every trader is rational nor is every trader’s rational level equal. Nevertheless, any trader can 

lead the market.  While “marginal traders”, who are more rational, can lead a market to 

efficiency (Forsythe et al. 1992), there have also been successful attempts to manipulate prices 

(Hansen et al. 2004; Hanson 2006). Thus, this dissertation will address the impact of  the 

individual behavior of  traders on the outcome of  the market. 

 

Fourth, while internal prediction markets have been identified as an exemplar of  the future of  

work (Malone 2004b), the research on internal prediction markets is very limited compared to 

public prediction markets. Due to substantial differences between public and internal 

prediction markets, such as market focus, market size and market duration, (Cowgill et al. 2008; 

Plott and Chen 2002), the findings of  the public markets probably cannot be applied in 

internal markets.  

 

Furthermore, in the practice of  management, many companies are grappling with incentives 

for traders and the potential ramification of  prediction markets (Kiviat 2004). For instance, 

Plott, who ran the first HP prediction market, posed the contradiction between the real money 
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and play money. Real money ensures that traders trade on their best information. However, 

companies that ask employees to risk their own money must face ethical questions. Eli Lilly 

did not have a strategy in place to handle conflict between the market forecast and the official 

forecast: should it follow the results from the market and assume the market is smarter? At 

Intel, there was concern that individual workers in a prediction market may face risks as well. 

Does it mean they are not knowledgeable about something they should be, if  they lose money 

in the market? 

 

Last, our research adopts the information-based view to study prediction markets, as 

information is the key in a prediction market. Traders in a market use and process different 

information in their personal estimation about a future event, reflected in their trading 

activities. Their trading activities in a market become a source of  information for other traders; 

and the market aggregates the dispersed information from the traders through their trading 

activities. In turn, the fundamental element in a prediction market is information and the 

fundamental activity between traders is information exchange.  

 

We particularly address information transparency in our research. Information transparency 

refers to the availability and accessibility of  market information to its traders (Granados et al. 

2010; Zhu 2004). Wolfers and Zitzewitz (2004) contended that the success of  prediction 

markets, like any market, depends on their design and implementation. Information 

transparency is a fundamental issue in the design of  markets (Bloomfield and O’Hara 1999). 

Bloomfield and O’Hara (1999) explicated that transparency, the real time, public dissemination 

of  market information, plays a fundamental role in the fairness and efficiency of  markets. 

Despite increased research attention (Bloomfield et al. 2009; Flood et al. 1999; Granados et al. 

2006; 2007; 2008; Mollgaard and Overgaard 2000; Pagano and Röell 1996; Zhu 2002; 2004), 

there is little consensus as to the overall effects of  information transparency on markets. 

Especially, due to the novelty of  prediction markets, little research has studied the effect of  

information transparency on this new type of  market. Consequently, our research 

concentrates on information transparency.   

 

To summarize, the aforementioned disadvantages and potential problems of  prediction 

markets raise many uncertainties and impede the further adoption of  prediction markets, 

particularly inside a company; and information is fundamental throughout a prediction market. 

Therefore, this dissertation focuses on an information-based view of  internal prediction 

markets. 
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1.2 RESEARCH OBJECTIVES AND QUESTIONS 

This dissertation entails two major research objectives. First, we aim to understand traders’ 

behavior in an internal prediction market. The aforementioned uncertainty of  the human 

factor in a prediction market has been identified as a noticeable concern of  companies (Kaviat 

2004). Although traders’ behavior is one of  the major research streams of  prediction markets, 

the study of  traders in internal prediction markets is underdeveloped.  

 

According to Cowgill et al. (2008), the characteristics of  traders in public and internal 

prediction markets are different. In public markets, traders may not necessary have private 

information about the future event; while in internal prediction markets, as the participants are 

usually selected corporate employees, they have diverse specialized information about business 

events. Thus, traders in an internal prediction market are likely to be more informed than 

those in a public prediction market.  

 

Besides, the behavior of  traders in public and internal prediction markets is different. For 

instance, evidence drawn from the studies showed that traders in public prediction markets are 

likely to be less risk-neutral than traders in internal markets (Tetlock 2004; Cowgill et al. 2008). 

As less risk-neutral traders tend to show long-shot bias, the presence of  long-shot bias is more 

likely to influence a public prediction market than an internal one (Ali 1977; Manski 2006).   

 

Moreover, different conditions between public and internal prediction markets lead to 

different behavior among traders. For instance, the number of  traders in an internal prediction 

market is far smaller than in a public prediction market. In turn, traders are able to and may 

manipulate or distort the market for their own interest in internal prediction markets (Hanson 

et al. 2006; Sunstein 2006a). 

 

Therefore, it is important firstly to understand traders’ behavior in an internal prediction 

market. Accordingly, the first major research question in this dissertation is as follows: 

 

RQmain1: How do traders behave in an internal prediction market?  

 

The other fundamental objective of  this dissertation is to investigate the effect of  information 

transparency on prediction market performance. This research objective has two motivations. 

First, the effect of  transparency on the market outcomes may differ in different types of  

markets (such as auctions and dealer markets) (Pagano and Röell 1996) and existing studies 

have revealed double-edged effects: the effect of  information transparency is not always 

beneficial or equal to different stakeholders in a market. Therefore, no definitive answer to the 
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effect of  information transparency on market outcomes has emerged. Prediction markets, as a 

new type of  market, however, have not been captured in existing research.  

 

Second, Zhu (2002) contended that information transparency is one of  the key features that 

distinguish digital exchanges from traditional markets. He argued that in a physical market, 

information is typically about past transactions or activities; in online markets, information is 

real time, more transparent and more synchronized. As contemporary prediction markets are 

all based on a digital platform, information transparency is definitely relevant to the study of  

prediction markets.  

 

The second main research question is as follows: 

 

RQmain2: How does information transparency in an internal prediction market influence market 

performance? 

 

1.3 RESEARCH METHODS 

This dissertation adopts a pluralist methodology to validate the conceptual framework and 

investigate the research questions. Its major advantages are characterized by diversity and 

efficiency of  study on the full richness and complexity of  the real world, particularly within 

the context of  information systems (IS) (Mingers 2001; Robey 1996).  

 

Three different research methods based on the principles of  discipline and engaged 

scholarship are used in this dissertation to triangulate the results. These three methods 

correspond to three empirical studies and are conducted in sequence. The results drawn from 

each study were used to plan the method of  the following study.  

 

First, we used case studies to explore traders’ behavior in internal prediction markets, 

including their participation and interactions. We investigated the transaction data of  two 

internal prediction markets in an international financial company to understand how actively 

employees participate and to what extent they interact with each other in a prediction market 

in the real business practice.  

 

Second, we conducted laboratory experiments to examine the influence of  information 

transparency in a prediction market on traders’ behavior and market performance. We 

developed online prediction markets with “opaque” and “transparent” conditions and 

recruited university students as subjects for these experiments. To simulate the characteristics 
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of  internal prediction markets, we adopted the actual forecasting events and data of  an 

e-commerce company. 

 

Last, we conducted field experiments to investigate the impact of  information transparency 

strategies on market performance. We developed online prediction markets with four different 

transparency levels and conducted the experiments in an e-commerce company in China. The 

traders were the employees of  this company and the future events being predicted were actual 

management needs. These field experiments allowed us to investigate information 

transparency, traders’ activities and market performance of  internal prediction markets in a 

real business environment. The results of  the field experiments enhance the validity of  

research on prediction markets used inside companies.   

 

1.4 RESEARCH CONTRIBUTION 

This dissertation contributes to the research on prediction markets and information 

transparency. First, this dissertation adds to the theory development of  prediction markets by 

addressing information transparency. Existing studies on prediction market design focus on 

market mechanisms, contracts, traders and incentives. Our research is among the first to add 

information transparency as a factor in prediction market design. Therefore, our studies 

contribute to the research stream of  prediction market design.  

 

With regard to information transparency, as one of  the first to theoretically develop and 

empirically test the impacts of  information transparency in the context of  prediction markets, 

this dissertation extends the previous studies on information transparency that focused only 

on business-to-business (Zhu 2004) or business-to-consumer markets (Granados et al. 2010). 

Unlike previous research, we examine not only the effect of  opaque or transparent 

information conditions but also investigate different transparency levels. Thus, our dissertation 

advances the research in transparency strategy (Granados et al. 2010). 

 

Furthermore, this dissertation defines the “information aggregation efficiency” of  a 

prediction market, which had not been done before. We define the information aggregation 

efficiency of  a prediction market as the ability of  the market to synthesize the traders’ mean 

belief. We also develop the measurement of  information aggregation efficiency. Our definition 

and measurement distinguish the information aggregation efficiency and the predictive 

accuracy of  a prediction market, which were confused and unidentified in previous studies.   

 

Besides, this research focuses on internal prediction markets, and hence, adds to the literature 
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on prediction markets used in companies and the business world. In particular, our research 

provides insights into traders’ behavior, including traders’ individual activities and interactions 

in internal prediction markets. Thus, we extend the research stream of  traders’ behavior in 

prediction markets.  

 

Moreover, we contribute to the pluralist methodology by demonstrating the feasibility of  

using multi-method research in IS. Mingers (2001) argued that only a tiny proportion of  IS 

empirical research has adopted multiple methods; the majority of  these methods are in fact 

just a narrow spectrum centered around traditional approaches with very little by way of  

cross-paradigm linkages. This dissertation adopted different research methods, including case 

studies, laboratory experiments, field experiments and follow-up surveys. As a result, we 

extend the manifestation of  a pluralist methodology in IS. 

 

This dissertation further contributes to the managerial implications of  empirical studies of  

internal prediction markets. First, empirical studies demonstrate the possibility of  using 

prediction markets to gather dispersed information from employees and accurately forecast 

the future. Second, the research proposes general principles to guide organizations to design 

and operate an internal prediction market, particularly with regard to information transparency. 

Third, field experiments conducted in a new, dynamic and highly uncertain business 

environment demonstrate the considerable potential of  prediction markets in managerial 

decision-making.    

 

1.5 STRUCTURE OF THE DISSERTATION 

This dissertation consists of  seven chapters. Chapter 1 introduces the research topic and the 

overview of  the dissertation. Chapter 2 reviews the literature on prediction markets and 

information transparency. Based on the literature review, we draw an overall conceptual 

framework. Chapter 3 justifies the overall research methodology and specific research methods. 

Subsequently, Chapters 4, 5 and 6 present the three empirical studies. Each study focuses on 

specific research questions. These studies together validate the overall conceptual framework. 

Finally, Chapter 7 concludes the key research findings drawn from the studies, elaborates the 

scientific, methodological, and managerial contributions of  the dissertation, discusses the 

limitations of  the research, and suggests future research. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents a survey of  the literature on prediction markets, and focuses particularly 

on empirical studies of  prediction markets. These empirical researches allow us to identify 

which areas have been investigated and what major findings have been revealed. 

 

Based on the literature, we first identify the definition of  prediction markets used in this 

dissertation. Second, we analyze the advantages and disadvantages of  prediction markets 

compared to traditional forecasting methods. Third, we summarize the applications of  

prediction markets in the field and discuss the performance of  these markets. Last, we classify 

the existing research into three main streams and discuss the major debates. 

 

Moreover, we survey the literature on information transparency, which has been identified as 

an important and influential factor of  markets (Bloomfield and O’Hara 1999; Granados et al. 

2008). We summarize the effects of  information transparency on markets drawn from the 

empirical evidence. Finally, we review the transparency strategies that have been identified and 

applied in markets. 

 

2.1 INTRODUCTION OF PREDICTION MARKETS 

Research on prediction markets is of  interest to both academia and the business world. We, 

therefore, commence our literature review with a discussion of  terminology and we present 

the definition used in this dissertation. 

 

2.1.1 Terminology and Definition 

The literature survey showed that different terms have been applied to “prediction markets”. 

We identified eight commonly used terms. Table 2.1 lists these terms and examples of  the 

corresponding references. We noticed that use of  “prediction markets” is most common in 

the existing literature, accounting for approximately 50%. Recent literature, since 2007, has 

mostly adopted the term “prediction markets” (see Table 2.1). Accordingly, we use the term 

“prediction market” in this dissertation. 

 

Similar to the terminology, there are various definitions of  prediction markets. Table 2.2 

shows some of  these definitions. Essentially, there are two types of  definitions. One describes 

the purpose of  prediction markets; and the other describes the working mechanism and 
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features of  prediction markets. To explain the use of  prediction markets and its fundamental 

working principle, we define prediction markets as follows: 

 

Prediction markets are designed and conducted for the primary purpose of  aggregating 

information so that market prices forecast future events. In such markets, a group of  traders 

trade in contracts whose payoff  depends on unknown future events. 

 

2.1.2 Theoretical Foundation of  Prediction Markets 

Existing research has suggested that the use of  prediction markets is based on two major 

theoretical foundations, the rational expectations hypothesis (e.g. Berg et al. 2008; Bothos et al. 

2012; Gruca et al. 2005; Hanson et al. 2006) and the efficient market hypothesis (e.g. Chen and 

Penncok 2010; Wolfers and Zitzewitz 2004).  

 

The rational expectations hypothesis states that, in the aggregate, the expected price is an 

unbiased predictor of  the actual price (Muth 1961). According to this theory, all available 

information to traders in a market is revealed by prices in the process of  trading (Grossman 

1981; Lucas 1972; 1978). 

 

According to the efficient market hypothesis, in an efficient market, prices always “fully reflect” 

all available information (Fama 1970). In a prediction market, traders trade contracts 

corresponding to a future event. In accordance with the efficient market hypothesis, in a truly 

efficient prediction market, contract prices reflect all available information about the future 

event. No combination of  other information can be used to improve on the market-generated 

forecasts, and thus, the market price will be the best predictor of  the event (Wolfers and 

Zitzewitz 2004). 

 

The efficient market hypothesis and rational expectations hypothesis are neither contradictory 

nor mutually exclusive. The efficient market hypothesis is in fact the application of  the theory 

of  rational expectations to financial markets (Mishkin 2010). As the prediction market 

mechanism is similar to a financial market, the efficient market hypothesis is, therefore, 

identified as a theoretical foundation of  prediction markets.  

 

Hayek (1945) proposed the use of  markets to aggregate dispersed information from market 

traders. He pointed out that the knowledge of  the circumstances of  which we must make use 

never exists in concentrated or integrated form. The knowledge exists solely as dispersed bits 

of  incomplete and frequently contradictory information, possessed by the separate individuals. 
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As a result, the fundamental problem is the utilization of  knowledge not given to anyone in its 

totality. He further suggested that this problem should be solved by some form of  

decentralization instead of  centralization. To be specific, he explicated that the economic 

problem of  society is mainly one of  rapid adaptation to changes in the particular 

circumstances of  time and place. Therefore, the problem should be solved by the people who 

know of  the relevant changes and the resources immediately available to meet them. To 

communicate information, a mechanism must be adopted. Hayek (1945) proposed that the 

price system, which operates the economy of  knowledge, can enable the individual 

participants to take the right action even with little knowledge, because the most essential 

information is passed on, and passed on only to those concerned, by price.  

 

Hayek’s (1945) proposal on the use of  knowledge in society was in fact in line with the 

rational expectation theory and the efficient market theory. Malone (2004b) further contended 

that this decentralized form of  decision-making is the future of  work and a prediction market 

is an exemplar. 

 

2.1.3 Prediction Markets vs. Traditional Forecasting Methods 

Armstrong (2001) classified all the possible types of  forecasting methods into two major 

categories, statistical and judgmental. Statistical methods make predictions by discovering a 

pattern of  historical data. Judgmental methods make predictions by sourcing information 

from individuals. A prediction market is a judgmental method. Compared to other forecasting 

methods, a prediction market is novel. In turn, traditional forecasting methods, in this 

dissertation, refer to any other commonly used statistical or judgmental method. 

 

2.1.3.1 Disadvantages of  Traditional Forecasting Methods 

Commonly used statistical forecasting techniques include time series models (e.g. historical 

values of  the outcome to be forecasted with trends, auto-regressive and moving average 

components when needed) and structural models (e.g. regression models based on input 

variables estimated on past observations) (Berg et al. 2003b). Given a sufficient number of  

observations under essentially identical conditions and sufficient stationarity, statistical 

methods are more accurate than judgmental methods (Armstrong 2001; Berg et al. 2003b). 

 

However, the events being predicted often lack sufficient data, stationarity or both (Berg et al. 

2003b) and the environment is often too complex to model (Zhang et al. 1998). For instance, 

as companies increase the development of  the extensions to existing products and new 

products and the business environment becomes increasingly dynamic, the availability of  



32_Erim ShenYun Yang BW_Stand.job

16 

 

relevant historical data becomes constrained and the predictive power of  historical data is 

reduced. In turn, judgmental methods have been increasingly adopted in the contemporary 

business environment. 

  

Widely adopted judgmental forecasting methods include intentions (e.g. target customer 

survey about their purchase intentions) and expert opinions (e.g. pooling of  experts’ opinions) 

(Amstrong 2001). Both are deliberative associated methods, but with potential problems. For 

instance, as Ho and Chen (2007) argued, surveys do not motivate customers to reveal their 

true purchase intentions and do not provide customers with information that early adopters 

of  new products have learned. Hence, the link between stated purchase intention and the 

ultimate purchase behavior is weak and customers give biased responses. They further pointed 

out that under the approach of  pooling expert opinions, opinions are typically weighted 

equally, independent of  the experts’ knowledge. Moreover, experts’ opinions may not be 

independent of  each other because they rely on same information source. Consequently, the 

associated demand forecast is inaccurate. 

 

2.1.3.2 Advantages of  Prediction Markets 

The advantages of  prediction markets over the aforementioned traditional forecasting 

methods derive from the fact that they solve the problems of  traditional methods. Wolfers 

and Zitzewitz (2004) summarized three major advantages of  prediction markets. 

 

First, prediction markets provide incentives for truthful revelation. In a prediction market, the 

trading process is usually anonymous. Particularly, in an Internet-based online prediction 

market, traders do not even see each other. Thus, whether traders know each other or not in 

their social networks, in a prediction market, they are not confronted with any social pressure, 

such as following group behavior (Hahn and Tetlock 2006; Ray 2006). Thus, prediction 

markets motivate traders to reveal their true opinions without deference to or influence by the 

majority (Ho and Chen 2007; Milgrom and Roberts 1992; Ray 2006). Moreover, since the 

reward (i.e. profit) and punishment (i.e. loss) are straight forward, the self-interest of  profit in 

a prediction market motivates traders to reveal their private information (Ray 2006). 

 

Second, prediction markets provide incentives for research and information discovery. Traders’ 

self-interest in a prediction market is to profitably trade, and thus, they must improve their 

personal prediction accuracy. A common approach is to take into consideration more recent 

information. Bondarenko and Bossaerts (2000), Gruca et al. (2005), Malone (2004b) and 

Rhode and Strumpf  (2004) demonstrated that traders keep updating their beliefs based on 

different information sources (e.g. news) available to them and reflect the updated 
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information in their buy and sell orders. As a result, a prediction market encourages traders to 

explore and absorb additional accurate information so as to improve the accuracy or relevance 

of  their personal information. 

 

Third, the market provides an algorithm for aggregating opinions. It is reasonably assumed 

that some traders may have incentives to distort the information they provide so as to 

influence prices to their own benefits, leading to the exercise of  monopoly. Nevertheless, 

because traders compete instead of  collaborate in a prediction market, this monopoly power 

will be eliminated (Abramowicz 2006; Milgrom and Roberts 1992). As a result, traders who 

place a larger bet in a prediction market are likely to be more confident about their 

information. As Ray (2006) argued, by their structure, prediction markets automatically allow 

traders to bet as much money as they desire, using their specialized information in the hopes 

of  profiting from it. This is how information will be given more weight in the aggregation 

process in a prediction market. The incentives derived from prediction markets in fact provide 

a natural way to weigh opinions (Ho and Chen 2007). 

 

2.1.3.3 Disadvantages of  Prediction Markets 

Prediction markets, however, are unlikely to perform well under certain conditions. First, 

prediction market performance relies on relevant and dispersed information. If  little relevant 

or accurate information exists in the market, the prediction market is not able to capture the 

entire picture of  the future event (Malone 2004b; Wolfers and Zitzewitz 2004). Consequently, 

the prediction will not be accurate. 

 

Second, traders are motivated by disagreement and contest rather than consensus or 

compromise (Surowiecki 2004). If  traders hold similar information in a prediction market, 

they tend to carry homogeneous beliefs, leading to few trading activities. Consequently, 

information is not aggregated in the market. 

 

Third, the weights that markets give to different opinions may not be an improvement on 

alternative algorithms where the accuracy of  pundits is directly observable (Wolfers and 

Zitzewitz 2004). For instance, the public information on the probability of  weapons of  mass 

destruction in Iraq appears to have been of  dubious quality, and hence, it is unsurprising that 

markets were as susceptible to be misled as general public opinion.  

 

Furthermore, traders in a prediction market with a small group of  traders have higher 

potential to manipulate or distort the market for their own interest. Manipulation and 

distortion undermine the capacity of  the market for self-correction (Hanson et al. 2006) and 
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hence, the collective result is not likely to be wise (Sunstein 2006a). 

 

2.1.4 Field Applications of  Prediction Markets 

In this section, we first distinguish two types of  prediction markets, public and internal. 

Second, we exhibit the examples of  public and internal prediction markets. Thereafter, we 

discuss the performance of  these prediction markets.  

 

2.1.4.1 Public and Internal Prediction Markets 

Prediction markets can be applied in public or private sectors and correspondingly categorized 

into public prediction markets or internal prediction markets (Hahn and Tetlock 2006). Public 

prediction markets give free entry to anyone (Cowgill et al. 2008; Nocera, 2006) while internal 

prediction markets are used inside companies and are only open to selected traders who are 

usually employees (Hahn and Tetlock 2006; Plott and Chen 2002; Wolfers and Zitzewitz 

2004). 

 

Internal prediction markets are substantially different from public prediction markets in 

various ways (see Table 2.3). For example, Plott and Chen (2002) noted that in public 

prediction markets, it is unclear if  there is any specific or specialized information that is 

unavailable for the general public. As public reports of  the event to be forecasted in a public 

prediction market are usually available, markets such as the Iowa Electronic Market (IEM), in 

fact are only effective and sophisticated systems of  polling, collections of  personal intentions, 

coordination mechanisms of  public information, or combinations of  polls. In other words, 

the information aggregated in public prediction markets is not necessarily inside information 

(beyond the personal intention to vote). 

 

Furthermore, in internal prediction markets, traders are selected specifically from different 

parts of  the business operation, as these traders are thought to have different inside 

information about the targeted events. This inside information (e.g. market intelligence, 

specific information about big clients and pricing strategies) must be aggregated. In addition, 

there are usually no public summaries of  information available to the traders during the 

operation of  the market. 

 

Moreover, Cowgill et al. (2008) pointed out that public and internal prediction markets differ 

in market liquidity and traders’ behavior as well. For instance, public prediction markets 

usually have a large number of  traders, and thus do not have problems with liquidity. However, 

as internal prediction markets do not always have many traders, they are often confronted with 
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limited trading. Additionally, evidence drawn from studies showed traders in public prediction 

markets are likely to be less risk-neutral than traders in internal markets (Tetlock 2004; Cowgill 

et al. 2008).  

 

Table 2.3 Differences between Public and Internal Prediction Markets                             

based on Plott and Chen (2002) and Cowgill et al. (2008) 

Aspects Public Prediction Markets Internal Prediction Markets 

Market focus 
Public events 

(observable by public) 

Corporate issues 

(partially observable by people who 

are close to the activity) 

Traders Every single individual Selected corporate employees 

Market size Large Small 

Aggregated information 
Personal intentions;  

public information 

Different specialized information 

about business events 

Market duration Long Short 

Market liquidity Likely to be high Likely to be constrained 

Traders behavior Less risk-neutral More risk-neutral 

 

2.1.4.2 Applications in Practice 

Public prediction markets appeared first in field applications. The IEM is perceived to be the 

first field application of  prediction markets and is widely recognized (Berg and Rietz 2006; Ho 

and Chen 2007; Ray 2006). Operated by the University of  Iowa Tippie College of  Business, 

the IEM is a real-money prediction market, though not for profit. Although the first IEM 

prediction market in 1988 allowed only University of  Iowa affiliates to participate, subsequent 

prediction markets have all been public and all the traders voluntarily invest between US$5 

and US$500. 

 

The IEM is best known for its United States and worldwide election markets. However, along 

with development and penetration, the IEM now has conducted markets on a broad range of  

events, such as political appointments, outcomes of  legislative processes, international 

relationships, economic indicators, movie box office receipts, market capitalization after an 

initial public offering (IPO), corporate earnings forecasts, corporate stock price returns, and 
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the incidence of  influenza (Berg and Rietz 2006). 

 

Another well-known but relatively new prediction market is the Hollywood Stock Exchange 

(HSX). The HSX allows people to use virtual currency to speculate on entertainment-related 

events, such as weekend and total box office returns on the upcoming movies, the success of 

the current season’s new TV series, the impact of movie stars on movie’s average gross, and 

the winners of Oscars (Ho and Chen 2007; Lamare 2007).  

 

Besides, numerous public prediction markets have been established. Table 2.4a lists some of  

them that have been frequently discussed in the literature.  

 

Nevertheless, the information of  internal prediction markets is far more limited compared to 

public prediction markets. Table 2.4b shows some companies that have conducted internal 

prediction markets and reported the results, including the events being predicted. 

 

Among these internal prediction market examples, the best-known is that of  HP. In 1996, HP 

initiated its internal prediction markets. During three years, HP conducted 12 markets to 

forecast sales of  various printer products. The traders were recruited from three HP divisions, 

including marketing, finance and HP labs. The duration of  each market was always one week. 

However, the number of  active traders and contracts varied in each market from 7 to 26 and 

from 8 to 10, respectively (Plott and Chen 2002). 

 

2.1.4.3 Prediction Market Performance 

Prediction market performance is commonly measured in two ways, accuracy and usability. 

Existing studies tend to measure accuracy rather than usability. Wolfers and Zitzewitz (2004) 

argued that the most important issue with prediction markets and the like is their performance 

as predictive tools. The accuracy of prediction markets can essentially be categorized in 

absolute terms against the actual outcome and in relative terms against predictions derived 

from competing forecasting methods (Berg and Rietz 2003). The smaller the discrepancy 

between a prediction and the actual outcome, the more accurate the prediction. 
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In general, prediction markets have proven to be uncannily accurate in predicting all types of 

events (Ray 2006). This contention can be supported by numerous evidences. Table 2.4a 

summarizes the accuracy of some well-known public prediction markets. For instance, in the 

earliest prediction market, IEM, 14 out of  15 markets concerning presidential elections in the 

United States predicted the winner accurately (Rhode and Strumpf  2004). In the HSX, 

prediction markets concerning Oscar award winners forecasted correctly eight out of  eight 

times in 2005 and seven out of  eight times in 2006 and 2007. Concerning movie office-box 

revenues, HSX achieved twice as many hits as the expert judgments (a ‘hit’ refers to a case 

where a specific forecasting instrument has the lowest absolute percentage error of  all 

considered forecasting instruments for the same movie) (Lamare 2007; Spann and Skiera 

2003).  

 

Evidences drawn from internal prediction markets were limited compared to public prediction 

markets because fewer internal prediction markets carried out. Table 2.4b exhibits the 

accuracy of  internal prediction markets. All these markets demonstrated that prediction 

markets not only predict accurately against the actual outcomes but also outperform 

competing forecasting mechanism. For example, in HP, six out of  eight markets predicted 

more accurately than HP official forecasts (Chen and Plott 2002); Siemens’ internal markets 

correctly predicted that the firm would definitely fail to deliver on a software project on time, 

whereas traditional planning tools suggested the opposite result (Ortner 1998); and the 

internal market prediction of  the success of  six Eli Lilly drugs was exactly the same as the 

actual outcome (Pethokoukis 2004).  

 

The amazing forecasting accuracy of prediction markets may also be illustrated by an 

unexpected suspension of a market project. The United States Pentagon created the Terrorism 

Futures Market in 2003 in order to aggregate information regarding potential acts of terrorism, 

and in turn, the Pentagon would be able to preclude or at least hedge against such acts. 

However, the prices, which could inform the government about the terrorists’ attack plans, 

could also inform terrorists about the government’s security plans. Moreover, the terrorists 

might even have profited from inside information revealed in the market, which might have 

led to public outrage. Consequently, the market was terminated immediately after its inception 

(Hahn and Tetlock 2006; Ray 2006).  

 

Usability, whether or not information can be used to make decisions, is another important 

measurement of  market performance (Bocij et al. 2003). Wolfers and Zitzewitz (2006a) argued 

that prices provide useful estimates of  average beliefs about the probability an event will occur, 

and hence, prediction markets ultimately can be used for decision-making (Ledyard 2006). 

This argument can be supported by the performance of  internal prediction markets. For 
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instance, the results based on 270 internal markets during two and half  years in Google 

revealed that market prices closely approximated event probabilities (Cowgill et al. 2008).  

 

In some cases, prediction markets may not outperform the competing mechanism in terms of  

accuracy, but they can provide additional information for decision-making. For instance, 

Gadanecz (2007) argued that “Economic Derivatives”, in contrast to survey-based measures, 

produce true density forecasts, covering the whole distribution of  the “market’s view”, not 

just point estimates. This information could be used to track the uncertainty of  market traders 

about the state of  the macroeconomy and to monitor the probabilities they attach to tail 

events. Chen et al. (2009; 2010) demonstrated that a Fortune 100 company used a prediction 

market for a first-stage screening process for emerging technologies. The company has 

decided to expand investment in the use of  this prediction market. 

 

2.2 MAJOR RESEARCH STREAMS OF PREDICTION MARKETS 

Our literature survey suggested that the existing discussion of  prediction markets concentrates 

on three areas. Most studies demonstrated the market’s ability to accurately predict future 

events and aggregate information, addressing the aggregation level of  a prediction market (see 

2.2.1). Another stream of  researches investigated traders’ behavior in prediction markets, 

addressing the individual level of  a prediction market (see 2.2.2). The third stream of  literature 

focused on market design, identifying and discussing the important design aspects of  a 

prediction market (see 2.2.3). 

 

2.2.1 Accuracy and Information Aggregation 

In this research stream, studies dealt with two aspects of  prediction markets, prediction 

accuracy and information aggregation.  

 

2.2.1.1 Accuracy 

Noticeable evidences have manifested the powerful predictive ability of  prediction markets, 

not only the point estimate (Gadanecz 2007) but also the probabilities (Wolfers and Zitzewitz 

2006a). In section 2.4.1.3, we have illustrated the accuracy of  prediction markets from field 

applications. Essentially, it is beyond doubt that prediction markets can make accurate 

forecasts.  

 

Additional researches further investigated under which conditions a prediction market shows 

more or less powerful predictive ability. Two major results were drawn from the empirical 
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studies. First, taking into consideration time horizons, prediction markets are viable 

forecasting tools both in the short run (e.g. forecasting one day or one week ahead) and in the 

long run (e.g. forecasting three months ahead). Their predictive accuracy outperforms 

competing methods (e.g. surveys) particularly in the long run (Berg et al. 2008). This result 

suggested that prediction markets are suitable when the events do not have a long history or a 

clear model for a statistical forecasting method. 

 

Second, the predictive power of  prediction markets reduces with the increased complexity of  

the environment. Healy et al. (2010) argued that prediction markets are likely to outperform in 

an environment a with relatively simple information structure (e.g. with one event and fewer 

contracts). In contrast, when the information structure becomes complex (e.g. with correlated 

multiple events and more contracts), other forecasting methods (e.g. Delphi) generate more 

accurate predictions. A possible reason is that traders tend to focus attention on a small subset 

of  the possible outcomes of  a future event, resulting in severe mispricing overall.  

 

2.2.1.2 Information Aggregation 

In prediction markets, some traders have a piece of  information about the future event being 

predicted, but some do not (Plott 2000). The former are referred to as informed traders; and 

the latter are referred to as uninformed traders. However, markets are efficient, because 

information can be disseminated from the informed to the uninformed. This process is 

referred to as information aggregation (Gruca et al. 2005; Plott and Sunder 1982; 1988).  

 

Information aggregation is processed through trading activities. A trader’s individual bids and 

asks on a contract represent the value he or she expects of  the contract. Similarly, a 

transaction on a contract represents the aggregate expected value of  the contract. These 

orders and transactions in turn become public information available in the market and other 

traders learn from it. Gradually, with an increased number of  trades, information about a 

future event is disseminated from the informed to the uninformed. In turn, traders’ beliefs 

regarding the potential outcomes of  a future event in a prediction market become convergent. 

Wolfers and Sitzewitz (2006a) and Gjerstad (2004) demonstrated that when the traders’ beliefs 

are convergent, the market price in stock markets will be very close to the mean of  market 

participants’ beliefs. Accordingly, we define information aggregation efficiency as follows:  

 

Information aggregation efficiency of  a prediction market is the ability of  the market to 

synthesize the traders’ mean belief. 

 

With regard to information aggregation, the central discussion point in the current literature is 
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whether or not a prediction market can aggregate dispersed information from traders. The 

results showed positive findings. Gruca et al. (2005) asserted that prediction markets can 

aggregate private information held by traders and disseminate this information in the market 

by trading, and thus the market eventually aggregates the consensus of  the traders. This result 

suggested that prediction markets facilitate decision-making by aggregating dispersed 

information. 

 

Bothos et al. (2012) further exemplified the promising use of  prediction markets in idea 

screening based on its information aggregating ability. They argued that prediction markets 

enable the acquisition of  more ideas from individuals than forum-like idea suggestion systems, 

though the quality of  ideas is similar between the two methods. 

 

2.2.2 Traders’ Behavior  

The research in this area focused on the effect of  uninformed traders and traders’ 

manipulation of  information aggregation and the predictive accuracy of  prediction markets. 

 

2.2.2.1 Presence of  Uninformed Traders 

Informed and uninformed traders are distinguished based on their possession of  private 

information of  future events. Informed traders are those who have some private information 

while uninformed traders do not (Berg et al. 2008). Empirical evidence has led to controversial 

discussions. Kyle (1985) argued that uninformed traders bring larger trades into the market 

and provide profit opportunities for informed traders, leading to the acquisition and 

integration of  information. Berg et al. (2008) and Tetlock (2007) counter argued that although 

increased trading volume positively correlates to market predictive accuracy, the presence of  

uninformed traders leads to less accurate prediction and slower information convergence.  

 

Experimental studies showed mixed results. Bloomfield et al. (2009) drew the conclusion that 

uninformed traders may increase trading volume but their trading diminishes the adjustment 

of  market prices to new information, leading to lower informational efficiency. On the 

contrary, greater information aggregation was observed when uninformed traders were 

present (Healy et al. 2010), in line with Kyle’s (1985) argument. 

2.2.2.2 Bias and Manipulations 

A trader’s actions in a prediction market may be biased due to their opinions (e.g. wishful 

thinking) (Forsythe et al. 1992; 1999). Traders may also attempt to manipulate prices in order 

to gain in the market (Hanson et al. 2004). Related research showed that neither of  these 
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factors is able to distort prediction accuracy. 

 

The fundamental argument was that the efficiency of  the market does not depend on the 

average traders but on the so-called “marginal trader” (Forsythe et al. 1992). A marginal trader 

is relatively free of  judgment bias, and thus consistently buys and sells at prices very close to 

the equilibrium price, which reflects all available information about future events (Forsythe et 

al. 1992). These traders are usually more rational and can drive the efficiency of  market prices 

in spite of  large numbers of  traders who constantly display suboptimal behavior (Oliven and 

Rietz 2004). 

 

Several reasons have been identified. First, biased traders may be driven from the market by 

losses incurred as a result of  biased trading (Oliven and Rietz 2004). Second, biased traders 

may learn from market prices (Bondarenko and Bossaerts 2000; Gruca et al. 2005; Rhode and 

Strumpf  2004) and update their expectations in a way that defeats the bias (Oliven and Rietz 

2004). Third, biased traders tend to be inactive (Forsythe et al. 1992). Highly biased traders 

generally tend to buy and hold contracts, leading to transitory effects on prices at most 

(Forsythe et al. 1992; 1999). Last, when setting at-market limit orders and setting prices, 

traders are much less mistake-prone. These traders, who “make” the market, are likely to be 

more rational (Forsythe et al. 1999). As a result, rational traders drive efficient markets. 

 

With regard to manipulators, first, similar to biased traders, they face the risk of  losses 

incurred as a result of  “irrational” trading, and thus, may be driven from the market before 

their manipulations succeed. Second, manipulators attempt to make systematically higher price 

offers than other traders. However, the reluctance of  non-manipulators to accept such high 

offers effectively cancels out the distortionary effects of  manipulations (Hansen et al. 2004; 

Hanson 2006). Third, the increased profit opportunity from manipulators increases the effort 

by other traders to obtain relevant information, possibly increasing the price accuracy 

(Hanson 2006). Finally, when traders suspect the presence of  manipulators and know in what 

directions manipulators would like to push the price, the manipulation becomes ineffective 

(Hanson et al. 2004; 2006). As a result, efforts to manipulate prices are unsuccessful (Camerer 

1998; Rhode and Strumpf  2004). 

