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Abstract

In this article we give a new derivation for the waiting time distributions
in an M/M/c queue with multiple priorities and a common service rate by
using elementary lattice paths counting. An advantage of the approach is
that it does not require inversion of the Laplace-Stieltjes transform.
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1. Introduction

Due to their many applications in diverse areas, such as telecommunica-
tion, logistics and health care, priority queues have been extensively studied
in the queuing literature. In many situations where priorities arise, waiting
times are used to evaluate the quality of the service offered to customers
(Baron et al. [2]).

In this paper we focus on the distribution of the waiting times in a non-
preemptive M/M/c queuing model with K priority classes of customers who
are all served at the same rate. The expected value of the waiting times
in this system was first calculated by Cobham [7]. Dressin and Reich [9]
calculated the LST and the probability densities functions of the waiting
times in a non-preemptieve M/M/1 queue with priorities, but the results can
be readily extended to the M/M/c queue. The same results for the M/M/c
queue were derived by Davis [8]. Kella and Yechialy [10] gave an elegant
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derivation of the LST’s of the waiting times by establishing a probabilistic
equivalence between them and the waiting times in an M/G/1 queue with
multiple server’s vacations.

Combinatorial techniques have a long history in analysing queuing mod-
els ([3, 6, 11, 12, 13]). In a recent paper, Böhm [3] illustrates how lattice
paths combinatorics can lead to elegant and simple proofs for several queu-
ing problems. Among others, he employs the kernel method ([1, 4]) to find
the density of the length of the busy period for low priority customers in a
preemptive M/M/1 queue with two priorities and a common service rate.

In this paper we use elementary results on counting lattice paths to ob-
tain the waiting time distributions in the non-preemptive M/M/c queuing
model with multiple priority classes and equal service rate for all classes.
The paper is structured as follows. Section 2 contains some terminology and
preliminary results on lattice paths that will be used in the paper. Section 3
contains the derivation of the distribution of the waiting time of a customer
of arbitrary priority. In Section 4 we verify that the LST of the derived dis-
tribution coincides with the one in Kella and Yechiali [10].

2. Preliminaries on lattice paths

We consider the lattice of points in the coordinate plane with integral
coordinates. Following the terminology of Brualdi [5], given two such points
(p, q) to (r, s), with p ≥ r and q ≥ s, a rectangular lattice path from (p, q)
to (r, s) is a path from (p, q) to (r, s) that is made up of horizontal steps
H = (1, 0) and vertical steps V = (0, 1). A rectangular lattice path that
lies on or above the diagonal y = x in the coordinate plane is called super-
diagonal.

The number of super-diagonal lattice paths between two points in plane
with integer coordinates is given in the following lemma.

Lemma 1. (Brualdi (2009), Chapter 8) The number of super-diagonal lat-
tice paths between the lattice points (p, q) and (l, l) 6= (p, q) with p ≤ q ≤ l is
given by:

N(p,q):(l,l) =
q + 1− p
l − p+ 1

(
2l − p− q
l − q

)
.

Remark that the results in Brualdi [5] are stated for subdiagonal lattice paths,
but the corresponding results for super-diagonal elements are easily derived
from these by symmetry arguments.

2



3. The distributions of the waiting times

Consider a non-preemptive M/M/c queue with K types of customers. We
assume that type i priority customers arrive according to a Poisson process
with rate λi, i = 1, ..., K, where a lower index corresponds to a higher priority.
We consider the case where service rates are equal to a common value µ for
all types of customers. We will make use of the following additional notation:

Λ =
K∑
j=1

λj, ρi =
λi
µ
, ρ =

K∑
j=1

ρj, σi =
i∑

j=1

ρj

Λi =
∑
j<i

λj, γi = Λi + cµ.

To ensure stability for all classes, we assume Λ < cµ.
Tag an arbitrary customer and assume that her priority is i. Let t be her

arrival time and let t+ be the time just after her arrival. Denote by Li(t
+)

the number of customers of priority k ≤ i in the queue at t+. Let Wi be the
waiting time of the tagged customer.

By conditioning on Li(t
+) we obtain:

P[Wi ≤ a] = η0 +
∞∑
n=1

ηi,nP[Wi ≤ a|Li(t+) = n]. (1)

where η0 = P (Li(t
+) = 0) and ηi,n = P (Li(t

+) = n) are calculated in Davis
(1965):

η0 = 1−

[
1 +

(
(1− ρ)c!

(cρ)c

) c−1∑
j=0

(cρ)j

j!

]−1

(2)

ηi,n = (1− η0)(1− σi)σn−1
i for n ≥ 1.

