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Abstract

This is the specification for the Power Trading Agent Competition for 2015 (Power TAC 2015).
Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market,
where competing business entities or “brokers” offer energy services to customers through tariff
contracts, and must then serve those customers by trading in a wholesale market. Brokers are
challenged to maximize their profits by buying and selling energy in the wholesale and retail
markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal
of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are
also incurred whenever there is an imbalance between a broker’s total contracted energy supply
and demand within a given time slot.

The simulation environment models a wholesale market, a regulated distribution utility,
and a population of energy customers, situated in a real location on Earth during a specific period
for which weather data is available. The wholesale market is a relatively simple call market,
similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia
or FERC markets in North America, but unlike the FERC markets we are modeling a single
region, and therefore we model locational-marginal pricing through a simple manipulation of the
wholesale supply curve. Customer models include households, electric vehicles, and a variety of
commercial and industrial entities, many of which have production capacity such as solar panels
or wind turbines. All have “real-time” metering to support allocation of their hourly supply and
demand to their subscribed brokers, and all are approximate utility maximizers with respect to
tariff selection, although the factors making up their utility functions may include aversion to
change and complexity that can retard uptake of marginally better tariff offers. The distribution
utility models the regulated natural monopoly that owns the regional distribution network, and
is responsible for maintenance of its infrastructure. Real-time balancing of supply and demand
is managed by a market-based mechanism that uses economic incentives to encourage brokers
to achieve balance within their portfolios of tariff subscribers and wholesale market positions, in
the face of stochastic customer behaviors and weather-dependent renewable energy sources. The
broker with the highest bank balance at the end of the simulation wins.
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1 Background and motivation

We know how to build “smart grid” [2] components that can record energy usage in real time and
help consumers better manage their energy usage. However, this is only the technical foundation.
Energy prices that truly reflect energy scarcity can motivate consumers to shift their loads to
minimize cost, and producers to better dispatch their capacities [11]. There is a significant reservoir
of capacity for grid management and balancing among customer populations [15], such as water
heaters, electric vehicle batteries, and cold-storage warehouses. Effective use of pricing and demand
response will be critical to the effort to develop a more sustainable energy infrastructure based on
increasing proportions of variable-output sources, such as wind and solar energy. Unfortunately,
serious market breakdowns such as the California energy crisis in 2000 [4] have made policy makers
justifiably wary of setting up new retail-level energy markets.

The performance of markets depends on economically motivated behavior of the participants,
but proposed retail energy markets are too complex for straightforward game-theoretic analysis.
Agent-based simulation environments have been used to study the operation of wholesale energy
markets [16], but these studies are not able to explore the full range of unanticipated self-interested
or destructive behaviors of the participants. Smart grid pilot projects, on the other hand, are limited
in their ability to test system dynamics for extreme situations. They also lack the competitiveness of
open markets, because a single project consortium typically controls and optimizes the interaction
of all parts of the pilot regions. Therefore, we offer Power TAC, an open, competitive market
simulation platform that will address the need for policy guidance based on robust research results
on the structure and operation of retail energy markets [12]. These results will help policy makers
create institutions that produce the intended incentives for energy producers and consumers. They
will also help develop and validate intelligent automation technologies that will allow effective
management of retail entities in these institutions.

Organized competitions along with many related computational tools are driving research into a
range of interesting and complex domains that are both socially and economically important [3]. The
Power Trading Agent Competition1 is an example of a Trading Agent Competition (TAC)2 applied
to energy markets. Earlier successful examples of TAC include the Trading Agent Competition for
Supply-Chain Management (TAC SCM) [7] and the Trading Agent Competition for Ad Auctions
(TAC AA) [10].

2 Competition overview

The major elements of the Power TAC scenario are shown in Figure 1. Competing teams will con-
struct trading agents to act as self-interested “brokers” that aggregate energy supply and demand
with the intent of earning a profit. In the real world, brokers could be energy retailers, commercial
or municipal utilities, or cooperatives. Brokers will buy and sell energy through contracts with
retail customers (households, small and medium enterprises, owners of electric vehicles), and by
trading in a wholesale market that models a real-world market such as the European or North
American wholesale energy markets [5]. Brokers compete with each other to attract customers by
offering tariff contracts to a population of customers (households, businesses, industrial facilities).
Contract terms may include fixed or varying prices for both consumption and production of energy,

1For up-to-date information see the project website at http://www.powertac.org
2See http://www.tradingagents.org
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along with other incentives such as rebates for energy conservation, or even sign-up bonuses or
early-withdrawal penalties. Separate contracts may be offered for charging electric vehicles, which
could limit charging during high-demand periods, or even offer to pay the customer for feeding
energy back into the grid at certain times. Variable prices may follow a fixed schedule (day/night
pricing, for example), or they may be fully dynamic, possibly with a specified advance notice of
price changes. Dynamic pricing could motivate some customers to invest in “smart” appliances that
can receive price signals and adjust energy use to control costs.

Figure 1: Major elements of the Power TAC scenario.

The simulation is designed to model energy markets primarily from an economic rather than
from a technical viewpoint, and therefore we currently do not simulate the physical infrastructure
(see Appendix A for a list of assumptions). In the future, it would be possible to integrate the Power
TAC market simulation with a physical simulation in order to be able to evaluate the technical
feasibility of the market’s energy allocation over time.

Broker agents are challenged to operate profitably by planning and executing activities over
multiple timescales in two markets, a customer market and a wholesale market. Over a planning
horizon from weeks to months, brokers build portfolios of consumer, producer, and electric vehicle
customers by offering tariff contracts. At the operational level, over a time horizon of 24 hours,
brokers must balance the fluctuating energy demands of their contracted energy consumers against
the actual output of their contracted energy producers. Projected differences between supply and
demand must be accommodated by influencing the levels of supply and demand among customers
using price signals (demand response), by exercising controls on customer capacity (demand man-
agement), and by purchasing or selling energy in the wholesale market. Retail market dynamics
thus influence the wholesale market and vice versa.

A broker’s primary goal in portfolio development is to develop a good-quality set of tariff sub-
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scriptions and individual contracts with customers who will sell or purchase energy. The ideal
portfolio is profitable and can be balanced, at least in expectation, over a range of environmental
conditions. A secondary goal is to manage financial and supply/demand imbalance risks. For ex-
ample, an broker will benefit from having reasonably-priced energy sources that can be expected
to produce energy when demand is expected to be highest within its load portfolio. Predictabil-
ity is also important, and will generally improve both with volume and with a balanced portfolio
of uncorrelated generation capacities and loads. Risk can be managed by acquiring uncorrelated
sources and loads that can be expected to balance each other in real time, by acquiring storage ca-
pacity, by acquiring flexible consumption and generation capacities (balancing capacity), by selling
variable-price contracts, and by trading future energy supply contracts on the wholesale market.

We summarize major features of the simulation in the remainder of this section. We then exam-
ine brokers, customers, and the wholesale market more closely, followed by discussion of competition
rules and format, and the architecture of the Power TAC software infrastructure.

2.1 Simulation time

In the Power TAC simulation, time proceeds in discrete blocks or “time slots,” each one hour in
simulated time. Each time slot takes nominally 5 seconds of real time. A typical simulation runs
for roughly 60 simulated days, or 1440 time slots, over approximately 2 hours of real time. At any
given time, there is a “current” time slot, and a set of “enabled” future time slots for which the
wholesale market is open for trading. A primary goal of a broker is to achieve balance between
energy supply and demand in each future time slot, primarily through interactions in the customer
market and through trading energy delivery commitments for enabled time slots in the wholesale
market.

The simulation environment depends on clock synchronization between the simulation server
and the brokers. For this to work correctly, the server and brokers must be installed on machines that
synchronize their clocks using ntp, the Network Time Protocol [13]. Synchronization of simulation
time is initialized by the SimStart message, sent to brokers at the start of a simulation. In rare
cases where the server cannot complete its processing on time, it pauses the clock by issuing a
SimPause message to signal that the clock is stopped, and a SimResume message with a revised
clock offset to restart the clock. In the tournament configuration, the clock is paused whenever less
than 2 seconds remains between sending the TimeslotComplete message (the last message sent in
each timeslot) and the start of the next timeslot.

2.2 Customer market

In the customer market, broker agents try to acquire energy generation capacity from local produc-
ers, and load capacity from local energy consumers. Brokers buy and sell energy in the customer
market by offering tariff contracts that specify pricing and other terms, and customers choose
among the tariffs on offer whenever they decide to evaluate tariffs. New tariffs and certain types of
tariff modifications may be posted by a broker at any time, without regard to the daily and hourly
cycle of the simulation. However, tariffs will be published to retail customers and to competing
brokers in batches, once every six simulated hours.

Power TAC supports rich tariff specifications modeled on current developments in real-world
electricity markets. Brokers can specify periodic payments, time-of-use tariffs with hourly or daily
intervals, tiered rates, sign-up bonuses and early withdrawal fees, as well as dynamic pricing where
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the rate can be continuously adjusted by the broker. These tariff design elements allow brokers to
shape and control their portfolios.

Tariff contracts are able to specify

Time: including points in time, time intervals, and periodicity. These terms can be used to specify
contract duration as well as other time-related contract terms.

Energy: including amounts of energy produced or consumed, and rate of production or consump-
tion (power). Contracts or tariffs may also specify amounts of energy that can be remotely
controlled or curtailed, for example by shutting off a domestic water heater for 15 minutes
every hour during peak demand periods, or discharging a battery into the grid. Such remotely-
controllable sources or loads are called “controllable capacity.”

Money: Agreements may specify payments to or from the customer based on time (one-time sign-
up fee or bonus, fixed monthly distribution fees), or time and energy (fixed or variable prices
for a kilowatt-hour).

Communication: contract award and termination, notification of price changes, exercising ca-
pacity controls, etc.

To develop their portfolios, brokers will need to estimate and reason about consumer and pro-
ducer preferences as well as actions of competitors in order to design appropriate tariffs.