 

Nevertheless, an exception was indeed found in empirical evidence. Hansen et al. (2004) 

reported successful attempts at manipulating prices in the IEM. Hanson (2006) argued that 

prediction markets are hard to manipulate, except for a thin market, where the number of  

traders is very limited, or during a short transition phase (Wolfers and Zitzewitz 2004).  
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2.2.3 Market Design 

Existing studies on prediction market design focused on four key issues, including market 

mechanisms, contracts, traders and incentives.  

 

2.2.3.1 Market Mechanisms 

A prediction market mechanism determines how buyers and sellers are matched (Wolfers and 

Zitzewitz 2004). Wolfers and Zitzewitz (2004) identified four major mechanisms applied in 

prediction markets. First, the most-adopted prediction market mechanism is a continuous 

double auction (CDA), in which buyers submit bids and sellers submit asking prices and the 

mechanism executes a trade whenever the two sides of  the market reach a mutually agreeable 

price. The second mechanism is a continuous double auction with a market maker 

(CDAwMM), who is willing to accept a large number of  buy and sell orders at particular 

prices. The third mechanism is a pari-mutuel market (PM), in which all of  the money that is 

bet goes into a common pot and is then divided among the winners. The last mechanism is 

market scoring rules (MSR), which can be thought of  as sequential scoring rules with many 

traders.  

 

Each mechanism has benefits and drawbacks. A CDA poses no risk for the market institution, 

as it only matches willing traders. However, a CDA may suffer from illiquidity in the form of  

huge bid-ask spreads or light trading (Hanson 2003; Pennock 2004). In turn, when the 

number of  traders is small, a CDA may face a liquidity problem. A CDAwMM has built-in 

liquidity, as the market maker is usually affiliated with the market institution. Nevertheless, the 

market maker is exposed to significant risk of  large losses. As a result, the liquidity comes at a 

cost. The advantage of  both CDA and CDAwMM is their incentives for traders to 

continuously leverage information as soon as it becomes available. As a result, prices capture 

updated information exceptionally well (Pennock 2004). 

 

A PM does not have the problem with liquidity or involve risks for loss, because traders can 

place a bet on any outcome at any time with no need of  a market maker. Prices in this 

mechanism, however, do not reflect continuously updated information, as traders do not place 

bets until either all information is revealed or the market is about to close. Consequently, this 

market mechanism is not suitable for situations where information arrives over time (Pennock 

2004). A dynamic pari-mutuel market (DPM), a hybrid between a CDA and a PM, was 

proposed by Pennock (2004) and solves the CDA problem of  illiquidity and allows for 

continuous information incorporation, which is not possible in a standard PM. Nevertheless, 

this mechanism has the drawbacks of  only one-sided liquidity of  buy orders and unfixed 
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payoff, which complicates a trader’s problem of  strategic optimization. 

 

A MSR, developed based on scoring rules, can be conceptualized as a market that provides a 

two-sided automated market maker that is always willing to accept a trade on any event at 

some price. Therefore, it avoids the problem of  illiquidity and allows for continuous 

information incorporation but implies risks (Hanson 2003; Pennock 2004). A MSR allows for 

simultaneous predictions over many combinations of  outcomes instead of  requiring separate 

markets for each combination of  possible outcomes. Hence, the sum of  traders’ errors over 

all predictions is lower (Wolfers and Zitzewitz 2004).     

  

2.2.3.2 Contracts 

Contracts are tied to the outcomes of  future events, and hence, contract design is pivotal to 

prediction markets (Wolfers and Zitzewitz 2004; 2006b). Three basic types of  contracts in 

prediction markets have been distinguished (Wolfers and Zitzewitz 2004). The first type is 

“winner-takes-all” in which the contract costs some amount of  money and pays off  only if  a 

specific event occurs. The price in a winner-takes-all market represents the market’s 

expectation of  the probability that an event will occur based on the assumption of  neutral 

risk.  

 

The second type of  contract is “index”, in which the amount that the contract pays varies in a 

continuous way based on a number that rises or falls. This contract price represents the mean 

value that the market assigns to the outcome.  

 

The third type of  contract is “spread”, in which traders differentiate themselves by bidding on 

the cutoff  that determines whether an event occurs. For example, in a game of  football, either 

one team will win by at least a certain number of  points or not. Combined with the setting 

that winners double their money while losers receive zero, the corresponding price indicates 

the market’s expectation of  the median outcome.  

 

Clear, easily understood and easily adjudicated contracts are important for a prediction market 

to work well (Wolfers and Zitzewitz 2004; Ledyard 2006). The description of  the contracts 

must be able to help traders distinguish the alternatives considered. However, a challenge can 

arise if  the underlying facts tied to the contracts change unexpectedly. For instance, in 

Ortner’s (1998) study, the internal prediction market on whether a software project would be 

delivered to the client on schedule was confronted with the change of  the deadline extended 

by the client.  
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2.2.3.3 Traders 

The discussion on traders in prediction markets concentrated on the number and the 

composition of  traders. First, a large number of  traders are thought to be necessary for the 

market to function well (Kambil and Van Heck 2002; Ho and Chen 2007). Since traders 

incorporate their information into their trading activities, more traders are likely to lead to 

more trading activities in a market, and thus more information will be aggregated in the 

market. In addition, Surowiecki (2004) and Abramowicz (2006) asserted that traders in a 

prediction market do not deliberate but compete. They argued that a larger number of  traders 

may pose more intensive competition, and thus, motivate traders to actively trade on 

information available to them. Furthermore, a relatively large number of  traders make it likely 

that there is accurate information of  the future event in the prediction market (Sunstein 

2006a). 

 

With regard to the composition of  traders, it has been argued that traders with different 

information in a prediction market are desirable. As mentioned above, traders in a prediction 

market are motivated by disagreement and contest rather than consensus or comprise 

(Surowiecki 2004; Abramowicz 2006). If  they hold similar information, they tend to carry 

homogeneous beliefs, leading to few trading activities and impeding information aggregation. 

Therefore, a diversity of  opinions of  the future event should be considered in the prediction 

market design (Ray 2006).  

 

It should be clarified that the number and the composition of  traders are not mutually 

exclusive issues of  prediction market design. A larger number of  traders are, in fact, likely to 

have heterogeneous information.  

 

2.2.3.4 Incentives 

Incentives are given to motivate traders to trade and reveal information in prediction markets. 

The central research question of  this design issue was how much difference it makes whether 

prediction markets run with real money or with play money (Wolfers and Zitzewitz 2004). 

Controversial results were drawn from the existing research. On the one hand, early studies 

revealed that prediction markets work better when “[the traders] put their money where their 

mouth is” (Hanson 1999). Since traders risk their own money, they tend to make better use of  

their information and proactively seek accurate information. In turn, the information 

aggregated in the market is more accurate. 

 

On the other hand, Servan-Schreiber (2004) and Rosenbloom and Notz (2006) demonstrated 
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that the predictions drawn from real-money markets and play-money markets did not differ 

significantly and both were accurate. Moreover, recent studies on play-money markets 

supported the conclusion that non-monetary incentives, as long as they were properly 

designed, were able to motivate traders to trade and reveal information in prediction markets 

(Chen et al. 2009; 2010; Cowgill et al. 2008).  

 

Despite the aforementioned controversial discussion on real-money and play-money markets, 

it is beyond doubt that proper incentives can encourage participation and the revelation of  

information in prediction markets (Ledyard 2006).  

 

2.3 INFORMATION TRANSPARENCY 

Information transparency is defined as the degree of  visibility and accessibility of  information 

(Zhu 2002; 2004). In markets, information transparency is referred to as market transparency 

(Granados et al. 2006; 2007; 2008; Bloomfield and O’Hara 1999; Mollgaard and Overgaard 

2000). Market transparency is defined as the level of  availability and accessibility of  

information about products and market prices (Granados et al. 2008). The impact of  

information transparency on markets has raised enthusiasm for research on this topic.  

 

2.3.1 IT Enabled Information Transparency in Markets 

Research on information transparency is motivated by the development and use of  

information technology (IT). IT refers to technological artifacts that enable electronic markets, 

such as the Internet, network technologies and communication technologies (Granados et al. 

2006). A common thread in the markets is that the Internet has caused a structural increase in 

the level of  information transparency for two major reasons (Granados et al. 2008).  

 

First, the electronic market hypothesis (EMH) posits that advanced IT reduces coordination 

costs between suppliers and buyers and motivates the dominance of  electronic market-based 

forms of  economic activity (Malone et al. 1987). The EMH predicts that biased electronic 

markets will emerge as suppliers take advantage of  IT to lock in buyers. However, unbiased 

electronic markets will gradually dominate. In unbiased electronic markets, all products and 

suppliers can be evaluated by buyers to make well-informed decisions, and information is 

complete, accurate and real time (Granados et al. 2006; 2007; 2010). In this regard, 

information is more transparent in electronic markets than traditional physical markets (Zhu 

2002). 
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Second, IT, such as the Internet, enables exchanges by providing an online platform in which 

a vast sea of  information about products, prices, transactions and competitors is available. All 

the information is gathered, compiled, displayed and transmitted among traders. Zhu (2002) 

contended that the abundance of  information that is available based on the Internet has, in 

general, made information more transparent in online markets. 

 

2.3.2 The Double-Edged Effects of  Information Transparency 

Early studies on information transparency suggested the possibility that efficiencies would 

arise from more widespread dissemination of  desired complete and accurate information 

(Kahn et al. 2002) and that all traders would prefer the full disclosure of  private information, 

even to their rivals (Li 1985; Shapiro 1986). The “information transparency hypothesis”, that 

open sharing of  information in electronic markets is beneficial to all traders, has been thus 

introduced (Zhu 2002).  

 

Recent research, however, has shown that previous studies on information transparency 

ignored many real situations, such as price competition, information confidentiality and 

information uncertainty, which may eventually influence the effect of  information 

transparency on markets (Granados et al. 2008; Zhu 2004). In contrast to the previously held 

consensus about the benefits of  information transparency, these studies have challenged the 

“information transparency hypothesis” and demonstrated that transparent information is in 

fact a double-edged sword. In other words, information transparency sometimes has a 

negative effect. 

 

To be specific, Granados et al. (2008; 2010) revealed different effects of  information 

transparency on different market positions (i.e. buyers, suppliers, and intermediaries) in a 

business-to-consumer (B2C) market. They argued that increased information transparency 

generally benefits consumers because they are able to better discern the product that best fits 

their needs at a better price. Granados et al. (2006) identified that information transparency 

benefits buyers in three ways. First, search costs decrease as more information is made 

available at no additional cost (Zhu 2002). Second, the value of  a purchase increases if  the 

buyer discerns product characteristics of  existing alternatives with higher precision, resulting 

in more accurate product valuation (Hasbrouck 1995). Third, information may become 

available that allows a buyer to transact at a lower price for a given product (Stigler 1961). 

Suppliers and intermediaries, however, are commonly confronted with the trade-off  between 

the benefits of  a more transparent market to attract buyers and the risk of  reduced profit due 

to better informed buyers and competitors (Porter 2001; Soh et al. 2006).  
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Even within the same market position (e.g. buyers or suppliers), a transparent market does not 

necessarily bring all traders the same effect. Zhu (2002) studied the traders’ incentives to join 

an electronic market in the business-to-consumer (B2B) context and found that information 

transparency benefits some traders in a market but hurts others. In an online B2B market, 

suppliers can see the rivals’ cost, as cost prices are disclosed. By making cost information 

transparent, suppliers with different costs would react accordingly. The low-cost suppliers will 

find it optimal to join the exchange due to their competitive price. On the contrary, high-cost 

suppliers will stay away from the exchange, as cost transparency exposes their uncompetitive 

costs in the market. From the buyers’ side, as their willingness-to-pay is transparent, those 

with high willingness-to-pay will have stronger incentives to join the exchange than those with 

low willingness-to-pay. As a result, low cost suppliers and high willingness-to-pay buyers have 

strong incentives to join the online B2B market. 

 

2.3.3 Transparency Strategy 

IT not only increases the potential for complete, accurate, real time and unbiased market 

information but also the potential for concealment or information distortion (Granados 2006). 

Moreover, as information transparency brings different effects on markets, with respect to 

market design, information can be strategically revealed, concealed, biased and distorted, 

depending on the goals and market position of  the information source (e.g. suppliers versus 

buyers) (Granados et al. 2010). For instance, sellers may take advantage of  IT to present 

incomplete or distorted information. Under this circumstance, buyers cannot fully evaluate the 

product and make well-informed decisions. Thus, the sellers may lock in buyers at prices that 

favor the seller (Granados et al. 2006).  

 

Granados et al. (2010) argued that information transparency, unlike information availability or 

information sharing, implies the intention to disclose or withhold information. Tapscott and 

Ticoll (2003) contended that information transparency is increasingly viewed strategically as 

firms consider the trade-off  between attracting new customers with market information and 

the risk of  losing information advantages to customers and competitors. Transparency 

strategy is therefore proposed, which is defined as the set of  policies and decisions that a firm 

makes to disclose, conceal, bias or distort market information (Granados et al. 2010). 

 

Based on existing literature, Granados et al. (2010) identified seven key components of  

transparency strategy, including the following: (1) information from (whom), the party 

considers the disclosure of  information; (2) information to (whom), the party receives the 

information; (3) information elements, the categories of  information, such as price (Granados 

et al. 2006; Soh et al. 2006), product (Bakos 1997; Mollgaard and Overgaard 2000), inventory 
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(Lyons 1996; Jain and Moinzadeh 2005; Dewan et al. 2007), cost (Sinha 2000; Gal-Or 1988; 

Zhu 2004), and process (Adomavicius et al. 2006); (4) potential actions, the possible actions 

with respect to the strategic revelation of  the information, such as transparent, distorted, 

biased and opaque (Granados et al. 2006); (5) systems and mechanism design, the direct 

implications for IT and system design in accordance with the strategic decisions to reveal or 

conceal information; (6) transparency regime, the aggregate information disclosed by 

competitors, suppliers, buyers and customers, and other third parties; and (7) complementary 

strategies, the alignment and coordination with other related managerial decisions (Ellison and 

Ellison 2009; Granados et al. 2008). 

 

The literature on transparency strategy is scarce and scattered across disciplines, as the 

Internet was not well-developed until the end of  the last millennium (Granados et al. 2010). 

Existing studies on transparency strategy can be classified into three major research areas. The 

first research category addresses B2B transparency strategy and the disclosure of  information 

from sellers to other firms in the supply chain. Related research revealed that information 

disclosure in B2B markets is an enabler of  efficiency for supply chains and a strategic 

dimension for individual firms (Patnayakuni et al. 2006; Hoffman et al. 2002; Kim et al. 2005; 

Jain and Moinzadeh 2005). In turn, firms participate in transparent Internet-based channels as 

long as the efficiency in the supply chain is enhanced. However, even in these 

efficiency-seeking partnerships, traders may use information strategically, and it may not be in 

their best interest to be transparent (e.g. due to information confidentiality) (Corbett 2001; 

Kalvenes and Basu 2006; Zhu 2004). In this case, firms will stay away from transparent 

environments. 

 

The second research area addressed information transparency and electronic market design. 

These studies identified transparency design features, which are related to information 

disclosure policies throughout the trading process (Granados et al. 2010). Online travel 

agencies (OTA), such as Hotwire and Orbitz (Granados et al. 2006, 2007), and other online 

markets (Soh et al. 2006; Smith 2002) were the primary objects of  these empirical studies. The 

results drawn from the research showed that consumers demand both product and price 

information from different suppliers, so a common strategy for online markets is to be 

unbiased in the inclusion and display of  information about supplier offerings (Granados et al. 

2010). However, some OTAs biased markets by failing to equitably include product and price 

information from all sellers (Granados et al. 2006), to favor suppliers with whom they develop 

special arrangements (Granados et al. 2010; Soh et al. 2006; Smith 2002). Moreover, 

Viswanathan et al. (2007) found that consumers with transparent product information pay 

higher prices for a product than those with transparent price information. This reminds online 
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intermediaries to carefully consider the conflicting interests of  buyers and sellers with regard 

to price transparency and the need to satisfy both buyers and sellers. 

 

The third category of  research focused on transparency regimes and their impacts on 

competition, consumer welfare and market efficiency. In general, the related research aimed to 

determine the impact of  higher transparency of  competitive offerings on competition and 

concentrates on price and product transparency (Granados et al. 2010). Research findings 

suggested that the impact of  price transparency is different according to product type. The 

effect of  price transparency on price competition of  homogeneous products is salient and will 

result in lower net prices. Even though suppliers form a tacit collusion, consumers are only 

partially offset, as they are better informed about the prices (Boone and Pottersz 2006; 

Campbell et al. 2005; Schultz 2005). On the other hand, price transparency makes collusion 

relatively more difficult for differentiated products, exacerbating price competition (Anderson 

and Renault 1999; Bakos 1997; Schultz 2004). With regard to product transparency, Bakos 

(1997) and Boone and Pottersz (2006) demonstrated that higher product transparency of  

differentiated products will likely lead to higher demand from consumers and higher prices. 

For homogeneous products, nevertheless, product transparency does not have an impact on 

consumers’ purchase decisions.  

   

2.4 SUMMARY 

An increasing body of  literature has appeared since the first field application of  prediction 

markets, IEM. However, the literature survey revealed that research on prediction markets, 

particularly internal markets used in companies, is limited and the empirical evidence is 

constrained. The common threads of  the existing studies are the description of  prediction 

markets and demonstration of  the market predictive power. Recent studies tended to 

investigate traders’ behavior and market design. Moreover, increased literature on IT-enabled 

information transparency in markets has motivated empirical studies in various online markets 

(e.g. B2B and B2C). However, prediction markets have not been addressed.    

 

The aforementioned findings imply that further empirical studies could investigate prediction 

market design from the perspective of  information transparency, particularly, in the context 

of  internal prediction markets. The analyses ought to include the individual level (i.e. traders’ 

behavior) and the aggregation level (i.e. market performance). Theorizing based on related 

empirical research is also necessary. All these are attempted in this dissertation as illustrated by 

the conceptual framework (see Figure 2-1). As the conceptual framework research model 

shows, this dissertation investigates the effect of  information transparency on prediction 

market performance through traders’ individual behavior. We particularly focus on traders’ 
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activity and the interactions of  traders’ behavior and market predictions and the information 

aggregation of  market performance. The detailed construction of  hypotheses together with 

the related theories are further elaborated in the following chapters on the case study, the 

laboratory experiment and the field experiments (see Chapter 5 and 6). 

 

 

 
 

Figure 2.1 Conceptual Framework of  the Dissertation 
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CHAPTER 3 RESEARCH METHODOLOGY 

This chapter discusses the research methodology applied in this dissertation. To validate the 

conceptual model and answer the research questions, this dissertation adopted a pluralist 

methodology (Mingers 2001). The plan of  this chapter is as follows. We first justify the use of  

a pluralist methodology in IS. Subsequently, we discuss the rationale of  the chosen 

methodology based on the principles of  discipline and engaged scholarship. Guided by the 

aforementioned rationales, we present our overall method, namely triangulation, and justify 

the use of  specific research methods, including explorative case studies, laboratory 

experiments and field experiments. 

 

3.1 RATIONALE OF PLURALIST METHODOLOGY IN IS 

Methodological pluralism refers to a position that favors a diversity of  methods, theories, even 

philosophies, in scientific inquiry (Landry and Banville 1992). It lies between the extremes of  

methodological monism and the anarchy of  an “anything goes” attitude (Landry and Banville 

1992; Robey 1996). Landry and Banville (1992) argued that methodological pluralism in IS 

emerged because of  the gradual unfolding of  the human, organizational and social 

dimensions of  this discipline.   

 

Robey (1996) identified four major advantages of  the pluralist methodology characterized by 

diversity particularly within the context of  IS. The pluralist methodology: (1) expands the 

foundation upon which knowledge claims in the field are based; (2) attracts good people to 

the field of  IS where they can address applied problems that interest them; (3) fosters 

creativity; and (4) advances the valued principle of  academic freedom. 

 

Specifically, with regard to research methods, Mingers (2001) and Robey (1996) contended 

that multimethod research is desirable for IS to effectively study the full richness of  the real 

world. The real world is characterized by complexity: an event consists of  a multifaceted 

structure. Different research methods focus on different aspects of  reality and therefore a 

richer and more reliable understanding of  the research topic will be gained by combining 

several methods together in a single piece of  research or a research program (Mingers 2001).  

 

Moreover, each research method has its strengths and weaknesses. Therefore, the adoption of  

multiple research methods compensates for deficiencies in other methods. For instance, field 

studies allow researchers to gain insights into a phenomenon within its context and reveal 

important variables and their possible relationships (Eisenhardt 1989; Eisenhardt and 
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Graebner 2007; Pettigrew 1990; Yin 2003). However, the high generalizability of  field studies 

comes at the cost of  internal validity (Scandura and Williams 2000). By contrast, laboratory 

experiments achieve higher internal validity because they are executed in a controlled 

environment (Shadish et al. 2002). Nonetheless, the generalizability of  laboratory experiments 

is low. To increase internal and external validity, the use of  multimethod research is desired. 

 

3.2 RATIONALE OF RESEARCH METHOD CHOICE 

The appropriateness of  a research method differs for each research situation. Therefore, a 

choice and design of  research methods should be made based on the premise of  the study 

(Landry and Banville 1992). Landry and Banville (1992) suggested a more disciplined 

approach to the selection of  research methods drawn upon Laudan’s (1984) triadic network of  

justification. 

 

Landry and Banville (1992) suggested a disciplined approach and asserted that the choice of  a 

specific research method in IS should be justified on pragmatic grounds as appropriate tools 

for accomplishing research aims. They cautioned against conforming to a dominant paradigm 

or the researcher’s belief  in its intrinsic value (Robey 1996). In other words, researchers must 

have clearly defined research aims that justify their choices of  particular methods.  

 

Furthermore, regarding how to decide which research aims to pursue, Robey (1996) pointed 

out that researchers, not only in IS but also in other fields, usually pursue aims of  interest only 

to themselves. In fact, a more justifiable criterion of  selecting research aims is to relate aims to 

practical interests in the IS field (Robey 1996). This argumentation is consistent with Van de 

Ven’s (2007) emphasis on engaged scholarship. 

 

Van de Ven (2007) argued that engaged scholarship implies a fundamental shift in how 

scholars define their relationships with communities. He defined this engagement as a 

relationship that involves negotiation and collaboration between researchers and practitioners 

in a learning community: such a community jointly produces knowledge that can both advance 

the scientific enterprise and enlighten a community of  practitioners. He proposed that this 

approach of  engaged scholarship can address the widening gap between research and practice 

in management.  

 

3.3 TRIANGULATION AND SPECIFIC METHODS 

Triangulation is a form of  the pluralist methodology. Denzin (1978) defined triangulation as 

the combination of  methodologies in the study of  the same phenomenon. Denzin (1978) 
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drew a distinction between within-method and between-method triangulation. Within-method 

triangulation refers to the use of  multiple techniques within a given method to collect and 

interpret data, such as a survey questionnaire with different scales measuring the same 

“empirical uniP3”. Between-method triangulation refers to the use of  multiple methods to 

examine the same dimension of  a research problem.  

 

Jick (1979) concluded that within-method triangulation essentially involves cross-checking for 

internal consistency or reliability while between-method triangulation tests the degree of  

external validity. He asserted that the latter type represents the most popular use of  

triangulation, because it is largely a vehicle for cross validation when two or more distinct 

methods are found to be congruent and yield comparable data. In this dissertation, we adopt a 

between-method triangulation, involving case studies, laboratory experiments and field 

experiments. 

 

Between-method triangulation can be further classified into simultaneous (or parallel) and 

sequential triangulation (Brewer and Hunter 1989; Mingers 2001). Simultaneous triangulation 

refers to the use of  multiple methods in the same study to measure the same phenomenon. By 

checking the consistency of  multiple evidences, the results of  the study are considered more 

convincing. For instance, a questionnaire survey and interviews are conducted independently 

to collect data for the same phenomenon, and then their results are compared to reveal 

consistency or inconsistency. Sequential triangulation requires a researcher to use the results 

of  one method as the basis for a new study of  the same concept with a different method. In 

turn, the methods are dependent. For instance, a statistically analyzed questionnaire is done 

first, followed by in-depth interviews to better understand the results (Mingers 2001). 

 

We use sequential triangulation in this dissertation. Each study adopts a specific method and 

the results drawn from it are used to plan the method of  the following study. We justify the 

choice of  research method in each study as follows. 

 

3.3.1 Study 1 – Explorative Case Studies 

A case study is an empirical inquiry that investigates a contemporary phenomenon within its 

real-life context, especially when the boundaries between a phenomenon and context are not 

clearly evident (Yin 2003). Yin (2003) identified three fundamental conditions of  research to 

determine the appropriate use of  case studies, including the following: (1) the type of  research 

question posed; (2) the extent of  control an investigator has over actual behavioral events; and 

(3) the degree of  focus on contemporary as opposed to historical events. A case study is most 

appropriate method when (1) a research question focuses on how or why, (2) an investigator 
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does not require any control over actual behavioral events, and (3) the research examines 

contemporary events and the relevant behaviors cannot be manipulated. 

 

The first study in this dissertation aims to provide us with an understanding of  a trader’s 

behavior in an internal prediction market (see Figure 2.1) and answer the first major research 

question of  this dissertation “how do traders behave in an internal prediction market?” 

Consequently, we do not intend to interfere or control traders’ actual behavior in a market. 

Additionally, this dissertation addresses internal prediction markets, a contemporary 

management topic in real business world. Therefore, the use of  a case study is appropriate. 

 

3.3.2 Study 2 – Laboratory Experiments 

The objective of  the second study is to examine the effects of  information transparency in a 

prediction market on trader’s behavior and market prediction. Accordingly, this study aims to 

answer the second key research question of  this dissertation - how does information transparency in 

an internal prediction market influence market performance? (see Figure 2.1).  

 

To test such a casual model in the social sciences, experiments are usually adopted (Campbell 

and Stanley 1963; Cook and Campbell 1979; Shadish et al. 2002). An experiment refers to a 

study in which an intervention is deliberately introduced to observe its effects (Shadish et al. 

2002). Particularly, in contrast to case studies, laboratory experiments allow researchers to 

deliberately divorces a phenomenon from its context, and thus, focus on only a few variables 

in a controlled environment (Yin 2003). Shadish et al. 2002 argued that this highly controlled 

environment of  laboratory experiments assists researchers to determine and strengthen the 

causality. Therefore, we adopted laboratory experiments in this second study to test the casual 

effects of  information transparency. 

 

3.3.3 Study 3 - Field Experiments 

The objective of  the third study is to investigate the effects of  different information 

transparency levels in a prediction market on trader’s behavior and market performance (see 

Figure 2.1). Similar to the aforementioned laboratory study, this study answers the key 

research question – how does information transparency in an internal prediction market influence market 

performance? The results drawn from this study ought to complement the answers to the 

aforementioned research questions based on the laboratory experiments.  

 

In contrast to the second study, this study aims to examine the phenomenon in a real business 

environment. As Harrison and List (2004) argued, laboratory experiments in isolation are 
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necessarily limited in relevance for predicting field behavior, as unexpected behaviors may 

occur when control in the field is loosened. These unexpected behaviors in fact often indicate 

the key features of  the research phenomenon that have been neglected in the lab. Therefore, 

we adopt field experiments in this third study. 

 

Harrison and List (2004) defined a field experiment as one employs a nonstandard subject 

pool with field context in the commodity, task, or information set that the subjects can use in 

the environment where the subjects naturally undertake these tasks and do not know that they 

are in an experiment. They contended that field experiments have a methodological role, as 

they are substantively complementary to traditional laboratory experiments. 

 

When laboratory experiments are combined with field experiments, they permit sharper and 

more convincing inferences generated from a broader context. From the perspective of  

engaged scholarship, Van de Ven (2007) also encouraged researchers to spend time doing field 

research, as field research brings researchers closer to the phenomenon they are studying and 

permits deeper learning and understanding of  a research question or topic. Moreover, insight 

into the phenomenon drawn from the field work is likely to increase the chances that the 

research results will be eventually implemented by organizational practitioners (Rynes et al. 

1999).  

 

Consequently, we adopt field experiments in this dissertation to enhance the generalizability 

of  the research findings as a whole. 

 

 

 



58_Erim ShenYun Yang BW_Stand.job

42 

 

CHAPTER 4 UNDERSTANDING TRADER’S BEHAVIOR:  
AN EXPLORATIVE CASE STUDY 

 

4.1 INTRODUCTION 

Traders are a fundamental element of  a prediction market (Ho and Chen 2007). They have 

information about a future event and reflect their information in the trading of  contracts in 

the market (Fama 1970; Muth 1961). A prediction market, thus, aggregates information from 

traders based on the market mechanism (Hayek 1945). Traders’ behavior in the prediction 

market is, in turn, pivotal to the market, because trading activities entail the transmission and 

aggregation of  information and eventually influence market performance. Consequently, 

traders’ behavior has become a major research stream of  prediction markets. 

 

This dissertation focuses on internal prediction markets within a firm. The research on traders’ 

behavior in internal prediction markets is underdeveloped. In Chapter 2, we reviewed current 

literature on internal prediction markets. Prior studies focused on market performance and 

most of  them addressed the accuracy of  the market prediction (e.g. Pethokoukis 2004; Plott 

and Chen 2002; Ortner 1998). The behavior of  individual traders, however, has rarely been 

captured. Accordingly, we have constructed our first major research question about trader’s 

behavior and this chapter aims to answer the following question: 

 

RQmain1: How do traders behave in an internal prediction market?  

 

Internal prediction markets are characterized by such factors as small market size and low 

liquidity (Plott and Chen 2002; Cowgill et al. 2008; see Chapter 2). In terms of  these specific 

characteristics, most existing studies on traders’ behavior in internal prediction markets or 

small size prediction markets concentrate on traders’ manipulation. These studies are 

particularly interested in the likelihood and effect of  traders’ manipulation and bias on 

information aggregation and the predictive accuracy of  prediction markets (see Chapter 2).  

 

Nevertheless, little research addresses the fundamental behavior of  traders in the market, 

namely learning. In a prediction market, some traders have information about a future event, 

but some do not (Plott 2000). The former are referred to as informed traders; and the latter 

are referred to as uninformed traders. Markets are efficient, because information can be 

disseminated from the informed to the uninformed. This process is referred to as information 

aggregation (Gruca et al. 2005; Plott and Sunder 1982; 1988).  
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Information aggregation is processed through traders’ trading activities. A trader’s individual 

bids and asks on a contract represent the value he or she expects of  it. Similarly, a transaction 

on a contract represents the aggregate expected value of  the contract. These orders and 

transactions in turn become public information available in the market and other traders learn 

from it. Gradually, with an increased number of  trades, information about a future event is 

disseminated from the informed to the uninformed. As a result, learning is an underlying 

behavior of  traders in a prediction market. Consequently, this first study focuses on learning 

among traders in internal prediction markets. 

 

Furthermore, most existing studies on traders’ behavior are conducted in laboratory 

environments (e.g. Forsythe and Lundholm 1990; Hanson et al. 2006; Plott and Sunder 1982). 

Harrison and List (2004) have identified the constraints of  laboratory experiment relative to 

predicting field behavior (see Chapter 3). In turn, it is crucial to investigate traders’ behavior in 

a prediction market within a real business environment. Therefore, we conducted an 

explorative case study to examine the behavior of  individual traders in internal prediction 

markets.  

 

Several major findings are drawn from the case study. First, traders are generally not active in 

an internal prediction market. Employees of  companies usually regard participation in internal 

prediction markets as additional work, and therefore, they may have limited time to participate. 

Second, traders learn from different information sources and incorporate what they learn into 

their trading activities, though the activities are limited. In turn, they keep updating their 

opinions of  future events. However, the influence of  one trader on others seems to be small. 

Third, employees’ trading decisions are influenced most by the latest private information 

about a future event. Additionally, marginal traders and information cascades may be 

concurrent in an internal prediction market. 

 

This study makes several theoretical and practical contributions to the body of  research on 

prediction markets. First, our study extends the research on traders’ behavior by investigating 

learning in the market. Second, we contribute to the adaptive learning theory by applying it in 

the context of  prediction markets. Third, our research adds to the literature on prediction 

markets used in companies and the real business world. We particularly contribute to the 

exploration of  traders’ behavior in internal prediction markets. Finally, from the perspective 

of  managerial implications, this multiple case study documents the reasons why traders do not 

actively participate in internal prediction markets, allowing practitioners to improve their 

market design and operation by taking practical issues into consideration. 

 

The remainder of  this chapter is organized as follows. First, we review the related literature on 
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traders’ learning in a prediction market. Second, we elaborate the research method adopted in 

this chapter. Third, we present and discuss the results drawn from this case study. Finally, we 

conclude this chapter by answering the corresponding research question. 

 

4.2 THEORETICAL BACKGROUND 

In this section, we introduce the theory of  traders’ behavior in a prediction market. We focus 

on traders’ fundamental learning, which is reflected in their trading and interactive activities. 

 

4.2.1 Adaptive Learning in Prediction Markets 

Prediction markets are similar to financial markets. Traders in a prediction market are 

equivalent to investors in a financial market. Their decisions are almost always made under 

uncertainty. Learning, therefore, occurs as the flow of  information on the costs and benefits 

of  an investment decision reduce its uncertainty (Dixit and Pindyck 1994). 

 

Rational expectations theory is the primary theoretical foundation of  prediction markets (see 

Chapter 2). Rational expectations theory assumes that economic agents have full knowledge 

about the entire system in which they are operating (Muth 1961). This assumption leads to an 

asymmetry between the agents in the model and the econometrician who is estimating it, as 

the economist or econometrician knows less about the system than the agents (Sargent 1993). 

To eliminate this asymmetry, bounded rationality was proposed by Simon (1957) based on the 

assumption that agents behave like working economists or econometricians, who do not have 

complete information about an object (Sargent 1993). In addition, when taking time into 

consideration, the model of  expectations is no longer static, but dynamic, in which things 

change with the passage of  time and expectations adapt; hence, the name adaptive 

expectations (Cagan 1956; Sargent 1993). In other words, agents iteratively adjust their 

estimations of  an object in order to diminish the discrepancy between the estimation and 

perceived reality from one period of  time to the next (Sargent 1993).  

 

Based on the idea of  bounded rationality and adaptive expectations, Sargent (1993) suggested 

adaptive learning, which assumes that economic agents initially may not know the exact 

information they need to predict relevant outcomes. Nevertheless, the agents are willing and 

able to learn over time. As a result, the agents are able to keep updating their expectations 

based on the newly-received information. As Oliven and Rietz (2004) asserted, even biased 

traders may learn from market prices, and accordingly, they may update their expectations in 

ways that defeat the bias. 
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The learning that occurs in prediction markets is in fact adaptive learning. Traders are deemed 

to learn and keep updating their beliefs based on the latest information and reflect the 

updated information in their bids and asks (Bondarenko and Bossaerts 2000; Gruca et al. 2005; 

Rhode and Strumpf  2004). Notwithstanding non-market information, such as media news of  

a future event, traders learned from other individual expected values and the aggregate 

expected values of  contracts inside a market (Davis and Holt 1993). 

 

Empirical studies have demonstrated the occurrence of  traders’ learning in a prediction 

market. For instance, Lee and Moretti (2009) investigated the 2008 presidential election in the 

United States and found that market price appeared to react to the release of  relevant 

information. This reaction indicated that traders in the presidential election market learned 

and incorporated the learned information into their predictions.  

 

As information is disseminated through trades and learning is reflected in trades, active 

trading of  contracts is desired. Therefore, we first examine the activity of  traders in internal 

prediction markets. The first sub-research question is then as follows: 

 

RQ 1-1:  How actively do traders take part in an internal prediction market? 

 

4.2.2 Dynamic Interactions between Traders in Prediction Markets 

Chen et al. (2009) argued that learning in prediction markets is dynamic not only because of  

the adaptive mechanism but also the involvement of  dynamic interactions between traders. 

First, traders may revise their own expectations on contracts based on learning from other 

traders in the market and adjust the bids or asks of  the contracts accordingly.  

 

Second, adjustments of  bids and asks become new information for other traders to learn in 

the same market, and therefore lead other traders to revise their expectations on contracts. 

Hence, one trader’s revision of  bids or asks is not only the consequence of  learning but also 

the cause of  another trader’s revision.  

 

Moreover, the influence of  one trader’s revision can be extended when a succession of  

subsequent traders revise their bid or ask orders of  the contract. In turn, dynamic interactions 

refer to a trader’s revision of  buy or sell orders on contracts as a consequence of  learning and 

the cause of  another trader’s revision. In short, the presence of  traders’ dynamic interactions 

indicates that learning occurred in the market. Accordingly, we construct the second 

sub-research question as follows: 
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RQ 1-2: To what extent do traders dynamically interact with each other in an internal prediction market? 

4.3 RESEARCH METHODS 

In this section, we delineate the design of  this explorative case study and describe the details 

of  the prediction markets developed in this study. 

 

4.3.1 Case Study Design 

As stated in Chapter 3, this study aims to answer the first key research question of  this 

dissertation, namely, “How do traders behave in an internal prediction market?” In line with Yin’s 

(2003) guideline of  case study designs, we first identified the aforementioned specific 

sub-research questions to be answered in this study based on the related literature review.  

 

Subsequently, to apply replication logic (Hersen and Barlow 1976), we adopted multiple-case 

studies, examining traders in two different internal prediction markets According to Yin 

(2003), a multiple-case design, even a two-case design is preferred over a single-case design, as 

researchers have the possibility of  direct replication. Conclusions independently drawn from 

these two cases will be more powerful than those coming from a single case alone.  

