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Chapter 1  | Introduction 
 

1.1 Games and Financial Decision Making 

 

The first financial decision that was preceded by a probability calculation was a dice 

game. In 1654, Antoine Gombaud asked for the chance of winning a game with 

multiple throws of the dice. Blaise Pascal and Pierre de Fermat took on the challenge 

and calculated the probability distribution.  This laid the foundation for probability 

theory. If one is able to calculate the probabilities of outcomes, it is a simple second 

step to calculate the expected value of various choices by taking the probability-

weighted sum of the outcomes. By choosing the financial options that give the 

greatest expected value, one ends up with the highest result in the long term. 

This does not, however, take into account that people are generally risk-averse. The 

Saint Petersburg paradox, for example, describes a game of chance with infinite 

expected value that is generally valued at less than €20. To account for people’s risk 

aversion, Bernoulli (1738) introduced the concept of utility. When making financial 

choices, he stated, one should not look at expected value, but rather at expected utility. 

As an example, he mentions the merchant Caius, who is considering insuring his cargo 

on a ship from Amsterdam to Petersburg. Bernoulli argues that Caius should not look 

at the arithmetic average of the outcomes (expected value), but at the geometric 

average, which is equivalent to behaving according to expected utility with a 

logarithmic utility function.  

It is generally accepted that it is rational to maximize expected utility, both when 

probabilities are known (Von Neumann & Morgenstern 1944) as well as when they 

are unknown (Savage 1954). The normative method of making financial decisions 

(how people ought to choose) has thus been known for over 275 years. In practice, 

however, we see that expected utility is not an accurate descriptive model of how 

people make financial decisions. They are often influenced by psychological factors 

that have no place in the standard financial model.  
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This phenomenon is visible in various aspects of financial markets. Perhaps most 

notably, the return on stocks is much higher than can be expected based on risk 

preferences and historical volatility. Investors also give disproportionate attention to 

probabilities of familiar events: most individual investors invest only in stocks of 

their home country, whereas diversification across countries can greatly reduce 

portfolio risk. Further, people give disproportionate attention to short-term gains and 

losses, which is against their own (long-term) interest.   

In response to these observations, a new field titled Behavioral Finance has 

developed. Here, the assumption of a rational, optimizing decision maker has been 

dropped and psychological phenomena have been introduced in the financial world. 

DeBondt & Thaler (1985) gave a first start by writing about under- and overreaction 

to news on financial markets. The field uses much of the insights gathered by Amos 

Tversky and Daniel Kahneman, who, among other things, introduced “prospect theory” 

in Tversky & Kahneman (1979), a descriptive model of decision making that 

comprehends multiple irrationalities. Thaler (1980) already suggests prospect theory 

as a model that is suitable for explaining how humans make decisions, instead of how 

they should choose. It can explain, for example, why stock returns are so high 

(Benartzi & Thaler 1995) and why individual private investors wait too long to sell 

bad performing stocks and are too quick to sell stocks that perform well (Barber & 

Odean 2000).  

This thesis analyzes fundamental aspects of financial decision making by modeling 

human decision making. Chapter 2 describes a model to explain choice behavior 

under ‘ambiguity’: situations in which people have some idea about probabilities but 

do not know the exact probability distribution. For practically all financial decisions, 

no one can determine exactly the risks. It is not possible to exactly calculate, for 

example, the probability that, the Dow Jones index will rise over 20% in the next year. 

Chapter 3 analyzes how people assess the probabilities of situations like the one 

mentioned above, and whether these probabilities correspond to those of the market 

(homogeneous expectations are often assumed in financial models). Chapters 4 and 5 

are about intertemporal choices (e.g., €100 now or €110 in one year); financial 

decisions are often about receiving something in the future. Chapter 4 suggests an 

improvement of an often used model and Chapter 5 argues in favor of a relatively new 
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model. The last Chapter returns to where it all started by looking at a game: it 

analyzes the role of skill in the game of poker. 

1.2 Thesis Outline 

 

Chapter 2 discusses multiplier preferences, a model that describes behavior under 

ambiguity, where people have subjective beliefs but do not know exact probabilities. 

The subjective expected utility model (Savage 1954) prescribes that ambiguity should 

not affect a person’s preferences (only subjective beliefs matter), but numerous 

studies (most notably Ellsberg 1961) have found that people do behave differently 

when ambiguity is involved.  

Multiplier preferences are widely used in macroeconomic models, but they not been 

applied in microeconomic settings, largely because they do not permit behavior in 

which people are ambiguity seeking. We give a preference foundation for an 

extension of the model, such that it allows for ambiguity seeking as well as ambiguity 

aversion. Also, we propose a simple method to measure multiplier preferences, 

thereby giving a straightforward measure of ambiguity attitude. This allows for a 

broad application of the model in analyzing individuals’ dealing with ambiguity. 

We give a first example of such an application by analyzing the ambiguity preferences 

of a large representative sample of the Dutch and of the American population. We 

thereby obtain the first micro-economic estimates of multiplier preferences. Nearly 

one third of the respondents is found to be ambiguity seeking, illustrating the need 

for the extension of the model. Contrary to the predictions from the theoretical 

literature, ambiguity aversion is not (negatively) correlated with stock market 

participation, but the deviation from ambiguity neutrality is.  

Chapter 3 analyzes people’s subjective beliefs about movements in the stock market, 

and how these subjective beliefs compare to the beliefs implicit in the prices of 

financial securities. Many theoretical models assume homogeneous beliefs, implying 

that the two sets of beliefs should be the same (at least in expectation). On the other 

hand, many would argue that ‘regular people’ know little about the stock market as 

they are often not directly involved, and as such will have beliefs that are not at all 

aligned with those of the financial market. 
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This research is the first to highlight the correspondence between the wording of 

subjective response questions in surveys and the design of index options. A large 

representative sample of the US population was asked for their beliefs that the index 

return would be above a certain threshold, which corresponds to a probability that 

can be extracted from option prices. Market beliefs and general population beliefs can 

thus be compared. We find that there is a relationship between the two sources of 

views, although the association is far from one-for-one. We find a closer association 

for those demonstrating a better understanding of the laws of probability.  

Chapter 4 dicusses the quasi-hyperbolic or      discounting model. This is the most 

widely used model to explain a phenomenon called decreasing impatience. People are 

generally more impatient for outcomes in the short run than for those in the long run 

(normatively one should display constant impatience). This can cause dynamic 

inconsistencies, in which people reverse their preferences over time.  

In the quasi-hyperbolic model,   causes this decreasing impatience, and is therefore 

commonly interpreted as an index of dynamic inconsistency. We show that this 

interpretation is problematic because   captures other components of intertemporal 

attitudes and interacts with the discount factor  . Instead,                is a 

proper index of dynamic inconsistency, as we  prove by a preference axiomatization. 

It leads to a rewriting of quasi-hyperbolic discounting       as     .  

The index   has a natural interpretation as a perceived time penalty for any delay 

beyond the present and thus as the time period over which the decision maker is 

vulnerable to dynamic inconsistencies. We give an empirical illustration of the use of 

  by reanalyzing the data from Tanaka et al. (2010). 

 

The quasi-hyperbolic model is useful because of its simplicity and tractability. To 

measure peoples’ true discount functions, however, more advanced models are 

necessary. It is my belief that the Constant Relative Decreasing Impatience (or Unit 

Invariance) function suggested in Bleichrodt, Rohde & Wakker (2009) is among the 

most suitable for this task. Chapter 5 is a comment on Doyle’s (2013) survey of 

discount functions, in which this family is criticized based on incorrect assumptions. 

We show his mistakes and make a case in favor of the two families of functions.   
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The final Chapter analyzes the skill-component in online poker. A major issue in the 

widespread controversy about the legality of poker and the appropriate taxation of 

winnings is whether poker should be considered a game of chance. Many behavioral 

theories would suggest skill has a substantial influence on poker, but legally, it is 

often considered a game of chance.  

We present an analysis into the role of skill in the performance of online poker 

players, using a large database with hundreds of millions of player-hand observations 

from real money ring games at three different stakes levels. We find that players 

whose earlier profitability was in the top (bottom) deciles perform better (worse) 

and are substantially more likely to end up in the top (bottom) performance deciles of 

the following time period. Regression analyses of performance on historical 

performance and other skill-related proxies provide further evidence for persistence 

and predictability. Simulations point out that skill dominates chance when 

performance is measured over 1,500 or more hands of play. 
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Chapter 2  | Robustness: Extending Multiplier 

Preferences 
 

 

 

 

Multiplier or robust preferences are widely used in macroeconomics to capture model 

uncertainty. At the micro level, they have not been applied yet, because they do not 

permit ambiguity seeking, which is usually observed for a substantial proportion of 

subjects. This chapter makes three contributions. First, we give a preference foundation 

for (extended) multiplier preferences that allows for both ambiguity aversion and 

ambiguity seeking. Second, we propose a simple method to measure multiplier 

preferences, which gives an axiomatically founded measure of ambiguity attitude. Third, 

we apply this method to two large representative samples (one Dutch and one American) 

and obtain the first micro estimates of multiplier preferences. We find that nearly one 

third of the respondents is ambiguity seeking, illustrating the need for extended 

multiplier preferences. Contrary to predictions from the theoretical literature, 

ambiguity aversion is not (negatively) correlated with stock market participation but 

the deviation from ambiguity neutrality is.  

 

 

 

 

 

 

 

 

This chapter is based on the paper “Robustness: (Extended) Multiplier Preferences for the American and 

the Dutch Population”, co-authored by Aurélien Baillon, Han Bleichrodt and Zhenxing Huang. The authors 

are grateful to Roy Kouwenberg, Tomasz Strzalecki and Peter P. Wakker for helpful comments.  
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2.1 Introduction 

 

Dissatisfaction with the dominant rational expectation hypothesis has led to new 

models in macroeconomics and finance, which permit that decision makers’ beliefs 

about economic phenomena are non-unique. One of the most influential of these new 

models was proposed by Hansen and Sargent (2001). In their multiplier preferences 

model, decision makers rank payoff profiles   according to the criterion: 

         
 

        
 

 
         (2.1) 

where   is a utility function,   is a subjective probability distribution on the states of 

the world,   is a behavioral parameter, and         is the relative entropy of any 

probability distribution   with respect to  . The intuition underlying Eq. (1) is that 

the decision maker has some best guess   of the probability distribution, but he does 

not have full confidence in his guess and also considers other probability 

distributions p. The plausibility of these other distributions decreases with their 

distance from  , as measured by the relative entropy  . The parameter 
 

 
 captures the 

degree to which the decision maker takes alternative probability distributions into 

account. The lower is  , the more the decision maker trusts that   is the correct 

distribution. In the limit, if   goes to zero, Eq. (2.1) becomes subjective expected 

utility.  

The lack of trust decision makers have in their beliefs may result from ambiguity 

(Hansen and Sargent 2001). In empirical studies, most subjects are not neutral 

towards ambiguity, as assumed by expected utility, but are ambiguity averse. 

Multiplier preferences capture ambiguity aversion while remaining analytically 

convenient and easy to incorporate in economic models of aggregate behavior. 

However, they do not accommodate ambiguity seeking, which limits their 

applicability at the micro level where a wide range of ambiguity attitudes is typically 

observed and a substantial proportion of respondents is ambiguity seeking. 

This chapter makes three contributions. First, we extend multiplier preferences to 

accommodate both ambiguity aversion and ambiguity seeking. We give a preference 
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foundation of this extended model that complements Strzalecki (2011) and that 

makes multiplier preferences suitable for microeconomic applications. 

Second, we present a simple method to measure extended multiplier preferences. Our 

method is easy to apply and measures multiplier preferences at the individual subject 

level. Hence, we obtain an axiomatically founded measure of ambiguity aversion that 

can easily be used in empirical research and that captures the heterogeneity in 

individual ambiguity attitudes. 

Third, we provide the first micro estimates of the (extended) multiplier preferences 

for two large representative samples of the Dutch and the US population involving 

over 5,000 subjects in total. Most subjects were moderately ambiguity averse, but 

between 25% (Dutch sample) and 35% (US sample) were ambiguity seeking. In both 

samples, we observed that better educated respondents deviated less from ambiguity 

neutrality. On the other hand, income and gender had little to no effect on ambiguity 

attitudes. The data also allowed us to explore a prediction from the theoretical 

literature that ambiguity aversion leads to less stock market participation (Bossaerts 

et al. 2010, Cao, Wang, and Zhang 2005, Dow and Werlang 1992, Easley and O’Hara 

2009, Epstein and Schneider 2010). We found no evidence for this prediction, but we 

did observe that respondents who deviated less from ambiguity neutrality (subjective 

expected utility) were more likely to participate in the stock market.  

2.2 Extended Multiplier Preferences 

 

We use the Anscombe-Aumann setting. Let   be the state space, i.e. the set of all 

possible states of the world  .   can be finite or infinite. One state s will occur but the 

decision maker does not know which one.   denotes a sigma-algebra on  . Its 

elements are called events and are typically denoted  . The set of all countably 

additive probability measures on       is denoted by      and is endowed with the 

weak* topology. A probability measure        is absolutely continuous with respect 

to        if for all    ,        implies         Let      denote the set of all 

countably additive probability measures that are absolutely continuous with respect 
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to  . For any         , the relative entropy of   with respect to   is given by 

             
  

  
 

 
   if        and           otherwise. 

We denote the outcome set by  .      is the set of all simple lotteries on  . Elements 

of      are denoted   or  . The decision maker chooses between acts, finite-valued 

mappings from   to     , which are  -measurable. Acts are usually denoted   or  . 

For event  ,     denotes the act that gives      if     and      if      with    the 

complement of  . The set of all acts is  . Acts have two stages: the first stage 

corresponds to the uncertainty modeled by S and the second stage to the risks 

modeled by     . The mixture act           for         is the act that assigns 

the lottery                 to state   for all    . The decision maker’s 

preferences over acts in   are denoted by   (with  ,  , ≼, and ≺ defined as usual). A 

functional   represents   if       is such that              . 

 

Definition 2.1: We call   extended multiplier preferences if   can be represented by 

     

 
 
 
 

 
 
    
      

             
 

 
 

 
              

             
 

      

   
      

             
 

 
 

 
             

  

where   is a nonconstant expected utility functional,       , and    . We call 

these preferences robust if     and opportunity seeking if    . 

 

A decision maker whose preferences are opportunity seeking chooses the 

probabilities that will maximize his expected utility minus a cost, which depends on 

the distance between these probabilities and his best guess. A decision maker with 

robust preferences tries to find options that are maximally insensitive to remaining 

uncertainties. By contrast, an opportunity seeking decision maker is looking for 

possibilities to improve his expected utility and he values options for which the 

remaining uncertainties can lead to high expected utilities.  
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An alternative interpretation of extended multiplier preferences approach comes 

from a comparison with                     , the Lagrange function deduced 

from minimizing (in the robust approach) or maximizing (in the opportunity seeking 

approach)         such that the relative entropy does not exceed a threshold 

           . This comparison shows that the multiplier parameter   
 

 
 is the 

Lagrange multiplier of the optimization problem and can be interpreted as the 

shadow price of relaxing the constraint imposed on the relative entropy (Hansen and 

Sargent, 2001).  

There is a third interpretation of the multiplier parameter as an index of ambiguity 

aversion. Lemma 2.1 in the Appendix shows that extended multiplier preferences are 

ordinally equivalent to Neilson’s (2010) second-order expected utility (SOEU) 

                       
 with        

            
       

          

  with  ,  , and   the 

same as in Definition 1. We know from Pratt (1964) that under expected utility the 

exponential utility function is equivalent to constant absolute risk aversion. This 

implies that adding an amount   to all outcomes of the lotteries under comparison 

does not change the preferences between these lotteries. For the exponential function, 

the Arrow-Pratt index of risk attitude  
   

  
 is constant and equal to the exponential 

parameter. Under SOEU, we can give a similar interpretation to the exponential    

function in terms of utility: adding the same (expected) utility to each state of the acts 

under comparison does not change the preferences between these acts. Grant and 

Polak (2013) coin the term constant absolute uncertainty aversion to describe this 

property. The index  
   

  
   is then an Arrow-Pratt index of ambiguity attitude.  

2.3 Axiomatization 

 

Strzalecki (2011) axiomatized extended multiplier preferences for    , i.e. for 

decision makers with robust preferences. We will characterize extended multiplier 

preferences, i.e. including the case of opportunity seeking (    . We do so by 

dropping uncertainty aversion (his A.5) from Strzalecki’s set of axioms and by 
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replacing results in his proof that depend on this axiom by other results that do not 

depend on it.  

We impose the following conditions on  : 

1. Weak order:   is complete and transitive.  

2. Weak certainty independence: for all      , for all           and for all 

       ,                                         .  

3. Continuity: for all         , the sets {                      and 

{                      are closed.  

4. Monotonicity: for all       if           for all     then    .  

5. Nondegeneracy: there exist acts       such that       

6. Weak monotone continuity: for all      , for all       , and for all 

          with         and         ,     implies that there exists 

an    such that        .  

7. Sure thing principle: for all     and for all                        
  

   
    

An event is essential if there exist         such that        .  

 

Theorem 2.1: If   has at least three disjoint essential events1 then the following two 

statements are equivalent: 

≽ is a continuous, nondegenerate weak order that satisfies weak certainty 

independence, monotonicity, weak monotone continuity and the sure thing principle. 

≽ has an extended multiplier representation. 

 

                                                             
1 If only one event is essential then the Theorem also holds but the uniqueness properties are 

different. If exactly two disjoint events are essential then the sure thing principle should be 
strengthened to the hexagon condition (Wakker 1989). 
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Observation 2.1: Two triples         and            represent the same extended 

multiplier preference if and only if   and    are identical and there exist     and 

    such that         and       . 

 

We can distinguish the robust and the opportunity seeking approaches using 

Schmeidler’s (1989) condition of ambiguity aversion and its counterpart of ambiguity 

seeking. 

 

Definition 2.2: Ambiguity aversion (seeking) holds if for all acts     in  and for all   

in                            .  

 

Theorem 2.2: Under extended multiplier preferences, ambiguity aversion is 

equivalent to robust preferences and ambiguity seeking is equivalent to opportunity 

seeking preferences. 

 

All proofs are in Appendix 2.  

2.4 Measuring Extended Multiplier Preferences 

 

Method 

Strzalecki (2011, Example 3) explained how the multiplier parameter   could be 

measured under the assumption that utility   is a power function. We describe an 

alternative method that makes no assumptions about utility and requires fewer 

questions. Because extended multiplier preferences are ordinally equivalent to 

second-order expected utility (SOEU) and our method is easier to understand under 

SOEU, we will use SOEU in what follows. 

Suppose that a ball will be drawn from an urn with an unknown number of yellow 

and purple balls. Let         where   stands for “the ball is yellow” and   for “the 
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ball is purple”. The decision maker can win either $15 or nothing, depending on the 

color of the ball. Hence,         . The act    pays $15 if the ball is yellow and 

nothing otherwise and the act    pays $15 if the ball is purple and nothing otherwise. 

Each lottery from      can be written as       where   is the probability to get 15. 

We scale utility so that        and         . Then                    

     . 

Assume that            for some probability  . We call this probability   a matching 

probability of the acts    and   . Under SOEU, we obtain from       that      

       . The second indifference,        , then implies                  

       . We prove in the Appendix that this equation has a unique solution   for 

each value of        . If     , then     and the decision maker is indifferent 

between an objective and a subjective probability of ½ .  If     then    and  the 

decision maker prefers an objective probability of ½ to a subjective probability of ½.. 

This corresponds to ambiguity aversion  Similarly,     implies ambiguity seeking 

       If    , preferences are extremely robust (ambiguity averse) and     . 

If    , preferences are extremely opportunity seeking and     . 

Calibration 

Observation 1 shows that the sign of the multiplier parameter does not depend on the 

scaling of the utility function, but its magnitude does. In the empirical study reported 

in Section 2.5, we scale utility such that the utility of initial wealth   (the wealth 

before making the decision) is 0 and that of       is 15. For any utility function    

the multiplier parameter    can be computed from the   that we report below using 

   
    

            
. For moderate utility curvature (which is plausible for the small 

increases in final wealth in our surveys), we get the approximation    
  

     
   

2.5 Extended Multiplier Preferences in the Dutch Population 

 

Data 

The data for the first analysis come from the Dutch Longitudinal Internet Study for 

the Social Sciences (LISS), a representative household survey conducted by 

CentERdata at Tilburg University. Respondents answer survey modules, the results of 
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which are publicly available. LISS also contains information about many demographic 

characteristics and economic background variables. Summary statistics of the 

variables that we used are in Table 5 in the Appendix.  

In January 2010, 1,933 subjects participated in a survey about ambiguity preferences. 

The survey was designed by Dimmock, Kouwenberg and Wakker (2013). Subjects had 

to choose between two urns: a known urn K and an ambiguous urn A. Urn K 

contained 100 yellow and purple balls in known proportions. Urn A contained 100 

yellow and purple balls in unknown proportions. By default, purple was the winning 

color, but subjects could change the winning color to yellow. Only 1% of all subjects 

did so, which indicates that most subjects were not suspicious and had no preference 

between the two winning colors. This implies that        

The survey measured the matching probability   for which subjects were indifferent 

between urn A and urn K with       balls of their winning color. Subjects made a 

series of choices between urn A and urn K, where urn A remained the same while the 

proportion of winning balls in urn K changed depending on previous choices.  

At the end of the experiment, half of the sample played one randomly selected choice 

for real (for the other half all choices were hypothetical). A ball was drawn from the 

urn that the subject preferred in that choice. The subject received €15 euro if the ball 

had his winning color and nothing otherwise.  

Results 

Figure 1 shows the estimated distribution of σ using a kernel density estimate. The 

median value of   was equal to 0.05, which corresponds with a matching probability 

of 40.6%. The distribution was centered to the right of zero and was concentrated in 

the ambiguity averse domain. Sixty seven percent of the subjects were ambiguity 

averse and 22.5% were ambiguity seeking. The boxes at the far right and left of the 

distribution show that for 9.6% (6.2%) of the subjects, the matching probability was 

in the interval                     which corresponds with a value of   that exceeds 

          .  

 



Robustness: Extending Multiplier Preferences 

 

16 
 

 

Figure 1: Kernel density estimate of subjects’ σ values (NL) 

The Epanechnikov function was used, with a kernel width of 0.07. The boxes at the upper and lower 
end indicate the proportion of subjects with σ values of greater (less) than .8 (.8). 

 

Table 1  answers the question whether ambiguity attitudes are related to 

demographic variables. In regression (1)   is the dependent variable, while in 

regression (2) the absolute value of σ is the dependent variable. We also used the 

absolute value of   because some effects may be correlated with the deviation from 

ambiguity-neutrality, which is often seen as the rational model of choice under 

uncertainty (Wakker 2010, p.326), rather than with the degree of ambiguity aversion. 
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Table 1: Regression of σ and     on demographic variables(NL) 

Coefficients are reported in percentage points , robust standard errors in parentheses. * significant at 
10% ** significant at 5% *** significant at 1%. 

 

 (1) (2) 

Incentivized 5.23* 0.07 

 (2.81) (2.38) 

Number of children 1.19 0.24 

 (1.47) (1.24) 

Female 1.61 -2.38 

 (3.08) (2.61) 

Age -0.26*** 0.44*** 

 (0.10) (0.08) 

Married/Living together -0.85 -0.32 

 (3.48) (2.95) 

Very urban 2.05 -1.13 

 (2.93) (2.48) 

High income 3.23 -5.88** 

 (3.34) (2.83) 

Education   

Vocational -1.50 -7.57*** 

 (3.12) (2.65) 

University -0.90 -12.03** 

 (5.61) (4.76) 

Constant 17.83*** 19.95*** 

 (6.76) 
(5.73) 

 

Adjusted R2 0.01 0.03 

 

 

 

  
N 1,821 1,821 

 

The only variable that had an effect in both regressions was age. Older respondents 

were more ambiguity seeking and also deviated more from ambiguity neutrality. This 

suggests that they had more extreme ambiguity attitudes. Similarly, better educated 

respondents deviated less from ambiguity neutrality, which seems consistent with 

the finding that people with higher cognitive abilities deviate less from models of 

rational choice (Frederick 2005, Dohmen et al. 2010). Education had no effect on 
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ambiguity aversion. Real incentives led to marginally more ambiguity aversion (  = 

0.06) but they had no effect on deviations from ambiguity neutrality. The absence of a 

gender effect is perhaps surprising given that women are usually found to be more 

risk averse than men (Croson and Gneezy 2009). Our findings suggest that this 

gender effect for risk attitudes does not carry over to ambiguity attitudes, which is 

consistent with Sutter et al. (2013) who found no relation between ambiguity 

attitudes and risk attitudes. 

Table 2: Probit regression of NL market participation on   and demographic variables  

In regressions (1) and (2), σ is used as independent variable; |σ| is used in regressions (3) and (4). 
Mean marginal effects in percentage points are reported; robust standard errors are in parentheses. 
* significant at 10% ** significant at 5% *** significant at 1%. 

 (1) (2) (3) (4) 

  or     -1.30 -0.78 -4.77** -3.89** 

 (1.53) (1.49) (1.86) (1.81) 

Incentivized  1.21  1.17 

  (1.76)  (1.76) 

Number of children  2.18**  2.18** 

  (0.92)  (0.92) 

Female  -6.28***  -6.45*** 

  (1.93)  (1.93) 

Age  0.30***  0.32*** 

  (0.06)  (0.06) 

Married/Living together  1.39  1.33 

  (2.22)  (2.22) 

Very urban  -0.28  -0.39 

  (1.83)  (1.84) 

High income  7.37***  7.01*** 

  (2.06)  (2.07) 

Education     

Vocational  6.20***  5.95*** 

  (1.96)  (1.97) 

University  18.51***  18.05*** 

  (3.15)  (3.16) 

     

Pseudo R2 0.001 0.07 0.004 0.08 

     
N 1,821 1,821 1,821 1,821 
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We also explored (using probit regressions) whether stock market participation was 

related to ambiguity aversion. Table 2 shows the results. Regressions (1) and (2) use 

σ as an independent variable, and regressions (3) and (4) use |σ|. Contrary to the 

theoretical literature, which predicts that ambiguity aversion leads to less stock 

market participation, ambiguity aversion had no effect on participation. However, the 

deviation from ambiguity-neutrality did have a negative effect on stock market 

participation: subjects who were more ambiguity averse or ambiguity seeking were 

less likely to participate in the stock market. This effect remained significant after we 

controlled for demographic variables.  The Table further shows that males, older 

respondents, those with children and those with high income and education were 

more likely to participate in the stock market. 

2.6 Extended Multiplier Preferences in the US  

Data 

The U.S. data come from the American Life Panel (ALP), a household survey 

conducted by the RAND Corporation. It includes demographic characteristics and 

data about stock market participation.  

In March and April 2012, 3,290 subjects answered a survey about ambiguity 

preferences designed by Dimmock, Kouwenberg, Mitchell and Peijnenburg (2013). 

The survey was in many respects similar to the LISS survey except that the balls were 

orange and purple instead of yellow and purple, that subjects could not choose their 

winning color, and that all subjects played out one randomly selected question for 

real.  
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Figure 2: Kernel density estimate of subjects’ σ values (US) 

The Epanechnikov function was used, with a kernel width of 0.7. The boxes at the upper and lower 
indicate the proportion of subjects with σ values greater (less) than .8 (.6).  