Assume the tagged customer finds all the servers busy. In order to cal-
culate P (Wi ≤ a|Li(t+) = n) we analyse the process {∆(s), s ≥ 0}, defined
as

∆(s) = Li(t
+) +NAi[t

+, t+ + s]−NDi[t
+, t+ + s],

where NAi[t
+, t+ +s] and NDi[t

+, t+ +s] represent the number of customers
of priority higher than i that arrive in the time interval [t+, t+ + s], and the
number of departures in the same interval. Clearly, the tagged customer will
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start service when the process ∆(s) hits state 0 for the first time. Moreover,
before the tagged customer enters service, an increase in state takes place
with probability pu := Λi

γi
and a decrease with probability pd := cµ

γi
.

With the process {∆(s), s ≥ 0}, we associate a continuous time Markov
chain {Y (u), u ≥ 0} on Z constructed as follows: the holding time in each
state is exponential with rate γi, and the embedded Markov chain is a simple
random walk where an upwards transition takes place with probability pu
and a downwards transition with probability pd. It is easy to see that

P[ψ∆ ≤ a|Li(t+) = n] = P[ψY ≤ a|Y (0) = n],

where for a process A(s), ψA := inf{s : A(s) = 0}.
This leads to

P[Wi ≤ a|Li(t+) = n] = P[ψY ≤ a|Y (0) = n]. (3)

Hence, in order to find the conditional distribution of Wi, it is enough to
analyse the continuous time Markov chain Y (t).

For n, k ∈ N, let Bn,k the event that the process Y starts in state n
and hits state 0 for the first time at transition k. Observe that the number
of steps needed to hit state 0 is at least n and that if n is even (odd), an
even(odd) number of steps are needed. Hence, P [Bn,n+2m+1|Y (0) = n] = 0
for any m ∈ N.

Lemma 2. For m,n ∈ N,

P[Bn,n+2m|Y (0) = n] =
n

n+ 2m

(
n+ 2m

m

)(
Λi

γi

)m(
cµ

γi

)m+n

. (4)

Proof. We denote a transition of Y (t) by U if during the transition the
state increases, and by D otherwise. Note that if the initial state of Y (t)
is given, each sequence of transitions of Y (t) can be fully described by a
sequence of U ’s and D′s.

Let k = n+ 2m. Denote by En,k the set of sequences e = (e1, ..., ek) with
ei ∈ {U,D} that correspond to sample paths of Y (t) which, starting in state
n, hit state 0 in k transitions. For e ∈ En,k, denote by N e

u(r) and N e
d(r) the

number of U ’s, respectively D’s on the first r components of e. Note first
that if e ∈ En,k, ek = D. Since Y (t) hits 0 for the first time at transition k,
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for any r = 1, ..., k−1, N e
d(r) ≤ N e

u(r)+n−1. Moreover, observe that N e
u(k)

and N e
d(k) must satisfy N e

u(k) + N e
d(k) = n + 2m and N e

d(k) − N e
u(k) = n.

Hence, N e
u(k) = m and N e

d(k) = n+m.
Since for all e ∈ En,k, the number of components equal to U and D is the

same,
P (Bn,n+2m|Y (0) = n) = ρn,mp

m
u p

m+n
d , (5)

where ρn,m = |En,n+2m| and |A| denotes the cardinality of the set A.
Let Ẽn,k = {e = (e1, ..., ek−1)|(e,D) ∈ En,k}. As for each e ∈ En,k, ek = D,

|Ẽn,k| = |En,k|. In order to calculate |Ẽn,k|, we establish a bijection between
Ẽn,k and the set of super-diagonal lattice paths which start in (0, n− 1) and
end in (n+m− 1, n+m− 1). To each sequence e ∈ Ẽn,k, we can associate a
rectangular lattice path as follows. Starting at the node (0, n− 1), consider
the components of e one by one. If ei = U , draw a vertical segment of length
one, and if ei = D, draw a horizontal segment of length one (from left to
right). Since the number of U ’s in each sequence e ∈ Ẽn,m is equal to m
and the number of D’s to m + n − 1, the rectangular lattice path obtained
ends in (m + n − 1,m + n − 1). As for any i, 1 ≤ i ≤ n + 2m − 1, the
number of D’s among the first i components exceeds the number of U ’s
by at most n − 1, the rectangular lattice path is super-diagonal (see also
Example 3 below). Clearly, to each super-diagonal path between (0, n − 1)
and (n+m− 1, n+m− 1) corresponds one and only one sequence in Ẽn,k.

