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Abstract

In this paper, we propose a novel algorithmic approach to solve line planning problems. To
this end, we model the line planning problem as a game where the passengers are players which
aim at minimizing individual objective functions composed of travel time, transfer penalties,
and a share of the overall cost of the solution. To find equilibria of this routing game, we use
a best-response algorithm. We investigate, under which conditions on the line planning model
a passenger’s best-response can be calculated efficiently and which properties are needed to
guarantee convergence of the best-response algorithm. Furthermore, we determine the price
of anarchy which bounds the objective value of an equilibrium with respect to a system-
optimal solution of the line planning problem. For problems where best-responses cannot be
found efficiently, we propose heuristic methods. We demonstrate our findings on some small
computational examples.
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1 Introduction

Due to the high complexity of public transportation planning, the planning process is normally
subdivided in subsequent steps, such as network design, line planning, timetabling, vehicle schedul-
ing, etc. The line planning problem aims at determining the routes which are served regularly by
a vehicle and the frequencies of these services. When evaluating a line concept, both the costs for
implementing the line concept and the quality of the line concept from the passengers’ perspective
have to be taken into account. Possible ways to measure the quality of a line concept L from the
point of view of a passenger p are the travel time and the number of transfers on the route that
passenger p would choose given the line concept L. Hence, to evaluate a line concept L from a
quality perspective, passengers’ routes for the chosen line concept have to be determined.
For this reason, recent publications on passenger-oriented line planning solve the problem of finding
a line concept L and a set of passengers’ routes R simultaneously, by modeling and solving it as
linear integer programs, see e.g., [SS06a, BGP07, BN10, BK12, Sch14].
In order to achieve problem formulations which can be solved for practical instances, these models
use several simplifications. Often, transfer times are assumed to be independent of line frequencies
(see, e.g, [SS06a, BN10, BK12, Sch14]) or not taken into account at all [BGP07]. [GvHK06,
GvHK04] use a model that allows to adjust transfer times to frequencies, but make a different
restriction: for each passenger, the path is the network on which he travels is fixed beforehand
(even if the exact connection, i.e., the sequence of trains used on this path, is not).
Furthermore, the cited approaches determine a system-optimum with respect of the cumulated ob-
jective functions of all passengers. In order to achieve a system-optimal solution, single passengers
may be assigned routes which are significantly worse than their individually optimal route.
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One possible approach to overcome these shortcomings is to iterate between planning and routing
steps, as proposed in [Sch14]. However, this heuristic allows only to remove lines from the initial
solutions, but not to include new lines, so it can get stuck fast in a local optimum.

In this paper, we propose a novel algorithmic approach to solve line planning problems. Instead
of integrating planning and routing steps or iterating between both as done in the approaches
described above, we regard only the routing step and include all planning decisions in this step.
To this end, we define an individual objective function for each passenger which is composed of
travel time, transfer penalties, and a share of the overall cost of the solution. This way, the line
planning problem can be interpreted as a game in which the passengers are the players who aim
at minimizing their objective functions.
In this paper, we study this so-defined line planning routing game. To find equilibria we propose
a best-response algorithm. We investigate, under which conditions on the line planning model a
passenger’s best-response can be calculated efficiently and which properties are needed to guarantee
convergence of the best-response algorithm. Furthermore, we determine the price of anarchy which
bounds the objective value of an equilibrium with respect to a system-optimal solution of the line
planning problem. We demonstrate our results on some numerical examples.

The remainder of this paper is structured as follows. In Section 2 we review literature on line
planning before we introduce a general line planning problem (LPQC) in Sections 3.1 and 3.2.
We briefly introduce some concepts from game theory in Section 3.3. In Section 3.4 we define the
line planning routing game LPRG defined by LPQC and discuss the relations between the two
problems in Section 3.5.
In Section 4 we investigate properties of the line planning routing game. In Section 4.1 we sketch
the best-response algorithm used to find equilibria to LPRG. In Section 4.2 we investigate, un-
der which conditions on the line planning model a passenger’s best-response can be calculated
efficiently. The existence of equilibria and the convergence of the best-response algorithm is inves-
tigated in Section 4.3. Section 4.4 evaluates the solutions found by the best-response algorithm
with respect to a system-optimal solution. Finally, in Section 5 we illustrate and compare the
different models on some small line planning instances.

2 Related literature

Line planning is an important step in the public transportation planning process. There are
many line planning models, which differ with respect to the decisions covered by the term line
planning, the level of detail with which real-world constraints are included in the model, and the
way of measuring the quality of a line plan. In this paper, we only give a brief overview on the
line planning models and solution methods which are most relevant for this paper. See, e.g.,
[Sch11, Sch14] for more extensive overviews on line planning.
Line planning aims at finding a line concept (consisting of line routes and frequencies) which is
good from an operational point of view and offers good quality for the passengers. Cost-oriented
line planning models focus on minimizing the operational costs subject to the constraint that
passenger demand has to be satisfied (see, e.g., [CvDZ98, Bus98, GvHK06, BHK+13]).
Many passenger-oriented line planning models aim at minimizing the overall travel time while
keeping the costs below a predefined threshold [SS06a, Sch14]. There are also some passenger-
oriented models which measure quality by the number of direct travelers [Die78, Bus98, BKZ97].
Some models combine quality and cost into one objective [BGP08, GYW06, PB06].
In most literature on line planning, line planning problems are modeled and solved as integer
programs. Solution approaches for cost-oriented models often assign the demand to the network
edges in a preprocessing step and formulate covering or packing models. Solution techniques in-
clude branch-and-bound [Bus98, CvDZ98], branch-and-cut [GvHK04], and variable fixing heuris-
tics [BLL04].
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Passenger-oriented line planning assumes that passengers choose the ”best” route with respect
to the chosen line concept (where ”best” is often understood as travel-time minimal). For this
purpose, passengers’ routes cannot be determined in a preprocessing step but have to be de-
termined together with the line concept. [SS06a] model passengers as flows in a change-and-go
network, which allows to include transfer times in the travel time, and solve the LP-relaxation
using Dantzig-Wolfe decomposition. However, this leads to very large IP models and relatively
long solution times. [BGP07, BN10, BK12] use column generation to generate passengers’ routes.
In [BN10] it is shown that this can lead to a significant speed-up with respect to flow formulations
in change-and-go networks. However, transfer time are not taken into account [BGP07] or only
approximated [BN10, BK12] in these models.
A drawback of the described passenger-oriented models is that they can only find system-optimal
solution, that is solutions with a minimal overall travel time. I.e., a solution to these models,
consisting of line concept and passenger routes could actually require that some passengers take
long detours to avoid capacity violations and allow a minimal overall travel time. [Sch14] introduces
a model where only line concepts which allow all passengers to travel on shortest paths (with
respect to the line concept) are considered feasible and proposes an IP formulation. However,
since the formulation is based on a flow formulation in a change-and-go network, fast solution
times for real-world instances are not to be expected.
Solution approaches to line planning which are not IP-based, often concentrate on the line routes
only and postpone frequency setting to a later step. They use greedy strategies [CW91, PRR95,
Qua03] to construct lines or successively remove lines from a big line pool [Pat25, Son79]. Fur-
thermore, metaheuristics like genetic algorithms [FGP02, FM06a, SW11], neighborhood search
[SW11], and simulated annealing [FM06b] are used. [Man80, JBT10, Sch14] describe iterative
approaches, where line planning/frequency setting and route assignment steps are iterated.
There are also game-theoretic approaches to line planning which model line operators as players
who compete for a good utilization of the lines they offer [SS06b, Sch09, BKZ09, BKZ11, SS13,
Neu14]. In [LMP10], the problem of finding a line concept which is robust against link failures is
modeled as a game between the network provider and an adversary. However, to the extent of our
knowledge, so far no attempt has been made to model line planning as a game with passengers as
players.

In the field of transit assignment, models from game theory are used to model passenger flows
on networks (see, e.g. [SF89, She85, DCF93, NP88, SFS+11, SSJ11, CF95]). These models take
into account different modeling requirements from practice, like e.g., limited seat capacity or
uncertain information about the next arriving trains. Equilibria are often found by mathematical
programming.