 

 Results 

Figure 2 shows the estimated distribution of   for the U.S. sample. The median value 

of   was equal to 0.02, which corresponds with a matching probability of 47.0%. A 

slight majority (52.2%) of the subjects was ambiguity averse and more than one third 

(35.9%) was ambiguity seeking.  These values indicate that there was less ambiguity 

aversion in the US sample than in the Dutch sample. The proportion of subjects with 

extreme ambiguity attitudes was also lower than in the Dutch survey: 3.6% had   

greater than .8 and 4.5% had   smaller than .6.2  

Table 3 shows the results of regressions of σ (regression (1)) and |σ| (regression (2)) 

on the demographic variables. As in the Dutch sample, better educated respondents 

deviated less from ambiguity neutrality and income had no effect on ambiguity 

                                                             
2 These thresholds are not of the same absolute value due to an asymmetry in the question design 

of Dimmock et al. (2013). 
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attitudes. In addition, we observed a significant effect of ethnicity on ambiguity 

attitudes: Hispanics were more ambiguity averse and farther from ambiguity 

neutrality than whites.  

 

Table 3: Regression of   and     on demographic variables (US) 

Coefficients are reported in percentage points, robust standard errors are in parentheses. * significant 
at 10% ** significant at 5% *** significant at 1%. 

 

 (1) (2) 

Number of children 0.80* 0.55 

 (0.46) (0.41) 

Female -4.15*** 0.29 

 (1.32) (1.16) 

Age -0.04 0.09* 

 (0.05) (0.05) 

Married/Living together 0.39 -1.35 

 (1.41) (1.24) 

Ethniticity   

        Non-hispanic black 3.09 2.74 

 (2.17) (1.91) 

        Hispanic & other 4.26** 4.97*** 

 (1.73) (1.52) 

High income 1.31 -1.56 

 (1.46) (1.28) 

Education   

        College, no degree 1.12 -2.41 

 (1.87) (1.65) 

        College degree 3.22* -4.22*** 

 (1.72) (1.51) 

Constant 4.09 16.13*** 

 (3.42) (3.00) 

   

Adjusted R2 0.01 0.01 

N 3,217 3,217 
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There were also some differences between the US and the Dutch samples: in the US 

sample, there was no age-effect and there was some effect of gender with men being 

more ambiguity averse than women. The higher ambiguity aversion for men than for 

women confirms the conclusion drawn from the Dutch data that the widely-observed 

higher risk aversion for women does not imply that women are also more ambiguity 

averse.  

Table 4 shows the results from the probit regressions of ambiguity attitude on stock 

market participation. As in the Dutch sample, ambiguity aversion has no effect on 

stock market participation, but the deviation from ambiguity-neutrality does with 

people who are more ambiguity averse or more ambiguity seeking less likely to 

participate in the stock market. This effect remains when we include demographic 

variables. Table 4 further shows that stock market participation increased with age, 

income and education, and it was lower for blacks and Hispanics.  

 

  



Extended Multiplier Preferences in the US 

 

23 
 

Table 4: Probit regression of US market participation on   and demographic variables  

Regressions (1) and (2) use σ as a covariate, regressions (3) and (4) use |σ|. Mean marginal effects in 
percentage points are reported; robust standard errors are in parentheses. * significant at 10% ** 
significant at 5% *** significant at 1%. 

 

 (1) (2) (3) (4) 

σ / |σ| -0.05 -0.10 -8.87*** -4.12* 

 (2.11) (2.10) (2.54) (2.44) 

Number of children  -0.69  -0.68 

  (0.58)  (0.58) 

Gender  -1.47  -1.41 

  (1.48)  (1.47) 

Age  0.40***  0.40*** 

  (0.06)  (0.06) 

Married & Living together  2.55  2.52 

  (1.65)  (1.64) 

Ethnicity     

     Non-Hispanic black  -21.33***  -21.31*** 

  (3.11)  (3.12) 

     Hispanic & other  -15.50***  -15.28*** 

  (2.22)  (2.22) 

High income  15.87***  15.79*** 

  (1.62)  (1.62) 

Education     

     College, no degree  3.91  3.84 

  (2.43)  (2.43) 

     College degree  15.64***  15.47*** 

  (2.11)  (2.11) 

 

Pseudo R2 
<0.001 0.16 0.004 0.16 

N 3,217 3,217 3,217 3,217 
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2.7 Concluding Remarks 

 

Multiplier preferences, proposed by Hansen and Sargent (2001), are a popular model 

in macroeconomics and finance. In its original form, multiplier preferences only 

capture ambiguity aversion, which make them less suitable for applications at the 

micro level where substantial ambiguity seeking has also been observed. This chapter 

extends multiplier preferences to include ambiguity seeking and it gives a preference 

foundation for these extended multiplier preferences. We also show how extended 

multiplier preferences can be measured and thereby obtain an axiomatically-founded 

measure of ambiguity aversion that can easily be applied in empirical studies and that 

captures the substantial heterogeneity in ambiguity attitudes that typically exists in 

micro data.   

We applied our method to two large scale representative surveys, one from the 

Netherlands and one from the US. In both samples a substantial fraction of the 

respondents  was ambiguity seeking, which illustrates the desirability of our 

extension of multiplier preferences. More educated respondents deviated less from 

ambiguity neutrality. In contrast with the theoretical literature, we observed that 

stock market participation decreased not only with ambiguity aversion, but also with 

ambiguity seeking. Perhaps deviations from ambiguity neutrality signal deviations 

from rationality with more irrational respondents less likely to participate in the 

stock market. 

Appendix 2: Proofs and Summary Statistics 

 

Lemma 2.1: Preferences   are extended multiplier preferences if and only if there 

exists     such that   can be represented by SOEU with        and     . 

Proof: 

The equivalence between robust preferences and            has been shown by 

Strzalecki (2011). It is based on Proposition 1.4.2 of Dupuis and Ellis (1997) stating 

that for all countably additive probability measures        and for all  -measurable 

functions  : 
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For    , we apply this formula to        and      and we obtain: 

   
      

             
 

 
 

 
             

      
          
 

 
 

 
        

    
                 

 

 

   
                    

 

  

 

The last equality follows from   
       

      

 
 

      

 
    

       and 

                                            . 

Hence, both robust and opportunity seeking preferences are equivalent to SOEU with 

an exponential   function.  □ 

  

Proof of Theorem 2.1: 

(ii) ⇒ (i). Because (ii) is a normalized niveloid that represents ≽ and u is nonconstant 

and affine, Lemma 28 in Maccheroni, Marinacci and Rustichini (2006) implies that ≽ 

is a constinuous, nondegenerate weak order that satisfies weak certainty 

independence and monotonicity. Because q is countably additive, ≽ satisfies uniform 

continuity by Theorem 5.4 in Krantz et al. (1971). Finally, by Proposition 1.4.2 in 

Dupuis and Ellis (1997), (ii) is equivalent to a second order expected utility 

representation. Consequently, the sure thing principle must hold. 

We show that (i) ⇒ (ii) by closely following Strzalecki’s proof without imposing 

uncertainty aversion. First we introduce some new notation. Let       denote the set 

of all real-valued  -measurable simple functions3 and let         denote the set of 

functions in       that take values in a convex set      Let   denote the set of 

finite partitions of   that contain at least three essential events. For all     , let 

     be the algebra generated by   and let    denote the set of acts in   that are 

measurable with respect to     .  

                                                             
3 A function is simple if it takes no more than countably many distinct values. 



Robustness: Extending Multiplier Preferences 

 

26 
 

By Lemmas 25 and 28 of Maccheroni et al. , there exist a real-valued nonconstant 

affine function   on      and a normalized real-valued functional             

where   is the range of         and such that for all acts      ,   ≽   iff 

              and                           for all          , 

     and        . 

Theorem 1 in Grant, Polak, and Strzalecki (2009) ensures that for finite   ≽ can be 

represented by                   with   nonconstant and affine and with range 

  and    continuous, nondecreasing, and with at least three    nonconstant. Weak 

certainty independence then ensures that indifference curves in the utility space are 

parallel and have common supporting hyperplanes at the set of constant vectors in 

  . By the proof of Theorem 3 in Grant et al. it follows that for all     the 

restriction of ≽ to    can be represented by                       with    

nonconstant and affine,    continuous and strictly increasing, and measure 

              such that at least three events in   are nonzero. In applying 

Theorem 3, we replace uncertainty aversion and their Axiom A.7 by weak certainty 

independence. Uncertainty aversion is used in the application of Theorem 3 in Debreu 

and Koopmans (1982) to derive differentiability of the functions     However, as 

noted by Grant et al. and Maccheroni et al. ( p.1475, 1491), weak certainty 

independence implies Lipschitz continuity and hence differentiability. By Theorem 4 

in Strzalecki (2011), the proof of which does not use uncertainty aversion, ≽ can be 

represented by second order expected utility                  
 with        

and   continuous and strictly increasing.   is countably additive by uniform 

continuity (Villegas 1964, Theorem 1). Moreover, if         and            both 

represent ≽ then there exist             such that            

                   for all   in  . 

  represents ≽ and is translation invariant, i.e. for all       and   such that 

                for all    ,               iff                 

                   . It then follows that for all acts       and   such 

that                 for all    ,                  
 

                
 

 

iff                   
 

                 
 

. 
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Hence,         and          defined by                       are both 

SOEU representations of ≽. Consequently,                      . Because   is 

nonconstant, if   is unbounded, it follows from Corollary 1 in Aczél (1966, Section 

3.1.3) that   equals   . If   is bounded then because   is nonconstant Theorem 4 in 

Aczél (2005) implies      on the interior of  . Because   is continuous, the 

extension to all of   follows. 

By Proposition 1.4.2 in Dupuis and Ellis (1997) and Lemma 2.1, we then obtain the 

extended multiplier representation.  □ 

  

Proof of Observation 2.1: 

The proof of Theorem 2.1 already showed that the probability measure   is unique 

and that the utility function   is unique up to positive affine transformations. We also 

know that for       and    ,        . Because    
   
    

        

       
  , it follows from the uniqueness properties of   that    

 

 
 . □  

Proof of Theorem 2.2: 

Ambiguity aversion states that preferences are convex. Hence it is equivalent to a 

concave representation. Since   is linear with respect to mixture of lotteries, 

ambiguity aversion is equivalent to the SOEU with   concave, which means    . 

The opposite reasoning applies to ambiguity seeking. □  

Proof that there is a unique solution   for each value of r. 

      and         jointly imply                       , which is equivalent 

to                if     and to  

                              otherwise. Hence,  

    if       

   
                

   
 if          

  is continuous as a function of   for    . For notational convenience and without 

loss of generality, we write       . Because   
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  is also continuous at zero. 

Differentiating   with respect to    gives after some rewriting 

 
  

   
       

  

         
     

          

 
    (2A.1) 

Because       , the sign of (2A.1) depends on the sign of  

        
  

         
     

          

 
   (2A.2) 

Now,  

       
 

        
     

         

 
       

 

 
    

and,  

 
      

   
  

         

            
   (2A.3) 

Because (2A.3) is negative for      and positive for     ,        is negative 

everywhere except at     . Thus   is a continuous and strictly decreasing function of 

   and the function       is a one-to-one function, which shows that any solution that 

we find is unique. 

In the limits,       goes to 0 and 1: 
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Consequently,   is a continuous and strictly decreasing function from   to      . By 

the intermediate value theorem, there is a unique solution    for each        . □ 

 

 

Table 5: Descriptive statistics of the Dutch and US dataset 

Apart from σ and age, all variables are dummy variables that can take on values 0 and 1. The two 

datasets do not have exactly the same variables: ethnicity is not available in LISS and the dummy for 

someone living in an urban area is not available in ALP. Real incentives are used for all subjects in ALP, 

so a dummy for incentives is not necessary. The variable “High income” is equal to one if a 

respondent’s income is above the sample median. 

 

  The Netherlands  United States 

  Mean SD  Mean SD 

       

Ambiguity attitude    0.10 0.60  0.05 0.36 

       

Market participation  0.18 0.38  0.25 0.43 

 

 

      

Incentivized  0.48 0.50    

       

Demographic Variables     

Female  0.53 0.50  0.60 

 

0.49 

Age  48.51 16.95  47.34 13.55 

Married/Living together  0.77 0.42  0.60 0.49 

Very urban  0.39 0.49    

High income  0.49 0.50  0.49 0.50 

Number of children  0.80 1.12  1.21 1.53 

Education       

         Secondary & lower  0.49 0.50  0.22 0.42 

 Vocational  0.43 0.50  0.26 0.44 

         University  0.08 0.27  0.52 0.50 

Ethnicity       

         Non-Hispanic white     0.69 0.46 

 Non-Hispanic black     0.11 0.31 

         Hispanic & other     0.21 0.40 
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Chapter 3  | Wall Street vs. Main Street: an 

Evaluation of Probabilities 
 

 

 

 

This Chapter considers whether the views of survey respondents regarding the 

likelihood of stock index return exceeding specific thresholds are comparable to market 

views indicated by index options with strikes at analogous thresholds. This study is the 

first to highlight the correspondence between the wording of subjective response 

questions found in surveys about expected future returns and the design of financial 

options. While we do find a relationship between the two sources of views, the 

association is not one-for-one. We find a closer association for those demonstrating a 

better understanding of the laws of probability, suggesting that numeracy affects the 

accuracy of an elicited response. 
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Humboldt-Copenhagen Conference for comments on an earlier draft.    
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3.1 Introduction 

 

This Chapter compares people’s beliefs about future stock market returns as elicited 

through surveys with those derived from option prices.  In performing this 

comparison, we contribute to the evidence that suggests expectations of professionals 

and the general population differ (e.g., Mankiw, Reis, and Wolfers 2004) and that 

links expectations of private investors to financial decisions (e.g., Hoffmann, Post, and 

Pennings 2014, forthcoming).  Using the results from Breeden and Litzenberger 

(1978), we obtain option-implied probabilities that match the characteristics 

specified in questions that survey respondents are asked about future stock market 

returns.  We specify an econometric model to link these two sets of beliefs (“Wall 

Street” and “Main Street”, respectively), controlling for a variety of observable 

characteristics.  We find that survey expectations do seem to be related to the beliefs 

of Wall Street and that this link is stronger for those with greater probabilistic 

understanding.    

Our results add to the  literature in the following areas:  (1) the expectations of the 

general population versus those of professional forecasters/traders, (2) the 

information content of subjective (survey) expectations, (3) the tendency of survey 

respondents to report focal points (clustering around rounded numbers) when asked 

probabilistic questions, and (4) whether increased financial literacy improves 

financial expectations and decisions.  Although these areas have all been studied 

extensively, no study (to the best of our knowledge) has drawn the connection 

between subjective expectations of a specified return threshold and corresponding 

option strike levels, as we do in this Chapter. 

The Chapter proceeds as follows:  Section 3.2 contains a brief review of literature 

related to the four areas above.  Section 3.3 describes the data construction and 

descriptive statistics of the main variables.  Section 3.4 describes the model used to 

examine the link between Wall Street and Main Street.  Section 3.5 analyzes the 

regression results and discusses their implications.  Section 3.6 examines whether the 

Wall Street/Main Street link varies by subgroup and specifically considers the 

information content of survey responses that are at odds with the laws of probability.  

We consider the robustness of our results to various assumptions in Section 3.7.  The 
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final Section concludes.  Supplemental material containing information on the sample 

construction, the construction of Wall Street probabilities, detailed descriptive 

statistics, the derivation of the likelihood function and additional analyses is provided 

in a series of Appendices. 

3.2 A Brief Review of Related Literature 

 

We are interested in whether beyond the popular rhetoric there is really a divide 

between what Wall Street and Main Street think.  Those that would argue against a 

divide might appeal to theories of information flow to argue that financial market 

fluctuations are merely the aggregate result of individual investor decisions. In 

addition, standard finance theories indicate management decisions of publicly-traded 

firms are a direct result of the desire to maximize shareholder value and therefore 

investment decisions are a reflection of the views of Main Street citizens.  Even 

beyond an efficient markets framework, feedback and herding models in behavioral 

finance would suggest that Main Street beliefs are influenced by what happens on 

Wall Street (e.g., Hirshleifer 2001, Shiller 2003).  

On the other side of the debate, those arguing that a divide does indeed exist might 

counter the above arguments by noting the low proportion of active investors in the 

Main Street population, citing evidence of low financial literacy rates (Lusardi and 

Mitchell, 2011), the fact that few Americans hold stocks outside of a retirement 

portfolio (Poterba and Samwick, 1995), and growing income inequality (Heathcote, 

Perri, and Violante, 2009).   Those who have documented a link between expectations 

and returns emphasize the importance of eliciting expectations from financial market 

participants rather than the general population (e.g., Bacchetta, Mertens, and van 

Wincoop 2009).  Even among the subset of the population that is active in financial 

markets, there is evidence that not all participants are informed (e.g., De Long, 

Shleifer, Summers, and Waldmann 1990) and that for a variety of reasons, returns of 

subgroups of investors often differ systematically (e.g., Barber and Odean 2000, Coval, 

Hirshleifer, and Shumway 2005).   Thus it is not at all apparent ex ante whether 

survey expectations from Main Street would reflect Wall Street views, and if so, to 

what extent. 



Wall Street vs. Main Street: an Evaluation of Probabilities 

 

34 
 

Researchers using survey data to elicit expectations about future equity returns find 

substantial heterogeneity across individuals (Brennan, Cao, Strong, and Xu, 2005; 

Ben-David, Graham, and Harvey 2010; Dominitz and Manski, 2011; Hudomiet, Kézdi 

and Willis, 2011), whether those surveys cover professional forecasters or members 

of the general population.  This heterogeneity has been linked to a variety of 

demographic characteristics (race, gender, education), financial knowledge or 

experience, behavioral biases such as the disposition effect (Odean 1998), optimism, 

as well as many other explanations, and has in turn been used to explain 

heterogeneous equity investment decisions (Kézdi and Willis, 2003, 2011).  A number 

of researchers also explore whether this heterogeneity is related to, or reflected in, 

market measures of uncertainty (Anderson, Ghysels and Juergens 2005), such as the 

VIX volatility index (Graham and Harvey 2001, 2007), and/or disagreement (Rich 

Song and Tracy 2012).   There is also substantial evidence in non-finance contexts 

that survey responses do not exactly align with true expectations – for example, due 

to large clusters of responses occurring at focal points of the response distribution 

(e.g., Dominitz and Manski, 1997; Hurd, McFadden, and Gan, 1998; Kleinjans and Van 

Soest, 2010) – and that adjustments to survey data to account for such aspects are 

necessary to improve inference (Bassett and Lumsdaine, 2000; Lillard and Willis, 

2001). 

Beyond studying the relationship between survey expectations and subsequent 

realizations, a number of researchers consider the inclusion of survey expectations in 

models of economic behavior [see Manski (2004) for a survey of this literature] and 

demonstrate that including probabilistic expectations can improve inference about 

economic behavior relative to models using only data on economic choices (revealed 

preference models).  In the context of equity returns, most research using survey 

expectations has focused on the views of “informed” investors, i.e., those that are 

active in the financial markets.  Two important exceptions are Greenwood and 

Shleifer (2014), who use the University of Michigan survey of consumers, along with a 

number of other investor-based surveys, and Hurd and Rohwedder 2012, who use the 

same data we consider to identify correlations between survey expectations and 

subsequent equity returns.  Rather than taking a stand on whether informed 

investors or survey respondents representative of the general population are a more 
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appropriate subsample, we consider both by examining in detail the link between the 

Wall Street and Main Street views. 

3.3 Data 

 

We use the American Life Panel (ALP)  for our analysis.  An internet panel with about 

6000 panel members, the ALP contains more than 300 survey modules administered 

by the RAND Corporation.  Responses to each of these survey modules are publicly 

available. The Household information module contains a number of demographic 

characteristics of respondents such as age, race, gender, marital status, and education.  

Sampling weights are assigned such that the weighted distribution is representative 

of the U.S. population with regards to socio-demographic variables.4   Throughout the 

Chapter, sampling weights are used when reporting descriptive statistics and 

regression results. 

While some of the survey modules are stand-alone, others belong to periodically-

repeated series (waves) on the same topic.  This Chapter uses responses obtained 

from modules designed by Michael Hurd and Susann Rohwedder to investigate the 

effects of the financial crisis on American households, gathered from November 5, 

2008 until March 10, 2011, corresponding to 25 waves of information.  Hurd and 

Rohwedder (2010) provide a detailed description of this series of modules;  they are 

briefly summarized here.  The first wave asks respondents about a wide range of 

topics such as labor force status, stock ownership, mortgage payments and 

expectations about the future.  Each module also contains demographic control 

variables such as age, race, gender, marital status, and education. The final sample 

(after adjustments for, e.g., missing observations) consists of 47,488 surveys from 

2,652 respondents (94.9% of the total number of surveys and 98.3% of the total 

number of respondents) gathered over 364 survey days.  The sample construction is 

further detailed in Appendix 3A.   

                                                             
4 Weights are determined by the RAND corporation via an iterative (raking) process until the 

weighted distribution is sufficiently close to the target distribution (i.e., the Current Population 
Survey). 
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What Main Street thinks:  survey expectations about stock market returns 

As a proxy for the views of “Main Street”, the ALP elicits expectations about the stock 

market from survey participants via a series of questions, the first of which is the 

following (hereafter referred to as the “PositiveReturn” question): 

“We are interested in how well you think the economy will do in the future. On a scale 

from 0 percent to 100 percent where "0" means that you think there is absolutely no 

chance, and "100" means that you think the event is absolutely sure to happen, what are 

the chances that by next year at this time mutual fund shares invested in blue chip 

stocks like those in the Dow Jones Industrial Average will be worth more than they are 

today?” 

Respondents can give an answer ranging from zero to one hundred (the answer need 

not be an integer) to indicate the percentage chance of the event happening, or they 

can leave the response blank.     

The same structure is repeated for two additional questions, asking respondents to 

assess the chances of a greater than 20% return and a greater than -20% return.5  For 

expositional ease, the questions referring to the probability of a positive return, a 

more than 20% return, and a more than -20% return will be referred to as 

PositiveReturn, >Plus20, and >Minus20, respectively.  Using all three questions (when 

available) from the 47,488 surveys yields a total sample size for studying Main Street 

probabilities of 139,327 observations. 

The phrasing of these questions may lead to differences in respondents’ 

interpretation and hence the answers they give, since there is an implicit subjectivity 

associated with respondents’ understanding of “mutual funds shares” or “blue chip 

stocks like those in the Dow Jones Industrial Average (DJIA)”.  For the purposes of this 

Chapter, however, it is necessary to assume that the responses given represent 

respondents’ subjective probability that the nominal (not inflation-adjusted) level of 

                                                             
5 The exact wording of these questions is: “By next year at this time, what are the chances that mutual 
fund shares invested in blue-chip stocks like those in the Dow Jones Industrial Average will have increased 
(fallen) in value by more than 20 percent compared to what they are worth today?” Because the 
probability of a >20% decrease in value is equal to one minus the probability of a more than -20% 
return, the response is subtracted from one hundred percent to correspond to a greater than -20% 
return.  This naming convention will be useful in the analysis when comparing the subjective response 
values to expectations inferred from option prices.  
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the DJIA in one year will have increased (similarly, will have increased by more than 

20% or more than -20%) relative to the current level of the DJIA.  For each 

respondent, the current level of the index is assumed to be the closing level on the 

most recent business date prior to the date of interview, so that the response is 

assured to chronologically follow the information on which the Wall Street 

probabilities are based.  

 

            Pr(1-year return  > -20%)                          Pr(1-year return  > 0%) 

 

 

 

                        Pr(1-year return  > 20%)             Aggregate 

 

 

 

Figure 3: Frequency of responses to probabilistic questions 

These Figures contain histograms of the responses to the three questions that ask respondents to 
consider the probability of a more than -20% return, a positive return, and a more than 20% return, as 
well as for all three questions combined (“Aggregate”).  The responses to the three questions are 
called >Minus20, PositiveGain, and >Plus20, respectively, and together comprise the dependent variable. 
The Figures document the large pile-up of responses at focal points, particularly around the response 
of “50”, motivating the econometric model.  Observations in these Figures are unweighted. 
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Figure 3 shows a histogram of the frequency of specific responses to each of the three 

probabilistic questions individually, as well as of the responses combined 

(“Aggregate”).  Most of the responses are integers -- only 41 out of 139,327 responses 

are non-integer.  Further, responses appear to be clustered around certain focal 

points, a common occurrence in survey data that contains probabilistic subjective 

response questions such as these.6  For the three questions in this Chapter, 93.8% of 

person-wave responses are a multiple of five and 68.0% of responses are a multiple 

of ten.  A response of 50 occurs 19.9% of the time; 3.5% of the responses are zero and 

3.1% are one hundred.  In addition, 63.0% of the 8,701 responses that are not 

multiples of five are between zero and five or between 95 and one hundred.        

What Wall Street thinks:  calculating option-implied probabilities 

The three return thresholds given in the ALP questions (-20%, 0%, 20%) correspond 

precisely to strike price levels of a European call option, namely the 20% in-the-

money, at-the-money, and 20% out-of-the-money thresholds.  We therefore turn to 

the option-pricing literature to derive analogous Wall Street probabilities for 

comparison to those reported by Main Street respondents in the ALP.  While we 

recognize that there are numerous ways to derive such probabilities, in this Chapter 

we adopt a fairly basic approach so as not to obscure the main question of interest 

(the degree of relationship between Wall Street and Main Street beliefs).  For 

expositional purposes, we suppress the ‘t’ subscript unless necessary for clarity but 

emphasize that all parameters in the computation of option-implied probabilities are 

time-varying. 

In a risk neutral setting the probability that the price of a security will be above a 

strike price K at a future time T when the security trades at price St at time t < T is 

given by (Hull, 1989, p. 251): 

                                                             
6 See, for example, Hurd, McFadden, and Gan (1998), Bassett and Lumsdaine (2000), Lillard and 

Willis (2001), Hurd and McGarry (2002), Kézdi and Willis (2003), Manski (2004), Huynh and Jung 
(2010), Kleinjans and Van Soest (2010), Manski and Molinari (2010), and Dominitz and Manski (2011). 
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with Φ the standard normal cumulative distribution function, r the (continuous) time-

varying risk-free rate over the period [t,T], q the (continuous) time-varying dividend 

rate over the same period and σ the time-varying volatility of the return on the 

security.  To account for risk aversion, for computation of “Wall Street” probabilities 

we adjust the risk neutral setting by including an equity risk premium, ρ:   

                    

 

  
 
   

  
           

  

       

     

 

  
 

 

Although the price of the underlying security, interest rate and dividend yield (or 

estimates thereof) are available, the volatility cannot be directly observed.  Since 

option prices are observable for the DJIA, however, the Black-Scholes equation can be 

used to solve for the volatility.  A set of implied volatilities (with elements that vary 

according to day of interview and strike level) then can be used to derive the set of 

option-implied probabilities.   

The Wall Street probability computation proceeds as follows, using the explicit 

formula for the price of an option as described in Black and Scholes (1973) and 

Merton (1973), adjusted for an equity risk premium ρ that is fixed at 6%, 

corresponding to the average annual risk premium over the period 1961-2011.7  For 

each day that a survey was answered (364 days in total), the values of the parameters 

are extracted from Bloomberg® for the specific case of one-year options on the DJIA 

(a detailed description of how the parameters were obtained using Bloomberg can be 

found in Appendix 3B).  The interest rate (r) is the (continuous) U.S. dollar swap rate 

over the period [t,T], the dividend rate (q) is initially set to zero since the DJIA is 

dividend-adjusted (sensitivity to these assumptions, as well as the choice of equity 

                                                             
7 This is computed from the Fama-French “excess return on the market” factor, downloaded from 

Kenneth French’s website 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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risk premium, is explored in Appendix 3D).  The volatility (σ) for each specified strike 

price is the volatility implied by the option prices.  In particular, for each survey day t, 

implied volatilities for a time to expiration (T-t) of one year and strike prices (K) of 

80%, 100%, and 120% of the level of the index at time t were constructed, consistent 

with the time horizon and return categories articulated in the ALP survey questions 

and corresponding to the questions >Minus20, PositiveReturn, and >Plus20, 

respectively.   

