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Uveal melanoma (UM) is the most common primary intra-ocular malignancy in adults. The 

incidence of UM ranges from 4.3 to 10.9 cases per million and has remained stable for the 

past fifty years.1 Presentation is at a median age of 60 years, and men and women are equally 

affected. UM is a neoplasm that arises from melanocytes in the uveal tract, which comprises 

the choroid, ciliary body, and iris (Figure 1). Choroidal melanoma are the most common and 

display a discoid, dome-shaped or mushroom shaped growth pattern. The tumours have a 

strong tendency to metastasise to the liver. Over the past decades ocular ophthalmologists 

have shifted towards more eye conserving treatment with the aim of preserving vision. De-

spite primary treatment, nearly half of the patients eventually die due to metastatic disease 

and the patient survival has not improved over the past 30 years (Figure 2).2 Metastasising 

UM often contain non-random chromosomal aberrations. Therefore, many UM research ini-

tiatives focus on finding genetic prognostic markers in UM to select those patients at risk for 

developing metastatic disease and finding new treatments based on specific gene content.

choroid

ciliary body

iris

Figure 1. A schematic illustration of the eye depicting the choroid, ciliary body and iris.

Figure 2. Follow-up data of the Rotterdam Ocular Melanoma Study group (ROMS) uveal melanoma 
cohort. Kaplan-Meier survival curve of 380 uveal melanoma. The black line and dotted line represents 
the 5 and 10-year survival, respectively (A). Piechart shows that 38.4% of patients have developed me-
tastases thus far (February 2014) and nearly half of patients are still alive (B).
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1.1 CLINICAL PRESENTATION AND MANAGEMENT 

UM are often noticed at a routine ophthalmic examination since 30% of the patients have 

no symptoms.3 If a patient with UM presents with symptoms, these can include blurred vi-

sion, floaters, photopsias and visual loss, depending on the size and location of the tumour. 

In some cases the patient presents with severe ocular pain secondary to inflammation or 

neovascular glaucoma. The diagnosis is based on clinical examination with the slit lamp 

and indirect ophthalmoscope together with ultrasonography (US) of the eye (Figure 3). The 

majority of UM are pigmented lesions (melanotic), only one fourth is amelanotic or relatively 

non-pigmented. The tumours can grow towards the vitreous displaying a discoid, dome-

shaped or mushroom shaped growth pattern. Small melanoma are more difficult to detect 

than medium and large-sized melanoma. UM are subdivided according to the apical size of 

the tumour and the diameter. Small melanoma have a diameter of > 5 mm with a thickness 

of 1.0 to 2.5 mm, medium-sized lesions are ≤ 16 mm in diameter and 2.5 to 10.0 mm in 

Figure 3. A dark pigmented uveal melanoma with orange pigment (A). On B-scan ultrasonography 
acoustic hollowing and choroidal excavation is present (B). Subretinal fluid and retinal pigment epitheli-
al alterations are visible on optical coherence tomography scan at the top of the tumour (C).
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thickness, and large uveal melanoma are either > 16 mm in diameter with a thickness of > 

2.0 mm or have a thickness of > 10.0 mm regardless of the basal diameter.4 They can appear 

flat or dome-shaped. It remains challenging for ophthalmologists to differentiate between 

small choroidal melanoma and choroidal naevi, differential diagnostic the most important 

alternative. In general, choroidal naevi have a less than 5 mm basal diameter and are mini-

mal in height, less than 2 mm, although several definitions of naevi have been proposed. To 

differentiate small UM from other choroidal pathologies, including choroidal naevi, Shields 

et al.5 constructed the mnemonic ‘TFSOM’, i.e. ‘to find small ocular melanoma’ to identify 

indicators of potential malignancy and predict growth. The letters indicate Thickness > 2 

mm, subretinal Fluid, Symptoms, Orange pigment and Margin within 3 mm of the optic disc. 

If none of the factors are present there is a 4% chance of growth, while if there are one or 

two factors present the chance of growth rises to 36% and > 45%, respectively.6 The TFSOM 

mnemonic was later extended with ‘Using Helpful Hints Daily’ including three features as 

Ultrasound Hollowness (or low acoustic profile), absence of a Halo around the tumour and 

absence of Drusen.7 Extraocular extension into the orbit can occur at any stage and can 

be detected with US, computed tomography (CT) and magnetic resonance imaging (MRI). 

Optical coherence tomography (OCT) and fundus autofluorescence can be useful in differ-

entiating melanoma from other pigmented lesions (e.g. melanocytoma).8, 9 Small tumours can 

be measured and subretinal fluid can be observed with an OCT, whereas orange pigment 

can be visualised using fundus autofluorescence. Spectral domain OCT can be useful in the 

detection of subretinal deposits, vitreous seeding and transretinal tumour extension.10 Other 

ancillary tests include fluorescence angiography, indocyanine green angiography, CT and 

MRI. The diagnostic value of fluorescence angiography is limited but it can aid in differenti-

ating UM from other lesions. The choroidal vasculature can be visualised with indocyanine 

green angiography and provides more information than fluorescence angiography. Often 

late staining is observed because the indocyanine green leaks in the extracellular space of 

the tumour.11-13 To detect extrascleral extension, CT and MRI are more sensitive than US.14, 15 

However, these techniques are not routinely used in the diagnostic evaluation of UM since 

they are quite expensive.  

1.2 HISTOPATHOLOGICAL FEATURES

Uveal melanoma develop from melanocytes of the uvea that are derived from neural crest 

cells. Initially Callender and colleagues16 described several melanoma cell types, and cur-

rently three histopathological UM categories are recognised: spindle, epithelioid and mixed 

cell type.17 Haematoxylin and eosin (H&E) staining is used to differentiate between cell 
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types. Spindle cells exhibit elongated nuclei that may contain eosinophilic nucleoli. In gen-

eral, tumours containing spindle cells grow slowly and might be associated with better prog-

nosis. On the other hand, tumours consisting of faster growing epithelioid cells, have a more 

aggressive behaviour, and are therefore associated with poor clinical outcome. Epithelioid 

cells have more polygonal cytoplasm and contain eccentric placed large pleomorphic nuclei 

and prominent eosinophilic nucleoli (Figure 4). The mixed-cell type melanoma has variable 

proportion of spindle and epithelioid cells with a minimum of 10% of any one type.18 Other 

inter-tumour factors, like the presence of certain extracellular matrix patterns (three closed 

loops located back to back identified by periodic acicd-Schiff (PAS) staining) and increased 

mitotic figures (number of mitoses per 50 high-power fields equal to 8 mm2) can both pro-

vide additional adverse prognostic information.19, 20 Other histological features associated 

with mortality and metastases are mean diameter of ten largest nucleoli, degree of pigmen-

tation, presence of inflammation and tumour necrosis.21 Extrascleral extension by perineural, 

perivascular, intravascular or direct scleral invasion is correlated with a worse prognosis, 

Figure 4. Haematoxylin and eosin staining of formalin fixed and paraffin embedded eye sample with a 
typical mushroom shaped melanoma (A). Uveal melanoma tissue with spindle cell type characterised by 
elongated nuclei (B). Uveal melanoma tissue with epithelioid cells containing large pleomorphic nuclei 
and prominent eosinophilic nucleoli (C).

Figure 5. Example of a karyogram showing monosomy 3 and trisomy of chromosome 8 (A). Fluorescence 
in situ hybridisation analysis of a tumour demonstrates 1 signal for the probe on centromere 3 (green 
signals) and 3 to 4 signals of the probe on centromere 8 (red signals) (B).
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especially when the orbital fat resection margin is positive.22 Immunohistochemistry may be 

of diagnostic value. S-100 is expressed by cells of neuroectodermal origin. HMB-45 binds to 

gp100, an antigen expressed by melanocytes that can be useful in differentiating UM from 

nonmelanocytic tumours.23

1.3 GENETIC FACTORS

Cytogenetic studies in solid tumours have been a greater challenge than in haematological 

malignancies since metaphase chromosome spreads of good quality are more difficult to 

obtain. Solid tumours frequently have highly complex chromosome alterations and are more 

heterogeneous. Despite this, UM has been well studied since the late eighties with different 

techniques. Over the years, we have learned that the majority of UM contain non-random 

chromosomal anomalies on either the short arm (p) and or long arm (q) of chromosomes 1, 

3, 6 and 8, which can serve as prognostic markers.