Routing games on networks are also studied from a more theoretical perspective in the area of
algorithmic game theory. A good overview of this line of research, both for atomic and non-atomic
flow, is given, e.g., in [Rou07]. Questions of interest cover the existence and quality of equilibria
and algorithmic approaches to identify equilibria (see, e.g. [Ros73, AAE05, Rou05, ADK+04,
Rou07, TW07]

3 The line planning routing game

3.1 Line planning

Line planning aims at determining routes and frequencies of trains. As a basis, we consider
the underlying public transportation network (PTN) G = (V,E). The nodes V of this network
represent stations. Two stations are connected by an edge e if there is a direct track connection
between the corresponding stations. In this paper, we assume that we are given a line pool L of
possible lines. The main task of line planning is to find a line concept, i.e., to assign a frequency
fl ∈ N0 to every line l in the line pool L.
Passenger demand is given in form of origin-destination (OD)-pairs (uq, vq), specifying a pas-
sengers’ origin uq and his destination vq. Apart from the line concept, passenger-oriented line
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planning models determine a set of passenger routes R := {Rq : q ∈ Q}. A route Rq for passenger
q specifies a path P ′q = (e1, . . . , en) from uq to vq and for every ei ∈ P ′q a line li which is used
while traveling on ei. I.e, Rq can be written as a sequence Rq = ((e1, l1), (e2, l2), . . . , (en, ln)).
For a given set of routes R we denote the number of passengers who use line l ∈ L on edge e ∈ l
by

x(e,l)(R) := |{q ∈ Q : (e, l) ∈ Rq}|.

A pair of frequencies f and passenger route set R is feasible if for every l and every e ∈ l the
number of passengers traveling on the line does not exceed the capacity of a single train multiplied
with the frequency of the line, that is, if

x(e,l)(R) ≤ flB.

The objective of line planning is to minimize the costs of the implemented line concept as well as
its quality, estimated, e.g., by the travel time and the number of transfers.
I.e., the line planning problem can be summarized as follows: given a PTN G, a line pool L, a
capacity bound B, and a set of passengers Q: find a pair of frequencies f and routes R such that

x(e,l)(R) ≤ flB

and a weighted sum of quality and cost is minimized, as detailed in the following section.

3.2 The line planning objective function

There are many approaches on how to measure cost and quality, as described in the literature
overview in Section 2. The models used here are described in more detail in the following:
In our model the costs costl of a line l are composed of a constant cost kl1 and a per-frequency
cost kl2, i.e.,

costl(f) =

{
γ1 · kl1 + γ2 · kl2 · fl if fl > 0

0 otherwise

where γ1 and γ2 are non-negative constants. The cost of a line concept represented by frequencies
f is hence given as

cost(f) :=
∑
l:fl>0

costl(f). (1)

Quality, as perceived by a passenger, can be measured by driving time and transfer time of the
passenger’s journey. We denote travelq(f,Rq) := α1cq(Rq)+α2 ·τq(f,Rq), where α1 and α2 denote
non-negative weighting factors.
The driving time on route Rq depends only on the chosen route in the PTN. It is given as

cq(Rq) :=
∑

(e,l)∈Rq

c(e).

The transfer time τq(f,Rq) is estimated based on the frequencies of the lines involved in the
transfers on the route. In this paper, for a transfer from line l to line l′ we assume a transfer time
of 1

fl+fl′
. Then, the overall transfer time of passenger q on route Rq is

τq(f,Rq) :=

n−1∑
i=1

1

fli + fli+1

, (2)

where (l1, l2, . . . , ln) is the sequence of lines used on Rq.
Additionally, in transferq(Rq) a penalty β can be added for every transfer on Rq, modeling the
inconvenience arising for the passenger when transferring.

4



We obtain the line planning objective

G(R, f) :=
∑
q∈Q

(α1cq(Rq) + α2τq(f,Rq))︸ ︷︷ ︸
travelq(f,Rq)

+
∑
q∈Q

transferq(Rq) +
∑

l∈L:fl>0

(γ1 · kl1 + γ2 · kl2fl)︸ ︷︷ ︸
cost(f)

. (3)

We call the problem described in Sections 3.1 and 3.2 line planning with travel quality and cost
objective (LPQC).

The following observation from [Sch14] will be useful in the remainder of this paper:

Observation 3.1. Given a route set R we can easily determine a corresponding line concept

f(R) by setting fl(R) := maxe∈l

⌈
x(e,l)(R)

B

⌉
.

The pair (R, f(R)) is feasible by definition. In [Sch14] it was shown that it has minimal cost
assuming the cost model cost(R, f) :=

∑
l∈L γ2 · kl2 · fl. However, it is easy to see that given R

this line concept is cost-optimal for any reasonable cost model, in particular for the ones we will
consider later.

3.3 Basics from game theory

In this section we describe some basic concepts from game theory which are used in the remainder
of this paper. See, e.g., [NRTV07] for details.
Game theory studies the dynamics of situations where players try to minimize individual, conflict-
ing objective functions. In a game (Q,S, g), each player q ∈ Q has a set of strategies Sq among
which he can choose. The individual objective function gq(Sq, S

−q) of player q depends on his
chosen strategy Sq, but also on the strategies S−q = (S1, S2, . . . , Sq−1, Sq+1, . . . , S|Q|) chosen by
the other players.
A central concept of game theory is the concept of equilibria. A set of strategies (S1, . . . , S|Q|)
is called (Nash) equilibrium if none of the players can improve his individual objective function
by changing his strategy (given that all other players do not change their strategies). I.e., Ŝ =
(Ŝ1, . . . , Ŝ|Q|) is an equilibrium if for all q ∈ Q it holds that

gq(Ŝq, Ŝ
−q) ≤ gq(Sq, Ŝ−q) ∀Sq ∈ Sq.

Not all games have equilibria, and even if equilibria exist, they can be hard to find and they do
not need to be unique.

A special class of games with good properties is the class of potential games. We call a function
Φ : S = S1 × S2 × . . .× S|Q| → R potential function, if it satisfies the relation

Φ(S)− Φ(S′) = gq(Sq, S
−q)− gq(S′q, S−q) (4)

for all solutions S = (S1, . . . , S|Q|) ∈ S, all players q ∈ Q and all solutions
S′ = (S1, . . . , Sq−1, S

′
q, Sq+1, S|Q|) which can be obtained from S by exchanging the strategy of

player Q. A game with potential function is called potential game. The existence of a potential
function allows us to interpret the problem of finding an equilibrium to (Q,S, g) as an optimization
problem. As we can easily verify in (4), an optimal solution to Φ is an equilibrium for the considered
game (although there may be equilibria which are not optimal for Φ).
Furthermore, the relation (4) implies that every time a player changes his strategy to improve his
personal objective (while the other players’ strategies remain unchanged), the solution becomes
better with respect to Φ and, in this sense, closer to an equilibrium. This motivates the approach
of using best-response algorithms to find equilibria: in every step, one of the players changes his
strategy to the best response with respect to the other players’ strategies, i.e., he picks a solution of
the optimization problem minSq∈Sq gq(Sq, S

−q) as a new strategy. If there is only a finite number
of strategies, this procedure converges to an optimum of Φ, and hence to an equilibrium of the
game in a finite number of steps.
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A centralized way to evaluate a solution S = (S1, . . . , S|Q|) is to sum up the individual objective
functions to a centralized objective function G(S) =

∑
q∈Q gq(Sq, S

−q). We call S ∈ S system-
optimal if it minimizes G.
There exist different concepts to measure the inefficiency of equilibria with respect to the central-
ized objective. The price of anarchy is defined as

max
S∗ is an equilibrium

G(S∗)

minS G(S)
.

Assuming that over time, selfish behavior will converge to equilibrium solutions, the price of
anarchy gives a worst-case bound on the quality of such a convergence process.
The price of stability,

min
S∗ is an equilibrium

G(S∗)

minS G(S)
,

in contrast, quantifies how far the best equilibrium (i.e.: the best solution that would be accepted
by the players) is away from system optimality.

3.4 The line planning routing game

Our approach to finding good line planning solutions is to determine passengers’ routes R in G in
such a way that (R, f(R)) is a good solution to the line planning problem.
To this end, we model the line planning problem as a routing game. The passengers Q are the
players. The strategies of a passenger q are the routes Rq from (0, uq) to (vq, 0). Each passenger
has an individual objective function gq(Rq,R−q) which depends on his chosen route Rq and the
routes chosen by the other passengers R−q. We call this game line planning routing game (LPRG).
EquilibriaR∗ of this game will be interpreted as solutions (R∗, f(R∗)) of the line planning problem.
The choice of the individual objective functions gq is of course crucial for the quality of the obtained
solutions. Ideally, the individual objective functions should

• account for individual travel quality as well as costs in order to find a solution which is bal-
anced between the two partly contradicting objectives of minimizing costs while maximizing
quality

• model passengers’ behavior as realistically as possible.