Comparing Main Street to Wall Street 

To compare Main Street probabilities to Wall Street, each of the 139,327 Main Street 

observations is first assigned a corresponding option-implied probability associated 

with the date before the day the interview was conducted.  Specifically, for a given 

option threshold all individuals that were interviewed on a given day are assigned the 

same Wall Street probability, and the number of Wall Street probabilities assigned to 

a specific person corresponds to the number of waves in which the person provided a 

Main Street probability at that threshold.  Table 6 contains summary statistics for the 

three Main Street and Wall Street probabilities, aggregated across all observations.  

Not surprisingly, the average probability associated with >Plus20 is lower than the 

probability associated with PositiveReturn, which in turn is lower than the probability 

associated with >Minus20. 

Table 6: Descriptive statistics of stated and option-implied probabilities 

Summary statistics for the aggregate sample, computed over all person-wave observations.  The rows 
show means and standard deviations of the three probabilities used:  the probability of a more than -
20% return (“>-20%”), a positive return (“>0%”), and a greater than 20% return (“>20%”).  The second 
column shows the number of person-wave observations, the third and fourth show the means and 
standard deviations of the Wall Street probabilities and the last two columns show these statistics for 
the Main Street probabilities.   

 

Probability of 
 

 Wall Street  Main Street 

Return Observations  Mean Std. Dev.  Mean Std. Dev. 

  
 

  
   

>-20% 46,232  0.830 0.049  0.758 0.200 

        

>0% 47,438  0.571 0.029  0.404 0.268 

        

>20% 45,657  0.240 0.043  0.271 0.216 
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There is a relatively close correspondence between the means of respondents’ 

answers to the probabilistic questions and the mean of the option-implied 

probabilities associated with those same questions.  This is especially the case with 

respect to the upper return threshold on the DJIA (the row labeled ”>20%”);  on 

average there is little difference between Wall Street (24.0%) and Main Street (27.1%) 

regarding the expectation that the one-year return on the DJIA will exceed 20%.  

There is more of a difference when considering the probability that the DJIA will 

increase (the row labeled “>0%”), with an average 40.4% Main Street probability of a 

positive return versus a Wall Street average of 57.1% from the corresponding option-

implied probabilities.  There is also a divide between the two measures when it 

comes to the probability of a more than -20% return in the DJIA (the row labeled 

“>-20%”), with the survey responses markedly more pessimistic (the mean 

of >Minus20 is 75.8%) than the average option-implied probability (83.0%).8   

Looking solely at the means across all three strike levels is of course not sufficient to 

draw conclusions as to whether survey respondents’ and the market’s beliefs coincide, 

despite similar patterns that show respondents assigning relatively higher 

probabilities to large changes in the level of the index.  Comparing standard 

deviations, Main Street probabilities inherently have greater variation than can be 

explained by the Wall Street probabilities alone, further motivating the need for a 

formal model that incorporates additional covariates.  Standard deviations for Main 

Street (20.0%, 26.8%, and 21.6% for >Minus20, PositiveReturn, and >Plus20, 

respectively) are very large both as a proportion of the bounded range of 0-100% and 

in comparison to those for Wall Street (4.9%, 2.9%, and 4.3%, respectively).  This is 

partly a result of the analytical design, since all participants on the same day are 

assigned the same Wall Street probability (which eliminates any intraday Wall Street 

volatility). 

                                                             
8 This pattern (of a greater difference between probabilities of a return larger than -20% than 

between probabilities of a return larger than 20%) could be related to the volatility smirk that is often 
observed in index option data, namely that the Wall Street probability reflects higher demand for in-
the-money call options (e.g., the “>-20%” option) than deep out-of-the-money call options (e.g., the 
“>20%” option). 



Wall Street vs. Main Street: an Evaluation of Probabilities 

 

42 
 

3.4 Model 

 

We use a generalized linear model [see McCullagh and Nelder (1989) for an extensive 

description] to jointly model all three Main Street probabilities. Let X represent the 

matrix of data (covariates) available to the econometrician.  Respondents’ 

unobserved true belief p* is assumed to be related to a linear combination of a subset 

of covariates X1  X, through a ‘link function’      such that  

            (3.1) 

 
where more generally for any i, a matrix Xi  denotes a subset of the covariate matrix X  

and βi is a vector of parameters corresponding to the columns of Xi. 

There is evidence to suggest that respondents report their belief with error, however.  

For example, as noted earlier, nearly 20% of respondents in our sample give a focal 

response of 50; a number of articles (e.g., Fischhoff and Bruine de Bruin, 1999) note 

that such a response should be considered as distinct from other responses as it likely 

indicates uncertainty on the side of the respondent rather than a true subjective 

probability of 50%.  In addition, responses of zero or one hundred cannot reflect the 

true probability (since the true probability distribution lies in the open unit interval) 

and contribute zero mass to the likelihood calculation.  Such focal responses therefore 

might be the result of a lesser ability to express oneself in probabilistic terms.  More 

generally, the propensity to give one of these three responses (zero, 50, or one 

hundred, hereafter referred to as “focal responses”, following Lillard and Willis 2001) 

varies by observable demographic characteristics.  This observation motivates the 

decision to explicitly model the probability of giving a focal response as a function of 

observable covariates in the model.   Similar to Hurd, McFadden and Gan (1998), 

these focal responses are modeled via a latent variable w*: 

            (3.2) 

 
with η an error term.  A non-focal answer is given if and only if w* > 0.  Respondents 

report their true belief p* with error.  In the absence of a focal tendency (w* > 0), their 
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response is a random variable,   , for which          holds.  When the latent variable 

w* ≤ 0, respondents instead give a focal response of zero, 50, or one hundred.   

A further distinction is made between the focal response of 50 and a focal response of 

zero or one hundred.  This distinction is motivated both by previous literature that 

suggests responses of 50 often indicate uncertainty on the part of the respondent 

(Fischhoff and Bruine de Bruin, 1999) and by the prevalence of responses of 50 in the 

sample (19.9% of all responses compared to 6.6% for zero and 100 combined).9  To 

account for this possible uncertainty the model includes a third equation that 

describes an additional latent variable v*: 

           (3.3) 

 
with ξ an error term. Conditional on a focal response being given (w* ≤ 0), a response 

of 50 represents uncertainty and is given if and only if v* > 0.  When v* ≤ 0, 

respondents with a tendency to rely on focal responses feel certain and give a 

response of zero or one hundred percent (represented in the model as a probability 

of zero or one).  In this case, the error with which the respondent reports his/her true 

belief is governed by an endogenously-determined cutoff value (ψ) that pushes the 

response to either of the two extreme endpoints, depending on where their belief lies 

relative to this constant threshold: 

       if          

       if          

The error terms η and ξ are assumed to be independently normally distributed with 

mean 0 and variance 1, as they are identified only up to scale.   

The link function f (.), that describes the relationship between X1β1 and the true 

beliefs p*, must be chosen from the set of functions with range equal to the admissible 

values of X1β1 (i.e., the real line) and domain [0,1].  We use the inverse of the logistic 

function (the logit) in our model since it is the most commonly used function for 

                                                             
9 Large proportions of focal responses at 50 also have been documented in other surveys by Hurd, 

McFadden, and Gan (1998), Bruine de Bruin, Fischbek, Stiber and Fischhoff (2002), and Manski and 
Molinari (2010).   
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binary data (see, e.g., Albert and Chib, 1993).  With this link function, the true beliefs 

are given by: 

              
 

             
 

Besides the linear part (X1β1) and the link function f (.), the third part of any 

generalized linear model is a stochastic component.  In the context of this Chapter, the 

stochastic component enters through the subjective responses    (true belief p* with 

error) that are assumed to come from a beta distribution.  This distribution is well 

suited for describing probabilities or proportions because it is defined on the unit 

interval, and has a flexible functional form that allows for a wide variety of shapes 

(e.g., Law and Kelton, 1982, pp.165-167).  It has been used to model probabilistic 

responses in, e.g., Bruine de Bruin et al. (2002) and earlier, by Winkler (1967). The 

probability density function is given by Mendenhall, Scheaffer and Wackerly (1981, 

p.632): 

            
              

         

for values 0 ≤ p ≤ 1 and shape parameters α1, α2 > 0.  The beta function B(α1,α2) 

normalizes the above density so that the cumulative density is equal to 1 at p = 1: 

                             
 

   

          

        
 

with Γ the gamma function. 

The mean and variance of the beta distribution are given by μ and  , respectively: 

  
  

     
              

      

       
 

Similar to the Bernoulli distribution, the variance is equal to the mean times one 

minus the mean, except it is additionally divided by (1 + α1 + α2).  For ease of 

interpretation of the results, following Paolino (2001), the estimation considers a 

reparameterization of α1 and α2 in relation to the mean μ and a dispersion factor φ, 

defined as α1 + α2.  The relationship between the parameters μ and φ and the 

underlying beta parameters α1 and α2, is the following: 
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As described earlier, the expected value of     is equal to p*, hence 

           
 

             
 

The complete model therefore consists of a system of three equations;  we estimate it 

via maximum likelihood (details of the likelihood calculation are contained in 

Appendix 3C). 

3.5 Results 

 

The results from the estimation of all three equations are combined in Table 7.  

Because the model is highly nonlinear, the discussion of the results focuses on the 

marginal effects, reported in the third column of each group of estimates.  In addition, 

unless otherwise noted, inferences are drawn with reference to statistical significance 

at the 5% level of significance (indicated in bold in the Table).  The first three 

columns of the Table pertain to the subjective probability (“Main Street”) assessment 

(equation 3.1).  The next three columns describe the likelihood that a respondent 

gives a focal response (equation 3.2) and the final three columns describe the 

likelihood that a respondent gives a response of 50, conditional on giving a focal 

response (equation 3.3).  For the most part, the three equations include many of the 

same variables:  demographic controls (i.e., gender, age, race, education, and marital 

status), dummy variables for whether the respondent owns a home, owns stocks, or 

has a retirement account (as a proxy for wealth and general financial wellbeing), 

measures of historical stock returns (i.e., over the past 30 days and over the past year) 

to capture possible adaptive expectations, proxies for stock market knowledge (i.e., a 

self-assessment of how closely the respondent follows the stock market and their 

understanding of it), dummy variables to distinguish responses across the three 

thresholds (>Minus20 is the omitted category), as well as interactions between these 

and historical stock returns (to allow for the possibility that historical returns 

influence the different subjective probabilities differently) and wave dummy 

variables (not shown).   
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The subjective probability 

In the subjective probability equation, the option-implied probability is the main 

variable of interest.  The coefficient on this variable measures the extent to which 

Wall Street expectations (as measured by these probabilities) influence Main Street 

expectations (as proxied by the dependent variable, the subjective probabilities).  The 

additional parameter ψ indicates the threshold value below which respondents are 

estimated to choose a response of zero rather than one hundred (when they respond 

with a focal answer and do not give a response of 50).  The dispersion factor φ is 

inversely related to the variance of the fitted beta distribution describing people’s 

responses. 

 
 As expected, the coefficients on the two dummy variables are negative, with marginal 

effects -0.366 for PositiveReturn (compared to >Minus20) and -0.450 for >Plus20.  

These differences are close to those between the average responses given in Table 6 

(-0.354 and -0.487, respectively).  Respondents who are female, older, 

Hispanic/Latino, are working, or are homeowners provide lower subjective 

probabilities while those who have higher educational attainment, own stocks or 

have a retirement account provide higher probabilities.   

There is some evidence that, contrary to the familiar adage, past performance is an 

indicator of expectations of future returns;  the 0.072 marginal effect of the past 

year’s return implies that for each additional 10 percentage point return in the stock 

market over the past year, respondents’ probabilities to the >Minus20 question are on 

average 0.72 percentage points higher.10  Similarly, the marginal effect on the 

interaction of the past year’s return with the PositiveReturn dummy suggests that 

respondents’ probabilities are on average 0.39 percentage points higher (0.72 - 0.33) 

when the past year’s return is 10 percentage points higher.  There is no significant 

effect on the interaction of the past year’s return with the >Plus20 variable.  More 

recent stock returns (over the past 30 days) do not appear to have a significant effect 

on the subjective probabilities.   

                                                             
10 These findings complement those found in Greenwood and Shleifer (2014). In particular, in their 

study a 20% return during the past year corresponds to an approximately 2.1 percentage point 
increase in expectations of the next year’s return using their measure from the Gallup survey of 
investors.  The time period of our sample covers the gap in the Gallup Survey due to it being 
temporarily discontinued between November 2009 and February 2011.   
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In addition, following or understanding the stock market appears to influence the 

subjective responses.  The estimated probabilities of those that profess to have a good 

understanding of the stock market are on average 1.7 percentage points higher than 

for those who report only some understanding of the stock market, while they are 1.2 

percentage points lower for those who admit to having a bad understanding.  In 

addition, those that say they are not at all following the stock market are more 

pessimistic, with estimated probabilities on average 2.6 percentage points lower than 

those who are only somewhat following the stock market.  Interestingly, those who 

claim to be closely following the stock market also are more pessimistic, perhaps 

reflecting the sample time frame (i.e., the aftermath of the financial crisis). 

The coefficient on our main variable of interest, the option-implied probability, is 

statistically significant, suggesting that the views of Main Street are indeed influenced 

by the views of Wall Street.  The marginal effect of 0.114 implies that a ten percentage 

point increase in Wall Street’s probability on average increases Main Street’s 

probability by just over one percentage point.  That Main Street probabilities respond 

only partially to a change in Wall Street’s probability is consistent with a variety of 

behavioral theories on the partial updating of beliefs (see Hirshleifer 2001 for a 

discussion of these in the context of financial markets).  The effects may still vary 

substantially across individuals, for example, according to an individual’s level of 

probabilistic understanding.  We consider this possibility in Section 3.7.   

The propensity to give a focal response 

The second equation models the probability of a non-focal response (i.e., a negative 

coefficient indicates a higher probability of giving a focal response).  It is assumed 

that any association between the financial controls and the probability of a focal 

response occurs through their correlation with the other controls, i.e., observed 

demographic factors such as gender, age, race, and educational attainment or the self-

assessment regarding following/understanding the stock market.  As a result, both 

the wealth/financial variables (e.g., homeownership, working for pay, stock 

ownership, and having a retirement account) and historical stock market returns are 

excluded from this equation.   
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Table 7: Baseline regression results 

Maximum likelihood estimates of the model are presented in the Table.  For each variable, the estimated regression coefficient, corresponding standard error 
and the marginal effect evaluated at the variable means are reported. For dichotomous (binary) variables, the marginal effect is the difference in probability 
when evaluated at the value of one versus zero, ceteris paribus.  The first three columns show the results of the equation pertaining to μ, the expected value of 
respondents’ stated subjective probabilities. The second three columns refer to w*, where w*>0 corresponds to a non-focal response. The last three columns 
refer to v*, where v*>0 signifies that a respondent gives a response of 50, conditional on giving a focal response (of zero, 50 or one hundred). A complete set of 
wave dummies (not shown) is included in each of the three equations.  * Significant at 5%.    

Observations 139,327 Log likelihood        -66,968 Average log likelihood -0.48 
            
 μ  w*  v* 
 Coef. Std. Err. Marginal  Coef. Std. Err. Marginal  Coef. Std. Err. Marginal 
Dummy (PositiveReturn) -1.594* 0.029 -0.366  -0.220* 0.009 -0.075  0.138* 0.026 0.043 
Dummy (>Plus20) -2.055* 0.059 -0.450  -0.002 0.009 -0.001  0.142* 0.042 0.044 
            
Demographic Characteristics            
Female -0.115* 0.006 -0.029  -0.028* 0.008 -0.009  0.250* 0.015 0.079 
Age -0.002* 0.000 0.000  0.001* 0.000 0.000  -0.011* 0.001 -0.003 
Race            

Non-hispanic white 0.095* 0.013 0.024  0.067* 0.017 0.023  -0.096* 0.034 -0.030 
Non-hispanic black 0.065* 0.016 0.016  0.049* 0.019 0.016  -0.148* 0.039 -0.049 
Hispanic/Latino -0.042* 0.016 -0.010  0.020 0.020 0.007  -0.171* 0.039 -0.057 

Education            
Some college, no Bachelor 0.085* 0.007 0.021  -0.059* 0.009 -0.020  0.078* 0.017 0.024 
Bachelor's degree 0.189* 0.008 0.047  0.174* 0.010 0.056  0.202* 0.022 0.061 
>Bachelor's 0.259* 0.010 0.065  0.315* 0.014 0.097  0.024 0.029 0.007 

Married -0.005 0.006 -0.001  0.077* 0.008 0.026  -0.014 0.016 -0.005 
Working -0.046* 0.006 -0.011      0.061* 0.015 0.019 
Home owner -0.023* 0.008 -0.006      0.094* 0.018 0.030 
Stock owner 0.088* 0.007 0.022      0.164* 0.019 0.050 
Have Retirement Account 0.099* 0.007 0.025      0.126* 0.017 0.040 

 



 

 
 

       

 

 

Table 7:  Baseline regression results (continued) 
Financial Market Characteristics            
Return past 30 days -0.050 0.189 -0.012      -1.476* 0.407 -0.466 

Return past year 0.288* 0.110 0.072      0.323 0.278 0.102 
Return past 30 days * 
PositiveReturn 0.043 0.134 0.011      0.515 0.294 0.163 
Return past year * PositiveReturn -0.132* 0.033 -0.033      -0.054 0.066 -0.017 
Return past 30 days * >Plus20 0.266 0.147 0.066      0.880* 0.318 0.278 
Return past year * >Plus20 -0.320* 0.047 -0.080      -0.022 0.070 -0.007 
Following the stock market            

Closely following  -0.045* 0.014 -0.011  -0.128* 0.018 -0.044  -0.130* 0.036 -0.042 
Not following -0.106* 0.007 -0.026  -0.115* 0.009 -0.039  -0.127* 0.018 -0.040 

Understanding of stock market            
Good understanding  0.070* 0.012 0.017  0.087* 0.016 0.028  -0.089* 0.034 -0.029 
Bad understanding -0.050* 0.008 -0.012  -0.149* 0.009 -0.050  -0.016 0.018 -0.005 

            
Option-implied probability 0.115* 0.022 0.114         
Implied volatility         0.521 0.579 0.165 
            
Constant 0.998* 0.044 0.248  0.726* 0.030 0.242  0.823* 0.159 0.260 
            
Additional parameters            
ψ 0.463 0.004          
φ 3.909 0.016          

 
Notes to Table:  The option-implied probability is transformed using the inverse of the logistic function (logit) analogous to how the Main Street probabilities 
(dependent variable) are transformed,  For ease of interpretation, however, the reported marginal effect corresponding to the option-implied probability is 
that of the untransformed Wall Street probability on the untransformed Main Street probability.  Therefore, a 10 percentage point increase in the Wall Street 
probability results in a 1.14 percentage point increase in the Main Street probability, ceteris paribus.  For the variables related to following the stock market 
and understanding of the stock market, the omitted category is “somewhat following” and “some understanding”, respectively. Good understanding is a 
dummy variable equal to one if an individual rated their understanding as “very good” or “excellent” and zero otherwise while bad understanding is 
analogously constructed for responses of “poor” or “extremely poor”.  The parameter ψ determines the threshold at which a focal respondent selects either 
zero (if their perceived probability is below ψ) or 100 (if their perceived probability is above ψ).  The parameter φ measures the dispersion in the beta 
distribution.  A higher φ means a lower variance of the beta distribution. 
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Consistent with Figure 3, the results indicate that respondents are 7.5 percentage 

points more likely to give a focal response to the central PositiveReturn question than 

to the more extreme questions.  In addition, the propensity to provide a focal 

response is higher for women and those with lower educational attainment and lower 

for those who are white, black, older or married.  Among the demographic controls, 

education is the strongest predictor of the probability of a focal response;  compared 

to those whose education did not go beyond the high school level, those with a 

bachelor’s degree are 5.6 percentage points less likely, and those in the highest level 

(education beyond a bachelor’s degree) are 9.7 percentage points less likely to give a 

focal response.   

Consistent with intuition, those who admit to either not following the stock market or 

having a bad understanding of the stock market are substantially more likely to give a 

focal response than those in the omitted categories of somewhat following or having a 

moderate understanding (3.9 percentage points and 5.0 percentage points, 

respectively), although the marginal effects are lower than those associated with 

educational attainment.   

Modeling uncertainty 

The third equation (for v*) models the probability that conditional on giving a focal 

response, the response is 50 (rather than zero or one hundred).  A positive coefficient 

indicates a greater use of 50.  Recall that a response of 50 could indicate extreme 

uncertainty (Bruine de Bruin et al., 2002).  The covariates included in this equation 

are the same as those in the subjective probability equation, with one exception.  

Because implied volatility is more typically associated with market uncertainty than 

option-implied probability, it replaces the option-implied probability in the equation.  

Its coefficient then measures the extent to which Wall Street uncertainty is related to 

the Main Street uncertainty level of 50 (similar to how the option-implied probability 

corresponds to the Main Street probability in the first equation).11   

                                                             
11 Throughout this Chapter, we characterize the choice of 50 versus zero and one hundred as one 

of expressing uncertainty versus absolute certainty.   Other characterizations are also possible, for 
example:  lack of confidence versus complete confidence; indifference versus extreme optimism or 
pessimism; neutrality versus opinionated. 
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Disappointingly, there appears to be no evidence that the implied volatility influences 

the propensity to use an uncertain focal response versus the extreme responses of 

zero or 100.  This may be for a number of reasons, including the possibility that the 

implied volatility is not an appropriate proxy to use for measuring the kind of 

uncertainty that would manifest itself in a focal response of 50, e.g., implied volatility 

is an instantaneous (daily) measure and focal propensities are more static or the 

wording of the survey question leads to an interpretation that goes beyond the DJIA 

(on which the implied volatility is based).  We consider this possibility by exploring in 

Section 3.7 the robustness of our results to the inclusion of the v* equation, and to the 

inclusion of zero and 100 in our definition of “focal”;  the results are unchanged.      

Responses of 50 are 4.3 (4.4) percentage points more common in response to the 

PositiveReturn (>Plus20) question than to the >Minus20 question, conditional on a 

focal response. This suggests there is greater certainty (or stronger views) about 

the >Minus20 question.  Women, those who are working, homeowners, stock owners 

and those with a retirement account are more likely to use focal responses to 

demonstrate uncertainty rather than certainty; in contrast, there is evidence of 

increasing certainty with age.  

Recent stock market performance (the historical return during the past 30 days) is 

negatively associated with the propensity to rely on a focal response of 50 versus the 

extreme responses.  In particular, a one percentage point lower stock market return 

over the past 30 days corresponds to an average 0.47 percentage point higher 

probability that a response of 50 is given to the >Minus20 question, rather than zero 

or 100.  This result is consistent with the intuition that during the (post-financial 

crisis) sample period, stock market declines induced greater uncertainty (i.e., a 

greater likelihood that the focal point was 50) than stock market gains.  It also 

corroborates findings of Hudomiet, Kézdi and Willis (2011), using data that mostly 

preceded our sample (from February 2008 to February 2009), that uncertainty 

increased temporarily following the 2008 stock market crash. In contrast, the 

probability of a response of 50 to the >Plus20 question increases on average by only 

0.19 percentage points (= -0.466 + 0.278) following a one percentage point lower 

stock market return.   
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The results also indicate that those who admit to not following the stock market at all 

are four percentage points less likely (than those who report somewhat following) to 

give a response of 50 when providing a focal response than a response of either zero 

or one hundred.  Curiously, those who report having a good understanding of the 

stock market and those who report to follow the stock market closely are also less 

likely to reveal uncertainty (2.9 and 4.2 percentage points, respectively). 

3.6 Inconsistent Responses 

 

In addition to the econometric challenge of focal responses, addressed via the model, 

a relatively large proportion of person-wave responses are inconsistent with the laws 

of probability, perhaps suggesting that some respondents did not fully understand 

the questions.  Ben-David, Graham, and Harvey (2010) document miscalibration of 

survey respondents with respect to probability distributions in their sample of Chief 

Financial Officers; such miscalibration is likely to be more severe among the general 

Main Street population.  This naturally raises the question of the extent to which the 

survey responses we use represent a respondent’s true beliefs and whether this 

affects the estimated Wall Street-Main Street connection.  The following illustration 

helps explain the concept of (in)consistency with the laws of probability: 

-100% to -20% -20% to 0% 0% to 20% >20% 

 

 

 

 

 

 

Figure 4: Range of possible returns segmented according to survey questions 

A B C D 

  PositiveReturn 

>Minus20 

>Plus20 
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This Figure shows the complete range of possible returns, from -100% to +∞, divided 

according to segments that correspond to the survey questions.  When respondents 

answer >Minus20, they are being asked to state their probability of the return being 

in sections B, C, or D. Similarly, >Plus20 refers to section D and PositiveReturn refers 

to the probability of the return being in the union of sections C and D.  An individual’s 

set of responses for a specific wave is inconsistent with the laws of probability if the 

answer to >Plus20 is greater than that of PositiveReturn (since D is a subset of the 

union of C and D) or when their response to PositiveReturn is greater than >Minus20.  

Under this definition, inconsistent sets of responses were given in 17.6% of surveys.12   

In addition to the inconsistent person-wave sets, in 40.0% of the surveys at least one 

of the four line sections was implicitly assigned a probability of zero (henceforth 

referred to as “near-inconsistent” sets since an individual assigns a probability of zero 

to a range with positive measure).  For example, a respondent answered 60 to 

PositiveReturn and 60 to >Plus20, implying a probability of zero of the return being in 

section C (0- 20% return).  The (near-)inconsistent sets appear to be related to giving 

a focal response:  in 36.9% of the surveys in which an inconsistent set of responses 

was given, a focal answer was reported for at least one of the three questions; 

similarly at least one focal response was given in 72.5% of the near-inconsistent sets.  

In contrast, at least one focal response was given in only 26.7% of the consistent sets.    

The model is re-estimated with controls included to account for the large proportion 

of inconsistent and near-inconsistent responses; the results are shown in Table 8.  

Most coefficients do not change much in the new specification. Importantly, though,  

in the equation that specifies the subjective response, the effect of the option-implied 

probability on the survey response is greatest for those that provide consistent 

survey responses and almost double the effect estimated in the baseline model (i.e., 

without controlling for inconsistency);  a ten percentage point increase in option-

implied probability increases a consistent survey response by over two percentage 

points, compared to a one percentage point increase in the baseline model.   

                                                             
12 This proportion is likely an underestimate of the true proportion of inconsistent responses since 

the survey design precludes the respondent from assigning a positive probability to the region where a 
zero probability is implied by their initial PositiveReturn response.  Specifically, when the response to 
PositiveReturn was 0 or 100, only one of the other two subjective response questions was asked. 
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Table 8: Regression results controlling for inconsistent responses 

Maximum likelihood estimates of the model are presented in the table.  For each variable, the estimated regression coefficient, corresponding standard error 
and the marginal effect evaluated at the variable means are reported. For dichotomous (binary) variables, the marginal effect is the difference in probability 
when evaluated at the value of one versus zero, ceteris paribus.  The first three columns show the results of the equation pertaining to μ, the expected value of 
respondents’ stated subjective probabilities. The second three columns refer to w*, where w*>0 corresponds to a non-focal response. The last three columns 
refer to v*, where v*>0 signifies that a respondent gives a response of 50, conditional on giving a focal response (of zero, 50 or one hundred). A complete set 
of wave dummies (not shown) is included in each of the three equations.  * Significant at 5%.  