2.3 Wholesale market

The wholesale market allows brokers to buy and sell quantities of energy for future delivery, typically
between 1 and 24 hours in the future. For this reason, it is often called a “day-ahead market”.
The Power TAC wholesale market is a periodic double auction [19], clearing once every simulated
hour [19]. Participants include the brokers and a set of wholesale participants that provide bulk
energy and liquidity to the market.

2.4 Distribution Utility

The Distribution Utility (or simply DU) represents the regulated electric utility entity that owns
and operates the distribution grid. It plays three roles in the Power TAC simulation:

1. It distributes energy through its distribution grid to customers. In this role it is a natural
monopoly, and in the real world may be a cooperative, a for-profit regulated corporation, or
a government entity. Brokers must pay distribution fees for the use of the distribution grid in
proportion to the quantities of energy their customers transport over the grid.

2. It offers “default” tariffs for energy consumption and production. In this role it simulates the
electric utility in a non-competitive regulated customer market that typically exists prior to
market liberalization. The default tariffs also form a “ceiling” that constrains the potential
profitability of brokers, because customers are always free to choose the default tariffs over
competing broker offerings. The default broker role is an essential element of the simulation,
because customers must always have access to energy, and therefore at the beginning of a
simulation, all customers are subscribed to the default tariffs. Brokers must lure them away
using more attractive terms.
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2.5 Balancing Market

The Balancing Market is responsible for real-time balance of supply and demand (see Section 6) on
the distribution grid. The market creates an incentive for brokers to balance their own portfolios
of energy supply and demand in each time slot by ensuring that they would be better off balancing
their portfolios than relying on the balancing market to do it. Note that in the real world, this
function is typically handled higher in the grid hierarchy, through ISO/TSO organizations [5] and
their “ancilliary services” markets; Since Power TAC does not model the full hierarchy, the balancing
market provides a simplified version of the reserve and regulating capacity markets and associated
controls normally operated by an ISO/TSO.

2.6 Accounting

To ensure consistency and fairness, the Power TAC simulator keeps track of broker cash accounts,
customer subscriptions, and wholesale market positions. Cash accounting records customer transac-
tions for tariff subscription and withdrawal, and power consumption and production. Other trans-
actions include tariff publication fees, distribution fees, wholesale market settlements, balancing
market settlements, interest on debt, and credits and debits related to taxes and incentives (al-
though there are no taxes or incentives in the 2015 version of the competition). Market position
accounting tracks commitments in the wholesale market for each broker in each time slot. This
information is needed by the Balancing Market to run its balancing process.

Each broker has a cash account in the central bank, and starts the game with a balance of zero
in the account. Credits and debits from the various transactions are added to the account during
each time slot. brokers are allowed to carry a negative balance during the course of the game.

When the broker’s balance is negative, the broker is charged interest on a daily basis. The
balance is updated daily (once every 24 hours) as

bd+1 = (1 + β)bd + creditsd − debitsd (1)

Where bd is the balance for day d, β is the daily loan interest rate. A typical daily loan interest
rate is β = 10%/365.

When the broker’s balance is positive, the broker is paid a daily interest. This is done by
updating the daily balance as

bd+1 = (1 + β′)bd + creditsd − debitsd (2)

Typical daily savings interest is β′ = 5%/365.
Values for β and β′ are provided to the broker at the beginning of the game (see Table 2 on

page 30 for standard tournament values).

2.7 Weather reports

Weather forecasts and current-hour weather conditions are sent to brokers in each time slot. Some
customer models will use this information to influence energy consumption (temperature, for ex-
ample), and production (wind speed, cloud cover). Brokers with weather-sensitive customers will
also need this data to predict production and consumption. Weather reports and forecasts will be
drawn from real-world weather and forecast history data for some real-world location. The specific
location and date range for the weather dataset is privileged information, not revealed to brokers.
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However, the latitude and time-of-year are given, because these variables affect the output of solar
producers.

3 Brokers

Figure 2 provides a simplified overview of the timeline and information exchange between a broker
and the simulation environment in each time slot. While the sequence of major processes in the
simulation environment is fixed, brokers can send messages at any time, as long as they arrive
before the server needs them.

Figure 2: Overview of Power TAC activities within one time slot. A broker interacts with the
wholesale and customer markets, and receives information from the weather service, customers, the
balancing market, and the accounting service.

In each time slot, a broker may initiate any of the following actions.
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Offer new tariffs (customer market): Design and submit new tariffs for publication to cus-
tomers.

Modify tariffs (customer market): Change tariff terms for existing customers by replacing a
superseded tariff with a new one.

Adjust prices (customers): Adjust prices for existing tariffs, if tariff terms allow it.

Balancing offer (distribution utility): Offer controllable capacities for real-time balancing, to
the extent allowed by tariff terms. See Section 4.2 for details.

Submit asks and bids (wholesale market): Create asks and bids to sell or procure energy for
future time slots. See Section 5 for details.

In the remainder of this section we describe the broker’s view of the simulation in more detail.

3.1 Tariffs

Brokers design and offer tariffs, and may also modify existing tariffs by superseding them with
a new ones, then revoking the original tariffs. Each tariff applies to a specific PowerType, such
as general consumption, interruptible consumption, general production, solar production, electric
vehicle, etc. The detailed structure of a tariff offering is shown in Figure 3. This structure supports
a number of features within a simple, compact object graph. Many concepts are represented in
the TariffSpecification type (payments, energy-type), but the Rate structure is specified separately,
allowing for a range of rate structures without requiring space (memory and bandwidth) for unused
features. This also allows a simple convention of empty references for unused features.

-o eredBy : BrokerID

-id : Tari ID

-expiration : AbsTime

-minDuration : Interval

-powerType : PowerType

-signupPayment : Money

-earlyWithdrawPayment : Mo...

-periodicPayment : Money

Tari Speci cation

-minValue : Money

-maxValue : Money

-value : Money

-noticeInterval : interval

-expectedMean : Money

-isFixed : boolean

-weeklyBegin : RelativeDay

-weeklyEnd : RelativeDay

-tierThreshold : BigDecimal

-dailyBegin : RelativeDate

-dailyEnd : RelativeDate

Rate

-value : Money

-when : DateTime

HourlyCharge

rateHistory

0..*
supersedes

rates

-maxCurtailment : ratio

RateCore

RegulationRate

-UpRegulationPayment : Money

-DownRegulationPayment : Money

Figure 3: Tariff structure. Details are available in the software documentation.

Quantities of money and energy in TariffSpecifications and associated structures are represented
from the viewpoint of a Customer. For money, this means that a positive value represents payment
from the Broker to the Customer, while a negative value represents payment from the Customer
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to the Broker. Similarly, a positive quantity of energy represents energy delivered to the Customer,
and a negative quantity represents energy delivered to the Broker. In all communications with
customers, quantities of energy are represented in kWh.

Here are some common tariff features that can be represented with this structure:

• Tiered rates are specified by providing multiple Rates with different values for tierThreshold.
For example, if a Tariff has Rate r1(tierThreshold=0, value=-.10) and Rate r2(tierThreshold=20,
value=-.15), customers would pay 0.1/kWh for the first 20 kWh in a day, and 0.15 for any
additional usage during the day (a “day” is midnight-to-midnight).

• Time-of-use rates are specified by some combination of dailyBegin/dailyEnd and/or weekly-
Begin/weeklyEnd values. The dailyBegin/dailyEnd values are in hours past midnight, and
weeklyBegin/weeklyEnd values are day-of-week, in the range 1=Monday through 7=Sunday.
For example, an overnight rate could be specified as dailyBegin=23, dailyEnd=6. Similarly,
a weekend rate would have weeklyBegin=6, weeklyEnd=7.

• Two-part tariffs (fixed daily fee plus usage fee) are specified by including a non-zero peri-
odicPayment, which specifies the daily fixed charge. The actual payment will be 1/24 of the
periodicPayment every hour.

• Signup payments in either direction (fee or bonus) are paid when a Customer subscribes to a
Tariff. A negative signup payment (paid by the customer to the broker) must be fully refunded
to the customer if the Tariff is ever revoked.

• Early withdrawal penalties are specified by including a non-zero minDuration and a non-zero
earlyWithdrawalPayment.

• Variable rates must specify minValue, maxValue, and expectedMean values, along with a
noticeInterval. More detail on specifying and updating variable rates is provided below.

• Interruptible rates allow for some portion of the Customer’s load or production to be curtailed
during a timeslot in order to reduce overall energy costs or to reduce the cost of balancing.
An interruptible rate is specified with a non-zero value for maxCurtailment, which is the
maximum portion of the Customer’s capacity that can be switched off in a given timeslot.
Most customers will respond to a load curtailment by shifting the curtailed load to the
following timeslot, or possibly to a timeslot further in the future.

• For energy storage devices, RegulationRates can be included that specify separate payments
for use of the device for up-regulation or down-regulation.

It is not currently possible to write tariffs that bundle multiple power-types, such as household
consumption and electric-vehicle charging. Such bundling is certainly practiced in the real world,
but for the time being, the complexity of evaluating bundled tariffs is avoided.

Figure 4 shows the evolution of a single tariff from the time it is published. Brokers can submit
tariffs to the market at any time (pending). New tariffs are published periodically by the market
to customers and to all brokers, at which point they become offered. Once a customer subscribes,
the broker is notified of the new subscription, and the tariff becomes active. Brokers are notified
of various events on active tariffs, including customer subscribe and unsubscribe actions, and cus-
tomer meter readings. Tariffs can have an expiration date, after which they are expired and new
subscriptions are not allowed.
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Figure 4: Tariff state transitions.

3.1.1 Dynamic pricing

In addition to time-of-use and tiered pricing, brokers can specify tariffs with variable or “dynamic”
pricing. Dynamic prices must be communicated to subscribed customers some number of timeslots
before the timeslot to which they apply. Brokers must therefore use some type of forecasting to
determine the best price to set for each timeslot.

There are several environmental features that factor into the prices that the broker may want to
charge. At a basic level, a broker typically already knows something about the price of energy to be
delivered in the future from its interactions with the wholesale market. It may also want to forecast
demand and supply of customers for the target timeslot. Major factors in the determination of this
demand and supply include (i) the estimated or realized load and supply for timeslots preceding
the target timeslot, (ii) the weather forecast conditions for the target timeslot, and (iii) customer
load-shifting behaviors in response to exercise of curtailment or regulating capacity.