We propose the following general model. The passengers objective is composed of the quality of
the solution and a share of the overall costs as defined in (1):

gq(Rq,R−q) := travelq(Rq,R−q) + transferq(Rq)︸ ︷︷ ︸
=−qualityq(f(R),Rq)

+ costq(Rq,R−q)︸ ︷︷ ︸
cost share

. (5)

To share the costs among the passengers, we equally divide the cost of all lines among all users

costq(Rq,R−q) :=
∑
l∈Rq

costl(f(R))

|{q′ ∈ Q : l ∈ Rq′}|

(this is referred to as line-based cost model in the following) or assign the line costs to the edges
e ∈ l as edge costs cost(e,l) and set

costq(Rq,R−q) :=
∑

(e,l)∈Rq

cost(e,l)(f(R))

x(e,l)(Rq,R−q)

(called edge-based model in the following). If γ2 = 0, cost(e,l)(f(R)) is constant and we write
cost(e,l) := cost(e,l)(f(R)).

6



Note that in the definition of the quality functions in Section 3.1 and the individual objective
functions in the section, we implicitly assumed that the passenger all have the same perception
of quality of a travel route since we assume the weighting factors αi, β, and γi i = 1, 2 to be the
same for each passenger. It would be possible to replace these common weighting factors by a
set of individual weighting factors for each passenger. However, for the sake of simplicity, in this
paper we only consider the case of common weighting factors for all passengers.

3.5 Relation between LPQC and LPRG

In the line-based cost model and it holds that∑
q∈Q

costq(Rq,R−q) = cost(f(R)).

This is also true in the edge-based cost model, as long as it is ensured that a line does not cross
an edge completely empty.
Furthermore, by definition∑

q∈Q
travelq(Rq,R−q) = travel(f(R),R) and

∑
q∈Q

transferq(Rq) = transfer(R).

We obtain ∑
q∈Q

gq(Rq,R−q) = G(R, f(R)),

which implies that a system-optimal routing corresponds to an optimal solution of the line planning
problem described in Sections 3.1 and 3.2.
Hence, on the one hand, if the price of anarchy in the LPRG is small, an equilibrium R∗ of the
game provides us with a good approximation (f(R∗),R∗) for LPQC.

Lemma 3.2. Denote by I an instance of the LPQC. Assume that the price of anarchy for the
corresponding instance IRG of LPRG is bounded by ξ. Then any equilibrium R∗ of IRG is a
ξ-approximation (f(R∗),R∗) for I.

So, on the one hand, finding an equilibrium to LPRG may be regarded as a new, decentralized,
way of solving LPQC.
On the other hand, one may argue that in some cases, optimal solutions to LPQC are not desirable
in practice. Indeed, it may happen that the routing R in a solution (f,R) to LPQC allots very
long routes to some passengers for the ”greater good” of a solution which is optimal with respect
to objective (3).
As an example, consider the situation shown in Figure 1. There are two lines (depicted by gray
arrows) from station v1 to station v7. One is a fast line which stops only at one intermediate
station, the other one is a regional line which serves a geographically different route and visits
many small stations in between. Assume that the transportation capacity of each line is B = 100.
There are 100 passengers who want to travel from v1 to v7, 50 who want to travel from v2 to v7,
and some smaller amounts of passengers traveling to and from the regional stations. Hence, both
lines have to be established. Now, if the cost factors γ1 and γ2 in the objective function (3) are
comparatively big, both lines will be established with frequency 1 in an optimal solution (f ′,R′)
to LPQC. This means that 50 of the 100 passengers from v1 to v2 will be sent via the regional
train route in an optimal solution.
However, if this solution was implemented in real life, at station v1, when the passengers from v1
and v7 have to make a decision which train to board, the fast train is still empty. To implement
the solution (f ′,R′) into practice, somebody would have to convince these 50 passengers to use a
slower connection to reserve the seats in the fast train for the passengers from v2 to v7 boarding
later. It is not hard to imagine, that the passengers from v1 to v7 would board the train anyway
so that the starting in v2 could not board or the train would be overcrowded.
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Figure 1: Example instance where LPQC finds undesirable solution.

This would not happen in the solution (f(R∗),R∗) provided by an equilibrium R∗ of the cor-
responding routing game LPRG. In this solution, all passengers from v1 to v7 would choose the
fast train and the planner would be forced to provide enough frequency here to avoid overcrowd-
ing - unless taking the slow line along would be cheap enough to be a favorable option for the
passengers. Hence, if we assume that costq(Rq) is an estimate of the real costs that a passenger
would pay on a route Rq, the solution (f(R∗),R∗) defined by an equilibrium R∗ of LPRG models
passenger behavior in a better way, provides better estimates of actual solution quality and helps
to avoid overcrowding and is hence, from this perspective, preferable to the solution (f ′,R′) found
by LPQC.

4 Finding good line planning solutions using best-response
algorithms

The approach of this paper is to find line planning solutions by finding equilibria of LPRG. We
justified this approach in the preceding section. In this section, we concentrate on the process of
finding such equilibria.

4.1 The best-response algorithm

A popular method for finding equilibria are best-response algorithms (compare Section 3.3). The
scheme of a best-response algorithm for LPRG is given in Algorithm 1.

Algorithm 1 Best response algorithm

Require: PTN, line pool, set of passengers Q, individual cost functions gq, maximal number of
iterations in N ∪∞

Ensure: A routing R̂
Start with an empty routing (or with an arbitrary non-empty routing).
while there are improvements for the passengers and maximal number of iterations is not
reached do

for Passenger q ∈ Q do
Calculate optimal passenger route Rq based on the route choices of the other passenger

R−q (routing problem)
end for

end while

In the remainder of this paper we are going to discuss the following questions:

1. How can we solve the routing problem?

2. Does the best-response algorithm converge?

3. How good is the solution (f(R̂), R̂) to LPQC defined by the solution R̂ from Algorithm 1?
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4.2 The routing problem

In every step of the (LPRG) we have to solve the following routing problem (RPq) for passenger
q :

Definition 4.1. Given the PTN G, the line pool L, origin uq, destination vq and individual
objective function gq for passenger q, and routes Rq′ for all passengers q′ ∈ Q \ {q}, the routing
problem (RPq) consists of finding a route Rq from uq to vq such that gq(Rq,R−q) is minimized.

Unfortunately, in general the routing problem which has to be solved in each iteration of the
best-response algorithm is NP-hard. We see in Section 4.2.1 that there are two components which
make the problem hard:

1. line-based costs (see Theorem 4.2),

2. and frequency-based transfer times (see Theorem 4.3).

On the contrary, if costs are assumed to be edge-based with γ2 = 0 and transfer times are neglected,
the problem becomes much better tractable, as we are going to discuss in Section 4.2.2. Section 4.5
discusses how to incorporate frequency-based transfer times in a heuristic way.

4.2.1 NP-hardness of the routing problem

For determining the complexity of our problems we will use reductions from the set covering
decision problem (SCP), where an instance is given by a set of elements M = {m1, . . . ,mn}, a
set of subsets C with C ⊆M and an integer K ∈ N. The problem is to find a subset C′ ⊆ C such
that

⋃
C∈C′ C ⊇M and |C|′ ≤ K.

We first show that the assumption of line-based costs leads to an NP-hard routing problem.

Theorem 4.2. The routing problem (4.1) with line-based cost model is NP-hard, even if transfer
times and transfer penalties are not taken into account, i.e. if β = 0 and γ2 = 0.

Proof. We show that (SCP) given by (M, C,K) can be reduced to the routing decision problem
with line-based costs. Given an instance (M, C,K) of (SCP) we construct an instance of the
routing problem as follows.
We create a node v0 and for each mi ∈ M, i = 1, . . . , n a node vi and an edge ei = (vi−1, vi).
For all C ∈ C we create a line lC ∈ L containing all edges {ei : mi ∈ C} and additional edges
to ensure that the lines are connected paths in the PTN. We set edge lengths to c(e) := 0 for all
edges related to m ∈ M and to c(e) := K + 1 for all additional edges. Furthermore we set the
costs to costl = 1 for all lines. We consider a passenger q who wants to travel from v0 to vn. The
parameters of the objective function are α1 = γ1 = 1 and α2 = β = γ2 = 0. (Note that the same
construction is possible if γ1 = 0 and γ2 = 0.) Now there is a solution to the routing problem
with objective value lower or equal to K if and only if there is a solution to (SCP) with objective
value lower or equal to K:
Let C′ be a solution to (SCP). Then the set of lines L′ := {lC : C ∈ C′} has costs ≤ K and allows
q to travel from origin to destination with 0 travel time. On the other hand, in every solution to
the constructed instance of the routing problem with travel time ≤ K, q uses the edge sequence
(e1, . . . , en), because otherwise his travel time would be > K. Hence, C′ = {C ∈ C : q uses lC} is
a solution to (SCP).

The following example illustrates this construction. Consider the instance of (SCP) given by

M = {1, 2, 3, 4},
C = {C1 = {1, 2}, C2 = {1, 3}, C3 = {3, 4}},
K = 2.