Finally, using Lemma 1 on the number of such super-diagonal lattice
paths between two lattice points we conclude that

%n,m =
n

n+m

(
n+ 2m− 1

m

)
=

n

n+ 2m

(
n+ 2m

m

)
. (6)

The claim of the lemma follows by combining (5) and (6). �

Example Figure 1 shows the construction of a super-diagonal rectangular
lattice path corresponding to the sequence e = (DDUDUD). The path
starts in (0, 2) and ends in (4, 4):
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Figure 1: A Super-Diagonal Lattice Path

We can now prove the following theorem:

Theorem 3. Consider the M/M/c model with non-preemptive priority and
K priority classes. The waiting time distribution of a priority i customer is
given by:

P[Wi ≤ a] = η0 +
∞∑
n=1

∞∑
m=0

ηi,nbn,m%n,mErl(a;n+ 2m, γi),

where η0 and ηi,n is given by equation (2) and bn,m and %n,m are given by:

bn,m =

(
cµ

γi

)n+m(
Λi

γi

)m
ρn,m =

n

n+ 2m

(
n+ 2m

m

)
.

Proof. Since in each state, the holding times of Y (t) are exponential with
rate γi,

P [ψY ≤ a|Y (0) = n] =
∞∑
m=0

P [Bn,n+2m|Y (0) = n] Erl(a;n+ 2m, γi),

where Erl(t; k, γi) denotes the cdf of an Erlang random variable with param-
eters (k, γi) evaluated in a.
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By combining equations (1) -(4) and Lemma 2, we obtain the distribution
of Wi. �

Straightforward calculations lead to the probability density function of
Wi, given by

fWi
(a) = η0δ(a− 0) +

∞∑
n=1

ηi,n

∞∑
m=0

(
cµ

Λi

)n/2
e−γia

In(2a
√

Λicµ)

a
,

where In(·) is the modified Bessel function of the first kind and δ(·) is the
Dirac delta function. This expression for the density function is also derived
in Dressin and Reich [9] by means of inverting the characteristic function.

4. Verification of the Laplace-Stieltjes transform

In this section we show that the Laplace-Stieltjes transform corresponding
to the derived waiting time distribution coincides with the one derived in
[10]. The proof differs from the ones in Dressin and Reich [9] and Kella and
Yechiali [10] and offers additional interesting insights.

The LST of the waiting time is given by:

E
[
e−Wis

]
= η0 + (1− η0)

(
(1− σi)x(s)

1− σix(s)

)
,

where η0 is the probability that at most c−1 servers are busy and x(s) is the
LST of a busy period in an M/M/1 queue with arrival rate Λi and service
rate cµ. Note that x(s) solves the following quadratic equation in y:

Λiy
2 − (γi + s)y + cµ = 0. (7)

By Rouché’s theorem, equation (7) has a unique solution inside the unit circle
and this solution is equal to

x(s) =
γi + s

2Λi

−

√(
γi + s

4Λi

)2

− cµ

Λi

. (8)

Based on Theorem 3, the LST of Wi is given by

E[e−Wis] = η0 +
∞∑
n=1

ηi,nhn(s).
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where

hn(s) =
∞∑
m=0

bn,m%n,m

(
1

1 + 1
γi
s

)n+2m

. (9)

Recall that bn,mρn,m can be interpreted as the probability that a radom walk
which starts at level n, and makes upwards transitions with probability pu
and downwards transitions with probability pd, reaches 0 in n + 2m steps.
For n = 1, this interpretation leads to h1(s) = x(s). As the waiting time of
a customer who sees at arrival other n customers waiting can be seen as the
sum of n busy periods in an M/M/1 queue, it also leads to hn(s) = x(s)n.
A rigourous proof of this fact will be given later on.

Using (2) and assuming that hn(s) = x(s)n holds, we obtain:

E[e−Wis] = η0 + (1− η0) (1− σi)
∞∑
n=1

σn−1
i x(s)n

= η0 + (1− η0)

(
(1− σi)x(s)

1− σix(s)

)
.

This is the expression of the Laplace-Stieltjes Transform derived in Kella and
Yechiali [10].

Next we show by induction that indeed hn(s) = x(s)n, without making
use of the interpretation of bn,mρn,m. The expression for h1(s) is given by:

h1(s) = cµ
∞∑
m=0

1

2m+ 1

1

γi + s

(√
cµΛi

γi + s

)2m(
2m+ 1

m

)

=

√
cµ

Λi

∫ √
cµΛi
γi+s

0

∞∑
m=0

(
y2
)m(2m+ 1

m

)
dy.

Prudnikov (1986) proved that for |w| < 1
4
,

∞∑
m=0

wm
(

2m+ s

m

)
=

2s(√
1− 4w + 1

)s√
1− 4w

.

Applying this result to calculate h1(s) gives (note that y2 < 1
4

within the
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domain of integration), for x(s) being given by Equation (8):

h1(s) =

√
cµ

Λi

∫ √
cµΛi
γi+s

0

2

1− 4y2 +
√

1− 4y2
dy

=

√
cµ

Λi

[
1−

√
1− 4y2

2y

]y=

√
cµΛi
γi+s

y=0

= x(s).