Cytogenetic and molecular techniques in UM research

To examine chromosomal changes in UM tissue several cytogenetic and molecular tech-

niques are available. UM are quite suitable for cytogenetic analysis because of their relative-

ly simple karyotype. Large chromosomal gains, deletions and translocations can be visual-

ised with conventional karyotyping and spectral karyotyping (Figure 5A). However, for the 

detection of smaller abnormalities other techniques are necessary, such as fluorescent in 

situ hybridisation (FISH) (Figure 5B), comparative genomic hybridisation (CGH) or quan-

titative polymerase chain reaction (qPCR) based techniques. An approach is the multiplex 

ligation-dependent probe amplification (MLPA), which allows the relative quantification of 

multiple loci in one single reaction. MLPA can detect patients at risk for metastatic disease 

using the results for chromosome 3 and 8 with similar accuracy as FISH.24, 25 MLPA and other 

qPCR based techniques as multiplex amplicon quantification (MAQ) fill the gap between 

more expensive genome-wide screening assays and cheaper methods that only provide in-

formation on a single locus.26

After completion of the human genome project, genome-wide DNA assays became 

available. Micro-assay based CGH, single nucleotide polymorphism (SNP) analysis and gene 

expression profiling (GEP) analysis are frequently applied techniques. With the development 

of Next Generation Sequencing (NGS) technologies, the genome can be analysed at base 

pair level. Genome-wide mutation analyses of tumour samples led to the discovery of a sub-

set of genes in UM such as GNAQ and BAP1.
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Chromosomal anomalies

Monosomy 3

Monosomy of chromosome 3 is observed in approximately 50% of the cases of UM and is 

strongly associated with clinical and histopathological prognostic factors and with metastatic 

death (Figure 6).27-29 Prescher and associates30 were the first to find a strong correlation be-

tween loss of chromosome 3 and a poor prognosis of the patient. Since then several groups 

have confirmed the prognostic value of monosomy 3.31-34 Since loss of chromosome 3 often 

occurs with other chromosomal aberrations such as 1p loss, and gain of 6p and 8q, it is as-

sumed to be a primary event.35 Mostly one entire copy of chromosome 3 is lost, although in 

some cases, isodisomy of chromosome 3 or a partial loss of chromosome 3 is acquired.36-38 

Chromosome 8

Abnormalities in chromosome 8, and in particular gain of 8q or an isochromosome 8q, are 

thought to be a secondary event in UM as variable copy numbers can be present in one 

melanoma.39, 40 Gain of chromosome 8q is frequently found in tumours that also have loss of 

chromosome 3, and this is associated with a poor patient outcome.34-36 A SNP array analysis 

with this chromosome status is depicted in Figure 7. The relationship between the percentag-

es of aberrant copy numbers within UM cells and patient outcome has been investigated. A 

higher percentage of cells with monosomy 3 and chromosome 8q gain in primary UM shows 

a strong relation with poor disease-free survival compared to low percentage aberrations.41

Chromosome 6

Rearrangements on chromosome 6 affect both arms of the chromosome, resulting in dele-

tions of 6q and gains of 6p. The relative gain of chromosome 6p can occur either through 

an isochromosome of 6p or a deletion of 6q. Aberrations resulting in a relative increase of 

6p have been found to be related with both a longer survival34 or a decreased survival.36 The 

effect of chromosome 6 aberrations on patient outcome is not conclusive. 

Figure 6. Kaplan-Meier survival curve of 380 uveal melanoma patients showing a lower 
disease-free survival for patients with monosomy 3 compared with patients with disomy 3. 
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Figure 7. Single nucleotide polymorphism array of an uveal melanoma. The upper panel (LogR ratio) 
shows loss of chromosome 3, partial loss of chromosome 8p and gain of chromosome 8q. The lower 
panel depicts the B-allele frequency representing allelic imbalance at these chromosomes.

Chromosome 1

In cutaneous melanoma rearrangements on the short arm of chromosome 1 are a common 

abnormality, occurring in about 80% of all cases.42, 43 In UM this region on 1p is also fre-

quently affected, giving rise to a deletion of 1p. However, these anomalies on chromosome 

1 are less common than those in skin melanoma with a frequency of approximately 30%.28, 

32, 35, 39, 44 Kiliç and colleagues45 established that tumours with concurrent loss of chromosome 

1p and 3 are at higher risk of metastasising than the tumours with other aberrations. 

Aberrations on other chromosomes have been explored, such as chromosome 9p21,39 chro-

mosome 11q23,32 chromosome 18q22,46, 47 and chromosome 16q.31, 48 The impact on the 

prognosis, however, remains unclear due to contradictory findings.

Gene expression profiling

Using GEP uveal melanoma can be classified into two classes of tumours that correspond 

remarkably well with the ability of the tumour to metastasise. In a study of 25 UM, class 1 

tumours had a low risk of metastasising and class 2 tumours had a high risk of developing 

metastasis.49 This molecular classification strongly predicts metastatic death and outperforms 

other clinical, histopathological and cytogenetic prognostic indicators.50-52 Class 1 tumours 
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predominantly show disomy of chromosome 3, whereas class 2 tumours consist mostly of 

monosomy 3.52

Candidate genes in uveal melanoma

After identifying the non-random chromosomal alterations in UM, the search for potential 

oncogenes and tumour suppressor genes followed. By narrowing down altered regions on 

chromosomes, researchers have tried to identify genes involved in tumourigenesis or pro-

gression towards metastasis. This way, studies have been conducted on chromosome 8q re-

vealing potential oncogenes such as MYC, which is amplified in about 30% of the UMs.53 

Other oncogenes on chromosome 8q have been described, such as DDEF1 and NBS1 (now 

referred to as ASAP1 and NBN, respectively).54, 55 Yet, no specific oncogenic mutations on this 

region have been reported thus far. Other candidate genes were proposed, such as HDM2, 

BCL-2 and CCND1. However, the pathogenic significance for any of these genes has not 

been established. Mutations in certain genes have been well described for cutaneous mela-

noma. Examples of such genes are the oncogenes NRAS, BRAF and AKT3, and the tumour 

suppressors CDKN2A, PTEN and TP53. In contrast to skin melanomas, PTEN mutations were 

not observed in a study of nine cell lines.56 Nevertheless, in 15% of the UM cases mutations 

in PTEN were found resulting in activation of AKT and overexpression of the PI3K-PTEN-AKT 

pathway preventing apoptosis.57, 58, 59

In a large proportion of the UM, the RAS-RAF-MEK-ERK pathway or mitogen-activated 

protein kinase (MAPK) pathway is constitutionally activated, leading to excessive cell pro-

liferation and suggesting the presence of activating mutations upstream in the pathway.60, 61 

Mutation analysis on potential mutation sites in the BRAF gene were performed, since a sin-

Table 1. Three known implicating genes in uveal melanoma at the beginning of our study

GNAQ GNA11 BAP1

Guanine nucleotide binding pro-
tein (G protein), q polypeptide

Guanine nucleotide binding 
protein (G protein), alpha 11

BRCA1 associated protein-1

Chromosome 9 Chromosome 19 Chromosome 3

Prevalence 46 - 53% UM68, 69 Prevalence 34% UM70 Prevalence 47% UM71

Overall prevalence Gα mutations 85 - 93%

Involved in MAPK pathway Involved in cell cyle regulation, chromatin 
dynamics, DNA damage response

Activating hotspot mutation at codon R183 or Q209 Inactivating mutations located throughout gene

Associated with melanocytic proliferation; also mutations in blue nevi 
of the skin

Associated with metastasising UM

Abbreviations: UM = uveal melanoma.
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gle substitution (p.V600E) in BRAF occurs frequently in benign and premalignant cutaneous 

naevi.62, 63 However, NRAS and BRAF mutations have been reported in a few UM but overall 

these mutations are rare.64-67 With the recent discovery of activating GNAQ and GNA11 (to-

gether Gα) mutations new light has been shed on the MAPK pathway. Gα mutations occur 

mutually exclusive in a large proportion of UM and blue naevi (Table 1).68-70

Exome genome sequencing led to the discovery of the BAP1 gene in UM.71 BAP1, a 

nuclearly localised enzyme, was originally identified as an ubiquitin hydrolase that binds 

to the RING finger domain of BRCA1.8, 72 BAP1 is located on chromosome 3p21.1 and is 

thought to be a tumour suppressor gene.73 Mutations in this gene first have been reported in a 

small number of breast and lung cancer cell lines.8 Recently, inactivating somatic mutations 

were found in 84% of the metastasising UM.71 To understand more about the impact of BAP1 

mutations on UM and other types of cancers, more extensive clinical, molecular genetic, and 

functional studies are ongoing.

1.4 TREATMENT OF PRIMARY UVEAL MELANOMA

The treatment of UM depends on the size and location of the tumour, the secondary effects of 

the tumour on the eye (for instance, inflammation or neovascular glaucoma), the status of the 

fellow eye and the patients’ choice. Over the years, eye-preserving therapies have proved to 

be equally effective in terms of overall patient survival and metastasis-free survival compared 

with radical treatment.74, 75 Therefore, nowadays, radical treatment or enucleation (removal 

of the eye) is performed in those cases with a larger or advanced melanoma, or when ex-

traocular extension is present.76 A summary of the treatment modalities for UM, together with 

indications and complications, is listed in Table 2.

