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With Monte Carlo and Brownian Dynamics methods we simulated 
various models of human interphase chromosome 15 assuming a 
flexible polymer chain of 50 nm long stiff segments. Only stretching, 
bending and excluded volume interactions between the segments 
are considered. Chromosomes are further confined by a spherical 
potential representing the surrounding chromosomes or the nuclear 
membrane. Only the MLS model leads to clearly distinct functional 
and dynamic subcompartments (Fig..7B) in contrast to the RW/GL 
models where big loops are intermingling freely and featureless 
(Fig..7C.&.7D).

Irradiation with carbon ions results in DNA 
double strand breakages. The length 
distribution of the fragments and the sites of 
breackage depend on the spatial arrangement of 
the 30 nm chromatin fiber in the nucleus. 
Simulated configurations of different 
chromosome models were taken as the basis 
for the detailed simulation  of these fragment 
distributions. The RW/GL-model and the 
MLS-model lead to clearly distinct fragment 
distributions (Fig..6). A comparison with 
experiments favours an MLS-model. The 
specifity of breakage sites is currently analyzed. 
Data were by P. Quicken. 
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The structure and dynamics of the 
chromatin distribution in vivo can be 
investigated with the stable expression of 
a fusion protein between a chromatin 
associated protein and an auto 
fluorescent protein like GFP. Changes in 
the chromatin distribution due to the cell 
cycle (Fig..5), differentiation, chemicals 
(Fig..4) or radiation are now possible 
without fixation and staining and 
therefore artefactfree and time saving. 
The structures visble in confocal images 
of normal interphase nuclei (Fig..3: 
nucleus left with an 20 m image 
sidelength) are similar to those found in 
simulated confocal images of the 
MLS-model (Fig..8B). The structures can 
be analyzed quantitatively by global and 
local fractal analysis (Fig..10) and hence 
can be linked to the detailed folding of 
the chromatin fiber.

Fig..4: Apoptosis in vivo:
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Fig..5: Mitosis in vivo:
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Fig..7A: Starting configuration 
with the form and size of a 
metaphase chromosome.

Fig..7B: MLS model with 
126 kbp loops and linkers.

Fig..7C: RW/GL model 
with 126 kbp loops. 

Fig..7D: RW/GL model 
with 5 Mbp loops.

3D-Rendering Simulated Confocal Section

Fig..8A.&.8B: Simulation of a human interphase nucleus containing all 46 
chromosomes with 1,200,000 polymer segments. The MLS-model leads to 
the formation of distinct and non-overlaping chromosome territories. 

Despite the succesful linear sequencing of the genome its three 
dimensional structure is widely unknown although it is important for gene 
regulation and replication. With a comparison between experiments and 
simulations we show here an interdisciplinary approach leading to the 
determination of the three- dimensional organization of the human genome.

Fluorescence in situ hybridization (FISH) in connection with 
confocal laser scanning microscopy followed by image 
reconstruction procedures is used for the specific marking of 
chromosome arms (Fig..1A) and small chromosomal DNA regions 
(Fig..1B). Chromosome arms show only small overlap and globular 
substructures as predicted by the MLS-model (Fig..1A). A 
comparison between simulated and measured spatial distances 
between genomic regions as function of their genomic distances 
results as well in a good agreement with the MLS-model with a loop 
size of arround 126 kbp and linker sizes between 63 kbp and 126 kbp 
(Fig..2).
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Fig..1A.&.1B: FISH-images of a territory painting of chromosome 15 
(left, 1A) and genomic markers YAC-48 and YAC60 (right 1B) with a 
genomic separation of 1.0 Mbp in interphase of fibroblast cells.