This leads to the PTN
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v0 v1 v2 v3 v4
e1 e2 e3 e4

e5

where e1, . . . , e4 correspond to M and e5 is a helping edge for C2 with

c(ei) =

{
0 , i = 1, . . . , 4
3 , otherwise

and
L0 = {l1 = (e1, e2), l2 = (e1, e5, e3), l3 = (e3, e4)}.

Due to the result of Theorem 4.2, in the remainder of this paper we restrict to edge-based cost
functions. However, even without considering costs, a similar hardness result can be proven for
the routing problem with frequency-based transfer times:

Theorem 4.3. The routing problem (4.1) is NP-hard, even if transfer penalties and operational
costs are not taken into account, i.e., β = 0 and γ1 = γ2 = 0.

Proof. Similarly to the proof of Theorem 4.2 we prove this theorem by reduction from (SCP). Let
(M, C, K) denote an instance of (SCP) with n = |M|. We create a linear PTN consisting of two
parts. The first part is used to ensure that at most K sets are chosen from C. The second part
is similar to the construction in the proof of Theorem 4.2 and is used to determine whether the
chosen sets cover M.
The first part of the PTN consists of vertices vi for i = 1, . . . , 2K + 1 and edges ei = (vi, vi+1),
i = 1, . . . , 2K with c(ei) = 0. Additionally there are edges ē2i−1 = (v2i−1, v2i) with costs K ′ + 1,
where K ′ := 2K+2n

3 . For every edge e2i−1 with an odd index we introduce a line l̄2i−1 which
consists of this edge only.
The second part of the PTN consists of vertices wi for i = 1, . . . 2n+ 1 and edges ai = (wi, wi+1)
for i = 1, . . . , 2n with c(ai) = 0. Furthermore, we add edges āij which connect all pairs of vertices
wi and wj with i < j and whose length is c(āij) := K ′ + 1. For each i = 1, . . . , n we introduce

a line l̃2i−1 which covers the edge a2i−1. We connect both parts of the PTN by a transition edge
t = (v2K+1, w1).
For every C ∈ C we create a line lC ∈ L containing all edges {e2i : mi ∈ C} from the first part
of the PTN, the transition edge t, and the edges a2i with mi ∈ C from the second part of the
PTN. We add additional edges with lengths K ′ + 1 whenever needed to ensure that the lines are
connected paths in the PTN.
In contrast to the proof of Theorem 4.2, in this proof we have |C|+ 1 passengers. Each passenger
qC with C ∈ C has origin v1 and destination v2K+1 and his route RqC is identical to line lC from
v1 to v2K+1. The passenger q for which we have to solve the routing problem has origin v1 and
destination w2n+1. We set the capacity in each train to B := 1. For the objective function we use
the parameters α1 = α2 = 1 and β = γ1 = γ2 = 0. Note that line costs can be set to arbitrary
values, since γ1 = γ2 = 0.

We now show that there is a solution to the considered instance of (SCP) if and only if there is a
solution Rq to the routing problem (RPq) with individual objective value gq(Rq,R−q) ≤ K ′.
First note that any such route in the first part of the PTN will use the lines l̄i on edges with an
odd index and some lines li on the ones with an even index. Furthermore, for all of these paths
the contribution from the first part of the PTN to the individual objective function is 2K

3 , since
the length of every used edge is 0 and on each such path there is a transfer at each station between
a line l̄ that is used by one passenger and a line l that is used by two passengers. In the second
part of the PTN, only edges ai can be used in a route Rq with gq(Rq,R−q) ≤ K ′. Now consider
the transfer costs of such a path in the second part of the PTN. At each node in the second part
of the PTN a transfer has to take place. Thereby, transfer time is 1

2 if passenger q did not use line
lj in the first part of the PTN, 1

3 if he used it. Since there are 2n such transfers, any path with
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individual objective value ≤ K ′ uses on edge a2i a line that was already used in the first part of
the PTN.
Due to the construction of the lines lC , this means that if there is a route Rq with gq(Rq,R−q) ≤
K ′, for each element mi ∈M at least one line lC with C 3 mi is used in the first part of the PTN.
Since not more than K such lines can be used in Rq, there must be a solution to the considered
instance of (SCP).
On the other hand, if there is a solution C′ = {C1, . . . , Ck} with k ≤ K to the considered instance
of (SCP), using line lCi

on edge e2i for i = 1, . . . , k (and arbitrary lines on e2i for i = k+1, . . . ,K)
allows the passenger to choose a path with transfer time n

3 in the second part of the PTN and
thus yields an individual objective value ≤ K ′.

4.2.2 Cases with polynomially solvable routing problem

A convenient way to represent line planning problems is the change-and-go network (CGN) G =
(V,A), which was first introduced in [SS06a]. The set of nodes consists of station nodes Vstat :=
{(v,board) : v ∈ V } ∪ {(v, alight) : v ∈ V } and travel nodes Vtrav := {(v, l) : l ∈ L, v ∈ l}. The set
of arcs is A := AOD ∪ Atrans ∪ Aline with

• line arcs Aline := {(e, l) : l ∈ L, e ∈ l} for each edge e covered by a line l,

• transfer arcs Atrans := {((v, l1), (v, l2)) : v ∈ V, l1 3 v, l2 3 v},

• and arcs for boarding and alighting

AOD := {((v,board), (v, l)) : l ∈ L, v ∈ l} ∪ {((v, l), (v, alight)) : l ∈ L, v ∈ l}.

Now every route Rq for a passenger q can be uniquely represented in G as a path Pq from (uq,board)
to (vq, alight) in G.
For a ∈ A we denote by xa(R) the number of passengers, using arc a of the CGN, i.e., xa(R) :=
{q ∈ Q : Pq 3 a} where Pq is the path in the CGN corresponding to Rq. To abbreviate, we
sometimes omit the routing and use the notation xa := xa(R).
Let us now assume that (given R−q) the objective value of a route Rq is the sum of edge weights
over all edges contained in the corresponding path Pq, i.e., that there are arc weights wqa(R−q) ≥
0∀a ∈ A such that

gq(Rq,R−q) =
∑
a∈Pq

wqa(R−q). (6)

This is the case if costs are edge-based with γ2 = 0 and α2 = 0. Indeed, it is easy to check that
the weights

wqa(R−q) :=

{
α1c(e) +

cost(e,l)
x(e,l)(R−q)+1 if a = (e, l) ∈ Adrive
β if a ∈ Atransfer

fulfill (6). In Section 4.5, different approaches to define arc weights are studied.
If edge weights of the form (6) can be found, we obtain the following lemma:

Lemma 4.4. Consider an instance of the routing problem defined by a network G, a set of pas-
sengers Q, origin uq and destination vq of a passenger q with individual objective function gq and
set of routes R−q for all q′ ∈ Q \ {q}. If there are arc weights wqa(R−q) as defined in (6), (RPq)
can be solved in polynomial time.

Proof. In this case, any shortest path from (uq,board) to (vq, alight) with respect to the edge
weights wqa(R−q) is an optimal solution to I. Hence, we can find a solution using, e.g., Dijkstra’s
algorithm.

Hence, in this case, we can use the best-response algorithm 1 with, e.g., Dijkstra’s algorithm in
the routing step to search for an equilibrium of the LPRG.
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v21

v11

v13

v23

v12
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u2

v3

v1

u3

Figure 2: PTN for an example instance where there are no equilibria for LPRG and Algorithm 1
does not converge.

4.3 Existence of equilibria and convergence of the best-response algo-
rithm

In this section we study under which assumptions equilibria to the LPRG exist and can be found
by the best-response algorithm. We start with an example which shows that in the general case
the existence of an equilibrium is not guaranteed.

4.3.1 Non-existence of equilibria

The following example shows that for some instances of LPRG there are no equilibria. This also
implies that the best-response algorithm does not converge in this case.
We consider the PTN from Figure 2 with 12 nodes and 18 edges. Every edge is served by one
directed line (which contains only the edge). The capacity of a train is B = 1. There are three
main passengers q1 from u1 to v1, q2 from u2 to v2, and q3 from u3 to v3 and six sets of auxiliary
passengers: Qji for i = 1, . . . 3 and j = 1, 2 contains M passengers from vji to vi (where M is a
sufficiently large number, e.g., M > 12). We denote by Q′ the union of the auxiliary passengers.
We consider the objective functions gq(R) := τq(Rq,R−q) which, for the sake of simplicity, takes
only the transfer time into account, i.e., α1 = β = γ1 = γ2 = 0.
Note that the auxiliary passengers only have one strategy, let R′ denote the set of these strategies.
Each of the main passengers qi has two different strategies: to take the route R1

i starting with
edge (ui, v

1
i ) or to take the route R2

i starting with edge (ui, v
2
i ).