Observations 139,327 Log likelihood        -49,111 Average log likelihood -0.352 
            
 μ  w*  v* 
 Coef. Std. Err. Marginal  Coef. Std. Err. Marginal  Coef. Std. Err. Marginal 
Dummy (PositiveReturn) -1.625* 0.029 -0.373  -0.285* 0.010 -0.090  0.186* 0.027 0.055 
Dummy (>Plus20) -2.096* 0.059 -0.457  -0.034* 0.010 -0.010  0.139* 0.042 0.041 
            
Demographic Characteristics            
Female -0.114* 0.006 -0.028  -0.040* 0.008 -0.012  0.259* 0.015 0.078 
Age -0.002* 0.000 0.000  0.002* 0.000 0.001  -0.011* 0.001 -0.003 
Race            

Non-hispanic white 0.095* 0.013 0.024  -0.034 0.018 -0.010  -0.090* 0.034 -0.027 
Non-hispanic black 0.069* 0.015 0.017  -0.034 0.021 -0.011  -0.148* 0.039 -0.046 
Hispanic/Latino -0.039* 0.016 -0.010  0.018 0.022 0.005  -0.171* 0.040 -0.054 

Education            
Some college, no Bachelor 0.086* 0.007 0.021  -0.086* 0.010 -0.027  0.086* 0.017 0.025 
Bachelor's degree 0.188* 0.008 0.047  -0.037* 0.012 -0.012  0.202* 0.022 0.058 
>Bachelor's 0.261* 0.010 0.065  0.056* 0.015 0.017  0.014 0.030 0.004 

Married -0.005 0.006 -0.001  0.032* 0.008 0.010  -0.023 0.016 -0.007 
Working -0.051* 0.006 -0.013      0.071* 0.015 0.021 
Home owner -0.026* 0.008 -0.006      0.103 0.019 0.031 
Stock owner 0.087* 0.007 0.022      0.158 0.020 0.046 
Have Retirement Account 0.099* 0.007 0.025      0.115 0.018 0.035 

 

 



 

 
 

                

 

 
 

Table 8:  Regression results controlling for inconsistent responses (continued) 

 
Financial Market Characteristics            
Return past 30 days  0.035 0.186 0.009      -1.516* 0.410 -0.456 
Return past year 0.245* 0.108 0.061      0.431 0.281 0.130 
Return past 30 days * 
PositiveReturn -0.006 0.133 -0.001      0.655* 0.295 0.197 
Return past year * 
PositiveReturn -0.114* 0.032 -0.028      -0.035 0.066 -0.011 
Return past 30 days * >Plus20 0.167 0.145 0.042      0.891* 0.321 0.268 
Return past year * >Plus20 -0.283* 0.046 -0.070      0.007 0.071 0.002 
Following the stock market            

Closely following  -0.044* 0.014 -0.011  -0.110* 0.020 -0.035  -0.147* 0.037 -0.046 
Not following -0.106* 0.007 -0.026  -0.027* 0.010 -0.008  -0.113* 0.019 -0.034 

Understanding of stock market            
Good understanding  0.073* 0.012 0.018  0.045* 0.018 0.014  -0.087* 0.034 -0.027 
Bad understanding -0.054* 0.008 -0.013  -0.045* 0.010 -0.014  -0.003 0.018 -0.001 

            
Consistent *OIP 0.212* 0.022 0.211         
Near-inconsistent * OIP 0.109* 0.022 0.108         
Inconsistent *OIP -0.220* 0.022 -0.219         
            
Implied volatility         0.834 0.584 0.251 
Inconsistent * Implied volatility         -2.287* 0.401 -0.687 
            
Constant 1.047* 0.043 0.260  1.473* 0.034 0.452  0.649* 0.161 0.195 
Inconsistent     -0.357* 0.012 -0.118  1.280* 0.109 0.265 
Near-inconsistent     -1.483* 0.009 -0.477     
            
Additional parameters                  ψ 0.463 0.004   φ 4.084 0.017     

 
Notes to table:  See notes to Table 7.  In addition dummy variables for inconsistency (=1 if an individual’s set of survey responses is inconsistent with the laws 
of probability and zero otherwise) and near-inconsistency (=1 if an individual’s set of survey responses implies zero probability over a measurable set of the 
probability space and zero otherwise) are included in the regression, as well as interacted with the main variable of interest, the option-implied probability 
(OIP in the table).  An interaction between the inconsistency dummy and implied volatility is also included in the third equation of the model. 
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For those that give near-inconsistent responses, the effect is qualitatively similar to 

the baseline model, with a ten percentage point increase in option-implied probability 

corresponding to a 1.08 percentage point increase in subjective expectations.  In 

contrast, for those that give inconsistent responses to the three questions, the effect 

of the option-implied probability is negative and significant, with a ten percentage 

point increase in option-implied probability corresponding to a 2.19 percentage point 

decline in subjective probability, on average.  Therefore, although the baseline results 

indicate that across the whole sample survey respondents’ beliefs coincide well with 

the market’s, there are some respondents whose stated beliefs represent significant 

departures from those of the market.    

There is also evidence that those who do not fully understand the laws of probability 

are more likely to give a focal response (w* equation).  Those that give inconsistent 

responses are 11.8 percentage points less likely to give a non-focal response while 

those that give near-inconsistent responses are nearly 48 percentage points less 

likely, than those who provided consistent responses.13  In only one case (the 

coefficient on bachelor’s degree in the w* equation) does a significant coefficient 

change sign relative to the baseline (Table 7) regression.  Notably, nearly all of the 

race and education effects documented in the Chapter are attenuated once one 

controls for response inconsistency, suggesting that much of the variation in the 

propensity to give a focal response reflects lack of probabilistic understanding.  In 

particular, once we control for inconsistent responses, there are no longer any 

significant differences by race in the propensity to respond focally.  The attenuation is 

also evident in the variables that capture the respondents’ self-assessment with 

respect to following or understanding the stock market. 

While much of the inference regarding the likelihood of providing a response of 50, 

conditional on giving a focal response, is unchanged (v* equation), those that give 

inconsistent responses are 26.5 percentage points more likely to give a response of 

50, conditional on answering focally, than the other survey respondents, suggesting 

greater uncertainty among those that have a more limited probabilistic 

understanding.  In addition, for those sets of responses that were inconsistent, the 

                                                             
13 The relatively large magnitude of the “near-inconsistent” effect may be a result of the definition;  

recall that anyone who answers 0 or 100 to any of the three questions is automatically classified as 
“near-inconsistent” since then some segment of the probability space contains zero mass.   
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effect of Wall Street uncertainty (the implied volatility) on Main Street uncertainty is 

significantly less (nearly 6.9 percentage points for a 10 percentage point difference in 

the implied volatility) than it is for sets of responses that were not inconsistent. 

3.7 Sensitivity analysis 

 

To test the robustness of the results to some of the assumptions, sensitivity analyses 

are performed.14 

Sensitivity to the expected return assumptions15   

Changes to these assumptions effectively shift the option-implied probability 

distribution.  The estimated marginal effect of the option-implied probability ranges 

between 0.101 and 0.117 for three alternative models, compared to 0.114 for the 

baseline model.  Taken together, these analyses demonstrate that the regression 

results in the Chapter are hardly sensitive to the assumptions about risk neutrality, 

the equity premium, and the dividend yield.  More details can be found in Appendix 

3D.   

Sensitivity to the focal response specification  

We consider robustness with respect to our inclusion of responses of zero and one 

hundred as “focal” responses by re-estimating the model by defining only responses 

of 50  as focal responses.  In this case, the v* equation (which separates responses of 

50 and 0/100) is not necessary.  The resulting specification is similar to that 

considered in Hurd, McFadden, and Gan (1998).  There is very little change to the 

coefficients and marginal effects in the two remaining equations (μ and w*).  The 

signs of all coefficients remain the same, and only one coefficient changes significance: 

Hispanics/Latinos are significantly less likely to give a focal response of 50 in this 

alternative specification.  The estimated marginal effect of the option-implied 

probability remains unchanged at 0.114.  

                                                             
14 Tables corresponding to the results mentioned in this Section are omitted here in the interest of 

space. 
 
15 We consider this alternative because, some (e.g., Cochrane 2011) might argue that respondents 

“report not their true beliefs, but instead their ‘risk neutral’ equivalents”.   



Wall Street vs. Main Street: an Evaluation of Probabilities 

 

58 
 

Sensitivity to the number of days with which the option-implied probability is 

lagged 

To allow for the possibility that individuals update their beliefs with some delay, we 

re-estimate the baseline specification, using a lag on the option-implied probability 

from 1 to 30 days.  As the lag increases, the marginal effect of the option-implied 

probability declines gradually (albeit non-monotonically), reaching a low of 0.031 at 

22 days (p-value 0.126) but is significant for any lag length out to 10 days.  

3.8 Conclusion 

 

Are subjective probability responses from surveys at odds with probabilities derived 

from financial markets data?  A novel approach, comparing such responses to 

probabilistic questions about future stock market performance with their 

corresponding option-implied probabilities, investigates one aspect of this question:  

whether financial market probabilities have any influence on the views of survey 

respondents.  It would appear the answer is yes.  We find a significant relationship 

between the probabilities extracted from option-prices and those elicited from 

longitudinal survey responses.  The results further show that while option-implied 

probabilities are linked to survey respondents’ outlook, the association is far from 

one-to-one.  Specifically, on average a ten percentage point increase in the option-

implied probability that future DJIA returns will exceed a given threshold leads to a 

1.14 percentage point increase in the average beliefs of the survey respondents.  This 

effect nearly doubles when controls for probabilistic consistency are included in the 

regression.  When considered in the context of the large literature documenting that a 

higher degree of financial literacy leads to better financial forecasts and decisions 

(e.g., Bernheim and Garrett 2003, Lusardi and Mitchel 2011), our results provide 

further evidence of a link between mathematical skill and financial literacy (Lusardi 

2012). 

We find evidence that in the immediate aftermath of the financial crisis, respondents 

who purport to have a good understanding of the stock market or whose responses 

reflect a stronger understanding of probability display greater optimism; both 

subgroups on average report higher probabilities than others in the sample.  In 



Conclusion 

 

59 
 

addition, there is evidence of adaptive expectations via the (statistically significantly) 

positive relationship between the return on the stock market in the past year and the 

subjective responses.   

Despite an association between Wall Street and Main Street probabilities, no 

significant relationship is found between Wall Street uncertainty (as measured by 

implied volatility) and Main Street uncertainty (as measured by the likelihood of 

giving a response of 50% rather than of 0 or 100%, conditional on a focal response).  

In contrast, our results show that other stock market-related variables (i.e., returns 

over the past 30 days, lack of understanding of the stock market, and/or admitting to 

not following the stock market) do significantly influence the aspect of Main Street 

uncertainty defined by our metric.   

The econometric model presented in this Chapter adjusts for a number of challenges 

often present in elicitations from surveys, including the pile-up at key focal points and 

whether a response of 50% should be interpreted as an assignment of equal 

probability or complete uncertainty.  The analysis demonstrates that subjective 

response elicitations are useful reflections of sentiment regarding the financial 

markets and are not necessarily at odds with the views of financial market 

participants as seen through option prices.    

A further exploration considers the degree of probabilistic understanding in the set of 

responses that participants give.  Controlling for variation in probabilistic 

understanding highlights the possibility that focal responses by survey participants 

reflect not just a greater degree of uncertainty about the topic of the question being 

asked (i.e., future stock returns) but also a lack of understanding about the concept of 

probability (e.g., uncertainty about the question framing or interpretation).  While 

Wall Street and Main Street are linked, the link is stronger among those that exhibit 

probabilistic consistency.  This suggests an avenue for future research – the 

association between probabilistic understanding and financial understanding.  The 

results also demonstrate a possible way that observed inconsistencies in survey 

responses may provide useful information for inference — suggesting caution be 

exercised before imposing such consistency through the survey design.  
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Appendix 3A: Construction and Description of Main Street Information 

 

We use publicly available data from the RAND American Life Panel (ALP) 

(https://mmicdata.rand.org/alp).  The Household information module16 contains a 

number of demographic control variables such as age, gender, and race for the 

respondents to the two repeated surveys that we use, the “Monthly Survey” and the 

“Effects of the Financial Crisis”. The latter two repeated modules are ongoing;  as a 

result, new modules are added each month.  After March, 2011 (wave 25), however, 

changes were made to the sample design that were beyond our control (i.e., the 

sample size was reduced and a portion of the reduced sample was not asked the 

subjective response questions that comprise our main variable of interest).   For these 

reasons, we do not use subsequent waves of the sample in our analysis.  The data we 

use cover the period November, 2008 to March 2011. 

Sample construction  

The sample construction is detailed in Table 9.  A total of 50,029 surveys were 

initiated by 2,699 respondents across 25 waves.  For each wave, participants are 

given an approximately two-week window during which to complete the survey.  

Therefore not every calendar day during the sample period has survey responses 

associated with it.  Of the 857 days between November 5, 2008 and March 10, 2011, 

inclusive, surveys were taken by these 2,699 respondents on 364 of these days.  Out 

of the total number of surveys, 784 were not fully completed and hence are omitted 

from our sample;  an additional five surveys were omitted because the sampling 

weight was missing.  In 660 surveys there were no responses to the three  dependent 

variables of interest, while in 94 of the surveys, only one of the three questions was 

answered; these surveys are also excluded from our sample.   

A modest age screen is necessary to minimize the small sample bias that could enter 

into the analysis by including individuals in the tail end of the age distribution while 

at the same time including an age control in the regressions. As a result twenty-seven 

surveys were omitted as the respondent was over 90 when first answering a survey.  

588 surveys were excluded because key covariates were missing.  Finally, 383 

surveys answered by 20 respondents were excluded because they gave inconsistent 
                                                             

16
 Accessible at: https://mmicdata.rand.org/alp/index.php?page=data&p=showsurvey&syid=90002 
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responses to questions with regards to race, ethnicity, birth year or gender (e.g., 

respondents indicated being female in some waves and male in other waves).    

The questions “How would you rate your understanding of the stock market” and 

“How closely do you follow the stock market” are asked only in waves 1, 2, 11, 14 and 

24.  For the waves prior to the first observation of this variable, we assume that the 

respondent’s answer is the same as that first observed response.  For subsequent 

waves, we assume the respondent’s answer remains the same until the next 

observable response.   

Table 9: Main Street sample construction 

Surveys were dropped sequentially according to a series of filters, in the order that is indicated in the 
first column.  The second column indicates the number of surveys that were omitted as a result of the 
filter.  The third and fourth columns indicate how many surveys and persons, respectively, remained 
after applying the filter.   

 
Dropped Surveys Persons 

 
Surveys Remaining Remaining 

Start 
 

50029 2699 

Survey Design 
   Haven't finished survey 784 49245 2689 

Weights missing 5 49240 2688 

    Dependent variable 
   Did not answer any key questions 660 48580 2685 

Answered only 1 (of 3) key questions 94 48486 2681 

    Covariates 
   Over 90 at first response  27 48459 2679 

Gender, Ethnicity, Race, Birth year missing 25 48434 2678 

Inconsistent 383 48051 2658 

    Gender 165 
      Ethnicity 99 
      Race 45 
      Birth year 74 
  Family income missing 100 47951 2656 

"Holds stocks/stock mutual funds" missing 145 47806 2655 

"Bought or sold stocks since [timeframe]" missing 83 47723 2655 

Exact amount bought/sold (follow-up) missing 134 47589 2653 

"Has retirement account" missing 101 47488 2652 
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Appendix 3B: Construction and Description of Wall Street Information 

 

The price at time t of a European call option with a strike price of K and an expiry date 

of T > t is given by: 

        
               

        

where  

   
   

  
         

  

 
      

     
                

 

The interest rate (r) is the (continuous) U.S. dollar swap rate over the period [t,T] 

(which is the default rate for option price calculations in Bloomberg), the dividend 

rate (q) is the Bloomberg forecast for the DJIA dividend rate during the same period, 

the volatility (σ) is the implied volatility corresponding to each specified strike price 

(relative to the spot price St) and a time to expiration T - t.   

The daily implied volatilities are determined by Bloomberg based on prices from out-

of-the-money options.  For those strike prices and times to expiration for which 

options on a particular asset are available (i.e., traded), corresponding implied 

volatilities can be derived.  From these, implied volatilities for other combinations of 

strike prices and times to expiration can be estimated.17   In particular, implied 

volatilities for a time to expiration (T-t) of one year and  strike prices (K) of 80%, 

100%, and 120% of the level of the index at time t were constructed, consistent with 

the time horizon and return categories articulated in the ALP survey questions and 

corresponding to the questions >Minus20, PositiveReturn, and >Plus20, respectively.  

Note that although Bloomberg uses a specific interest rate and dividend rate to 

calculate the implied volatility, its estimates for these values are based on market 

prices for observed options.  The Black-Scholes model treats the three parameters (r, 

q and σ) as independently determined, namely a change in one of the three does not 

affect the other two. 

                                                             
17

 For more information on the calculation of the implied volatility, see: Cui, C. and D. Frank 2011, 

”Equity Implied Volatility Surface Computation, version 3.6”, Bloomberg document, 2056700, 1-10.  The 

document can be found by typing DOCS 2056700 <GO> when logged in to a Bloomberg® terminal. 
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Obtaining parameters from Bloomberg 

In order to obtain the interest rate and dividend rate for the DJIA corresponding to 

each day of the sample, Bloomberg’s option pricing screen (OVME DIVA – see 

below)18 was used: this screen calculates the price of an option with characteristics 

specified by the user, and also allows for the calculation of prices for days in the past 

(see example below).  The user can put values in the highlighted sections specifying 

exactly the terms of the option s/he wants to price and the Bloomberg pricer then 

automatically inserts the market value of necessary parameters (such as the implied 

volatility) and calculates the price of the option. 

Through the OVME screen, a user can also create a ‘deal’, whereby certain aspects of 

the options remain fixed.  For simplicity, one such deal was created for the first of 

every period of 30 calendar days in the period corresponding to the ALP sample. The 

underlying security was set to DJIA and the expiration date (T) was set at 1 year from 

this first day.  Once a deal is created, a function in the Bloomberg Excel add-in (BDP) 

can then be used to download the interest and dividend rate for all 30 days in the 

interval.  The OVME screen does not allow for keeping the time to expiration constant, 

only the expiration date can be kept constant.  As such, the interest rate that is 

captured ranges from the (continuous) 1-year interest rate down to the 336-day (1 

year minus 29 days) rate.  As the latter is not appreciably different from the former, 

and each survey is available for less than 30 days (approximately 2 weeks), the effects 

of this simplification are minimal.  

The 12-month implied volatility was gathered using Bloomberg’s historical price add-

in (BDH) for Microsoft Excel®, for DJIA options with a strike price of 80%, 100% and 

120% of the level at closing for each day that surveys were answered.19 

                                                             
18

 For more information on the option pricing screen (OVME), see the most recent user guide at the time 

of writing, Watts (2010), ”OVME<GO> Userguide”, Bloomberg document 2052774, 1-21. The document 

can be found by typing DOCS 2052774 <GO> when logged in to a Bloomberg terminal. 

 
19

 On November 26, 2010, the Friday after Thanksgiving, a 120% moneyness volatility was registered of 

nearly twice that of the trading days prior to and after that date.  As such large movements are highly 

unusual, we have treated this as a mistake and carry over the value from the previous trading day.   
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The boxes in the two 

top rows show the 

underlying security 

and the price thereof, 

along with the day at 

which the price of the 

option is to be 

calculated.  The boxes 

in the  next three 

rows show the price 

of the option and 

other values 

characteristic to an 

option.  The boxes below can be used to specify exactly the characteristics of the 

option for which the price is to be calculated.  Bloomberg automatically fills in the 

(historical) market values for the implied volatility, interest rate and dividend rate 

(manual override of these values is possible but is not done in this study).  The boxes 

are linked so that changing the value in one box may cause other values to change.  

Two comments regarding the values of the interest rate and dividend series are in 

order: 

(1) Although the choice of a 6% equity risk premium (ρ) reflects historical levels, it is 

admittedly arbitrary.  The sensitivity of the results with respect to this decision to 

include an equity premium, as opposed to computing values under an assumption of 

risk neutrality, is considered as a robustness check in Appendix 3D. 

(2) The DJIA is dividend-adjusted, i.e., when a company in the DJIA pays its 

shareholders a dividend, the index is adjusted in such a way that the expected fall in 

share price as a result of the dividend payment (the value of the company decreases 

as cash flows out in the form of dividends) is nullified.  The index can therefore be 

seen as a non-dividend paying security; hence the value for the dividend yield q is set 

to zero when the probabilities are calculated (robustness to this assumption also is 

considered in Appendix 3D).   

Figure 5: Example of the Bloomberg ® OVME DIVA screen 
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The time series of the interest rate and dividend yield are shown in Figure 6a.  For 

each of the three strike prices (corresponding to 80%, 100%, or 120% of the current 

DJIA spot price), the option-implied probability and implied volatility are shown in 

Figures 6b – 6d.  In each graph, the correlation between the first differences of the two 

series is reported in the upper left corner.   The Figures show an upward trend in the 

probability of a positive return and a greater than -20% return and a pronounced 

downward trend in the option-implied probabilities of a greater than 20% return.  

Figure 6a:  1-year interest rate & dividend yield 

used in pricing options on the DJIA 

Figure 6b:  Option-implied probability and volatility 

for a return of >-20% in one year 

  

Figure 6c:  Option-implied probability and 

volatility for a gain in one year 

Figure 6d:  Option-implied probability and volatility 

for a return of >20% in one year 

Source:  Bloomberg  
 

 

Figure 6: Time series of rates, probabilities and volatilities 

 

Summary statistics and correlations for both the levels and the first differences of 

these time series are provided in Table 10.  An augmented Dickey-Fuller test (Dickey 

and Fuller, 1979) was performed on all the option-implied probability and volatility 

time series in Figures 6b-d to test for a unit root including a drift and trend, with the 
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number of included lags chosen to minimize the Schwarz (1978) Bayesian 

Information Criterion.  Even at the 10% level of significance, the null hypothesis of a 

unit root was not rejected for any of the series.     

The Wall Street data exhibit evidence of volatility skew (implied volatility decreases 

with strike price):  the mean implied volatility is highest for >Minus20 (30.3%), lower 

for PositiveReturn (26.8%) and lowest for >Plus20 (23.8%).  With the exception of the 

standard deviation, the rest of the implied volatility statistics in levels display a 

pattern similar to the means.  The comovement of these series is evident when 

considering the first differences of the implied volatilities (right hand block of the 

Table), where all moments shown are quite similar.  However, the magnitudes of the 

first differences of the implied volatilities suggest a remarkably large variation on a 

day-to-day basis.   

The daily changes of the option-implied probabilities also display large fluctuations.  

As an example, consider the mean probability of a greater than -20% return in the 

stock index over the coming year (79.9%, row 1 column 1).  The mean absolute daily 

change of 0.45 percentage points (row 1 column 6) for >Minus20 means that each day 

the market’s belief fluctuates by an average of 0.45 percentage points (e.g., increasing 

it from 79.9 to 80.35).  The option-implied probabilities of >Plus20 and PositiveReturn 

vary less on a daily basis (as seen by lower standard deviations, mean and median 

absolute deviations).  For all time series in the Table, the large values of the minimum 

and maximum first difference compared to the standard deviation suggest fatter tails 

than a normal distribution would indicate; indeed, the kurtosis is between 7.54 and 

11.42.   
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Table 10: Descriptive statistics of the time series of option-implied probabilities 

This Table contains summary statistics of the daily time series of the Wall Street option-implied probabilities that are calculated using the parameters 
extracted from Bloomberg.  Probabilities are only calculated over survey days. The rows show summary statistics of these probabilities for a > -20% 
return, a positive (> 0%) return, and a > 20% return.  Statistics are shown for both the levels and first differences (daily changes) of each time series.   
Because there are gaps in the survey days, only consecutive pairs of days are used for computation of the summary statistics of the first differences.  

 

 
  Levels (n=364)  First differences (n= 323) 

 
 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

  
     

 
    

 

 
 

Mean Median St.dev Min Max 
 Mean 

(abs) 
Median 

(abs) 
St.dev Min Max 

> -20% 
Probability 79.9% 82.0% 7.1% 63.6% 91.2%  0.45% 0.23% 0.76% -2.68% 3.99% 

Volatility 30.3% 27.5% 7.5% 19.9% 50.3%  0.46% 0.22% 0.84% -4.34% 3.24% 

             

> 0% 
Probability 55.5% 56.1% 3.9% 47.5% 63.3%  0.24% 0.13% 0.40% -1.55% 1.66% 

Volatility 26.8% 24.0% 7.8% 15.5% 46.3%  0.42% 0.19% 0.77% -4.17% 3.25% 

             

> 20% 
Probability 25.7% 26.0% 4.9% 12.9% 32.5%  0.20% 0.11% 0.34% -1.70% 1.87% 

Volatility 23.8% 21.3% 8.0% 11.0% 42.8%  0.43% 0.20% 0.79% -3.84% 3.38% 

 

Note:  For the first differences, we report the mean and median of the absolute value because both mean and median are (practically) zero for all six of 

the first difference time series and these statistics would thus be uninformative. The mean and median of the absolute value provide additional 

information about the variation of the time series. 
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Appendix 3C: Likelihood Calculation 

 

The derivation of the likelihood is provided below for the likelihood of an individual 

observation.  Individual subscripts have been omitted for notational simplicity.  The 

covariate matrices – which are row vectors in this case, as they refer to an individual 

observation – are represented with lower case instead of capital letters.  The 

likelihood of a non-focal response is given by: 

P(w*>0) =                                        

                    

The likelihood of a focal response is then given by: 

                   

where Ф is the standard normal cumulative distribution function. When there is a 

non-focal response p, the density is given by the beta distribution with parameters α1 

and α2 (Mendenhall, Scheaffer and Wackerly, 1981): 

            
              

       
 
        

          
               

with Γ the gamma function and α1, α2, and μ given by: 

                     

  
 

             
        

and φ a constant.  When there is a focal response, the likelihood for a response of 50 

(v*>0) is given by         and that of zero or 100 by
 
        . 

Conditional on a response of zero or 100 (v*≤0), the likelihood of a response of zero is 

given by: 
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which is often referred to as the ‘regularized incomplete beta function’          .  

The overall likelihood of any response is then given by the product of the three 

separate likelihoods (i.e., the likelihood of a response of zero or 100 given a focal 

response, the likelihood of a focal response, and the likelihood of the response 

conditional on a non-focal response):
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Appendix 3D: Sensitivity to risk neutrality, equity premium and dividend 

yield assumptions 

 

The baseline assumptions for the parameters   (the interest rate) and   (the dividend 

yield) reflect an adjustment to the assumption of risk neutrality (i.e., we use      

the risk-free rate plus a 6% equity risk premium, in other words, the required rate of 

return) and a recognition that the DJIA is dividend-adjusted (i.e.,    ), respectively.  

Yet some might argue that respondents “report not their true beliefs, but instead their 

‘risk neutral’ equivalents” (Cochrane 2011).  We consider in this Section sensitivity to 

these assumptions about the equity premium and/or estimates of the dividend yield.  

To evaluate the robustness of the results to the baseline assumptions, we therefore 

consider a number of alternative values for the parameters used in computing the 

option-implied probability: (1)    , i.e., preferences are risk neutral, (2)     and 

   the Bloomberg dividend forecast, and (3)      and    the Bloomberg 

dividend forecast.   