 

We collected the data from a partnering company, in which two internal prediction markets 

were conducted in sequence. We partnered with an international financial company 

headquartered in the Netherlands and ranked in the Fortune Global 500. The two markets 

predicted domestic sales of  a particular financial product during two different time periods. 

The primary motivation for the company to use internal prediction markets was its 

dissatisfaction with its conventional prediction mechanism.  

 

This company used a “top-down” forecasting method to predict sales. According to the 

company, the forecasting method was complex and time consuming, and worked as follows: 

 

The top management team proposed an initial prediction of  sales, and then forwarded it to 

the lower level managers along the organizational hierarchy until it reached the regional sales 

managers. Some calibration of  the initial prediction was expected in response to any objection 

raised during the forwarding procedure.  

 

However, calibration rarely happened: lower level managers often just accepted the initial 

prediction. The company believes that its regional sales managers would make the most 

accurate predictions, as these managers have the most relevant and updated information about 

the products. Consequently, the company expected that involving those regional sales 
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managers in internal prediction markets would reveal the best predictions. In turn, they 

conducted the aforementioned two internal prediction markets as their pilot study. 

 

We chose this company because it thoroughly documented every action of  each trader, such 

as a trader’s log-in, buy orders, sell orders and transactions of  a contract. Moreover, this 

company allowed us to conduct a follow-up questionnaire study to obtain supplementary 

information about the traders’ behavior, for instance, why a trader did or did not take part in 

an internal prediction market. We expected that this follow-up study could help us gain a 

deeper understanding about the participation of  employees in internal prediction markets.  

 

The following sections describe the details of  the two cases, including the market mechanism, 

contracts, traders, incentives and operations. 

 

4.3.2 Market Mechanism 

The partnering company established a web-based continuous double auction market to 

support both internal prediction markets. On a single web page, all the contracts in a market 

were available (see Figure 4.1). The web page was divided into four parts as follows:  

 

In Part A, the highest buying price and the lowest selling price of  each contract were displayed 

and traders could place buy or sell orders for each contract; in Part B, the historic transaction 

prices of  each contract since the first transaction were exhibited in a line chart; in Part C, the 

last five transactions in the market were displayed, including contracts, shares transacted, 

prices and transaction time; and in Part D, an overview of  the trader’s buy and sell orders was 

provided, showing the status of  an order, i.e. “executed” or “not executed” - “executed” 

means that the order had been successfully transacted; and “not executed” means that the 

order was pending. 

 

This web-based prediction market platform was tested before the launch to ensure that traders 

would not experience any technical difficulties, which may have impeded motivation to 

participate. 

 

4.3.3 Predicting Events and Contracts 

The two markets were conducted in March and June 2007, and we refer to them in this study 

as the “March Market” and the “June Market”. 

 

The March Market predicted the annual sales of  a particular financial product in 2007. The 
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June Market predicted the periodical sales of  the same financial product during a particular 

campaign in 2007.  

 

 

Figure 4.1 Screen Shot of  a Prediction Market Web Page 

 

The contracts represented the potential outcomes of  the event being predicted in the market. 

To illustrate, we take an example of  the contract “191-200” in the March Market. This 

contract represented that annual sales of  the financial product in 2007 would lie in the range 

of  191 and 200 million euro. Tables 4.1a and 4.1b list the events being predicted, the contracts, 

and the corresponding representations in the March Market and the June Market, respectively.  

 

The aforementioned potential sales outcomes were determined by the company’s top 

management team based on their initial prediction. This initial prediction was usually used in 

the conventional “top-down” forecasting method.  
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Table 4.1a Contracts of  the March Market 

Events Predicted Contract Representation of  Contract 

Annual sales of  a financial 

product in 2007 

110-120 Sales will be between 110 and 120 million euro 

121-130 Sales will be between 121 and 130 million euro 

131-140 Sales will be between 131 and 140 million euro 

141-150 Sales will be between 141 and 150 million euro 

151-160 Sales will be between 110 and 120 million euro 

161-170 Sales will be between 161 and 170 million euro 

171-180 Sales will be between 171 and 180 million euro 

181-190 Sales will be between 181 and 190 million euro 

191-200 Sales will be between 191 and 200 million euro 

201-210 Sales will be between 201 and 210 million euro 

 

Table 4.1b Contracts of  the June Market 

Event Predicted Contract Representation of  Contract 

Periodical sales of  a 

financial product during a 

particular campaign in 2007 

19-22 Sales will be between 19 and 22 million euro 

22-25 Sales will be between 22 and 25 million euro 

25-28 Sales will be between 25 and 28 million euro 

28-31 Sales will be between 28 and 31 million euro 

31-34 Sales will be between 31 and 34 million euro 

34-37 Sales will be between 34 and 37 million euro 

37-40 Sales will be between 37 and 40 million euro 

40-43 Sales will be between 40 and 43 million euro 

43-46 Sales will be between 43 and 46 million euro 
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4.3.4 Traders 

Thirty-four regional sales managers were invited to trade in the internal prediction markets. 

The company believed that they possessed the most relevant sales information about the 

product. These participants were located in 13 different regions within the Netherlands. In 

turn, they were thought to bring their own information regarding sales in their regions to the 

prediction markets. In other words, heterogeneity of  information held by traders presumably 

existed in these two prediction markets. 

 

4.3.5 Incentives 

The company decided to offer monetary incentives. The amount of  cash reward per market 

was €10 multiplied by the number of  invited traders. As 34 regional sales managers were 

invited to take part in the internal prediction markets, the eventual award was €340 per market. 

When the actual sales results were unveiled, the trader who had the most shares of  the 

contract that corresponded to the actual sales would receive the bonus of  €340.  

 

4.3.6 Operations 

Each market was executed during a period of  12 calendar days, starting from 09:00 on the first 

day till 18:00 on the last day. To increase participation, the traders were allowed to access the 

markets 24 hours a day, including weekends. 

 

A plenary introduction session, with full attendance, was given before the first prediction 

market. In the introduction session, the structure of  the market mechanism, the event being 

predicted in the market, and the incentives were explained in detail; the operation of  the 

web-based trading platform interface was demonstrated; and a special question and answer 

session was arranged in which traders were allowed to ask or clarify any issues regarding the 

internal prediction markets. 

 

Although participation was anonymous, each trader was assigned a subject identification 

number and a log-in account. In the prediction markets, a trader’s subject identification 

number was never revealed. Therefore, a trader was not able to trace the behavior of  others 

within the same prediction market. 

 

When the prediction market started, all the traders received an endowment that contained 

1,000 points play money and 20 shares per contract to initiate trades. 
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4.3.7 Follow-up Questionnaire Survey 

After the two markets closed, we conducted a questionnaire survey together with the 

partnering company. The questionnaire (see Appendix I) was sent to all the traders, namely, 

the 34 regional sales managers, by email.  

 

The questionnaire entailed two major objectives. One objective was to examine the 

participation activity of  a trader. For instance, how often a trader took part in the prediction 

markets. The other objective was to investigate the trader’s use of  various information sources. 

Using a five-point Likert scale (1= never, 5= always), the trader was asked to rate the extent to 

which an information source contributed to their trading decisions.  

 

4.4 MEASURES 

In this section, we focus on traders’ behavior in an internal prediction market. The 

measurement of  traders’ behavior concentrates on traders’ participation activity and dynamic 

interactions. This section elaborates the measurement of  these two variables. 

 

4.4.1 Traders’ Participation Activity 

We first identified the number of  active traders in a market. Active traders refer to the traders 

who place at least one buy or sell order in a prediction market (Berg et al. 2008; Cowgill et al. 

2008). As traders contribute their information to the market when and only when they 

incorporate their information into their trading activities, the number of  active traders should 

be identified when measuring the traders’ activity. 

 

Subsequently, we examined the traders’ participation activity at the contract level. We 

measured the number of  active traders, the number of  transactions, and the number of  shares 

traded. According to existing research on prediction markets, these are the key indicators 

measuring the traders’ activity, particularly in an internal prediction market (Berg et al. 2008; 

Chen et al. 2009; 2010; Forsythe et al. 1992).  

 

Finally, we investigated activity at the individual trader level. We measured several key 

indicators, including the average number of  buy orders/sell orders, the average number of  

shares in buy orders/sell orders, the average number of  transactions and the average number 

of  shares traded (e.g. Chen et al. 2009; 2010; Forsythe et al. 1992; Oliven and Rietz 2004). 
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4.4.2 Traders’ Dynamic Interactions 

The measurement of  traders’ dynamic interaction adapts from Chen et al. (2009), consisting 

of  two dimensions, namely trader’s self-revision and trader’s influence on others. Trader’s 

self-revision is measured at the individual trader level and trader’s influence on others is 

measured at the contract level. 

 

The details of  the measurement of  trader’s self-revision are as follows. Let 𝑉𝑖𝑗 = [𝑉𝑖𝑗
𝑙 , 𝑉𝑖𝑗

𝑢] 

denote a range containing trader i’s estimation for contract j, where 𝑉𝑖𝑗
𝑙  is the lower bound 

and 𝑉𝑖𝑗
𝑢 is the upper bound. 𝑉𝑖𝑗

𝑙  and 𝑉𝑖𝑗
𝑢 can be captured when trader i places his or her first 

buy order and sell order of  contract j. As traders can observe individual bids, asks and 

aggregate behavior of  other traders in a prediction market, traders may revise their estimation 

accordingly. If  in the following order, trader i buys or sells contract j at a different price from 

the previous one, we term this “revision behavior” for trader i and refer to this new buy or sell 

order as a “self-revision”.  

 

Furthermore, we operationalize two measures of  “self-revision”, i.e. Type I and Type II. Type 

I self-revision is identified as long as trader i’s following order price is different from the 

previous one on the same contract; and Type II self-revision occurs when there is at least a 5% 

difference in the price of  trader i’s order compared to his or her previous order for the same 

contract. 

 

With regard to the trader’s influence on others, we consider all four alterative measures of  

“influential orders” developed by Chen et al. (2009). Table 4.2 presents these four alternative 

operational definitions. 

 

4.5 RESULTS 

This section delineates the results of  traders’ participation activity and traders’ dynamic 

interactions. The results drawn from the follow-up questionnaire survey are presented 

throughout the discussion of  the aforementioned traders’ behavior to provide supplementary 

evidence. We received 17 valid responses to the questionnaire for the March Market and 16 to 

the June Market, representing 11 sales regions. In the end of  this section, we discuss the 

additional finding of  information cascades in this case study. 
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Table 4.2 Alternative Operational Definitions of  Influential Orders 

(Adapted from Chen et al. 2010, p. 59) 

Operational Definition Definition 

1-influential 

A buy or sell order is 1-infuential if  the next buy or sell order of  the 

same contract is from a different trader and is also a “self-revision” 

orders in the same direction. 

2-influential 

A buy or sell order is 2-influential if  the next two consecutive buy or sell 

orders of  the same contract are from two different traders and are also 

“self-revision” orders in the same direction. 

3-influential 

A buy or sell order is 3-influential if  the next three consecutive buy or 

sell orders of  the same contract are from three different traders and are 

also “self-revision” orders in the same direction. 

2Out3-influential 

A buy or sell order is 2Out3-influential if  the next three consecutive buy 

or sell orders of  the same contract are from three different traders and 

two of  the three are also “self-revisions” orders in the same direction. 

 

4.5.1 Traders’ Participation Activity 

Active traders numbered 30 in the March Market and 18 in the June Market. More than half  

of  the invited regional sales managers participated in the internal prediction markets. 

Particularly, in the March Market, 30 out of  34 regional sales managers became active traders. 

The percentage reached 88%, considered high in internal prediction markets. In the June 

Market, the percentage of  active traders dropped to 52% (18 out of  34). 

 

In light of  the statement that traders in a prediction market sometime appear to be motivated 

by curiosity (Borison and Hamm 2009), this drop was probably due to the change of  the 

traders’ interest and curiosity about the prediction markets. According to the top management 

team of  the company, prediction markets were new to the traders. They had no experience 

with participation in prediction markets. Therefore, the March Market, as the first experience, 

motivated the traders’ to take part. However, those regional sales managers were no longer 

motivated by curiosity to trade in the second market. In Google’s prediction markets, there 

was also a gradual decline in interest among existing traders (Dye 2008).  

 

Table 4.3 exhibits the statistics for traders’ activity at the contract level in the two internal 

prediction markets. “Number of  active traders” revealed that a trader did not trade on all 

contracts in an internal prediction market. For instance, there were 30 active traders in the 

March Market. However, none of  the contracts in the March Market received buy orders or 
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sell orders from all 30 traders. The average “percentage of  active traders” further illustrated 

that a single contract received buy or sell orders from approximately 60% active traders in a 

market. Chen et al. (2009) obtained similar results from their study. They conducted two 

internal prediction markets to evaluate early stage technology and each market had 17 

contracts. According to their analyses, no contract received the full participation from all the 

active traders. The average percentage of  active trader per contract was approximately 60% as 

well.    

 

“Number of  transactions” showed that the traders in the two markets were not active. The 

average “number of  transactions” for the March Market indicated that less than two 

transactions occurred per trade day on each contract (Meannr_transaction = 18, trade day = 12). 

The same measure for the June Market showed that participation was even lower 

(Meannr_transaction = 9), implying that on some trade days (trade day = 12), there were no 

transactions of  a contract at all. The low occurrence of  transactions was due to few buy and 

sell orders from the traders (see Tables 4.4a and 4.4b). 

 

Tables 4.4a and 4.4b summarize the statistics for traders’ activity at the individual level in the 

March Market and the June Market. The average “number of  buy orders” (March Market: 

Meannr_buy_orders = 16, June Market: Meannr_buy_orders = 9) and “number of  sell orders” (March 

Market: Meannr_sell_orders = 16, June Market: Meannr_sell_orders = 9) showed that an active trader 

on average placed no more than two buy or sell orders per trade day in both markets (trade 

day = 12). 

 

The maximum number of  these measures illustrated that even the most active trader in the 

March Market placed no more than eight buy or sell orders in total per trade day 

(Maxnr_buy_orders = 51, Maxnr_sell_orders = 43); and in the June Market, the most active trader 

placed less than six buy or sell orders in total per trade day (Maxnr_buy_orders = 41, Maxnr_sell_orders 

= 31).  

 

To summarize, the results drawn from the analyses of  trader’s activity at the contract and the 

individual trader level showed that traders did not actively participate in the internal prediction 

markets. 
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As introduced in section 4.3.6, the company allowed trading in the market 24 hours a day, 7 

days a week in order to increase activity, assuming that traders would take part in the internal 

prediction markets after work. The results, however, revealed that no one traded after work 

(namely, between 18:00 and 09:00 per trade day) or during weekends. The evidence can be 

drawn from Table 4.3. According to this table, the last trade day of  the March Market was Day 

11, and yet, this market ran for 12 days. However, no trade occurred on Day 12, which, 

coincidently, fell on the weekend. Usually the last trade day is busy, as the most updated 

information is available and traders would like to take the last trading opportunity to make 

profit in the market. A number of  prior studies have asserted that the most relevant 

information comes in the last trade days, and therefore, researchers usually calculate the 

market prediction based on the last trade price or the last several trade prices (Berg et al. 

2003a; 2003b; 2008; Servan-Schreiber 2004). The situation in the June Market supported this 

argument, as quite a few transactions occurred on the last trade day, i.e. Day 12, which was a 

weekday (see Table 4.3).  

 

A possible explanation is that the regional sales managers regarded participation in the internal 

prediction markets as a part of  their job, though participation was not obligatory. In turn, they 

did not spend their private time taking part in the markets. Hanson (2006) emphasized that 

participation in an internal prediction market requires that employees allocate time and effort 

away from their regular work duties. When a proper incentive is missing, employees do not 

bother to trade. The evidence drawn from the questionnaire further supported this 

explanation. 

 

According to the data collected from the questionnaire, the traders identified lack of  time as 

the major reason that they did not actively participate in the internal prediction markets. 

Although only eight traders responded to the question “Why would you not participate in the 

markets?” (this is the translation of  question No. 7 in the questionnaire, see Appendix I), 

seven of  them gave a similar reason of  limited time for participation. These answers have 

been translated from Dutch into English and are briefly quoted in Table 4.5. 

  

These quotations from the traders’ responses supported the aforementioned explanations that 

the sales managers considered participating in the prediction markets only during their work 

time; participation was a part of  the company “policy”; and taking part in the prediction 

markets was not the priority in their work. 
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Table 4.5 Traders’ Responses to the Question about the Major Reason for 

Not Participating in the Internal Prediction Markets 

Traders Quotations of  Traders’ Answers 

1 
“I do not see the positive effects on my sales by participating in the markets. 

Participation in fact cost my time.” 

2 
“It [participation] cost me too much time. I participated because the policy 

required me do so.” 

3 “I am not attached with this game.” 

4 “The idea is good. But I do not have time to explore it further.” 

5 
“Frankly speaking, it was too hectic recently. I didn’t have time to participate. My 

contribution is probably not very important.” 

6 

“To be honest, I am very busy with visiting customers, explaining products, and 

troubleshooting. There are 20 to 25 outstanding emails in front of  me. This 

[participation in the prediction markets] is not my priority.” 

7 “I don’t feel like participating, as it takes too much time.” 

 

We noticed that one trader gave a unique reason for not participating in the internal prediction 

markets. He said that “…other traders in the markets were not active. Many of  my orders cannot be 

matched in the markets. I logged in very often. However, I found that my orders were always pending….” 

This sales manager’s answer in fact brought the problem of  low activity to light. Kambil and 

Van Heck (2002) contended that a market must have liquidity to function, which requires a 

certain minimum level of  traders’ activity. Therefore, this result actually emphasized the 

importance of  traders’ activity in an internal prediction market. When only a few traders 

behave actively, they may finally become inactive due to unavailability of  trading with others.  

 

4.5.2 Traders’ Dynamic Interactions 

Table 4.6 summarizes the statistics for traders’ self-revisions, measured at the individual trader 

level. “Number of  self-revision (Type I)” showed the number of  buy or sell orders with a 

different price compared to the previous order placed by the same trader for the same 

contract. According to this table, in the March Market, on average, each trader placed 15 buy 

or sell orders with a different price compared to his or her previous order for the same 

contract; and in the June Market, each trader, on average, made 7 self-revisions for the same 

contract.  
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“Number of  self-revisions (Type II)” showed the number of  buy or sell orders with at least 5% 

difference in price compared to the previous order placed by the same trader for the same 

contract. Table 4.6 shows that on average, a trader placed 14 Type II buy or sell orders in the 

March Market and made 6 Type II self-revisions in the June Market. 

 

The comparison between the number of  Type I and Type II self-revisions disclosed the tiny 

difference between these two types in both markets: the average number of  Type II 

self-revisions was just one smaller than Type I in both the March Market and the June Market 

(March Market: Meanself_rev_I = 15, Meanself_rev_II = 14; June Market: Meanself_rev_I = 7, 

Meanself_rev_II = 6).  

 

This tiny difference indicated that almost all self-revision from a trader for a contract entailed 

at least 5% difference of  price compared to his or her previous buy or sell order. In this case, 

5% is considered statistically significant. Moreover, the comparison to the average total 

number of  buy or sell orders at the trader level (March Market: Meanbuy_sell_orders = 32, June 

Market: Meanbuy_sell_orders = 18) demonstrated that self-revisions accounted for approximately 

50% of  the orders placed by the traders (see Figure 4.2). In other words, half  of  the buy or 

sell orders entailed an update of  traders’ opinions of  future events. Therefore, it can be 

argued that the traders in these internal prediction markets learned and incorporated their 

learning into their personal predictions, confirming our predecessors’ findings (Bondarenko 

and Bossaerts 2000; Gruca et al. 2005; Rhode and Strumpf  2004).  

 

 

With regard to a trader’s influence on others, measured at the contract level, Table 4.7 displays 

the statistics for four alternative influential orders. In accordance with this table, the mean 

values of  different types of  influential orders show that there were more 1-influential orders 

than any other influential orders in both markets (March Market: Mean1-influential = 4 > 

Mean2-influential = 1 > Mean3-influential/2out3-influential = 0; June Market: Mean1-influential = 1 > 

Mean2-influential = 0). In turn, it can be concluded that one trader’s influence on another 

concentrated on the one degree influence. 



76_Erim ShenYun Yang BW_Stand.job

 

   

T
ab

le
 4

.6
 S

u
m

m
a
ry

 S
ta

ti
st

ic
s 

fo
r 

T
ra

d
e
rs

’ 
S

e
lf

-r
e
vi

si
o

n
 i

n
 t

h
e
 M

a
rc

h
 M

a
rk

e
t 

a
n

d
 t

h
e
 J

u
n

e
 M

a
rk

e
t 

M
ar

k
et

 
M

ea
su

re
m

en
t 

N
 

M
ax

im
um

 
M

in
im

um
 

M
ea

n 
S

td
. 
D

ev
ia

ti
on

 
M

ed
ia

n 

M
ar

ch
 

N
u
m

b
er

 o
f 

se
lf

-r
ev

is
io

n
s 

(T
yp

e 
I)

 
3
0
 

4
8
 

0
 

1
5
 

1
7
 

7
 

N
u
m

b
er

 o
f 

se
lf

-r
ev

is
io

n
s 

(T
yp

e 
II

) 
3
0
 

4
5
 

0
 

1
4
 

1
6
 

7
 

Ju
n

e 
N

u
m

b
er

 o
f 

se
lf

-r
ev

is
io

n
s 

(T
yp

e 
I)

 
1
8
 

3
1
 

0
 

7
 

1
0
 

2
 

N
u
m

b
er

 o
f 

se
lf

-r
ev

is
io

n
s 

(T
yp

e 
II

) 
1
8
 

2
8
 

0
 

6
 

9
 

1
 

  

T
ab

le
 4

.7
 S

u
m

m
a
ry

 S
ta

ti
st

ic
s 

fo
r 

In
fl

u
e
n

ti
a
l 

O
rd

e
rs

 i
n

 t
h

e
 M

a
rc

h
 M

a
rk

e
t 

a
n

d
 t

h
e
 J

u
n

e
 M

a
rk

e
t 

M
ar

k
et

 
M

ea
su

re
m

en
t 

N
 

M
ax

im
um

 
M

in
im

um
 

M
ea

n 
S

td
. 
D

ev
ia

ti
on

 
M

ed
ia

n 

M
ar

ch
 

N
u
m

b
er

 o
f 

1
-i

n
fl

u
en

ti
al

 o
rd

er
s 

1
0
 

1
8
 

0
 

4
 

5
 

2
 

N
u
m

b
er

 o
f 

2
-i

n
fl

u
en

ti
al

 o
rd

er
s 

1
0
 

2
 

0
 

1
 

0
.7

 
0
 

N
u
m

b
er

 o
f 

3
-i

n
fl

u
en

ti
al

 o
rd

er
s 

1
0
 

1
 

0
 

0
 

0
.3

 
0
 

N
u
m

b
er

 o
f 

2
O

u
t3

-i
n

fl
u
en

ti
al

 o
rd

er
s 

1
0
 

2
 

0
 

0
 

0
.7

 
0
 

Ju
n

e 

N
u
m

b
er

 o
f 

1
-i

n
fl

u
en

ti
al

 o
rd

er
s 

9
 

7
 

0
 

1
 

2
 

0
 

N
u
m

b
er

 o
f 

2
-i

n
fl

u
en

ti
al

 o
rd

er
s 

9
 

1
 

0
 

0
 

0
.3

 
0
 

N
u
m

b
er

 o
f 

3
-i

n
fl

u
en

ti
al

 o
rd

er
s 

9
 

* 
* 

* 
* 

* 

N
u
m

b
er

 o
f 

2
O

u
t3

-i
n

fl
u
en

ti
al

 o
rd

er
s 

9
 

* 
* 

* 
* 

* 

*
: 

th
e 

v
al

u
e 

h
as

 b
ee

n
 o

m
it

te
d

 d
u

e 
to

 t
h

e 
co

n
st

an
t 

ze
ro

.



77_Erim ShenYun Yang BW_Stand.job

61 

 

 

Figure 4.2 Measurement at Trader Level in the March Market and the June Market 

 

 

Figure 4.3 Measurement at Contract Level in the March Market and the June Market 
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However, the influence of  a trader on another did not seem to be large. Even though one 

degree influential orders occurred most, the occurrence was limited. To be specific, the 

average number of  1-influential orders in the March Market (Mean1-influential = 4) indicated that 

there were on average four buy or sell orders followed by another order of  the same contract, 

which was from a different trader and was also a self-revision for that trader in the same 

direction in this market; and in the June Market, there was only one 1-influential order per 

contract (Mean1-influential = 1). Comparing to the average number of  buy or sell orders at 

contract level (March Market: Meanbuy_sell_orders = 96; June Market: Meanbuy_sell_order = 36), these 

1-influential orders accounted for only 4% of  all the orders in the March Market and less than 

3% the June Market (see Figure 4.3). 

 

Other influential orders became extremely scarce. Although there were two degree influences 

of  an order captured in both markets, the average and the maximum “number of  2-influtneial 

orders” in the March Market and the June Market (March Market: Mean2-influential = 1, June 

Market: Max2-influential = 1), demonstrated that while there was on average one 2-influential 

order per contract in the March Market, there was only a single 2-influential order of  some 

contracts in the June Market. This result revealed that few orders were followed by two 

consecutive orders of  the same contract from two different traders, which were also 

self-revisions in the same direction. 

 

Moreover, Table 4.7 illustrated that in the March Market, there was only one 3-influential 

order and two 2Out3-influential orders of  some contracts (Max3-influential = 1, Max2Out3-influential 

= 2). In the June Market, there was not even a single 3-influential or 2Out3-influential order 

(the value for each measure remained zero). The scarcity of  these influential orders disclosed 

that an order was rarely followed by more than two consecutive orders of  the same contract 

from different traders that were also self-revisions in the same direction. 

 

The aforementioned analyses of  a trader’s self-revisions implied low influence of  a trader’s 

order on others. A possible reason is that the traders kept learning about the future event and 

incorporating the new information into their estimation (Bondarenko and Bossaerts 2000; 

Gruca et al. 2005; Guo et al. 2006; Ho and Chen 2007; Rhode and Strumpf  2004). Therefore, 

there were always changes in the direction of  one trader’s self-revision orders, and hence, one 

order’s influence on others did not remain to a large extent. 

 

The empirical evidence to support this explanation was drawn from the questionnaire survey. 

In the survey, we asked the traders to rate the importance of  different information sources for 

their trading decisions. Figures 4.4a and 4.4b exhibit the average importance of  these 

information sources.  
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According to the figures, “recent regional sales” and “recent overall sales” were considered 

more important than other information sources by the traders. In the March Market, “recent 

regional sales” was rated 4.18; and in the June Market, this information source was rated 4.19. 

In both markets, the traders identified the recent regional sales of  the financial products being 

predicted most important information source in their trading decisions. Similarly, in the March 

Market and the June Market, the rates of  importance given to the “recent overall sales” were 

considerably high, reaching 4 and 3.75, respectively. These high rates manifested that the 

traders took the recent sales of  the financial products in the Netherlands into consideration to 

a large extent.  

 

4.5.3 Additional Findings of  Information Cascades 

An additional finding of  information cascades drew our attention in this case study. An 

information cascade refers to a process by which people influence one another, so much so 

that traders ignore their private knowledge and rely instead on the publicly stated judgments 

of  others (Sunstein 2006b). Information cascades arise when individuals rationally choose 

identical actions despite having different private information (Alevy et al. 2007). This 

phenomenon is associated with traders’ learning. Banerjee (1992) and Bikhchandani et al. 

(1992) argued that repeated learning may lead individuals to forego their private information 

and duplicate their predecessors’ choices. Anderson and Holt (1997) and Çelen and Kariv 

(2004) showed evidence of  information cascades in laboratory environments, where 

researchers can observe when decision-makers abandon their private information.  

 

Nonetheless, in a real business environment, we can only suspect the phenomenon of  

information cascades, as we cannot observe whether a trader in a prediction market has 

chosen to ignore his or her private information to follow the actions of  those ahead of  them. 

 

In the June Market, when the transaction price of  contract “19-22” suddenly turned to 99 

points (see Table 4.3, Maximum transaction price of  this contract), it became the most striking 

information signal to other traders. It may have stimulated others to believe that some people 

in the same market must have special inside information. Especially, during the time when the 

June Market was running, there was much negative news in media about the financial product 

being predicted. Contract “19-22” corresponded with the lowest sales of  that financial 

product. It is presumed that the combined effect of  the media and market information 

encouraged information cascades in this market. Therefore, there were quite a few prompt 

responses (i.e. buying at 99 points) to this signal.  
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Figure 4.4a Average Importance of  Different Information Sources in the  

March Market 

 

 

 

Figure 4.4b Average Importance of  Different Information Sources in the June Market 
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of  the market price probably convinced the traders that other traders had information they 

lacked, and therefore, they acted alike. Therefore, we suspected that information cascade 

occurred in the June Market. 

 

Information cascades are not necessarily negative. However, when individuals focus on the 

wrong kinds of  information from the market place, they are led to make mistakes with how 

they update their information (Kauffman et al. 2010). In the June Market, the suspected 

information cascade eventually undermined market performance, because contract “19-22” 

did not correspond to the actual sales outcome and its high transaction price became a 

misleading signal. 

 

The aforementioned evidence regarding traders’ responses to the transaction price of  a 

contract in fact indicated that traders were sensitive to the prices of  contracts, confirming that 

traders in a market learn from signals and constantly update their beliefs (Bondarenko and 

Bossaerts 2000; Gruca et al. 2005; Rhode and Strumpf  2004). Unfortunately, as discussed 

above, traders sometimes refer to the wrong signal, and thus the market and the traders will be 

misled.  

 

Nevertheless, having investigated all buy and sell orders of  contract “19-22”, we found, 

surprisingly, that one trader placed two sell orders of  this contract at a much lower price (i.e. 

26 points) and another two traders placed buy orders of  this contract at prices lower than 99 

points. These orders can be considered as a correction from the market.  

 

Unfortunately, these correction orders were placed on the last trade day and the new buy 

orders were not shown on the market platform due to lower than the highest outstanding bid 

at 99 points. As a result, the transaction price of  contract “19-22” ended at 99 points and was 

not corrected. Since the market prediction was based on the transaction prices of  the 

contracts, the eventual forecasting accuracy of  the June Market was influenced. The traders 

who attempted to correct the market were likely to be more rational, and therefore, they could 

have acted as “marginal traders” (Forsythe et al. 1992; Oliven and Rietz 2004) in the June 

Market. Given enough time, they could have driven the market to be more efficient (Forsythe 

et al. 1999). 

 

4.6 CONCLUSIONS 

While there is an increased interest in use of  prediction markets inside companies, many 

companies are grappling with the practice of  management due to various uncertainties, such 

as incentives for traders and the potential ramification of  prediction markets (Kiviat 2004). 
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Particularly, the understanding of  traders’ behavior in internal prediction markets remains 

limited. This case study, therefore, aims to explore this area and answer the major research 

question “How do traders behave in an internal prediction market?” We address two specific aspects 

to answer this question. One aspect is the traders’ activity level, and the other aspect is the 

interactions between the traders.  

 

The results, drawn from two internal prediction markets about the sales of  a financial product 

in an international financial company in the Netherlands, are consistent. This case study 

reveals several key findings.  

 

First, the traders’ activity level is generally low. In reality, the number of  active traders in an 

internal prediction markets is difficult to control, though a company may have developed 

various incentive mechanism to encourage its employees to actively participate. Employees, as 

the traders of  internal prediction markets, are usually confronted with limited time in trading. 

Participation in the markets requires employees to allocate time and effort from their regular 

work. The entertainment value, which drives traders to actively participate in public prediction 

markets (Wolfers and Zitzewitz 2004), does not work in internal prediction markets. There 

could even be a quick decline in interest among existing traders (Dye 2008), particularly when 

the market size is small (less than 30 traders) and the markets run in parallel or continuously.  

 

Second, traders actively learn from different information sources and incorporate new 

information into their trading. Employees may not trade actively, but they seem to update their 

opinions whenever they trade. Particularly, employees consider the newly acquired private 

information most important in their trading. This supports the salient ability of  prediction 

markets to aggregate inside information from dispersed individuals (Plott 2000).  

 

Third, one trader’s order may impact another trader’s order, leading to an identical change of  a 

different trader’s opinion. However, the extent of  this influence is not likely to be large. It 

rarely happens that one employee’s order may influence more than two subsequent orders 

from different employees, as employees are more inclined to revise their opinions based on 

private information. 

 

Nevertheless, when a trader selects an unusual price of  an order, it could lead to an 

information cascade in an internal prediction market. Traders learn from signals, such as 

prices of  contracts (Bondarenko and Bossaerts 2000; Gruca et al. 2005; Rhode and Strumpf  

2004). An unusual price of  a bid, ask or transaction may lead employees to believe that 

someone has special private information about the future event, and therefore, quickly 

respond to this action, leading to an information cascade. When the information is in fact 
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inaccurate, the effect of  this information cascade becomes negative on the market prediction. 

Marginal traders, however, are able to discern the quality of  the unusual signal. Their trading 

turns to correct the market, though its effect may not immediately emerge.        

 

Moreover, as illustrated by the prior experiences of  prediction markets inside companies such 

as HP and Siemens, motivating employees to trade is a major challenge (Wolfers and Zitzewitz 

2004). This study discloses that although employees show interest and willingness to 

participate, they are not likely to do so during their private time. As a result, 24/7 access to the 

market does not increase the participants’ trading activities in an internal prediction market. 

The underlying reason is that employees regard participation as a part of  their work, and 

therefore, they are only willing to join during the work hours and when there are no other 

job-related tasks with priority. Therefore, companies may consider allocating time for 

employees to trade in the markets. This approach was adopted in our following field 

experiment (see Chapter 6) with satisfying effect. 
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CHAPTER 5 INFORMATION TRANSPARENCY AND 
MARKET PERFORMANCE: A LABORATORY EXPERIMENT 
 

5.1 INTRODUCTION 

The increased use of  prediction markets is attributed to the pervasiveness of  IT. Malone et al. 

(1987) foretold that there would be a shift to proportionately more use of  markets due to 

information technologies. Web-based prediction markets eliminate the temporal and spatial 

constraints of  participation: traders all over the world can access a web-based prediction 

market anytime, anywhere.  

 

Advanced technologies have not only enabled web-based prediction markets but also 

enhanced information transparency in markets, such as the distribution of  various types and 

amounts of  market information (Granados et al. 2010). In turn, in most current prediction 

markets, different types of  information, such as outstanding bids and asks and transactions, 

are usually made available to traders. Like the public or internal prediction markets mentioned 

in Chapter 2, the two internal prediction markets in our previous case study demonstrated the 

adoption of  transparent information in the market.  

 

Information transparency refers to the level of  availability and accessibility of  market 

information to traders (Zhu 2004). The effect of  information transparency on different 

markets, such as B2B and B2C, varies (Granados et al. 2008; 2010; Zhu 2002). However, to 

date, little work has been done on the effects of  information transparency on prediction 

markets. Since the possibility and use of  information transparency could be extensive in the 

prediction market, in this dissertation, we examine the effects of  information transparency on 

prediction market performance. As discussed in Chapter 1, the second major research 

question of  this dissertation is as follows: 

 

RQmain2: How does information transparency in an internal prediction market influence market 

performance? 

 

Based on information elements, price transparency is identified as a specific type of  

information transparency (Granados et al. 2010). Price transparency refers to the revelation of  

information about prices, such as current market prices, quotes and historical transaction 

prices (Granados et al. 2006; 2010; Soh et al. 2006). In prediction markets, prices indicate 

information and encompass information aggregation and dissemination (Ho and Chen 2007) 

and information aggregation is the fundamental function of  a prediction market. Therefore, 
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in this dissertation, we focus on price transparency. 

 

In the previous explorative case study, we observed that internal prediction markets are 

confronted with limited participation. Particularly, the number of  participants actively trading 

in the market may be constrained and very limited. Constrained traders’ participation has been 

identified as a serious disadvantage of  prediction markets (Hanson et al. 2006; Sunstein 2006a). 

Unfortunately, internal prediction markets are usually characterized by this issue (Plott and 

Chen 2002; Cowgill et al. 2008). Therefore, our research focus and designs in this chapter are 

based on this common situation of  internal prediction markets.  

 

Furthermore, the literature review in Chapter 2 discussed two aspects of  market performance; 

information aggregation and market prediction. In this laboratory experimental study, we 

examine these two aspects in terms of  information aggregation efficiency and predictive 

accuracy. Information aggregation efficiency reflects the traders’ agreed opinion, and 

forecasting accuracy is critical for decisions. The laboratory experiments allow us to assess 

both aspects of  market performance.  

 

The objective of  this chapter, in turn, is to investigate the effect of  price transparency on the 

information aggregation efficiency and the predictive accuracy of  internal prediction markets 

through trader’s behavior. The following two sub-research questions are as follows: 

 

RQ 2-1: How does price information transparency in an internal prediction market with a limited number 

of  actively trading traders influence the traders’ behavior and further influence market information 

aggregation efficiency? 

 

RQ 2-2: How does price information transparency in an internal prediction market with a limited number 

of  actively trading traders influence the traders’ behavior and further influence market predictive 

accuracy?  