We now show that there does not exist an equilibrium in the described situation. Assume that R
is an equilibrium of the described line planning routing game. Denote by Rjii the strategy chosen
by qi. Without loss of generality, assume that j1 = 1. Then

g2(R1
1, R

1
2, R

j3
3 ,R′) =

{ 1
1+2 + 1

2+2 + 1
2+M+1 = 7

12 + 1
M+3 if j3 = 1

1
1+2 + 1

2+1 + 1
1+M+1 = 8

12 + 1
M+2 if j3 = 2

and

g2(R1
1, R

2
2, R

j3
3 ,R′) =

{ 1
1+1 + 1

1+1 + 1
1+M+1 = 12

12 + 1
M+2 if j3 = 1

1
1+1 + 1

1+2 + 1
2+M+1 = 10

12 + 1
M+2 if j3 = 2

Since R is an equilibrium, we conclude that j2 = 1, i.e., Rj22 = R1
2.

Now

g3(R1
1, R

1
2, R

1
3,R′) =

1

1 + 2
+

1

2 + 1
+

1

1 +M + 1
=

4

6
+

1

M + 2
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and

g3(R1
1, R

1
2, R

2
3,R′) =

1

1 + 1
+

1

1 + 2
+

1

2 +M + 1
=

5

6
+

1

M + 3
.

Since R is an equilibrium, we conclude that j3 = 1, i.e., Rj33 = R1
3.

Now we have a look at the strategies for q1:

g1(R1
1, R

1
2, R

1
3,R′) =

1

1 + 1
+

1

1 + 2
+

1

2 +M + 1
=

5

6
+

1

M + 3

and

g1(R2
1, R

1
2, R

1
3,R′) =

1

1 + 2
+

1

2 + 1
+

1

1 +M + 1
=

4

6
+

1

M + 2
.

Thus, g1(R1
1, R

1
2, R

1
3,R′) > g1(R2

1, R
1
2, R

1
3,R′). This is a contradiction to R1

1 being part of an
equilibrium.
Due to the symmetry of the construction of the instance, the assumption that R2

1 is part of an
equilibrium leads to a contradiction in the same way.

4.3.2 Line planning routing games with potential functions

In contrast to the example from Section 4.3.1 as we see in Lemma 4.5, existence of equilibria and
convergence can be guaranteed if for every a ∈ A there is an arc weight function w̄a : N→ R such
that

gq(Rq,R−q) =
∑
a∈Pq

w̄a(xa) (7)

for every route Rq from uq to vq and its corresponding path Pq in the CGN.
In case of edge-based costs with γ2 = 0 and α2 = 0, such arc weight functions are given by

w̄a(x) :=

{
α1c(e) +

cost(e,l)
x if a = (e, l) ∈ Adrive

β if a ∈ Atransfer
(8)

Lemma 4.5. Let I := (G,L,Q, {gq : q ∈ Q}) be an instance of the LPRG such that arc weight
functions as specified in (7) exist. Then

1. Φ(R) :=
∑
a∈A

∑xa(R)
i=1 w̄a(i) is a potential function for I,

2. there exists an equilibrium to I,

3. the best-response algorithm converges to an equilibrium in a finite number of steps,

4. each of the steps can be executed in polynomial time.

Proof. This proof follows standard arguments for convergence of atomic routing games, compare,
e.g., [Rou07].

1. Let R and R′ be two routings. We denote with Pq and P ′q the corresponding paths for
passenger q in the CGN and with xa := xa(R) and x′a := xa(R′) the corresponding flows on
edge a of the CGN. We first observe that

Φ(Rq,R−q)− Φ(R′q,R−q) =
∑

a∈Pq\P ′q

w̄a(xa)−
∑

a∈P ′q\Pq

w̄a(x′a)

= gq(Rq,R−q)− gq(R′q,R−q),

hence Φ indeed is a potential function by (4).
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(v1, 0)

(v1, l1)

(v1, l2)

(v1, l3)

(v4, l3)

(v4, 0)

(v4, l5)

(v2, l1)

(v2, 0)

(v2, l4)

(v3, l5)(v3, l4)

(v3, 0)

(v3, l2)

99 + 0
we

100
we

99 + 0
we

0 + 0
we

0 + 0
we

Figure 3: Two equilibria with different objective values

2. Hence, every optimum of Φ is an equilibrium of the game. Since the number of solutions is
finite, there exists at least one optimum of Φ/equilibrium of I.

3. Since in each step of the best-response algorithm there is a non-zero improvement in the
individual objective function and thus also in the potential function, and the number of
solutions is bounded, the best-response algorithm converges to an optimum of Φ which is an
equilibrium.

4. We set wqa(R−q) := w̄a(xa(R−q) + 1). Then

gq(Rq,R−q) =
∑
a∈Pq

w̄a(xa(R))

=
∑
a∈Pq

w̄a(xa(R−q) + 1)

=
∑
a∈Pq

wqa(R−q).

The proposition follows from Lemma 4.4.

Thus, if objective functions fulfill the conditions of Lemma 4.5 an equilibrium will be obtained
after a finite number of steps, this holds in particular for all line planning routing games with
α2 = γ2 = 0 and edge-based costs.

4.4 Equilibria and system optima

In this section we investigate the quality of the equilibria of LPRG by comparing them to system-
optimal solution of the line planning routing game. First, we illustrate that the equilibria which
are found by the best-response algorithm are not necessarily optimal with respect to the line
planning problem defined in Section 3.1, even if convergence is guaranteed by Lemma 4.5.
To this end we consider the PTN G and line pool L associated to the CGN shown in Figure 3
with c((v1, v2)) = c((v1, v3)) = 99, c(e) = 0 and ∀e ∈ E \{(v1, v2), (v1, v3)}. We set the edge-based
line costs of edge (v1, v3) in line l2 to cost(((v1,l2),(v3,l2)),l2) := 100, all other line costs are 0. We
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Figure 4: The system optimum is not necessarily an equilibrium.

consider two passengers: q1 wants to travel from v1 to v2 and q2 wants to travel from v1 to v4,

with individual objective functions gq(R) = c(Rq) +
∑

(e,l)∈Rq

cost(e,l)(f(R))

x(e,l)
, i.e., α1 = γ1 = 1,

β = α2 = γ2 = 0. (The same construction is possible if we switch the role of γ1 and γ2 and assign
high enough train capacity).
There are two equilibria:

1. R′: q1 uses line 1 and q2 uses line 3. Both of them have costs of 99, the social costs are 198.

2. R∗: q1 uses line 2 and 4, q2 uses line 2 and 5. Both of them have costs of 50, the social costs
are 100.

Clearly, the second equilibrium is preferable to the first one, since for both passengers the individual
objective function are almost double in the first one. However, e.g., when starting with an empty
solution, the best-response algorithm will find the first equilibrium.

In the following example we see that the optimal solution to the line planning problem is not
necessarily an equilibrium of the corresponding routing game at all: Consider the PTN G and line
pool L associated to the CGN shown in Figure 4. This PTN is the same as the one used in the
previous example, except that edge lengths c((v1, v2)) = 32 and c((v1, v3)) = 49 are changed. Like
in the previous example we have c(e) = 0 ∀e ∈ E \ {(v1, v2), (v1, v3)} and the edge-based line cost
of l2 on edge (v1, v3) is 100, all other line costs are 0. For the objective function we choose the
parameters α1 = γ1 = 1, β = α2 = γ2 = 0 (again, the same construction is possible for γ1 = 0
and γ2 = 1 if capacity is high enough). Figure 4 shows the resulting CGN where all nonzero arc
weight functions are shown. Let there be three passengers. q1 wants to travel from v1 to v2, q2
wants to travel from v1 to v4, q3 wants to travel from v1 to v3.
There is only one equilibrium: R′: q1 uses line 1, q2 uses line 3, q3 uses line 2. G(R′, f(R′)) = 181.
The solution which is optimal for the line planning problem is R∗: q1 uses line 2 and 4, q2 uses
line 2 and 5, q3 uses line 2, with overall objective value G(R′, f(R′)) = 100.
By extending the example given in Figure 4 in a straight-forward way, we see that for instances
with an unbounded number of passengers, the price of stability is not bounded for the considered
games: for n passengers we can construct an instance with price of stability Hn =

∑n
i=1

1
i .

However, we can bound the price of anarchy by the number of passengers if the arc weight functions
(7) fulfill an additional property.

Lemma 4.6. If there exist non-increasing arc weight functions w̄a with w̄a(1) ≤ x · w̄a(x) for all
x ∈ N, the price of anarchy in the LPRG is at most the number of passengers.