The most common treatment among the conservative modalities is brachytherapy. With 

brachytherapy or local irradiation, radioactive material is placed on the sclera at the location 

of the tumour. Ruthenium-106 (Ru-106) and iodine-125 (I-125) are frequently used appli-

cators. The plaque-shaped applicator is sutured to the sclera and removed a few days later 

once the required dose of at least 80 Gy has been delivered to the tumour. Ru-106 applica-

tors have a limited depth of penetration compared with I-125 applicators. Therefore Ru-106 

is usually used for tumours with a maximal thickness of 7.0 mm.77, 78 Brachytherapy can be 

combined with transpupillary thermotherapy (TTT) to treat those cases with thicker tumours 

or to gain more tumour control if there is a suspicion that the tumour margins are not cov-

ered with brachytherapy. This is referred to as ‘sandwich therapy’.79, 80 TTT is rarely used as 

a primary treatment; only those patients with small pigmented choroidal melanoma near to 
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the fovea or optic disc may sometimes receive TTT.81 After brachytherapy, radiation-induced 

complications can occur and include radiation retinopathy, radiation maculopathy, radiation 

opticopathy, vitreous haemorrhage, cataract and iris neovascularisation leading to neovascu-

lar glaucoma.82-84 Local recurrences after brachytherapy have been described in 4 – 28%, de-

pending on tumour size and duration of follow up.85-88 Ten to 22% of the patients eventually 

have to be secondary enucleated due to radiation-induced side effects.89-92

Heavy particle radiation with proton beam is available in some centres and some ad-

minister this treatment to all patients, while others reserve it for patients whose tumour is 

unsuitable for brachytherapy. Proton beam radiotherapy consists of several steps. First, a clip 

is sutured to the sclera around the base of the tumour followed by dose admission two weeks 

later (50-70 Gy relative biological effectiveness in 4-5 fractions).93, 94 Proton beam radiother-

apy has some advantages compared with brachytherapy and fractioned stereotactic radio-

Table 2. Summarised treatment options for uveal melanoma

Treatment Indications Complications SER 

Brachytherapy Small- and medium-sized tumours
Thickness ≤ 7 mm, if maximal 
thickness is > 7 mm combination with 
transpupillary thermotherapy

Radiation retinopathy (maculopathy) (24-40%), 
papillopathy (10-14%), vitreous haemorrhage 
(9-15%), cataract (13-32%), neovascular glauco-
ma (8-15%)83, 85, 89, 91

10-20%

Proton beam 
radiotherapy

Small-, medium- and large-sized 
tumours
LTD ≤ 20 mm and thickness ≤ 12 mm

Retinal detachment, vitreous haemorrhage, 
neovascular glaucoma (38%), cataract (29%), 
radiation retinopathy (10%), radiation papillopa-
thy (10%), dry eye (24%)95

10-15%

Stereotactic 
radiotherapy

Small- and medium-sized tumours
LTD < 16 mm, thickness ≤ 12 mm

Radiation cataract (3-53%), tumour vasculopa-
thy (80%), radiation retinopathy (5-81%), radi-
ation optic neuropathy (11-64%), neovascular 
glaucoma (3-42%), vitreous haemorrhage (3-
33%), retinal detachment (14-37%), conjunctival 
symptoms (26%), dry eye syndrome (8%), eye 
lash loss (26%)98-100

3-16%

Photodynamic 
therapy

Amelanotic tumours

Endoresection Tumours (> 6-8 mm) preferably with-
out ciliary body infiltration

Retinal detachment (9-33%), entry site tears, 
cataract, acute glaucoma, choroidal neovascular 
membranes104, 106

6%

Exoresection Tumours (> 6-8 mm) which are more 
anteriorly located (with ciliary body 
infiltration)
Tumours that are likely to develop 
complications with radiotherapy (e.g. 
neovascular glaucoma)

Retinal detachment, vitreous haemorrhage, 
subretinal fibrosis, cystoid macular oedema, 
elevated intraocular pressure, scleral thinning

4%

Enucleation Large-sized, advanced tumours or if 
extraocular extension is present
LTD > 16mm with thickness > 2.0 mm 
or thickness of > 10 mm regardless 
of the LTD

If extraocular extension is present, orbital recur-
rence can occur (10%)107 

Abbreviations: LTD = largest tumour diameter, SER = secondary enucleation rate.
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therapy (fSRT, see below) since the dose reaches the tumour homogeneously and healthy 

tissue surrounding the tumour can be spared.95 Proton beam radiation enables treatment of 

choroidal melanoma of all sizes but usually tumours up to 20 mm in diameter and 12 mm 

thickness are treated. When treating larger or thicker tumours with proton beam, there is 

a lower chance of preserving vision.96 The local recurrence rate after treatment is 5% after 

Figure 8. Baseline fundus photograph of an uveal melanoma. The lesion is located in the upper temporal 
choroid 3 mm from the fovea. The best corrected visual acuity (BCVA) at baseline was 0.7 (A). Baseline 
ultrasonography (US) shows subretinal fluid and a prominence of 6.6 mm (B). Fundus 3 months after 
treatment with stereotactic radiotherapy. The BCVA decreased to 0.4 (C). Corresponding US 3 months 
later showing a decreased prominence of 4.6 mm (D). Fundus photograph 12 months after treatment 
showing a slightly elevated scar. The BCVA is equal to baseline measurement 0.7 (E). After 12 months 
the tumour prominence has decreased to 2.4 mm on US (F).
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10 years and this is in the same range as brachytherapy.86 Secondary enucleation rates are 

10 – 15% due to local recurrences or complications.97, 98 Complications after proton beam 

radiotherapy include retinal detachment, neovascular glaucoma, cataract, optic neuropathy, 

maculopathy, vitreous haemorrhage and dryness.93

Another eye-preserving option is fSRT for the treatment of small and medium-sized 

posteriorly located melanoma and is becoming available in more centres. The effect of fSRT 

on a medium-sized choroidal melanoma is depicted in Figure 8. One advantage of fSRT 

compared with previously mentioned therapies, is that fSRT requires no surgical procedures 

to determine the tumour localisation and dimensions. The tumour borders are delineated 

with CT and/or MRI. Stereotactic irradiation can be performed using a gammaknife, a cy-

berknife or a linear accelerator. Most centres administer a total dose of 50 Gy in 4-5 fractions, 

although some centres prescribe higher doses.99, 100 Reported complications are similar to 

those of brachytherapy and proton beam radiotherapy and can lead to visual impairment and 

secondary enucleation (3 – 16%).99-101 Other radiogenic side effects include conjunctivitis, 

blepharitis or dry eye syndrome. Studies report similar local tumour control rates of approx-

imately 90% 5 and 10 years after fSRT.99-101

Photodynamic therapy is occasionally used as an alternative treatment for UM. The use 

of photosensitiser verteporfin has been described in several reports and is being more applied 

in amelanotic tumours.102-104 

Local resection of small iris and ciliary body melanoma are widely carried out. This is not 

the case for choroidal melanoma. In the past, ophthalmologists were reluctant to operate 

on choroidal melanoma as they were concerned about manipulation of tumour cells that 

could lead to an increased risk of metastasis. Currently, due to improved surgical techniques 

and more insights on tumour progression towards metastatic disease, surgical excision is 

considered to be a therapeutic option for choroidal tumours. The tumour can be removed in 

several ways, through the vitreous and retina with a vitreous cutter, endoresection, or through 

a scleral opening, exoresection (e.g. iridectomy, iridocyclectomy, cyclochoroidectomy, cho-

roidectomy). This way eyes with large melanoma, which otherwise would be enucleated, 

can be preserved. Surgical resection can serve as primary treatment for UM or additional to 

another kind of radiotherapy. Often, radiotherapy is administered prior to endoresection and 

exoresection, and is followed by treatment with brachytherapy. By using resection as a treat-

ment, radiation-induced problems such as toxic tumour syndrome, a result of radiation-in-

duced necrosis comprising exudative maculopathy, serous retinal detachment, rubeosis and 

neovascular glaucoma, can be avoided. Another advantage is that, especially with the larger 

melanoma, tumour tissue is available for prognostification and research.85, 105, 106 
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1.5 TREATMENT OF LIVER METASTASIS

Despite successful eradication of the ocular tumour, about 50% of all UM patients devel-

op metastatic disease.108 Metastases spread haematogeneously to the liver and death often 

follows within 1 year if systemic symptoms occur.109 There are no standardised therapies 

that improve survival in metastatic disease. Systemic treatment options, such as intrave-

nous chemotherapy and immunotherapy, prolong life only rarely.110 Systemic therapy may 

be more effective if administered early after diagnosis treating micrometastatic rather than 

macrometastatic disease. Targeted systemic therapies in metastatic UM are currently being 

investigated. Preclinical studies suggest potential benefit when modulating MAPK and phos-

phatidylinositol 3-kinase/AKT (PI3K/AKT) pathways, or receptor tyrosine kinases. The BRAF 

inhibitor sorafenib was administered to uveal metastatic patients in a phase II trial (www.

clinicaltrials.gov). A new adjuvant immunotherapy protocol has been developed, where clin-

ical, histological and cytogenetic factors are used to identify high risk UM patients and treat 

these by immunisation with their own trained dendritic cells to prevent future metastatic 

disease.111 This multicentre trial is ongoing within our Rotterdam Ocular Melanoma Study 

group (ROMS) in collaboration with the Department of Tumour Immunology of Radboud 

University Nijmegen.

For the treatment of liver metastasis there are several locoregional techniques available, 

for instance, hepatic intra-arterial chemotherapy, chemoembolization, immunoembolization 

and isolated liver perfusion.112 A partial hepatectomy can be beneficial in some highly select-

ed patients. Surgery in patients with four or fewer metastatic lesions, more than 24 months 

from initial diagnosis to liver metastases and absence of miliary disease (multiple, diffuse, 

small sized, dark punctuate lesions on CT) has been associated with a better outcome.113 A 

microscopically complete liver resection can increase the survival time. In a retrospective 

study of 255 patients who underwent surgical resection, the median overall post-operative 

survival was 14 months. In patients whom had a microscopically complete liver resection 

(compared with a microscopically or macroscopically incomplete liver resection) the surviv-

al increased to 27 months.