A variable-price tariff must specify a minimum pmin and maximum pmax price per kWh, an
expected mean price pem ∈ [pmin , pmax ], and a notification interval tnotify . Tariffs that specify
minimum, maximum, and/or expected mean prices that do not satisfy these constraints will be
rejected. The actual price pt ∈ [pmin , pmax ] for a given timeslot tmust be communicated to customers
no later than t − tnotify . If a price is not communicated successfully for a given timeslot, then the
customer will be charged pem in that timeslot.

The tariff market keeps track of the actual price pactual per kWh paid by customers subscribed to
each variable-rate tariff. The current value of pactual for each variable-rate tariff, as well as the total
quantity of energy bought/sold through that tariff, is available to customers when they evaluate
tariffs.

3.1.2 Capacity controls

Brokers may be motivated to offer tariffs for controllable (either curtailable or storage) capacity for
two reasons:

• To reduce wholesale energy costs, a broker may directly exercise economic controls for a spe-
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cific timeslot. For simple curtailable devices, the Rate currently in effect specifies a maximum
curtailment ratio rmax in the range 0 ≤ rmax ≤ 1, while storage devices governed by a Reg-
ulationRate allow a wider range −1 ≤ r ≤ 2. An economic control specifies a control ratio
r and a timeslot n, and must be received by the simulation server by the end of timeslot
n− 1. For simple curtailable devices, the ratio is constrained to 0 ≤ r ≤ rmax, where a value
r = 1 will result in power being shut off to the device for the entire timeslot. For battery-type
storage devices, a ratio in the range 1 < r ≤ 2 will cause the battery to be discharged into the
grid; r = 2 will discharge all the energy that is available for the given timeslot. For battery
or thermal storage devices, a ratio in the range −1 ≤ r < 0 will dump electrical energy into
the device; r = −1 will add the maximum amount of energy the device can absorb in the
timeslot. These controls are for specific timeslots, so a broker must re-issue them to extend
such controls across multiple timeslots.

• To reduce balancing charges, a broker may authorize the balancing market to exercise controls
against its tariffs during the balancing phase, just in case doing so would be beneficial to the
broker. Such controls are called balancing controls. Brokers may issue balancing orders to
the balancing market to authorize these controls, specifying the tariff, an allowable control
ratio, and a price/kWh. The price is typically positive for up-regulation or consumption
curtailment (the balancing market pays the broker), and negative for down-regulation or
production curtailment. Once received by the server, a balancing order remains in effect until
it is canceled by issuing a new order specifying a different curtailment ratio.

Economic controls and balancing orders may be used concurrently for the same tariff in the same
timeslot, but the economic control takes precedence, and so the actual control available to the
balancing order is the difference between the allowable control and the control specified in the
economic control.

In order to make such tariffs attractive to customers, brokers must factor in the future cost of cus-
tomer inconvenience resulting from service interruptions. They must also deal with the load-shifting
behavior of customers, because curtailment or regulation will generally result in compensating load
showing up in future timeslots.

3.1.3 Revoke and supersede

In addition to changing hourly prices on variable-rate tariffs, it is possible to “modify” a tariff by
revoking it and superseding it with a replacement tariff. The superseding tariff must be received
(but not necessarily published) before revoking the original tariff. All subscriptions to the original
tariff will be moved to the superseding tariff during the next tariff-publication cycle. However, for
customers whose subscriptions are changed in this way, the withdrawal penalty for the superseding
tariff is set to zero, and they will have an opportunity to re-evaluate their subscriptions before
actually using or producing any energy against the superseding tariff.

3.2 Portfolio management

The primary goal of a broker is to earn a profit. To do this, it may offer tariffs for energy sources
and loads that result in a portfolio that is profitable and balanced, at least in expectation, over
some period. For example, a broker will benefit from having reasonably-priced energy sources that
can be expected to produce energy when demand is expected to be highest within its load portfolio.
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Predictability is also important, and will generally improve both with volume (because noise as a
proportion of demand or supply will be lower with larger numbers of randomly-behaving sources
and load, even if they are correlated to some extent) and with a balanced portfolio of uncorrelated
energy sources and customers.

A secondary goal is to manage financial and supply/demand imbalance risk. Such risk can be
managed by acquiring producers and consumers that can be expected to balance each other in real
time, by acquiring storage capacity, by acquiring controllable consumption and production capacity
that can be used as needed (balancing capacity), and by trading futures contracts on the wholesale
market.

Energy production includes energy acquired through the wholesale market, and local producers
(household and small-business sources) acquired by offering tariffs. Energy sources can be more or
less predictable, and may be controllable to some extent, as discussed in Section 2. Predictable
sources include energy obtained from the wholesale market as well as the continuous portion of the
output from many CHP and hydro plants. Less predictable sources include most renewable sources
such as wind and solar plants, which fluctuate with weather conditions and/or time of day.

Energy consumption includes energy sold in the wholesale market, and local loads (e.g., house-
holds and businesses) acquired by offering tariffs.

Energy storage is a special type of consumption that can be used to absorb excess energy or in
some cases to source energy during times of shortage. Energy can be absorbed by storage capacity
that is not fully charged (down-regulation), and (if discharging is supported) sourced by capacity
that is above its contracted minimum charge level (up-regulation). Storage capacity that is below
its minimum charge level is considered to be a load that is possibly responsive to real-time price
signals.

3.3 Information available to brokers

Here we summarize the information available to brokers at various times during the game. All
of this information arrives in the form of asynchronous messages at appropriate times during a
simulation. Data structure details are available in the code documentation available on the project
website.

At the beginning of a simulation, after brokers have logged in but before the clock begins to
run, the following public information is sent to each broker:

Game parameters: The parameters used to configure or instantiate the specific game. See Sec-
tion 7.1 for details.

Broker identities: The identities (usernames) of the participating brokers in the current game.
A particular competition participant maintains the same identity over the different rounds of
a competition.

Customer records: Names and characteristics of the various customer models running in the
simulation. See Section 4 for details.
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Default tariffs: At game initialization, the customer market offers only the tariffs published by
the Default Broker. All customers start out subscribed to the appropriate default tariff. There
will be one for each different “power-type” available in the configured set of customer models.

Bootstrap Customer data: Consumption and production data for each customer model for the
14 days preceding the start of the simulation, under the terms of the default tariffs.

Bootstrap Market data: Delivered prices and quantities for energy purchased by the default
broker in the wholesale market over the 14 days preceding the start of the simulation. Quan-
tities may differ from customer consumption if the default broker’s balance is not accurately
balancing supply and demand.

Bootstrap Weather data: Weather reports for the 14 days immediately before the start of the
simulation.

Weather report, Weather forecast : The current weather and the forecast for the next 24
hours.

The following information is sent to brokers once every 6 simulation hours, when tariffs are
published:

Tariff updates: New tariffs, revoked tariffs and superseding tariffs submitted by all brokers. This
is public information, sent to all brokers.

Tariff transactions: When a Broker’s tariffs are published, a Tariff publication fee is charged.
When customers change subscriptions, brokers receive transactions that describe the changes,
along with signup bonus and early-exit penalty amounts. This is private information for
the tariff owner.

The following public information is sent to all brokers once per timeslot.

Wholesale market clearing data: Market clearing prices and total quantities traded for each
of the 24 trading slots in the wholesale market. This may be missing if no trades were made
in a given time slot.

Wholesale market orderbooks: Post-clearing orderbooks from the most recent clearing for each
open time slot, containing prices and quantities of all unsatisfied bids and asks.

Total aggregate energy consumption Total energy production and consumption for the cur-
rent timeslot.

Weather report and weather forecast Weather conditions for the current time slot, and fore-
cast for the next 24 hours.

The following private information is sent to individual brokers once per timeslot.

Tariff transactions: Customer meter readings and associated credits/debits.

Balancing and distribution transactions: Charges (or credits) from DU for each individual
broker to clear the balancing market and to distribute energy.
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Portfolio supply and demand: Production and consumption transactions for the broker’s cur-
rent customer portfolio, broken down by customer subscription (customer-tariff pairs).

Wholesale market transactions: Cleared or partially-cleared bids and asks submitted by the
broker.

Market positions: Broker’s updated net import/export commitments, for each of the 24 open
trading time slots on the wholesale market.

Cash position: Broker’s updated cash position (bank balance) after all current accounting trans-
actions have been applied.

4 Customers

Consumers and producers are simulated using a range of customer models. These customer models
interact with brokers primarily through the tariff market mechanism – by subscribing to tariffs
offered by brokers, and by consuming and producing energy. Each customer model is characterized
by a core set of information that is communicated to brokers at the beginning of a simulation. This
information includes:

• Name: The mnemonic handle for a customer model, separate from the internally generated
unique ID for each customer.

• Population: An integer count of the number of indivisible entities (households, offices, electric
vehicles) represented by the customer model. This typically corresponds to the number of
metering endpoints deployed by the DU to service the customers represented by the model.
For example, if a customer model represents a single household, it would have a population of
1 even though multiple persons might occupy the household. If a model represents an office
building, it might represent each tenant or each floor of the building as a separate entity.

• PowerType: Indicates whether a customer consumes or produces energy. It also indicates
whether consumption or production is controllable or incorporates storage; i.e., the consump-
tion or production capacity can be remotely controlled in response to economic controls or
due to balancing controls that the balancing market is authorized to exercise.

• Controllable capacity: Three numbers are given – the total capacity in kWh, the max-
imum up-regulation rate (increasing energy supply to the grid) in kW, and the maximum
down-regulation (decreasing energy supply) rate in kW. These numbers are zero for cus-
tomers with no controllable storage capacity and for those whose storage capacities cannot
be controlled. Numbers are per-individual in population models, and represent an average
across the population. For further details, see the discussion in Section 4.2 below.

• MultiContracting: Customers with non-singular populations may have the ability to al-
locate a partition of the population over multiple tariffs, which may be offered by multiple
brokers. Note however that all entities of the population must be allocated to some tariff at
every given point in the simulation.
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• CanNegotiate: This field is a placeholder for future enhancement; it indicates whether a
customer is allowed to negotiate individual contracts. None of the customer models in the
2015 competition use this field.