15



Proof. Let X := {X1, . . . , Xn} be a socially optimal solution and let R := {R1, . . . , Rn} be an
equilibrium. Assume that G(R, f(R)) > |Q|G(X , f(X )). Then there is at least one passenger q
with gq(R) > |Q|gq(X ). For this passenger q it follows that

gq(Xq,R−q) =
∑
a∈Xq

w̄a(x′a) ≤
∑
a∈Xq

w̄a(1) ≤
∑
a∈Xq

x̂aw̄a(x̂a) ≤
∑
a∈Xq

|Q|w̄a(x̂a) < gq(Rq,R−q),

where x̂a := xa(Xq,R−q) denotes the number of passengers on arc a in (Xq,R−q) and x′a := xa(R)
the number of passengers on arc a in R. This is a contradiction to the assumption that R is a
equilibrium.

Corollary 4.7. If edge-based cost functions with γ2 = 0 are considered and α2 = 0, the price of
anarchy is bounded by the number of passengers.

Proof. The functions given in (8) are non-increasing. Furthermore we have for x > 0

xw̄a(x) =

{
xα1c(a) + cost(a) if a ∈ Adrive
xβ if a ∈ Atransfer

≥
{
α1c(a) + cost(a) if a ∈ Adrive
β if a ∈ Atransfer

=w̄a(1).

Hence, if we use the best-response algorithm as a heuristic for the line planning problem, we obtain
a solution with approximation ratio 1

|Q| where Q is the number of passengers.

To see that there are indeed instances I with a price of anarchy that equals |Q| consider the
example given in Figure 3. If we set the travel costs on (v1, v2) and (v1, v4) to 100, R′ and R are
still both equilibria and the price of anarchy is 2. We can easily extend this construction to an
arbitrary number of passengers.
However, convergence to an equilibrium may be slow. To find a polynomial-time approximation
algorithm for the initial line planning problem, the next lemma is more helpful.

Lemma 4.8. If there exist non-increasing arc weight functions w̄a with w̄a(1) ≤ x · w̄a(x) for all
x ∈ N, given an empty state of the game, calculating the best response once for every passenger
leads to a routing R with

G(R, f(R))

G(X , f(X ))
≤ |Q|

where X is a system-optimal solution.

Proof. Let Q = {1, . . . , n} be the set of passengers and Sq for q = 1, . . . , n the route combination
after choosing the best response Rq for passenger q, i.e., Sq = (R1, R2, . . . , Rq, ∅, ∅, . . . , ∅). Further-
more let X be the socially optimal solution, where the passengers choose the route Xq, q = 1, . . . , n
with corresponding paths Yq in the CGN.
Since arc weight functions are non-increasing, it holds that gq(Sn) ≤ gq(Sq). Since Rq is a best
response to (R1, R2, . . . , Rq−1, ∅, ∅, . . . , ∅) we have

gq(Sq) =
∑
a∈Pq

w̄a(xa(Sq)) =
∑
a∈Pq

w̄a(xa(Sq−1) + 1) ≤
∑
a∈Yq

w̄a(xa(Sq−1) + 1) (9)
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where Pq denotes the path in the CGN corresponding to Rq. With this, it holds

G(Sn, f(Sn)) =
∑
q∈Q

gq(Sn) ≤
∑
q∈Q

gq(Sq)

≤
∑
q∈Q

∑
a∈Yq

w̄a(xa(Sq−1) + 1) due to (9)

≤
∑
q∈Q

∑
a∈Yq

w̄a(1) since w̄a non-increasing

≤
∑
q∈Q

∑
a∈Yq

xa(X ) · w̄a(xa(X )) since w̄a(1) ≤ xw̄a(x)

≤ |Q|
∑
q∈Q

∑
a∈Yq

w̄a(xa(X ))

= |Q|
∑
q∈Q

gq(Xn) = |Q| ·G(Xn, f(Xn)).

Corollary 4.9. If there exist non-increasing arc weight functions w̄a with w̄a(1) ≤ x · w̄a(x) for

all x ∈ N, a solution (R, f) to the line planning problem with G(R,f)
G(R∗,f) ≤ |Q| can be found in

polynomial time.

As described above, we can show that this bound is tight, i.e., there are instances where the best-
response algorithm can get stuck in an equilibrium whose objective value is |Q|-times the optimal
solution value.

4.5 Heuristic approaches to the routing problem

In the preceding Sections 4.2-4.4 we have seen that in order to achieve polynomial running time of
the best-response algorithm, to be able to prove convergence to an equilibrium, and give bounds
on the quality of an equilibrium, strong restrictions on the parameters of the objective function
have to be imposed.
In this section we investigate heuristic approaches to the routing problem for the general case, i.e.,
for individual objective functions

gq(Rq,R−q) = travelq(Rq,R−q) + transferq(Rq) + costq(Rq,R−q)

with edge-based costs

costq(Rq,R−q) :=
∑

(e,l)∈Rq

cost(e,l)(f(Rq,R−q))
x(e,l)(Rq,R−q)

.

In this general case, the routing problem is NP-hard (Theorem 4.3) and the best-response algorithm
does not necessarily converge (see Section 4.3.1). To overcome these difficulties, in this section we
simplify the transfer time function τq and the edge-based cost function costq.

4.5.1 Auxiliary frequencies

The first approach is to replace the frequencies f(R) by auxiliary frequencies f̃(R−q) when deter-
mining a route for passenger q. This small trick allows us to define arc weights in accordance to
Lemma 4.4 and hence, to solve the routing problem using Dijkstra’s algorithm in the CGN.
Let Q be a set of passengers and let R = {Rq : q ∈ Q} be a set of strategies represented by paths
in the CGN. We call an edge (e, l) ∈ A critical for R if one additional passenger on the edge would
increase the frequency, i.e., if x(e,l)(R) ≡ 0 mod B. A line l ∈ L is critical for R if it contains an
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edge which is critical for R. In order to find a route, represented by a path Pq in the CGN, given
the routes for all other passengers R−q, we define the auxiliary frequencies

f̃l(R−q) :=

{
fl(R−q) + 1 if l is critical for R−q
fl(R−q) otherwise.

We observe that for every line l and every passenger q ∈ Q,

f̃l(R−q) ≥ fl(R) ≥ fl(R−q). (10)

For all non-critical lines we even have equality. Plugging in the auxiliary frequencies into τq we
obtain an auxiliary transfer time function

τ̃ lbq (R) :=

n−1∑
i=1

1

f̃li(R−q) + f̃li+1(R)

(where l1, . . . , ln are the lines used in Rq) which underestimates the transfer times τ(R) in a
routing R. To find an overestimating heuristic measure for transfer times, we can consider

τ̃ubq (R) := τubq (R−q) =

n−1∑
i=1

1

fli(R−q) + fli+1
(R−q)

.

Using the same approach, we can define overestimating auxiliary edge-based cost functions as

˜cost
ub
q (R) :=

∑
(e,l)∈Rq

cost(e,l)(f̃(R−q))
x(e,l)(Rq,R−q)

≥ costq(R)

and underestimating auxiliary edge-based cost functions

˜cost
lb
q (R) := costq(R−q) =

∑
(e,l)∈Rq

cost(e,l)(f(R−q))
x(e,l)(Rq,R−q)

≤ costq(Rq).

We define over- and underestimated versions of the individual objective functions

g̃ubq (Rq,R−q) := α1c(R) + α2τ̃
ub(R−q) + transferq(Rq) + ˜cost

ub
q (Rq,R−q),

g̃lbq (Rq,R−q) := α1c(R) + α2τ̃
lb(R−q) + transferq(Rq) + ˜cost

lb
q (Rq,R−q)

and obtain
g̃lbq (Rq,R−q) ≤ gq(Rq,R−q) ≤ g̃ubq (Rq,R−q).

Given a passenger q and a set of strategies R−q for the remaining passengers, the auxiliary
frequencies allow us to define weights for the arcs in the CGN which depend only on the strategy
choices of the remaining passengers R−q. This observation is summarized in the following lemma.

Lemma 4.10. For arc weights

w̃ub
a (R−q) :=

{
α1c(e) +

cost(e,l)(f̃(R−q))

xa(R−q)+1 ∀a = (e, l) ∈ Adrive
1

fl(R−q)+fl′ (R−q) + β ∀a = ((v, l), (v, l′))

or w̃lb
a (R−q) :=

{
α1c(e) +

cost(e,l)(f(R−q))

xa(R−q)+1 ∀a = (e, l) ∈ Adrive
1

f̃l(R−q)+f̃l′ (R−q)
+ β ∀a = ((v, l), (v, l′))

we have

g̃ubq (Rq,R−q) =
∑
a∈Pq

w̃ub
a (R−q) and g̃lbq (Rq,R−q) =

∑
a∈Pq

w̃lb
a (R−q)

(where Pq denotes the path in the CGN corresponding to Rq) and the routing problem can be solved
in polynomial time.
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Here, the last statement follows from Lemma 4.4.