 

This chapter adds to the growing literature on prediction markets, particularly internal 

prediction markets within companies that include a limited number of  actively trading 

participants. The laboratory experiments empirically test our hypotheses. The evidence 

resulting from the experiments shows that the revelation of  price information undermines 

traders’ participation and learning activity, when only a few traders are actively participating in 

an internal prediction market. This further leads to a negative effect on market information 

aggregation efficiency as well as market predictive accuracy, as higher information aggregation 

efficiency and increased predictive accuracy require higher levels of  trader participation and 

adaptive learning. We therefore suggest concealing certain price information, such as quotes, 
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in small-scale internal prediction markets. 

 

One key contribution of  this research is to extend current studies on information 

transparency by investigating its effect in new types of  markets. Moreover, this paper adds 

information transparency, particularly price transparency, to prediction market design. The 

examination of  traders’ behavior in this research enhances the understanding of  why and how 

their specific activities influence market predictive accuracy. Furthermore, we develop a 

method to measure information aggregation efficiency. This indicator allows practitioners to 

assess prediction market performance prior to the revelation of  the actual results of  the future 

event. Consequently, they can determine whether or to what extent they can make a decision 

based on the market forecast. Moreover, our study provides practitioners with an alternative 

market design in terms of  information transparency to tackle limited participation in an 

internal prediction market. 

 

The chapter is organized as follows. We first discuss the relevant theoretical foundations and 

construct the hypotheses based on this theoretical background. Subsequently, we elaborate on 

the research design of  the laboratory experiments. Thereafter, we present the results from our 

empirical studies and validate the hypotheses. Finally, we conclude our research findings and 

answer the research questions. 

 

5.2 THEORETICAL BACKGROUND 

In this section, we introduce the theoretical foundations of  this laboratory experiment and 

develop our hypotheses. 

 

5.2.1 Information Transparency and Trader’s Behavior 

Research on financial markets explored the extent to which greater price transparency leads to 

higher market efficiency and liquidity (Granados et al. 2008). Multiple price information 

includes transaction price, price quotes and so on (i.e. bids or asks) (Bloomfield and O’Hara 

1999; Granados et al. 2006; Soh et al. 2006). The effect of  price information transparency is 

debatable based on the extant research. Theoretical research suggests that market transparency 

should matter, whereas the empirical evidence shows mixed findings (Bloomfield and O’Hara 

1999). For instance, Flood et al. (1999) demonstrated that price transparency reduces opening 

spreads and increases trading volume based on their experimental markets, whereas 

Bloomfield and O’Hara’s (1999) experiment drew contrary results. In addition, restricting the 

transparency debate to a certain type of  price information, such as trade or quote, Pagano and 

Röell (1996) explored its different effects on different types of  markets, such as auctions and 
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dealer markets. The introduction of  quote transparency in particular is considered to enhance 

the complexity of  information transparency research. As Bloomfield and O’Hara (1999) 

indicated, the contrasting conjectures surrounding the benefits of  quote transparency 

emphasize the general lack of  knowledge of  the effects of  transparency on market behavior.  

 

In prediction markets, there are informed and uninformed traders (Plott 2000). Markets are 

efficient, because information can be disseminated from the informed to the uninformed. 

This process is referred to as information aggregation (Gruca et al. 2005; Plott and Sunder 

1982; 1988).  

 

Information aggregation is processed through traders’ trading activities. Quote information, 

one type of  pre-trade information, shows a trader’s individual bids and asks on a contract and 

represents the trader’s expected value of  the contract. Similarly, a transaction on a contract 

represents the aggregate expected value of  the contract. These orders and transactions, in turn, 

become public information available in the market and other traders learn from it. Gradually, 

with an increased number of  trades, information about a future event is disseminated from 

the informed to the uninformed.  

 

Prior research on information transparency has suggested that information transparency in a 

market does not benefit everyone equally. Zhu (2002) argued that participants with different 

positions in the market have different incentives when they can see each other’s bid or ask 

information. In a B2B market, transparent information about buy and sell orders benefits 

low-cost suppliers and high willingness-to-pay buyers due to the exposure of  their competitive 

costs and purchase prices, respectively. Conversely, high-cost suppliers and low 

willingness-to-pay buyers will not be motivated to participate in a market that exposes their 

unfavorable orders. 

 

In a prediction market, incentives to participate differ according to each trader’s private 

information, particularly when the total number of  traders is very constrained. Informed 

traders are not likely to actively place buy or sell orders, as these orders will reveal their private 

information to other traders. When traders’ participation activity is high, informed traders 

would be willing to participate, as they expect to observe different private information from 

other informed traders. However, when traders’ participation activity is low, informed traders 

will anticipate a smaller possibility that private information exists in the market. In turn, 

informed traders are inclined to withhold their buy or sell orders. Uninformed traders, 

contrarily, are willing to place buy or sell orders. Their orders can help them discover if  any 

informed traders and private information exists in the market. For example, an uninformed 

trader places a buy order arbitrarily. If  a transaction is successfully made, it probably means 
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that someone else in the market does not expect a higher value of  this contract. Alternatively, 

if  no transaction occurs or the subsequent sell order is at a higher price, the uniformed trader 

will learn that other traders expect a higher value of  this contract. Nevertheless, uninformed 

traders may not participate actively in a thin internal prediction market. Our explorative case 

study suggests that employees participate in an internal prediction market whenever they have 

relevant or updated information about future events. 

 

As a result, in a thin internal prediction market, the revelation of  price information will hinder 

the trader’s participation activity. In turn, we construct the following hypothesis (H1a): 

 

H1a: When an internal prediction market has only a few actively participating traders, 

disclosure of  price information leads to a lower level of  traders’ activity. 

 

Traders are sensitive to the prices of  contracts, as prices are the signals they learn from to 

constantly update their beliefs (Gruca et al. 2005; Rhode and Strumpf  2004). Prices 

persistently carry information from those with more to those with less information in a 

market (Spence 2002). In a prediction market, quote information can be referred to as market 

signals, because they are the activities of  individuals in a market, which by design or accident 

alter the beliefs of, or convey information to other individuals in the market (Spence 1974).  

 

Traders in a prediction market are motivated to deal with signals, as information is initially 

asymmetric and is transmitted via signals. In order to observe the information that other 

traders have, a trader, as a signal receiver would refer to the signal (such as other traders’ bids 

and asks) and respond accordingly. The response is embodied by the receiver’s adjustment of  

his or her expected value of  a contract in the same direction with the signaler. Additionally, 

the adjustments of  quotes yields updated information by which other traders learn, and 

therefore, leads to further revisions on the expectations of  contracts. Hence, one trader’s 

revision of  buy or sell orders on contracts is not only the consequence of  learning, but also 

the cause of  another trader’s revision. Chen et al. (2009) referred to this as trader’s dynamic 

interactions. 

 

In an internal prediction market with constrained traders, informed traders are not likely to 

actively update their opinion of  future events, as their adjustment of  an order on a contract 

implies the improvement of  their estimation. Other traders may realize this improvement and 

learn from it, forming a similar opinion. Traders in a market in fact trade on difference rather 

than similarity. Surowiecki (2004) argued that traders are motivated to act from disagreement 

and contest rather than consensus or compromise. If  everyone holds a similar opinion, it is 

impossible to make profit from a trade, and thus, trades would no longer exist. When 
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individual adjustment is limited, the influence of  one trader’s information update on another 

trader’s opinion becomes even more constrained. Accordingly, we establish hypothesis (H2a) as 

follows: 

 

H2a: When an internal prediction market has only a few actively participating traders, 

disclosure of  price information leads to a decrease in traders’ dynamic interactions. 

 

5.2.2 Traders’ Behavior and Market Information Aggregation Efficiency 

Information aggregation is the process of  information dissemination from “insiders” to 

“outsiders” (Plott and Sunder 1982; 1988; Gruca et al. 2005). In turn, traders’ beliefs regarding 

the potential outcomes of  a future event in a prediction market become convergent. Wolfers 

and Sitzewitz (2006a) and Gjerstad (2004) demonstrated that when traders’ beliefs are 

convergent, the market price in stock markets will be very close to the mean of  market 

participants’ beliefs. In turn, information aggregation efficiency of  a prediction market refers 

to the ability of  the market to synthesize the traders’ mean belief. The deviation of  transaction 

prices from this mean belief  indicates information aggregation efficiency: the smaller the 

deviation, the more efficiently the market aggregates the traders’ consensus.  

 

The mean of  traders’ beliefs can be represented by an equilibrium price. From a 

microeconomic point of  view, the equilibrium price can be identified as the price at which the 

quantity of  a demanded contract equals the quantity supplied. The prices of  bids and asks 

correspond to the trader’s perceived value of  the contract, representing the possible outcome 

of  a future event. Hence, this value is determined by the trader’s estimation of  the possibility 

of  the event. Thus, the resulting equilibrium price represents a mean of  individuals’ 

probability estimations, and the resulting market price in prediction markets could predict the 

possibility of  future events when it is strongly correlated with the equilibrium price. 

 

However, in an information asymmetric market, transaction prices of  a contract are often 

above or below the average of  reservation prices depending on the elasticity of  the demand or 

supply curve. It then becomes extremely difficult to achieve the equilibrium price. However 

the price formation mechanism of  a double auction allows traders to observe other 

individuals’ beliefs based on the quote or transaction prices, and then to incorporate that 

information into their own expectations. With these new expectations come new demand 

functions and, therefore, new prices (Hahn and Tetlock 2006). Each trading activity in fact 

aggregates information into the market. If  all the information is revealed in the price and 

information aggregation is efficient, eventually the equilibrium price can be achieved. 

Accordingly, it is important to stimulate traders to actively participate in a prediction market. 
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The following hypothesis (H3) is suggested:  

 

H3: An increased level of  traders’ participation activity in a prediction market leads to higher 

information aggregation efficiency.  

 

In a prediction market, payoffs are tied to the individual trader’s predictive accuracy of  the 

future event and thus trading profit or loss is straightforward. Traders are, therefore, 

motivated not only to truthfully incorporate their private information and any other relevant 

information into trading decisions, but also to seek information about the future event (Berg 

and Rietz 2003; Oliven and Rietz 2004; Wolfers and Zitzewitz 2004). Consequently, prediction 

markets have the ability to aggregate information from individuals, who filter both public and 

private information, and weigh this information through the price formation process (Berg 

and Rietz 2003). 

 

Traders learn and keep updating their beliefs based on different newly-acquired information. 

This learning process is reflected in their ever-changing buy and sell orders (Gruca et al. 2005; 

Rhode and Strumpf  2004). Besides non-market information, such as media news of  a future 

event, traders learn from others’ expected values of  contracts inside a market. Traders 

iteratively learn and adjust their individual expectations. As a result, their expectations will 

eventually converge and trade will cease in the market (Davis and Holt 1993). Until then, the 

convergent expectation should have captured all of  the information for the estimation of  the 

future event. In other words, the traders’ mean belief  should have been captured and reflected 

in the transaction price of  a contract in a prediction market. Thus, the deviation between the 

transaction price and the equilibrium price of  a contract, which represents the traders’ mean 

belief, is reduced. Consequently, traders’ dynamic interactions, in addition to traders’ 

participation activity, affect the process of  information aggregation. Therefore, we propose 

hypothesis (H4) as follows: 

 

H4: An increase in traders’ dynamic interactions in a prediction market leads to higher 

information aggregation efficiency. 

 

5.2.3 Information Aggregation Efficiency and Market Predictive Accuracy 

The theoretical foundation of  prediction markets, the rational expectations hypothesis (Muth 

1961) and the efficient market hypothesis (Fama 1970) suggested that higher information 

aggregation efficiency leads to more accurate market prediction. Previous studies on 

prediction markets also demonstrated that the market can accurately predict future events by 

efficiently aggregating dispersed information (such as Gadanecz 2007; Gruca et al. 2005; Plott 
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2000). Essentially, these theories proposed that a prediction market can forecast accurately due 

to its robust ability to aggregate information. In accordance with these arguments, we 

construct the hypothesis (H5) as follows:  

 

H5: Higher information aggregation efficiency of  a prediction market leads to higher market 

predictive accuracy. 

 

5.3 RESEARCH METHODS 

In this section, we describe the details of  the laboratory experiment, including the experiment 

design, the market design, contracts, subjects, incentives and experiment procedures. 

 

5.3.1 Laboratory Experimental Design 

With regard to information transparency, this dissertation focuses on price transparency, 

particularly quote information in prediction markets, as this pre-trade information is likely to 

influence traders’ behavior. We identified two conditions of  price information in this study. 

One is “opaque”, in which traders do not see others’ buy or sell orders, neither the price nor 

the number of  shares. The other condition is “transparent”, in which traders see the highest 

outstanding buy order and the lowest outstanding sell order, including the price and the total 

number of  shares. 

 

In these laboratory experiments, we adopted a within-subjects design. Every subject took part 

in two markets and each market corresponded to a specific transparency condition of  price 

information. The major advantage of  a within-subjects design is the control for differences 

across cohorts (Bloomfield and O’Hara 1999). Subjects may differ according to characteristics, 

such as intelligence, personality, motivation or familiarity with the experimental environment 

(Davis and Holt 1993; Kagel and Roth 1995). Such variations between subjects can make it 

difficult to draw inferences about the effect of  price information transparency levels if  one 

cohort of  subjects participate in one setting and another cohort participates in another, 

because the effect of  the treatment might actually reflect differences in the cohorts’ 

characteristics (Bloomfield and O’Hara 1999). Therefore, to avoid this potential confounding 

issue, we let each cohort of  subjects trade in both transparency settings. 

 

However, a within-subjects design also entails the disadvantage of  order effects, such as 

learning and fatigue. Due to the complexity of  laboratory markets, even the same subjects may 

behave differently in the later repetitions of  tasks than in early repetitions (Forsythe and 

Lundholm 1990). Bloomfield and O’Hara (1999) emphasized the importance of  not running 
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different settings in a fixed sequence, as any apparent differences may actually be due to 

subject’s learning or fatigue rather than to the different treatments. Consequently, we followed 

the principle of  a balanced Latin square design (Field and Hole 2003) to order the 

experimental market sequences: one cohort of  the subjects participated in the opaque market 

first and then the transparent market, and the subsequent cohort participated in the 

transparent market first and then the opaque market. 

 

Furthermore, according to our pilot studies of  four cohorts (including a total of  20 subjects), 

training was crucial to familiarize subjects with the trading tasks, as almost none of  the 

subjects had experiences with prediction markets. Consequently, each cohort of  subjects was 

required to participate in three markets, including the first trial market for training. The 

transparency condition used in this first market was identical to the condition in the last 

market. Table 5.1 illustrates the order of  the experimental market sequences for each cohort 

of  subjects. 

 

To engage with practitioners in our research and design the prediction markets to mirror the 

implementations in real business contexts, we conducted the laboratory experiments in 

collaboration with TaoBao (www.taobao.com), a leading online B2B2C market with 

approximately 500 million registered users in China (by 2011). TaoBao provided us with its 

actual business events for prediction and the data for contract design. 

 

Table 5.1 Order of  Experimental Market Sequences 

Cohort Number Training Market First Market Second Market 

1 Transparent Opaque Transparent 

2 Opaque Transparent Opaque 
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

21 Transparent Opaque Transparent 

22 Opaque Transparent Opaque 

  

5.3.2 Market Mechanism Design 

A web-based continuous double auction mechanism was used in the laboratory experiments.  

On a single web page, all of  the contracts for a market were available. Due to the different 

price information conditions, the web pages for each setting were slightly different. However, 

the fundamental design was similar and developed based on the one used in the previous 

explorative case study.  
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Figure 5.1a and 5.2a illustrate the market of  opaque and transparent price information 

conditions. At the top of  the web page, the future event being predicted was displayed. 

Beneath it was the trading part, in which all the contracts were listed in the column “stocks”. 

Historic prices of  contracts were exhibited as a line chart. An overview of  the trader’s buy and 

sell orders was provided in the bottom, showing the status of  an order, namely executed or 

not. In the opaque market, the columns including lowest sell and highest buy were not 

presented, although they were displayed in the transparent market. 

 

At the beginning of  each market, every trader received an endowment, including 1,000 points 

of  play money and 10 shares per contract. 

 

5.3.3 Contracts Design 

All of  the markets in the laboratory experiments predicted the annual sales of  a certain 

category of  products or services sold on www.taobao.com in 2008. In total, there were 43 

categories, such as computer and networking, women’s clothing, and gift cards. The prediction 

events were randomly assigned to each market, with no repetition within a single session, in 

which a cohort of  subjects participated in three different markets. Every market had five 

contracts, representing the five possible ranges of  sales of  a certain product or service 

category up for prediction. The contracts were co-designed with TaoBao, and one of  the five 

contracts corresponded to the actual sales result. Table 5.2 summarizes the 43 product or 

service categories being predicted and their corresponding contracts. 

  

To illustrate a market, we take the product category “Flowers and Cakes” as an example. In 

this market, the event to be predicted was the annual sales of  flowers and cakes on 

www.taobao.com in 2008 in RMB. Contract “238-240” represented that the sales of  this 

product category on www.taobao.com in 2008 fell between 238 million RMB and 240 million 

RMB. 

 

In the experiments, every subject received a piece of  private information in each market, 

indicating which specific contract was definitely not the actual sales outcome. However, none 

of  the subjects were informed about which contract represented the actual sales.  

 

According to Taobao, the data they provided to us were never revealed to the public or used 

in any other research activities outside Taobao. This situation ensured that none of  the 

subjects in the experimental markets were informed traders, avoiding information asymmetry 

among the traders. Additionally, Taobao masked the original data before they delivered it to 
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us. 

 

5.3.4 Subjects 

The subjects in these laboratory experiments were students of  Erasmus University. Student 

subjects are viewed as the standard subject pool used by experimenters (Harrison and List 

2004). We advertised our laboratory study to the subject pool of  the university behavioral lab 

via its official website. A total of  132 university students were recruited and randomly assigned 

to 22 cohorts, thus, 6 subjects per cohort. Each cohort was invited to a computer lab in 

sequence. A session encompassed all of  the tasks that a cohort must complete in the 

experiment. Every subject was informed about his or her session time and was required to 

confirm in advance. Three days and one day prior to the scheduled time, a reminder was sent 

to the subjects by email in order to reduce the no-show rate. 

 

5.3.5 Incentives 

Three different types of  cash rewards were offered to the subjects. The first type was an 

“attendance reward”. A subject who participated and completed the entire session received 

this basic reward of  10 euros. The other two additional rewards were offered based on the 

subject’s individual performance. In each market, a subject received an additional 0.50 euros 

per share of  the contract owned which represented actual sales. (This included only shares 

that were in addition to the 10 shares in the endowment.) This type of  reward was termed a 

“prediction reward” and was developed to motivate subjects to learn in the market. The last 

type of  reward was a “trading reward”. In each market, the subject who had the most play 

money in their account at the end of  the experiment earned an additional 2.00 euros. The 

trading reward was designed to motivate subjects to trade actively in the prediction market. 

Subjects were informed that they would not be eligible for the market rewards if  they did not 

place buy or sell orders in that market. 
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Figure 5.1a Screenshot of  an Opaque Market with No Quote Information in 

Laboratory Experiments 

 

Figure 5.1b Screenshot of  a Transparent Market with Quote Information in 

Laboratory Experiments 
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Table 5.2 Product Categories and Contracts 

Product Category 
Contract 1 

(¥1 million) 

Contract 2 

(¥ million) 

Contract 3 

(¥ million) 

Contract 4 

(¥ million) 

Contract 5 

(¥ million) 

Adult Supplies 313-315 315-317 317-319 319-321 321-323 

Antiques 1,359-1,362 1,362-1,365 1,365-1,368 1,368-1,371 1,371-1,374 

Baby 2,507-2,510 2,510-2,513 2,513-2,516 2,516-2,519 2,519-2,522 

Beauty & Massage 1,125-1,128 1,128-1,131 1,131-1,134 1,134-1,137 1,137-1,140 

Beds 894-896 896-898 898-900 900-902 902-904 

Books 1,177-1,180 1,180-1,183 1,183-1,186 1,186-1,189 1,189-1,192 

Cameras & Photo 2,469-2,472 2,472-2,475 2,475-2,478 2,478-2,481 2,481-2,484 

Cars 1,896-1,899 1,899-1,902 1,902-1,903 1,903-1,906 1,906-1,909 

Children's Clothing 1,079-1,082 1,082-1,085 1,085-1,088 1,088-1,091 1,091-1,094 

Computers & 

Networking 
3,516-3,519 3,519-3,522 3,522-3,525 3,525-3,528 3,528-3,531 

Cosmetics/Perfumes 5,690-5,693 5,693-5,696 5,696-5,699 5,699-5,702 5,702-5,705 

Dolls & Bears 1,220-1,223 1,223-1,226 1,226-1,229 1,229-1,232 1,232-1,235 

Electrics 2,123-2,126 2,126-2,129 2,129-2,132 2,132-2,135 2,135-2,138 

Fashionable 

Accessories 
1,423-1,426 1,426-1,429 1,429-1,432 1,432-1,435 1,435-1,438 

Female Clothing 7,911-7,914 7,914-7,917 7,917-7,920 7,920-7,923 7,923-7,926 

Female Shoes 1,726-1,729 1,729-1,732 1,732-1,735 1,735-1,738 1,738-1,741 

Flowers & Cakes 238-240 240-242 242-244 244-246 246-248 

Food 2,036-2,039 2,039-2,042 2,042-2,045 2,045-2,048 2,048-2,051 

Furniture 898-900 900-902 902-904 904-906 906-908 

Gift Cards 646-648 648-650 650-652 652-654 654-656 

Health 1,711-1,714 1,714-1,717 1,717-1,720 1,720-1,723 1,723-1,726 

Home 1,876-1,879 1,879-1,882 1,882-1,885 1,885-1,888 1,888-1,891 

Household 

Appliances 
2,954-2,957 2,957-2,960 2,960-2,963 2,963-2,966 2,966-2,969 

Internet Phones 1,595-1,598 1,598-1,601 1,601-1,604 1,604-1,607 1,607-1,610 

Lamps & Hardware 1,444-1,447 1,447-1,450 1,450-1,453 1,453-1,456 1,456-1,459 

Laptops 3,441-3,444 3,444-3,447 3,447-3,450 3,450-3,453 3,453-3,456 

Logistical Service 383-385 385-387 387-389 389-391 391-393 

Male Clothing 2,885-2,888 2,888-2,891 2,891-2,894 2,894-2,897 2,897-2,900 

                                                        
1
 “¥” is the symbol of RMB, Chinese currency. In 2008, 1.00 euro equals approximately to 10.00 RMB. 
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Memory Cards & 

USB 
512-514 514-516 516-518 518-520 520-522 

Mobile Phones 7,823-7,826 7,826-7,829 7,829-7,832 7,832-7,835 7,835-7,838 

Mobile Phone 

Prepaid Cards 
1,358-1,361 1,361-1,364 1,364-1,367 1,367-1,370 1,370-1,373 

MP3/iPod 982-984 984-986 986-988 988-990 990-992 

Music 562-564 564-566 566-568 568-570 570-572 

Office Supplies 1,360-1,363 1,363-1,366 1,366-1,369 1,369-1,372 1,372-1,375 

Online Games 9,732-9,735 9,735-9,738 9,738-9,741 9,741-9,744 9,744-9,747 

Outdoor Sports 785-787 787-789 789-791 791-793 793-795 

Pet Supplies 591-593 593-595 595-597 597-599 599-601 

Software 1,232-1,235 1,235-1,238 1,238-1,241 1,241-1,244 1,244-1,247 

Travel 513-517 515-517 517-519 519-521 521-523 

Underware 1,201-1,204 1,204-1,207 1,207-1,210 1,210-1,213 1,213-1,216 

Video Games 75-77 77-79 79-81 81-83 83-85 

Watches 1,314-1,317 1,317-1,320 1,320-1,323 1,323-1,326 1,326-1,329 

ZIPPO & Swiss 

Army Knife 
5,942-5,945 5,945-5,948 5,948-5,951 5,951-5,954 5,954-5,957 

 

5.3.6 Experimental Procedures 

The duration of  a complete session with a cohort was approximately 90 minutes and 

consisted of  three parts. Subjects in a session first gathered in a waiting room in the lab. 

Instructions, printed on one A4 paper (see Appendix II), were offered and the experiment 

administrator gave supplementary instructions orally. The instructions briefly introduced the 

major tasks the subjects would do, the reward scheme, and other important details that 

subjects should pay attention to. At the end of  the instruction period, the subjects were 

allowed to raise any questions or ask for clarification. This part usually took no longer than 10 

minutes.  

 

Subsequently, subjects were led to a lab with individual computer cubical rooms and the 

second part of  the session commenced. Each cubical room was furnished with headphones 

connected to the lab’s internal communication system, a pen, writing paper and the necessary 

documents for the ensuing prediction markets. The experiment administrator used the lab’s 

internal communication system to transmitted instructions to the subjects. Subjects were 

required to participate in three sequential prediction markets. Before the beginning of  each 

market, subjects were given three minutes to read the information given to them about that 
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market (see Appendix III). The information included private information and general 

historical sales information about the specific category of  products or services. The duration 

of  each market was exactly 10 minutes. After each market, subjects were asked to complete a 

small survey regarding their use of  information in the preceding market (see Appendix IV). 

During this part, the administrator instructed the subjects when to read the information and 

fill in the questionnaire and announced the opening and closing of  each market through the 

internal communication system.  

 

Finally, after trading in the three markets was complete, subjects were required to leave 

everything inside their cubicles and return to the waiting room, where a debriefing was held. 

In the debriefing, the administrator first announced if  all the subjects were eligible for the 

reward and then announced the winners of  the prediction reward and the trading reward in 

each market, including the total amount of  cash each subject would obtain. Afterwards, the 

cash rewards were distributed to every subject. 

 

5.4 MEASURES 

As the research model of  the laboratory experiments shows, the measures involve three 

variables, namely traders’ participation activity, traders’ dynamic interactions and market 

predictive accuracy. The measures of  the former two variables are identical to the measures of  

the same variables in Chapter 4 (see 4.4 Measures). To recap, the measure of  traders’ 

participation activity includes the contract level (i.e. number of  transactions and number of  

shares traded) and the individual trader level (i.e. number of  buy orders/sell orders and 

number of  shares in buy orders/sell orders). Similarly, the measure of  traders’ dynamic 

interaction entails the contract level (i.e. 1-influential, 2-influential, 3-influential, and 

2out3-influential orders) and the individual trader level (i.e. Type I and Type II self-revisions). 

 

5.4.1 Measure of  Information Aggregation Efficiency 

According to current research, there are two ways of  measuring information aggregation 

efficiency, nevertheless, neither fulfilled the needs of  this study. One measurement compares 

the transaction prices with the competitive equilibrium price of  a contract; the competitive 

equilibrium price corresponds to the reward, given that all private information is aggregated 

and reflected in the market. Therefore, the smaller the difference between the transaction 

price and the competitive equilibrium price of  a contract, the higher the information 

aggregation efficiency (See Plott 2000). However, this measurement is used in laboratory 

experiments, where the certainty of  private information is ensured and the actual result is 

known. While the measurement shows the robust ability of  prediction markets to aggregate 
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information, it cannot be used in a real business environment, where the certainty and the 

availability of  private information are not ensured and the outcome of  the future event is 

unknown. 

 

The other measurement compares traders’ average estimation of  a future event prior to 

market opening with the actual result. The closer the two results, the more efficient the 

information aggregation (see Gruca et al. 2005). A prediction market forecast reflects the 

market consensus and traders’ average estimation represents consensus. The comparison 

between these two measurements, therefore, indicates to what extent the market captures the 

traders’ consensus. However, this method neglects the fact that information aggregation is a 

process, in which traders keep learning while trading and bring new information into the 

market (Bondarenko and Bossaerts 2000; Gruca et al. 2005; Ho and Chen 2007; Rhode and 

Strumpf  2004). In turn, traders’ average estimation of  the future event prior to the market 

opening does not actually imply their consensus after learning. Alternatively, we can collect the 

traders’ average estimation of  the future event in the end of  the market, after learning in the 

market. Nonetheless, in reality, it is not ensured that all traders, or at least most of  the traders, 

will submit their personal estimate. Additionally, existing traders may leave and new traders 

may come to a market. Furthermore, it is impossible to measure the information aggregation 

efficiency until the end of  the market. 

 

The measurement we develop in this study is based on the comparison between the 

transaction price and the dynamic equilibrium price of  a contract. A trader’s buy and sell order 

of  a contract corresponds to his or her perception of  the possibility of  an outcome of  a 

future event. When there is no difference between traders’ perceived value of  a contract, no 

shares are traded further. A demand curve of  a contract can be extracted based on all the buy 

orders of  this contract, and a supply curve can be drawn based on all the sell orders of  the 

contract. An equilibrium price is identified as the price at which the quantity of  a demanded 

contract equals the quantity supplied and in the absence of  external influences the equilibrium 

value will not change. The equilibrium price of  a contract, based on the demand and supply 

curve of  the contract, thus, represents the market consensus on the probability estimation of  

the corresponding outcome. This equilibrium price of  the contract evolves along with each 

trader’s learning and the development of  the market. This is referred to as the dynamic 

equilibrium price. This measurement is illuminated by the study of  Martin (2006). 

 

To be specific, our measurement entails the following four steps: 

 

Step 1: Estimate the general equation for a linear demand curve  

With regard to a contract in a prediction market, we plot the buy orders on two coordinate 
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axes with reservation price on the vertical axis and quantity demanded on the horizontal axis. 

Reservation price refers to the price submitted in a buy order, and quantity refers to the total 

number of  shares submitted in the buy orders with the same reservation price. A linear 

demand curve can be drawn and represented by the following equation: 

 

𝑃𝑑𝑖 = 𝑎 − 𝑏 × 𝑄𝑑𝑖……………………….(4) 

 

where i represents a contract in a prediction market, 𝑃𝑑𝑖  denotes the price demanded of  the 

contract i and 𝑄𝑑𝑖  denotes the quantity demanded. Mathematically, 𝑎 is the vertical axis 

intercept and −𝑏 is the slope. Economically, if  price goes as high as 𝑎 TB, traders will 

demand zero shares of  contract i; 𝑏 is the rate at which the price must fall for the quantity 

demanded to increase by one share. In turn, 𝑎 must be positive, and the minus sign on b 

indicates that quantity demanded and price are inversely related. 

 

Step 2: Estimate the general equation for a linear supply curve  

Similar to Step 1, we plot the sell orders on two coordinate axes with reservation price on the 

vertical axis and quantity supplied on the horizontal axis. Reservation price refers to the price 

submitted in a sell order; and quantity refers to the total number of  shares submitted in sell 

orders with the same reservation price. A linear supply curve can be drawn and represented by 

the following equation: 

 

𝑃𝑠𝑖 = 𝑐 − 𝑑 × 𝑄𝑠𝑖……………………….(5) 

 

where i represents a contract in a prediction market, 𝑃𝑠𝑖  denotes the price supplied of  the 

contract i and 𝑄𝑠𝑖  denotes the quantity supplied. Mathematically, 𝑐 is the vertical axis 

intercept of  the supply curve and 𝑑 is its slope. Economically, traders will offer zero shares 

for sale if  the price drops as low as 𝑐 TB, and 𝑑 is the rate at which the price must rise for 

traders to offer one more share for sale. Thus, the intercept 𝑐 is positive, and the positive 

sign on 𝑑 indicates a direct relationship between price and quantity supplied. 

 

Step 3: Calculate the dynamic equilibrium price of  a contract 

To find the equilibrium price, we apply the condition that quantity demanded equals quantity 

supplied: 𝑄𝑑𝑖 = 𝑄𝑠𝑖 = 𝑄𝑒𝑖 , where 𝑄𝑒𝑖  denotes the equilibrium quantity of  contract i. 

Substituting 𝑄𝑒𝑖 into the demand and supply equations and noting that there is just one 

equilibrium price, we can set the two equations equal to each other: 𝑎 − 𝑏 × 𝑄𝑑𝑖  = 𝑐 − 𝑑 ×

𝑄𝑠𝑖 . Accordingly, we obtain the result: 𝑄𝑒𝑖 =
𝑎−𝑐

𝑏+𝑑
.  By inserting this value for the 
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equilibrium quantity into either the demand or supply equation of  contract i, we can 

determine that the equilibrium price is as follows: 

𝑃𝑒𝑖 =
𝑎𝑑+𝑏𝑐

𝑏+𝑑
……………………….(6) 

 

where 𝑃𝑒𝑖 denotes the dynamic equilibrium price of  contract i. Since a, b, c and d are all 

positive, 𝑃𝑒𝑖 is also positive.  

 

Step 4: Calculate the average percentage deviation of  the transaction price from the dynamic equilibrium price 

of  contracts in a market 

To compare information aggregation efficiency between different prediction markets, we 

finally calculate the average percentage deviation of  the transaction price from the dynamic 

equilibrium price of  contracts in a market as follows: 

 

∑ |(𝑃𝑖 − 𝑃𝑒𝑖)/𝑃𝑒𝑖|𝑛
𝑖

𝑛
× 100% 

 

where 𝑃𝑖  is the transaction price of  contract i and 𝑛 is the number of  contracts in a 

prediction market. The smaller the average percentage deviation of  the transaction price from 

the dynamic equilibrium price, the higher the information aggregation efficiency in a 

prediction market. 

 

5.4.2 Measure of  Market Predictive Accuracy 

With regard to market predictive accuracy, we examine how accurately a market predicts 

future events. Market predictive accuracy is usually assessed against two benchmarks, including 

the actual sales results and the estimation generated from the competing forecasting 

mechanism. The accuracy assessed against the former criterion is referred to as the absolute 

accuracy; the accuracy assessed against the latter criterion is referred to as relative accuracy 

(Berg and Rietz 2003). Given that it is generally more difficult to achieve absolute accuracy, 

more emphasis is put on relative accuracy. This decision fulfills the need of  most companies, 

which aim to find an improved forecasting mechanism compared to existing mechanisms. 

Nevertheless, as the actual results of  sales of  the product or service categories in 2008 on 

www.taobao.com are available to us, the experiments assess absolute accuracy. In other words, 

we measure the market predictive accuracy based on the comparison of  market prediction and 

actual sales. The smaller the difference between these two figures, the more accurate the 

market prediction. 
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The measure of  market predictive accuracy in laboratory experiments follows prior research 

on internal prediction markets in HP (Plott and Chen 2002), which were among the first 

internal prediction markets. We follow the measurement of  this prior research for four 

primary reasons. First, the future events being predicted in HP markets were sales of  HP 

products, similar to the experimental markets in this study. Second, the contract design in HP 

markets was similar to our study. In both studies, each contract represents a possible range of  

sales. Third, Plott and Chen (2002) identified the measurement of  the point estimation of  the 

market prediction. This point estimation allows researchers to calculate the absolute difference 

between the market prediction and actual sales, precisely comparing the two figures. Last, 

Plott and Chen (2002) further illustrated the particular measurement of  market predictive 

accuracy, namely, the percentage error, based on the aforementioned comparison. To be 

specific, this measure entails the following three steps. 

 

Step 1: Use price to measure the likelihood of  a contract 

In a prediction market, the transaction price of  a contract indicates trader’s agreed opinion of  

the contract. The higher the price, the more likely the outcome presented by the contact (in 

the estimation of  the traders). However, a price is not a probability; it is a positive real number. 

To use a price to measure the likelihood of  the outcome presented by a contract, we construct 

the following measurement: 

 

𝑃𝑟𝑖 =
𝑃𝑖

∑ 𝑃𝑖𝑖
…………………..(1) 

where i represents a contract in a prediction market and 𝑃𝑟𝑖 denotes the probability that the 

contract i would happen. The construction of  𝑃𝑟𝑖 determines that its value is between [0, 1]. 

This construct also ensures that the higher the price 𝑃𝑖, the higher the corresponding 

probability. The summation of  𝑃𝑟𝑖  is ∑ 𝑃𝑟𝑖𝑖 = 1. 

 

Different prices can be taken into consideration, such as the last transaction price of  a 

contract, the average price, or the weighted average price of  a contract during a certain time 

period. In this study, we consider the last transaction price and the weighted average price of  a 

contract. Usually, the last transaction price is expected to reflect the most accurate information 

about future events. However, due to the very limited operation time (10 minutes) of  each 

market in our laboratory experiments, the weighted average transaction price of  contracts 

could be more representative of  the information. As there are few existing studies, we do not 

know which price may generate a more accurate market prediction in this case. Thereby, we 

take both prices into our calculation.  

 

Step 2: Estimate a market prediction 
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Suppose the outcome represented by contract i will definitely happen, the market prediction 

would be  

 

𝑆𝑎𝑙𝑒𝑚𝑎𝑟𝑘𝑒𝑡 = 𝑀𝑖 ∙ 𝑃𝑟𝑖 = 𝑀𝑖 ∙ 1 = 𝑀𝑖…………………..(2) 

 

where Mi denotes the mid-point of  the numerical range represented by contract i. For instance, 

“238-240” is one of  the contracts of  the market that predicts the annual sales of  product 

category “Flowers and Cakes” on www.taobao.com in 2008. The mid-point of  this contract is 

thus “239”. Following the rationale of  Plott and Chen (2002), since there is no specific 

information within a range of  numbers represented by the contract and all the ranges are 

finite, a uniform distribution is adopted. The mid-point of  a range is regarded as the 

expectation of  a uniform distribution.  