As would be expected, the assumption of risk neutrality shifts the option-implied 

probability distribution to the left, lowering the average, minimum, and maximum 

associated with the three questions.  Not surprisingly, the pattern of the series is 

similar for the different calculations of the option-implied probability, although the 

difference between the series is not constant.  The latter is a result of the non-

linearity of the normal distribution function and the fact that the dividend and 

interest rate are not constant.  

The inclusion of alternative shifted distributions of option-implied probabilities in the 

model causes only the coefficient on the option-implied probability and the constant 

to change;  all other coefficients, standard errors, and marginal effects are practically 

unchanged.  The estimated marginal effects on the option implied probability change 

depending on the model used:  a ten percent increase in the option implied 

probability increases respondents’ beliefs by 1.09 / 1.01 / 1.17 percentage points for 

models (1) to (3), respectively, compared to an increase of 1.14 percentage points for 

the baseline model (with r the required rate of return and q = 0).  The coefficient on 

the option-implied probability is significant for all four models.   



 

 
 

Chapter 4  | A New Parameterization of Quasi-

hyperbolic Discounting 
 

 

 

 

In the quasi-hyperbolic or       discounting model, the parameter     is commonly 

interpreted as an index of time-consistent preferences, and thus an (inverse) 

comparative measure of how much individuals may be vulnerable to self-control 

problems when future outcomes are at stake.  Such an interpretation is problematic 

because time-consistency is jointly determined by both model parameters, increasing in 

  but also decreasing in  .  We prove that the ratio,             is a proper index of 

time inconsistency in preference, in that the number of future selves that might prefer a 

different inter-temporal outcome stream than the one preferred by the current self is 

exactly   (assuming one self per time period). This suggests a reformulation of     as 

    , and an empirical prediction that individuals with greater   will face more 

problems of self-control. We illustrate the usefulness of the       parametrization by 

reanalyzing the dataset in Tanaka et al. (2010). 

 

 

 

 

 

 

 

 

 

This Chapter is based on “Beta-Delte or Tau-Delta? A Reformulation of Quasi-hyperbolic Discounting”, co-

authored by Han Bleichrodt, Drazen Prelec and Peter Wakker. 
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4.1 Introduction 

 

Because of its simplicity and tractability, the quasi-hyperbolic  -  model is the most 

widely used representation of decreasingly impatient (“present biased”) time 

preferences. The model takes as starting point the standard exponential (compound) 

discounting equation, with discount factor  . It then assigns an additional discount   

to all future time periods, yielding: 

                                
  

 

   

 (4.1) 

where       is the utility of outcome received at time   , and     . The  -parameter 

reflects (inversely) the additional weight assigned to immediate consequences, 

creating a wedge between the preferences of the current self and the future selves. 

Decreasing impatience (DI) can lead to time-inconsistent preferences and costly pre-

commitment strategies by ‘sophisticated’ agents, or actual plan reversals and money-

pumping of ‘naïve’ ones. 

In empirical work, the quasi-hyperbolic model often serves as a diagnostic instrument, 

revealing that one or other group is more deviant relative to the exponential, time-

consistent norm. The standard view in the literature is that   provides the 

appropriate measure of deviance, so that someone with a smaller   is less time 

consistent and therefore more vulnerable to self-control problems. For example, in an 

influential review, DellaVigna (2009, p.318) refers to   as “…capturing the self-control 

problems.”  Here, we show that this view is incomplete at best, and one should 

consider instead the ratio,          , or, equivalently, the rewriting of   in Eq. 4.1 as 

  .              is present-bias converted into time units, as a “virtual extra delay” 

assessed for outcomes that are not immediate.  As we show, it is also the maximum 

temporal “window of vulnerability,” during which an option that is disliked by the 

current self would be chosen if made available to a future self. 

The formal argument supporting the  -measure is based on revealed preferences and 

is related to a definition of DI proposed earlier (Prelec, 1989). According to this 

definition, two sets of preferences fall in the same DI class if and only if the associated 

discount functions are related by a power transformation, which for quasi-
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hyperbolics implies that they have the same ratio           (Prelec, 2004).  

Essentially, a high discount rate   dilutes the impact of  , reducing the range of 

decisions that trigger conflict. To be strongly vulnerable, a person not only has to 

exhibit bias for immediate outcomes but must also care significantly about future 

outcomes. It is an ironic, and as yet largely unrecognized implication that a desirable 

trait — concern about the future — exacerbates problems of self-control.  

The question of vulnerability is important in drawing policy inferences from 

laboratory or econometric parameter estimates of Eq. 4.1. Such estimates could shed 

light on the causes of self-harming behavior and focus attention on specific remedies. 

For example, if cigarette smokers care little about the future then their choices might 

be consistent with the exponential model, and in that narrow sense might be rational. 

However, if smokers are time inconsistent then other interpretations of their 

behavior become available, such as sophisticated fatalism (“I believe I cannot stop 

smoking hence I might as well smoke now”) or naïve optimism leading to 

procrastination (“I believe I will quit tomorrow and therefore I can smoke now”). 

Because the preferences of different temporal selves are already in conflict, the policy 

maker may feel justified in acting paternalistically on behalf of one self against 

another, e.g., by imposing penalties or banning certain goods altogether. 

The paper begins with a geometric derivation of our index   (Figure 7) followed by 

representation theorems for  . The potential usefulness of the new index is illustrated 

by a re-analysis of inter-temporal choice data from Tanaka et al. (2010). We find that 

  exhibits less correlation with impatience   than does  , and also shows a different 

relationship with demographic variables.  

4.2 A Visual Argument 

 

Informally, one could say that person A is more vulnerable to self-control problems 

than person B, if A disagrees in preference with a greater number of his future selves. 

In the       model, disagreement is promoted by lower values of  , and, perhaps less 

obviously, by higher values of  . 
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To reinforce intuition about the latter claim, concerning  , consider the following 

example, where we allow decisions at discrete timepoints only, e.g., the beginning of 

each year: Suppose A and B have the same          , but different annual  ‘s, 

     and       . Here A has no time preference apart from an extra weight given 

to the immediate outcome.  Suppose also that there is a prospect of a ‘higher reward’ 

yielding 10 (utils) in year 2020, and an alternative, ‘immediate lower reward’ yielding 

6 that will become available sometime between 2015 and 2019.  Given these 

assumptions, A and B, that is, their annual self-incarnations in years 2015 through 

2019 will consistently choose the lower reward at the time when it becomes available.  

If the present moment is 2014, then the lower reward is still a future reward, and is a 

bad outcome for A, as he currently prefers 10 in 2020 to 6 in all earlier periods, 2015-

2019. However, from the current standpoint of B things are less dire, as choosing 6 is 

precisely the decision he would now, in 2014, want implemented in years 2015-2018. 

The only feared scenario is if the lower reward becomes available in the penultimate 

year, 2019, when he would now prefer his future self to wait one extra year for the 

higher reward, but in 2019 will prefer the immediate smaller reward.  Consequently, 

while A disagrees in preference with all of her future selves, B has to worry only 

about one. 

Indeed, it is a corollary of Theorem 4.1 below that even if completely general outcome 

streams are involved, B would never fear the decisions of more than one future 

annual self, because the aforementioned vulnerability interval             equals 

exactly one year.  However, before stating any formal results, we first present a 

diagram that conveys the gist of the argument. 

Figure 7 displays an inter-temporal dilemma in the Ainslie (1975) representation. Let 

      stand for “receiving outcome     at time   and nothing at all other time 

points.”  Time refers to calendar time relative to an arbitrary starting date, which for 

convenience we set at zero.   In the Figure, calendar time is on the x-axis, now in 

months, and present value of various options on the y-axis.  We plot present value in 

logarithmic coordinates, so that the present value of a reward increases linearly with 

slope –      until the moment of reward, when it exhibits a vertical jump of –     .  

The diagram visually answers the question: “At which time points will my future self 

choose an immediate reward that I would prefer to avoid in favour of a larger, later 
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reward?” If the date of the later reward is held fixed (in the Figure it is 1 year from 

now), then the intervening time divides into three distinct intervals:  

(1) an initial interval of un-conflicted impatience , where the future self 

prefers the lower reward but this is OK with the current self, 

(2) a vulnerable interval of conflicted impatience, where the future self 

prefers the lower reward, but this is not OK with the current self, and, 

(3) a final interval of un-conflicted patience, where both the present and the 

future self prefers to wait for the later reward.  

These three intervals need not always arise (one could have just one, or any 

consecutive pair of intervals), but if a vulnerable interval is present its duration will 

be exactly             (except for some degenerate cases). This result is evident 

from the geometry in the Figure, where the horizontal segment of the bold triangle 

equals the ratio of      to     . 

 

Figure 7: Present value of timed outcomes 

The present value of timed outcomes        ,       ,       , and         is shown, using Ainslie’s 

(1975) representation and assuming linear utility. Decision times t are shown on the x-axis, and the 

present value of various options at the considered decision time is shown on the y-axis with 

logarithmic scaling.  From the vantage point of time zero, $60 at month 12 is preferred to $25 at month 

9; however $25 is preferred if offered immediately at month 9. Hence the preferences of the month 

zero self are inconsistent with the preferences of month 9 self, and are also inconsistent with any other 

self between months 7 and 11.  Month 7 marks the transition from unconflicted impatience to 

vulnerability, and Month 11 the transition from vulnerability to unconflicted patience. The triangle in 

bold shows that the vulnerable interval equals exactly the height      divided by     , the slope of the 

line.   



A New Parameterization of Quasi-hyperbolic Discounting 

 

76 
 

4.3 A Measure of Decreasing Impatience for Timed Outcomes 

 

The next two theorems make our claims mathematically precise. The first focuses on 

choices between two single outcomes as in Figure 7, and the second focuses on 

choices between general outcome streams.  

Nontrivial choices are always between timed outcomes       and       with       

low and high outcomes, and       soon and remote times of consumption.  The 

preference relation is subscripted by decision time, that is:               indicates 

that at calendar time     the person would choose      over       . 

With quasi-hyperbolic discounting, time-inconsistency can only arise if the lower 

outcome is immediate  (     and the time-zero self fears that the time-s self will 

choose the lower reward: 

                                              (4.2) 

For ease of presentation, in the main text we assume non-degenerate preferences that 

allow to exactly measure the degree of impatience: 

                                                                   (4.3) 

That is,   is sufficiently big to compete with an immediate   if   comes soon enough, 

and   is sufficiently remote that a sufficiently early   without the immediacy effect can 

still compete with      . This way the three intervals in Section 4.2 are nonempty. 

The Appendix shows how to handle cases where Eq. 4.3 does not hold. 

We quantify the degree of decreasing impatience by inspecting which early times   

besides   are vulnerable to inconsistencies.  Formally, (assuming Eqs. 4.2 and 4.3), we 

call time point   vulnerable if Eq. 4.2 also holds with   instead of s.  The proof of the 

following theorem will show that under Eq. 4.3 there exists a unique time point   

such that       and 

                 (4.4) 

Theorem 4.1: Assume Eqs. 4.2 and 4.3.  Then the set of vulnerable time points is 

       with   as in Eq. 3.3. 



Streams of outcomes 

 

77 
 

Proof: By continuity and impatience   exists, and is between   and    with   as in Eq. 

4.3.  For    ,                irrespective of the decision time    (including       

and     ) and no dynamic inconsistency arises.  The high reward is too attractive to 

be affected by the immediacy effect. 

Eq. 3.3 implies                                  , and, hence,  

                 , where         (with   defined in Eq. 4.3).  Hence, for 

      we have               for all    (including      and     ).  The late 

reward   is too far away and is less preferred even when the immediacy effect plays 

no role.  For        , we have the preferences in Eq. 4.2 with   instead of   and 

these   are vulnerable.  □ 

 

Theorem 4.1. shows that   has a natural interpretation as the length of the vulnerable 

period.  The larger  , the more a decision maker is prone to dynamic inconsistencies. 

4.4 Streams of outcomes 

 

Section 4.3 considered preferences between two timed outcomes; this Section 

extends our result to the general setting of outcome streams.  The key observation is 

that moving from single outcomes to streams of outcomes cannot increase the length 

of the vulnerability interval in the quasi-hyperbolic model; in this sense, timed 

outcomes are the worst-case scenario for self-control.   

Let                   denote an income stream that gives money amount      at 

timepoint   ,        , and  nothing otherwise.20  Implicit is          .  For    , 

    denotes the shift                     of  , where       .  We again 

analyze a general preference reversal: 

                                 and                                  . 

Under quasi-hyperbolic discounting, the extra weight on the immediate outcome 

must be the cause of the preference reversal and we assume, without loss of 

                                                             
20 Deviating from Eq. 4.2, we do not write the outcome at time 0 unless it is positive. 
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generality, that this favors  .  Hence       , and either        and     , or       

and      .  We may again assume     , which gives 

 
                                         and 

                                 
(4.5) 

We investigate the degree of time inconsistency by considering which shifts     

preserve the preference reversal:  

 
                            

       
                    

                
                     

(4.6) 

In keeping with Section 4.3, we call such   vulnerable. 

Theorem 4.2: Under Eq. 4.5,   is the maximum length of sets of vulnerable  .   

Proof: We write       for the quasi-hyperbolic discounted utility of   at time   . 

               
       

                implies 

                   
 
             . Because      it is also true that, 

                  
 
             . Because       , 

                         
 
             , or (multiplying with      ) 

                            
 
             . 

The last inequality concerns preference    and the shift      . It gives the opposite 

preference to the second one in Eq. 4.6 for the shift  .  Hence Eq. 4.6 cannot hold for 

both a shift by   and a shift by    .  For shifts that exceed    , the above 

inequalities become stronger and favor   more.  This implies that the set of 

vulnerable shifts cannot contain shifts that are further than   apart.  Numerical 

examples show that the length of the set of vulnerable time periods can indeed be less 

than   for some    .  We saw in Section 4.3 that for one nonzero outcome sets of 

vulnerable shifts have length   and, hence, the maximum length is  .   □ 
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Theorem 4.2 shows that for preferences over n outcomes, vulnerable periods can be 

shorter than  , but not longer.  As we already saw in Theorem 4.1, the maximum 

length   is reached, for instance, in choices between timed outcomes.  That is, the 

maximum length is exactly  . 

4.5 Empirical Illustration 

 

To illustrate how   affects our interpretation of individual differences, we reanalyze 

the data from Tanaka, Camerer, and Nguyen (2010). They combined data from an 

experimental study and a household survey in Vietnam to estimate individual (risk 

and) time preferences and related those to demographic variables. 181 subjects 

answered 15 time preference questions by choosing between a money amount now 

and a larger amount in the future (3 days to 3 months), with real incentives (average 

payment was about 6-9 days’ wage).  

Table 11 gives the correlation matrix of parameter estimates when computed for 

each individual on the basis of the 15 questions (we display Spearman rank 

correlations to reduce the impact of outliers).  The estimates of   and   are strongly 

correlated, suggesting that the two parameters are tapping a common individual 

difference variable — impatience. In contrast, estimates of   and   are less related.  

Table 11: Spearman correlation matrix 

The correlation between   and   is significantly smaller (in absolute value) than the correlation 

between   and   (z =2.98,  p = 0.003). 

 

       

  1.00   

  -0.45 1.00  

  -0.47 -0.17 1.00 

 

We then repeated the authors’ group-level analysis with non-linear least squares 

regression (see Tanaka et al. for details), on        and on      . To ensure both 
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impatience and decreasing impatience, as characteristic of the       model, we 

truncated      ,        and    . 

Table 12 shows the estimation results, with conventional labeling of variables. The 

dummy variable “Trusted agent” is equal to 1 for subjects who stored the money 

earned in the experiments, and the variable “Risk payment” is equal to the amount of 

money the subject received in the elicitation of the risk preferences. All variables 

(including dummy) are standardized. 

The average   is .65, smaller than 1 (p < 0.001);   is unrelated to the demographic 

variables. The average daily discount factor   is equal to .992, and is higher (more 

patience) for subjects with higher age, education, income, and money won in the risk 

part.  

The third and fourth columns show the estimates for the     ) model. The p-values 

are usually lower for   than for  , meaning that   delivers more statistical power than 

 . Whereas   is unrelated to any of the demographic variables,   is associated with 

two variables: people in the South of Vietnam and people who received more money 

in the first part of the experiment have a higher   (more decreasing impatience). 

A comparison between the second and fourth columns shows that the standard 

errors for   are higher in the       framework and that we have more statistical 

power in the       framework. Again, p-values are generally lower in the       

framework. This may be the result of collinearity between   and  : both measure 

impatience (  the short run and   the long run impatience), and will thus be collinear 

when estimated jointly. 
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Table 12: Regression results for the       and the       model  

Data from Tanaka et al. (2010) are used. For each variable the Table shows (from top to bottom) the 

coefficient, the standard error, and the p-value. Asterisks indicate significance at the 5% level. 

 Tanaka et al.         New framework       

    

   (%)   (%)      (%) 

Constant            64.85 99.20  85.10 99.29 

 1.88 0.07  15.87 0.07 

 0.00 0.00  0.00 0.00 

Chinese -0.71 0.04  14.51 0.03 

 1.67 0.07  9.38 0.02 

 0.67 0.58  0.12 0.19 

Trusted agent -0.71 0.03  -1.58 -0.03 

 1.32 0.04  2.21 0.02 

 0.59 0.47  0.48 0.12 

Age 1.18 0.18*  7.86 0.12* 

 1.94 0.07  4.82 0.04 

 0.54 0.02  0.10 0.00 

Female 0.64 0.05  -3.30 0.00 

 1.87 0.07  4.22 0.03 

 0.73 0.44  0.44 0.93 

Education -3.33 0.15*  4.49 0.01 

 2.03 0.07  5.36 0.03 

 0.10 0.03  0.40 0.75 

Income 1.08 0.10*  1.95 0.04* 

 1.18 0.03  6.19 0.02 

 0.36 0.00  0.75 0.02 

Distance to market 2.49 0.02  -0.75 0.04 

 2.13 0.07  9.19 0.04 

 0.25 0.82  0.94 0.20 

South Vietnam -2.67 0.08  30.84* 0.18* 

 2.28 0.08  15.18 0.09 

 0.25 0.30  0.04 0.05 

Risk payment -1.75 0.15*  23.23* 0.14* 

 2.14 0.08  10.94 0.06 

 0.42 0.05  0.04 0.02 

      

# Observations 5,340  5,340 
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4.6 Conclusion 

 

Decreasing impatience is the key characteristic of hyperbolic preferences. We have 

shown that decreasing impatience for the popular quasi-hyperbolic discounting is 

better captured by writing the model as           rather than by the common 

         (for    , with       ). This new writing permits a proper separation 

between impatience (measured by    and decreasing impatience (measured by  ). 

The index   has natural interpretations because it is expressed in time units as the 

perceived time penalty of any delay beyond the present. Additionally,   is the period 

of vulnerability to dynamic inconsistencies and, hence, to self-control problems and 

book making.  

An empirical illustration showed that compared to the       model, there is less 

correlation among the parameters and a stronger association of the parameters with 

demographic variables in the       model.  Of course, whether impatience and self-

control are distinct psychological dimensions is an empirical rather than a modeling 

question. It is certainly possible that individuals who care little about the future as 

measured by their   will also exhibit more time inconsistent preferences, as 

measured by  . In that case, the coefficient  , which merges impatience and time 

inconsistency into a single index of ‘intertemporal misbehavior’ may be useful in 

empirical work, just as combining, say, verbal and mathematical ability into a single 

summary cognitive aptitude index may be useful in certain applications. The 

theoretical point we underline here is that such aggregation of two conceptually 

distinct dimensions into a single number should be done with eyes open.  In contrast, 

the traditional approach of estimating   and   and then interpreting   as self control 

may suggest a relationship between impatience and self-control when no such 

relationship exists. 
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Appendix 4: Proofs 

 

A measure of decreasing impatience 

Lemma 4.1: In the quasi-hyperbolic model,    exhibits more decreasing impatience 

than  , and        is more convex than      , if and only    
       

       
   

      

      
.   

Proof: All functions considered take value 0 at    , and we describe only their 

values at    . Substitution shows that  

                 
      

     
      

      

     
          

Given value 0 at 0, this transformation of          is convex if and only if 

       
      

     
       , which holds if and only if  

       

       
 

     

     
   □ 

Prelec (2004) showed that two discount functions with the same   are related 

through a power transformation, which suggests   may serve as an index of 

decreasing impatience. No derivations were given, however; in particular, the 

discontinuity at     was not handled.  

Theorem 4.1 without Eq. (4.3) 

IF the second condition of Eq. 4.3 is dropped, then     is possible and the time 

interval (       may contain negative time points.  We then should either intersect 

the interval with       or allow for negative time points, which for calendar time is 

possible. If the first condition of Eq. 4.3 is dropped, then the discontinuity of 

discounting at       complicates the analysis.  Then there may not exist an   that 

gives indifference in Eq. 4.4. and the set of vulnerable time points is of the form 

           where    is the supremum of time points   with             , and     . If 

    solves               , then          .   □ 





 

 
 

Chapter 5  | A Criticism of Doyle’s Survey of 

Time Preferences 
 

 

 

 

Doyle’s (2013) theoretical survey of discount functions criticizes two parametric 

families abbreviates as CRDI and CADI families. We show that Doyle’s criticisms are 

based on a mathematical mistake and are incorrect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Chapter is based on “A Criticism of Doyle’s Survey of Time Preferences: a Correction Regarding the 

CRDI and CADI Families”, co-authored by Han Bleichrodt, Kirsten Rohde and Peter Wakker, and published 

in the Judgment and Decision Making (Bleichrodt et al., 2012).  
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5.1 Background and Analysis 

 

Doyle (2013) provides a useful theoretical survey of the most popular discount 

functions for intertemporal choice.  Unfortunately, his analyses of the CRDI (constant 

relative decreasing impatience) and CADI (constant absolute decreasing impatience) 

families of Bleichrodt, Rohde and Wakker (2009; BRW henceforth) are incorrect. Let 

  denote the discount function and let   denote time. The CRDI family is defined as 

follows, with    ,    , and     denoting parameters: 

If    , then                 for    ; (5.1) 

  

If    , then           for    ; D is not defined for     (5.2) 

  

If    , then                for    ; D is not defined for     (5.3) 

The CADI family is defined by replacing   by        in the right-hand sides of the 

equalities in Eqs. 1-3 (the Chapter number 5 is left out of equations for ease of 

reading), but we focus on CRDI here. Doyle wrongly assumes the normalization 

        (5.4) 

for all families he considers. This normalization has often been assumed in the 

literature, but it should not be used in Eqs. 1-3, as pointed out by BRW (p.29 l.2 ff). 

For Eq. 1,        immediately follows from substitution, invalidating Eq. 4. For Eqs. 

2 and 3 we have              (BRW 2009 p. 32), again invalidating the extension 

in Eq 4. The normalization in Eq. 4 can be obtained in Eq. 1 by setting    . But then, 

obviously,     should be consistently set for all  , including all    . Such a 

consistent normalization does not affect preference. The normalization of Eq. 4 

cannot be obtained from Eqs. 2 and 3. 

Doyle assumes Eq. 4 for Eq. 1, but inconsistently does not set     for    . He also 

erroneously assumes Eq. 4 for Eqs. 2 and 3. He does not state his assumed Eq4 

explicitly, but all his results and conclusions about the CRDI and CADI families 

essentially use it (see Appendices) and, hence, are invalid. For example, contrary to 

Doyle (p. 127 following Eq. 31), the   parameter in CRDI is not the   parameter in the 
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 -  model, but is just a normalization parameter with no empirical meaning.21 

Further, contrary to Doyle’s implicit assumption throughout, present values do not 

exist for Eqs. 2 and 3. 

The CRDI family   is simply the transform           of the CRRA utility family   

for expected utility, which is one natural family (Wakker 2008) rather than “three 

distinct sub-models” (Doyle’s end of Section 3.6.2.). Doyle’s mistake in setting 

      in Eqs. 2 and 3, for instance, is the same as wrongly assuming        for 

the negative-power          for     or for the logarithmic           . It 

should be        , because otherwise monotonicity (and continuity) are violated.  

BRW explained that their CRDI family has the flexibility to capture all possible 

degrees of increasing and decreasing impatience, unlike any other currently popular 

discount family. Hence, their CRDI family can accommodate the full range of 

individual time preferences, including subjects whose deviations from constant 

discounting are extreme. It can therefore serve well to fit data at the individual level. 

We hope that the family will be used despite the incorrect criticisms by Doyle.  

   

  

                                                             
21 See BRW (p. 31 last line and Definition 4.3), who use   to denote Doyle’s  . Doyle (p. 127 

bottom), strangely enough, cites this text of BRW, but still maintains his incorrect interpretation of  . 
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Appendix 5A: Reproducing Doyle’s Results for the CRDI family 

 

Doyle does not explicitly state his use of the false Eq. 4, but it can be inferred from his 

incorrect Eqs. 31-36. It also explains his incorrect interpretation of the   parameter. 

Because multiplying all discounted utilities by the same factor     does not affect 

preference, the readers can immediately see that   is just a normalization factor with 

no empirical meaning in Eqs. 1-3.  

We first provide an algebraic derivation of our claim about Doyle’s implicit 

assumption for the most complex case, Doyle’s Eq. 33. We explained in the main text 

that neither Doyle’s Eq. 33 nor any close analog can be derived, because present 

values do not exist. We next show that with the incorrect Eq. 4 and thus, in particular, 

with the incorrect assumption that present values exist, Doyle’s Eq. 33 readily follows. 

This reveals that Doyle’s analysis indeed incorrectly assumed Eq. 4. For the other 

cases, the analysis is similar but simpler. Doyle’s Eq. 33 concerns our Eq. 3 (   ), 

and is reproduced next: 

   
        

   
 (5A.1) 

In all the analyses relevant here, Doyle assumes that utility is the identity function 

(      ). He assumes, with       denoting receiving   at time  , and   denoting 

present value (wrongly assumed to exist, as an implication of Eq. 4): 

             (5A.2) 

If we apply Eq. 4,        to the left-hand side but Eq. 3 to the right-hand side, then 

we get: 

              (5A.3) 

Lemma 5.1  

For Eq. 3 with Eq. 4 (      ), Eq. 6 can be satisfied, and it implies Eq. A.1 (Doyle’s 

Eq. 33). 

Proof: Consider the following rewritings of Eq. A.3: 
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     □ 

 

We next consider Doyle’s Eqs. 31 and 32.  

Lemma 5.2 

For Eq. 1 with Eq. 4, Eq. A.2 implies Doyle’s Eq. 31:   
        

  
 

Proof: Eqs. 1, 4 & A.2 jointly imply               

Rewritings give 
  

 
 

 

         
                         

        

  
    □ 

Lemma 5.3 

For Eq. 2 with Eq. 4, Eq. A.2 implies Doyle’s Eq. 32:   
        

     
 

Proof: Eqs. 2, 4 & A.2 jointly imply         

Rewritings give 
  

 
 

 

   
                      

        

     
    □ 
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Appendix 5B: Reproducing Doyle’s Results for the CADI family 

 

The CADI family is defined, with parameters        , and  , by22 

If    , then                   (5B.1) 

If    , then                 (5B.2) 

If    , then                  (5B.3) 

Unlike with CRDI, for all its parameters, CADI is defined for all for    . 

We show how Doyle’s analysis in his §3.6.3 essentially uses the incorrect Eq. 4. We 

again assume the present value P of Eq. A.2. Unlike with the CRDI family, for the CADI 

family a present value P always exists, and Eq. A.2 can be satisfied for each of the Eqs. 

B.1-3, given that        is unbounded. We consider the three cases of   separately.  