However, the use of the auxiliary objective functions g̃q does not guarantee the existence of an

equilibrium: In fact, in the counter example shown in Section 4.3.1 we have fl(R) = f̃l(R−q) for
all choices of q and Rq. Hence, this example also proves the non-existence of an equilibrium for
objective functions g̃q.

4.5.2 Auxiliary arc weights

Since the heuristic from section 4.5.1 does not always lead to an equilibrium, we consider a fur-
ther simplification which guarantees the existence of an equilibrium and the convergence of the
best-response-algorithm.

Consider a set of passenger routes R = {Rq : q ∈ Q} in the CGN and a transfer edge a =

((v, l), (v, l′)). Then the frequency of l and l′ respectively is at least
⌈
xa(R)
B

⌉
, since at least all

passengers changing from l to l′ have to use l and l′ respectively. Additionally all frequencies are

at most
⌈
|Q|
B

⌉
since no more than all passengers can use any given line. This leads to the following

approximate arc weight functions:

w̄lb
a (x) :=

α1c(e) +
γ1·kl1+γ2·k

l
2·d x

B e
x if a = (e, l) ∈ Adrive

α2

2·d |Q|B e
+ β if a ∈ Atransfer

(11)

and

w̄ub
a (x) :=

α1c(e) +
γ1·kl1+γ2·k

l
2·d |Q|B e

x if a = (e, l) ∈ Adrive
α2

2·d x
B e

+ β if a ∈ Atransfer

. (12)

With ḡlbq (Rq,R−q) :=
∑
a∈Pq

w̄lb
a (xa) and ḡubq (Pq,R−q) :=

∑
a∈Pq

w̄ub
a (xa), (where Pq is the path

in the CGN corresponding to Rq) we obtain:

Lemma 4.11. For every passenger p ∈ Q with route Rq and R = (Rq,R−q) we have

ḡlbq (Rq,R−q) =
∑
a∈Pq

w̄lb
a (xa) ≤ gq(Rq) ≤

∑
a∈Pq

w̄ub
a (xa) = ḡubq (Rq,R−q).

From Lemma 4.4, Lemma 4.5, Lemma 4.6 and Lemma 4.8 we conclude:

Lemma 4.12. For individual objective functions ḡlbq and ḡubq , the routing step of the best-response

algorithm can be executed in polynomial time using arc weights w̄lb
a (xa) or w̄ub

a (x), respectively, in
the CGN.
With respect to these objective functions equilibria exist, the best-response algorithm converges
towards an equilibrium, and the price of anarchy is at most |Q|. Furthermore, given an empty
state of the so-defined game, calculating the best response once for every passenger leads to a state
with costs of at most number of passengers times the costs of the social optimal solution.

5 Experiments

5.1 Test instances

In order to find out how our best-response algorithm behaves and to gain first insights on its
performance, we tested our best-response algorithm it on the three small test instances illustrated
in Figures 5-7. The figure on the left shows the PTN with travel times and the lines, on the right
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Figure 5: Desctiption of instance I1
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line cost stations
l1 5 (v1, v2, v3, v4)
l2 6 (v5, v3, v1)
l3 3.5 (v4, v3, v6, v2)
l4 4.5 (v4, v3, v1, v2)
l5 6.5 (v2, v5, v3, v4)

v1 v2 v3 v4 v5 v6
v1 0 1 3 2 1 1
v2 2 0 1 2 0 2
v3 1 2 0 3 3 1
v4 2 2 0 0 4 1
v5 1 1 2 2 0 3
v6 0 1 1 3 1 0

Figure 6: Description of instance I2

line costs and OD-matrix are given. I1, shown in Figure 5 is our smallest example consisting of
only three stations, two lines, and three passengers. I2 and I3 are bigger, the former consists of
six stations, five lines, and 49 passengers, the latter contains eight stations, eight lines, and 2620
passengers.
Additionally we tested the algorithm on two more realistic instances GOE1 and GOE2 which are
taken from the LinTim toolbox [Lin14]. These instances are both based on the PTN shown in
Figure 8 which is based on the bus-network in Göttingen, Germany. It consists of 257 stations
and 548 edges. A line pool consisting of 44 lines was generated for these experiments. The
instances GOE1 and GOE2 differ in the number of passengers. For our experiments we modified
the original OD-data from LinTim toolbox which consisted of 460146 passengers on 66048 OD-
pairs. For GOE2, the number of passengers are scaled down by the factor 1

30 and rounded, which
leads to 6321 passengers on 6114 OD-pairs. For GOE1, the same calculation is done with the
factor 1

50 , leading to OD-data of 1943 passengers and as many OD-pairs

5.2 Running time

Table 1 gives a short overview of some computational aspects for using auxiliary arc-weight w̄lba
described in Section 4.5.2 with parameter set (α1/α2, β, γ1/γ2) = (0.5/0.5, 0.5, 0.1/0.1) for I1,I2
and I3 and (α1/α2, β, γ1/γ2) = (0.5/0.01, 0.1, 0.01/0.01) for GOE1 and GOE2. The number of
iterations for different parameter choices and for the other heuristics described in Sections 4.5.1

parameters: I1 I2 I3 GOE1 GOE2
# iterations 2 3 3 3 3
computation time per iteration (in seconds) 0.01 0.045 2.26 45.78 143.35
% pass. without transfer 100 55.1 82.44 3.45 6.3

Table 1: Characteristica of found solutions for different instances for individual cost function (11).
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line cost stations
l1 4 (v1, v3, v6, v7)
l2 4 (v2, v3, v6, v8)
l3 1.8 (v4, v5)
l4 2.8 (v3, v6, v5)
l5 3 (v2, v3, v4)
l6 4 (v3, v6, v5, v4)
l7 3.8 (v3, v4, v5, v6)
l8 5.8 (v1, v3, v4, v5, v6, v7)

v1 v2 v3 v4 v5 v6 v7 v8
v1 0 10 20 10 60 100 0 0
v2 10 0 40 20 70 100 0 10
v3 20 40 0 20 100 50 20 10
v4 10 20 20 0 100 150 0 0
v5 60 70 100 100 0 120 100 90
v6 100 100 50 150 120 0 60 50
v7 0 0 20 0 100 60 0 0
v8 0 10 10 0 90 50 0 0

Figure 7: Description of instance I3

Figure 8: Underlying public transportation network for instances GOE1 and GOE2
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auxiliary freq ub auxiliary freq lb aux. arc-weight ub aux. arc-weight lb
# iterations 4 5 4 3
travel time
drive 16.85 16.79 16.85 16.5
transfer real(est.) 1.87(1.87) 1.92(1.9) 0.54(2.06) 0.72(0.1)
total real(est.) 18.72(18.72) 18.72(18.69) 17.4(18.92) 17.22(16.6)
# transfers 1210 1530 340 460
% pass. without transfer 54.58 47.33 87.02 82.44
lines
# lines 7 9 8 11∑

fixed line costs 1884 2352 2016 2664∑
freq line costs 4840 5800 3800 4352∑
line costs 6724 8152 5816 7016

objective value 25559.7 25732.82 23542.43 23437.75

Table 2: Comparison of different heuristics for instance I3, using parameter set
(0.5/0.5, 0.5, 0.1/0.1).

and 4.5.2 is comparable.
We observe that the time needed for one iteration increases with increasing network size and
in particular with increasing number of passengers. This is to be expected, since each iteration
consists of finding one shortest path per passenger and a subsequent adaption of arc lengths in the
network. Note that in instances GOE1 and GOE2, the solution time per passenger is roughly the
same in both instances. Furthermore, it is interesting to see that the number of iterations did not
increase with the problem size. This indicates that with respect to running time, the approach
could also be applicable for bigger instances, in particular in conjunction with speed-up techniques
for shortest paths.
The fourth row in Table 1 shows the percentage of passengers who can travel without a transfer
from origin to destination. This number reveals the different levels of closeness to reality of the five
instances. While in the smaller instances all or nearly all passengers can travel without transfers,
this number drops dramatically for instance GOE1 and GOE2. Comparing GOE1 and GOE2, it
is interesting to see that less passengers have to transfer in GOE2. This can be explained by the
fact that in case of higher demand, more lines can be established and hence there are more choices
for the passengers.

5.3 Comparison of the different heuristic approaches to include frequen-
cies

In this section we compare the different heuristic approaches from Section 4.5 on the instances I3
and GOE2, using the parameter sets (α1/α2, β, γ1/γ2) = (0.5/0.5, 0.5, 0.1/0.1) and (α1/α2, β, γ1/γ2) =
(0.5/0.01, 0.1, 0.01/0.01) respectively. The results are shown in Table 2 and Table 3, where aux-
iliary freq ub and auxiliary freq lb use the individual objective functions g̃ubq and g̃lbq described in
Section 4.5.1, respectively, and aux. arc-weight ub and aux. arc-weight lb denote the heuristics
based on auxiliary arc weights w̄ub

a and w̄lb
a as described in Section 4.5.2, respectively.