The currently available customer models vary along the three key dimensions of population size,
power type and ability to subdivide their populations across multiple tariffs. In implementation,
the customer models are broadly one of two classes:

1. Elemental Models: This class of models attempts to simulate customer behavior at a fine
level of granularity. For example, such customers are modeled using the number of persons
per household, their work/vacation schedule, the usage patterns of the individual appliances
that they use, and so on [9]. Two such models are currently available representing households
and office buildings (respectively in the household-customer and officecomplex-customer

software modules).

2. Factored Models: The fine granularity of the behavioral simulations employed by the elemental
models severely constrains the size of populations that can be simulated by such models. As
an alternate approach, factored models simulate the aggregate behavior of larger populations
and other complex entities using a generalized set of factors that influence their behavior.
Such factors control both the tariff selection process and the consumed/produced capacities
exhibited by such customers. Thoughtfully configured combinations of all of these factors can
be used to instantiate specific customer types such as relatively homogeneous collections of
households, offices, campuses, hospitals, factories, wind farms, solar farms, etc.

In a research environment, one can choose which of these customer models are deployed in the
simulation and how they are configured. The rest of this section describes the general behavior of
both classes of customer models. Implementation variances result in slight differences, which will
be highlighted as necessary.

The observable behavior of the customer models can be categorized into three areas: (i) choosing
tariffs, (ii) providing interruptible capacities for balancing by the DU, and (iii) generating meter
readings. We will describe each of these aspects in the following sections.

4.1 Choose tariffs

Customers actively participate in the customer market by choosing new tariffs through periodic
evaluation of offered tariffs. The key part of customer tariff evaluation is calculation of the expected
cost or gain over the lifetime of a contract relationship. This quantity is composed of (i) per-kWh
payments related to estimated consumption and/or production, (ii) fixed periodic payments, and
(iii) one-time sign-up and early-withdrawal fees or bonuses.

Since early exit from contracts is allowed (possibly with a penalty), customer models may
evaluate available tariffs at any time. In this case, a proper tariff-switching evaluation has to
consider the early exit fees from leaving the current tariff.

This monetary evaluation is complemented by an additional assessment of other tariff aspects,
e.g. broker reputation, energy sources, interruptibility properties, and realized price of variable-
rate tariffs. Therefore, tariffs are compared using a utility value computed from the monetary
implications and these other aspects. From the currently available tariff list customers need to
select a suitable one (see Figure 5). This is a two-step problem:
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1. Derive the utility value for the current tariff and the new tariffs to be considered. Details are
in Section 4.1.1.

2. Compare evaluated tariffs and choose a suitable one. Details are given in Section 4.1.2.

Figure 5: Tariff selection problem.

Customers do not always evaluate tariffs when given the opportunity; in fact, mostly they ignore
tariff publications, considering them to be junk mail. This behavior is modeled by an inertia factor
I ∈ [0, 1] giving the probability that the customer will not evaluate tariffs during a particular
tariff-publication event. However, to model the market opening at the beginning of a simulation,
we expect customers to be paying attention, and so the actual inertia parameter Ia must start out
with a value of 0 as

Ia = (1− 2−n)I (3)

where n is a count of the tariff publication cycles starting at 0. In other words, all customers evaluate
tariff offerings in the first publication cycle, but their interest tails off quickly. For a population
model, (1− Ia) is the portion of the population that will evaluate tariffs and possibly switch during
a particular tariff publication cycle.

4.1.1 Tariff utility

The utility of a given tariff Ti is computed as a function of per-kWh payments pv,i, periodic payments
pp,i, a one-time signup payment psignup,i, a potential one-time withdrawal payment pwithdraw ,i in case
the customer withdraws its subscription before the tariff’s minimum duration, and an inconvenience
factor xi to account for inconvenience of switching subscriptions, and of dealing with time-of-use
or variable prices or capacity controls:

ui = f(pv,i, pp,i, psignup,i, pwithdraw ,i, xi) (4)

The specifics of the function f could vary slightly across customer model implementations, but
in general it is the normalized difference between the cost of using the default tariff and the cost of
the proposed tariff, less the inconvenience factor. For consumption tariffs, cost is estimated using
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an energy usage profile Ct,i over the expected duration t = [0..de] of a potential new subscription to
tariff Ti. Note that the expected usage profile Ct might vary across tariffs to account for potential
load-shifting driven by time-of-use prices.

When a storage-capable customer evaluates a tariff containing a RegulationRate, evaluation
must also consider up-regulation payments and savings on energy due to down-regulation pay-
ments. Note that up-regulation payments are normally positive from the customer’s viewpoint.
Up-regulation actions in the form of simple curtailments result in little or no additional energy
cost, unless regulation actions cause usage to shift from a lower-cost period to a higher-cost period.
For battery-storage customers, up-regulation can also result in discharging some of the battery
capacity, which must be replaced with purchased energy in a future timeslot. On the other hand,
down-regulation payments are generally negative from the customer’s viewpoint, and so the cus-
tomer’s resulting “revenue” comes from the fact that down-regulation actions displace normal en-
ergy purchases. Assuming the expected balance in each timeslot is zero, up-regulation actions should
be as likely as down-regulation actions. However, only storage devices support down-regulation, so
a given storage customer may see more down-regulation than up-regulation, depending on the
makeup of the customer population. The situation is a bit more complex for thermal storage de-
vices, since a down-regulation event will store additional energy, which then does not need to be
supplied by purchased energy until it dissipates. In other words, exercising down-regulation in a
thermal storage device temporarily reduces up-regulation capacity.

It is up to storage-capable customers to estimate three tariff evaluation parameters: expected up-
regulation kWh/timeslot due to curtailment E(kWhup), expected up-regulation kWh/timeslot due
to discharge E(kWhdis), and expected down-regulation kWh/timeslot E(kWhdown). These values
may be configured as static values or learned during a simulation. They are used to modify the
per-kWh payments pv,i for a tariff i as

p′v,i = pv,i − pup,iE(kWhup)− (pup,i − pv,i)E(kWhdis)− (pv,i − pdown,i)E(kWhdown) (5)

The cost of using the default tariff is

costdefault =

de∑
t=0

(Ct,defaultpv,default + pp,default) (6)

where pv,default is the per-kWh cost of the default tariff (assumed to be fixed), and pp,default is the
periodic payment specified in the default tariff. The cost to switch to tariff i for the same usage
profile is

cost i =

de∑
t=0

(Ct,ipv,i,t + pp,i) + (psignup,i + Fd pwithdraw ,i + pwithdraw ,0) (7)

where we include both the cost of withdrawing from the current tariff pwithdraw ,0 (which is zero
if the minimum duration requirement for tariff 0 has already been met) and the expected cost
of withdrawing from Tariff i, discounted by a factor Fd = min(1.0, di/de), which preferentially
discounts shorter commitment intervals di. One of the options is staying with the current tariff T0,
in which case we have no signup fee/bonus and no withdrawal cost:

cost0 =

de∑
t=0

(Ct,ipv,0,t + pp,0) (8)
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The normalized cost difference ηCi for consumption tariffs is then the difference between the cost
of the default tariff and the proposed or current tariff, normalized by the cost of the default tariff

ηCi =
costdefault − cost i

costdefault
(9)

Note that in general, energy consumption is represented by a positive value from the customer’s
standpoint, and payments from customer to broker are negative values. Therefore, the “cost” values
in these formulas are negative (except in very unusual cases) for both consumption and production
tariffs. However, in the case of a production tariff we will benefit if we choose a tariff with a larger
payout, so the sign of the cost difference is reversed:

ηPi =
cost i − costdefault

costdefault
(10)

For “normal” competitive consumption tariffs, we expect to see 0 < ηi < 1. A tariff that is less
attractive than the default tariff will have ηi < 0, while production tariffs and some very strange
consumption tariffs could produce ηi > 1. An example would be a positive signup bonus that
exceeds the cost of using energy over the evaluation period.

Finally, utility is the normalized cost difference less the inconvenience factor:

ui = ηi − wxxi (11)

where wx ∈ [0, 1] is an attribute of individual customers, and xi is a linear combination of factors
that penalize tariff features including variable pricing, time-of-use pricing, tiered rates, and capacity
controls. These factors are scaled by log(max/min), which means that a 3:1 price range is penal-
ized half as much as a 9:1 price range. To reduce gratuitous subscription “churn” among essentially
equivalent tariffs, for i 6= 0, xi also includes penalties for switching tariffs and for switching brokers.
Most customers have very little loyalty to their brokers, and will therefore set the broker-switch
penalty close to zero except in the case of tariff revocation (see Section 4.1.3). In the future, this
definition of inconvenience may be extended to cover customer preferences over sustainability of en-
ergy sources, and possibly other factors related to customer preferences. Storage-capable customers
do not consider regulation rates to be inconvenient, since they are in full control of deciding how
much capacity to make available for regulation in each timeslot.

Note that tariff utility ui can be negative even if the corresponding normalized cost difference
ηi is positive, due to the influence of the inconvenience factor xi. However, values of ui > 1 should
occur for consumption tariffs only if a broker offers a tariff that pays the customer to take energy.
On the other hand, a production tariff that offers more than twice the default rate for producing
energy could easily have ui > 1.

When a tariff contains one or more variable rates (dynamic pricing), customers compute a risk-
adjusted estimate of the actual cost. Four values must be combined to generate an estimate for a
variable-rate tariff:

pv = α(wempem + wmaxpmax ) + (1− α)pr (12)

where pem is the broker’s claim of expected mean price, pmax is the brokers commitment to the
maximum value for the rate, and pr is the realized price for kWhtotal , the total energy sold through
the tariff so far. The weights are constrained such that (wem +wmax ) = 1. The parameter α is used
to adjust the weight given to the realized price based on kWhtotal , as

α = 1− wr(1−
1

1 + kWhtotal
kWh0

) (13)
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where wr ∈ [0, 1] and kWh0 are parameters specific to each customer. The assumption is that the
actual realized price is more predictive for a tariff with a more substantial price history (larger
amount of energy sold).