Despite primary therapeutic advances in the treatment of primary UM, the rate of metastatic 

disease is still not reduced, making it more important to find alternative treatments for metas-

tases in particular. With new technologies, such as NGS, more is learned about the human 

genome and new cancer-susceptibility genes in UM, which may serve as targets for new 

interventions.
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1.6 SCOPE AND OUTLINE OF THIS THESIS

This thesis aims to find prognostic factors in uveal melanoma facilitating metastasis predic-

tion in UM patients. 

In the era of NGS the regions of interest (genetically) have been narrowed down from chro-

mosome to gene level. This part of the thesis concerns mutation analysis in candidate genes 

to characterise different subsets of tumours. In Chapter 2.1, we describe GNAQ and GNA11 

mutations occurring in the majority of UM and being an early event in the UM development. 

Another candidate gene is BAP1, located on chromosome 3p21.1, and Chapter 2.2 stress-

es the importance of BAP1 mutations in metastasising tumours. Furthermore, this chapter 

elaborates on the possibility to replace genetic screening of BAP1 by immunohistochemis-

try. A subset of prognostically favourable UM harbour mutations in the EIF1AX and SF3B1 

gene which is described in Chapter 2.3, and Chapter 2.4 describes an UM case in which 

cytogenetic and mutation analyses have been performed on both primary tumour and cor-

responding metastases tissue. In Chapter 2.5, we analysed TERT mutations in several types 

and stages of eye cancer including conjunctival naevi, primary acquired melanosis (PAM) of 

the conjunctiva, conjunctival melanoma and UM. 

New techniques such as NGS in the field of cancer genetics are used to investigate 

mutations and copy number variations in UM. In the third of chapter of thesis, we present a 

sequencing platform, HaloPlex, for targeted sequencing of genes and examine whether va- 

riant frequencies are a good reflection of the copy number status of the tumour (Chapter 3.1). 

The fourth chapter of this thesis will mainly focus on different aspects of histopatholog-

ical research and associations with chromosomal aberrations and patient survival. Chemo- 

kine receptors are expressed widely on different types of cancers and play a role in the trans-

port of cancer cells to secondary sites. In Chapter 4.1, we examine the expression levels of 

chemokine receptors CCR7 and CXCR4/CXCL12 in primary and metastatic UM tissue to see 

whether these chemokine’s are involved in UM metastasis. Several well-established features 

are associated with the prognosis of UM patients, such as epithelioid cell type, extracellular 

matrix patterns, extraocular extension, and chromosomal aberrations including monosomy 3 

and gain of 8q. The importance of chromosome 8q gain as an additional risk factor for metas-

tasis in patients with extraocular extension is decribed in Chapter 4.2. Chapter 4.3 illustrates 

a melanoma with unusual clear cell changes.   

Finally, in Chapter 5 our main findings are summarised, and a general discussion and future 

prospects are presented. 
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ABSTRACT

Background. Mutations in GNAQ and GNA11, encoding the oncogenic G protein alpha 

subunit q and 11, respectively, occur frequently in the majority of uveal melanoma.

Methods. Exon 4 and 5 from GNAQ and GNA11 were amplified and sequenced from 92 

ciliary body and choroidal melanoma. The mutation status was correlated with disease-free 

survival and other parameters.

Results. None of the tumours harboured a GNAQ exon 4 mutation. A GNAQ mutation in 

exon 5 codon 209 was found in 46/92 (50.0%) of the tumours. Only 1/92 (1.1%) melanoma 

showed a mutation in GNA11 exon 4 codon 183, while 39/92 (42.4%) harboured a mutation 

in exon 5 of GNA11 codon 209. Six tumours did not show any mutations in exons 4 and 5 

of these genes. Univariate analyses showed no correlation between disease-free survival and 

the mutation status.

Conclusion. GNAQ and GNA11 mutations are, in equal matter, not associated with patient 

outcome.
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INTRODUCTION

Previous studies identified high frequencies of activating somatic mutations in the GNAQ 

and GNA11 genes in uveal melanoma (UM).1-4 GNAQ and GNA11 encode the heterotri-

meric guanine nucleotide-binding protein G subunit alpha q and 11, respectively. Mutations 

in GNAQ, or its paralog GNA11 (together Gα genes), occur mutually exclusively in codon 

183 (exon 4) or 209 (exon 5), leading to a constitutive activation of the MAP kinase (MAPK) 

pathway.4, 5 Limited information is available on correlation of the mutations with survival. 

We examined to what extent oncogenic GNAQ and GNA11 mutations are correlated with 

the patient survival.

METHODS

Uveal melanoma were collected from enucleated patients at Erasmus University Medical 

Centre and the Rotterdam Eye Hospital (Rotterdam, the Netherlands). Informed consent was 

obtained before the operation and the study was performed according to the tenets of the 

Declaration of Helsinki. Fresh tumour material was obtained within 1 h of enucleation and 

processed for fluorescence in situ hybridisation (FISH) as described previously.6 Part of the 

tumour was snap-frozen and stored in liquid nitrogen. The remainder of the eye was embed-

ded in paraffin. All tumours were histopathologically confirmed. Only tumours located in 

the ciliary body and choroid were included in this study. FISH analysis was performed on 

directly fixated tumour cells for chromosome 1, 3, 6 and 8 using centromeric or locus-spe-

cific probes.6 High-resolution whole-genome analysis was performed on tumour-derived 

DNA, using the Illumina BeadChip HumanCytoSNP-12 v2 (Illumina, San Diego, CA, USA) 

according to the manufacturer’s protocol. Filtering, normalisation and data analysis were 

done using version 6 of the Nexus software program (BioDiscovery, El Segundo, CA, USA). 

In total, 92 patients were selected for whom follow-up and clinical, histopathological, and 

cytogenetic data were available.

DNA isolation

To examine tumour content, haematoxylin and eosin (H&E) staining was conducted on a 

5-μm section of snap-frozen tumour. Depending on the size of the tumour, 10 – 15 sections 

of 20 μm were used for DNA isolation using QIAmp DNA-mini kit (Qiagen, Hilden, Germa-

ny) according to the manufacturer’s instructions. DNA concentration was measured with the 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).
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GNAQ and GNA11 mutation analysis

In a previous study, our group performed mutation analysis of GNAQ exon 5 in 75 sam-

ples.1 In the present study, we amplified GNAQ exon 5 in 17 other tumour samples with 

polymerase chain reaction (PCR) using the primers 5’-ACCATTTTGCTTGGCACAGATAA-

GG-3’ and 5’-GTAAGTTCACTCCATTCCCCACACC-3’. GNAQ exon 4 and GNA11 exon 4 

and 5 were amplified using the primers: 5’-TCTTTTTCTCCCACCCCTTGC-3’ and 5’-TTGT-

TTTGAAGCCTACACATGATTCC-3’ to examine GNAQ exon 4, 5’-GTGCTGTGTCCCT-

GTCCTG-3’ and 5’-GGCAAATGAGCCTCTCAGTG-3’ to examine GNA11 exon 4, and 

5’-GATTGCAGATTGGGCCTTGG-3’ and 5’-TCTCCTCCATCCGGTTCTGG-3’ to examine 

GNA11 exon 5. PCR products were purified using ExoSAP-IT (USB, Staufen, Germany), 

and sequenced using BigDye Terminator chemistry v3.1 on an ABI Prism 3130xl Genetic 

Analyser (Applied Biosystems, Foster City, CA, USA). Sequences were aligned and compared 

with reference sequence hg19 from the Ensemble genome database (ENST00000286548 

and ENST00000078429) using SeqScape software version 2.6 (Applied Biosystems, Foster 

City, CA, USA).

Statistical analysis

The primary endpoint for disease-free survival was defined as the time to the development of 

metastatic disease, whereby death due to other causes was treated as censored. The influence 

of single prognostic factors on disease-free survival was assessed using the Kaplan-Meier 

method (for categorical variables) or the Cox proportional hazard analysis (for continuous 

variables). To identify the independent value of the prognostic factors on disease-free surviv-

al, we used a multivariate Cox proportional hazard analysis with a forward stepwise method 

based on likelihood ratios. An effect was considered significant if the P-value was ≤ 0.05. The 

statistical analyses were performed with the SPSS software version 20.0 (SPSS Inc., Chicago, 

IL, USA).

RESULTS

A total of 92 patients were included in the study. Forty-eight of the patients were male and 

44 were female. The median age was 62 years (range 21 – 86); the mean largest tumour di-

ameter was 13.3 mm (range 7.0 – 19.0) and the mean tumour thickness was 8.3 mm (range 

1.5 – 22.0). On the basis of cell type, 15 tumours were classified as epithelioid, 38 as mixed, 

and 39 as spindle-cell tumours. Most tumours were localised in the choroid; only 6 were 

localised in the ciliary body. The mean follow-up was 74.9 months (range 5.2 – 200.5) and 
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Table 1. Mutations found in GNAQ and GNA11 in detail

Gene Mutation No. of cases Total (%)

GNAQ exon 4 - 0 0

GNAQ exon 5 Heterozygous Q209L 16 50.0

 Heterozygous Q209P 28

 Homozygous Q209P 1

 Heterozygous Q209R 1

GNA11 exon 4 Heterozygous R183C 1 1.1

GNA11 exon 5 Heterozygous Q209L 37 42.4

 Heterozygous Q209P 1

 Heterozygous Q209L + heterozygous R214M 1

Abbreviations : GNAQ = G protein alpha subunit q; GNA11 = G protein alpha subunit 11.