 

In reality, we are uncertain of  the probability of  a contract. Nonetheless, we know the 

probability of  each contract in a market, and therefore, the market prediction becomes a 

weighted average of  all the contracts and the weight is the probability of  occurrence. In turn, 

we construct the formula for the point estimation of  market prediction, namely, the sales 

result forecasted by the market in the experiments, as follows: 

 

Salemarket = ∑ 𝑃𝑟𝑖 ∙ 𝑀𝑖𝑖 …………………..(3) 

 

 

Step 3: Calculate the percentage error 

We finally calculate the percentage error of  a market prediction against the actual result of  the 

event being predicted as follows: 

 

% Error =  
|Saleactual − Salemarket|

Saleactual

× 100% 

 

where Saleactual denotes the actual annual sales of  a product or service category on 

www.taobao.com in 2008. Salemarket denotes the market point estimation of  the sales. The 

difference between the market prediction and the actual result specifically means the absolute 

value of  the difference. The smaller the percentage error, the higher the predictive accuracy of  

the market. 

 

5.5 RESULTS 

This section discusses the results of  the laboratory experiment and validates the hypotheses 
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based on these results. We first present the overview of  the subjects’ participation in the 

experiments. Thereafter, we delineate the results according to the sequence of  the hypotheses.  

 

5.5.1 Overview of  Subjects’ Participation 

As mentioned in the research design of  this chapter, we invited 132 subjects to participate in 

the laboratory experiments based on 6 subjects per session and 22 sessions in total. However, 

23 subjects were absent on short notice and replacements could not be arranged in time. 

Consequently, 109 subjects participated in the experiments. Table 5.3 exhibits the participation 

of  subjects in the experimental markets. As this table shows, not every session had 6 subjects 

as 23 subjects were absent. Thus, the market size varied: three sessions had only three subjects; 

three sessions had four subjects; eight sessions had five subjects; and eight sessions had six 

subjects.  

 

Table 5.3 Overview of  Subjects’ Participation in the Experimental Markets 

Market size Number of  opaque markets Number of  transparent markets 

3 subjects 3 3 

4 subjects 3 3 

5 subjects 8 8 

6 subjects 8 8 

 

As described in the experimental procedures, every subject participated in three markets. Since 

the first market was designed to familiarize subjects with the experimental tasks and system 

operations, the data generated from this training market was not included in the following data 

analyses. Therefore, a total of  88 markets were counted for the statistical analyses. 

 

Furthermore, it should be clarified that due to the different number of  subjects in each 

market, we adopted the weighted number of  each indicator, whenever the analysis is on a 

contract level. To be specific, we adjusted the measurement by weighting numerical values by 

the ratio of  traders, 3/6 = 0.5, for markets with three subjects; 4/6 =0.667, for markets with 

four subjects; 5/6=0.833, for markets with five subjects. 

 

Moreover, all 109 subjects completed a full session, including one training market, one opaque 

market, one transparent market, and the follow-up questionnaire for each market, and were 

active traders in every market. Therefore, all of  them were included in the analyses. 
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5.5.2 Effects of Information Transparency on Trader’s Participation Activity 

Table 5.4 summarizes the statistics for the average trader’s participation activity at the contract 

level in the opaque and transparent markets. We use the Roman numerals to indicate the 

markets: upper-case numbers represent opaque markets and lower-case numbers represent 

transparent markets.  

 

A Mann-Whitney test based on the 110 contracts in each type of  market further manifested 

that the difference between the number of  transactions per contract in opaque and 

transparent markets was significant (U(110) =5103, z = -2.01, p < 0.045). As Table 5.4 exhibits, 

approximately 20% more transactions occurred in opaque markets than in transparent markets 

(Meanopaque = 16, Meantansparent = 13). 

 

However, the number of  shares traded per contract in the two types of  markets did not differ 

(U(110) = 5941, z = -0.23, p > 0.81). According to Table 5.4, the average number of  shares 

traded per contract was similar in both types of  markets (Meanopaque = 67, Meantansparent = 68); 

the difference is as small as 1.5%. The possible reason is that traders do not determine the 

number of  shares in their buy and sell orders based on the revelation of  price information. 

Transactions are traders’ matched buy and sell orders. Therefore, the shares traded do not 

differ significantly according to the disclosure of  price information. In fact, the following 

analyses at the trader level support this explanation. 

 

Table 5.5 shows the statistics for the average trader’s participation activity at the trader level in 

each market. A Wilcoxon test was performed to further compare the corresponding measures 

across the two markets with different information transparency. The results showed that there 

was a significant effect of  price transparency on trader’s participation activity based on the 

measure of  number of  buy orders (W(109) = 1633, z = -3.20, p < 0.01) and number of  sell 

orders (W(109) = 1706, z = -2.95, p < 0.01). Table 5.5 further illustrates that there were 27% 

more buy orders (Meanopaque = 14, Meantansparent = 11) and 30% more sell orders (Meanopaque = 

17, Meantansparent = 13) per trader in opaque markets than transparent markets. 

 

The measures of  the number of  shares in buy orders (W(109) = 2601, z = -1.20, p > 0.23) 

and the number of  shares in sell orders (W(109) = 2434, z = -1.56, p > 0.11) did not exhibit 

this significant effect, even though the difference of  the number of  shares in buy orders 

(Meanopaque = 135, Meantansparent = 98) and the number of  shares in sell orders (Meanopaque = 

126, Meantansparent = 104) between the two types of  markets seemed to be large. As discussed 

above, a possible reason is that traders do not determine the number of  shares in their buy 

and sell orders based on the revelation of  price information but their estimation of  the 
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corresponding probability of  the contracts. When a trader is more certain about the 

probability of  the outcome represented by the contract, the trader is likely to buy or sell the 

contract in a large quantity at a certain price, and vice versa. In this experimental study, every 

trader was informed about a piece of  accurate information about future events. Therefore, the 

numbers of  shares in buy and sell orders were not significantly different. 

 

Table 5.4 Summary Statistics for Traders’ Participation Activity at the Contract Level 

Opaque 

market 

Transparent 

market 

Weighted number 

of  transactions 

Weighted number 

of  shares traded 

I i 8 (7) 33 (36) 

II ii 19 (13) 45 (32) 

III iii 24 (21) 92 (115) 

IV iv 8 (6) 12 (20) 

V v 15 (14) 45 (92) 

VI vi 27 (14) 59 (42) 

VII vii 5 (5) 48 (48) 

VIII viii 9 (7) 83 (49) 

IX ix 15 (16) 88 (91) 

X x 29 (39) 153 (112) 

XI xi 2 (7) 7 (54) 

XII xii 16 (2) 28 (2) 

XIII xiii 18 (8) 112 (65) 

XIV xiv 12 (15) 119 (138) 

XV xv 17 (17) 53 (67) 

XVI xvi 7 (8) 51 (58) 

XVII xvii 25 (10) 89 (77) 

XVIII xviii 13 (14) 86 (102) 

XIX xix 25 (18) 65 (121) 

XX xx 16 (9) 74 (44) 

XXI xxi 25 (20) 87 (69) 

XXII xxii 8 (12) 48 (62) 

Average  16 (13) 67 (68) 

Note: Numbers in parentheses are from transparent markets. 
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Table 5.5 Summary Statistics for Traders’ Participation Activity at the Trader Level 

Opaque 

market 

Transparent 

market 

Number of  buy 

orders 

Number of  shares 

in buy orders 

Number of  sell 

orders 

Number of  

shares in sell 

orders 

I i 6 (7) 25 (44) 11 (11) 67 (87) 

II ii 11 (13) 128 (133) 10 (5) 105 (62) 

III iii 11 (7) 27 (189) 13 (4) 40 (9) 

IV iv 15 (9) 145 (94) 22 (13) 199 (140) 

V v 3 (5) 52 (84) 4 (7) 21 (73) 

VI vi 12 (14) 210 (298) 14 (12) 159 (131) 

VII vii 13 (9) 37 (24) 18 (12) 79 (46) 

VIII viii 11 (5) 13 (27) 11 (7) 47 (25) 

IX ix 11 (9) 82 (55) 13 (13) 84 (88) 

X x 17 (22) 276 (83) 35 (40) 478 (143) 

XI xi 13 (6) 72 (141) 23 (10) 132 (114) 

XII xii 21 (12) 94 (99) 27 (17) 137 (176) 

XIII xiii 17 (13) 93 (57) 22 (15) 115 (86) 

XIV xiv 12 (9) 59 (48) 18 (12) 140 (79) 

XV xv 21 (18) 147 (157) 26 (35) 157 (332) 

XVI xvi 8 (9) 29 (99) 21 (15) 121 (127) 

XVII xvii 21 (11) 59 (34) 20 (14) 63 (55) 

XVIII xviii 26 (11 564 (110) 12 (11) 88 (94) 

XIX xix 9 (11 62 (46) 18 (12) 102 (52) 

XX xx 9 (8) 128 (94) 5 (8) 75 (95) 

XXI xxi 13 (13) 397 (159) 16 (16) 287 (242) 

XXII xxii 17 (11) 279 (81) 11 (7) 81 (39) 

Average  14 (11) 135 (98) 17 (13) 126 (104) 

Note: Numbers in parentheses are from transparent markets. 

 

Therefore, it can be argued that when there are only a few actively participating traders in a 

prediction market, these traders tend to be less active in a transparent market than in an 

opaque market. In turn, the following hypothesis (H1a) is supported. 

 

H1a: When an internal prediction market has only a few actively participating traders, 

disclosure of  price information leads to a lower level of  traders’ activity. 
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5.5.3 Effects of  Information Transparency on Trader’s Dynamic Interaction 

With regard to the trader’s dynamic interactions, a Wilcoxon test was performed to analyze 

trader-level activity. The results indicated that there was a significant effect of  information 

transparency on both Type I self-revisions (W(109) = 1489, z = -4.03, p < 0.01) and Type II 

self-revisions (W(109) = 1688, z = -3.85, p < 0.01).  

 

Table 5.6 Summary Statistics for Traders’ Dynamic Interactions at the Trader Level 

Opaque market Transparent market Number of  Type I self-revisions Number of  Type II self-revisions 

I i 10 (10) 10 (10) 

II ii 10 (10) 10 (9) 

III iii 14 (5) 13 (4) 

IV iv 21 (13) 21 (13) 

V v 2 (4) 2 (4) 

VI vi 12 (12) 12 (12) 

VII vii 81 (56) 18 (9) 

VIII viii 12 (5) 12 (5) 

IX ix 10 (8) 10 (8) 

X x 25 (23) 25 (23) 

XI xi 18 (7) 17 (6) 

XII xii 30 (14) 30 (14) 

XIII xiii 21 (14) 21 (14) 

XIV xiv 20 (12) 16 (11) 

XV xv 28 (30) 28 (30) 

XVI xvi 14 (14) 14 (14) 

XVII xvii 22 (12) 20 (12) 

XVIII xviii 23 (13) 22 (10) 

XIX xix 13 (11) 12 (11) 

XX xx 4 (5) 4 (5) 

XXI xxi 14 (15) 14 (14) 

XXII xxii 15 (8) 14 (8) 

Average  19 (14) 16 (11) 

Note: Numbers in parentheses are from the “transparent” markets. 

 

The average number of  self-revisions made by traders in each market (see Table 5.6) further 

revealed that there were approximately 36% more Type I self-revisions (Meanopaque = 19, 
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Meantansparent = 14) and 45% more Type II self-revisions (Meanopaque = 16, Meantansparent = 11) 

in an opaque market than in a transparent market. This implied that in opaque markets, 

traders are inclined to make more significant revision of  their orders. 

 

At the contract level, the analyses focused on the weighted number of  four different types of  

influential orders. A Mann-Whitney test revealed a significant impact of  price transparency on 

traders’ dynamic interactions based on 1-influential orders (U(110) = 4271, z = -2.868, p 

<0.01). Table 5.7 further illustrates that the number of  1-influential orders per contract in an 

opaque market was doubled compared to a transparent market (Meanopaque = 4, Meantansparent = 

2).  

 

A Mann-Whitney test based on the measures of  2-influential orders (U(110) = 5669, z = -1.40, 

p > 0.16), 3-infltuial orders (U(110) = 6048, z = -0.18, p > 0.98), and 2Out3-influetinal orders 

(U(110) = 5756, z = -1.00, p > 0.31), however, did not demonstrate the significant difference 

across the market with the two different price transparency conditions. According to Table 5.7, 

the average numbers of  these influential orders per contract in both types of  markets were 

almost zero. The possible reason is the limited number of  buy and sell orders at the trader 

level. Table 5.5 shows that the average number of  buy and sell orders per subject in a market 

was limited to approximately 15 and the number of  subjects in a market did not exceeded 6. 

The limited numbers of  subjects and buy and sell orders in the experimental prediction 

markets meant that they were unlikely to generate a high degree of  influential orders. Thus, 

there was an insignificant difference between these measures across the two markets. 

 

In line with the aforementioned results, we argue that when there are only a few actively 

participating traders in a prediction market, these traders update their opinions less frequently 

and the influence of  one buy or sell order from a trader on a subsequent trader’s trading 

decision is lower in a transparent market than in an opaque market. Accordingly, the following 

hypothesis (H2) is supported. 

 

H2: When an internal prediction market has only a few actively participating traders, 

disclosure of  price information leads to a decrease in traders’ dynamic interactions. 
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Table 5.7 Summary Statistics for Traders’ Dynamic Interactions at the Contract Level 

Opaque 

market 

Transparent 

market 

Number of  

1-influential 

orders 

Number of  

2-influential orders 

Number of  

3-influential 

orders 

Number of  

2Out3-influential 

orders 

I i 2 (1) 0 (0) 0 (0) 0 (0) 

II ii 5 (1) 0 (0) 0 (0) 0 (0) 

III iii 7 (6) 0 (1) 0 (0) 0 (1) 

IV iv 4 (0) 0 (0) 0 (0) 0 (0) 

V v 2 (3) 0 (0) 0 (0) 0 (0) 

VI vi 7 (1) 1 (0) 0 (0) 0 (0) 

VII vii 1 (0) 0 (0) 0 (0) 0 (0) 

VIII viii 2 (2) 0 (0) 0 (0) 0 (0) 

IX ix 2 (2) 0 (0) 0 (0) 0 (0) 

X x 7 (3) 0 (0) 0 (0) 1 (1) 

XI xi 0 (1) 0 (0) 0 (0) 0 (0) 

XII xii 3 (0) 0 (0) 0 (0) 0 (0) 

XIII xiii 10 (4) 1 (0) 0 (0) 1 (1) 

XIV xiv 1 (3) 0 (1) 0 (0) 0 (1) 

XV xv 3 (3) 0 (1) 0 (0) 0 (1) 

XVI xvi 1 (1) 0 (0) 0 (0) 0 (0) 

XVII xvii 4 (1) 1 (0) 0 (0) 1 (0) 

XVIII xviii 3 (4) 0 (0) 0 (0) 0 (0) 

XIX xix 9 (2) 0 (0) 0 (0) 0 (0) 

XX xx 5 (3) 0 (0) 0 (0) 0 (0) 

XXI xxi 5 (3) 0 (0) 0 (0) 0 (0) 

XXII xxii 4 (1) 0 (0) 0 (0) 0 (0) 

Average  4 (2) 0 (0) 0 (0) 0 (0) 

Note: Numbers in parentheses are from transparent markets. 

 

5.5.4 Effects of  Traders’ Behavior on Market Information Aggregation Efficiency 

We first calculated information aggregation efficiency, a percentage deviation of  the 

transaction price from the equilibrium price in a prediction market. This percentage deviation 

measures to what extent the transaction price reflects the market consensus. Thus, it indicates 

how efficiently a market aggregates information from individual traders. 

 

As discussed above, we considered two different contract prices, namely the last transaction 
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price and the weighted average transaction price, to measure information aggregation 

efficiency. Table 5.8 exhibits the percentage deviation of  each type of  transaction price from 

the equilibrium price per market. A Wilcoxon test was performed on the 44 markets, including 

22 opaque markets and 22 transparent markets. The result revealed that the choice of  the 

contract prices did not differ significantly (W(44) = 405, z = -0.59, p > 0.55). 

 

Table 5.8 Market Information Aggregation Efficiency 

Opaque 

market 

Transparent 

market 

Based on the last transaction 

price of  a contract (%) 

Based on the weighted average 

transaction price of  a contract (%)  

I i 19.87 (2.11) 19.21 (2.80) 

II ii 10.56 (28.05) 11.25 (27.77) 

III Iii 6.27 (2.51) 5.11 (2.49) 

IV iv 7.70 (12.56) 8.20 (12.69) 

V v 1.56 (4.32) 1.04 (4.67) 

VI vi 7.33 (15.87) 7.01 (14.78) 

VII vii 8.54 (3.65) 9.19 (2.99) 

VIII viii 7.66 (19.36) 7.04 (18.28) 

IX ix 11.76 (4.80) 12.04 (4.81) 

X x 5.38 (9.89) 5.17 (9.55) 

XI xi 7.42 (9.00) 7.15 (7.86) 

XII xii 8.91 (12.85) 8.38 (14.87) 

XIII xiii 5.72 (4.15) 6.24 (4.15) 

XIV xiv 3.01 (5.34) 3.17 (7.72) 

XV xv 12.19 (8.46) 13.57 (15.48) 

XVI xvi 4.26 (3.98) 3.96 (4.19) 

XVII xvii 5.22 (6.02) 4.70 (5.46) 

XVIII xviii 7.01 (11.54) 7.31 (6.28) 

XIX xix 11.87 (7.99) 11.54 (8.39) 

XX xx 10.78 (4.18) 11.61 (4.94) 

XXI xxi 14.49 (5.33) 14.26 (4.10) 

XXII xxii 10.02 (11.82) 9.42 (7.23) 

Average  8.52 (8.81) 8.48 (8.70) 

Note: Numbers in parentheses are from transparent markets. 

 

According to Table 5.8, market information aggregation efficiency based on the weighted 

average transaction price of  a contract was slightly higher (opaque markets: Meanlast = 8.52%, 

Meanaverage = 8.48%; transparent markets: Meanlast = 8.81%, Meanaverage = 8.70%). Higher 
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market information aggregation efficiency is desired in a prediction market. Therefore, we 

measure information aggregation efficiency based on weighted average transaction prices to 

validate the third and the fourth hypotheses. 

 

We performed Spearman’s tests to examine the effect of  traders’ participation activity and 

traders’ dynamic interactions on market information aggregation efficiency. The results 

showed that traders’ participation activity had a significant effect on market information 

aggregation efficiency, particularly, the number of  shares in buy orders (ρ(44) = -0.46, p < 

0.01) and the number of  shares in sell orders (ρ(44) = -0.41, p < 0.01). The negative 

correlation implied that an increase in the number of  shares in buy or sell orders lead to a 

decrease in the average percentage deviation of  the transaction price from the dynamic 

equilibrium price of  contracts in the market.  

 

Although at the contract level, the results did not reveal a significant effect of  number of  

transactions (ρ(44) = -0.13, p > 0.41) and number of  shares traded (ρ(44) = -0.18, p > 0.24), 

overall, the aforementioned results manifested the positive effect of  traders’ participation 

activity on the reduction of  market prediction error. Accordingly, the following hypothesis (H3) 

is supported. 

 

H3: An increased level of  traders’ participation activity in a prediction market leads to higher 

information aggregation efficiency. 

  

With regard to the traders’ dynamic interactions, the contract-level results revealed that the 

effect of  the number of  1-influential orders on market information aggregation efficiency was 

significant (ρ(44) = -0.39, p < 0.01). The number of  2-influential (ρ(44) = -0.11, p > 0.49) and 

2Out3-influential orders (ρ(44) = -0.15, p > 0.33), however, did not seem to be correlated with 

market predictive accuracy. The reason is due to the rare occurrence of  these two indicators. 

In the 44 markets, both opaque and transparent, the occurrence of  the 2-influential and 

2Out3-influential orders was very limited (see Table 5.7) and there were zero 3-influential 

orders in the markets. This finding is in fact consistent with our previous case study, in which 

we concluded that one trader’s influence on another based on the buy or sell orders 

concentrates on one degree influence. 

  

Furthermore, at the trader level, the results showed that neither the number of  Type I 

self-revisions (ρ(44) = -0.04, p > 0.79) nor the number of  Type II self-revisions (ρ(44) = -0.05, 

p > 0.75) had a significant impact on information aggregation efficiency. Together with the 

analyses above, we argue that the number of  self-revisions does not necessarily lead the 

transaction prices of  contracts closer to the traders’ agreed opinion, as a self-revision does not 
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necessarily entail learning from other traders. However, the influential orders indeed reflect 

learning between traders in a market. Therefore, contract level indicators show the impact of  

dynamic interactions between traders on information aggregation efficiency. 

 

The overall results discussed above manifested that traders’ dynamic interactions significantly 

affects information aggregation efficiency. The negative correlation further illustrated that the 

enhanced interaction between traders reduces the deviation of  transaction price from the 

dynamic equilibrium price of  contracts in a market. Consequently, the following hypothesis 

(H4) is supported. 

 

H4: An increase in traders’ dynamic interactions in a prediction market leads to higher 

information aggregation efficiency. 

 

5.5.5 Effects of  Information Aggregation Efficiency on Market Predictive Accuracy 

We first calculated the point prediction of  each market and subsequently measured a market 

forecasting percentage error based on this market prediction and the corresponding actual 

result. The percentage error indicates the market predictive accuracy. The smaller this number, 

the greater the market predictive accuracy.  

 

Similar to the measurement of  information aggregation efficiency, we considered the last 

transaction price and the weighted average transaction price, to measure market predictive 

accuracy. Table 5.9 displays the prediction percentage error of  each market based on these 

different prices. A Wilcoxon test was performed on the 44 markets. The result revealed that 

the choice of  contract prices did not differ significantly (W(44) = 301, z = -0.77, p > 0.43).  

 

This result is consistent with the findings of  Plott and Chen (2002) drawn from their 16 

internal prediction markets in HP. Another reason for this extreme similarity could be due to 

the short trading time of  each market (10 minutes), which limited the number of  transactions 

on each contract. Therefore, the weighted average transaction price and the last transaction 

price of  a contract were quite close.  

 

Table 5.9 further illustrates that the average market prediction calculated based on the 

weighted average transaction price of  a contract was slightly more accurate (opaque markets: 

Meanlast = 0.23%, Meanaverage = 0.22; transparent markets: Meanlast = 0.31%, Meanaverage = 

0.30%). In turn, we adopted the market prediction percentage error based on weighted 

average transaction prices to validate our fifth hypothesis (H5). 
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Table 5.9 Market Predictive Accuracy 

Opaque 

market 

Transparent 

market 

Based on the last transaction 

price of  a contract (%) 

Based on the weighted 

average transaction price of  

a contract (%)  

I i 0.48 (0.04) 0.48 (0.05) 

II ii 0.14 (0.76) 0.00 (0.45) 

III iii 0.53 (0.30) 0.55 (0.28) 

IV iv 0.08 (0.18) 0.08 (0.15) 

V v 0.73 (0.08) 0.72 (0.07) 

VI vi 0.13 (0.44) 0.12 (0.50) 

VII vii 0.13 (0.64) 0.12 (0.64) 

VIII viii 0.10 (0.39) 0.11 (0.23) 

IX ix 0.54 (0.10) 0.53 (0.12) 

X x 0.00 (0.50) 0.01 (0.51) 

XI xi 0.40 (0.05) 0.36 (0.06) 

XII xii 0.12 (0.05) 0.15 (0.05) 

XIII xiii 0.56 (0.23) 0.54 (0.19) 

XIV xiv 0.12 (0.44) 0.12 (0.53) 

XV xv 0.13 (0.03) 0.11 (0.01) 

XVI xvi 0.03 (0.41) 0.02 (0.40) 

XVII xvii 0.05 (0.06) 0.04 (0.08) 

XVIII xviii 0.52 (0.01) 0.60 (0.01) 

XIX xix 0.01 (0.39) 0.01 (0.53) 

XX xx 0.10 (0.99) 0.09 (0.93) 

XXI xxi 0.10 (0.08) 0.10 (0.25) 

XXII xxii 0.04 (0.61) 0.06 (0.60) 

Average  0.23 (0.31) 0.22 (0.30) 

Note: Numbers in parentheses are from transparent markets. 

 

We performed a Spearman’s test to examine the effect of  information aggregation efficiency 

on market predictive accuracy. The results revealed that information aggregation efficiency is 

highly correlated with market predictive accuracy (ρ(44) = 0.47, p < 0.01). The positive 

relationship further demonstrated that information aggregation efficiency had a positive effect 

on market predictive accuracy. 

 

In this laboratory experiment, information certainty was high among participants. If  all the 

participants bring information to the market and the market aggregates the participants’ mean 
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beliefs, the transaction prices of  contracts should not deviate from the dynamic equilibrium 

prices of  contracts. Moreover, with the higher certainty of  the information, the transaction 

prices should reflect the actual results of  the events to be predicted. Consequently, higher 

information aggregation efficiency leads to more accurate prediction. Accordingly, the 

following hypothesis (H5) is supported: 

 

H5: Higher information aggregation efficiency of  a prediction market leads to higher market 

predictive accuracy. 

 

5.6 DISCUSSION 

In the following sections, we further discuss the results of  the laboratory experiments. 

Additional evidence drawn from the follow-up survey study is also incorporated.  

 

The results showed that traders in opaque markets are more actively trading and learning than 

in transparent markets, particularly when the market was extremely thin. This finding can be 

explained from two major perspectives. First, this result is in line with the study of  Flood et al. 

(1999). Flood et al. (1999) conducted an experiment to examine the effect of  quote 

transparency, in which trade information was never revealed. Their study is similar to our 

experimental setting in which very limited trade information was presented to the subjects.  

 

Their study revealed that when quote information is absent, traders must spend time searching 

for counterparties with whom to trade and traders show more aggressive pricing strategies. In 

our laboratory experiment, searching is indicated by a large number of  buy and sell orders. 

Participants keep placing new buy and sell orders with different prices so as to find the 

possible matching orders for successful transactions. By contrast, the presence of  quote 

information makes it easier for traders to trade with each other, and therefore, the trader’s 

participation level is reduced. The same reason also explains why the opaque setting leads to 

higher self-revision behavior of  participants in the laboratory experimental markets. 

 

Searching entails the traders’ learning based on other information sources, particularly, trade 

information in these markets. The results drawn from the questionnaire manifested that in an 

opaque market, the transaction prices of  a contract were considered important to the 

participants. The following analyses support this finding and are based on the questionnaire 

that the subjects completed after each market. 

 

As introduced in the research methods (see 5.3), after each market, subjects were required to 

fill in a questionnaire with regard to their use of  different information sources. They were 
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asked to give a score to each information source in a market. The scores indicated how 

important a specific information source was for the subjects to make their trading decisions. A 

Wilcoxon test was performed. The follow-up survey results revealed that the two different 

price information transparency conditions did not significantly affect subjects’ perceived 

importance of  various information sources for their trading decisions, except for the line 

chart (W(96) = 586, z = -3.31, p < 0.01) and the last transaction price (W(96) = 780, z = -2.31, 

p < 0.05) provided in the markets.  

 

As Table 5.10 exhibits that in an opaque market, subjects considered the line chart (Meanopaque 

= 3.94, Meantransparent = 3.57) and the last transaction price (Meanopaque = 4.00, Meantransparent = 

3.63) of  contracts more important than in a transparent market. The line chart showed all the 

transaction prices of  a contract during the entire trading time period and the last transaction 

price of  a contract presented the most updated agreed opinion of  that contract between 

different subjects in the market. Therefore, the aforementioned research finding implied that 

trade information becomes the most important information source for participants to extract 

other trader’s opinions in opaque markets, when quote information is not available. 

 

Table 5.10 Subjects’ Perceived Importance of  Different Information Sources 

Information sources Transparent market Opaque market 

Historical sales 2.79 3.12 

Private information 4.25 4.17 

Line chart of  transaction prices 3.57 3.94 

Last transaction price 3.63 4.00 

Lowest sell/highest buy  4.30 -- 

 

It is noted that in transparent markets, the average score given to quote information exceeded 

even private information (Meanquote = 4.30, Meanprivate = 4.25). This highest score among all 

the information sources indicated that when quote information is available, participants in the 

market consider it most important in their trading decisions. The weight of  trade information 

in their trading decisions reduces accordingly. 

 

The second perspective to further explain the findings is based on the argument of  Zhu (2002; 

2004) and Granados et al. (2006). They argued that the effect of  information transparency is 

not equivalent to all the participants in a market. The impact depends on the position of  the 

participants. In other words, while some participants may benefit from the transparent market, 

others may not. For instance, buyers in general prefer a transparent market due to decreased 

search costs, increased possibility to discern products, and lower transaction price (Granados 
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et al. 2006). Conversely, sellers, particularly, high-cost suppliers (Zhu 2002) or large market 

participants (Granados et al. 2006), often avoid trading in a transparent market, as it provides 

signals about their cost structure or their motivation to trade (Clemons and Weber 1990; 

Madhavan 2000).  

 

In an internal prediction market, participants are the employees of  the company. They are 

essentially all informed traders, as they have more or less inside information about the 

business practice being predicted. In turn, their buy or sell orders entail their private 

information. When the market is thin, which is often the situation of  an internal prediction 

market, there is a very limited number of  buy or sell orders. Thus, as soon as a participant 

places a buy or sell order, it will probably become quote information listed in the market. As a 

result, other participants can immediately learn and benefit from this information. 

Consequently, the participant who reveals this information loses the advantage of  having 

private information. Therefore, when the market is considerably thin, an opaque setting in fact 

motivates traders to participate and learn more actively than a transparent condition.  

 

Furthermore, this laboratory experiment study revealed the positive effect of  traders’ 

participation and dynamic learning in a prediction market on information aggregation 

efficiency and market predictive accuracy. The result is in accordance with the primary 

theories that information is aggregated through trader’s trading activities (Plott 2000) and 

traders keep learning while trading (Gruca et al. 2005; Rhode and Strumpf  2004), and 

therefore, the market eventually reflects the sum of  all available information about the future 

in the contract prices (Davis and Holt 1993; Fama 1965, 1970).  

 

However, this finding is different from the findings of  the empirical study conducted by Chen 

et al. (2010). They examined traders’ participation activity and traders’ dynamic interactions in 

prediction markets to evaluate early stage technologies. Their empirical field study did not 

reveal that an increase in traders’ participation activity and dynamic interactions leads to an 

improvement in market performance. Our study, on the contrary, manifested that an increase 

in traders’ participation level and in interactions leads to better market performance. Two 

possible reasons for those differences can be identified.  

 

First, the measure of  market performance is different between the two studies. In our 

laboratory experiments, we assessed prediction market performance based on absolute 

accuracy, against the actual outcome of  the event being predicted. In their study, Chen et al. 

(2010) constructed internal prediction markets to predict the preference ranking of  early stage 

technologies. This preference ranking corresponded to the evaluation of  the technologies. The 

higher a technology was ranked, the greater its potential. The researchers assessed prediction 
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market performance against the views of  an expert panel. The closer the market prediction to 

the expert panel, the better the market had performed. This assessment of  market 

performance in fact assumed that the expert panel generated a more accurate evaluation of  

early stage technologies than prediction markets. This assessment fulfilled the needs of  the 

company in their study, which was seeking a more economic evaluation method to replace the 

costly expert panel. Nevertheless, in reality, it is unknown whether or not the aforementioned 

assumption holds.  

 

The differences between the environments of  the laboratory and field study are likely to be 

another reason. As discussed in Chapter 3, the differences between laboratory and field 

studies are noticeable. The study of  Chen et al. (2010) was carried out in a real business 

environment, in which traders were employees and the environment could not be controlled 

by the researchers, while ours was conducted in a controlled laboratorial environment, in 

which subjects were university students. To further test the research model and understand 

information transparency on prediction markets, we will continue with the field experiments 

in the real business environment in the following chapter. 

 

5.7 CONCLUSIONS 

Advanced IT has enabled web-based prediction markets and the manipulation of  information 

transparency in market design. However, little has been know about the effect of  information 

transparency on prediction market performance. This chapter, therefore, aimed to investigate 

this research area. We particularly addressed two different conditions of  price transparency, 

namely opaque and transparent, and focused on internal prediction markets where there are 

only a few actively participating traders. The objective of  this chapter was to answer the 

following specific research questions:  

 

RQ 2-1: How does price information transparency in an internal prediction market with a limited number 

of  actively trading traders influence the traders’ behavior and further influence market information 

aggregation efficiency?  

 

RQ 2-2: How does price information transparency in an internal prediction market with a limited number 

of  actively trading traders influence the traders’ behavior and further influence market predictive 

accuracy?   

 

The laboratory experiments showed that price transparency has an indirect effect on market 

performance through traders’ behavior. In a thin prediction market, particularly in the context 

of  an internal prediction market, the concealment of  price information of  buy and sell orders 
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motivates traders to actively participate and learn compared to the revelation of  the same 

information. Traders’ active participation and interaction lead to a positive effect on market 

information aggregation efficiency and predictive accuracy.  

 

The underlying reason is that the disclosure of  a trader’s buy or sell orders in fact exposes 

informed traders’ private information and their improvement in estimation about the future 

event. When the number of  traders is limited, these informed traders do not expect to obtain 

much from observing other’s private information and updated estimation in the market. In 

turn, they are inclined to withhold their private information or their improved adjustment of  

their prediction based on learning. Consequently, price transparency in such a market is 

actually not desirable. 

 

Moreover, in an opaque market, active participation and learning are necessary for traders to 

explore others’ opinions about future events and make successful transactions. Accordingly, 

when the number of  actively trading participants is very limited and all the traders are 

informed in a prediction market, price information, such as quotes, can be concealed for 

higher levels of  trader participation and dynamic interactions, and eventually, higher 

information aggregation efficiency and more accurate market prediction, particularly when 

information about the future event in the market is highly certain. 

 

This study makes an especially significant contribution to the research stream of  information 

transparency. It extends current studies on information transparency from three different 

aspects. First, this study investigates the effect of  information transparency on a new type of  

market. The existing literature and empirical studies on information transparency focus on 

B2B (Zhu 2002; 2004) and B2C (Granados et al. 2006; 2010) markets. Our research introduces 

the study of  prediction markets. Second, our study follows the predecessor’s call to examine 

the effect of  different types of  information in a market (Bloomfield and O’Hara 1999; Flood 

et al. 1999; Granados et al. 2008) by stressing quote price information. Third, we extend the 

generalizability of  previous research on information transparency (Clemons and Weber 1990; 

Flood et al. 1999; Granados et al. 2006; 2010; Madhavan 2000; Zhu 2002; 2004) by comparing, 

linking and adding the research findings on the effect of  price transparency on prediction 

market performance to this literature stream. 
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CHAPTER 6 INFORMATION TRANSPARENCY AND 
MARKET PERFORMANCE: A FIELD EXPERIMENT 
 

6.1 INTRODUCTION 

Current research focuses on numerous influential factors of  prediction market performance, 

such as market size (Ho and Chen 2007; Ledyard 2006), market liquidity (Abramowicz 2006), 

composition of  traders (Ledyard 2006; Surowiecki 2004), incentives (real money vs. play 

money) offered to traders (Luckner et al. 2008; Sauer 1998; Servan-Schreiber et al. 2004; 

Spann and Skiera 2003), and contract design (Ledyard 2006; Wolfers and Zitzewitz 2004). 

Information transparency, however, has seldom been taken into consideration. As discussed in 

Chapter 5, advanced IT has enabled the notable possibility of  manipulating information 

access and revelation in a market, and therefore, the effect of  information transparency on 

market performance is addressed in this dissertation. 

 

This chapter focuses on a field study, which allows us to investigate price information 

transparency in an internal prediction market in a real business environment. As discussed in 

Chapter 3 (Research Methodology), the restricted control environment of  laboratory 

experiments may conceal effects that can in fact appear in the real environment. Therefore, to 

further explore how price information transparency actually affects internal prediction market 

performance, we conducted field experiments. Similar to the laboratory experiments, this 

chapter aims to answer the second major research question of  this dissertation: 

 

RQmain2: How does information transparency in an internal prediction market influence market 

performance? 

 

Granados (2006) emphasized that IT not only increases potential for complete, accurate, real 

time and unbiased market information, but also gives the possibility to conceal or distort 

information. In turn, information can be strategically revealed, concealed, biased and distorted, 

depending on the goals or the positions of  the participants in a market (Granados et al. 2010). 

Accordingly, information transparency may entail different levels. In other words, the type, 

amount and content of  the information displayed in a market can vary. Therefore, we address 

different levels of  price transparency in this field research. 

 

The objective of  this chapter is to examine the effect of  different price transparency levels on 

information aggregation efficiency and predictive accuracy of  internal prediction markets 

through traders’ behavior. In turn, we construct the following two sub-research questions in 

this chapter.  
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RQ2-3: How does a different level of  price information transparency in an internal prediction market 

influence traders’ behavior and further influence market information aggregation efficiency? 

 

RQ2-4: How does a different level of  price information transparency in an internal prediction market 

influence traders’ behavior and further influence market predictive accuracy? 