4.1.2 Choice based on tariff utility

The set of tariffs considered is a subset of tariffs that are applicable to the given PowerType. Because
tariff evaluation has some cost, and because we wish to discourage the practice of “flooding” by
brokers who want their tariffs to have a better chance of being chosen, customers evaluate only the
most recently published N tariffs from each broker, where N contains at most 5 of each applicable
type. So for an electric vehicle, there could be EV tariffs, interruptible-consumption tariffs, general
storage tariffs, and simple consumption tariffs that all apply. If a broker has published 5 of each
type, then for that broker, N = 20.

An overall tariff choice does not necessarily follow a deterministic choice of the highest utility
value, because customers are not entirely rational. This is especially important for population
models that represent larger groups of customers. A smoother decision rule is therefore employed to
allocate customers to tariffs, based on the multinomial logit choice selection model, which allocates
the choice proportionally over multiple similar tariffs. The logit choice model assigns probabilities
to each tariff, ti, from the set of evaluated tariffs, T, as follows:

Pi =
eλui∑
t∈T e

λut
(14)

The parameter λ is a measure for how rationally a customer chooses tariffs: λ = 0 represents
random, irrational choice, while λ = ∞ represents perfectly rational customers always choosing
the tariff with the highest utility3. Depending on the customer model type this choice probability
can be used in two ways – either to represent somewhat randomized, not perfectly rational tariff
choice in case of single customer models or to assign population shares to different tariffs in case
of a population customer model.

4.1.3 Revoked and superseded tariffs

If a customer is subscribed to a tariff that is superseded and canceled, then by definition di = 0 for
the new (superseding) tariff and therefore there is no withdrawal penalty. In addition, the evaluation
inertia I for the affected customers is reduced to Is = 0, with the result that all subscribers to the
superseded tariff re-evaluate their tariff options immediately, before they consume or produce energy
against the superseding tariff. Customers will find it somewhat inconvenient to switch brokers at
this point, because to accept the superseding tariff requires no action by them.

4.2 Provide balancing capacity

Customers can provide brokers with different forms of “demand management” capabilities that
can be used to control costs or for balancing, as determined by the PowerType. These differ in
availability and the amount of energy available in a timeslot. Some provide up-regulation (reducing
demand or increasing supply), and some provide down-regulation.

3In implementation, λ is less than ∞ to avoid numeric overflow issues.

18



• Interruptible consumption: Certain types of appliances (water heaters, heat pumps) can
support remote interruption, thereby providing up-regulation. This capability is indicated by
a non-zero value of the customer’s controllableKW attribute, which specifies the maximum
power usage that can be curtailed. The actual amount of up-regulation that can be achieved
at any given time depends on how much the customer would have been using at that time.
If a broker has interruptible capacity under contract, its use can be offered to the balancing
market to avoid balancing charges.

• Consumption with storage: Customers with energy storage (batteries, electric vehicles,
or thermal storage devices such as water heaters or refrigerated warehouses) can provide
both up-regulation and down-regulation, limited by the storage unit’s capabilities and state
of charge. This capability is indicated by three attributes in the customer description, as
shown in Figure 6: upRegulationKW gives the maximum discharge rate, downRegulationKW
gives the maximum charge rate, and storageCapacity gives the maximum energy available
for regulation. A thermal storage device would typically have upRegulationKW equal to zero,
because their stored energy cannot be returned in electrical form. Most storage devices, on
the other hand, would have non-zero controllableKWh.

• Controllable production: While intermittent producers like solar and wind typically cannot
provide balancing capabilities, non-intermittent producers like CHPs or bio-gas units may
offer some ability to control capacity for balancing purposes.

• Withdraw energy from storage: Up-regulation can also occur by withdrawing stored
energy from electric vehicle batteries or other electrical storage capacities that currently hold
more energy than the customers need.

Brokers can acquire controllable capacity by offering tariffs for power types that provide capac-
ity controls. These include interruptible consumption, electric vehicle, and thermal storage types.
To allow simple curtailment, the tariff must include Rates that specify a maxCurtailment value
between 0 and 1. Actual up-regulation capacity available at any given time will nearly always be
less than the specified controllableKW value – for example, a curtailable water-heater can provide
up-regulation only if it is currently heating the water.

When a capacity is managed using an economic control exercised by the broker or a balancing
control exercised by the balancing market, the customer may forfeit that capacity (for example,
a customer may have multiple heat sources) or shift some or all of it to future time slots. The
degree and nature of shiftability is a customer-specific attribute, tied to the physical nature of that
customer’s capacity.

Brokers can acquire the ability to manipulate battery or thermal storage devices, including elec-
tric vehicles, by offering tariffs that include RegulationRates specifying the prices for up-regulation
and down-regulation. Constraints on the availability of regulating capacity are shown visually in
Figure 6. If the device is an electric vehicle, then when it is plugged in, its state-of-charge is “initial”,
and there is some “target” state-of-charge at a specific time in the future. At any given time, if the
device is not fully charged, it can absorb energy at some maximum charge rate; if not fully dis-
charged, it can supply energy at some maximum discharge rate. For a thermal storage device, there
is a current temperature and some “target” temperature in the future. The maximum discharge
rate for a thermal storage device is zero, since it is not possible to extract energy as electricity.
The maximum charge rate is the most power it can absorb while heating up or cooling down. For a
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heating device, up-regulation shuts off power and allows temperature to drop, and down-regulation
raises the temperature.

In general, a storage device responds to economic or balancing controls by altering its state
within the constraints defined by its “feasible region” as shown in Figure 6. Therefore, a heat
storage device that is already absorbing energy at its maximum charge rate cannot respond to a
down-regulation request, but it can respond to an up-regulation request by reducing its energy use,
as long as its state remains within its feasible region. Similarly, a heat storage device that is not
currently using power cannot respond to an up-regulation request, but can respond to a down-
regulation request by raising its temperature further, as long as its temperature remains within its
feasible region.

Figure 6: Visualization of storage device behavior.

4.3 Generate meter readings

The meter readings generated by customers may depend on different factors. Intuitively we can
group these into three basic groups – static, broker-dependent and game-dependent factors. Static
factors are model primitives (such as the number of household members, work shift hours, equip-
ment) that characterize the customer’s fundamental load profile independent of developments in the
game. Broker-dependent factors influencing the realization of customer load profiles are the tariff
(time-of-use pricing induces customers to shift consumption) as well as balancing capacity actions
(responding to current or previous curtailment). Lastly, game-dependent factors include load ad-
justment triggered at runtime by the game environment, e.g. randomization, simulated time-of-day,
current weather conditions (e.g. turning on A/C, output from solar panels).

Currently implemented customer models consider the type of customer entity (e.g., household
vs. factory) and the size of population to generate a base load. That base load is then adjusted
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for broker-dependent and other dynamic factors. The dynamic factors currently used include day-
of-week, time-of-day, current weather (including temperature, cloud cover, wind speed, and wind
direction), and a 48-hour weather forecast. The capacity is further adjusted to reflect attributes
of the tariffs to which the customer is currently subscribed. Under adverse prices, consumption
and production are both lowered to some degree (the degree depends on the specific customer).
Customers with smart shifting capabilities also adapt by moving capacity to future time slots; such
effects may benefit the customers when they are faced with tiered pricing (and therefore don’t want
to currently consume beyond a particularly tier), time-of-use pricing (the customer knows that
they can expect better rates in future time slots), or variable-rate pricing (the customer knows or
estimates that it may get better rates in the future and is therefore willing to absorb the risk and
potential disutility of postponing consumption or production).

5 Wholesale market

The wholesale market in Power TAC operates as a periodic double auction (PDA) and represents
a traditional energy exchange like NordPool, FERC, or EEX4. The brokers can buy and sell energy
contracts for future time slots. In the wholesale market brokers interact with each other directly as
well as with generation companies (GenCos) and other wholesale market participants as described
below in Section 5.3.

5.1 Trading and time slots available for trade

Brokers can submit orders to the wholesale market for delivery between one and 24 hours in the
future. The time slots available for trading are marked as “enabled”; changes in time slot status
are communicated to brokers at the beginning of each time slot. Orders submitted for non-enabled
(disabled or not yet enabled) time slots are silently discarded. The market collects submitted orders
continuously; the orders considered for clearing are exactly the set that have arrived since the start
of the last clearing.

Each order is a 4-tuple (b, s, e, p) that specifies a broker b, a time slot s, an amount of energy e
in megawatt-hours, and optionally a limit price per megawatt-hour p. Energy and price quantities
are treated as proposed debits (negative values) and credits (positive values) to the broker’s energy
and cash accounts. So an order (b1, s12, 4.2,−21.0) represents a bid (a buy order) from broker b1
to acquire 4.2 MWh of energy in time slot s12 for at most 21 e/MWh. Orders that specify a limit
price p are called “limit orders”, while orders that do not specify a limit price are called “market
orders.”

Order quantities must be larger than a minimum order quantity emin (nominally 0.1 kWh) to
prevent brokers from “spamming” the market with infinitesimal orders.

5.2 Market clearing

When the simulation clock is advanced to a new time slot, the wholesale market clears the orderbook
for each of the enabled time slots. At the same time, an updated list of enabled time slots is sent
to each broker. This minimizes the period of time in which the set of enabled time slots from the
broker’s viewpoint differs from the set of enabled time slots from the market’s viewpoint.

4See http://www.nordpoolspot.com, http://www.ferc.gov, or http://www.eex.com/en.
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In the clearing process, as shown in Figure 7, demand and supply curves are constructed from
bids and asks to determine the clearing price for each enabled time slot. The clearing price is the
intersection of the supply and demand curves. Note that bids propose a positive energy amount and
a negative cash amount, and asks have negative energy and positive cash. Also note that market
orders (orders that do not specify a price) are sorted first, as though they had the highest bid prices
or the lowest ask prices.