We compare the average travel time per passenger, split up into driving time and transfer time,
the total number of transfers, the percentage of passengers without a transfer, the number of lines,
the costs of the line concept, split up into fixed costs and costs depending on the frequency and
the objective value (according to the given parameter set) as sum of the objective values of all
passengers.
For the transfer time and travel time, we show both the exact value (calculated using g) and the
value estimated by the heuristic individual objective functions (in brackets).
We observe that, as proven in Section 4.5, transfer times are overestimated in the heuristics
auxiliary freq ub and aux. arc-weight ub, while they are underestimated in auxiliary freq lb and
aux. arc-weight lb. As was to be expected, the estimated transfer time in the heuristics using
auxiliary frequencies is much closer to the exact transfer time than in the heuristics using auxiliary
arcs weights.
Comparing heuristics based on auxiliary frequencies and heuristics based on auxiliary arc weights
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auxiliary freq ub auxiliary freq lb edge-based ub edge-based lb
# iterations 5 4 6 3
travel time
drive 49.55 50 42.23 41.91
transfer real(est.) 9.9(9.93) 9.9(9.89) 9.36(27.48) 9.51(0.88)
total real(est.) 59.45(59.48) 59.89(59.89) 51.59(59.71) 51.42(42.79)
# transfers 24927 25612 15838 15688
% pass. without transfer 2.77 2.09 6.83 6.3
lines
# lines 37 38 39 39∑

fixed line costs 2398710 2402736 2542626 2542626∑
freq line costs 3476608 3649197 2671705 2672386∑
line costs 5875318 6051933 5214331 5215012

objective value 204291.96 206111.89 185927.84 185237.34

Table 3: Comparison of different heuristics for the frequencies for instance GOE2, using parameter
set (0.5/0.01, 0.1, 0.01/0.01).

parameter changes wrt. (0.5/0.5, 0.5, 0.1/0.1)
no changes α1 = α2 = 17.5 α2 = 15 α2 = 0

# iterations 3 2 3 3
travel time
drive 16.5 16.5 16.6 16.5
transfer real(est.) 0.72(0.1) 0(0) 0(0) 0.85(0.1)
total real(est.) 17.22(16.6) 16.5(16.5) 16.6(16.6) 17.35(16.6)
# transfers 460 0 0 460
% pass. without transfer 82.44 100 100 82.44
lines
# lines 11 11 10 11∑

fixed line costs 2664 2664 2424 2664∑
freq line costs 4352 4352 4096 4352∑
line costs 7016 7016 6520 7016

objective value for
(0.5/0.5, 0.5, 0.1/0.1) 23437.75 22264.91 22377.71 23437.75

Table 4: Comparison of different parameter sets in the individual objective functions using auxil-
iary arc weights w̄llb on instance I3.

among each other, we observe that the heuristics which overestimate transfer time and line costs,
find solutions with less transfers and less lines. However, travel time is slightly higher in these
cases.
A comparison of the objective values of the results provided by the different heuristics surprisingly
shows that the simple heuristics using auxiliary arc weights provide better results than the heuris-
tics using auxiliary frequencies for both the small instance I3 and the more realistic instance GOE2
- although the latter provide much better estimates of travel times. In particular, the heuristics
based on auxiliary arc weights seem to find paths with a smaller overall number of transfers and
a bigger percentage of direct travelers. This effect is a bit more pronounced for the heuristic aux.
arc-weight ub which overestimates transfer times, but also clearly visible for aux. arc-weight lb.

5.4 Influence of the parameters

In order to investigate how the choice of parameters in the objective function influences the
outcome of the best-response algorithm, in Table 4 and 5 we vary the parameters in the heuristic
individual objective functions used in aux. arc-weight lb on instance 3.
We observe that the equilibrium the algorithm found for the given parameter set is not the best one
for the objective function for this parameter set. Surprisingly, increasing the weighting parameter
for travel-time (α1), transfer-time (α2) or transfers (β) each lead to an equilibrium that is better
socially and reduces the number of transfers to 0.
Increasing the influence of the costs - regardless of considering fixed costs, frequency-based costs or
both - leads to an socially considerable worse equilibrium which is on top of that more expensive
than any other considered here. This undesirable property might be a general disadvantage of the
heuristic used here.
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parameter changes wrt. (0.5/0.5, 0.5, 0.1/0.1)
no changes β = 20 γ1 = γ2 = 0.75/γ1 = 150/γ2 = 150 β = γ1 = γ2 = 0

# iterations 3 4 2
travel time
drive 16.5 16.6 22.29 16.5
transfer real(est.) 0.72(0.1) 0(0) 2.43(0,6) 0.85(0.1)
total real(est.) 17.22(17.6) 16.6(16.6) 24.72(22.89) 17.35(17.6)
# transfers 460 0 2780 460
% pass. without transfer 82.44 100 35.11 82.44
lines
# lines 11 10 8 12∑

fixed line costs 2664 2424 1800 2772∑
freq line costs 4352 4096 7080 3580∑
line costs 7016 6520 8880 6352

objective value for
(0.5/0.5, 0.5, 0.1/0.1) 23437.75 22377.71 34339.9 23549.8

Table 5: Comparison of different parameter set in the individual objective functions using auxiliary
arc weights w̄lb on instance I3.

The different results are also shown in Figures 9(a)-9(d), where the thickness of the line arcs
corresponds to the number of passengers using it or the frequencies of the lines respectively. The
direct edges correspond to edges in the PTN, the bent edges to edges in the CGN.
The first image in Figure 9(a) is the solution for the original parameter set. For Figure 9(b), the
transfer time is taken into account more which leads to a higher usage of the long line 8, leading to
fewer transfers in this instance. A similar picture can be derived by increasing β, i.e. the transfer
penalty. In Figure 9(c) less lines are used, due to the increased cost influence in the solutions.
A corresponding effect is the higher load on the remaining lines. Additionally one edge is not
used anymore in this solution. Note that the solution is exactly the same regardless of which cost
parameter is increased. For the last solution 9(d), only travel and transfer times are taken into
account. This results in a very level picture regarding the usage of the different lines, probably
because taking new lines into the solution does not cost more and lines with similar frequencies
are nice for the transfer times.

6 Conclusions and further research

We presented a new approach to solve line planning by solving a routing game where the passengers
are the players who aim at minimizing a weighted sum of their travel time, transfer penalties, and
a cost share. Under strong assumptions on the objective function (transfer time is not taken into
account and line costs can be assigned to edges and are independent of frequencies) equilibria of this
game can be found using the described best-response algorithm. In case that the objective function
does not fulfill these properties, applicability and convergence of the best-response approach can
be achieved by a slight modification of the individual objective functions.

A logical next step will be to evaluate whether the line planning routing game, besides being an
interesting object of study in itself, does indeed lead to a good heuristic for line planning.
First, more experiments of the type presented in Section 5 on instances of realistic size (in par-
ticular also with respect to passenger numbers) may lead to more insights on the performance of
the different approaches presented in Section 4.5. A positive effect of increasing passenger num-
bers is that the approximate frequencies f(R−q) and f̃(R−q) become better estimates of actual
frequencies f(R). However, in the current version of the best-response strategy, in each iteration
a shortest path for each passenger has to be found, hence running time increases with increasing
number of passengers. For large passenger numbers it may thus make sense to use flow equili-
bration techniques in the inner loop instead of shortest path computations for each individual
passenger.
Second, line planning solutions obtained with the routing game approach should be compared to
state-of-the-art exact and heuristic solution methods for line planning with respect to objective
value, running time, and practicability of the found solution (in the sense of Section 3.5).
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(a) Parameter set (0.5/0.5, 0.5, 0.1/0.1).
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(b) Parameter set (0.5/7.5, 0.5, 0.1/0.1).
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(d) Parameter set (0.5/0.5,0,0/0).

Figure 9: Dependence of equilibrium solution from choice of parameters using the auxiliary arc
weights w̄lb on instance I3.
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While the terms for travel time and transfers are quite intuitive, many different choices are possible
for the cost-sharing among passengers. It remains an interesting question how to divide operational
costs among passengers such that, on the one hand, the algorithmic approach is still viable, and
on the other hand, cost shares are comparable to real-world travel costs. Furthermore, it would
be interesting to investigate whether the routing game approach can also be applied to other
planning problems which can be considered integrated network design and routing problem like,
e.g., timetabling or delay management with integrated routing.
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