CONCLUSION
Simulations of chromsomes and the whole cell 
nucleus show that only the MLS-model leads to the 
formation of non-overlapping chromosome territories 
and distinct functional and dynamic 
subcompartments. Spatial distances between FISH 
labeled pairs of genomic markers as function of their 
genomic distance result in a MLS-model with loop 
sizes of 120 kbp and linker sizes of 63 to 126 kbp. With 
the developement of GFP-fusionproteins  it is possible 
to study the chromatin distribution and dynamics 
resulting from cell cycle, treatment by chemicals or 
radiation in vivo. The chromatin distribution is similar 
to those found in the simulation of whole cell nuclei. 
Fractal analysis of the simulations reveal the 
multifractality of chromosomes in agreement with 
porous network research. It is possible to quantify the 
in vivo chromatin distribution with fractal analysis and 
to relate the result to differences in morphology. The 
simulation of fragment distributions based on double 
strand breakage after carbon-ion irriadiation differs in 
different models. Here again a comparison to 
experiments favours a MLS-model. 

The nucleus is an unordered and non-euclidean system for which fractal 
analysis which measures the mass distribution in space is especially suited. 
The dynamic behaviour of the chromatin structure and the diffusion of particles 
in the nucleus are also closely connected to the fractal dimension. The fractal 
analysis of the simulation of chromosome 15 lead to multifractal behaviour in 
agreement with porous network research (Fig..9). Therefore chromosome 
territories show a higher degree of determinism than previously thought. First 
tests of fractal analysis of chromatin distributions in vivo result in significant 
differences for different morphologies (Fig..10) and might favour an MLS-model 
like chromatin distriubtion.
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Fig..9: Comparison of RW/GL- and MLS- model with fractal dimension
of the chromatin fiber from simulations.
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Fig..10: Fractal Dimension as function of the intensity threshold.
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Fig..6: Comparison of simulated fragment
distributions.
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Fig..2: Comparison of the RW/GL- and the MLS-model with experimentally
determined interphase distances.
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Abstract 
 
 
Despite the successful linear sequencing of the human genome its three-dimensional structure is widely 
unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has 
been viewed as a 'spaghetti soup' of DNA without much internal structure, except during cell division. Only 
recently has it become apparent that chromosomes occupy distinct 'territories' also in interphase. Two models for 
the detailed folding of the 30 nm chromatin fibre within these territories are under debate: In the Random-
Walk/Giant-Loop-model big loops of 3 to 5 Mbp are attached to a non-DNA backbone. In the Multi-Loop-
Subcompartment (MLS) model loops of around 120 kbp are forming rosettes which are also interconnected by 
the chromatin fibre. Here we show with a comparison between simulations and experiments an interdisciplinary 
approach leading to a determination of the three-dimensional organization of the human genome: 

For the predictions of experiments various models of human interphase chromosomes and the whole cell nucleus 
were simulated with Monte Carlo and Brownian Dynamics methods. Only the MLS-model leads to the 
formation of non-overlapping chromosome territories and distinct functional and dynamic subcompartments in 
agreement with experiments. Fluorescence in situ hybridization is used for the specific marking of chromosome 
arms and pairs of small chromosomal DNA regions. The labelling is visualized with confocal laser scanning 
microscopy followed by image reconstruction procedures. Chromosome arms show only small overlap and 
globular substructures as predicted by the MLS-model. The spatial distances between pairs of genomic markers 
as function of their genomic separation result in a MLS-model with loop and linker sizes around 126 kbp. With 
the development of GFP-fusion-proteins it is possible to study the chromatin distribution and dynamics resulting 
from cell cycle, treatment by chemicals or radiation in vivo. The chromatin distributions are similar to those 
found in the simulation of whole cell nuclei of the MLS-model. Fractal analysis is especially suited to quantify 
the unordered and non-euclidean chromatin distribution of the nucleus. The dynamic behaviour of the chromatin 
structure and the diffusion of particles in the nucleus are also closely connected to the fractal dimension. Fractal 
analysis of the simulations reveal the multi-fractality of chromosomes. First fractal analysis of chromatin 
distributions in vivo result in significant differences for different morphologies and might favour a MLS-model-
like chromatin distribution. Simulations of fragment distributions based on double strand breakage after carbon-
ion irradiation differ in different models. Here again a comparison with experiments favours a MLS-model. 
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