If there is not a unique price where the supply and demand curves cross, as in this example,
then the clearing price is set at the mean of the lowest usable bid and the highest usable ask price.
All bids with prices higher than the last cleared bid, and all asks with prices below the last cleared
ask, are fully executed. In most cases, either the last cleared bid or the last cleared ask is partially
executed. If the last matched bid is a market order, then the clearing price is determined by the
highest ask price, with an added margin (nominally 20%). Similarly, if the last matched ask is a
market order, the clearing price is determined by the lowest bid price, less a margin. If all bids and
asks are market orders, the clearing price is set to a (rather high) default value; this case is highly
unlikely in practice, since the wholesale players never use market orders.

In the example of Figure 7 we see bids sorted by decreasing (negative) price, and asks sorted
by increasing price. Both bid 1 and ask 1 do not specify a price; these are unconstrained “market
orders” and are always considered first. Bids 1-8 are all matched by lower-priced asks, and asks 1-6
are all matched by higher-priced bids, although only the first 2 MWh of ask 6 is matched. Ask 7
and bids 9-10 cannot be matched. The cleared volume is 27 MWh, and the clearing price is 16, i.e.
the mean of the prices in ask 6 and bid 8.

Figure 7: Market clearing example: bid 8 and part of ask 6 are the last to clear.
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After the market is cleared the following steps are performed:

• Clearing price and volume are broadcast to all brokers. In the example of Figure 7, this would
be (27, 16).

• Post-clearing orderbooks are published for each cleared time slot, giving the un-cleared bids
and asks, without broker information. In the example, the orderbook would include two asks
((−3, 15), (−7, 16)), and two bids ((5,−14), (7,−12)).

• Brokers are informed about their own executed transactions.

• Updated cash and market positions are computed and communicated to individual brokers.

• All orders that arrived before the start of the clearing process (and were therefore included
in the clearing) are discarded.

5.3 Wholesale suppliers and buyers

To ensure liquidity to the wholesale market, the simulation includes both wholesale energy providers
as well as wholesale buyers. The wholesale suppliers are called Generation Companies, or Gencos
for short.

Two types of Gencos are included in order to provide some interesting research opportunities.

1. The Windpark genco owns a configurable number of wind turbines in the same general area
as the simulation scenario, which means that it uses the same weather data as the rest of the
simulation. Its bidding behavior is an expected-revenue maximization scheme, based on wind
forecasts, the learned accuracy of the forecasts, and observed market prices. The Windpark
genco cannot accurately determine its output for future time intervals due to the inherent
uncertainty of wind speeds. Therefore its bidding objective is to minimize its risk of imbalance.
This is essentially the same as maximizing profit over the market horizon.

The Windpark genco uses a learned profile of wind speed forecast errors from historic wind
speed forecasts and observations. This error behavior is modeled as ARMA(1,1) time series.
A number of error “scenarios” are created from the data model. Given weather forecasts,
error scenarios, and a simple wind turbine model, wind park energy production scenarios
are calculated. Similarly from historic market pricing data, imbalance pricing scenarios are
created to estimate imbalance costs – the cost of under- or over- selling the energy produced
by the wind turbines. Given these scenarios, a stochastic programming process generates
expected optimal orders for each open timeslot in the wholesale market.

2. The Grid genco is an abstract entity that simulates a population of generating facilities
distributed over a large geographic area, serving a number of distribution areas including the
Power TAC simulation environment. It essentially generates a supply curve drawn from the
pricing statistics of nodes in a market with congestion pricing, most likely either the MISO
or PJM ISO organizations in North America. The supply curve is composed of a succession
of ask orders with prices and quantities drawn from distributions that characterize the full
price curve observed in the MISO and/or PJM LMP markets, scaled for the demand range
among the customers in the simulation environment.
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In addition to the Gencos, there is a wholesale buyer bb with stochastic behavior that simulates a
population of buyers and speculators. A real-world example of such a buyer might be an industrial
site that uses electric power when the price is low enough for process heat or electrolysis. Its
behavior is very simple: Given two parameters, a quantity qb and a mean price pb, and a random
value η ∈ [0, 1], it computes a price pb,s = −pb ln(1 − η) for each time slot s and places a bid
(bb, s, qb/pb,s, pb,s) in each open time slot. This exponential distribution produces large numbers of
low-priced high-quantity bids, and a few higher-priced low-quantity bids.

6 Market-based balancing

In electricity markets, supply and demand have to be balanced almost perfectly in real time. A
major task of the Independent Systems Operator (ISO)5 is to monitor the grid and to maintain
balance while keeping voltage, frequency, and power factor within very tight bounds. This task
becomes more challenging as more small-scale “non-dispatchable” renewable energy sources, such
as solar and wind, are connected to the grid [17]. Many of these sources (e.g. wind) are only partially
predictable.

The grid balancing problem has been studied on various levels (wholesale vs. retail) and with
different approaches [14]. Since Power TAC does not represent the transmission-level grid, the
balancing function of the ISO is carried out by a “Balancing Market” (abbreviated BM, possibly
operated by the DU or the ISO) that has access to the “regulating market” portion of a wholesale
ancillary services market that trades in balancing capacity. Brokers accumulate credits and debits
to their energy budgets for each time slot by selling (exporting) energy or buying (importing)
energy in the wholesale market, and by the energy consumption and production activities of their
contracted customers. The total net energy budget for a time slot s and a broker b is denoted by
xb,s. The sign of x is negative if the broker has an energy deficit – its portfolio and market position
uses and exports more energy than it produces and imports. To carry out its responsibility to
balance supply and demand in each time slot, the BM may exercise capacity controls (see below)
on behalf of brokers, and it may import or export energy through the regulating market at prices
that are normally much less attractive than the prices faced by brokers in the forward wholesale
market (see Figure 8).

Detailed background and examples on market-based balancing can be found in [8]. For 2015, the
BM implements a method called static with controllable capacities. The intent is to create a market
that motivates brokers to balance themselves as closely as possible through portfolio development
and wholesale market trading, and to offer controllable capacities to the BM in the form of balancing
orders that allow the BM to exercise capacity controls among their contracted customers in order
to achieve balance. Each balancing order specifies a tariff, a ratio, and a price, and allows the BM to
directly manage subscriber capacities up to the specified ratio of their actual usage, for the stated
price/kWh. Note that prices specified in balancing orders specify transfers between the broker and
the BM, and are not necessarily related to the payments or discounts agreed between brokers and
their customers.

There are several constraints on the amount of energy available for capacity controls. For curtail-
ment, the Rate currently in effect specifies a maximum curtailment ratio, and an economic control
may have already been exercised against a particular tariff. Therefore, the available adjustment

5In Europe the name Transmission Systems Operator (TSO) is used instead of ISO.
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Figure 8: Entities and activities during balancing.

available is the product of the unexercised ratio and the actual capacity of the customers sub-
scribed to the tariff. For storage capacity, the customer computes its own constraints and notifies
the BM of its available capacity for both up-regulation and down-regulation prior to the clearing
process.

Brokers must submit their balancing orders before the customer models run (near the start of
each timeslot), and the BM runs its balancing process after customer consumption and production
quantities are known for the current time slot. At this point, the BM can determine the actual
quantities available for adjustment against each balancing order. A balancing order remains in
effect until it is superseded by submitting a new balancing order for the same tariff with different
parameters.

The BM acts to resolve the net shortage (surplus) over all brokers at minimal cost (maximal
profit). To achieve this in case of a shortage, given a set of balancing orders, the BM

1. discards the orders that cannot contribute to the solution; if overall balance is negative (up-
regulation needed), then only consumption curtailment is used, and if overall balance is pos-
itive, then only production curtailment is used.

2. includes “dummy” orders with essentially infinite capacity that represent procurement or
sale of energy in the regulating market at costs of c0(xRM ), a linear function of the quantity
xRM being traded in the regulating market. For up-regulation, c0(xRM) = P+(s) + φ+xRM,
and for down-regulation c0(xRM) = P−(s) + φ−xRM, where φ+ and φ− are the slopes of the
cost functions for up-regulation and down-regulation respectively. Note that in case there are
balancing orders with prices above P+ or P−, the dummy orders will be split around such
balancing orders. Competition values for φ+ and φ− are given in Table 2.

3. Sorts the remaining orders by price, with the lowest first.

4. In price order, the BM selects the lowest-price orders up to the required capacity. Note that
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in general, the highest-price order selected may only be partially exercised. Also, since prices
are typically negative for down-regulation (the broker pays for the energy), the lowest-price
down-regulation order is the one for which the broker pays the most.

5. The price for a broker b depends then on both its own imbalance, as well as on its balancing
orders. This computation is the sum of a VCG payment pvcg [18, 6], and an imbalance payment
pimb as defined in more detail below.

The payment for brokers consists of two parts: a payment for the use of its controllable capacity
pvcg, and a payment for its imbalance pimb. Both payments typically are negative (the broker pays)
in case of being short or when selling down-regulation capacity (e.g., curtail production, deposit
energy in storage), and positive (the broker is paid) when it has a surplus, or sells up-regulation
by curtailing its consumption or withdrawing energy from storage.

The setting for choosing controllable capacity is very similar to a one-sided auction, and for
this part the VCG payment is used. The VCG payment for controllable capacity is defined to be
the marginal contribution of broker b: the difference in (declared) balancing costs for the other
brokers for the remainder of the balance, and the balancing cost of the complete net imbalance
without using b’s controllable capacity. To compute this for a broker b, we compute the optimal
combination of bids while leaving out broker b’s bids, and compare this to the costs to the other
brokers of the optimal combination using the orders of all brokers including b. Additionally, we
resolve the following issues by the second part of the payment pimb.

• We cover the costs of the BM for resolving the imbalance, including both the costs of “dummy
orders” as well as the net payments of the brokers (note that in case of shortage at least some
brokers with controllable consumption will typically receive money).

• We make it uninteresting for brokers to create an imbalance to sell extra controllable capacity,
and

• we provide an incentive to be as closely balanced as possible for brokers that are contributing
to the imbalance.

• Additionally, the total payment by the brokers should be as low as possible (in other words,
it is not a goal of the BM to earn a profit by performing this balancing task).