44 patients developed metastases, from which 39 died. Sixteen patients died due to another 

cause and 32 patients were still alive at the end of the study.

Molecular genetic analysis

All UM were analysed for GNAQ and GNA11 mutations and for chromosomal aberrations 

in chromosome 1, 3, 6 and 8. No mutations were found in GNAQ exon 4. Forty-six tumours 

(50.0%) harboured a mutation in GNAQ exon 5 codon 209; details are shown in Table 1. Al-

though only one mutated case was found in GNA11 exon 4, 39 tumours (42.4%) harboured 

a mutation in GNA11 exon 5. Six out of 92 tumours contained no mutations in exons 4 and 

5 of both genes. One tumour (EOM-0179) showed two mutations in GNA11 exon 5 (result-

ing in p.Q209L and p.R214M). Tumour sample EOM-0179 was therefore subjected to deep 

sequencing with a custom designed HaloPlex Target Enrichment kit for Illumina (Agilent 

Technologies, Santa Clara, California, USA) and both variants were located within the same 

read (Koopmans et al., manuscript in preparation). No DNA from blood of this patient was 

available to determine whether variant R214M is a germline variant. Therefore, we isolated 

DNA from formalin-fixed paraffin-embedded retina tissue, and Sanger sequencing of GNA11 

exon 5 revealed a wild-type status. 

Statistical analysis

Univariate analyses showed that the disease-free survival was significantly shorter in patients 

with tumours with loss of chromosome 3, loss of chromosome 8p and gain of chromosome 

8q. The disease-free survival in patients with tumours harbouring GNAQ or GNA11 muta-

tions was not significantly less than that in the wild-type tumours (Figure 1). Correlations be-

tween the clinical and histopathological parameters, chromosomal parameters, and GNAQ 
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Figure 1. Kaplan-Meier estimate of disease-free survival in patients with tumours harbouring either a 
GNAQ or GNA11 mutation compared with tumours harbouring no mutation (wild-type). The table 
shows the number of events and cases at risk over time at the respective time point. Log-rank test was 
used to compare survival distributions across subgroups.

and GNA11 mutations using the Fisher’s exact test and the Mann-Whitney test showed a 

weak association between age and both GNAQ and GNA11 mutation status (P = 0.017 and 

P = 0.004, respectively; Table 2). GNA11 mutation status was also correlated with loss of 

chromosome 6q (P = 0.045). We examined the possibility that GNAQ and GNA11 mutations 

may affect the prognosis of patients with monosomy 3 by constructing Kaplan-Meier curves 

for changes in chromosome 3, stratified for GNAQ and GNA11 mutations. Log-rank tests 

showed that there was no significant effect on the disease-free survival in tumours with loss 

of chromosome 3 and the presence of GNAQ or GNA11 mutation (P = 0.745). Multivariate 

models were constructed for GNAQ and GNA11 separately with positive variables from the 

univariate analysis. The presence of epithelioid cells, largest tumour diameter, involvement 

of the ciliary body, chromosome 3 loss, chromosome 8p loss and mutations in GNAQ (P = 

0.587) or GNA11 (P = 0.796) were rejected. Only the variable chromosome 8q gain (hazard 

ratio (HR) 6.562, P = 0.000 for both GNAQ and GNA11 mutation status) and chromosome 

6p gain (HR 0.419, P = 0.014 for both GNAQ and GNA11 mutation status) were independ-

ent predictors of disease-free survival. 
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Table 2. Correlations between GNAQ and GNA11 mutations and clinical, histopathological and chro-
mosomal data

GNAQ mutation status GNA11 mutation status

Mutated Wild-type Mutated Wild-type

Variable n = 46 n = 46 P-value n = 40 n = 52 P-value

Mean age (years) 58.9 ± 1.9 65.0 ± 2.0 0.017a 66.5 ± 2.0 58.4 ± 1.9 0.004a

Mean largest tumour diameter (mm) 13.6 ± 0.4 13.0 ± 0.4 0.350a 13.3 ± 0.4 13.3. ± 0.4 0.915a

Mean tumour thickness (mm) 8.5 ± 0.6 8.0 ± 0.5 0.885a 8.1 ± 0.5 8.4 ± 0.5 0.968a

Gender, n (%)

Male 25 (27.2%) 23 (25.0%) 0.676b 21 (22.8%) 27 (29.3%) 0.956b

Female 21 (22.8%) 23 (25.0%) 19 (20.7%) 25 (27.2%)

Cell type, n (%)

Spindle 17 (18.5%) 14 (15.2%) 0.508b 11 (12.0%) 20 (21.7%) 0.270b

Mixed/epithelioid 29 (31.5%) 32 (34.8%) 29 (31.5%) 32 (34.8%)

Involvement of the ciliary body, n (%)

Yes 7 (7.6%) 10 (10.9%) 0.420b 8 (8.7%) 9 (9.8%) 0.742b

No 39 (42.4%) 36 (39.1%) 32 (34.8%) 43 (46.7%)

Chromosome 1p loss, n (%)

Yes 16 (17.4%) 15 (16.3%) 1.000b 13 (14.1%) 18 (19.6%) 1.000b

No 30 (32.6%) 31 (33.7%) 27 (29.3%) 34 (37.0%)

Chromosome 3 loss, n (%)

Yes 25 (27.2%) 33 (35.9%) 0.130b 29 (31.5%) 29 (31.5%) 0.128b

No 21 (22.8%) 13 (14.1%) 11 (12.0%) 23 (25.0%)

Chromosome 6p gain, n (%)

Yes 19 (20.9%) 16 (17.6%) 0.668b 14 (15.4%) 21 (23.1%) 0.828b

No 27 (29.7%) 29 (31.9%) 25 (27.5%) 31 (34.1%)

Chromosome 6q loss, n (%)

Yes 12 (13.2%) 19 (20.9%) 0.125b 18 (19.8%) 13 (14.3%) 0.045b

No 34 (37.3%) 26 (28.6%) 21 (23.1%) 39 (42.8%)

Chromosome 6q gain, n (%)

Yes 3 (3.3%) 4 (4.4%) 0.714b 4 (4.4%) 3 (3.3%) 0.456b

No 43 (47.3%) 41 (45.0%) 35 (38.5%) 49 (53.8%)

Chromosome 8p loss, n (%)

Yes 9 (9.8%) 10 (10.9%) 1.000b 10 (10.9%) 9 (9.8%) 0.440b

No 37 (40.2%) 36 (39.1%) 30 (32.6%) 43 (46.7%)
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DISCUSSION

In this study, we investigated whether GNAQ and GNA11 mutations in UM are associated 

with patient survival. We found that these mutations occur mutually exclusive in the majority 

of UM, up to 93.4%, which is in the same range as reported previously.1-4 Van Raamsdonk 

et al.4 suggested that GNA11 mutations might have more potent effect on melanocytes than 

mutations in GNAQ. Because the mutations occur in 93.4% of the tumours, it seems to be an 

early event in the development of a melanoma, and our study demonstrates that mutations in 

GNAQ and GNA11 do not contribute to the patients’ prognosis. Moreover, we conclude that 

GNA11 mutations are not more harmful than GNAQ mutations in UM patients.

All mutations were localised either in codon 209 (exon 5) for both GNAQ and GNA11 

or codon 183 (exon 4) for GNA11 only. Surprisingly, one tumour harboured a double mu-

tation in GNA11 codon 209 and 214. The reported heterozygous non-synonymous variant 

in codon 214 results in arginine to methionine transition. A germline variant was excluded 

by sequencing normal retinal tissue. Using the in silico tool PolyPhen-2 both these transi-

tions seem to be damaging on the structure and function of the protein. The tumour with the 

double mutation had no chromosomal alterations, and this patient has not developed any 

metastases at a follow-up time of 154.1 months. To our knowledge, this is the first reported 

double mutation in GNA11 exon 5 in UM. 

Recently, the Gα genes have been investigated in metastatic lesions showing no dif-

Table 2. Correlations between GNAQ and GNA11 mutations and clinical, histopathological and chro-
mosomal data (continued)

GNAQ mutation status GNA11 mutation status

Mutated Wild-type Mutated Wild-type

Variable n = 46 n = 46 P-value n = 40 n = 52 P-value

Chromosome 8p gain, n (%)

Yes 9 (9.8%) 11 (12.0%) 0.801b 9 (9.8%) 11 (12.0%) 1.000b

No 37 (40.2%) 35 (38.0%) 31 (33.7%) 41 (44.5%)

Chromosome 8q gain, n (%)

Yes 26 (28.3%) 34 (37.0%) 0.125b 30 (32.6%) 30 (32.6%) 0.122b

No 20 (21.7%) 12 (13.0%) 10 (10.9%) 22 (23.9%)

Abbreviations: GNAQ = G protein alpha subunit q; GNA11 = G protein alpha subunit 11. 
The significant correlations (P ≤ 0.05) are shown in bold.
a The P-value for the comparison of continuous variables among different subgroups was calculated with the 
Mann-Whitney test.
b The P-value for the comparison of categorical variables among different subgroups was calculated with the 
Fisher’s exact test.
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ference in mutation frequency between rapidly progressive and slowly progressive lesions.7 

This is in line with our findings that patient outcome is not influenced by the presence of 

mutations in GNAQ or GNA11.