Lemma 5.4 

For Eq. B.1 with Eq. 4, Eq. A.2 implies Doyle’s Eq. 34:   
        

   
 

Proof: Eqs. 4, A.2 & B.1 jointly imply                

Rewritings give 
  

 
 

 

          
                           

        

   
    □ 

Lemma 5.5 

For Eq. B.2 with Eq. 4, Eq. A.2 implies Doyle’s Eq. 35:   
        

 
 

Proof: Eqs. 4, A.2 & B.2 jointly imply              

Rewritings give 
  

 
 

 

        
                       

        

 
    □ 

Lemma 5.6 

For Eq. B.3 with Eq. 4, Eq. A.2 implies Doyle’s Eq. 36:   
        

    
 

Proof: Eqs. 4, A.2 & B.3 jointly imply               

Rewritings give 
  

 
 

 

         
                             

        

    
    □ 

                                                             
22 BRW, p. 31, use the following notation:            , and      



 

 
 

Chapter 6  | Beyond Chance? The Persistence of 

Performance in Online Poker 
 

 

 

 

A major issue in the widespread controversy about the legality of poker and the 

appropriate taxation of winnings is whether poker should be considered a game 

of skill or a game of chance. To inform this debate we present an analysis into the 

role of skill in the performance of online poker players, using a large database 

with hundreds of millions of player-hand observations from real money ring 

games at three different stakes levels. We find that players whose earlier 

profitability was in the top (bottom) deciles perform better (worse) and are 

substantially more likely to end up in the top (bottom) performance deciles of the 

following time period. Regression analyses of performance on historical 

performance and other skill-related proxies provide further evidence for 

persistence and predictability. Simulations point out that skill dominates chance 

when performance is measured over 1,500 or more hands of play. 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the paper “Beyond Chance? The Persistence of Performance in Online Poker”, co-

authored by Martijn van den Assem and Dennie van Dolder.  
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6.1 Introduction 

 

Poker is the most popular card game in the world. Every day, hundreds of thousands 

of people play poker for real money on the Internet (Online Poker Traffic Reports). In 

2013, online poker rooms generated approximately €2.8 billion in gross win (H2 

Gambling Capital). The popularity of the game is also evidenced by the many TV 

reports of major poker tournaments and the number of participants in these 

tournaments. In 2014, for example, 6,683 people paid $10,000 to participate in the 

most renowned poker tournament, the Main Event of the World Series of Poker in Las 

Vegas. 

At the same time, there is a widespread controversy about the legality of poker and 

the appropriate taxation of winnings. A key issue in the debate is whether poker is to 

be considered a game of chance or a game of skill. Unlike with games of skill, 

organizing or playing a game of chance is prohibited or restricted in many countries. 

Also, many countries have a separate gam(bl)ing tax for games of chance, while 

money won in a game of skill is generally subject to regular income tax. Kelly, Dhar 

and Verbiest (2007) map legislation and case law on poker for various countries, and 

show that there is great variation. US regulation even differs across states. Over 

recent years, several law papers have argued that poker is a skill game and should be 

recognized as such (Cabot and Hannum, 2005; Grohman, 2006; Tselnik, 2007). 

Authorities often have a less permissive stance towards online poker than towards 

live poker. In the US, for example, the Unlawful Internet Gambling Enforcement Act 

(UIGEA) that was adopted in 2006 had a major impact: although the Act did not 

forbid online gambling, it did prohibit the transfer of funds to and from online 

gambling businesses. As depositing money is necessary for playing online poker, this 

Act effectively declared online poker illegal. If poker would be considered as a game 

of skill the UIGEA would probably no longer affect the online poker business. 

Behavioral research hints that there are important skill elements in poker. For 

optimal play in the long run, poker players need to apply the expected value criterion 

to every decision in the game. There is considerable evidence, however, that they will 

systematically deviate from this ideal and that they will do so in different degrees. 
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One issue is that people tend to evaluate their decisions one at a time and thereby 

weigh losses more heavily than gains, a phenomenon labeled myopic loss aversion 

(Benartzi and Thaler, 1995). In addition, people are typically risk averse for gains and 

risk seeking for losses (the reflection effect; Kahneman and Tversky, 1979). Loss 

aversion and reflection lead to path-dependent risk preferences if people do not 

perfectly update their reference point after prior gains or losses, a phenomenon 

indeed found in various studies (Thaler and Johnson, 1990, Kameda and Davis, 1990; 

Post et al., 2008). People’s nonlinear sensitivity to probabilities is another reason why 

behavior diverges from the expected value criterion (Allais, 1953; Kahneman and 

Tversky, 1979; Tversky and Kahneman, 1992; Tversky and Fox, 1995). 

Perhaps even more important, probabilities in poker are rarely precise as they 

depend on the strategic choices of other players. As a result, players are likely to go 

wrong systematically. Typically, people are overly optimistic about their own chances 

when they have a sense of control (Langer, 1975; Langer and Roth, 1975; Weinstein, 

1980; Svenson, 1981), overly confident about the precision of their probability 

judgments (Alpert and Raiffa, 1982; Fischhoff et al., 1977), and averse to ambiguity in 

a degree that depends on how competent they feel in evaluating the gamble (Ellsberg, 

1961; Heath and Tversky, 1991). Also, instead of using Bayesian statistics people 

often judge probabilities by the subjective ease with which relevant instances come to 

mind and by relying on representativeness heuristics (Kahneman and Tversky, 1972, 

1973; Tversky and Kahneman, 1971, 1973; Rabin, 2002). 

A number of behavioral studies have directly examined the behavior of poker players 

on some of these issues. Park and Santos-Pinto (2010) survey poker players and 

report that they overestimate their own expected performance. Smith et al. (2009) 

find that online players display path-dependent risk attitudes by playing more 

adventurously after big losses. Similarly, Eil and Lien (2014) find that players who 

have lost tend to play longer and less conservatively. 

Differences between players in the degree to which they are prone to these 

deficiencies lead to differences in their expected performance. Whereas a great deal 

of the heterogeneity in proneness is attributable to unobservable characteristics, 

behavioral research has also uncovered factors that explain systematic differences 

between people. For example, Cesarini et al. (2012) and Cronqvist and Siegel (2014) 
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find survey-based evidence from twins that genetic differences are a source of 

heterogeneity in anomalous choice behavior, and Stanovich and West (1998) and 

Grinblatt, Keloharju and Linnainmaa (2012) report a relation with cognitive ability. 

Simultaneously, players are likely to have different levels of strategic sophistication. 

At the first level, a player considers her own cards only. A second-level player 

understands that opponents base their decisions on their own cards likewise, and she 

updates the relative strength of her cards according to other players’ actions. At the 

third level, a player also bears in mind that opponents are influenced by her actions, 

entailing awareness of opportunities to bluff. In theory, there are infinitely many such 

levels.23 Heterogeneity in strategic sophistication is illustrated, for example, in a field 

experiment by Palacios-Huerta and Volij (2009): in a game called the centipede game, 

experienced chess players chose the (rational) action dictated by backward induction 

more often than college students did. Other examples are Stahl and Wilson (1994), 

Haruvy, Stahl and Wilson (2001), and Camerer, Ho and Chong (2004). Altogether, 

these behavioral insights suggest that a player’s performance in the game of poker is 

determined by more than chance alone. 

Two different research tracks have examined the skill component in poker. One track 

focuses on developing and calculating measures of skill in games, and can be traced 

back to Kadane (1986). Borm and van der Genugten (2001), Dreef, Borm and van der 

Genugten (2003, 2004a, 2004b), and Hendrickx et al. (2008) propose measures that 

compare the performances of different types of players, including an informed 

hypothetical player who knows exactly the cards that will be drawn. The use of their 

approach is, however, limited to relatively simple games. Because of the virtually 

infinite number of possible game situations that result from the many different choice 

(betting) options that players have and because of the importance of players’ hidden 

higher-order beliefs, the approach cannot be accurately implemented for the most 

popular form of poker, No Limit Texas Hold’em. Nevertheless, even for simple poker 

variants, the different studies report a substantial degree of skill. Heubeck (2008) 

reviews the various kinds of proposed skill measures. 

                                                             
23 The analysis of optimal strategies in poker has captivated many game theorists. See, for example, 

von Neumann and Morgenstern (1944), Kuhn (1950), Nash and Shapley (1950), and Friedman (1971). 
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The second track of studies takes a more empirically oriented approach. Likewise, 

these papers suggest that poker involves a skill component. Larkey et al. (1997) and 

Cabot and Hannum (2005) ran large-scale simulations with different pre-defined 

playing strategies and find that their more sophisticated strategies perform better. 

DeDonno and Detterman (2008) carried out experiments with student-subjects and 

demonstrate that the group of players who received strategic instructions during the 

session outperformed the control group. Siler (2010) analyzes online poker data and 

establishes that performance is related to playing style, and that style and 

performance differences between players decrease with the level of the stakes. 

In the same spirit as some of the analyses in the present chapter, Croson, Fishman 

and Pope (2008) and Levitt and Miles (2014) examine whether there is persistence in 

the performance of poker players. Croson, Fishman and Pope analyze how well 

players who have finished in the top 18 of a high-stakes tournament fare when they 

are among the final 18 players in a subsequent major tournament, and they compare 

their results with those from a similar analysis for professional golf. They find that 

previous finishes predict current finishes, and that the skill differences across the 

poker players in their sample are similar to those across the golfers. Levitt and Miles 

analyze a data set that comprises the complete rankings of all players who entered a 

2010 World Series of Poker tournament. They report that players who were a priori 

classified as being especially skilled indeed outperformed the other players. 

In what follows we analyze the role of skill in the performance of online poker players, 

using a large database with 456 million player-hand observations from real money 

ring games at three different stakes levels. Online poker seems to be the most obvious 

data source, because the chance-skill debate is especially oriented towards issues 

regarding the legality of internet poker and the taxation of winnings from online play. 

Moreover, the vast amount of data that is available allows for powerful analyses. 

We define skill as anything that affects a player’s performance other than chance. In a 

pure game of chance, each player’s expected winnings are zero (in absence of costs) 

and there is no persistence or positive autocorrelation in their performance: players’ 

performance over a given period is independent of that over any other period. If 

performance is predictable, the game involves elements of skill. 
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Our results indicate that skill is an important factor. When we split our sample into 

subperiods, we find that players whose performance was in the top (bottom) deciles 

of the previous period perform better (worse) and are more likely to end up in the 

top (bottom) deciles of the current period. Regression analyses of performance on 

past performance and other skill proxies reinforce this evidence of persistence in 

performance. 

From a legal viewpoint, the key question is whether skill dominates chance, that is, 

whether poker is more a game of skill than a game of chance. The answer to this 

question heavily depends on the duration and intensity of play, as the effect of chance 

diminishes with the number of hands and eventually cancels out in the long run.24 

Our simulations point out that skill predominates after approximately 1,500 hands. 

The chapter proceeds as follows: Section 6.2 discusses our data and presents 

descriptive statistics, Section 6.3 analyzes the persistence of performance using decile 

analyses, Section 6.4 reports on our regression analyses, Section 6.5 presents our 

simulations, and Section 6.6 concludes. 

6.2 Data and Descriptive Statistics 

 

For our analysis we use data on real money ring games (“cash games”) played at one 

of the major online poker sites. We consider No Limit (NL) Texas Hold’em only 

because this variant is by far the most popular form of poker worldwide. Our data is 

acquired through an online service called HHDealer. In recent years, several 

companies have specialized in gathering and trading so-called “hand” histories from 

online poker rooms. With software applications they continuously collect information 

on hands played at online poker tables. Many players buy these data to have 

information on the playing styles of others. Because of limited resources, hand history 

providers are unable to store data on every hand that is played online. Out of the 

websites that responded to our inquiries, HHDealer was able to provide the largest 

                                                             
24 A “hand” is the game that is played between two subsequent shuffles of the deck: dealing of 

cards, betting, and awarding of the pot (in another context, the term can also refer to the cards dealt to 

a player). With “playing a hand” we mean to be dealt in. Whenever possible, we avoid the use of poker 

terminology. We believe that reading this Chapter does not require the reader’s understanding of the 

game. 
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number of hands for an uninterrupted period of twelve months. We purchased all 

available data for the games that had been played at three particular stakes levels in 

the period October 2009  September 2010.25 In poker, stakes levels are 

distinguished by the size of the small and the big blind bet. To ground our analysis on 

distinct stakes levels, we selected data from so-called “low”, “medium” and “high 

stakes” games, with big blind sizes of $0.25, $2 and $10, respectively.  

The resulting raw data set contains a total of 76.9 million different hands. The 

average number of players participating in a hand is 5.9, yielding 456.1 million 

different player-hand observations. Of these, 190.6 million (41.8%) are from the low 

stakes games, 229.1 million (50.2%) are from the medium stakes, and 36.4 million 

(8.0%) are from the high stakes. The smallest number of observations in a month has 

been recorded in February 2010 (17.3 million, or 3.8%), and relates to a software 

change that temporarily made data mining more difficult. The peak was in January 

2010 (57.9 million, or 12.7%).  

 Table 13 summarizes the data. Our sample contains over 600,000 different players.26 

About 457,000 of them played at least one hand at our low stakes level ($0.25 big 

blind), 230,000 played in the medium stakes game ($2 big blind) and 34,000 played 

in the high stakes game ($10 big blind). They rarely switched between these three 

levels: nearly all hands (96%) were played at the stakes level at which the player 

played most frequently. A small minority (16%) was active at more than one of the 

three levels, but even these players still played 90 percent of their hands at their most 

favorite level. 

 
  

                                                             
25 For the middle stakes level, the data that we received also contained hands played in September 

2009. We treat these as if they were played in October 2009. 
26 We interpret each account as a separate player. People are not allowed to have multiple 

accounts. 
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Table 13: Summary statistics 

The Table shows descriptive statistics for our full sample of 456.1 million player-hand observations 

from real money ring games No Limit Texas Hold’em at three different stakes levels. For each stakes 

level and for the three levels combined, the first two rows show the number of players and the number 

of hands at the aggregate level. The other rows provide statistics at the player level on the number of 

hands played, the total winnings expressed as the number of big blinds won, and the average number 

of big blinds won per hundred hands. Profitability statistics are shown with and without correction for 

rake (the commission taken by the operator). Winnings are corrected for rake by adding back rake in 

proportion to players’ contribution to the pot. The small, medium and high stakes games have big 

blinds of $0.25, $2 and $10, respectively. 

 

      

  
Small 

stakes 
Medium 

stakes 
High 

stakes 
All 

stakes 
      

Total players  457,063 230,098 33,572 611,487 

Total hands (in millions)  190.6 229.1 36.4 456.1 

Hands 

Mean 417 996 1,085 746 

Minimum 1 1 1 1 

Median 52 82 70 71 

Maximum 341,498 763,791 461,743 764,890 

Stdev 2,648 8,261 7,003 5,909 

Big blinds won 
(raked) 

Mean -39 -51 -20 -49 

Minimum -13,134 -10,461 -6,886 -13,135 

Median -19 -29 -21 -25 

Maximum 11,641 26,516 31,348 30,501 

Stdev 203 374 405 307 

Big blinds won 
(not raked) 

Mean 0 0 0 0 

Minimum -8,748 -7,605 -6,438 -8,749 

Median -9 -21 -19 -15 

Maximum 26,209 44,110 38,631 44,832 

Stdev 255 573 467 433 

Big blinds won per 100 hands 
(raked) 

Mean -99 -104 -106 -104 

Minimum -21,500 -15,740 -12,673 -20,000 

Median -28 -31 -24 -30 

Maximum 11,200 15,000 10,030 15,000 

Stdev 494 455 588 461 

Big blinds won per 100 hands 
(not raked) 

Mean -83 -95 -103 -88 

Minimum -21,000 -15,666 -12,670 -19,400 

Median -16 -24 -22 -20 

Maximum 11,600 15,000 10,040 15,000 

Stdev 474 451 587 448 
 

 

Players who participated in the high stakes game played, on average, 1,085 hands at 

that particular level. For the medium and small stakes this number is 996 and 417, 

respectively. The average number of hands played at the three levels combined is 746. 

There is much variation across players in the number of hands that they played at the 

stakes we have selected. One exceptional player was involved in approximately 
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765,000 hands (0.17% of our sample), while 58.9 percent of all players participated 

in less than one hundred hands. The degree of concentration is high: the one percent 

most active players played 58.5 percent of all hands, and 12.0 percent played 90 

percent. 

Table 13 also shows statistics on players’ winnings, both before and after commission 

taken by the operator. This commission is known as “rake”. To compare and combine 

performance statistics across stakes levels, winnings are scaled by the size of the big 

blind. For example, a profit of 5 big blinds corresponds to a profit of $50 at the high 

stakes, and $1.25 at the low stakes. To also account for differences in the number of 

hands played, performance is expressed as the number of big blinds won per 100 

hands (bb/100). For example, a player who has won $20 at a big blind of $2 after 

playing 400 hands has realized a performance of 2.5 bb/100. 

On average, players lost 104 bb/100 after charging of rake. The average win rate is 

much worse than the ratio of the average total number of big blinds lost (49) and 

hands played (746), or 6.6 bb/100. This difference is explained by a positive relation 

between a player’s profitability and the number of hands that she played. This 

relation may reflect the effect of experience, but can also be a consequence of liquidity 

constraints becoming an obstacle after losses. Only 32 percent of all players in our 

sample achieved a positive overall result after the deduction of rake. 

Rake substantially affects players’ winnings. If a hand is not finished in the first 

betting round (“pre-flop”), the operator takes a fixed percentage (5% for our data) 

from the pot with a fixed nominal cap that depends on the number of players at the 

table. To correct players’ winnings for rake, we add back the rake in proportion to 

their contributions to the pot. On average, rake reduces players’ performance by 16 

bb/100 in our sample. As a result of the fixed nominal cap, the effect of rake on 

players’ win rates is larger for games with smaller stakes. In the absence of rake, 37.5 

percent of all players would have made a profit. The extreme values for the best and 

worst win rate in the Table were recorded for lucky and unlucky players who played 

only one or two hands. 

For our analysis of the role of skill in performance, we measure performance as the 

win rate in big blinds won per 100 hands before the deduction of rake. Later on, we 
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introduce a second performance measure. We control for rake, because we do not 

want our findings to be conditional on the rake structure that is employed by the 

operator. Rake is not an intrinsic element of the game, and the percentages and caps 

differ across sites. Moreover, the amount of rake that a player effectively pays is not 

observable. Players can easily participate in reward schemes and receive deposit 

bonuses that partly make up for it, and via affiliates of the operator they can enter 

into so-called “rakeback deals” that reimburse 25 percent or more of the amount 

initially collected. 

6.3 Decile Analyses 

 

Under the null hypothesis that poker is a game of chance alone, there is no relation 

between a player’s performance scores across different subperiods. Alternatively, if 

skill plays a material role in the game of poker, we would expect a player’s 

performance in one particular subperiod to be indicative of her performance in later 

subperiods. In this Section we subdivide players into deciles based on their 

performance in the first six months of our sample period and examine how the 

players in these deciles fared in the last six months. In the next Section we look at the 

persistence and predictability of performance through regression analysis. 

Our sample period covers twelve consecutive months. We split up our data into the 

subsamples October 2009  March 2010 and April  September 2010, and rank the 

different players into deciles according to the average number of big blinds they have 

won per hand across the first period (the “ranking” period). Because small collections 

of hands are likely to yield very noisy indicators of performance, we filter out players 

who have played less than 1,000 hands during this ranking period. This leaves a 

sample of 17,257 players for the small stakes, 16,435 for the medium stakes, and 

2,725 for the high stakes. A total of 36,570 players participated in 1,000 or more 

hands at the three levels combined. On average, they played 5,706 hands each 

(median: 2,245). Next, we examine the average performance of the various deciles of 

players over the second period of six months (the “measurement” period). To prevent 

selection effects, we impose no restriction on the number of hands in this 
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measurement period. As explained in the previous Section, hand outcomes are 

corrected for rake and scaled by the size of the big blind. 

Table 14 shows the results for the three individual stakes levels (Panel A, B and C) 

and for the three levels combined (Panel D). The left part of the Table includes the 

average performance (in bb/100) for each decile over the ranking period (Period 1), 

while the right part displays how well each decile fared in the measurement period 

(Period 2).27 In a nutshell, the results indicate that there is substantial and significant 

persistence in performance: deciles of players that performed relatively well in the 

first period on average continued to do so in the second period. The findings for 

individual stakes levels are generally similar to those for the three levels combined, 

and our discussion below therefore mainly concentrates on the aggregated sample. 

  

                                                             
27 Note that the deciles comprise less players in the measurement period than in the ranking 

period. Players either ceased to play at some point, moved up or down in stakes, or were simply not 

covered in our hand histories. For the three stakes levels combined, out of the 36,570 players who 

played at least 1,000 hands during the first six months, a subgroup of 20,632 were also active during 

the subsequent six months. On average, the players in this subgroup played 4,814 hands in this second 

period (median: 717) and 7,038 (median: 2,526) in the first. 
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Table 14: Standard performance measure deciles 

The Table ranks all players who played 1,000 hands or more over the first six months of our sample 

period into deciles by their performance over these six months, where performance is measured as the 

average number of big blinds won per hundred hands after correction for rake. For each decile, the 

first columns show the number of included players (N) and their average performance (bb/100) for 

this ranking period (Period 1). The next columns show the number of players from the decile who 

played at least one hand in the last six months of our sample period, as well as their average 

performance for this measurement period (Period 2) and how they rank on average relative to all 

other players who played at least one hand (Rank). Average decile performance (bb/100) is expressed 

both as a straight average (unweighted) and as a weighted average, where the weights are either the 

square roots of players’ number of hands (weighted by n) or players’ number of hands (weighted by 

n). Panel A (B/C) shows the results for observations from the small (medium/high) stakes level 

separately. Panel D shows the results for all stakes levels combined. For each panel, the Table shows 

the Spearman rank correlation between the two periods for the average performance at the decile level 

(for each weighting method) and for performance at the player level (in Rank column). 

 

 Period 1 Period 2 

   bb/100    bb/100   

Decile N 
un-

weighted 
weighted 

by n 
weighted 

by n 
N 

un-
weighted 

weighted 
by n 

weighted 
by n 

Rank 

Panel A: Small stakes 

1 1,726 36.6 35.8 34.7 826 -12.9 3.5 6.8 4,034 

2 1,725 19.7 19.6 19.5 862 -12.4 4.7 7.5 3,985 

3 1,726 13.5 13.5 13.4 866 1.4 5.2 6.7 3,895 

4 1,726 9.2 9.2 9.2 842 -2.4 4.7 6.5 3,956 

5 1,726 5.9 5.9 5.9 837 -2.3 4.8 6.4 3,925 

6 1,725 3.0 3.0 3.0 775 -8.3 3.4 4.9 4,068 

7 1,726 -0.1 0.0 0.0 759 -7.5 3.3 5.1 4,141 

8 1,726 -4.0 -3.9 -3.8 771 -11.1 1.4 3.8 4,181 

9 1,725 -10.2 -10.1 -10.0 790 -26.7 -0.1 4.7 4,320 

10 1,726 -30.0 -29.3 -28.4 890 -20.2 -7.5 -1.3 4,587 

Correlation 0.370 0.818 0.964 0.074 

(p-value) (0.296) (0.007) (0.000) (0.000) 

Panel B: Medium stakes 

1 1,644 34.0 33.0 31.6 946 -25.6 -3.5 3.8 4,398 

2 1,643 16.0 15.7 15.3 983 -14.7 0.9 6.0 4,229 

3 1,644 9.8 9.7 9.6 937 -22.0 1.6 5.9 4,253 

4 1,643 6.0 6.0 5.9 923 -14.2 3.0 5.3 3,972 

5 1,644 3.0 3.0 3.1 894 -10.2 0.9 3.8 4,132 

6 1,643 -0.2 -0.2 0.0 833 -36.2 -2.9 2.3 4,485 

7 1,644 -4.4 -4.3 -4.2 821 -18.8 -4.2 1.8 4,627 

8 1,643 -9.7 -9.6 -9.5 831 -29.6 -5.8 1.4 4,673 

9 1,644 -18.2 -18.2 -18.0 862 -40.5 -10.3 -2.7 4,806 

10 1,643 -41.6 -40.8 -39.9 905 -48.8 -18.0 -5.2 5,190 

Correlation 0.612 0.733 0.927 0.104 

(p-value) (0.066) (0.021) (0.000) (0.000) 

Panel C: High stakes 

1 273 36.8 35.7 33.9 177 -4.7 3.5 5.8 783 

2 272 16.3 16.1 15.8 171 -12.7 -0.8 2.6 862 

3 273 9.7 9.6 9.5 181 4.3 2.8 2.9 797 

4 272 5.8 5.8 5.8 191 -0.3 2.2 3.9 793 

5 273 2.8 2.8 2.8 182 -3.8 2.1 4.1 817 
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6 272 -0.1 0.0 0.2 179 -17.0 0.6 3.5 887 

7 273 -4.0 -3.9 -3.7 159 -5.6 -1.9 -1.1 832 

8 272 -9.1 -9.0 -8.8 148 -7.6 -4.0 -0.8 891 

9 273 -16.5 -16.4 -16.1 158 -32.1 -9.5 -4.1 950 

10 272 -40.2 -39.2 -38.0 150 -21.5 -9.6 -1.9 906 

Correlation 0.636 0.879 0.770 0.088 

(p-value) (0.054) (0.002) (0.014) (0.000) 

Panel D: All stakes 

1 3,657 34.7 33.8 32.7 2,082 -23.0 -0.2 5.1 10,135 
2 3,657 17.5 17.4 17.2 2,126 -13.1 2.2 6.1 9,810 

3 3,657 11.3 11.3 11.1 2,140 -12.6 2.7 6.0 9,736 

4 3,657 7.3 7.2 7.1 2,105 -6.0 3.8 5.9 9,442 

5 3,657 4.1 4.1 4.1 2,099 -13.7 2.3 4.5 9,850 

6 3,657 1.1 1.1 1.2 2,004 -13.3 1.3 3.7 9,907 

7 3,657 -2.5 -2.5 -2.4 1,939 -16.0 -1.0 3.0 10,382 

8 3,657 -7.4 -7.3 -7.3 1,948 -22.0 -3.5 1.7 10,764 

9 3,657 -14.9 -14.8 -14.7 2,047 -25.7 -6.0 0.0 11,062 

10 3,657 -37.7 -37.0 -36.1 2,142 -42.5 -16.5 -5.9 12,098 

Correlation 0.600 0.733 0.927 0.101 

(p-value) (0.073) (0.021) (0.000) (0.000) 

 

We first discuss the results where measurement period decile performance is 

calculated as the unweighted average performance across players. In general, players 

from higher-ranked deciles outperform players from lower-ranked deciles. For 

example, the average player from the top decile for the three stakes levels combined 

lost 23.0 bb/100, while the average player from the bottom decile lost 42.5 bb/100; 

the difference of 19.5 bb/100 is statistically significant (t = 3.12; p = 0.002). However, 

across all deciles, the Spearman rank correlation between the average decile 

performances in the ranking period and those in the measurement period is only 

marginally significant (               ). At the individual stakes levels, the 

correlation coefficient is not significant for the small stakes, and marginally 

significant for both the medium stakes and the high stakes. 

The unweighted average in period two is negative for all ten deciles. This result is 

related to the equal weight assigned to every player in calculating decile performance. 

There is much variation across players in the number of hands they played in Period 

2: this number ranges from 1 to 622,936. Because liquidity constraints can force 

players to stop playing when losses accumulate, a negative average result from a bad 

sequence of hands is less likely to be cancelled out or diluted by subsequent hands 

than a positive result after a streak of luck. Consequently, (extremely) negative 

average performances at the player level are more likely to occur than (extremely) 
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positive average performances. Indeed, players who played relatively few hands in 

Period 2 have lower scores: those who played less than 100 hands (18.9% of all active 

players) recorded a score of -79.9 bb/100, while the others (81.1%) recorded -4.6 

bb/100 on average. 