The idea of the imbalance payments is to let the brokers that contribute to the imbalance pay for
both the costs of the BM as well as for the opposite imbalance other brokers may have (since that
also reduces the balancing costs). Similarly to VCG, we remove the part that a broker can influence
(in this case the costs of its own controllable capacity) from the equation. Denoting the set of orders
for controllable capacity by C, and that of a broker b by Cb,s, the costs of the BM for a given net
imbalance X (following from the VCG payments and possibly some dummy orders) is denoted by
BMcosts(C \ Cb,s, X). A broker b with a non-zero imbalance xb,s that does not contribute to the

imbalance (i.e., xb,s ·X ≤ 0) then “pays”
BMcosts(C\Cb,s,X)

X xb,s. The payment for a broker b that
contributes to the imbalance is defined the same in case there are no non-contributing brokers with
controllable capacity. However, when such non-contributing brokers (denoted by B) do exist, we
must make sure that the payment for contributing brokers such as b is sufficient to cover the payment
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for all non-contributing brokers. To guarantee this, we exclude all balancing orders of brokers B in

computing the costs for contributing brokers, so broker b pays
BMcosts(C\{Cb,s∪k∈BCk,s},X)

X xb,s.
6

In the (rare) case that the net imbalance of all brokers is exactly 0, brokers still need to pay
something. In PowerTAC we use −P+(s) · xb,s in case xb,s < 0 and P−(s) · xb,s in case xb,s > 0.

The VCG prices ensure for a single (isolated) time slot that brokers cannot gain from pricing
their orders higher or lower than their real costs (if nobody else changes its bids), and that they
often gain (and never lose) from placing orders for curtailment if they have any. In other words,
myopic brokers should bid their (estimated) actual costs for balancing capacity in the balancing
market. With the second payment, if you expect other brokers to be (almost) balanced, it is better
to be balanced as well.

The following example, graphically depicted in Figure 9, illustrates the balancing mechanism
described above.

Capacity

P
ri
c
e

required

regulation

Figure 9: The balancing orders are ordered on price (increasing in case of a deficit). Only capacity
up to the required regulation is used.

Example 1. Assume brokers A0, A1, A2, and A3 have imbalances of 0, +40, -80, and -140 kWh,
respectively, for a total imbalance X = −180kWh. We have six balancing orders bo1 through bo6,
and a dummy order RM . The total imbalance falls within the range of one of the orders, bo5.
All orders with lower prices will be exercised, and bo5 will be partially exercised. The signs in this
example are from the standpoint of the brokers. This means that negative cash values represent
payments from brokers to the BM, and negative energy values represent amounts the brokers have
sold but not acquired, or amounts the brokers can consume by curtailing production.

The next step is to set prices for each broker’s balancing orders, using the VCG mechanism.
For each broker that has orders to be exercised, we must discover the price that would have to be
paid for its capacity if its orders were not in the mix. To see how this works, assume the orders are
as follows: bo1 is (A0, 35 kWh, 0.003/kWh); bo2 is (A0, 62 kWh, .0091/kWh); bo3 is (A1, 67kWh,
.0051/kWh), bo4 is (A1, 30kWh, .008/kWh), bo5 is (A2, 20kWh, .0042/kWh); bo6 is (A2, 39kWh,
.0062/kWh); and RM is (BM, xx kWh, .01/kWh, φ+ = 0.001/kWh). Sorted on the cost, we thus

6In the future, we hope to introduce variants of this mechanism that are a bit cheaper on the brokers, with the
same guarantees.
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broker Imbalance VCG payment 2nd payment total

0 0 0.904 0 0.904
1 +40 1.3802 5.0564 6.4366
2 -80 0.5248 -15.2 -14.6752
3 -140 0 -17.6976 -17.6976

Table 1: Broker payments for the example

have the following balancing orders: bo1 , bo5 , bo3 , bo6 , bo4 , bo2 (See Figure 9). To balance we need
all of bo1 , bo5 , bo3 , bo6 and only 19kWh of bo4 .

The (VCG) pricing of the orders for broker A1 can be found by removing bo3 and bo4 (i.e., 67 +
19 (out of 30) kWh), which requires the addition of all 62kWh of bo2 and 24 kWh from order RM .
The marginal cost of leaving broker A1’s orders out is therefore 62 · 0.0091 + 24 · (0.01 + 0.024) =
1.3802.

To compute the imbalance portion of the payment, we treat the contributing and non-contributing
brokers separately. Since the overall balance is negative, the set of non-contributing brokers thus is
just {A1}. Contributing brokers A2 and A3 pay their shares of the cost to the BM to resolve the
total imbalance, assuming that there are no balancing orders from the non-contributors. For each
broker, the hypothetical total cost paid by the BM is the sum of the VCG payments to the other
contributors, plus the residual amount the BM would have to purchase from the regulating market;
the broker’s share is the product of the total cost and the ratio of its imbalance to the total imbalance.
For e.g. broker A2 we first compute the costs for the BM in case bo3 and bo4 from A1 and bo5 and
bo6 from A2 are removed. For this we compute the VCG payments for all other brokers (A0 and
A4) and sum these (26.481 for A0 since otherwise everything is to be resolved by the RM; A4 does
not have controllable loads), add the cost of the remaining 83 kWh at the marginal rate of 0.093,
i.e., 7.719, divide by the overall imbalance X = −180, and multiply by the imbalance of A2 of −80,
giving a payment of 15.2. Broker A1 is a non-contributing broker, so we remove bo3 and bo4 and
compute the VCG payments for A0 (15.035) and A2 (6.903), and the BM cost for the extra 24 kWh
from the regulating market (0.816) to get the hypothetical total BM cost (22.754) and A1’s share of
-5.056444.

All payments are summarised in Table 1.

The total budget for the BM, including all VCG payments and all secondary payments, in this
case amounts to 25.0322.

7 Competition format and interaction

As opposed to previous TAC competitions where the number of brokers were fixed in each game,
in Power TAC the number of broker agents varies. This is expected to stimulate more dynamic
agent design and a better abstraction of real-world conditions, simulating a range of competitive
environments from duopolies to more competitive multi-broker oligopoly markets. Given the set of
competing brokers in a given tournament, the Game Master will pick a few game-size values, and
games will be scheduled such that each combination of registered brokers of each game-size are
scheduled for the same number of games.

A typical Power TAC tournament is made up of one or more rounds, such as qualifying, seeding,
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semi-finals, finals. Depending on the number of participants N , each round consists of one or more
blocks, each defined by the number of brokers B per game (or simulation) within the block. Each
block in turn is composed of n sets of games, each set including every combination

(
B
N

)
of N brokers

taken B at a time.

7.1 Initialization and Default Broker

To create a fair start of each game, the simulation begins with all customers subscribed to the tariffs
of the default broker, the marketing arm (such as it is) of the DU. These initial tariffs are intended
to be fairly unattractive, so that customers will switch to more attractive tariffs very quickly once
they are offered by the competing brokers.

A standard competition simulation begins after 15 days of simulation have already run with the
default broker’s tariffs as the only available tariffs. Customer, market, and weather data from the
last 14 days of this pre-game “bootstrap” period are collected and sent to brokers at the beginning
of a game. More specifically, the bootstrap information includes:

Customer information: for each customer model, and for each power type supported by that
model (such as solar production, consumption, interruptible consumption), the hourly energy
consumption or production is given for each 1-hour time slot during the 14-day bootstrap data-
collection period. Values are negative if the default broker is supplying the energy, positive if
the customer is supplying energy.

Market information: for each time slot in the data-collection period, the total energy quantity
purchased by the default broker in the wholesale market in MWh, along with the aggregated
price/MWh.

Weather information: the weather reports for each time slot in the bootstrap data-collection
period.

This data is intended to allow brokers to generate a reasonable initial model of the market in time
to compose an initial set of tariff offerings as early in the simulation as possible.

In order to interpret the market prices in the bootstrap dataset, it is necessary to understand
the bidding behavior of the default broker. The default broker estimates the net energy it needs
to deliver to its customers by populating a vector for each of its customer subscriptions (each
combination of customer and tariff) of size 7 ·24, or one cell for each time slot in a week. During the
second through nth week, these cells contain the exponentially-smoothed (α = 0.3) net consumption
value for the customer in that time slot, counting from the start of a week. During the first week, it
uses the actual consumption observed in the given hour h during the previous 24 hours, and during
the first day it uses the usage observed in the previous time slot.

Given the default broker’s estimated net energy requirement (summed over all its models) for
each of the following 24 time slots, it attempts to build a market position equal to its estimated
need for that time slot. This is done by submitting an order for a quantity equal to the difference
between its current position and its estimated need, with a limit price ls,t for an order placed at
time t for energy in time slot s, except that if s = t+ 1 (the last chance to purchase or sell energy
for time slot s) then no limit price is given; the broker is willing to pay the market price. The limit
price is bounded by minimum and maximum prices lmin and lmax , and computed as follows: First,
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a previous price is computed as

lprev =

{
ls,t−1 : if order in previous time slot t− 1 did not clear
lmax : otherwise

(15)

Then, given a random value ν in [0, 1], the limit price is computed as

ls,t = max

(
lmin , 2

lmin − lprev
s− t− 1

)
(16)

The standard competition parameters can be found in Table 2. Values for these parameters are
sent to a broker at the start of every game. For details see the software documentation.

Table 2: Parameters used in Power TAC tournament games.

Parameter Symbol Standard Game Setting

Length of pre-game bootstrap period 14 days

Nominal length of game E 60 days

Probability of game end for each time slot af-
ter time slot 1320 (start of day 55)

p 1
121

Minimum game length Min(TS) 1320

Expected game length E(TS) 1440

Timeslot length τ 60 minutes

Time compression ratio ρ 720 (5 seconds/time slot)

Open time slots on wholesale market 24

Market closing time 1 time slot ahead

Minimum order quantity emin 0.1 kWh

Distribution fee [0.003 - 0.03]e/kWh

Balancing price basis P most recent clearing price

Balancing cost c0 [0.02 - 0.06]e/kWh

Slope of regulating market price φ+, φ− 10−6, 10−6 e/kWh

Default broker’s min and max bid order prices lmin(bid), lmax (bid) -100, -5

Default broker’s min and max ask order prices lmin(ask), lmax (ask) 0.1, 30

Tariff publication fee [1000 - 5000] e
Tariff revocation fee [100 - 500] e
Tariff publication interval 6 time slots

Daily bank debt interest rate [βmin , βmax ] 4.0%/365 · · · 12.0%/365

Daily bank deposit interest rate [β′min , β
′
max ] 0.5β

Weather report interval 1 hour

Weather forecast interval 1 hour

Weather forecast horizon 24 hours
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7.2 Simulation duration

The game ends after a random number K time slots after day 55 (time slot 1320), K = 0, 1, . . ..
For each time slot, starting at the start of day 56, there is a fixed probability p that the game ends
after that particular time slot. As a consequence, the number of time slots in excess of day 55,
K, follows a geometric distribution. The expected length of a standard tournament game is 1440
timeslots.