GNAQ and GNA11 are involved in the MAPK pathway, and mutations in these genes 

lead to downstream oncogenic signalling.4, 5 Currently, new therapeutic strategies that inhibit 

the downstream signalling molecules are being investigated. MEK is a potential target in 

the MAPK pathway, and the effects of several MEK inhibitors on uveal melanoma cell lines 

with Gα mutations have been described.8, 9 In a preclinical study, Gα-mutant UM cells were 

mildly sensitive to the MEK inhibitor AZD6244, and either moderately or highly sensitive to 

the MEK inhibitor TAK733. Dual-pathway inhibition of the MAPK and the PI3K/AKT pathway 

with MEK inhibitor GSK1120212 and PI3K inhibitor GSK2126458 resulted in induction of 

apoptosis in Gα-mutant UM cells.10

In conclusion, we confirm that mutations in GNAQ and GNA11 are, in equal matter, 

not associated with patient outcome. Also the newly found variant with a double mutation 

does not affect patient survival. Because the mutations occur in the majority of the tumours, 

and slowly growing as well as fast growing metastases, targeting of the downstream pathway 

seems promising. Even though there is no relation with development of metastatic disease, 

the new therapeutic options would be ideal in stabilising the disease process. At this mo-

ment, clinical studies are ongoing and the results have not yet been evaluated.
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ABSTRACT

Uveal melanoma is a lethal cancer with a strong propensity to metastasise. Limited therapeu-

tic options are available once the disease has disseminated. A strong predictor for metastasis 

is the loss of chromosome 3. Inactivating mutations in BAP1 encoding the BRCA1-associated 

protein 1 and located on chromosome 3p21.1, have been described in uveal melanoma 

and other types of cancer. In this study, we determined the prevalence of somatic BAP1 mu-

tations and examined whether these mutations correlate with the functional expression of 

BAP1 in uveal melanoma tissue and with other clinical, histopathological and chromosomal 

parameters. We screened a cohort of 74 uveal melanoma for BAP1 mutations, using different 

deep sequencing methods. The frequency of BAP1 mutations in our study group was 47%. 

The expression of BAP1 protein was studied using immunohistochemistry. BAP1 staining was 

absent in 43% of the cases. BAP1 mutation status was strongly associated with BAP1 protein 

expression (P < 0.001), loss of chromosome 3 (P < 0.001), and other aggressive prognostic 

factors. Patients with a BAP1 mutation and absent BAP1 expression had an almost eight-

fold higher chance of developing metastases compared to those without these changes (P = 

0.002). We found a strong correlation between the immunohistochemical and sequencing 

data and therefore propose that, immunohistochemical screening for BAP1 should become 

routine in the histopathological work-up of uveal melanoma. Furthermore, our analysis indi-

cates that loss of BAP1 may be specifically involved in the progression of uveal melanoma to 

an aggressive, metastatic phenotype.
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INTRODUCTION

With an incidence in the Western world of about 5 per million people per year, uveal mel-

anoma (UM) is the most common primary malignancy in the eye.1 Approximately half of 

the individuals who were diagnosed with UM will develop metastatic disease, with a 4 – 

6-month median survival period when metastasised to the liver.2 Several prognostic param-

eters are available to identify patients at risk of developing metastases including cytogenetic 

aberrations such as loss of chromosome 1p, loss of chromosome 3, gain of chromosome 8 

and abnormalities on chromosome 6.3-7

Harbour et al.,8 reported inactivating somatic mutations in BAP1, the gene encoding 

BRCA1-associated protein 1 in the predominantly metastasising (class 2) UM. BAP1 is locat-

ed on chromosome 3p21.1, which is frequently deleted in UM. Monosomy 3 is considered 

to be a relatively early event in UM pathogenesis, and several studies have shown that it 

strongly correlates with decreased survival.4-7, 9 BAP1 is a nuclear deubiquitinase which catal-

ysis the removal of single ubiquitin moieties from ubiquitin chains or cleavage of the isopep-

tide bond between ubiquitin and the substrate protein.10 It is involved in several biological 

processes, including chromatin dynamics, the DNA damage response and regulation of the 

cell cycle and cell growth.11-13 Inactivating somatic and germline BAP1 mutations have been 

identified in a variety of cancers, including malignant pleural mesotheliomas, cutaneous 

melanoma, atypical cutaneous melanocytic tumours, meningioma, lung adenocarcinoma 

and renal cell carcinoma.14-19 The number of reported cancer-prone families with germline 

BAP1 mutations is rising and suggesting a BAP1 cancer syndrome. However, the prevalence 

of germline BAP1 mutations in UM patients is low compared to BAP1 mutations of somatic 

origin.8, 16, 20 Although somatic mutations in BAP1 are highly prevalent in metastasising pri-

mary UM, the role of BAP1 in the progression of UM towards metastatic disease requires 

further investigation. 

The purpose of this study was to identify BAP1 mutations in UM patients and examine 

whether these mutations coincide with the protein expression of BAP1 in UM tissue. We 

also investigated whether BAP1 mutations in UM were associated with additional clinical, 

histopathological, and chromosomal parameters.

MATERIAL AND METHODS

Tissue samples

Uveal melanoma specimens were collected from patients who underwent enucleation be-
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tween the period 1993 and 2012 at the Erasmus University Medical Centre and the Rotterdam 

Eye Hospital (Rotterdam, The Netherlands). Clinical and histopathological features, such as 

tumour location, tumour diameter and thickness, age at time of diagnosis, cell type, and the 

presence of extracellular matrix patterns were evaluated. Cell type was scored by haematox-

ylin and eosin (H&E) staining according to the modified Callender classification system. The 

presence of extracellular matrix patterns were examined with periodic acid-Schiff staining 

without haematoxylin. The study was performed according to the tenets of the Declaration of 

Helsinki and an informed consent was obtained before to the operation.

DNA extraction

DNA was isolated from fresh tumour samples using the QIAamp DNA-mini kit (Qiagen, Ven-

lo, The Netherlands) according to the manufacturer’s instructions. The DNA concentration 

was measured using the NanoDrop ND-1000 Spectrophotometer (NanoDrop technologies, 

Wilmington, DE, USA) and Picogreen assay (Molecular Probes, Eugene, OR, USA). DNA was 

stored at -20˚C.

Copy number analysis

The DNA copy number status of the tumour was examined with single nucleotide polymor-

phism (SNP) array and fluorescent in situ hybridisation (FISH) analysis. Two hundred nano-

grams of fresh tumour DNA was used as input for whole-genome analysis by SNP array (Illu-

mina 610Q BeadChip, Illumina, San Diego, CA, USA). The data were analysed with version 

6 of the Nexus software (BioDiscovery, El Segundo, CA, USA). Chromosomal abnormalities 

were validated with FISH on directly fixed tumour cells using centromeric or locus-specific 

probes for chromosome 1, 3, 6, and 8, as described previously.21

Sequence data analysis

A 10.2 kilobase (kb) region containing the entire BAP1 gene was amplified from prima-

ry choroidal and ciliary body melanomas by long-range polymerase chain reaction (PCR) 

kit (Takara Holdings, Kyoto, Japan) using the primers 5’-GGCGCCGCTGTACTGGAGCT-

TTAGT-3’ and 5’-CGGCAGAGGAGAGCGGGACAGAGG-3’. Details of the PCR protocol are 

available upon request. If no PCR product could be obtained, two additional primers (5’-GG-

CAGCCTCCCCACAAGCCAAGG-3’ and 5’-CGGCAGAGGAGAGCGGGACAGAGG-3’) were 

used to amplify the gene as two overlapping 6.6 kb and 4.2 kb fragments. The amplified 

DNA was then purified using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. Sample preparation was performed according 
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to the Illumina TruSeq v3 protocol and the samples were sequenced on the Hiseq2000 with 

a v3 paired-end flow cell for a read length of two times 100 base pairs (bp) with an index 

of 7 bp. The reads were aligned against the human reference genome build 19 (hg19) using 

BWA22 and the NARWHAL pipeline.23 Genetic variants were called using tools from the ge-

nome analysis toolkit,24 Picard and samtools.25 A VCF and Mpileup file for each sample were 

generated and processed with an in-house variant annotation tool. 

The BAP1 region was captured and a unique index code with a length of 7 bp was 

incorporated into the sample using a HaloPlex Target Enrichment Kit (Agilent Technologies, 

Santa Clara, CA, USA). Sample preparation was performed as above and the samples were 

sequenced on the MiSeq using v2 flow cell for a paired-end read length of 150 bp. Adapter 

trimming, alignment, variant calling and annotation were performed as above. 

Whole exome sequencing was performed using the Agilent version 4 capture kit on 

at least 1 µg of genomic tumour DNA, followed by sample preparation, sequencing, align-

ment, variant calling and annotating, as described above (Koopmans et al., manuscript in 

preparation).  

Variants were validated by Sanger sequencing. Oligonucleotide primers were designed 

from intronic sequences to amplify all coding sequence of BAP1 with PCR. The primers are 

listed in the Supplementary Table S1, and PCR amplification and Sanger sequencing proto-

cols are available upon request.