 

This chapter extends our research to the effect of  different price transparency levels on 

prediction market performance. The field experiments empirically test our hypotheses in a 

real business environment, enhancing the validity of  our research findings. The results of  this 

study show that the revelation of  different traders’ expectations rather than the highest or the 

lowest outstanding expectation on contracts leads traders to actively learn in an internal 

prediction market. However, in a fully transparent market, traders’ learning activity level does 

not rise, but actually declines. The results of  these field experiments further reveal that traders’ 

learning in a prediction market leads to more efficient information aggregation. Information 

aggregation efficiency, as a market performance indicator, is especially useful when managers 

are interested in the consensus of  their employees with regard to a future event. Last, 

although prediction markets in general have a robust forecasting ability, under highly 

uncertain circumstances market predictive accuracy is severely reduced. 

 

Similar to the laboratory experiments, this field study makes several key contributions to 

extend current studies on information transparency and prediction market design (see 

Chapter 5). Particularly, the use of  different information transparency levels in this research 

adds insights into the role of  information transparency in the performance of  internal 

prediction markets. Moreover, our development of  the measurement of  information 

aggregation efficiency not only fills a gap in the research on prediction markets but also gives 

the opportunity to assess market performance prior to the moment when the actual result is 

revealed. Given the fact that managers need and use prediction to manage the uncertain 

future, this measurement allows and enables them to use internal prediction markets in actual 

management. Last but not least, this field study demonstrates the importance of  a company’s 

commitment to the use of  internal prediction markets to foster employees’ active 

participation in the market.    

 

The plan of  the chapter is as follows. We first review the relevant theoretical foundation and 

construct the hypotheses accordingly. Thereafter, we present the overview of  the subjects’ 

participation in the experiments. Subsequently, we delineate the research design of  the field 

experiments. Next, we discuss the measures adopted in this study. Afterwards, we present the 

research results based on the statistical analyses and validate the hypotheses. Additionally, we 

compare findings between this field study and the previous laboratory study. Finally, we 
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conclude this study by answering the aforementioned research question. 

 

6.2 THEORETICAL BACKGROUND 

In this chapter, similar to Chapter 5, we study the overall conceptual model (see Figure 2-1). 

The difference focuses on the independent variable. In Chapter 5, we stressed the discussion 

of  either transparent or opaque conditions. In this field study, we extend the conditions of  

information transparency to four different levels. In turn, we establish another two hypotheses, 

H1b and H2b, based on the relevant theories in this section.  

 

6.2.1 Information Transparency Strategy and Traders’ Participation Activity 

Market transparency is affected by the underlying technological infrastructure of  online and 

offline distribution channels (Cappiello et al. 2003; Sawhney 2001; Granados et al. 2008).  

Granados et al. (2008) asserted that the Internet is the major enabler of  a structural increase in 

the levels of  market transparency. In addition, market transparency also depends on the digital 

attributes of  products (Granados et al. 2005; 2008). Essentially, the higher the digital attributes, 

the higher the potential for market transparency in the Internet channel. With regard to a 

contemporary prediction market, the trading mechanism is usually established based on 

Internet infrastructure, namely, an online prediction market. The products traded in an online 

prediction market, namely, the contracts, are fully digitized. Consequently, the potential for 

market transparency is high in an online prediction market based on Internet infrastructure. 

 

To be specific, price information can be either disclosed or concealed and it can be disclosed 

more or less extensively. Therefore, traders may learn from information in the market that is 

more or less comprehensive or even complete. In turn, different levels of  price transparency 

can be put forth in terms of  the amount of  price information displayed to the traders in a 

market.  

 

Previous studies demonstrated that a market with the presence of  quote information reveals 

information more rapidly and completely than a market without it (Bloomfield 1999; 

Madhavan 1995; Pagano and Röell 1996). Quote information is a type of  pre-trade 

information which allows traders to infer other traders’ expectations on contracts from their 

pricing behavior (Pagano and Röell 1996). As discussed above, traders in prediction markets 

do not collaborate but compete and are motivated to trade by different opinions (Surowiecki 

2004). As a result, traders are likely to more actively participate in a market with quote 

information than without it, as long as the market is not confronted with an extremely limited 
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number of  traders. 

 

However, when only the highest or the lowest outstanding quote information is displayed, 

traders can only observe the buying or selling price of  a contract submitted by the most 

aggressive traders in the market. Informed traders benefit in this case, as they may earn more 

profit by trading with these aggressive traders (Madhavan 1995). Less informed traders, by 

contrast, benefit when more diverse quote information is displayed. In particular, there is 

always uncertainty about private information and the future. Thus, the increased amount of  

quote information helps traders extract more information from different traders to conceive 

their own expectations on the contracts. Consequently, when there are a number of  traders in 

a prediction market, higher price transparency motivates traders to actively participate in the 

market. 

 

Nonetheless, in the situation of  full transparency, when all quote information is revealed in a 

prediction market, traders in general do not trade more actively. To be specific, a trader can 

easily identify if  there is a matching buy or sell order in the market at the moment when he or 

she would like to trade. If  there is no such matching order, he or she will simply wait instead 

of  placing a desired order into the market. This is particularly true of  informed traders. 

Informed traders are likely to conceal their private information in fully transparent markets, as 

everyone else will be able to observe and learn from their actions (Gruca et al. 2005; Rhode 

and Strumpf  2004). These traders benefit from profitable trading by possessing private 

information (Surowiecki 2004). In turn, the full transparency design is not likely to raise the 

participation activity level, and hence, the following hypothesis (H1b) is constructed: 

 

H1b: In an internal prediction market, an increased disclosure of  different traders’ quote 

information leads to a higher level of  traders’ participation activity. However, the 

complete disclosure of  traders’ quote information does not further improve traders’ 

participation activity. 

 

6.2.2 Information Transparency Strategy and Traders’ Dynamic Interactions 

In Chapter 5, we delineated the function of  quote information as a signal in a market from 

which traders can learn. Signals were named as they would carry information persistently from 

those with more to those with less information in a market (Spence 2002). In turn, traders 

expect to learn from other traders based on quote information in a prediction market. As a 

result, the disclosure of  quote information gives the opportunity for traders to adjust their 

expectations on contracts iteratively. 
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Furthermore, the greater visibility of  the individual orders can enhance the precision of  

traders’ inferences about whether orders are driven by information or liquidity (Pagano and 

Röell 1996). Bloomfield and O’Hara (1999) also argued that when traders can discern the 

imbalances of  buy or sell orders across the market, traders can learn any information from 

prices more quickly and therefore set their own prices more efficiently. These arguments 

suggest that traders’ adjustment of  expectations on contracts may increase and the influence 

of  one trader on another may also be enhanced due to greater visibility of  quote information.  

 

Complete quote information, nonetheless, makes it more difficult for traders to discern 

information quality or the likelihood of  potential outcomes. It also requires traders to spend 

more time analyzing information carried to the market. The explorative case study revealed 

that employees do not spend much time taking part in an internal prediction market in 

addition to their regular work. Traders are not likely to commit more time to analyzing quote 

information to adjust their expectation on a contract. Thus, traders’ learning activity level is 

not likely to increase further. 

 

Moreover, when all buy or sell orders are revealed in a market, the reaction of  the traders will 

become similar to the situation in the previous laboratory experiments, when there are only a 

few traders in a market. Informed traders no longer actively update their opinion of  future 

events, as other traders may learn from their improved estimation by observing the adjusted 

orders in the market. The resulting similar opinion between the traders prevents informed 

traders from making profitable trades. As individual adjustments become limited, the 

influence of  one trader on another trader’s learning becomes even more constrained. 

Consequently, the full transparency of  price information hampers traders’ interactions. 

Therefore, the following hypothesis (H2b) is proposed: 

 

H2b: In an internal prediction market, an increased disclosure of  different traders’ quote 

information leads to an increase in traders’ dynamic interactions. However, the complete 

disclosure of  traders’ quote information does not further enhance traders’ dynamic 

interactions. 

 

6.3 RESEARCH METHODS  

We delineate the details of  this field study in the following paragraphs, including the 

experiment design, the market mechanism design, the contracts in each market, the 

composition of  the subjects, the incentive scheme and the experimental procedures. 
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6.3.1 Field Experimental Design 

Similar to the laboratory experiments in Chapter 5, this field study focuses on quote 

information in prediction markets, as this pre-trade information is likely to influence traders’ 

behavior. We identified four different levels of  price information transparency in this study, 

including “opaque”, “limited-transparent”, “semi-transparent”, and “full-transparent” (see 

Table 6.1).  

 

In these field experiments, subjects were neither randomly assigned to one or more conditions 

nor required to take part in each of  the conditions. Assignment to condition was by means of  

self-selection (Shadish et al. 2002). In other words, subjects were allowed to take part in any 

markets, as long as the markets were ongoing. This self-selection design is in line with traders’ 

participation in real internal prediction markets, in which they take part based on personal 

willingness and interest.  

 

Table 6.1 Operational Definitions of  Price Transparency Levels 

Transparency Levels Operational Definitions 

Opaque  
Traders do not see any other trader’s buy or sell orders, neither the 

price nor the number of  shares 

Limited-transparent 

Traders see the highest outstanding buy order and the lowest 

outstanding sell order, including the price and the total number of  

shares  

Semi-transparent 

Traders see the highest three outstanding buy orders and the lowest 

three outstanding sell orders, including the price and the total number 

of  shares. These buy and sell orders are presented to traders in a 

descending and an ascending order, respectively. 

Full-transparent 

Traders see all outstanding buy and sell orders, including the price and 

the total number of  shares. These buy and sell orders are presented to 

traders in a descending and an ascending order, respectively. 

 

There were four markets running in parallel every day. The names of  the markets were 

vertically listed on the home page of  the experiments. Subjects clicked the name of  a market 

to enter that specific market. To avoid the situation that a subject did not participate in every 

market and always clicked the market listed in a particular position, we adopted a Latin square 

design (Field and Hole 2003) to order the experimental market sequences on the home page. 

Table 6.2 shows the markets and the corresponding transparency condition. 
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Table 6.2 Trading Day, Market and Price Transparency Level 

Trading Day Markets Price Transparency Level 

Day 1 

I Limited-transparent  

II Semi-transparent 

III Full-transparent 

IV Opaque 

Day 2 

V Full-transparent 

VI Opaque 

VII Limited-transparent 

VIII Semi-transparent  

Day 3 

IX Semi-transparent  

X Full-transparent  

XI Opaque 

XII Limited-transparent 

 

The field experiments were conducted in collaboration with Wasu TaoBao Co., Ltd (hereafter 

referred to as Wasu TaoBao). The company was founded by TaoBao and China Digital TV 

Media Group in 2010. The major business of  Wasu TaoBao included two areas. One was iTV 

TaoBao, an online market on interactive TV with approximately 150,000 users. The other was 

www.taohua.com (hereafter referred to as taohua.com), an online B2B2C market specialized in 

digital products with approximately 370 million users. Taohua.com was the first as well as the 

largest online market of  digital products in China. This online market focused on two product 

categories, including e-books and film and television. With more than 300 business providers, 

taohua.com had more than 30,000 different types of  products and 10 million listed products. 

Based on taohua.com, Wasu Taobao aimed to promote a digital lifestyle in China with genuine, 

high quality and diversified products. 

 

However, as the first online and newly established market of  digital products, Wasu TaoBao 

has little information on customer behavior and sales of  products on taohua.com. 

Furthermore, the market has been volatile and uncertain. The company, nevertheless, would 

like to predict some key performance indicators (KPIs) of  taohua.com, based on their 

employees’ knowledge and information. Therefore, Wasu TaoBao conducted the field 

experiments of  internal prediction markets together with us, forecasting periodic KPIs of  

taohua.com.  
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6.3.2 Market Mechanism Design 

A web-based continuous double auction mechanism was developed for the field experiments. 

The entire development of  the market mechanism lasted for three months. The development 

included the user interface design, back-end programming, testing, modification and final 

implementation. Compared to the interfaces used in the previous case studies and the 

laboratory experiment, three major differences were introduced.  

 

First, the language on the web-page was changed from English to Chinese, as the pilot studies 

(including six markets) with the English version revealed that the language barrier impeded the 

participation level of  subjects.  

 

Second, the display of  outstanding orders in the semi-transparent and full-transparent 

conditions was modified. Instead of  listing an order book on the left of  the page, in the field 

experiment, the outstanding buy or sell orders were displayed in an overlay text when traders 

moved the mouse over the corresponding contract. This modification was carried out based 

on feedback from the subjects during the pilot studies. To illustrate this feature, we use 

full-transparent condition as an example (see Figure 6.2). 

 

For instance, if  the subject wanted to see the outstanding sell orders of  contract “600-799”, 

he or she could move the mouse to the corresponding “所有” (meaning: “All”) in the column 

“最低卖出竞价” (meaning: “The Lowest Sell Order” ). A blue window would appear, listing 

all outstanding sell orders of  this contract in ascending order according to the selling price 

together with the number of  shares in brackets. 

 

Third, in contrast to the case studies and the laboratory experiments, where subjects were 

given a pre-set user account, subjects in this study were allowed to register a user account with 

his or her company email address and preferred password. The company email address 

allowed us to trace if  any fraud or collaboration between the subjects existed. In addition, the 

subjects did not have to endeavor to remember the user name and password, which was an 

advantage as managing login details had seriously demotivated some participants in the pilot 

studies. 

 

When a market started, every subject received an endowment, including 2,000 TaoBan and 20 

shares per contract. TaoBan was the currency developed for the markets in this field study, 

implying Wasu TaoBao’s company name and major business. Its abbreviation, TB, was stated 
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on the web-based internal prediction markets (see Figure 6.2). 

 

 

Figure 6.2 Screenshot of  a Full-Transparent Field Experiment Market 

 

6.3.3 Contract Design 

The events being predicted and the contracts available were developed together with Wasu 

Taobao. We conducted 12 internal prediction markets inside the company to forecast its actual 

business KPIs in a certain month in 2011, such as the number of  transactions or the number 

of  page views of  taohua.com. To avoid correlation between different markets, the 12 future 

events being predicted were mutually exclusive based on the managers’ expertise in the 

business. 

 

Every market had five contracts, representing five possible ranges of  the outcome of  a 

specific business KPI. Table 6.3 lists the contracts of  each market. To clarify, to protect 

confidential information, we agreed to conceal the business KPIs predicted by the markets. 

Therefore, these markets are referred to as Market I to Market XII and the units of  the 
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contracts are concealed in the following discussions throughout the dissertation.  

 

Due to high uncertainty about the business, the company was interested in an interval 

prediction rather than a point prediction, and in turn, the range of  each interval was relatively 

larger. For example, in Market XI, the interval represented by one contract is from 5,000 to 

9,999 In addition, not every contract had the same interval. For instance, in Market IV, the 

interval of  contracts 1, 2 and 4 were 299; but the interval of  contract 3 was 399 and the 

interval of  contract 5 reached 1,700.   

 

Table 6.3 Markets and Contracts in the Field Experiments 

Markets Contract 1 Contract 2 Contract 3 Contract 4 Contract 5 

I 0-49 50-99 100-299 300-499 500-1,000 

II 0-199 200-399 400-599 600-799 800-1,500 

III 0-5 6-9 0-14 15-19 20-100 

IV 0-299 300-599 600-999 1,000-1,299 1,300-3,000 

V 40K-60K 61K-90K 91K-120K 121K-150K 151K-300K 

VI 0-10K 11K-30K 31K-60K 61K-90K 91K-200K 

VII 0.00-3.00% 3.00%-5.99% 6.00%-8.99% 9.00%-11.99% 12.00%-20.00% 

VIII ¥0.00-¥1.99 ¥2.00-¥4.99 ¥5.00-¥7.99 ¥8.00-¥10.99 ¥11.00-¥20.00 

IX 0-19 20-49 50-79 80-109 110-200 

X 0-49 50-99 100-149 150-199 200-500 

XI ¥0-¥4,999 ¥5,000-¥9,999 ¥10,000-¥14,999 ¥15,000-¥19,999 ¥20,000-¥50,000 

XII ¥0-¥99 ¥10-¥399 4¥00-¥699 ¥700-¥999 ¥1,000-¥2,000 

 

6.3.4 Subjects 

The field experiments were limited to employees of  Wasu TaoBao. During our field 

experiments, the company had approximately 100 employees, including the executive team. 

We invited 30 employees to take part in the field experiments based on the discussion with the 

managers. This invitation list consisted of  employees of  all departments and the management 

team. Table 6.4 shows the departments and the corresponding number of  invited employees. 

According to the General Manager, the composition of  invited employees represented the 

actual distribution of  employees in different departments. 
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Table 6.4 Composition of  Invited Employees 

Department / Team Number of  Invited Employees 

Management 3 

Product management 2 

Product development 9 

Business development 3 

Operation 11 

Marketing 1 

HR 1 

Total 30 

 

6.3.5 Incentives 

As Wasu TaoBao did not allow monetary incentives in these field experiments, small 

non-monetary incentives, such as a mug or T-shirt, were provided as a “prediction reward” 

and a “trading reward”. The subject who owned most shares of  the contract which 

represented the actual result in a market received the prediction reward. In each market, the 

subject who had the most TaoBan in his or her account at the end of  a market received the 

trading reward. Similar to the laboratory experiments, the former reward was developed to 

motivate subjects to learn in the market and the latter was designed to motivate subjects to 

trade actively. Subjects were also informed that they would not be eligible for the market 

rewards if  they did not place any buy or sell order in that market. Additionally, the reward 

winners were announced to the whole company as a “reputation reward”. 

 

6.3.6 Experimental Procedures 

To kick off  the internal prediction markets, a 30-minute plenary introduction was given to the 

invited subjects in Wasu Taobao’s headquarter. During the introduction, the General Manager 

introduced the potential contribution of  internal prediction markets to the company’s 

decision-making processes and the experiment administrator demonstrated the operations of  

trading on the web-page. In the end, the subjects were allowed to register and play in four trial 

markets.  

 

It should be clarified that the aforementioned four trial markets were not the same as the pilot 

study. We conducted the pilot study of  six internal prediction markets with the participation 

of  Wasu TaoBao’s employees two months prior to the kick-off. The pilot study was carried 
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out remotely, without the presence of  the experiment administrator in the office of  Wasu 

TaoBao. The pilot study provided us with feedback on the adjustment of  the experimental 

design, such as the aforementioned mechanism design. The trial markets, however, aimed to 

familiarize employees with the operation of  the web-based prediction market and help them 

understand their tasks as traders.  

 

We conducted 12 markets (excluding the trial markets) on three consecutive days. Every day, 

four markets were listed and running in parallel during one specific hour. Each market 

corresponded with one transparency level. All registered subjects were allowed to participate 

in all markets. The allocation of  one specific hour for prediction markets was designed based 

on the results drawn from the case studies. As employees were incline to focus on work during 

working hours and did not participate in the prediction markets after working hours, the 

General Manager of  Wasu TaoBao decided to allocate one specific hour each day for the 

employees to participate in the internal prediction markets. Thus, the employees were more 

likely to actively participate in the markets. 

 

During the one-hour trading time, the experiment administrator was also available onsite to 

answer questions or solve problems. Subjects could communicate with the administrator 

either by coming to the administrator’s (temporary) office or via the company’s internal instant 

message software, called Aliwangwang.  

 

At the end of  every trading day, a brief  report regarding participation levels and trading 

activities, such as the highest and the lowest transaction prices of  each contract, were sent to 

the subjects via email. According to the pilot studies, subjects were interested in the 

summarized information about a market. In turn, this feedback was considered helpful in 

motivating the subjects to participate in the next day’s markets. 

 

6.4 MEASURES 

The measures in this field experiment involve four variables, i.e. trader’s participation activity, 

trader’s dynamic interactions, information aggregation efficiency, and market predictive 

accuracy. These measures are identical to the measures of  the same variables in Chapter 4 and 

Chapter 5 (see 4.4 and 5.4 Measures).  

 

To recap, the measure of  traders’ participation activity entails the contract level (i.e. number 

of  transactions and number of  shares traded) and the individual trader level (i.e. number of  

buy orders/sell orders and number of  shares in buy orders/sell orders). Similarly, the measure 

of  trader’s dynamic interaction entails the contract level (i.e. 1-influential, 2-influential, 
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3-influential, and 2out3-influential orders) and the individual trader level (i.e. Type I and Type 

II self-revisions). With regard to information aggregation efficiency, we adopt the 

measurement we developed (see 5.4.1) based on the comparison between the transaction price 

and the dynamic equilibrium price of  a contract. The measurement of  market predictive 

accuracy followed absolute accuracy as developed by Plott and Chen (2002), which is assessed 

against the actual outcomes (see 5.4.2).  

 

6.5 RESULTS 

In this section, we discuss the results of  the field experiments and validate the hypotheses 

based on these results. We first present the overview of  the subjects’ participation and the 

market prediction results in the experiments. Thereafter, we elaborate the results drawn from 

the field study according to the sequence of  the hypotheses.  

 

6.5.1 Overview of  Subjects’ Participation 

41 subjects, namely, the employees of  Wasu TaoBao, registered an account in these field 

experiments, and 17 of  them were not from the invitation list. Having heard about the 

prediction markets, these employees proactively joined based on their own interests. This 

active, voluntary participation indicated the employees’ interest in internal prediction markets.  

 

Table 6.5 Overview of  Market Design and Subjects’ Participation 

Markets Price Transparency Level Number of  Active Traders 

I Limited-transparent 14 

II Semi-transparent 23 

III Full-transparent 15 

IV Opaque 12 

V Full-transparent 11 

VI Opaque 10 

VII Limited-transparent 8 

VIII Semi-transparent 7 

IX Semi-transparent 6 

X Full-transparent 8 

XI Opaque 8 

XII Limited-transparent 6 

Average  11 
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Four employees participated in all 12 markets. The average number of  active traders per 

market was 11. The highest number and the lowest number of  active traders in a market were 

23 and 6, respectively. Table 6.5 summarizes the design and the market size of  each market. 

 

On the last trading day, the number of  traders declined due to a promotion activity on the 

taohua.com, which required most employees to follow that activity online. Therefore, the 

traders were distracted from the internal prediction markets on that day.  

 

The 41 participating employees were drawn from all the departments in the company. Figure 

6.3 shows the composition of  the employees. The figure reveals that the largest proportion 

was from operational department, which also has the largest number of  employees.  

Employees of  this department may also have made up the largest proportion of  traders 

because they possessed the most relevant information about the events the markets predicted.  

 

 

Figure 6.3 Compositions of  Subjects 

 

During the field experiments, two employees resigned. Their participation data in the markets 

before their designation remained valid in the following analyses. We also noticed that several 

subjects attempted to create double accounts. According to the market rules, every subject was 

allowed to create only one account based on his or her company email address. However, 

some non-company email address registrations were found in the administration system. This 

indicated that some subjects registered additional accounts. They probably intended to trade 

with unauthorized accounts so as to improve the performance of  their genuine account and 

become the winner. Having detected the frauds, those unauthorized accounts were 

immediately disabled. 
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6.5.2 Effects of Information Transparency on Traders’ Participation Activity 

Similar to the analysis in the laboratory experiments, due to the different number of  active 

traders in each market, we weighted the numerical values by the ratio of  traders for the 

measurement at the contract level. Table 6.6 summarizes the statistics for the average trader’s 

participation activity at the contract level under the four different price transparency 

conditions.    

 

Table 6.6 Summary Statistics for Traders’ Participation Activity at the Contract Level 

Market Price transparency level 
Weighted number of  

transactions 

Weighted number of  

shares traded 

I Limited-transparent 12 168 

II Semi-transparent 25 272 

III Full-transparent 15 169 

IV Opaque 11 136 

V Full-transparent 10 143 

VI Opaque 6 92 

VII Limited-transparent 18 299 

VIII Semi-transparent 14 192 

IX Semi-transparent 12 169 

X Full-transparent 14 215 

XI Opaque 10 173 

XII Limited-transparent 12 184 

Average 

Opaque 9 134 

Limited-transparent 14 217 

Semi-transparent 17 211 

Full-transparent 13 176 

 

A Kruskal Wallis test did not revealed any significant difference between the number of  

transactions per contract in the markets with four different price transparencies (𝑥2(3) = 5.6, 

p > 0.13). According to Table 6.6, the largest difference in the number of  transactions 

between different market transparency levels did not exceed eight (Meanopaque = 9, Meanlimited 

= 14, Meansemi = 17, and Meanfull = 13). 

 

The number of  shares traded per contract in the four types of  markets did not differ either 

(𝑥2(3) = 4.4, p > 0.22). As Table 6.6 shows, the difference of  the number of  shares traded 

between different market transparency levels lay in the range between 6 and 83 (Meanopaque = 

134, Meanlimited = 217, Meansemi = 211, and Meanfull = 176). 
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The insignificant difference between the four transparency levels was probably due to the 

relatively high traders’ activity level. In the explorative case study described in Chapter 4, there 

were only 9 or 18 transactions per contract in a market during 12 trading days, compared to at 

least 9 transactions per contact in the internal prediction in this study. The relatively high level 

of  traders’ activity, hence, led to the similarly high number of  transactions and number of  

shares traded. 

 

Table 6.7 exhibits the statistics for the average trader’s participation activity at the trader level 

in each market. Again, a Kruskal Wallis test was performed to further compare the 

corresponding measures across the 12 markets with different price transparency levels. The 

results showed that there was no significant effect of  price transparency on trader’s 

participation activity based on the measure of  the number of  buy orders (𝑥2(3) = 4.7, p > 

0.19), number of  shares in buy orders (𝑥2(3) = 1.1, p > 0.78), number of  sell orders (𝑥2(3) = 

2.1, p > 0.54), or number of  shares in sell orders (𝑥2(3) = 1.7, p > 0.63). 

 

Table 6.7 Summary Statistics for Traders’ Participation Activity at the Trader Level 

Market Price transparency level 
Number of  buy 

orders 

Number of  

shares in buy 

orders 

Number of  

sell orders 

Number of  

shares in sell 

orders 

I Limited-transparent 2 88 2 33 

II Semi-transparent 4 115 4 61 

III Full-transparent 3 113 2 41 

IV Opaque 3 115 2 34 

V Full-transparent 2 35 3 57 

VI Opaque 1 23 2 41 

VII Limited-transparent 2 66 4 64 

VIII Semi-transparent 1 22 2 31 

IX Semi-transparent 3 59 3 41 

X Full-transparent 2 60 2 33 

XI Opaque 3 68 3 61 

XII Limited-transparent 3 69 3 43 

Average 

Opaque 2 69 2 45 

Limited-transparent 2 74 3 47 

Semi-transparent 3 65 3 44 

Full-transparent 2 69 2 44 

 

As Table 6.7 further illustrates, the average values of  each measurement of  different price 
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transparency levels were in fact very close to each other. For instance, the average number of  

buy orders (Meanopaque = 2, Meanlimited = 2, Meansemi = 3, and Meanfull = 2) and sell orders 

(Meanopaque = 2, Meanlimited = 3, Meansemi = 3, and Meanfull = 2) in the four types of  markets 

were almost the same. With regard to the number of  shares in buy orders and the number of  

shares in sell orders, the largest difference did not exceed nine (Meanopaque = 69, Meanlimited = 

74, Meansemi = 65, and Meanfull = 69) and three (Meanopaque = 45, Meanlimited = 47, Meansemi = 

44, and Meanfull = 44), respectively.  

 

This result was, again, related to the high activity level of  traders. The number of  active 

traders in these 12 markets (see Table 6.5) did not seem to be very large. However, within one 

hour and with four markets in parallel, the average number of  buy or sell orders per trader 

reached two or three. This number exceeded the number of  the same measure per trader per 

day in the explorative study.  

 

According to the aforementioned results, it can be argued that the special trading time 

allocated to the employees motivated them to focus on participation in the internal prediction 

markets, ensuring the certain level of  traders’ participation activity, though the number of  

active traders was necessarily large. 

 

In line with the aforementioned statistical analysis results, it can be argued that when there are 

a number of  actively participating traders in an internal prediction market, their activity levels 

do not vary according to price transparency levels. In turn, the following hypothesis (H1b) is 

not supported. 

 

H1b: In an internal prediction market, an increased disclosure of  different traders’ quote 

information leads to a higher level of  traders’ participation activity. However, the 

complete disclosure of  traders’ quote information does not further improve traders’ 

participation activity. 

 

6.5.3 Effects of  Information Transparency on Traders’ Dynamic Interactions 

A Kruskal Wallis test was performed to examine traders’ dynamic interactions. Analysis at the 

trader level revealed a significant effect of  price transparency level on both Type I 

self-revisions (𝑥2(3) = 14.7, p < 0.01) and Type II self-revisions (𝑥2(3) = 14.7, p < 0.01). 

 

A post-hoc test using Mann-Whitney tests with Bonferroni correction showed significant 

differences between opaque and semi-transparent markets (U(66) = 380, z = -2.21, p < 0.05), 
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between limited-transparent and semi-transparent markets (U(64) = 292, z = -3.10, p < 0.01), 

and between semi-transparent and full-transparent markets (U(70) = 424, z = -2.36, p < 0.05).  

 

These findings applied to both Type I and Type II self-revisions. In other words, the effects 

of  different price transparency levels on traders’ dynamic interactions at the trader level did 

not differ in terms of  the type of  self-revisions. When we compared the occurrence of  these 

two types of  self-revisions in each market, we noticed that the results were identical. This 

result implied that whenever a trader adjusted his or her expectation on a contract, the price 

difference between the previous and the updated order was at least 5% of  the previous order.  

 

Table 6.8 further illustrates that the average number of  self-revisions per trader in 

semi-transparent markets was at least two times as many as in other markets (Meanopaque = 1, 

Meanlimited = 0, Meansemi = 2, and Meanfull = 1).  

 

Table 6.8 Summary Statistics for Traders’ Dynamic Interactions at the Trader Level 

Market Price transparency level 
Number of  Type I 

self-revisions 

Number of  Type II 

self-revisions 

I Limited-transparent 0 0 

II Semi-transparent 3 3 

III Full-transparent 1 1 

IV Opaque 1 1 

V Full-transparent 1 1 

VI Opaque 1 1 

VII Limited-transparent 1 1 

VIII Semi-transparent 1 1 

IX Semi-transparent 1 1 

X Full-transparent 1 11 

XI Opaque 2 2 

XII Limited-transparent 0 0 

Average 

Opaque 1 1 

Limited-transparent 0 0 

Semi-transparent 2 2 

Full-transparent 1 1 

 

However, the occurrence of  self-revisions did not differ between opaque and 

limited-transparent markets (U(58) = 383, z = -0.68, p > 0.49), opaque and full-transparent 

markets (U(64) = 499, z = -0.18, p > 0.86), and limited-transparent and full-transparent 
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markets (U(62) = 414, z = -1.03, p > 0.30). As Table 6.8 demonstrates that the average 

number of  self-revisions per trader in these markets lay between zero and one, the difference 

was in fact tiny. This indicated that traders adjusted their expectations on the contracts most 

frequently in semi-transparent markets.  

 

At the contract level, the analyses addressed the weighted number of  four different types of  

influential orders. According to the result of  a Kruskal Wallis test, there was a significant 

effect of  price transparency on traders’ dynamic interactions based on the 1-influential orders 

(𝑥2 (3) = 25.9, p < 0.01), the 2-influential orders (𝑥2 (3) = 18.5, p < 0.01), and the 

2out3-influential orders (𝑥2(3) = 15.3, p < 0.01). 

 

A post-hoc test using Mann-Whitney tests with Bonferroni correction showed detailed results 

as follows. First, with regard to 1-influential orders, there was a significant difference between 

semi-transparent and the other markets (opaque: U(30) = 30, z = -3.77, p < 0.01; 

limited-transparent: U(30) = 37, z = -3.37, p < 0.01; and full-transparent: U(30) = 31, z = 

-3.78, p < 0.01). No significant difference was revealed between opaque and 

limited-transparent markets (U(30) = 98, z = -0.90, p > 0.53), between opaque and 

full-transparent markets (U(30) = 106, z = -0.52, p > 0.80), and between limited-transparent 

and full-transparent markets (U(30) = 92, z = -1.31, p > 0.41). In turn, the most 1-influential 

orders in semi-transparent markets; and the other three types markets did not differ. 

 

Second, with regards to 2-influential orders, there was a significant difference between 

limited-transparent and semi-transparent markets (U(30) = 60, z = -2.96, p < 0.05) as well as 

between semi-transparent and full-transparent markets (U(30) = 60, z = -2.96, p < 0.05). No 

further significant difference was revealed between the other markets. 

 

Third, no single 3-influential order occurred in all the markets (see Table 6.9). In turn, 

different price transparency levels in a market did not have any effect on this measurement. 

 

Moreover, these follow-up analyses did not reveal any significant difference between all the 

markets in terms of  2Out3-influential orders. These insignificant differences were mainly due 

to the small number of  this type of  orders in all the markets (see Table 6.9). 

 

The aforementioned results showed that the influence of  one trader’s order on another’s in 

general occurred most frequently when the market was semi-transparent. Nevertheless, other 

markets did not differ significantly. The results drawn from the contract level and the trader 

level were convergent. Therefore, hypothesis (H2b) is supported. 
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H2b: In an internal prediction market, an increased disclosure of  different traders’ quote 

information leads to an increase in traders’ dynamic interactions. However, the complete 

disclosure of  traders’ quote information does not further enhance traders’ dynamic 

interactions. 

 

Table 6.9 Summary Statistics for Traders’ Participation Activity at the Contract Level 

Market Price transparency level 

Number of  

1-influential 

orders 

Number of  

2-influential 

orders 

Number of  

3-influential 

orders 

Number of  

2Out3-influential 

orders 

I Limited-transparent 0 0 0 0 

II Semi-transparent 3 1 0 1 

III Full-transparent 0 0 0 0 

IV Opaque 0 0 0 0 

V Full-transparent 0 0 0 0 

VI Opaque 0 0 0 0 

VII Limited-transparent 0 0 0 0 

VIII Semi-transparent 1 1 0 1 

IX Semi-transparent 1 0 0 0 

X Full-transparent 0 0 0 0 

XI Opaque 0 0 0 0 

XII Limited-transparent 0 0 0 0 

Average 

Opaque 0 0 0 0 

Limited-transparent 0 0 0 0 

Semi-transparent 2 1 0 1 

Full-transparent 0 0 0 0 

 

To be specific, when there are a number of  actively participating traders in an internal 

prediction market, showing different traders’ quote information leads to a higher level of  

traders’ interaction than showing no or the highest or lowest outstanding quote information. 

The complete disclosure of  price information, as hypothesized, does not further enhance 

traders’ interactions. 

 

6.5.4 Effects of Traders’ Participation Activity on Information Aggregation Efficiency 

We first calculated information aggregation efficiency, a percentage deviation of  the 

transaction price from the equilibrium price in a prediction market. This percentage deviation 

measures to what extent the transaction price reflects the market consensus. Thus, it indicates 
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how efficiently a market aggregates the information from individual traders.  

 

We considered the last transaction price and the weighted average transaction price of  a 

contract to measure the information aggregation efficiency. Table 6.10 exhibits the percentage 

deviation of  each type of  transaction price from the equilibrium price per market. A Wilcoxon 

test was performed on the 12 markets: three opaque, three limited-transparent, three 

semi-transparent and three full-transparent. The result revealed that the choice between these 

two types of  transaction prices did not yield significant difference of  information aggregation 

efficiency (W(12) = 24, z = -0.8, p > 0.42).  

 

Since the average value of  the percentage deviation was slightly smaller based on the last 

transaction price, (opaque markets: Meanlast = 40.75%, Meanaverage = 48.58%; 

limited-transparent markets: Meanlast = 27.71%, Meanaverage = 48.58%; semi-transparent 

markets: Meanlast = 22.91%, Meanaverage = 21.48%; and full-transparent markets: Meanlast = 

35.11%, Meanaverage = 35.20%), we adopted last transaction price in the following analyses. 

 

To test the effect of  traders’ behavior on information aggregation efficiency, we examined the 

linear relationship based on Spearman’s correlation coefficient. The results showed that 

traders’ participation activity and dynamic interactions had a positive effect on information 

aggregation efficiency. 

 

With regard to the traders’ participation activity, contract level results revealed that the 

number of  transactions had a significant correlation with information aggregation efficiency 

(ρ(12) = -0.81, p < 0.01). The negative correlation indicated that a higher level of  traders’ 

participation activity leads to a smaller percentage deviation of  the transaction price from the 

dynamic equilibrium price of  a contract.  

 

Nevertheless, the number of  shares traded at the contract level (ρ(12) = -0.57, p > 0.54) and 

the indicators at the trader level, including number of  buy orders (ρ(12) = -0.23, p > 0.46), 

number of  shares in buy orders (ρ(12) = -0.20, p > 0.54), number of  sell orders (ρ(12) = 0.06, 

p > 0.85), and number of  shares in sell orders (ρ(12) = -0.32, p > 0.31), did not show a 

significant correlation with information aggregation efficiency.  
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Table 6.10 Information Aggregation Efficiency Measurement per Market 

Market Price transparency level 

Based on the last 

transaction price of  a 

contract (%) 

Level of  

Information 

Aggregation 

Efficiency 

Based on the 

weighted average 

transaction price of  

a contract (%) 

Level of  

Information 

Aggregation 

Efficiency 

I Limited-transparent 28.64 High 29.81 High 

II Semi-transparent 19.26 High 23.00 High 

III Full-transparent 21.03 High 52.76 Low 

IV Opaque 36.29 High 55.80 Low 

V Full-transparent 63.24 Low 33.10 High 

VI Opaque 42.37 Low 46.35 Low 

VII Limited-transparent 30.02 High 17.88 High 

VIII Semi-transparent 19.54 High 17.21 High 

IX Semi-transparent 23.93 High 24.23 High 

X Full-transparent 21.07 High 19.73 High 

XI Opaque 43.58 Low 43.58 Low 

XII Limited-transparent 24.46 High 45.10 Low 

Average 

Opaque 40.75 Low 48.58 Low 

Limited-transparent 27.71 High 30.93 High 

Semi-transparent 22.91 High 21.48 High 

Full-transparent 35.11 High 35.20 High 

 

The aforementioned results implied that a trader’s individual participation activity did not 

indicate the quality of  the information carried by the traders. By contrast, the number of  

transactions at the contract level, representing the agreed opinion between traders, indicated 

the common recognition of  the quality or certainty of  the information carried into the market. 