Given the random end of game and that each Power TAC day lasts 120 seconds in real time,
the expected duration of a Power TAC tournament game is around 2 hours overall.

7.3 External metrics and game logs

In order to allow games to be followed in real time, and also analyzed in depth at a later date, the
simulator generates a state log while it runs, from which the entire simulation can be reproduced.
From this data, additional metrics, including the following, can be monitored during or after a
game. These metrics are used by the game viewer to provide a visual representation of the game
as it proceeds.

• Bank balance for each broker

• Balancing performance for each broker

• All tariff offers and orders exchanged by brokers and customers

• Portfolio of each broker

7.4 Winner determination

At the conclusion of a competition, the relative performance of the participants must be evaluated
and compared. This is accomplished by rank ordering all participants according to one or more
defined performance criteria and declaring the best performer in this rank order to be the winner of
the competition. This principle also applies to Power TAC; albeit with significant differences com-
pared to previous TAC competitions. Here we describe the performance criteria used to rank order
the Power TAC participants. Note that a wide range of performance criteria, such as minimizing
carbon emissions, maximizing the share of renewable energy, and other factors can be converted to
monetary units by introducing taxes and incentives as part of the market structure.

7.4.1 Performance criteria

For each broker b participating in game g with a block c of a given tournament round, a profit πb,c,g
is calculated as the (monetary) payments payb,c,g minus costs costb,c,g minus fees feeb,c,g:

πb,c,g = payb,c,g − costb,c,g − feeb,c,g (17)

• Payments are monetary transfers from customers (consumer) to brokers and are based on
agreed contract conditions (including payments for exercising storage capacity) and the actual
(ex-post) measured energy consumptions of the respective customer (consumer) after curtail-
ments are exercised. Other payments for instance include sales in the wholesale market, and
possible payments from external balancing.
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• Costs are monetary transfers from brokers to customers (producers) and are based on the
agreed contract conditions between the respective customer (producer) and broker and the
actual (ex-post measured) energy produced after curtailments are exercised. Other costs for
instance include procurement in the wholesale market.

• Fees are (i) the cost for external balancing energy (see Section 6) used, (ii) energy distribution
fees (in e/KWh) levied by the DU for energy delivered to customers. Other fees include costs
for publishing or revoking tariffs.

7.4.2 Final ranking algorithm

After all blocks within a round have run, e.g. at the end of a finals round, z-scores of the accumulated
profits for each broker are calculated to facilitate comparisons among games with different numbers
of brokers. If we denote the accumulated profits of a broker in a game as πbc, the average accumulated
profits of all brokers in the game as πc and the standard deviation of all brokers in the game as Sc,
then the standardized accumulated profits of broker b in block c, zbc, is obtained as:

zb,c =
πb,c − πc

Sc
, (18)

where

πb,c =

Nb,c∑
g=1

πb,c,g, (19)

where Nb,c is the number of games broker b played during block c.

At the end of a round, after all blocks C have ended, an overall measure of relative broker
performance will be obtained by summing over the standardized broker performance per block:

zb =

C∑
c=1

zbc (20)

where C is the number of blocks in the round.

7.5 Tournament structure

A typical Power TAC tournament consists of several rounds. Note that quarter-final and semi-final
rounds will be included in a tournament schedule only if the number of participants is clearly too
large for a reasonable final-round schedule. It will be the responsibility of the Game Master to make
this determination.

Qualification Round A chance for each team to test their broker against brokers from other
teams in a real competition environment. This is mainly done to check overall functionality of
a broker and its communication with the competition server. Brokers may be eliminated at the
end of a qualification round if they have not demonstrated an ability to function consistently
and correctly by the end of the round. A typical qualification round will run continuously for
several days, around the clock.
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Seeding Round This round will result in a ranking that is used to determine broker pools for
quarter final rounds, in case the number of entrants needs to be trimmed before the final round.
As with a qualification round, a seeding round might result in elimination of a broker that
does not perform according to the game specification or appears to be purposely disruptive to
other brokers. As with a qualification round, seeding rounds will typically run 24 hours/day
for several days.

Quarter Finals This is the first real elimination round, since only half of the teams will proceed
to the semi finals.

Semi Finals Elimination round; only half of the teams will proceed to the finals.

Final The winner of this round wins the overall specific competition.

7.6 Competition rules

In the following list we highlight the competition rules that each participant team has to follow;
failure to do so will lead to disqualification from the overall tournament. The decision rests with
the current game master.

• Much of the information in the game logs is private to individual brokers during a game, and
is not provided to other brokers. Brokers must not attempt to access it though external means
(i.e. through the game viewer or the server logs). The use of such external information, either
manually or automatically, is regarded as external ‘tuning’ of the broker. As such, according
to the existing competition rules, it is forbidden within a game, and within quarter-final,
semi-final, and final rounds of a tournament. Tuning with any available data, including game
logs, is allowed between tournament rounds.

• Data that brokers discover on their own during a game can be used to fine-tune their behaviors
in games within a tournament round.

• Collusion is not allowed between the different brokers.

• To discourage anti-competitive collusion, no team is allowed to enter the competition with
two different broker identities. Multiple teams from the same institution may be allowed, but
only if they are clearly separate and committed to winning without collusion.

• For efficient tournament scheduling, each team must have at least two copies of its broker
either running or waiting for its next game at all times during a tournament round, since
brokers are required to participate in different pools at the same time.

8 System architecture

8.1 Tournament deployment

Power TAC is designed to run as an annual competition, a model that has been very effective in
stimulating research. Each year, research groups build or update their brokers and enter them in
the competition. The competition systems architecture is shown in Figure 10.
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The tournament configuration is intended to support multi-round tournaments, with large num-
bers of spectators. The administration portion of the web application supports tournament schedul-
ing, broker registration, and access to records of past games. The web application also manages a
set of visualizers giving access to running games on potentially several simulation servers.

Figure 10: Competition systems architecture.

A single web app can control multiple servers on multiple hosts, along with associated visualizer
modules that support scalable browser-based observation of games. Weather data will be served by
a remote service, hosted on its own database. The tournament database holds summary information
for completed games, including access information for retrieving game logs.

Brokers register with the web app, and join a game by requesting credentials and a URL for an
active simulation. With this information, it then logs into the simulation server and runs its game
interactions.

8.2 Research deployment

After the competition, teams are encouraged to release their agent code (in either binary or source
form), so all teams can design and run their own experiments using a range of broker behaviors and
market design details. Teams publish results, incorporate new insights into their broker designs for
the following year.

The Power TAC simulation, with or without a copy of the game visualizer, can also be deployed
in a research or software development situation, as shown in Figure 11. The goal of the research
configuration is to support development of brokers and server models (customers, markets, etc.)
and to support empirical research. In this configuration, the server must be easily deployable on
a desktop workstation, without requiring special privileges, and with minimal dependencies on
other installed software, such as a database. In addition, this configuration meets the following
requirements:

• Single-simulation setup from a simple web interface.

• Optionally allow broker login without credentials.
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• Visualizer support for at least one browser.

In the research configuration, the simulation server is identical to the tournament version, and a
portion of the web app is installed in the server. Through the web interface, a user can configure and
start a game, and use the visualizer to watch the game. Weather and price data may be contained in
flat files, or a research server could potentially access weather data from a tournament installation.
Game data is dumped to flat files at the conclusion of each game, and a log-analysis tool is available
for parsing it and extracting whatever data may be of interest to answer specific research questions.

Figure 11: Research systems architecture.

Each year, the simulation may be updated to add new challenges, and if necessary to tune
the market designs and level of realism to enhance the relevance of the shared enterprise for both
research value and policy guidance.
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A Assumptions

In particular we make the following assumptions:

1. Within the simulated region, grid constraints (line capacity limitations) are assumed to be
non existent, i.e. energy flows within the region are unconstrained. Local distribution grids
are typically over-dimensioned with respect to their line capacities, thus this assumption is
not a strong restriction but may have to be rethought in future once much more distributed
generators and storage facilities are installed.

2. Power factor effects, i.e. phase shifts between voltage and current, are not taken into ac-
count. Modeling these effects would possibly influence the brokers’ decision making on which
consumers and producers to add to their portfolios but is out of scope at this time.

3. energy distribution and transformation losses are ignored. In Germany these losses are esti-
mated at 3%; for North America they are estimated at 5.5% [1]. These losses can be considered
as being more or less constant within a distribution grid and identical for all grid participants.
Thus the validity of the simulation results is not affected.

4. Two kinds of producers (energy production facilities) are distinguished. One kind (photo-
voltaic arrays, wind turbines) produce energy when active, and are under control of their
respective owners. The second kind (PEV batteries, some CHP units) is called “controllable”
and may be switched on or off, or have its output adjusted remotely within its capacity range.

5. Technical load balancing (i.e. the real time operations of the local distribution grid) is ac-
complished outside the action domain of the competition participants using a combination of
controllable generators and spinning reserves.

6. The simulation will model time as a series of discrete “time slots” rather than as continuous
time. This models the trading intervals in the regional wholesale market, and enables the
simulation to model a period of days rather than minutes or hours.

7. The temporal distribution of energy consumption and generation within a time slot is not
taken into account. This means for example that balancing energy demand for a time slot is
calculated as the difference of the sum of generation and the sum of consumption for that
time slot and not as the instantaneous difference between the two timeseries.

8. Some portion of the load, including the charging and discharging of plug-in Electric Vehicles
(PEVs), could be controlled by voluntary or automated means, using prospective or real-time
price signals.
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