Immunohistochemical staining

Immunohistochemistry was performed with an automated immunohistochemistry staining 

system (Ventana BenchMark ULTRA, Ventana Medical Systems Inc., Tucson, AZ, USA) using 

the alkaline phosphatase method and a red chromogen. In brief, following deparaffinization 

and heat-induced antigen retrieval for 64 min, the tissue sections were incubated with a 

mouse monoclonal antibody raised against amino acids 430 – 729 of human BAP1 (clone 

sc-28383, 1:50 dilution, Santa Cruz Biotechnology, Inc., Dallas, TX, USA) for 1 h at 36 ˚C. A 

subsequent amplification step was followed by incubation with haematoxylin II counter stain 

for 8 min and then a blue-colouring reagent for 8 min according to the manufacturer’s in-

structions (Ventana). Liver, tonsil, breast tissue, and the retinal pigment epithelium were used 

as positive controls for BAP1 expression. An ophthalmic pathologist independently evaluated 

the histopathological characterisation of the tissue sections and the immunohistochemistry 

stainings. In some cases with suspected clonal subpopulations, multiple staining and double 

staining of BAP1 and HMB-45 and/or CD45 was conducted using the 3,3’-diaminobenzidine 

method. The samples were scored positive or negative by masked screening.  

BAP1 in uveal melanoma 53



Statistical analysis

The co-occurrence of BAP1 mutations with absent BAP1 expression and other clinical, his-

topathological, and genetical data were calculated using either the χ2-test or Fisher’s exact 

test (categorical variables) and the Mann-Whitney test (continuous variables). The influence 

of these variables on survival was determined with the Kaplan-Meier method for categorical 

variables and using the Cox regression method for continuous variables. Survival analysis 

was performed on the basis of disease-free survival, defined as the time period from enucle-

ation until the development of metastasis or death due to metastasis. Death due to another 

cause or lost to follow-up was treated as censored. Subsequently, Cox multivariate propor-

tional hazards regression (forward logistic regression method) was used to confirm that the 

variables were independent predictors of survival. All tests were two-sided. An effect was 

considered significant if the P-value was 0.05 or less. The statistical analyses were performed 

with the SPSS-20 software package. 

RESULTS

Tumour samples

A total of 74 patients with histopathologically proven uveal melanoma were included in our 

study. There were 34 men and 40 women, and the mean age was 63 years (range 37 – 86). 

The mean disease-free survival was 52 months (5 – 209). Thirty-five patients were alive at the 

last follow-up, 29 patients developed metastatic disease of which 26 died, 9 patients died 

due to another cause and 1 patient was lost during follow-up (with a survival of 69 months). 

Detailed clinicopathological data are provided in Table 1 and Supplementary Table S2. The 

majority of UM were of choroidal origin (n = 64), only 10 tumours (14%) originated from the 

ciliary body. From the 64 choroidal tumours, 8 invaded the ciliary body. Most cases displayed 

a spindle or mixed cell morphology (n = 64) and only 10 cases (14%) revealed a pure epi-

thelioid phenotype. The tumours ranged from 5 to 21 mm in diameter (a mean value of 13.6 

mm) and from 1.5 to 15 mm thick (a mean value of 7.8 mm). According to the 7th edition of 

the American Joint Committee on Cancer TNM classification (TNM7) for UM, we classified 

UM on the basis of the anatomic extent of the primary tumour (T).26 Seven tumours (10%) 

were classified as T1, 26 (35%) as T2, 35 (47%) as T3, and 6 (8%) as T4. Extracellular matrix 

patterns were present in 36 UM (49%).
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Table 1. Clinicopathological and chromosomal features of the study cohort (n = 74)

Clinicohistopathological data Mean (range) 

Age, years 62 (37 - 86)

Largest basal tumour diameter, mm 13.6 (5 - 21)

Tumour thickness, mm 7.8 (1.5 - 15)

Disease-free survival, months 52 (5 - 209)

n (%)

Follow-up

Alive 35/74 (47%)

Metastasis present 3/74 (4%)

Died due to metastatic disease 26/74 (35%)

Died due to other disease cause 9/74 (12%)

Lost to follow-up 1/74 (1%)

Gender

Male 34/74 (46%)

Female 40/74 (54%)

Localisation tumour

Choroid 64/74 (87%)

Ciliary body 10/74 (13%)

Tumour invasion ciliary body

No invasion 56/74 (76%)

Invasion 18/74 (24%)

Cell type

Spindle 29/74 (39%)

Mixed 35/74 (47%)

Epithelioid 10/74 (14%)

Epithelioid cells

Absent 25/74 (34%)

Present 49/74 (66%)

Size category according to TNM7

1 7/74 (10%)

2 26/74 (35%)

3 35/74 (47%)

4 6/74 (8%)

Extracellular matrix patterns

Absent 38/74 (51%)

Present 36/74 (49%)

Chromosomal data n (%)

Ploidy status

Disomy 66/74 (89%)

Triploidy 5/74 (7%)

Tetraploidy 3/74 (4%)

Chromosome 3 loss 46/74 (62%)
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Genetic and histopathological analyses

FISH and SNP array analysis

Cytogenetic analysis was performed using a SNP array (n = 59) and FISH (n = 66). The study 

group contained 46 tumours with loss of chromosome 3 (62%). Three tumours appeared to 

have a loss of heterozygosity (LOH) region ranging from 0.57 to 4.1 megabase (Mb) around 

the BAP1 gene. Therefore, we coded them as LOH for chromosome 3p21.1. A SNP array of 

one case with LOH is shown in Figure 1A.  Other chromosomal aberrations included loss of 

chromosome 1p (n = 23, 31%), gain of chromosome 6p (n = 37, 51%), loss of chromosome 

6q (n = 29, 40%), loss of chromosome 8p (n = 16, 22%), gain of chromosome 8p (n = 15, 

20%), and gain of chromosome 8q (n = 43, 58%). Eight tumours were polyploid with either a 

triploid (n = 5, 7%) or tetraploid (n = 3, 4%) status. Seven out of these eight tumours showed 

relative loss of chromosome 3 compared with their baseline chromosome status. 

Mutation analysis

In all, 57 tumour samples were sequenced using the long-range PCR approach, generat-

ing 2,992,269 – 46,389,045 mapped reads per sample. Six samples were sequenced using 

the HaloPlex method. Of these, two samples were also sequenced with the long-range ap-

proach. Nineteen tumours were subjected to whole exome sequencing, in which the coding 

region of the entire genome was sequenced. Of these, seven were also sequenced with the 

long-range approach. Two groups of untypical UM were selected for the exome sequencing: 

seven UM with monosomy 3 and a follow-up of more than 60 months without any metas-

tasis, and 10 disomy 3 tumours who did develop metastasis. Two samples were polyploid 

with relative chromosome 3 loss and metastatic disease. For all 19 samples, a mean coverage 

over 68 × was reached for the target regions (Koopmans et al., manuscript in preparation). 

For the current study, we only investigated the BAP1 gene in the samples subjected to exome 

sequencing. 

A BAP1 mutation was detected in 35 UM samples (47%). These included 7 missense 

mutations, 3 nonsense mutations, 12 deletions and 2 insertions leading to a frameshift, 1 

in-frame deletion and 10 mutations located at a splice site. The mutations were located 

throughout the gene (Figure 2A). Thirty-three out of the 35 variants were validated using 

Sanger sequencing.

Immunohistochemistry

We assessed BAP1 expression by immunohistochemistry. In 31 of the 73 UM investigated 

(43%), BAP1 expression was below the level of detection in the tumour. In these samples, the 

retinal pigment epithelium stained positive. One of the paraffin slides could not be examined 

due to insufficient material (sample S20). In the upper panel of Figure 1, a UM is shown 
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Figure 1. Histopathological and genetic features of two uveal melanoma cases. In case S42, loss of 
heterozygosity (LOH) of 3p21.1 was observed on single nucleotide polymorphism (SNP) array (A). The 
tumour shows mainly spindle cells in a haematoxylin and eosin (H&E) staining (400x) (B). Immunohis-
tochemistry revealed no expression of BAP1 in the tumour cells and positive expression in endothelium 
and inflammatory cells (400x) (C). In case S4, the SNP array displays a disomy 3 (D). Spindle tumour 
cells in the uveal melanoma are shown in a H&E staining (200x) (E). Immunohistochemistry revealed a 
strong nuclear positivity for BAP1 (400x) (F). 

Figure 2. Schematic overview of sequence data and immunohistochemical analyses. A schematic over-
view of the BAP1 gene and its functional domains. BAP1 is composed of an N-terminal UCH domain 
(orange; amino acid (aa) 1 – 250), an HCF1-binding domain (HBM)-like motif (blue; aa 363 – 366), an 
UCH37-like domain (ULD) (green; aa 634 – 693), and a nuclear localisation signal (NLS) consisting of 
two parts (blue; aa 656 – 661 and aa 717 – 722). BAP1 has been reported to interact with BARD1 (aa 
182 – 365), HCF1 (aa 365 – 385), BRCA1 (aa 596 – 721), and YY1 (aa 642 – 686).27 The binding site for 
BAP1 antibody is depicted with a dashed line (aa 430 – 729). The found mutations and indels are shown 
below, classified according to their type and position (A). A multilevel doughnut chart was constructed 
for all samples (n = 74) regarding the chromosome 3 status (outer ring), BAP1 mutations status (middle 
ring) and BAP1 expression (inner ring) (B).