Therefore, this indicator manifested the positive effect of  traders’ participation activity on the 

capture of  market consensus in an internal prediction market. Accordingly, the following 

hypothesis (H3) is supported. 

 

H3: An increased level of  traders’ participation activity in an internal prediction market leads 

to higher information aggregation efficiency.  

 

6.5.5 Effects of  Traders’ Dynamic Interactions on Information Aggregation Efficiency 

With regard to traders’ dynamic interactions, all indicators at the contract level had a 

significant effect on information aggregation efficiency, including the number of  1-influential 
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orders (ρ(12) = -0.66, p < 0.05), the number of  2-influential orders (ρ(12) = -0.65, p < 0.05), 

and the number of  2Out3-influential orders (ρ(12) = -0.65, p < 0.05), except the number of  

3-influential orders, as this degree of  interactive influence did not occur among the traders. 

 

At the trader level, the results did not reveal a significant effect of  trader’s self-revisions (ρ(12) 

= -0.83, p > 0.79) on information aggregation efficiency (the number of  Type I and Type II 

self-revisions were the same in all the markets, as previously discussed). This result implied 

that although traders updated their personal expectations on the contracts, this adjustment 

did not always influence another trader’s adjustment. In turn, while different influential orders 

at the contract level had an impact on information aggregation efficiency, self-revisions at the 

trader level did not.  

 

Overall, the aforementioned results demonstrated the positive effect of  traders’ dynamic 

interactions on the reflection of  the traders’ consensus in the transaction prices. Consequently, 

hypothesis (H4) underneath is supported. 

 

H4: An increase in traders’ dynamic interactions in an internal prediction market leads to 

higher information aggregation efficiency. 

 

6.5.6 Effects of Information Aggregation Efficiency on Market Predictive Accuracy 

We first calculated the point estimation based on the transaction prices of  a market and 

identified the corresponding contract in each market. Table 6.11 exhibits the market 

prediction based on the last transaction price and the weighted average transaction price of  

contracts. The corresponding percentage error per contract compared to the actual result is 

also listed. However, it is important to note that these percentage errors are not equivalent to 

the actual results, though they are calculated based on the actual results using a master key to 

ensure confidentiality.  

 

According to Table 6.11, it can been seen that the prediction based on the last transaction 

price and the weighted average transaction price of  a contract was different in markets II, III, 

V, VII, and XI. As discussed before, the information aggregation efficiency based on the last 

transaction price in this field experiment was relatively higher than the one based on the 

weighted average transaction price. In line with our hypotheses (H5) that higher information 

aggregation efficiency leads to more accurate market prediction, we reported the results based 

on the last transaction price to Wasu Taobao. 
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Table 6.11 Market Prediction 

Market 

Prediction based on  

the last transaction price of  a contract 

Prediction based on  

the weighted average transaction price of  a contract 

Predicted contract Percentage error (%) Predicted contract Percentage error (%) 

I 300-499 54.32 300-499 48.01 

II 400-599 39.57 600-799 34.16 

III 20-100* 55.32 15-19 59.57 

IV 1,000-1,299 64.18 1,000-1,299 67.80 

V 121K-150K 98.23 151K-300K* 98.09 

VI 91K-200K* 64.95 91K-200K* 64.63 

VII 6%-8.99% 44.94 9%-11.99% 41.88 

VIII ¥8.00-¥10.99 40.27 ¥8.00-¥10.99 41.60 

IX 80-109* 69.48 80-109* 70.64 

X 200-500 38.38 200-500 38.38 

XI ¥20,000-¥50,000* 94.18 ¥15,000-¥19,999 94.67 

XII ¥700-¥999* 44.83 ¥700-¥999* 46.14 

Average 

Opaque 74.44  75.70 

Limited-transparent 48.03  62.04 

Semi-transparent 49.77  60.64 

Full-transparent 63.98  58.19 

 

To examine the effect of  information aggregation efficiency on market predictive accuracy, we 

drew a scatter plot based on information aggregation efficiency and market predictive 

accuracy, and plotted a linear trend line. The trend lines drawn based on the last transaction 

price (see Figure 6.4a) and the weighted average price (see Figure 6.4b) of  a contract showed 

that the prediction percentage error changes with the change in information aggregation 

efficiency in the same direction. This result indicated a positive correlation between 

information aggregation efficiency and market predictive accuracy, supporting H5. 

 

H5: Higher information aggregation efficiency of  a prediction market leads to higher market 

predictive accuracy. 
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Figure 6.4a Market Performance based on the Last Transaction Price of  a Contract 

 

 

Figure 6.4b Market Performance based on the  

Weighted Average Transaction Price of  a Contract 

 

Later, when the actual result was available, if  the predicted contract was the same as the actual 

one it was labeled with an asterisk “*” in the table above. As Table 6.11 illustrates, the 

prediction based on the last transaction price forecasted five markets accurately while the 

prediction based on the weighted average transaction price forecasted four markets accurately. 

This result further manifested that the prediction based on the last transaction priced was 

indeed more accurate than the one based on weighted average price.  
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6.6 DISCUSSION 

In this section, we further discuss to the results drawn from the field experiments. We 

particularly focus on the influence of  different price transparency levels on traders’ behavior 

in an internal prediction market, explaining why the corresponding hypothesis (H1b) is not 

supported. Moreover, we discuss market performance in terms of  both information 

aggregation efficiency and market predictive accuracy. 

 

6.6.1 Effect of  Information Transparency on Traders’ Behavior 

The field experiments show that the transparency level of  price information does not affect 

traders’ participation level. This result is partially consistent with Bloomfield and O’Hara’s 

(1999) research, which states that when trade information is disclosed, quote disclosure has 

little effect on market participation, as trade transparency provides information that cannot be 

obtained from quotes alone. However, considering the difference in experimental settings 

used in our study, our research findings are not fully explained by Bloomfield and O’Hara 

(1999). In their experimental setting, trade information was very much transparent, as an 

individual trader’s trade information was available to other traders in a market. In our 

experimental setting, however, trade information was very limited, as only the last transaction 

price of  each contract was presented, if  any.  

 

We argue that the most probable reason for traders’ active participation is their interest in the 

internal prediction market, though the specific interests could range widely, such as the 

business practices being predicted, observing colleagues’ opinions on the potential outcomes 

of  the future event, and the fun of  playing in the market. Evidence can be derived from prior 

studies on incentives. These studies suggested that a properly designed incentive scheme will 

motivate traders to trade and reveal information in prediction markets (Chen et al. 2009; 2010; 

Cowgill et al. 2008). It is implied that an incentive scheme is the fundamental factor that 

influences the employee’s participation level in an internal prediction market. 

 

Furthermore, the results of  our empirical study show that the presence of  the highest or the 

lowest quote information does not enhance the trader’s learning activity compared to the 

absence of  this information in an internal prediction market. A possible reason is that traders 

are very careful about signals in the market and quote information is in fact a signal in a 

market (Spence 1974; 1976). As information in a prediction market is asymmetric, traders are 

self-interested, and signals are an alterable observable attribute, some traders may place bids or 

asks which in fact deviate from their true expectations in order to affect other trader’s 

estimations and to benefit from this behavior. Activities that are carried out to affect others 



146_Erim ShenYun Yang BW_Stand.job

130 

 

are referred to as signaling and the individuals who act in this way are referred to as signalers 

(Spence 1974; 1976).  

 

In practice, some traders may know that the signaler’s information is not true, nevertheless, 

they would be glad to sell shares of  the contract at the signaler’s high price or to profitably 

buy shares of  the contract at a low price from the signaler. However, in the real business 

environment, particularly in a new and dynamic business, employees in an internal prediction 

market hardly know whether information is true or not. As a result, to avoid being misled by a 

potential signaler, they may not adjust their expectations more frequently in a 

limited-transparent market than in an opaque market. The increased learning activity in a 

semi-transparent market in fact is the evidence. When more quote information of  a contract is 

displayed in a prediction market, traders can better discern the quality of  the information. 

Therefore, there is an increased level of  trader’s dynamic interactions in semi-transparent 

markets.  

 

Furthermore, the complete quote information does not lead to an increased level of  trader’s 

dynamic interactions. In our empirical studies, the revelation of  all quote information in a 

full-transparent market in fact reduced the dynamic interactions among traders compared to a 

semi-transparent market. This is probably because traders usually learn from more 

representative signals (Anderson and Holt 1997). In a semi-transparent market, we show the 

highest three outstanding buy orders and the lowest three outstanding sell orders. The price 

information of  these outstanding bids or asks is the most representative signal, as it carries 

the most meaningful information. 

 

Moreover, this finding can also be explained based on the phenomenon of  information 

saturation in a market: beyond a certain point, more information does not improve market 

performance any further (Koppius 2002). Although we did not attempt to identify the point 

of  information saturation in our study, if  this point exists, providing information beyond that 

point, including the full disclosure of  all the quote information, will not further improve the 

market performance through trader’s behavior. Our result is in line with this argumentation. 

 

6.6.2 Market Performance 

We examine two aspects of  market performance, namely information aggregation efficiency 

and predictive accuracy. This field study demonstrates an internal prediction market’s robust 

ability to synthesize traders’ agreed opinion. Even under dynamic and uncertain circumstances, 

a prediction market can reflect traders’ mean belief  into the transaction prices of  contracts.  
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We further performed an ex-post analysis by dividing the information aggregation efficiency 

of  the 12 markets into “low” and “high” categories. As the values of  information aggregation 

efficiency essentially lay between 17 and 64, we classified the values between 17 and 40 as high 

efficiency and the values between 41 and 64 as low efficiency (see Table 6.10). Accordingly, 

based on the last transaction prices of  contracts, nine markets were considered to have high 

information aggregation efficiency and two markets were considered to have low information 

aggregation efficiency. Based on the weighted average transaction prices of  contracts, seven 

markets were considered to have high information aggregation efficiency and five markets 

were considered to have low information aggregation efficiency.  

 

According to the analysis above, in our field research, approximately, 75% of  the markets 

aggregated the information efficiently (see Table 6.10). This noticeable ability to capture 

traders’ mean belief  will allow practitioners to obtain employee’s agreed opinions. Particularly, 

as a prediction markets’ mechanism encourages the participants to reveal their true 

information (see 2.1.3.2), the use of  prediction markets can help companies tackle the agency 

problem, specifically that the principal cannot verify that the agent has behaved appropriately 

(Eisenhardt 1989).  

 

In terms of  forecasting, the agency problem usually arises due to different goals or interests 

between the principal and the agent. For example, executives need true forecasts from 

employees; however, employees may reveal a lower forecast than they actually expect, hoping 

to receive possible additional rewards for performance that exceeded the estimate. Thus, the 

use of  internal prediction markets can help executives to collect their employees’ true forecast. 

 

We noted a further interesting finding. We drew a line chart (see Figure 6.4) based on the 

average information aggregation efficiency in a market with a price transparency level in 

accordance with the data analyses shown in Table 6.10. 

 

Although our study results did not reveal a direct effect of  information transparency levels on 

information aggregation efficiency in a prediction market based on a Spearman’s correlation 

coefficient test (Last transaction price: ρ(12) = -0.50, p > 0.10; Weighted average transaction 

price: ρ(12) = -0.37, p > 0.24), Figure 6.4 suggested a non-linear relationship between 

transparency level and information aggregation efficiency. In this specific field study with four 

different transparent settings, semi-transparent markets led to the most efficient information 

aggregation.  
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Figure 6.4 Information Transparency and Information Aggregation Efficiency 

 

With regard to market predictive accuracy, our research manifested that internal prediction 

markets can make fairly accurate predictions, even under dynamic and highly uncertain 

circumstances. As discussed in the results, our field experimental environment was 

characterized by new business products within a complex industry and dynamic context. 

Under such highly uncertain conditions, 5 out of  12 markets, equivalent to 42%, predicted 

accurately; 6 out of  12 predictions were very close to the actual results, forecasting the 

contract adjacent to the accurate one. In turn, more than 90% of  the markets in this field 

study made a satisfactory prediction. The well-known HP internal prediction markets 

predicted six out of  eight accurately, equivalent to 75% (Plott and Chen 2002). However, their 

business environment was relatively more stable than Wasu Taobao. Therefore, compared to 

the 75% accuracy of  HP, we argue that the 50% accuracy of  the Wasu Taobao markets is 

significant.  

 

The aforementioned argument is in light of  Healy et al. (2010), who conducted laboratorial 

experiments to investigate prediction market performance under different levels of  

information complexity. They manipulated information complexity by altering the uncertainty 

of  the events to be predicted. To be specific, in a relatively less complex environment, the 

markets only have one true-false event; in a relatively more complex environment, the market 

features three correlated events. Their empirical studies exemplified that the performance of  

prediction markets under higher information complexity, namely higher uncertainty, is less 

satisfactory than under lower information complexity. This difference is particularly evident 

when there are only a limited number of  traders in a market.   
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Last but not least, it should be noted again that in this field study, because of  the terms of  our 

confidentiality agreement with Wasu Taobao, we did not receive the specific number of  the 

actual result. Therefore, we were not able to calculate the percentage error as in Chapter 5. 

Under this constraint, it is in fact possible that some of  the markets which predicted the 

adjacent contract to the actual one may have been very accurate, if  the specific number of  the 

actual result was very close to the predicted point estimation. 

 

6.7 CONCLUSIONS 

This research investigates the effect of  information transparency on prediction market 

performance. We address different price transparency levels and internal prediction markets in 

a real business environment. The objective of  this chapter is to answer the following two 

specific research questions: How does a different level of  price information transparency in an internal 

prediction market influence traders’ behavior and further influence market information aggregation efficiency? 

and How does a different level of  price information transparency in an internal prediction market influence 

traders’ behavior and further influence market predictive accuracy? 

 

The findings of  our empirical study reveal that price transparency affects market information 

aggregation efficiency through traders’ dynamic interactions. Different transparency levels 

show non-linear effects on traders’ dynamic interactions. When traders’ buy or sell orders are 

disclosed in an internal prediction market, traders learn most actively: traders actively update 

their own expectations on the contracts; the influence of  one trader’s learning on another 

occurs most frequently; and the influence of  one trader may sometimes extend to two 

different traders. However, the disclosure of  all outstanding buy or sell orders does not 

further enhance traders’ adaptive learning behavior.  

 

Different price transparency levels, however, do not impact traders’ participation level in an 

internal prediction market. This suggests that other design factors, such as incentives, should 

be considered to further motivate traders in internal prediction markets. For instance, Chen et 

al. (2010) demonstrated that traders can be motivated when their trading performance is 

associated with the endowment they receive. 

 

Traders’ participation and dynamic interactions positively affect the information aggregation 

efficiency of  internal prediction markets. Higher participation and active learning behavior of  

traders leads to a close reflection of  market consensus in the transaction prices of  contracts. 

Moreover, when enough accurate information about the future exists in a market, the traders’ 

consensus captured by the market indicates the actual outcome of  the future event. In other 

words, a market with higher information aggregation efficiency is likely to predict accurately.   
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The different price transparency levels, however, do not necessarily have an effect on market 

predictive accuracy through traders’ behavior or information aggregation efficiency when the 

environment is complex and uncertain. Even in dynamic environments, prediction markets 

have the ability to make accurate predictions. 

 

This field study has two primary theoretical contributions. First, this research extends the 

literature on information transparency strategy by demonstrating how different information 

transparency levels influence market performance. Granados et al. (2005; 2008; 2010) 

contended that information transparency can be strategically designed in order to fulfill 

participants’ goals or positions in a market, and eventually, lead to an improved market 

outcome. They argue that information transparency should be further studied as it contributes 

to market design. In this field experimental study, we designed four different transparency 

levels, representing four distinct uses of  price information, including concealing the quote 

information, disclosing the most aggressive quote information, disclosing representative quote 

information from different traders, and disclosing complete quote information. The inclusion 

of  these comprehensive information transparency levels encourages the research on 

information transparency to move from extreme cases to the exploration of  optimization. 

Moreover, the focus on quote information particularly adds to the scant research on this type 

of  information in information transparency and market design. 

 

Second, our further development and implementation of  the measurement of  information 

aggregation efficiency especially contributes to the research stream of  information 

aggregation in prediction markets (Bothos et al. 2012; Gruca et al. 2005; Plott 2000). We 

developed the measurement in accordance with the characteristics of  prediction markets; 

aggregating the agreed opinion of  traders in a market (Gjerstad 2004; Wolfers and Sitzewitz 

2006a). Although our predecessors defined information aggregation efficiency, they did not 

develop the measurement accordingly. Instead, most of  the researches measure the 

information aggregation efficiency of  a prediction market against the actual result based on 

the assumption that there is enough accurate information in the market. However, in the 

increasingly dynamic business environment nowadays, this assumption does not always hold. 

Moreover, as illustrated in this field study, managers sometimes are more interested in the 

employees’ opinion than in the accuracy of  prediction. Therefore, our measurement, which 

measures to what extent the market aggregates the traders’ mean belief, fills a gap in the 

research on the information aggregation efficiency of  prediction markets. 

 

 

  



151_Erim ShenYun Yang BW_Stand.job

135 

 

CHAPTER 7 CONCLUSIONS  

This dissertation focuses on contemporary web-based internal prediction markets and aims to 

improve market design from the perspective of  information. It addresses two specific 

objectives. First, we aim to gain insights into traders’ behavior in internal prediction markets. 

Second, our study investigates the effect of  information transparency on prediction market 

performance. A better understanding of  those factors will allow a prediction market to better 

serve managerial decision-making.  

 

Our research entails two major research questions: (1) How do traders behave in an internal 

prediction market? and (2) How does information transparency in an internal prediction 

market influence market performance? 

 

To answer those questions, we adopted a pluralist methodology, consisting of  three empirical 

studies, including explorative case studies, laboratory experiments and field experiments. Table 

7.1 summarizes the research design of  each study, including the research focus, questions, 

method, unit of  analysis and market design. The three studies adopted different research 

methods to supplement each other, and followed the use of  sequential triangulation: the 

results drawn from each study were used to plan the method of  the following study. This 

approach allowed us to conclude substantive and comprehensive overall findings.  

 

The remainder of  this chapter is structured as follows. First, we answer the research questions 

based on the main findings. Subsequently, we delineate the theoretical contributions of  our 

study. Thereafter, we provide practitioners with managerial implications. Finally, we discuss the 

limitations of  our research and suggestions for future research. 

 

7.1 MAIN FINDINGS 

We present the answers to the two major research questions of  this dissertation in sequence in 

this section. We first elaborate traders’ behavior in internal prediction markets. Thereafter, we 

delineate the indirect effect of  information transparency in a prediction market on market 

performance. 
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7.1.1 Traders’ Behavior 

Traders’ behavior in this research focuses on two major aspects, participation and dynamic 

interactions. In general, traders do not actively participate in an internal prediction market. 

First, a small number of  employees participate in a market. A company may invite a large 

number of  employees to take part, however, only a few employees become actively 

participating traders, who frequently trade in the market during the entire trading time period. 

Second, employees spend very limited time trading in a market. Even those actively 

participating traders do not trade every day or trade on all contracts.  

 

The low participation of  employees in internal prediction markets has two main causes. First, 

most employees are motivated to trade based on their curiosity about prediction markets 

(Borison and Hamm 2009); this curiosity can quickly drop as traders’ interest in the market 

changes or declines (Dye 2008). Particularly, after they gain experience in one market, they are 

no longer interested in the following markets. Second, employees’ trading time is constrained, 

as they must fulfill their work duties during working hours. Hanson (2006) argued that 

participation in an internal prediction market requires that employees allocate time and effort 

from their regular work. The time and effort constraints, in fact, imply that employees regard 

participation as a part of  their job. Employees do not consider participation to be the priority 

during the workday, nor do they trade after hours. This is the underlying reason why the 

entertainment value (Wolfers and Zitzewitz 2004), which drives traders to actively participate 

in public prediction markets, does not work in internal prediction markets.  

 

Dynamic interactions between traders indicate the learning of  traders in a market. First, 

employees in an internal prediction market keep learning and incorporate new information 

into their trading activities (Bondarenko and Bossaerts 2000; Gruca e al. 2005; Rhode and 

Strumpf  2004). They do not trade actively, but they update their opinions whenever they trade. 

The empirical study reveals that more than half  of  the buy or sell orders entail an update of  

traders’ opinions; the difference of  prices between the previous order and the following order 

is always at least 5%, considered to be statistically significant. Additionally, employees learn 

from different information sources, particularly newly acquired private information. 

 

Second, one trader’s order has an impact on another trader’s order, leading to an identical 

change of  a different trader’s opinion. However, this impact is limited to two consecutive 

orders. One trader’s order rarely influences more than two subsequent orders from different 

traders, as employees rely on private information most when they make trading decisions. 

 

Moreover, an unusual price of  an order is likely to lead to an information cascade in an 
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internal prediction market, as employees believe that another trader has special private 

information about the future event. In turn, they quickly respond to this signal (Bondarenko 

and Bossaerts 2000; Gruca et al. 2005; Rhode and Strumpf  2004) and follow the same 

direction of  change. “Marginal traders” are able to discern the quality of  the signal (Forsythe 

et al. 1992; Oliven and Rietz 2004). If  the information carried by the signal is not accurate, 

marginal traders can correct the market. However, market correction requires time.  

 

7.1.2 The Effect of  Information Transparency on Market Performance 

Information transparency affects market performance indirectly via traders’ behavior. The 

effect of  the level of  information transparency on traders’ behavior is also moderated by 

market size. To be specific, when a market has only a few actively participating traders, the 

concealment of  price information of  buy and sell orders leads to a higher level of  traders’ 

activity and interactions than the disclosure of  the information. Two primary reasons are 

identified. First, when price information is concealed, traders must spend time searching for 

counterparties with whom to trade, and therefore, they follow a more aggressive pricing 

strategy (Madhavan 1995), placing a large number of  buy and sell orders and changing the 

order price every time.  

 

Second, employees in an internal prediction market have certain relevant information about 

the future event, though the information they have differs. In turn, their individual order 

prices entail their private information. When the market discloses the price information and 

the market is thin, as soon as an informed trader places a buy or sell order, he or she reveals 

his or her private information to others. As a result, while other employees immediately learn 

and benefit from this private information, the informed trader loses the advantage of  having 

private information (Surowiecki 2004). Therefore, when a market is quite thin, concealment 

rather than disclosure of  price information motivates employees to participate and learn in the 

market. 

 

When a market has relatively more actively participating traders, different price transparency 

levels have a non-linear effect on traders’ learning activities. The disclosure of  different traders’ 

price information leads to an increase in traders updating their opinions and the influence of  

one trader’s learning on another. The variety of  price information allows employees to infer 

others’ expectations on the contracts (Pagano and Röell 1996), provides them with more 

comprehensive information (Granados et al. 2010), and enables them to discern accurate 

information (Kahn et al. 2002) and learn in the market. Complete price information, however, 

does not further enhance the dynamic interactions between traders due to the phenomenon 

of  information saturation in a market (Koppius 2002). Nevertheless, price transparency does 
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not affect traders’ participation level in such a market.   

 

Furthermore, traders’ participation and dynamic interaction have a positive effect on the 

information aggregation efficiency of  a prediction market. In other words, increases in traders’ 

participation and learning activities enhance the ability of  the market to reveal traders’ mean 

belief. Higher information aggregation efficiency indicates more accurate market prediction. 

However, a higher level of  traders’ participation and enhanced traders’ dynamic interactions 

do not necessarily lead to more accurate market forecasts, as the information in the market is 

not always highly certain (Sunstein 2006a).  

 

The aforementioned research findings are summarized by the following revised research 

model (Figure 7.1) and the corresponding hypotheses:   

 

 

Figure 7.1 Revised Research Model 

 

Ha: In a thin internal prediction market, concealment of  quote information leads to higher 

traders’ participation activity; in a thick internal prediction market, the transparency level of  

quote information does not have an effect on traders’ participation activity.    

 

Hb: In a thin internal prediction market, concealment of  price information leads to a greater 

prevalence of  traders’ dynamic interactions; in a thick internal prediction market, greater 

disclosure of  different traders’ quote information leads to a greater prevalence of  traders’ 
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dynamic interactions than either concealment or full disclosure of  traders’ quote information. 

 

Hc: An increased level of  traders’ participation activity in a prediction market leads to higher 

information aggregation efficiency. 

 

Hd: An increase in traders’ dynamic interactions in a prediction market leads to higher 

information aggregation efficiency. 

 

He: Higher information aggregation efficiency of  an internal prediction market leads to more 

accurate prediction market forecasts.  

 

7.2 THEORETICAL CONTRIBUTIONS 

This dissertation contributes to the literature on information transparency and prediction 

markets. With regard to information transparency, first, we theoretically develop and 

empirically test the impacts of  information transparency in the context of  prediction markets. 

This extends previous studies on information transparency that focused on B2B (Zhu 2004) 

or B2C markets (Granados et al. 2010). Prediction markets represent a different type of  

market, namely a double auction. Particularly considering the similarity between prediction 

markets and financial markets (Hanson 2006), the information transparency results of  this 

study are likely to hold for financial markets.  

 

Second, this dissertation contributes to the research stream of  transparency strategy. 

Following the seven key components of  transparency strategy identified by Granados et al. 

(2010), our study particularly focuses on information elements and potential actions (see 2.2.3). 

To be specific, we investigate the effect of  price information transparency on traders’ behavior 

and prediction market performance.  

 

Within the scope of  price transparency, this dissertation extends the current literature on the 

effect of  different types of  price transparency on markets. Price information falls into several 

categories, such as quote, trade, and order flow. Different price information components have 

different effects on a market, and even the same type of  price information may have different 

impacts on different types of  markets (Bloomfield and O’Hara 1999). By investigating quote 

information and its transparency effect in prediction markets, this research has further 

explored price transparency in designing new market types.  

 

With regard to the literature on prediction markets, first, this research adds to theory 

development in prediction markets. Prior research primarily focused on the effects of  
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incentives (such as Bondarenko and Bossaerts 2000; Gruca et al. 2005; Malone 2004b; Rhode 

and Strumpf  2004), market size (such as Berg et al. 2008; Tetlock 2007) and contract design 

(such as Wolfers and Zitzewitz 2004; 2006b) on prediction market forecasting accuracy. This 

dissertation addresses prediction markets from the perspective of  information transparency. 

Advanced information technologies have driven the adoption of  web-based prediction 

markets. This research further shows how information technologies can affect the 

performance of  web-based prediction markets. In turn, this dissertation fills the research gap 

on contemporary web-based prediction markets and links the discipline of  IS to the study of  

prediction markets. 

 

Moreover, this research distinguishes information aggregation efficiency and market 

performance for the analysis of  aggregation. Existing research on prediction markets mostly 

focused on market efficiency and measured this variable by assessing the market’s forecasting 

accuracy (such as Gruca et al. 2005; Plott 2000). This measurement is based on the principle 

that if  a market aggregates information efficiently, all the relevant information will be 

reflected in the price of  contracts, and therefore, the market prediction ought to be accurate. 

Nevertheless, it neglects the truth that, in reality, no one has accurate information about the 

future. Moreover, a market successfully aggregates information, even information that does 

not necessarily lead to an accurate prediction. The reverse is also true: an inaccurate market 

forecast does not definitely indicate inefficient information aggregation. 

 

Subsequently, we propose a measurement of  information aggregation efficiency. This not only 

enables the assessment of  information aggregation in a prediction market but also fulfills the 

increased need of  companies to use prediction markets to collect employees’ agreed opinion 

rather than to forecast specific outcomes. Additionally, our study on the relationship between 

information aggregation efficiency and market predictive accuracy further contributes to the 

research stream of  prediction markets by theoretically developing and testing the relationship 

between these two variables.  

 

Furthermore, this research incorporates traders’ individual activities to explain the effect of  

information transparency on market performance. Specifically, this research investigates how 

price transparency influences traders at the individual level and the results at the aggregate 

level of  prediction markets. We take two different individual activities into consideration that 

are likely to affect the aggregation level, namely traders’ participation level and traders’ 

dynamic learning behavior. Indeed, Bapna et al. (2004) contented that understanding 

individuals’ activities is crucial to enhance the design of  online markets. Our study on 

individual traders’ activities, in turn, contributes to the design of  web-based prediction 

markets. 
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Finally, this dissertation adds to the research on new applications of  prediction markets inside 

a company, which are referred to as internal prediction markets (Hahn and Tetlock 2006; 

Wolfers and Zitzewitz 2004). Although the literature contains references to numerous 

companies, such as Dentsu (Pethokoukis 2004), Eli Lilly (Hahn and Tetlock 2006; 

Pethokoukis 2004), Intel Corporation (Malone 2004), Microsoft (Hahn and Tetlock 2006), and 

Siemens (Ortner 1998), that are actively employing prediction markets in their businesses, little 

scientific research has been done on the implementation and performance of  these internal 

markets. The current research on internal prediction markets is limited to HP (Plott and Chen 

2002) and Google (Cowgill et al. 2008). The lack of  empirical research on internal prediction 

markets may impede the adoption and contribution of  prediction markets in the real business 

world. Therefore, this dissertation extends the literature on internal prediction markets and 

encourages its practice in business. 

 

In addition to literature, this dissertation also contributes to research methodology by using 

multiple research methods. Multi-method research is desired but not common in IS. Mingers 

(2001) showed that only a tiny proportion of  IS empirical research adopted multiple methods; 

two-thirds of  these research combinations involved similar approaches, such as surveys, 

interviews, and/or case studies. He contended that these types of  research combinations are 

not equivalent to the desired pluralist methodology of  a wide diversity of  different approaches. 

It is in fact just a narrow spectrum centered around traditional approaches with very few 

cross-paradigm linkages. This dissertation adopts various different research methods, 

including case studies, laboratory and field experiments, and surveys. Therefore, this 

dissertation adds to IS research with a pluralist methodology and demonstrates the feasibility 

of  multi-method research in IS. 

 

7.3 MANAGERIAL IMPLICATIONS 

In addition to the theoretical contributions, the contributions to practitioners are of  

paramount importance to our research. In this section, we discuss the managerial implications 

of  our study. 

 

7.3.1 Use of  Internal Prediction Markets 

Prediction markets are generally considered as a forecasting tool, and therefore, their 

forecasting accuracy is always assessed. Similar to previous research, our research, particularly 

the case studies and field experiments, show again that internal prediction markets are able to 

forecast an accurate outcome of  future events. Moreover, the one-hour ad-hoc play time 

adopted by Wasu Taobao demonstrates that an internal prediction market has the possibility 
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to forecast within very limited market duration.  

 

Besides forecasting, prediction markets are used for many other management purposes, such 

as idea selection and information aggregation (Chen and Plott 2002; Chen et al. 2009; Chen et 

al. 2010; Hanson 1992; Hanson 1995; Ottaviani 2009; Passmore et al. 2005; Spears et al. 2009). 

In the case of  Wasu Taobao, its managers aimed to learn employees’ agreed opinions on sales. 

The corresponding field experiment illustrates the application of  internal prediction markets 

as an information aggregation mechanism. Particularly, with the proposed measurement of  

information aggregation efficiency in this dissertation, managers are able to evaluate to what 

extent the market outcome reflects the agreed opinions of  employees. This may also become 

an indicator for managers to decide whether or not the market forecast should be adopted. 

 

Furthermore, the current empirical studies on internal prediction markets are limited to the 

western business context. It is yet unclear if  any difference, such as culture, between the West 

and the East, may influence the feasibility of  using prediction markets inside Eastern 

companies. Wasu Taobao’s internal prediction markets, conducted in a new, dynamic and 

highly uncertain business environment, not only demonstrate the considerable potential for 

prediction markets in managerial decision-making but also manifest the feasibility of  

connectivity and collaboration between the East and the West through efficient IS.  

 

Finally, according to the follow-up study of  our case study, employees bring updated private 

information into a market by incorporating this information into their trading decisions. This 

behavior not only positively affects market performance but also meets managers’ 

expectations, as they use prediction markets to aggregate updated inside information from the 

front line. 

 

7.3.2 Conduct of  Internal Prediction Markets 

Given the opportunity to design, establish and operate numerous internal prediction markets 

during the research, we have gained insights into conducting an internal prediction market. 

These insights inductively yield guidance for practitioners to build up a prediction market in 

their own companies. We identify four major phases of  conducting an internal prediction 

market: design, development, implementation and evaluation (see Figure 7.2a).  

 

In the first phase of  design, all the necessary elements of  an internal prediction market, such 

as contracts, traders, incentives, market duration and information presentation, should be 

considered and determined. For instance, with regard to traders, the practitioner should 

consider access to the market, whether employees will be allowed to self-select to be a trader 
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or if  participation will be by invitation only. In the latter case, the practitioner must determine 

the number of  invited employees. The proportion of  very active traders is commonly low. In 

our empirical studies, the rate was approximately 12%. Therefore, the company may invite a 

relatively larger group of  employees in order to ensure a sufficient group of  active traders in 

the market. Moreover, the department affiliation of  the invited employees ought to be 

carefully considered. Information brought by the employees from different departments may 

vary. The relevance and diversity of  information about a future event are crucial to market 

performance. Consequently, when practitioners design an internal prediction market, they 

must take factors into consideration that influence market performance.  

 

In the second phase of  development, the applicable support infrastructure must be developed, 

including the web-based trading interface, the associated database, user account management 

and technologies and methods of  communicating with traders. System or software testing and 

the pilot study are crucial, as technical problems may demotivate employees to participate. 

Traders’ inactivity, in turn, hampers information aggregation and eventually market 

performance. In addition, due to competition and self-interest, there could be fraud or 

manipulation performed by some traders in an internal prediction market. For example, in our 

field experiments, we found that a single employee had double registered with two different 

email addresses. We successfully detected this behavior as we required each employee to 

register with his or her own company email address, which is unique to each employee. Once a 

non-company email address was found in the system, we could immediately eliminate that 

account. It is hard to prevent certain frauds, and overly restrictive game rules may reduce 

traders’ activities. However, companies must develop certain methods to detect fraud and 

measures to correct manipulations. 

 

In the following phase of  implementation, an internal prediction market is launched. Before 

the kick-off  of  the prediction market, an introduction and a trial play for traders are 

recommended. As not every trader has knowledge or experience about trading in a prediction 

market, the trial play with assistance can help them learn quickly. Furthermore, a debriefing of  

market performance and an announcement of  the winning traders is strongly recommended. 

The “game” results usually motivate traders to continue playing in subsequent prediction 

markets. According to our field experiments, we observed that traders were eager to know the 

winning results. This is probably due to the competition institution of  the market. Winners 

showed pride and excitement after debriefing and became stable active traders. Additionally, 

debriefing can be companywide, even if  only a few employees participated in a market. This 

companywide debriefing may remind or inspire some employees to become new traders. We 

considered this an important reason why many uninvited employees later actively registered 

and joined the internal prediction markets of  Wasu Taobao. 



161_Erim ShenYun Yang BW_Stand.job

145 

 

The last phase of  evaluation is particularly important if  a company would like to adopt 

internal prediction markets as its long-term decision-making tool, as the evaluation can help 

the company continuously improve the operation of  internal prediction markets and 

eventually better serve the company’s management. This evaluation should not only 

concentrate on market performance, such as forecasting accuracy, but also traders’ feedback. 

The company may carry out an online survey to understand the difficulty of  implementation 

and develop the solution accordingly. For example, in our case study, a follow-up online 

questionnaire study among the traders revealed that constrained time was the major reason for 

employees not taking part in the internal prediction markets actively or even at all. In the trial 

field experiment of  Wasu Taobao, the same issue was revealed. Accordingly, in the following 

experimental internal prediction markets, Wasu Taobao proposed one-hour ad-hoc play time 

of  prediction markets every day. Given this top-down encouragement, the participation and 

the trading activities of  employees were remarkably increased.   

 

Last but not least, it should be noted that for a single internal prediction market, the four 

phases occur chronologically. However, for a company running prediction markets in the long 

run, these phases in fact form a cycle (see Figure 7.2b). The previous market experience is 

always the foundation for improving the following ones. 

 

7.4 LIMITATIONS 

In this dissertation, we investigate traders’ learning behavior in accordance with their trading 

activities in a market. There in fact can be another supplementary measurement by comparing 

a trader’s individual estimation of  a future event before and after a prediction market. This 

comparison can indicate whether traders learn in a market. In the case study, we could not 

observe traders’ initial personal estimation of  sales in advance of  the prediction markets. We 

attempted to make up this limitation in our later field experiment. We asked invited employees 

to fill in their personal predictions of  the future events via an online questionnaire. 

Unfortunately, few employees provided their individual predictions. Consequently, we again 

could not execute this measurement of  traders’ learning.    
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To gain an understanding of  traders’ activities, particularly, traders’ dynamic interactions under 

different information transparency levels, we investigated traders’ use of  different information 

sources by a follow-up questionnaire survey after each laboratorial experimental market. 