The substantial share of players who played relatively few hands in the measurement 

period may also explain why the decile-level correlation between the average 

performances in the ranking and measurement period is only marginally significant. 

Performance measurements for infrequent players are relatively noisy, and their 

widely varying scores consequently distort the strength of the correlation. In fact, 

players who played only a few hands are given a questionably large weight when 

decile performance is expressed as a straight average across players. Using a 

weighted average with players’ number of hands as weights would avoid this 

problem, and we therefore propose this measure as an alternative indicator. This 

weighted average is identical to the average profitability per hand across all hands 

played by the players in a decile combined. Because players who played only 

infrequently are hardly reflected in this alternative measure, we also consider a 

compromise weighting method that uses the square roots of players’ numbers of 

hands as weights. 

Evaluating on the basis of the two weighted average performance measures 

strengthens the pattern observed. Players from higher-ranked deciles again 

outperform players from lower-ranked deciles in Period 2. For example, hands played 

by players in the top decile yielded a profit of 5.1 bb/100 across all stakes levels, 

while hands played by bottom decile players lead to a loss of 5.9 bb/100 (difference: 

11.0 bb/100; t = 12.36; p < 0.001). The Spearman rank correlations across the deciles 

between performances in the two periods are higher with weighted than with 

unweighted average scores and always statistically significant  both for the three 

individual stakes levels and for the three levels combined (for all stakes and 

weightings:                 ). Note that the measurement period performance is 

positive for most deciles when players’ numbers of hands are used as weights. This is 

striking, because, by definition, the average winnings per hand are zero across all 

hands in our unfiltered sample. Apparently, players who played 1,000 or more hands 

in the prior six months (and thus satisfied our selection criterion) played more 
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profitably than others. This, in itself, might indicate that experience pays off in this 

game. 

The persistence of performance also appears from how players in a given decile rank 

relative to all other players in Period 2. The last column of Table 14 shows that 

players from higher-ranked deciles generally rank higher than players from lower-

ranked deciles do. For example, for all stakes levels combined, the average rank of 

top-decile players is 10,135 (out of 20,632), while that of bottom-decile players is 

12,098 (t = 9.77; p < 0.001). 

At the individual player level, the strength of the correlation between players’ Period 

1 and Period 2 ranks is rather moderate. The correlation coefficient ranges between 

0.074 (for the small stakes) and 0.104 (for the medium stakes). The relatively low 

degree of correlation as compared to the correlation coefficients at the decile level 

reflects the relevance of variance in performance at the individual level – in particular 

of the variance for players who played only few hands in Period 2. Statistically, 

however, the rank correlation at the individual player level is highly significant for 

every (sub)sample (all p < 0.001). 

As a robustness check, we have also run similar analyses that use three instead of six 

months as the ranking and measurement period, where we divided our one-year 

sample period into four non-overlapping quarters (Q1 = October  December 2009, 

Q2 = January  March 2010, Q3 = April  June 2010, and Q4 = July  September 2010). 

Regardless of the pair of successive quarters that we use for ranking and measuring, 

we observe the same pattern of persistence as before: higher-ranked deciles 

generally outperform lower-ranked deciles. Again, the correlations are stronger when 

we reduce the influence of relatively infrequent players by calculating performance as 

a weighted average, and at the individual player level the rank correlation is always 

highly significant. 

Thus far we have ranked players on the basis of their average performance in big 

blinds. Though simple and natural, this approach ignores the importance of 

differences between players in the number of hands that they played. Few would 

share the view that a player who has won 500 big blinds over 1,000 hands (50 

bb/100) is to be considered a better performing player than someone who has won 
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40,000 big blinds over 100,000 hands (40 bb/100). One of the drawbacks of the 

previous approach is that it does not account for the basic statistical rule that the 

sampling distribution of the mean depends on the sample size (ni): the greater the 

number of observations, the less likely that the mean takes an extreme value. For 

example, if we consider two players with equal ability from a larger population, the 

player who participates in a smaller number of hands is more likely to be classified in 

one of the top or bottom deciles if players are ranked by their average winnings per 

hand. Similarly, the previous approach does not account for differences in playing 

style or the standard deviation of winnings (si): when two players are equally 

profitable, the more adventurous player is more likely to end up in one of the two 

extremes of the ranking. 

We therefore propose an alternative measure to rank players that accounts for the 

number of hands and playing style of an individual player (i): 

      
         

              
 
      

      
 

   

     
 (6.1) 

where BBi is the sum of big blinds won (before deduction of rake), si is the standard 

deviation of big blinds won, and ni is the number of hands played. We label this 

measure the “performance robustness measure” (PRM). In fact, PRMi equals the t-

value of a test of a player’s observed performance against the null-hypothesis of zero 

expected performance. 

Table 15 presents the new results. Accounting for playing style and number of hands 

in the ranking period strengthens the previous evidence for performance persistence. 

Deciles of players who rank higher by their PRMi generally fare better than lower-

ranked deciles. The new ranking method turns out to be more accurate: in many 

cases, the performance of a decile in Period 2 is now perfectly or almost perfectly 

monotonically increasing with the rank of a decile for Period 1. For example, for the 

aggregate data, the rank correlation is perfect when Period 2 decile performance is 

measured with players’ numbers of hands as weights. For each stakes level, the rank 

correlation of performance at the individual player level is stronger as well. The new 

coefficients are about two to four percentage points larger, and range between 0.091 
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(small stakes) and 0.148 (medium stakes). Additional analyses with three-month 

periods yielded similar results. 

Table 15: Performance robustness measure deciles 

The Table ranks all players who played 1,000 hands or more over the first six months of our sample 

period into deciles by their performance over these six months. Here, the performance measure that is 

used to rank players is the performance robustness measure, which is defined as the average number 

of big blinds won per hand after correction for rake divided by its estimated standard error. The 

estimated standard error is the sample standard deviation of the rake-corrected winnings per hand 

divided by the square root of the number of hands. The statistics shown for each resulting decile are 

defined as in Table 14. The various panels and correlation coefficients are also identically defined. 

 

 Period 1 Period 2 

   bb/100    bb/100   

Decile N 
un-

weighted 
weighted 

by n 
weighted 

by n 
N 

un-
weighted 

weighted 
by n 

weighted 
by n 

Rank 

Panel A: Small stakes 

1 1,726 26.9 21.1 16.0 908 -1.3 6.2 7.4 3,777 

2 1,725 21.0 17.4 13.9 822 1.4 6.1 6.8 3,843 

3 1,726 16.1 13.5 10.7 856 -6.0 3.9 5.5 4,008 

4 1,726 11.9 10.1 8.2 822 -10.8 3.0 5.4 4,089 

5 1,726 7.8 6.7 5.5 819 -8.4 3.7 6.0 4,030 

6 1,725 4.1 3.5 2.9 773 -10.9 2.8 5.2 4,094 

7 1,726 -0.1 0.0 0.0 784 -7.9 2.6 5.3 4,180 

8 1,726 -5.0 -4.4 -3.8 794 -19.0 0.6 3.6 4,236 

9 1,725 -11.5 -10.3 -8.8 807 -23.2 0.2 4.6 4,294 

10 1,726 -27.6 -24.9 -21.6 833 -17.3 -6.6 -0.6 4,587 

Correlation 0.867 0.988 0.938 0.091 

(p-value) (0.003) (0.000) (0.000) (0.000) 

Panel B: Medium stakes 

1 1,644 20.9 12.6 8.7 1,084 -6.4 4.7 6.0 3,709 

2 1,643 19.4 13.7 8.9 946 -8.7 2.0 5.2 4,015 

3 1,644 14.4 10.9 7.2 920 -20.5 -0.4 4.3 4,223 

4 1,643 9.5 7.7 5.6 867 -23.8 -4.1 2.4 4,600 

5 1,644 4.4 3.6 2.6 850 -34.7 -4.2 2.5 4,541 

6 1,643 -0.3 -0.2 -0.2 856 -32.7 -5.6 1.1 4,602 

7 1,644 -5.6 -4.9 -3.9 827 -26.5 -5.5 2.1 4,670 

8 1,643 -11.6 -10.0 -7.9 873 -40.2 -6.5 1.7 4,741 

9 1,644 -20.2 -17.7 -14.6 836 -29.1 -8.4 -1.0 4,777 

10 1,643 -36.3 -32.1 -26.4 876 -42.6 -14.3 -4.8 5,063 

Correlation 0.855 0.988 0.952 0.148 

(p-value) (0.004) (0.000) (0.000) (0.000) 

Panel C: High stakes 

1 273 24.0 15.1 10.1 204 9.4 4.3 4.1 705 

2 272 20.6 14.7 9.1 176 -0.1 2.1 3.6 807 

3 273 13.5 9.7 5.9 185 -11.5 0.2 2.1 854 

4 272 8.8 6.8 4.6 169 -12.1 -0.6 3.1 863 

5 273 4.3 3.3 2.3 173 -5.8 2.0 5.7 832 

6 272 -0.1 -0.1 0.0 170 -16.4 0.3 2.1 863 

7 273 -5.7 -4.6 -3.6 155 -4.6 -2.6 1.2 868 

8 272 -11.1 -9.1 -6.9 159 -8.6 -4.0 -0.7 865 

9 273 -18.3 -15.1 -11.3 150 -35.9 -6.5 -2.1 920 
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10 272 -34.6 -29.1 -22.6 155 -17.9 -10.1 -2.7 959 

Correlation 0.697 0.903 0.867 0.118 

(p-value) (0.031) (0.001) (0.003) (0.000) 

Panel D: All stakes 

1 3,657 23.6 15.6 10.2 2,324 -7.0 5.2 6.2 8,885 
2 3,657 19.8 15.1 10.4 2,112 -5.3 3.4 5.3 9,486 

3 3,657 14.8 11.7 8.4 2,076 -10.7 1.4 4.8 9,966 

4 3,657 10.3 8.4 6.2 2,038 -20.3 0.4 4.4 10,113 

5 3,657 6.0 5.0 3.7 2,006 -21.6 0.0 4.2 10,248 

6 3,657 1.5 1.3 1.0 2,005 -19.5 -1.4 2.9 10,398 

7 3,657 -3.3 -2.8 -2.3 1,970 -23.8 -2.7 2.7 10,654 

8 3,657 -9.0 -7.8 -6.3 2,002 -26.1 -4.5 1.5 10,902 

9 3,657 -16.7 -14.7 -12.1 2,017 -24.2 -5.1 1.2 10,892 

10 3,657 -33.5 -29.8 -24.8 2,082 -31.8 -12.2 -3.9 11,852 

Correlation 0.939 1.000 1.000 0.131 

(p-value) (0.000) (0.000) (0.000) (0.000) 

 

Another way to look at the persistence of performance is through transition 

probabilities. Table 16 shows transition probabilities across performance deciles for 

players who played 1,000 hands or more over the first six months of our sample 

period. These players are ranked on the basis of their performance twice: for Period 1 

and for Period 2. The probabilities in the Table indicate the empirical probability of 

transitioning from a given decile in the first half-year period to a given decile in the 

second half-year period. Players for whom we have no observations for the second 

period are not included in the ranking for the second period, so essentially the 

probabilities are conditional on participation in the second six months. 

In Panel A, the performance measure that is used to rank players is the standard 

performance measure (bb/100) after correction for rake. The fraction of players in 

the top decile of Period 1 who end up in the top decile in Period 2 is 13.6 percent; 

players who are in the worst decile end up in the worst decile 19.6 percent of the time. 

These empirical probabilities are substantially greater than the value of 10 percent 

that would be expected under the null hypothesis of no performance persistence (all 

p < 0.001). At the same time, however, there is some evidence that the likelihood of 

ending up at the opposite extreme is also greater than 10 percent. For example, the 

chance of transitioning from the very best (worst) category to the very worst (best) is 

12.3 (11.2) percent. This pattern is symptomatic of the inadequacy of the ranking 

measure used here: players with a higher variance of their average winnings due to 

adventurous or infrequent play are more likely to end up in the extreme win rate 
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categories. Ranking players on the basis of our alternative performance robustness 

measure controls for this variance effect. 

In Panel B, players are ranked on the basis of their PRMi.28 The results are compelling: 

players from the top decile reappear in this decile 20.7 percent of the time, and with a 

probability of 5.4 percent they end up in the bottom decile relatively infrequently. 

Similarly, losers are unlikely to become winners: the worst ten percent of players 

rank among the best ten percent in the next six months only 5.2 percent of the time 

and among the worst ten percent 18.5 percent of the time. The empirical probabilities 

are even more telling when we look at percentiles (not tabulated): the very best one 

percent of players in Period 1 rank among the very best one percent in Period 2 11.4 

percent of the time, and among the best ten percent 32.8 percent of the time (11.4 

and 3.3 times the base rate). They are among the worst ten percent only 3.4 percent 

of the time. Similarly, the least successful players from Period 1 often keep 

performing badly: the worst percentile stay in that category 10.2 percent of the time, 

and belong to the worst decile in 32.0 percent of the cases. They rarely outperform: 

the best decile is reached only 2.7 percent of the time. 

  

                                                             

28 If ni,2 < 1,000 we substitute si,2 by 1000))0001(( 2
22

2
22 ,i1,i,i,i snsn,s~  , where ni,t is the number 

of hands played by player i in period t, and si,t is the standard deviation of big blinds won by player i in 

period t. This approach avoids the use of an unreliable standard deviation estimate for players who 

participated in a relatively small number of hands during Period 2, and assumes that σi is stable 
through time. In the extreme case where ni,2 ≤ 2 we set 12 ,i,i ss~  . 
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Table 16: Transition probabilities 

The Table shows the transition probabilities across performance deciles for players who played 1,000 

hands or more over the first six months of our sample period. Each probability indicates the empirical 
probability of transitioning from a given performance decile in the first half-year period (Period 1) to a 

given performance decile in the second half-year period (Period 2). In Panel A, the performance 

measure that is used to rank players in Period 1 and Period 2 is the standard performance measure, 

where performance is measured as the average number of big blinds won per hundred hands after 

correction for rake (bb/100). In Panel B, the performance measure that is used for Period 1 and Period 

2 is the performance robustness measure, which is defined as the average number of big blinds won 

per hand after correction for rake divided by the estimated standard error. Players for whom we have 

no observations for Period 2 are not included in the Period 2 ranking. 

Period 1 
decile 

Period 2 decile 

1 2 3 4 5 6 7 8 9 10 

Panel A: Ranking by Standard Performance Measure 

1 0.136 0.116 0.098 0.089 0.063 0.078 0.095 0.094 0.108 0.123 
2 0.108 0.108 0.131 0.097 0.094 0.086 0.099 0.096 0.089 0.091 

3 0.087 0.114 0.124 0.119 0.115 0.099 0.094 0.083 0.079 0.086 

4 0.083 0.103 0.124 0.143 0.140 0.103 0.093 0.090 0.069 0.053 

5 0.076 0.091 0.118 0.133 0.131 0.126 0.099 0.083 0.071 0.072 

6 0.100 0.087 0.093 0.119 0.143 0.119 0.100 0.087 0.079 0.072 

7 0.101 0.093 0.094 0.097 0.099 0.121 0.092 0.109 0.104 0.091 

8 0.094 0.105 0.079 0.079 0.088 0.109 0.118 0.120 0.105 0.103 

9 0.103 0.089 0.081 0.071 0.077 0.097 0.118 0.124 0.130 0.110 

10 0.112 0.092 0.056 0.051 0.051 0.065 0.094 0.116 0.166 0.196 

Panel B: Ranking by Performance Robustness Measure 

1 0.207 0.133 0.118 0.107 0.091 0.078 0.083 0.067 0.060 0.054 
2 0.126 0.117 0.107 0.105 0.108 0.108 0.102 0.091 0.076 0.060 

3 0.101 0.110 0.116 0.104 0.106 0.090 0.095 0.104 0.088 0.086 

4 0.105 0.104 0.110 0.099 0.093 0.099 0.095 0.112 0.094 0.090 

5 0.101 0.090 0.099 0.107 0.104 0.113 0.095 0.100 0.098 0.093 

6 0.087 0.092 0.092 0.103 0.112 0.101 0.105 0.102 0.111 0.095 

7 0.072 0.108 0.091 0.090 0.099 0.107 0.106 0.102 0.121 0.105 

8 0.067 0.089 0.093 0.094 0.106 0.103 0.101 0.111 0.119 0.115 

9 0.063 0.078 0.090 0.104 0.100 0.113 0.114 0.100 0.116 0.122 

10 0.052 0.074 0.080 0.087 0.081 0.091 0.107 0.116 0.125 0.185 

 

6.4 Regression Analyses 

 

To further analyze the role of skill we regress performance over the final six months 

of our sample on performance over the first six months, and on other measures that 

may serve as skill proxies. We consider the following variables: 

SPM: the standard performance measure or “win rate”, defined as the average 

number of big blinds won per hundred hands after correction for rake. 

PRM: the performance robustness measure, defined as the average number of big 

blinds won per hand after correction for rake divided by the estimated standard error. 
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The estimated standard error is the sample standard deviation of the rake-corrected 

winnings per hand divided by the square root of the number of hands. 

Hands (log): the natural logarithm of the number of hands played. This variable is a 

proxy for the experience of players and thus a possible indicator of skill. 

Tightness: one minus the proportion of hands in which a player voluntarily wagered 

money in the first betting round (“called or raised before the flop”). The degree of 

tightness is one of the two simple measures that are typically used to broadly 

categorize players’ playing styles. Generally, tighter play is thought to be indicative of 

a better player. Common mistakes in poker are to impatiently look for “action” and to 

overestimate the profitability of playing a given hand. 

Aggressiveness: the number of times a player led the betting (“bet” or “raised”) as a 

proportion of the total number of times the player voluntarily wagered money (“bet”, 

“called” or “raised”). This factor is the other of the two simple playing style measures. 

Aggressive play is generally thought to yield a higher expected performance than 

passive play, because increasing the cost of playing at the right times can pressure 

other players to give up stronger cards or to wager more with weaker ones. 

Tournaments: a player’s tournament ability rating according to SharkScope, a website 

that collects virtually all online poker tournament results. The worst possible rating is 

50 and the best possible rating is 100. The exact calculation is not disclosed by 

SharkScope. Tournament performance is a possible indicator of skill, because of the 

many similarities between tournament and cash game play. 

The last three variables are standardized such that they have a mean of zero and a 

standard deviation of one. To avoid endogeneity issues, all six explanatory variables 

are solely based on data from before Period 2: the first five cover the prior six months 

(Period 1), and the tournament ability rating is determined over the prior twelve 

months. The tournament ability rating was available for 79 percent of the players 

who played 1,000 or more hands in Period 1. 

We run two sets of regressions, one for the standard performance measure and the 

other for our performance robustness measure. In the former case, we face the issue 

of heteroskedasticity: the variance of the error term is proportional to the sample 
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variance of the number of big blinds won ( 2
is ) and inversely proportional to the 

number of hands played (ni) in Period 2. We therefore apply weighted least squares 

(WLS) to estimate these regression models, where the weighing factor is the inverse 

of the variance of the error term ( 2
ii s/n ). When our performance robustness measure 

is the dependent variable we use ordinary least squares (OLS), because the errors 

have constant variance by construction. 

Panel A of Table 17  presents the WLS results for the standard performance measure. 

In each univariate regression, performance is significantly related to the skill proxy 

from the previous period (all p < 0.001). Not only the historical performance measure 

(Model 1), but also the number of hands played (Model 2), the two style measures 

(Models 3 and 4) and the tournament ability variable (Model 5) predict performance 

to a modest but statistically significant extent. Players who participated in more 

hands in the previous period perform better, as do players who adopted a tight or 

aggressive playing style and players who did well in tournaments. Combined, the 

measures explain 3.3 percent of the variance in performance. The smaller-than-unity 

coefficient in Model 1 indicates that there is regression in players’ performance over 

time. 

We obtain qualitatively similar results when we use our performance robustness 

measure (Panel B), but the explanatory power is higher now. The percentage of 

variance explained by the joint skill proxies is 8.1 percent, which is about 2.5 times as 

high as the empirical fit of the previous multivariate specification. We have also 

performed the regression analyses for the three stakes levels separately. The results 

and conclusions are all similar to the results for the aggregate sample. 
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Table 17: Regression results 

The Table displays the regression results for our subsample of players who played 1,000 hands or 

more over the first six months of our sample period (Period 1) and at least 1 hand over the second six 

months (Period 2). The dependent variable is either the standard performance measure (Panel A) or 

the performance robustness measure (Panel B). The standard performance measure is defined as the 

average number of big blinds won per hundred hands after correction for rake (bb/100). The 

performance robustness measure is the average number of big blinds won after correction for rake 

divided by its estimated standard error. All explanatory variables are calculated using data from Period 

1 only. The results reported in Panel A are weighted least squares regression results with the ratio of a 

player’s number of hands and her sample variance of the number of big blinds won in Period 2 as 

weight. Panel B presents ordinary least squares results. The p-values are in parentheses.  

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Panel A: Standard Performance Measure (WLS) 

 
Constant 3.225 -2.536 2.433 3.435 3.984 -0.057 -1.204 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.930) (0.031) 

SPM 0.167     0.141 0.148 

 (0.000)     (0.000) (0.000) 

Hands (log)  0.687    0.199 0.338 

  (0.000)    (0.003) (0.000) 

Tightness   2.048   1.594 1.368 

   (0.000)   (0.000) (0.000) 

Aggressiveness    1.101  0.668 0.532 

    (0.000)  (0.000) (0.000) 

Tournaments     0.412 0.509  

     (0.000) (0.000)  

R2 0.022 0.007 0.012 0.007 0.001 0.033 0.035 

N 20,632 20,632 20,632 20,632 16,368 16,368 20,632 

Panel B: Performance Robustness Measure (OLS) 

Constant -0.055 -2.267 0.010 0.010 0.009 -1.289 -1.333 
 (0.000) (0.000) (0.269) (0.273) (0.366) (0.000) (0.000) 

PRM 0.229     0.123 0.142 

 (0.000)     (0.000) (0.000) 

Hands (log)  0.281    0.155 0.161 

  (0.000)    (0.000) (0.000) 

Tightness   0.242   0.131 0.125 

   (0.000)   (0.000) (0.000) 

Aggressiveness    0.187  0.080 0.085 

    (0.000)  (0.000) (0.000) 

Tournaments     0.078 0.041  

     (0.000) (0.000)  

R2 0.049 0.049 0.035 0.021 0.004 0.081 0.086 

N 20,632 20,632 20,632 20,632 16,368 16,368 20,632 

 

Although these results reinforce our earlier findings of performance persistence and 

the role of skill in poker, the major part of variance in performance remains 

unexplained by the models and appears to be attributable to chance. An issue that we 

have not yet explicitly addressed so far is the problem of errors in variables. In the 

ideal situation we would know every player’s precise skill level, but given the lack of 



Beyond Chance? The Persistence of Performance in Online Poker 

 

114 
 

this information we have to use noisy proxies. When explanatory variables are 

mismeasured, coefficients estimated via standard regression methods are biased 

towards zero and the true explanatory power is underestimated. The low empirical fit 

of the regression models indicates that measurement error is a serious issue for the 

historical performance measures: if a random factor explains much of the variation in 

performance, any measurement of previous performance is likely to be subject to a 

large degree of randomness as well.29 

The bias of an estimated coefficient towards zero as a consequence of measurement 

error is known as attenuation or regression dilution. Although measurement error is 

not a problem for predictive modeling, it can give an unjust impression of the size of 

the effect of skill on performance here and may falsely suggest that a player’s skill is 

not a stable quality over time. To account for error in both the dependent and the 

independent variable we therefore also run a so-called Deming regression 

(methodological details are in Appendix 1). The results indicate that the standard 

regression understates the size of the effect of skill on performance to a considerable 

extent: when we regress the win rate from Period 2 on the win rate from Period 1, we 

obtain a coefficient of 1.392 (p < 0.001). When the performance robustness measure 

is used for the dependent and for the independent variable, the coefficient is 1.156 

(p < 0.001). These new coefficients are not only substantially higher and closer to 

unity than the values of 0.167 and 0.229 reported before, but also significantly 

greater than unity (p < 0.001). Taken at face value, the coefficients indicate that the 

disparity in performance between players increases over time. 

The underestimation of the true explanatory power of skill as a consequence of 

measurement error decreases with the number of hands used to calculate the proxy 

for skill. With more observations, measurement error becomes relatively less 

important: the ratio of the variance of the measurement error and the variance of the 

true explanatory variable decreases with the number of hands. This holds for each of 

our two historical performance measures. For the standard performance measure the 

variance of the measurement error decreases as the number of hands increases. For 

the performance robustness measure the variance of the measurement error of is 

                                                             
29 The playing style variables are measured with relatively little error because they are based on a 

large number of draws from a binomial distribution. Their relatively poor predictive power appears to 

be especially related to their more indirect reflection of skill. 
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constant (at unity), but for this measure an increase in the number of hands leads to 

more distinctive differences between players with a different expected win rate, 

reducing the relative size of measurement errors. 

To illustrate the effect of the number of observations per player on the empirical fit, 

we run regressions for the pooled results of “teams” of players. More precisely, we 

first rank players on the basis of their performance in Period 1. We group the players 

into percentiles, where the best one percent of players forms a group, the second best 

one percent form another group, et cetera. Next, for each percentile we calculate 

Period 1 and Period 2 performance across all hands of the players in the group 

combined. Last, we regress the pooled Period 2 performance on the pooled Period 1 

performance. The average hypothetical “player” has now played about 2.1 million 

hands in Period 1 (instead of 7,038) and 1.0 million in Period 2 (instead of 4,814). 

The results are remarkable. When performance is expressed as the win rate the R2 is 

66.7 percent, and when the performance robustness measure is used the R2 is 80.1 

percent. 

We conclude this Section with a robustness analysis. To make sure that the 

documented persistence of performance truly reflects the role of skill, we need to 

verify that the results are not driven by differences in liquidity constraints between 

players. As already explained in the Section 6.2, a liquidity constraint can force a 

player to stop playing when losses accumulate, and, consequently, a negative 

performance is less likely to be cancelled out or diluted by subsequent hands than a 

positive performance. The stronger a player’s liquidity constraint at the start of a 

given period, the greater the likelihood that she needs to stop early after losses, and 

the lower her expected average performance over this period. Differences in liquidity 

constraints across players can be both exogenously and endogenously determined: 

some players may simply have smaller fixed budgets for playing than others in each 

period, and players who have lost in a previous period have less funds available in 

their accounts than players who have won. In both cases, the contemporaneous 

relation between the strength of a liquidity constraint and performance can lead to 

spurious correlation in players’ performance through time. 

To avoid the possible influence of liquidity constraints, we use hand samples of a 

fixed size for every player. For n = 1,000, 5,000 and 10,000, we select all players who 
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have played at least 2n hands over our entire sample period, and test whether 

performance over the first n hands is predictive of performance over the following n 

hands. 

The regression results are in Table 18, and point out that the persistence of 

performance is robust to this alternative specification. Regardless of n and regardless 

of which of the two performance measures is being used, performance over the 

second n hands is significantly related to performance over the first n hands (all 

p < 0.001). 