Next, we assume that the claim hq(s) = x(s)q holds for all positive inte-
gers q < n, and consider hn. It is easy to check that bn,m = cµ

Λi
bn−2,m+1 =

γi
Λi
bn−1,m+1. Moreover, %n,m = %n−1,m+1 − %n−2,m+1 for any n > 2. For n = 2

it holds that %2,m = %1,m+1. Although the case n = 2 is slightly different
from n > 2 we remark that the following proof remains valid for n = 2 if we
define %0,0 = 1, %0,m = 0 for m > 0 and h0(s) = 1. It follows that:

hn(s) =

(
1 +

1

γi

)
γi
Λi

∞∑
m=0

bn−1,m+1%n−1,m+1

(
1 +

1

γi

)−(n+2m+1)

−cµ
Λi

∞∑
m=0

bn−2,m+1%n−2,m+1

(
1 +

1

γi

)n+2m

.

By using the induction hypothesis and the fact that for fixed n, the coeffi-
cients bn,mρn,m define a probability mass function, we obtain

hn(s) =
γi
Λi

(
x(s)n−1 − bn−1,0ρn−1,0

(
1 +

1

γi

)−(n−1)
)

−cµ
Λi

(
x(s)n−2 − bn−2,0%n−2,0

(
1 +

1

γi

)−(n−2)
)
.

=

(
1 +

1

γi

)
γi
Λi

(
x(s)n−1 −

(
cµ

γi

)n−1(
1 +

1

γi

)−(n−1)
)

−cµ
Λi

(
x(s)n−2 −

(
cµ

γi

)n−2(
1 +

1

γi

)−(n−2)
)
.
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Using equation (7) gives

hn(s) =

(
γi + s

Λi

x(s)− cµ

Λi

)
x(s)n−2

= x(s)n.
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[3] W. Böhm, Lattice path counting and the theory of queues, Journal of
Statistical Planning and Inference 140 (2010) 2168–2183.

[4] M. Bousquet-Mélou, et al., Walks in the quarter plane: Kreweras alge-
braic model, The Annals of Applied Probability 15 (2005) 1451–1491.

[5] R. Brualdi, Introductory Combinatorics, 5 ed., Prentice-Hall (Pearson),
2009.

[6] D. Champernowne, An elementary method of solution of the queueing
problem with a single server and constant parameters, Journal of the
Royal Statistical Society. Series B (Methodological) (1956) 125–128.

[7] A. Cobham, Priority assignment in waiting line problems, Journal of the
Operations Research Society of America 2 (1954) 70–76.

[8] R. Davis, Waiting-time distribution of a multi-server, priority queueing
system, Operations Research 14 (1966) 133–136.

[9] S. Dressin, E. Reich, Priority Assignment on a Waiting Line., Master’s
thesis, 1956.

[10] O. Kella, U. Yechiali, Waiting times in the non-preemptive m/m/c
queue, Commun. Statist.-Stochastic Models 1 (1985) 256–262.

[11] J. Saran, K. Nain, Combinatorial approach to m/m/1 queues using
hypergeometric functions, in: International Mathematical Forum, vol-
ume 8, pp. 463–472.

10
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[13] L. Takács, L.M. Takács, Combinatorial methods in the theory of stochas-
tic processes, volume 126, Wiley New York, 1967.

11



ERIM Report Series Research in Management
ERIM Report Series reference number ERS-2014-016-LIS
Date of publication 2014-12-11
Version 11-12-2014
Number of pages 12
Persistent URL for paper http://hdl.handle.net/1765/77258

Email address corresponding author j.c.w.vanommeren@utwente.nl
Address Erasmus Research Institute of Management

(ERIM)
RSM Erasmus University / Erasmus School
of Economics
Erasmus University Rotterdam
PO Box 1738
3000 DR Rotterdam, The Netherlands
Phone: +31104081182
Fax: +31104089640
Email: info@erim.eur.nl
Internet: http://www.erim.eur.nl

Availability The ERIM Report Series is distributed
through the following platforms:
RePub, the EUR institutional repository
Social Science Research Network (SSRN)
Research Papers in Economics (RePEc)

Classifications The electronic versions of the papers in the
ERIM Report Series contain bibliographic
metadata from the following classification
systems:
Library of Congress Classification (LCC)
Journal of Economic Literature (JEL)
ACM Computing Classification System
Inspec Classification Scheme (ICS)

http://hdl.handle.net/1765/77258 
http://www.erim.eur.nl
http://repub.eur.nl/
http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=308571
http://ideas.repec.org/s/dgr/eureri.html
http://www.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.php
http://www.acm.org/about/class/
http://www.theiet.org/