However, this study did not allow us to instantly trace how a trader uses different information, 

particularly, price information for a trading decision. In addition, the survey results may reflect 

traders’ subjective thoughts regarding how they incorporated different information sources in 

their trading decision rather than the actual behavior during the market. Consequently, the 

explanatory power of  traders’ use of  information sources based on survey results is reduced. 

 

With regard to managerial practice, we did not measure decision makers’ perceptions about 

market performance. Although we explored their motivations for an internal prediction 

market, we did not evaluate the market performance based on their satisfaction. Similar to 

their different motivations, those decision makers, such as general managers, may hold 

different criteria of  a market outcome. We measured market performance based on 

forecasting accuracy in this research. Nevertheless, in practice, it is in fact more important to 

assess if  managers think that market performance is satisfactory according to their own 

criteria. A decision maker’s evaluation of  market performance fundamentally determines 

whether or not internal prediction markets will be conscientiously adopted inside a company.   

 

7.5 FUTURE RESEARCH 

With regard to the key variable of  this research, namely information transparency, we focused 

on quote information. However, numerous types of  price or non-price information can be 

shown on a web-based prediction market platform, such as the last five transactions of  each 

contract and the dynamic ranking of  traders. The presence or absence of  a certain type of  

information is in fact another dimension of  information transparency. To extend the research 

on information transparency in prediction markets, we suggest continuing with the 

aforementioned dimension.    

 

As discussed in the limitations, we intended to capture traders’ use of  information sources in a 

prediction market. We are particularly interested in instantly observing the extent and 

consequences of  the price information that captures a trader’s attention. This may help us 

understand how information transparency affects traders’ use of  information sources that 

further influence the traders’ learning. From a methodology perspective, an eye-tracking 

experiment is desired. Facilitated by eye-track equipment and software, all details of  a subject’s 

eye movement can be recorded, such as the watching sequence of  objects and the duration of  

eye stay on a certain object. Duchowski (2007) introduced the possibility of  tracking a 

subject’s eye movements to allow researchers to follow along the path of  the subject’s 
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attention. Thus, we may gain insight into what the subject found interesting, what drew his or 

her attention. We may even obtain a clue as to how that person perceived whatever scene he 

or she was viewing. Accordingly, in future research on trader’s behavior in a web-based 

prediction market, an eye-tracking experiment can be adopted. 

 

Human beings continuously learn during any form of  interactions between them. During the 

field experiment in Wasu Taobao, we noticed that some employees in fact discussed the 

markets and future events via the company instant messenger and all the employees were 

allowed to see the chat. Thus, this online chatting platform became another learning channel 

for traders. Additionally, as employees are the primary traders in internal prediction markets, 

we can imagine that employees may talk about internal prediction markets offline during their 

workday. All these information exchanges outside the market are beyond the research scope in 

this dissertation. Nonetheless, it is interesting to consider these information sources in future 

study on trader’s learning behavior in prediction markets. We may further investigate to what 

extent traders may reveal private information and learn from each other in these online or 

offline social interactions; how traders in turn incorporate learned information into their 

trading activities in a market; and if  traders take advantage of  these additional interactions to 

manipulate the market. 
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APPENDIX 

 

APPENDIX I QUESTIONNAIRE SURVEY FOR THE EXPLORATIVE 

CASE STUDY 

 

Beste Relatiemanagers *** Bank! 

 

Zoals jullie weten zijn jullie onderdeel van een uniek en belangrijk wetenschappelijk onderzoek, 

beter bekend bij jullie als de auctions. Wij willen graag wat meer achtergrond informatie 

verzamelen om de gegevens beter te kunnen interpreteren en daarvoor is deze korte enquete 

ter evaluatie van de eerste auction (verder genoemd de Maart auction) en de tweede auction 

(verder genoemd de Juni auction).  

 

Het invullen van de vragenlijst duurt maximaal 10 minuten. Alle informatie die verzameld 

wordt middels deze vragenlijst wordt met de grootst mogelijke zorgvuldigheid en 

vertrouwelijkheid behandeld. De informatie wordt anoniem geanalyseerd en alle rapportage is 

op groepsniveau en zal uitsluitend gebruikt worden ter ondersteuning van de 

onderzoeksgegevens die al reeds uit de auctions naar voren zijn gekomen.  

   

Alvast hartelijk bedankt! 

 

 

PARTICIPATIE 

 

1. Hoe actief  heeft u deelgenomen aan de Maar t auction?  

   Extreem Inactief  (0 keer ingelogdr) 

   Inactief  (1 - 5 keer ingelogd) 

   Gemiddeld (6 – 10 keer ingelogd) 

   Actief  (11-20 keer ingelogd) 

   Extreem Actief  (meer dan 20 keer ingelogd) 
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3. Hoe actief  heeft u deelgenomen aan de Juni auction?  

   Extreem Inactief  (0 keer ingelogdr) 

   Inactief  (1 - 5 keer ingelogd) 

   Gemiddeld (6 – 10 keer ingelogd) 

   Actief  (11-20 keer ingelogd) 

   Extreem Actief  (meer dan 20 keer ingelogd) 

   

4. Wat deed u meestal wanneer u inlogde in Juni?  

Meerdere antwoorden mogel i jk  

   Niets  

   Observeren van de bewegingen in de markt.  

   Actief  handelen in aandelen  

   Bekijken van de status van mijn uitstaande orders  (bijvoorbeeld toegewezen of  niet) 

   Anders __________________________ 

 

5 Wanneer er  nogmaals een auction gehouden zou word en, zou u dan mee wi llen 

doen? Meerdere antwoorden mogel ijk  

   Ja 

  
 Nee 

 

6.  Waarom zou u weer wi llen meedoen?  

__________________________ 

 

7.  Waarom zou u niet weer wil len meedoen?  

__________________________ 

2. Wat deed u meestal wanneer u inlogde in Maar t?  

Meerdere antwoorden mogeli jk  

   Niets  

   Observeren van de bewegingen in de markt.  

   Actief  handelen in aandelen  

   Bekijken van de status van mijn uitstaande orders (bijvoorbeeld toegewezen of  niet) 

   Anders __________________________ 
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GEBRUIKTE INFORMATIEBRONNEN 

 

De volgende vragen hebben betrekking op de MAART auction  

8. Hoe vaak deed u een bod gebaseerd op uw eigen "gevoel" over wat een accurate 

voorspel l ing was?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 

 

9. Hoe vaak nam u bij het doen van een bod het handelen van anderen in overweging? 

(bijvoorbeeld het hoogste bod, laagste verkooppri js of  laatste transacties)  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 

 

10. Hoe vaak nam u bij het doen van een bod de pr ijs van een aandeel in overweging?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  

 Nooit 
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11. Hoe vaak nam u bi j het doen van een bod de ***productie van *** van de 

afgelopen jaren in overweging?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

   Nooit 

   

12. Hoe vaak nam u bij het doen van een bod de ***productie van *** van de 

afgelopen maanden in overweging?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 

 

13. Welke informatie van buiten de auction nam u in overweging bi j het doen van 

bod?  

__________________________ 

 

14. Maart auction Hoeveel tijd heeft u besteed aan het meedoen met de Maart auction, met 

uitzondering van de briefing die u heeft ontvangen op de relatiemanagersdag? 

   Geen tijd 

   Minder dan een uur 

   Tussen een uur en een halve dag 

   Een dag of  meer 
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De volgende vragen hebben betrekking op de JUNI auction  

 

15. Hoe vaak deed u een bod gebaseerd op uw eigen "gevoel" over wat een accurate 

voorspel l ing was?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 

 

16. Hoe vaak nam u bi j het doen van een bod het  handelen van anderen in overweging? 

(bijvoorbeeld het hoogste bod, laagste verkooppri js of  laatst e transacties)  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 

 

17. Hoe vaak nam u bi j het doen van een bod de prijs van een aandeel in overweging?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 

 

18. Hoe vaak nam u bij het doen van een bod de ***productie van *** van de 

afgelopen jaren in overweging?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

   Nooit 
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20. Welke informat ie van buiten de auct ion nam u in overweging bi j het doen 

van bod? 

__________________________ 

 

21. Maart auction Hoeveel tijd heeft u besteed aan het meedoen met de Juni auction, met 

uitzondering van de briefing die u heeft ontvangen op de relatiemanagersdag? 

   Geen tijd 

   Minder dan een uur 

   Tussen een uur en een halve dag 

   Een dag of  meer 

 

 

VERKOOPVOORSPELLING 

 

22 Hoeveel gepasseerde ***productie zou je gemiddeld als relatiemanager in 2007 uit het 

intermediaire kanaal kunnen halen, uitgaande van de gemiddelde hoofdsom in jouw district? 

Geef  uw indicat ie in mi ljoen EURO  

 __________________________ 

23. Hoeveel geaccepteerde omzet zou je gemiddeld als relatiemanager in de periode *** 2007 

(***campagne) uit het intermediaire kanaal kunnen halen, uitgaande van de gemiddelde hoofdsom 

in jouw district? (Geef uw indicatie in miljoenen euro's) 

Geef  uw indicatie in miljoen EURO  

 __________________________ 

   

 

19. Hoe vaak nam u bij het doen van een bod de ***productie van *** van de 

afgelopen maanden in overweging?  

   Altijd 

   Vaak 

   Soms 

   Bijna nooit 

  
 Nooit 
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PERSOONLIJKE ACHTERGROND 

 

24. Wat is uw naam? (uw gegevens z ijn louter voor de Erasmus Universite it en worden 

niet doorgegeven aan management of  anderen binnen ***, volledige anonimiteit is  

gewaarborgd)  

 
__________________________ 

 

25. Wat is uw geslacht?  

   Man 

  
 Vrouw 

 

26. In welke regio bent u werkzaam?  

   Amsterdam 

   Midden NL 

   Rotterdam 

   Zuid Holland 

   Arnhem / Nijmegen 

   IJsselland 

   Noord Holland 

   Oost Brabant 

   Limburg 

   Noord Nederland 

   Oost Nederland 

   W&M Brabant 

  
 Zuid West NL 

 

27. Hoe lang werkt u nu voor *** ***?  

   Minder dan 1 jaar 

   1 – 3 jaar 

   3 – 5 jaar 

   5 – 10 jaar 

   meer dan 10 jaar 
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PERSOONLIJKHEID 

Sterk mee oneens   Sterk mee eens 

28.1. In onzekere ti jden verwacht ik vaak het ergste.       

28.2. Ik ontspan mij gemakkeli jk .       

28.3. Als bij mij iets verkeerd kán gaan, dan gáat het ook 

verkeerd .  

     

28.4. Ik ben alt i jd optimist isch over mijn toekomst .       

28.5. Ik geniet veel van mijn vrienden.       

28.6. Ik vind het belangr ijk om bezig te z ijn.        

28.7. Ik verwacht dat bijna nooit de dingen gaan zoals ik wil .       

28.8. Ik ben niet gemakkel i jk van mijn stuk te brengen.       

28.9. Ik reken er bijna niet op dat mij goede dingen 

overkomen.  

     

28.10. Over het algemeen verwacht ik dat mij meer goede dan 

slechte dingen overkomen.  

     

 

 

OPMERKINGEN 

  

29. Ziet u het mogel ijke nut van auct ions voor ***. Indien u nog overige vragen , 

opmerkingen of  klachten heeft over de auctions of  deze vragenli jst , dan kunt 

u deze ook hieronder invullen.  

    __________________________   

28. Hoe lang werkt u nu in de *** markt?  

   Minder dan 1 jaar 

   1 – 3 jaar 

   3 – 5 jaar 

   5 – 10 jaar 

   meer dan 10 jaar 
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APPENDIX II GENERAL INSTRUCTIONS OF THE EXPERIMENT 

This experiment comprises of  three rounds. Each round consists of  a market and a 

questionnaire. The entire experiment is expected to accomplish within 60 minutes. The market 

allows you to trade contracts that represent the 2008 annual sales of  a certain product 

category on TaoBao, a B2C and C2C online market in China.  

 

Each player begins with 1,000 points play money and 10 shares of  each contract in a market. 

There are five contracts in one single market. Only one of  them represents the true annual 

sales of  the product category in 2008. During the course of  trading, you can buy or sell shares 

on any given contract. If  you think that a contract corresponds with the true annual sales 

outcome, or you believe that the price of  a contract is going to go up, buy shares of  that 

contract from other players. If  you think a contract does NOT correspond with the true sales 

result, or believe the price is going to go down, sell your shares of  that contract to other 

players. Every market is open for 10 minutes. When a market is closed, you will no longer be 

able to trade.  

 

On your table, you will find three piles of  documents, labelled as Round 1, Round 2, and 

Round 3. They correspond with the rounds of  experiments in sequence. Each pile of  

documents includes an instruction of  the web-based trading system for that certain round, the 

monthly sales from January till June 2008 of  the product in that certain round, a piece of  

private information - giving you the clue of  the true annual sales, and a questionnaire. Please 

fill in the questionnaire when a market is closed.  

  

Rewards: 

1. Attendance reward: every student who completes the entire experiment will be 

rewarded cash €10.00. 

2. Prediction based reward: You can earn €0.50 euro per share exceeding the endowment 

(10 shares) of  the contract which corresponds with the actual annual sales outcome 

of  each market. The maximum number of  shares you may earn = (total number of  

traders in your group – 1) * 10. 

3. Trading based reward: when a market is closed, the person who has the most play 

money left in his or her funds will be rewarded €2.00. However, this person must 

have conducted trading in this market. Otherwise, this reward will be given to the 

person has the second most play money, and so on. In case that there is more than 

one person are eligible for this reward, the reward will be equally distributed among 

them. 
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Please note: 

1. Do NOT communicate with any subject. 

2. Please put on the headphone during the entire experiment. 

3. If  you have any problem with the web-based trading system, please come to the 

control room immediately and ask. 

4. You can obtain the rewards only if  you accomplish the entire experiment. The 

rewards will be distributed in the end of  the entire experiment 

5. When you finish the entire experiment, please leave all the documents on your table.   
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APPENDIX III AN EXAMPLE OF AN INFORMATION SET GIVEN TO 

A SUBJECT IN THE LABORATORY EXPERIMENTS  

 

Prediction Market Platform Descriptions 

 

A: Event being predicted in this market. 

B: Status of  the market. 

C: Refresh so as to see all the updated information on the website. You may press the 

button “REFRESH” on the website frequently to see the most updated information. 

Please do not press button “F5” on the keyboard to refresh the website, as it will lead you back to the 

login screen. 

D: Number of  shares of  each stock you possess. 

E: Last transaction price of  each stock. A transaction occurs when there is a buy order 

lower or equal to a sell order in terms of  price. 

F:  Total value of  each stock you possess = D * E. 

G: The amount of  play money available in your fund. 

H: Line chart of  all the transaction prices of  each stock over the trading time. 

I: Order status, including complete, running, or infeasible. When you find an order 

becomes infeasible, you cannot delete or change it, but submit a new order. 
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J: Lowest sell/Highest buy running order of  each stock in the market. It will display as 

“quantity @ price” (e.g. 5@2). This information will update automatically, though with a 

bit delay. Therefore, we suggest you pressing “refresh” button for the most updated 

information. 

 

Please do not write on this page, as we will re-use it in the next experiment!  
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Private Information 

 

 

 

 

The event being predicted in this market is:  

 

 

 

Sales of  product category “Female Clothing” on TaoBao in 2008 

 

 

 

 

 

 

The inside information reveals that 

 

 

 

The actual sales of  product category “Female Clothing” on TaoBao in 2008 

does NOT lie in “7,911-7,914 million RMB”. 

 

 

 

 

 

 

Please do not write on this page, as we will re-use it in the next experiment!  
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Historical Sales Information 

 

 

Sales of  product category “Female Clothing” on TaoBao  

from January to June in 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please do not write on this page, as we will re-use it in the next experiment! 

-
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APPENDIX IV AN EXAMPLE OF A QUESTIONNAIRE AFTER EACH 

MARKET IN THE LABORATORY EXPERIMENTS  

 

1. The historical sales information from January to June 2008 was important to my trading 

decisions. 

 Strongly agree 

 Agree 

 Neutral     

 Disagree 

 Strongly disagree 

 

2. The private information regarding the annual sales in 2008 was important to my trading 

decisions. 

 Strongly agree 

 Agree 

 Neutral     

 Disagree 

 Strongly disagree 

 

3. The line chart of  transaction prices of  each stock over the trading time period on the 

website was important to my trading decisions. 

 Strongly agree 

 Agree 

 Neutral     

 Disagree 

 Strongly disagree 

 

4. The last transaction price of  each stock on the website was important to my trading 

decisions. 

 Strongly agree 

 Agree 

 Neutral     

 Disagree 

 Strongly disagree 
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5. The “Lowest Sell” and “Highest Buy” of  each stock on the website were important to my 

trading decisions. 

 Strongly agree 

 Agree 

 Neutral     

 Disagree 

 Strongly disagree 

 

6. Please rank the following information sources from 1 (most important) to 6 (least 

important) 

 Historical sales information Jan-June 2008 

 Private information 

 Line chart of  transaction prices on the website     

 Last transaction price of  each stock on the website 

 Lowest sell / Highest buy of  each stock on the website 
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GLOSSARY 

 

A 

 

Absolute accuracy: the accuracy of 

prediction markets that is evaluated against the 

actual outcome.  

 

Adaptive learning: a theory states that 

economic agents initially may not know the 

exact information they need to predict the 

relevant outcomes. Nevertheless, the agents are 

willing and able to learn over time. As a result, 

the agents are able to keep updating their 

expectations based on the newly-received 

information. 

 

Ask: a sell order made by a trader in a market. 

 

B 

 

Between-method triangulation: the use of 

multiple methods to examine the same 

dimension of a research problem. 

 

Bid: a buy order made a by trader in a market. 

 

C 

 

Case study: an empirical inquiry that 

investigates a contemporary phenomenon 

within its real-life context, especially when the 

boundaries between a phenomenon and 

context are not clearly evident. 

 

Collective wisdom: see the wisdom of 

crowds. 

 

Collective intelligence: see the wisdom of 

crowds. 

 

Continuous double auction (CDA): a 

market mechanism in which buyers submit 

bids and sellers submit asking prices and the 

mechanism executes a trade whenever the two 

sides of the market reach a mutually agreeable 

price. A CDA poses no risk for the market 

institution, as it only matches willing traders. 

However, a CDA may suffer from illiquidity in 

the form of huge bid-ask spreads or light 

trading. 

 

Continuous double auction with market 

maker (CDAwMM): a market mechanism 

similar to CDA. This mechanism has a market 

maker, who is willing to accept a large number 

of buy and sell orders at particular prices. A 

CDAwMM has built-in liquidity, as the market 

maker itself  is usually affiliated with the market 

institution. Nevertheless, the market maker is 

exposed to significant risk of large losses. As a 

result, the liquidity is at a cost. 

 

Contract: a product traded in a prediction 

market. 

 

D 

 

Dynamic pari-mutuel market (DPM): a 

market mechanism that is a hybrid between a 

CDA and a PM. This DPM in turn solves the 

CDA’s problem of  illiquidity and allow for 

continuous information incorporation, which 

is not possible in a standard PM. 
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E 

 

Efficient market hypothesis: in an efficient 

market, prices always “fully reflect” all available 

information. 

 

Electronic market hypothesis (EMH): a 

hypothesis posits that advanced IT reduces 

coordination costs between suppliers and 

buyers and motivates the dominance of 

electronic market-based forms of economic 

activity. The EMH predicts that biased 

electronic markets will emerge as suppliers take 

advantage of IT to lock in buyers. However, 

unbiased electronic markets will gradually 

dominate. In unbiased electronic markets, all 

products and suppliers can be evaluated by 

buyers to make well-informed decisions and 

information is complete, accurate, and real 

time. 

 

Engaged scholarship: an implication of a 

fundamental shift in how scholars define their 

relationships with the communities. This 

engagement refers to the relationship that 

involves negotiation and collaboration between 

researchers and practitioners in a learning 

community; such a community jointly 

produces knowledge that can both advance the 

scientific enterprise and enlighten a community 

of practitioners. This approach of engaged 

scholarship can address the widening gap 

between research and practice in management. 

 

Experiment: a study in which an intervention 

is deliberately introduced to observe its effects. 

 

F 

Field experiment: an experiment employs a 

nonstandard subject pool with field context in 

the commodity, task, or information set that 

the subjects can use in the environment where 

the subjects naturally undertake these tasks and 

do not know that they are in an experiment. 

 

I 

 

Incentives: a monetary or non-monetary item 

that is given to motivate traders to trade and 

reveal information in a prediction market. 

 

Index: a type of contract, in which the amount 

that the contract pays varies in a continuous 

way based on a number that rises for falls. This 

contract price represents the mean value that 

the market assigns to the outcome. 

 

Information aggregation: a process that 

aggregates private information held by traders 

and disseminates this information in the 

market. 

 

Information aggregation efficiency: the 

ability of the market to synthesize the traders’ 

mean belief.  

 

Information technology (IT): technological 

artifacts that enable electronic markets, such as 

Internet, network technologies, and 

communication technologies. 

 

Information transparency: the degree of 

visibility and accessibility of information. 

 

Information transparency hypothesis: a 

hypothesis posits that open sharing of 
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information in electronic markets is beneficial 

to all traders. 

 

Informed trader: a trader, who has a piece of 

information about the future event being 

predicted in a prediction market. 

 

Internal prediction market: a prediction 

market that is used inside a company, only 

open for selected traders, who are usually 

employees. 

 

Insider: see informed trader. 

 

J 

 

Judgmental forecasting method: a 

forecasting method that makes predictions by 

sourcing information from individuals. 

Examples: customer survey and expert 

opinions. 

 

L 

 

Laboratory experiment: an experiment that 

allows researchers to deliberately divorces a 

phenomenon from its context, and thus, 

focuses on only a few variables in a highly 

controlled environment. 

  

M 

 

Marginal trader: a trader who is relatively free 

of judgment bias, and thus, consistently buys 

and sells at prices very close to the equilibrium 

price, which reflects all the available 

information about the future events. These 

traders are usually more rational and can drive 

the efficiency of market prices in spite of large 

numbers of traders who display constantly 

suboptimal behavior.  

 

Market transparency: the level of availability 

and accessibility of information about products 

and market prices. 

 

Market scoring rules (MSR): a market 

mechanism that is developed based on scoring 

rules. A MSR can be conceptualized as a 

market provides a two-sided automated market 

maker that is always willing to accept a trade on 

any event at some price. A MSR allows for 

simultaneous predictions over many 

combinations of  outcomes instead of 

requiring separate markets for each 

combination of possible outcomes.  

 

Methodological pluralism: a position that 

favors a diversity of methods, theories, even 

philosophies, in scientific inquiry. It lies 

between the extremes of methodological 

monism and the anarchy of an “any-thing goes” 

attitude. The emergence of methodological 

pluralism in IS is mainly due to the gradual 

unfolding of the human, organizational, and 

social dimensions of this discipline.   

 

O 

 

Outsider: see uninformed trader.. 

 

P 

 

Pari-mutuel market (PM): a market 

mechanism in which all of the money that is 

bet goes into a common pot and is then 
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divided among the winners. A PM does not 

have the problem with liquidity or involve risks 

for loss, because traders can place a bet on any 

outcome at any time and no need for a market 

maker. Prices in this mechanism, however, do 

not reflect the continuously updated 

information, as traders do not place bets until 

either all information is revealed or the market 

is about to close. 

 

Prediction market: designed and conducted 

for the primary purpose of aggregating 

information so that market prices forecast 

future events. In such markets, a group of 

traders trade in contracts whose payoff 

depends on unknown future events. 

 

Prediction market mechanism: a market 

mechanism determines how buyers and sellers 

are matched in a prediction market. 

 

Predictive accuracy: the most adopted 

measurement of prediction market 

performance. The smaller the discrepancy 

between a prediction and the actual outcome is, 

the more accurate is the prediction. Market 

predictive accuracy can be categorized in to 

absolute accuracy and relative accuracy. 

 

Price transparency: the revelation of 

information about prices, such as current 

market prices, quotes, and historical transaction 

prices. 

 

Public prediction market: a prediction 

market that gives free entry to any one. 

 

R 

Rational expectation theory: in the aggregate, 

the expected price is an unbiased predictor of 

the actual price. According to this theory, all 

available information to traders in a market is 

revealed by prices in the process of trading. 

 

Relative accuracy: the accuracy of prediction 

markets that is evaluated against the prediction 

of competing forecasting methods. 

 

S 

 

Sequential triangulation: the use of multiple 

methods which requires a researcher to use the 

results of one method as the basis for a new 

study of the same concept with a different 

method. In turn, the methods are dependent. 

 

Simultaneous triangulation: the use of 

multiple methods in the same study to measure 

the same phenomenon. By checking the 

consistency of the multiple evidences, the 

results of the study is considered more 

convincing. 

 

Spread: a type of contract, in which, traders 

differentiate themselves by bidding on the 

cutoff that determines whether an event 

occurs. For example, either one team will win 

by at least a certain number of points or not in 

a football game. Combining with the setting 

that winners double their money while losers 

receive zero, the corresponding price indicates 

the market’s expectation of the median 

outcome. 

 

Statistical forecasting method: a forecasting 

method that makes predictions by discovering 
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a pattern of historical data. Examples: time 

series models and structural models. 

 

T 

 

Thick market: a market with a large number 

of participants. 

 

Thin market: a market with only a few 

participants. 

 

Trader: a participant in a prediction market, 

who buys and sells contracts. 

 

Trader’s dynamic interaction: a trader’s 

revision of  buy or sell orders on contracts. It is 

not only the consequence of learning, but also 

the cause of another trader’s revision. 

 

Transparency strategy: a set of policies and 

decisions that a firm makes to disclose, conceal, 

bias, or distort market information. 

 

Triangulation: the combination of 

methodologies in the study of the same 

phenomenon. Triangulation is a form of the 

pluralist methodology.  

 

U 

 

Uninformed trader: a trader, who does not 

have a piece of information about the future 

event being predicted in a prediction market. 

 

W 

 

Winner-take-all: a type of contract, in which 

the contract costs some amount of money and 

pays off only if  a specific event occurs. The 

price on a winner-take-all market represents the 

market’s expectation of the probability that an 

event will occur based on the assumption of 

neutral risk. 

 

Wisdom of  crowds: the aggregation of the 

dispersed information in groups. 

 

Within-method triangulation: the use of 

multiple techniques within a given method to 

collect and interpret data, such as a survey 

questionnaire with different scales measuring 

the same “empirical uniP3.” 
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SUMMARY 

 
The increased complexity of  the business environment, such as globalization of  the market, 
faster introduction of  new products, more interdependencies among firms and financial crises, 
has reduced the forecasting accuracy of  conventional prediction methods based on historical 
data or experts. Over the past decade, some in the business world have come to believe that 
the best forecasts emerge from neither past behavior patterns nor far-removed experts who 
analyze markets, but rather crowds; the front-line employees who are working directly with 
new products and services and interacting daily with buyers, sellers and customers in the field, 
as they have the most relevant and updated information and knowledge required for 
forecasting.  
 
A prediction market is an elegant and well-designed method for capturing the wisdom of  
crowds and predicting the outcome of  a future event. Prediction markets can be powerful 
information-processing mechanisms that aggregate the views of  multiple market traders to 
generate a prediction of  the future. Its promising forecasting results have inspired much 
enthusiasm among both researchers and practitioners in recent years. The use of  prediction 
markets for aggregating information about the future is based on the efficient market 
hypothesis and the rational expectations hypothesis. These theories suggest that prices in a 
market reflect all available information about the future, and therefore, prices imply the 
prediction of  the future. 
 
This dissertation entails two major research objectives. First, we aim to understand traders’ 
behavior in a prediction market within a firm, as traders are often front-line employees and 
their behavior in a prediction market is dynamic and has a great effect on market performance. 
Second, this dissertation adopts the information-based view to investigate the effect of  
information transparency on prediction market performance. Accordingly, this dissertation 
answers the following two research questions: (1) How do traders behave in an internal prediction 
market?; and (2) How does information transparency in an internal prediction market influence market 
performance? 
 
This dissertation adopts a pluralist methodology to investigate the research questions. The 
case study (Chapter 4) investigates the activity of  and dynamic interactions between traders in 
an internal prediction market. The subsequent laboratory experiment (Chapter 5) examines 
the effect of  price information transparency on market performance via traders’ behavior. 
The field experiment (Chapter 6) further investigates different levels of  price information 
transparency in an internal prediction market in a real business environment. 
 
The results show that in a prediction market, the disclosure of  different traders’ buy and sell 
orders enhances dynamic interactions between traders, though the disclosure does not have an 
impact on traders’ participation activity. However, the disclosure of  all buy and sell orders will 
impede, rather than further improve, the traders’ dynamic interactions in a market. 
Furthermore, increases in traders’ participation activity and traders’ dynamic interactions in a 
prediction market enhance the market’s ability to aggregate dispersed information (i.e., 
information aggregation efficiency), and eventually, lead to more accurate prediction (i.e., 
market predictive accuracy). 
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This dissertation contributes to the academic literature on information transparency and 
prediction markets. With regard to information transparency, it extends current research by 
investigating its effect in a new type of  market. Second, this work contributes to the research 
stream of  transparency strategy by focusing on a particular information element (i.e., quote 
information) and its impacts (i.e., its influence on traders’ behavior and market performance). 
This dissertation takes an information-based view to study prediction markets and highlights 
the importance of  information transparency in their design. This research distinguishes 
between information aggregation efficiency and market predictive accuracy for the analysis of  
prediction market performance by defining and developing a measurement of  information 
aggregation efficiency. It examines traders’ activities in a real business environment to enhance 
our understanding of  traders’ behavior in an internal prediction market and its influence on 
market performance, improving the design of  internal prediction markets. Furthermore, our 
empirical study in a new, dynamic and highly uncertain business environment demonstrates 
the considerable potential of  prediction markets in managerial decision-making.  
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NEDERLANDSE SAMENVATTING (DUTCH SUMMARY) 

 
De toegenomen complexiteit van bedrijfsomgevingen, zoals de globalisering van de markt, 
snellere introductie van nieuwe producten, meer onderlinge afhankelijkheid tussen bedrijven 
en de financiële crisis, heeft de nauwkeurigheid van conventionele voorspellingsmethoden op 
basis van historische gegevens of  deskundigen verminderd.  
 
De afgelopen tien jaar, zijn sommigen in de zakelijke wereld ervan overtuigd geraakt  dat de 
beste voorspellingen niet gegenereerd worden via gedragspatronen uit het verleden noch 
middels experts die markten van ver af  analyseren, maar via de massa; de eerstelijns 
medewerkers die werken met nieuwe producten en diensten en de dagelijkse interacteren met 
kopers, verkopers en klanten in het werkveld, omdat ze over de meest relevante en actuele 
informatie en kennis beschikken die nodig is voor het voorspellen. 
 
Een voorspellingsmarkt is een elegant en goed ontworpen methode voor het vastleggen van 
de wijsheid van de massa en het voorspellen van de uitkomst van een toekomstige gebeurtenis. 
Voorspellingsmarkten kunnen krachtige informatieverwerkende mechanismen zijn die de 
meningen van meerdere markthandelaren aggregeren om een voorspelling van de toekomst te 
genereren. De veelbelovende voorspellingsresultaten hebben in de afgelopen jaren tot veel 
enthousiasme geleid bij zowel onderzoekers als practici. Het gebruik van voorspellingsmarkten 
voor het aggregeren van informatie over de toekomst is gebaseerd op de efficiënte markt 
hypothese en de rationele verwachtingen hypothese. Deze theorieën stellen dat de prijzen in 
een markt alle beschikbare informatie over de toekomst weerspiegelen en dat daarom de 
prijzen, het voorspellen van de toekomst, impliceren. 
 
Dit proefschrift omvat twee belangrijke onderzoeksdoelstellingen. Ten eerste is het doel om 
het gedrag van handelaren in een voorspellingsmarkt binnen een bedrijf  te begrijpen, 
aangezien de handelaren vaak eerstelijns werknemers zijn en hun gedrag in een 
voorspellingsmarkt dynamisch is en een groot effect heeft op de prestaties van de markt. Ten 
tweede, neemt dit proefschrift een op informatie-gebaseerd perspectief  om het effect van 
transparantie van informatie op de prestatie van de voorspellingsmarkt te onderzoeken. 
Derhalve beantwoordt dit proefschrift de volgende twee onderzoeksvragen: (1) Hoe gedragen 
handelaren zich in een interne voorspellingsmarkt? en (2) Hoe beïnvloedt transparantie van informatie de 
marktprestatie in een interne voorspellingsmarkt? 
 
Dit proefschrift volgt een pluralistische methodologie om de onderzoeksvragen te bestuderen. 
De case studie (Hoofdstuk 4) onderzoekt de activiteit van en de dynamische interacties tussen 
handelaren in een interne voorspellingsmarkt. Het daaropvolgende laboratoriumexperiment 
(Hoofdstuk 5) onderzoekt het effect van prijsinformatie transparantie op marktprestatie via 
het gedrag van handelaren. Het veldexperiment (Hoofdstuk 6) onderzoekt nader de 
verschillende niveaus van prijsinformatie transparantie in een interne voorspellingsmarkt in 
een daadwerkelijke bedrijfsomgeving. 
 
De resultaten tonen aan dat in een voorspellingsmarkt, de openbaarmaking van de koop- en 
verkooporders van verschillende handelaren de dynamische interacties tussen handelaren 
verbetert, alhoewel de openbaarmaking geen invloed heeft op de participatie activiteit van 
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handelaren. Echter, de openbaarmaking van de koop- en verkooporders, belemmert eerder 
dan dat het de dynamische interacties van handelaren in een markt verder verbetert. 
Bovendien verbeteren toenames in de participatie activiteit en de dynamische interacties van 
handelaren het vermogen van de markt om verspreide informatie te aggregeren (i.e. 
informatie aggregatie efficiëntie) en leiden uiteindelijk tot een meer nauwkeurige voorspelling 
(i.e. de marktvoorspellende nauwkeurigheid). 
 
Dit proefschrift draagt bij aan de academische literatuur over informatie transparantie en 
voorspellingsmarkten. Ten eerste, met betrekking tot de transparantie van informatie, verlegt 
het de grenzen van huidige studies over transparantie van informatie door deze effecten te 
onderzoeken in een nieuw type markt. Ten tweede, draagt dit werk bij aan de 
onderzoekstroming van transparantie strategie door zich te richten op een specifiek 
informatie-element (i.e. quote informatie) en de impact daarvan (i.e. de invloed daarvan op het 
gedrag van handelaren en de marktprestaties). Met betrekking tot de voorspellingsmarkten, 
neemt dit proefschrift ten eerste een op informatie gebaseerd perspectief  om te 
voorspellingsmarkten te bestuderen en benadrukt het werk het belang van transparantie van 
de informatie voor het ontwerp van voorspellingsmarkten. Ten tweede, maakt dit onderzoek 
onderscheid tussen informatie aggregatie efficiëntie en markt voorspellende nauwkeurigheid 
voor de analyse van prestatie van de voorspellingsmarkt door het definiëren en ontwikkelen 
van een maatstaf  voor informatie aggregatie efficiëntie. Ten derde, bestudeert dit onderzoek 
de activiteiten van handelaren in een daadwerkelijke bedrijfsomgeving om het begrip te 
vergroten van het gedrag van handelaren in een interne voorspellingsmarkt en de invloed 
hiervan op de prestatie van de markt, daarmee het ontwerp van de interne 
voorspellingsmarkten verbeterend. Bovendien, blijkt uit onze empirische studie in een nieuwe, 
dynamische en uiterst onzekere bedrijfsomgeving het aanzienlijk potentieel van 
voorspellingsmarkten voor de besluitvorming van managers. 
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l)INFORMATION AGGREGATION EFFICIENCY OF PREDICTION MARKETS

The increased complexity of the business environment, such as globalization of the
market, faster introduction of new products, more interdependencies among firms and
financial crises, has reduced the forecasting accuracy of conventional prediction methods
based on historical data or experts. How can we predict the future? Where can we find
information about the future? 

Over the past decade, some in the business world have come to believe that the best
forecasts emerge from neither past behavior patterns nor far-removed experts who ana -
lyze markets, but rather crowds; the front-line employees who are working directly with
new products and services and interacting daily with buyers, sellers and customers in the
field, as they have the most relevant and updated information and knowledge required for
forecasting. A prediction market, an elegant and well-designed method for capturing the
wisdom of crowds and predicting the outcome of a future event, has been, therefore, intro -
duced. Its promising forecasting results have inspired much enthusiasm among both
researchers and practitioners in recent years.  

This dissertation adopts the information-based view to investigate the effect of
information transparency on traders’ behavior and prediction market performance. The
research consists of three empirical studies. The case study investigates the activity of and
dynamic interactions between traders in an internal prediction market. The subsequent
laboratory experiment examines the effect of price information transparency on market
performance via traders’ behavior. The final field experiment further investigates different
levels of price information transparency in an internal prediction market in a real business
environment. The dissertation distinguishes clearly between information aggregation
efficiency and market predictive accuracy for the analysis of prediction market performance
by defining and developing a measurement of information aggregation efficiency. This
research, as a whole, contributes to the academic literature on information transparency
and prediction markets, and also demonstrates the considerable potential of prediction
markets in managerial decision-making. 
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