Note that there are also two downsides to this alternative approach. First, there is 

more measurement error because in many cases fewer hands are being used to proxy 

for skill (especially when n = 1,000). Raising n solves this issue, but comes at the cost 

of the inclusion of fewer players. Second, if losing players play less (because of 

liquidity constraints or a lost appetite to play), the selection criteria lead to a more 

homogeneous set of players in terms of their performance. Together with the 

exclusion of a possible spurious effect of liquidity constraints, these effects may 

explain why the R2 values for the two present Model 1 specifications (0.5% for SPM 

and 0.6% for PRM) are remarkably lower than before (2.2% and 4.9%, respectively; 

see Table 17). Increased measurement error also explains why the regression 

coefficients are smaller than before.30 

To account for measurement error we also estimate the six univariate models for the 

same fixed-size hand samples using Deming regression. Interestingly, all six resulting 

coefficients are qualitatively close to unity (between 0.86 and 1.11) and only two are 

statistically significantly different from unity. This suggests that the Deming 

coefficients found before were larger than unity due to a spurious effect from 

liquidity constraints that is now eliminated, and, more importantly, this result points 

out that skill differences between poker players are close to constant over time. 

                                                             
30 Note that the R2 values for the different fixed numbers of hands suggest that decreasing 

measurement errors are more important than increasing homogeneity when n increases from 1,000 to 

5,000, and that the two effects are limited or (more or less) cancel out with a further increase to 

10,000. Furthermore, the larger regression coefficients for n = 5,000 than for n = 1,000 again underline 

the nature and role of measurement error, and the larger constants for larger n confirm the selection 

effect that occurs here. 
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Table 18: Regression results for fixed number of hands 

The Table displays the regression results for subsamples of players who played at least 2n hands 

during our entire sample period, with n = 1,000, 5,000 or 10,000. The dependent variable is the 

player’s performance over the second n hands, as measured by either the standard performance 

measure (Panel A) or the performance robustness measure (Panel B). The explanatory variables are 

calculated over the first n hands.  

 

 Model 1 Model 2 Model 3 
 (n1 = n2 = 1,000) (n1 = n2 = 5,000) (n1 = n2 = 

10,000) Panel A: Standard Performance Measure (WLS) 

 
Constant 2.348 3.656 3.798 
 (0.000) (0.000) (0.000) 

SPM 0.066 0.142 0.152 

 (0.000) (0.000) (0.000) 

R2 0.005 0.021 0.025 

N 31,991 7,340 3,464 

Panel B: Performance Robustness Measure (OLS) 

Constant 0.147 0.465 0.705 
 (0.000) (0.000) (0.000) 

PRM 0.074 0.136 0.125 

 (0.000) (0.000) (0.000) 

R2 0.006 0.018 0.016 

N 31,991 7,340 3,464 

 

6.5 Simulations 

 

The previous analyses demonstrate that there is persistence in the performance of 

poker players. Based on the results, we can confidently rule out that we are dealing 

with a game of pure chance. Skill is a factor of importance, but the key question left 

unanswered is whether skill also dominates chance, that is, whether poker is more a 

game of skill than a game of chance. The answer to this question critically depends on 

the number of hands “the game of poker” is supposed to constitute. The role of chance 

diminishes with the number of hands, and when the number of hands grows large 

enough it eventually cancels out. 

In the present Section we use simulations to approximate the number of hands above 

which skill predominates. More specifically, in accordance with the approach in 

Section 6.3, we first rank all players who have played 1,000 hands or more over the 

first six months of our sample period according to their performance during that first 

subperiod. Next, for the best performers, we randomly draw (with replacement) a 

given number of h hands from their combined sample of hands recorded for the 
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second six months and we compute their total winnings (in big blinds) across these h 

hands.31 We do the same for the worst performers, and then compare the total 

winnings of the two player categories. For each different value of h, we repeat this 

procedure 25,000 times and determine the proportion of times that the supposedly 

more skilled players do better than their supposedly less skilled counterparts. A 

similar approach was used by Randal D. Heeb in his expert report for a U.S. Federal 

court case in New York in 2012.32 

Skill predominates in this comparison when the proportion is greater than 0.75. This 

threshold follows from a simple model where we define the skill factor, πh, as the 

probability that skill determines the more profitable player across h different hands. 

Accordingly, 1 - πh is the chance factor, or the probability that chance determines the 

more profitable player. When skill alone determines the winner (πh = 1), the more 

skilled player always wins; when chance alone determines the winner (πh = 0), the 

more skilled player wins half the time. More generally, the overall probability that the 

more skilled player is ahead after h hands is equal to ph = πh · 1 + (1 - πh) · 0.5. Skill 

predominates when πh > 0.5, implying ph > 0.75. 

The accuracy of our simulation approach depends on the formation of two distinct 

groups of players. With each draw of hands, we want to simulate and compare the 

winnings of a relatively skilled and a relatively unskilled player. Every time, the 

former is thus assumed to be the better player, with a higher expected performance 

than the latter. Because we cannot observe a player’s true skill and need to rely on an 

imperfect proxy, we cannot exclude that our simulations sometimes confuse the two 

                                                             
31 To circumvent technical limitations, we draw from a representative subset of one million hands 

when the actual sample size is greater than one million. We have verified that the results are 

insensitive to this approximation. 
32 Case 1:11-cr-00414-JBW. For one half of the players in his sample, Heeb estimates a regression 

model that links performance to hundreds of playing style characteristics, including many different 

variants of Tightness and Aggressiveness (see Section 6.4). For the other half, he employs the obtained 

regression coefficients to compute players’ predicted performance. Heeb’s simulations point out that 

players who rank high according to this self-constructed skill measure are ahead of lower-ranked 

players more than 75 percent of the time after only a few hundreds of hands. A weakness of Heeb’s 

analysis is that he measures players’ characteristics and their performance over the same set of hands. 

This is likely to lead to spurious correlation between skill and performance scores, because both scores 

are contemporaneously co-determined by the same chance elements. For example, players who are 

dealt a greater fraction of strong hands or hands that connect well with the community cards are more 

likely to score high on the dimension of aggressiveness (and thus relatively high on skill) and to record 

a strong performance. Consequently, his analysis is likely to produce an underestimation of the critical 

number of hands above which skill predominates. 
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types. To limit this risk, we draw from the hands of players who ended up in either 

the very best or the very worst performance percentile of the first six months. We use 

our performance robustness measure to rank players, given our earlier evidence that 

this measure is more accurate than the standard performance measure. For the sake 

of completeness, we also run the simulations with the standard performance measure 

and with the top and bottom deciles of players instead of the top and bottom 

percentiles. 

Figure 8 displays the results. Across a selection of a few hands, the game is hardly 

different from a pure game of chance: the higher-ranked players perform better only 

slightly more than half the time. The proportion steeply increases with the number of 

hands, at a decreasing marginal rate.33 As indicated by the solid black line, the critical 

point where the best percentile of players (according to the performance robustness 

measure) is ahead 75 percent of the times is reached after 1,471 hands. As expected, 

this number is larger when the best and worst percentiles are being selected on the 

basis of the standard performance measure (2,139), and even larger when deciles are 

being used instead of percentiles (6,512 and 7,293 for PRM and SPM, respectively). 

                                                             
33 In fact, as h increases, the empirical win proportion converges to the win proportion that would 

result from performance being normally distributed (just as the central limit theorem predicts). 
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Figure 8: Simulation results 

The Figure displays the proportion of times that a selection of h randomly drawn hand outcomes for 

players who were among the best performing players in the past do better than a similar-size selection 

of hand outcomes for players who were among the worst performing players in the past. Hand 

outcomes are randomly drawn from the subsample of hands from the second six months of our sample 

period for players who ranked among the best or worst performing percentiles (black lines) and for 

players who ranked among the best or worst performing deciles (grey lines) over the first six months 

of our sample period. Players are ranked according to the performance robustness measure (solid lines) 

or the standard performance measure (dashed lines). The lines are smoothed, with each point 

representing the moving average proportion across the simulation outcomes available for h-100 up to 

and including h+100. 
 
 

Figure 9 zooms in on the simulation results for h = 10, 100, 1,000 and 10,000, and 

shows histograms for the distribution of the difference in win rate (number of big 

blinds won per hundred hands) between the two groups. While the previous Figure 

only shows the proportion of times this difference is positive at a given h, the 

histograms also show the magnitude of the difference in profitability between the 

higher-ranked and lower-ranked players. Upon visual inspection, the distribution is 

widely but symmetrically distributed around zero when h = 10. The distribution 

gradually becomes more centered around its mean when h increases, and, 

consequently, with a greater h the positive mean win-rate difference of 21.2 bb/100 

becomes more apparent (note the different scales for the horizontal axes). At h = 10, 
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100, 1,000 and 10,000, the fractions where the higher-ranked players are behind 

amount to 47, 43, 29 and 4 percent, respectively. Their chances of underperforming 

by more than 10 bb/100 shrink from 44 to 39, 21 and 0.5 percent, respectively. At the 

critical number of approximately 1,500 hands where skill dominates chance, the 

frequency of underperformance by more than 10 bb/100 amounts to 16 percent. 

 

Figure 9: Difference in win rate after 10, 100, 1,000 and 10,000 hands 

The histograms display the simulated distributions of the difference in win rate (number of big blinds 

won per hundred hands) between players who were in the very best and players who were in the very 

worst performance percentile of the first six months of our sample period. Players are ranked 

according to the performance robustness measure. For each percentile, h = 10, 100, 1,000 or 10,000 

outcomes are randomly drawn from their subsample of hands from the second six months of our 

sample period.  

6.6 Discussion and Conclusions  

 

Our study shows that there is a significant skill factor in online ring game poker, and 

that this factor dominates the luck factor after a moderate duration of play. In Section 

6.3 and Section 6.4 we have examined whether possible skill differences between 
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online poker players explain differences in their performance. The results in these 

Sections provide strong evidence against the hypothesis that poker is a game of pure 

chance. For a game of pure chance there would be no correlation in the winnings of 

players across successive time intervals. 

The decile analyses demonstrate that players who rank higher (lower) in profitability 

over the previous six months generally continue to perform better (worse) than 

others during the present six months. For example, players from the best decile earn 

about 20 to 25 big blinds per 100 hands more during the subsequent six months than 

players from the worst decile. When we rank players on the basis of how well they 

did according to our alternative performance robustness measure, we find that top 

ten percent players rank among the top ten percent of the next six months 

approximately twice as often as others, and among the worst ten percent 

approximately half as often. The results are even more pronounced if we look at the 

best one percent. Similarly, those who perform the worst hardly ever end up in the 

top category. 

Our regression results reinforce these findings, and show that current performance is 

not only related to historical performance but also in some extent to simple measures 

of playing style. Players who are characterized by a tight or aggressive style generally 

perform better than their loose or passive opponents. Performance is also related to 

the number of hands that players have played over the previous period: more 

frequent or experienced players achieve better results. This finding can indicate that 

better players choose to play more and that players learn from playing. Both 

interpretations conflict with the pure-chance hypothesis. 

Given these results we believe that we can legitimately conclude that skill is an 

important factor in online ring game poker.34 However, most jurisdictions do not ask 

whether a game involves an important degree of skill, but, more specifically, whether 

skill predominates. At the same time, no government seems to prescribe how this 

should be tested. The key complication is that the extent to which skill differences 

                                                             
34 Behavioral research also hints that there are important skill elements in poker. A large literature 

from psychology and behavioral economics finds that people systematically deviate from rational 

norms when they make decisions under uncertainty, and that there are differences between people in 

the degree to which they are prone to deficiencies. Appendix 2 highlights some of these insights in the 

context of poker. 
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explain differences in performance depends on the number of hands over which 

performance is measured. If sufficiently many hands are played, skill explains 

practically all variation in performance. This is nicely illustrated by the high 

explanatory power of our regressions with the pooled performance scores of 

percentiles of players, and by the decile analyses, where the (rank) correlation 

between the past and the current performance of large groups is near-perfect or even 

perfect. A definite answer to the predominance question thus calls for a definition of 

the relevant measurement interval. The possible extremes are a single hand and a 

player’s life time, and intermediate options include an average session, a month, and a 

(fiscal or calendar) year. 

Instead of predetermining one particular interval ourselves, we have employed 

simulations to estimate the number of hands where skill and chance are equally 

important. In Section 6.5, we basically run horse races of different durations between 

a relatively skilled player and a relatively unskilled player who are playing 

independently from each other. These simulations point out that skill dominates 

chance when performance is measured over 1,500 or more hands of play. To put this 

number into perspective: at a rate of 60-80 hands per hour per table, playing 1,500 

hands takes people who play only one table at a time about 19 to 25 hours (four to six 

evenings) of play. Participating on multiple tables simultaneously – which is what 

many experienced players do – effectively reduces this duration to one or two 

sessions. 

As with any empirical estimate, the exact outcome depends on the specific approach. 

Our estimate that skill predominates after 1,500 hands should be seen in this light. 

However, we believe that we have taken a conservative approach in testing whether 

skill predominates, because the two types of players in our simulations were not 

playing the game against each other, and because of two selection effects. 

With few exceptions, the series of hand outcomes that we compare consist of hands 

that have been played at tables where the relatively skilled and the relatively 

unskilled players (virtually) sat down with other players than their counterparts in 

our comparison. The hands were played at different tables and at different moments 

in time. We are thus not analyzing how well a selection of strong players fare against 

a selection of weak ones, but comparing how well they did against a cross-section of 
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others, including players from their own category. Would higher-ability players be 

directly playing against lower-ability players, skill should be expected to predominate 

substantially quicker. 

To avoid using extremely noisy historical skill estimates, we have required a 

minimum data history per player. Unintentionally, this approach is likely to have 

generated a selection effect: because intensity of play and experience are (almost 

tautologically) related, relatively inexperienced players are underrepresented in our 

analyses. Every player in our final sample will normally be well informed about the 

rules of the game and master some basic strategic concepts. If we would also observe 

complete beginners playing the game, the differences in performance across players 

would presumably be greater, and the critical number of hands where skill starts to 

predominate would consequently be more quickly reached. 

The relative homogeneity of our sample is probably strengthened by players’ self-

selection into stakes levels on the basis of their perception of their skill level. Better 

players are more likely to play for larger stakes, while worse or beginning players 

may feel more comfortable at smaller stakes. This self-selection into the game is not 

unique for poker. In many games, people play against opponents of relatively similar 

ability. When self-selection happens it takes a longer series of events before skill 

differences materialize – even with sports and with games like chess and bridge. 

We conclude with a brief discussion of the generalizability of our findings. Our study 

has been limited to online play. Due to a lack of readily available data, it is practically 

impossible to execute an analogous, large-scale analysis for offline play. Nevertheless, 

given that skill is important in the online variant, we conjecture that it is likely to be 

even more important for brick-and-mortar play. One reason is that offline play also 

involves body language and other subtle forms of communication. Players are sitting 

face-to-face and need to carefully control their behavior to not reveal the strength of 

their cards, and by observing others they can sometimes discover useful “tells” about 

their play. At the same time, body language can also be used to deliberately mislead 

opponents. Furthermore, players’ patience is put to the test more in live play than in 

online play because fewer hands are dealt per hour. In live poker, skill will probably 

dominate chance at fewer hands, but because of the slower pace of play and the 
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impossibility to play on multiple tables it may take more hours to reach the critical 

number. 

Another limitation is that we have looked at cash game play only, while both online 

and offline poker are also frequently played in tournament form. This focus was 

deliberate, because the value of a given amount of chips wagered in a tournament 

hand depends on the phase of the tournament and on players’ chip stack size relative 

to the chip stacks of their opponents. This issue greatly complicates the analysis of 

performance using hand-level data. A more straightforward approach for 

tournaments would be to analyze players’ finishes, which is precisely what Croson, 

Fishman and Pope (2008) and Levitt and Miles (2014) do for major live events. It is 

hard to tell whether tournament poker requires more or less skill than the cash game 

variant, but we believe that a substantial difference is not very likely. In the early 

phases, tournaments are very similar to cash games, and so will be the roles of chance 

and skill. At later stages, chance increases in importance because the blind bets 

become larger relative to players’ chip stacks, which effectively reduces the 

opportunities for strategic betting. However, for the same reason, meticulous hand 

selection (which dealt hands to play and which not) then becomes even more 

consequential. Furthermore, especially at later stages, players also need to factor in 

the prize money structure in their decisions. Future work could exploit the large 

amount of available tournament data and see if our speculation that skill similarly 

predominates after a few sessions of play indeed holds true. 

  



Beyond Chance? The Persistence of Performance in Online Poker 

 

126 
 

Appendix 6: Deming Regression 

 

Deming regression was first introduced by Adcock (1878). Kummell (1879) extended 

the method by allowing for the errors in the dependent and in the independent 

variable to have different variances (although the former was still assumed to be 

proportional to the latter for all observations). The method is named after the 

statistician W. Edwards Deming who propagated it (Deming, 1943). For our 

regression, we use the following model: 

     
         

  (6A.1) 

          
       (6A.2) 

where     
  are the true values and      are the observed values for the performance of 

player   in period   (       ) and where     is the measurement error that is normally 

distributed with a mean of zero. 

While standard regression approaches minimize the sum of squares of residuals for 

the dependent variable (ei,2) only, we here minimize the sum of squares of the 

standardized residuals for both the dependent and the independent variable: 
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This leads to the following objective function: 

    
          

         
  
  

                
  

 

          
 
           

  
 

          
 

 

   

 (6A.4) 

As show in York (1966), the solution is given by: 

    
          
 
   

          
 
   

 (6A.5) 
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where 

               
  (6A.7) 

    
  

       
 
   

   
 
   

 (6A.8) 

                 
  

 (6A.9) 

                (6A.10) 

                            (6A.11) 

 In most applications, the variance of the measurement error is not known at the level 

of individual observations. In order to solve the optimization problem it is then 

usually assumed that the ratio                     is the same for all  . We are in the 

unique situation that we do have accurate estimates, which allows us to obtain 

unbiased estimates of   and  . When the performance of poker players is measured 

as the average number of big blinds won, the variance of the measurement error 

          for any specific observation is approximated by     
      , or the ratio of the 

underlying sample variance of the number of big blinds won (    
 ) and the number of 

hands (    ). When our performance robustness measure is used, the measurement 

error variance is always equal to unity.





 

 
 

Chapter 7  | Conclusions 
 

This thesis examines non-standard models of financial decision making through 

theoretical and empirical analysis.  

Chapter 2 analyzes multiplier preferences, a popular model in macroeconomics and 

finance proposed by Hansen and Sargent (2001). This model allows for a deviation 

from expected utility (the standard model) due to a different treatment of ‘ambiguous’ 

events. People have a guess for the likelihood of these events occurring, but do not 

know the exact probability distribution.  

In its original form, multiplier preferences only capture ambiguity aversion, where 

people prefer known probabilities to unknown ones. This is not a problem on a 

macroeconomic level, but on a micro level, a substantial proportion of people is often 

ambiguity seeking: they prefer unknown probabilities to known ones.  We give a 

preference foundation for an extension of multiplier preferences, such that it can be 

used to explain ambiguity-seeking behavior.  

We also show how extended multiplier preferences can be measured and thereby 

obtain a measure of ambiguity aversion that can easily be applied in empirical studies.  

A first application of this method on two large scale representative surveys 

(Netherlands & US) showed that a substantial fraction (around one third) of the 

population was indeed ambiguity seeking.  

Chapter 3 looks at people’s subjective beliefs with regards to the stock market, and 

how these compare to market beliefs. Many standard theoretical models assume 

homogeneous beliefs, in which case the two sets of beliefs would be the same (in 

expectation). By linking subjective response questions in a longitudinal survey to the 

probability distribution implicit in option prices, we are the first to be able to see how 

the people’s beliefs co-move with those of the market. We find that there is a 

relationship between the two views, although the association is far from one-for-one. 

A closer association is found for those who demonstrate a better understanding of the 

laws of probability, which suggests that numeracy affects the accuracy of elicited 

responses.  
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Chapters 4 and 5 discuss the modeling of intertemporal preferences. It is generally 

considered normative to make decisions according to exponential or constant 

discounting, i.e. to display constant impatience over time. In practice, people are often 

found to be ‘decreasingly impatient’: people are very impatient in the short run, but 

less so as time progresses.  

Chapter 4 discusses the most widely used model to explain this phenomenon: the 

quasi-hyperbolic or       discounting model. Here,    describes a ‘present bias’, the 

factor with which people discount all future payments in addition to the regular 

discounting through the   parameter. Since   is the cause of the decreasing 

impatience in this model, it is often used as a measure of the degree of decreasing 

impatience or dynamic inconsistency (changing one’s mind over time). We show that 

this interpretation is incorrect, and that one should look   and   together to get to 

such an index; more specifically,   
     

     
 is a proper index. This calls for a rewriting 

of the model, from       to     .  

The new index   has a natural interpretation as a time penalty for any delay beyond 

the present. Because of this, it also indicates the period over which the decision 

maker is vulnerable to dynamic inconsistencies. A first illustration of the use of   on 

an existing dataset shows that   has a stronger correlation with demographic 

variables and less interference with   than does  . 

Chapter 5 comments on Doyle’s (2013) survey of time preferences, in which he 

criticizes the Constant Relative Decreasing Impatience (CRDI) and Constant Absolute 

Decreasing Impatience families of Bleichrodt, Rohde & Wakker (2009). We show that 

his comments are based on incorrect assumptions. As explained by Bleichrodt et al., 

the CRDI family has the flexibility to capture all possible degrees of increasing and 

decreasing impatience. This sets it apart from any other currently popular discount 

family and warrants its widespread use.  

Finally, Chapter 6 discusses the skill factor in online poker. Although the cards drawn 

depend purely on chance, behavioral research suggests that skill may vary well affect 

the outcomes of the game through the (re)actions of the players. By analyzing the 

outcomes of over 450 million games, we find that there is a significant skill factor and 

that this factor dominates the luck factor after a moderate duration of play. We find 



Conclusions 

 

131 
 

that players who performed well in an earlier period continue to do so in a latter 

period. By simulating the performance of a high- and low-skilled player, we find that 

the skill factor is greater than the luck factor in less than 1,500 games, or about 20 

hours.  





 

 
 

Samenvatting 
 

Dit proefschrift beschrijft theoretisch en empirisch onderzoek naar atypisch 

financieel keuzegedrag.  

Hoofdstuk 2 analyseert ‘vermenigvuldingsvoorkeuren’ (multiplier preferences), een 

veelgebruikt model in macro- en financieel-economisch onderzoek om gedrag bij 

meerduidigheid te verklaren. Hierbij kunnen mensen weliswaar een inschatting 

maken van de kansen op uitkomsten, maar weten ze niet de exacte kansverdeling. 

Theoretisch gezien zou alleen iemands inschatting van de kansverdeling moeten 

uitmaken, maar in de praktijk blijkt men vaak een voorkeur te hebben voor bekende 

kansen – situaties waarbij er minder meerduidigheid is. Zo hebben particuliere 

beleggers vaak een sterke voorkeur om te beleggen in eigen land, waar het vanuit het 

oogpunt van diversificatie juist beter is om in buitenlandse aandelen te beleggen.  

Uit experimenteel onderzoek is echter gebleken dat een substantieel gedeelte van de 

mensen juist een voorkeur heeft voor meerduidigheid. Dit wordt niet toegestaan in 

het originele vermenigvuldingsvoorkeuren model van Hansen en Sargent (2001), wat 

voornamelijk gericht is op macro-economisch modelleren (daar vormt dit geen 

probleem). Via een nieuwe axiomatisering breiden wij het model dusdanig uit dat dit 

soort preferenties (vóór meerduidigheid) wel mogelijk is. Tevens laten wij zien hoe 

het model op een simpele en efficiënte wijze op individueel niveau kan worden 

geschat, en geven we de eerste micro-economische schatting van het model voor de 

Nederlandse en Amerikaanse bevolking. In beide groepen heeft een substantiële 

proportie een voorkeur voor meerduidigheid. 

Hoofdstuk 3 bekijkt verwachtingen van mensen ten aanzien van bewegingen in de 

aandelenmarkt, en hoe deze verwachtingen zich verhouden tot de verwachtingen in 

de markt. In vele standaard theoretische modellen wordt uitgegaan van homogene 

verwachtingen, waardoor de twee (gemiddeld genomen) gelijk zouden moeten zijn. 

Doordat we een verbinding leggen tussen antwoorden op bepaalde vragen in een 

grote longitudinale enquête en de kansverdeling die uit optieprijzen kan worden 

gehaald, kunnen we als eerste kijken hoe deze twee (gezamenlijk) bewegen. Het blijkt 
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dat er inderdaad een verband is tussen de twee types verwachtingen, maar de 

verhouding is verre van een-op-een. Voorts vinden we een sterker verband bij 

mensen met een goed begrip van kansen, wat suggereert dat gecijferdheid invloed 

heeft op de nauwkeurigheid van de gegeven antwoorden. 

Hoofdstukken 4 en 5 gaan over tijdspreferenties. Bij optimaal gedrag moet men 

constant verdisconteren, d.w.z. de mate van ongeduld moet gelijk zijn over de tijd. In 

de praktijk zien we echter dat mensen vaak op de korte termijn erg ongeduldig zijn en 

op de langere termijn relatief geduldiger. We noemen dit ‘afnemend ongeduld’.  

Hoofdstuk 4 gaat over het vaakst gebruikte model om dit fenomeen te beschrijven: 

het quasi-hyperbolische ofwel       model. In dit model zit een ‘heden-effect’ 

doordat alle uitkomsten in de toekomst (maar niet die in het heden) naast het 

reguliere verdisconteren (via  ) extra worden verdisconteerd met een factor  . 

Omdat   de oorzaak is van het afnemend ongeduld wordt deze parameter vaak gezien 

als een maat hiervoor. Men vergeet dan echter dat kijken naar   niet voldoende is om 

de mate van afnemend ongeduld in te schatten, maar dat men moet kijken naar een 

combinatie van beta en delta. Wij tonen aan dat er gekeken moet worden naar 

  
     

     
 voor de mate van afnemend ongeduld. Het model kan dan worden 

herschreven van       naar     . De nieuwe parameter   heeft een natuurlijke 

interpretatie als een denkbeeldige vertraging die aan de wachttijd wordt toegevoegd. 

Hieruit blijkt ook dat de nieuwe parameter geschikt is om te zien in wat voor situaties 

er inconsistenties kunnen optreden. Een eerste empirische toepassing toont aan dat   

een sterkere correlatie heeft met demografische variabelen dan  , en dat   minder 

gecorreleerd is met  . 

Hoofdstuk 5 geeft commentaar op Doyle’s (2013) overzicht van modellen van 

tijdspreferenties. In zijn overzicht geeft hij kritiek op de “Constant Relative 

Decreasing Impatience” (CRDI) en “Constant Absolute Decreasing Impatience” 

modellen van Bleichrodt, Rohde & Wakker (2009). Wij tonen aan dat zijn 

commentaar gebaseerd is op onjuiste aannames, en geven de voordelen aan van de 

besproken families. De CRDI familie kan – in tegenstelling tot de meeste bestaande 

modellen – alle maten van afnemend alsook toenemend ongeduld aan.  
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Tot slot bespreekt Hoofdstuk 6 de vaardigheidscomponent in online poker. Welke 

kaarten worden getrokken berust volledig op kans, maar gedragseconomisch 

onderzoek suggereert dat vaardigheid zijn intrede kan doen bij de strategische 

beslissingen die spelers maken. Door te kijken naar de consistentie van spelers’ 

prestaties kunnen we de vaardigheidscomponent identificeren. Als een deel van de 

spelers consistent wint en een ander deel consistent verliest, kan dit alleen het gevolg 

zijn van verschillen in vaardigheid (systematische prestaties kunnen niet het gevolg 

zijn van kans). Wij analyseren ruim 450 miljoen spellen en vinden een substantiële 

vaardigheidscomponent. Spelers die het goed deden in een periode bleven 

bovengemiddeld presteren in een latere periode en verliezers bleven ondermaats 

presteren in opvolgende periodes. Uit simulaties blijkt dat de vaardigheidscomponent 

groter is dan de kanscomponent binnen 1.500 handen, ofwel circa 20 uur. 
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