Outer ring: chromsome 3 status
 no chromosome 3 loss
 chromosome 3 loss

Middle ring: BAP1 mutation status
 BAP1 wild type
 BAP1 mutated

Inner ring: BAP1 expression
 positive BAP1 expression
 negative BAP1 expression
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with LOH of the BAP1 gene and no detectable BAP1 staining (Figures 1A-C). In the lower 

panel, a UM with a disomy 3 and positive BAP1 expression is shown (Figures 1D-F). In four 

tumours, a subpopulation of cells, ranging from 20 to 80% of the total, was observed, that 

were negative for BAP1 staining. The remaining tumour cells (corresponding 80 to 20% of 

the total), stained positive for BAP1 (Supplementary Table S2). In these four samples, a stain-

ing with HMB-45 was performed. We observed that both the BAP1-positive and -negative 

cells stained positive for HMB-45 (Figure 3).

The majority of the BAP1-negative tumours also harboured a BAP1 mutation (Figure 

2B). More specifically, 30 out of the 31 UM that did not show any BAP1 staining had a BAP1 

mutation (SNPs, base insertions, or deletions). Four of the 42 BAP1-positive tumours har-

boured a BAP1 mutation (Table 2). As shown in Figure 2B, two of the 28 tumours possessing 

a normal chromosome 3 copy number had a BAP1 sequence variant (sample S11 and S71; 

Supplementary Table S2). In the group of UM with loss of chromosome 3 (including the 

polyploid tumours with a relative chromosome 3 loss), 33 of the 46 tumours harboured a 

BAP1 mutation. We did not observe any BAP1 staining in 30 of the corresponding samples. 

Immunohistochemistry could not be conducted for sample S20. Two tumours, S23, and S43, 

stained positive for BAP1 despite their monosomy 3 and BAP1 mutation status. Tumour S23 

contained a heterozygous deletion of 22 bp in exon 16 (p.R666fs) leading to a frameshift in 

74% of the reads. In this sample, heterogeneous levels of BAP1 expression were observed. 

We estimated that BAP1 expression was absent in 20% of the tumour, whereas the remaining 

80% of the tumour cells did stain positive for BAP1. Tumour S43 had a 7 bp frameshift dele-

tion in exon 16 (p.E673X) in 54% of the reads. However, in this tumour 100% of the tumour 

tissue showed normal BAP1 expression. Lastly, there was one BAP1 wild-type UM (sample 

Figure 3. Histopathological features of a uveal melanoma case with heterogeneous expression of BAP1. 
In case S7, a heterogeneous distribution of BAP1 expression was observed throughout the tumour with 
immunohistochemistry (400x) (A). Staining with HMB-45 revealed strong positivity (3,3’-diaminoben-
zidine staining, brown colour) concluding that the cells investigated were melanoma cells (400x) (B).  
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Table 2. Correlations between BAP1 mutation and clinicopathological and genetical data

BAP1 mutation status

Mutated Wild-type

Clinicohistopathological data n = 35 n = 39 P-value

Mean age, years 66 60 0.060a

Mean largest basal diameter, mm 14.1 13.2 0.289a

Mean tumour thickness, mm 8.0 7.6 0.574a

Gender

Male 15 19 0.613b

Female 20 20

Localisation tumour

Choroid 29 35 0.502c

Ciliary body 6 4

Ciliairy body involvement

Absent 25 31 0.420b

Present 10 8

Epithelioid cells

Absent 5 20 0.001b

Present 30 19

Extracellular matrix patterns

Absent 12 26 0.005b

Present 23 13

BAP1 expression

Negative 30 1 < 0.001b

Positive 4 38  

Chromosomal data n n P-value

Ploidy status

Diploid 31 35 1.000c

Polyploid 4 4

Chromosome 3 loss

Yes 33 13 < 0.001 b

No 2 26

a Associations for continuous variables were calculated with the Mann-Whitney test. b Associations for categor-
ical variables were calculated with the χ2-test if the expected count was greater than 5. c Associations for cate-
gorical variables were calculated with the Fisher’s exact test if the expected count was less than 5. A P-value of 
0.05 or less was considered significant and is shown in bold.
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S3) that did not stain positive for BAP1. In this case, BAP1 staining was absent in ~ 50% of 

the tumour cells. 

 

Statistical analysis

BAP1 mutations strongly coincided with an absent BAP1 expression (P < 0.001) and mono-

somy 3 (P < 0.001, Table 2). The presence of epithelioid cells (P = 0.001) and extracellular 

matrix patterns (P = 0.005) were also significantly overrepresented in UM with BAP1 mu-

tations. The sensitivity and specificity for the detection of BAP1 depletion by immunohisto-

chemistry compared with mutation analysis were 88% and 97%, respectively. For survival 

analysis, we included only the unselected UM samples (n = 55) and excluded UM specimens 

that were selected for exome sequencing. Univariate analyses showed that the disease-free 

survival was significantly shorter in patients with a BAP1 mutation (32 versus 133 months, 

P < 0.001, Figure 4A). We examined whether BAP1 mutations influenced the prognosis of 

monosomy 3 patients by constructing Kaplan-Meier curves and performing the Log-rank 

test. Patients with monosomy 3 UM and a BAP1 mutation seem to have a worse prognosis, 

although this was not statistically significant (P = 0.122, Figure 4B). Patients with tumours 

with a negative BAP1 staining also had a significant shorter disease-free survival compared 

to tumours with a positive BAP1 staining (31 versus 133 months, P < 0.001). Other factors 

that affected the survival in UM patients were: age at time of diagnosis (P = 0.040), largest 

basal tumour diameter (P = 0.005), the presence of epithelioid cells (P = 0.003), presence of 

Figure 4. Kaplan-Meier estimate of disease-free survival in uveal melanoma patients. Kaplan-Meier sur-
vival curves displaying melanoma-related mortality for 55 patients based on the BAP1 mutation status  
(A) and the survival curves for 34 patients with loss of chromosome 3 (B). The table shows the number 
of events and cases at risk overtime at the respective time point. Log-rank tests were used to compare 
survival distributors across subgroups.
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Table 3. Multivariate Cox regression of disease-free survival in 55 patients

Variable Beta SE Wald Hazard ratio 95% CI P-value

BAP1 mutation with negative 
BAP1 staining 2.045 0.644 10.076 7.731 2.187 – 27.322 0.002

Largest basal diameter 0.205 0.085 5.847 1.228 1.040 – 1.450 0.016

Age - - - - - -

Epithelioid cells - - - - - -

Extracellular matrix patterns - - - - - -

Monosomy 3 - - - - - -

Abbreviations: CI = confidence interval.

extracellular matrix patterns (P = 0.001), and chromosome 3 loss (P < 0.001). Considering 

the strong interaction between BAP1 mutation status and BAP1 expression, we validated 

whether this concurrent inactivation of the gene and protein is an independent parameter 

for disease-free survival. The possible confounding variables were analysed in a multivariate 

model. After correcting for these variables, we found that patients with a concurrent BAP1 

mutation and a negative BAP1 expression have an 7.7 times greater chance of developing 

metastases compared with those without these aberrations (P = 0.002, Table 3). The largest 

basal diameter of the tumour was also an independent predictor for disease-free survival (P 

= 0.016). The age at time of diagnosis, presence of epithelioid cells, extracellular matrix pat-

terns, and loss of chromosome 3 did not reach significance and were rejected. 

DISCUSSION

In this study, we found that nearly half of the investigated UM tumours harboured an inacti-

vating BAP1 mutation and that this was strongly associated with the absence of BAP1 stain-

ing, monosomy 3, and other prognostic features of aggressive tumours, such as the presence 

of epithelioid cells and extracellular matrix patterns. Nonetheless, a few discrepancies were 

observed between BAP1 mutation status and BAP1 immunohistochemistry. For two samples 

(S11 and S71), the immunohistochemistry results can be explained by the fact that both tu-

mours were disomic for chromosome 3 and harboured a heterozygous BAP1 mutation. Thus, 

presumably the remaining wild-type allele led to a normal positive staining. As mentioned 

previously, LOH of a small region containing the BAP1 gene was found in a three tumours 

by SNP array analysis. These tumours (S21, S37, and S42) were classified as loss of chromo-

some 3p21.1 although chromosome 3 was not entirely deleted. In addition, S21 and S42 

harboured a hemizygous BAP1 mutation (Figures 1A-C and Figure 2B). Our study confirms 
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that biallelic inactivation of BAP1 in UM tumour tissue is required to prevent BAP1 protein 

expression, through loss of one copy of chromosome 3 and a BAP1 mutation in the remain-

ing copy. Two UM (S23 and S43) with monosomy 3 had a positive BAP1 staining, despite har-

bouring an out-of-frame deletion in exon 16. One possibility for the positive staining could 

be that the truncated proteins (p.R666fs and p.E673X) are still detected by the BAP1 antibody. 

Interestingly, both deletions were heterogeneous for hemizygous mutant suggesting that a 

normal population of cells is still present in the tumour, which could have led to a positive 

staining. However, this is not supported by the observation that 80% and 100%, respectively, 

of the S23 and S43 tumour cells stained positive for BAP1. In two cases with evident heter-

ogeneous subpopulations of cells with and without BAP1 expression within the same UM 

(S5 and S7), the percentage of BAP1-negative UM cells was equal to the percentage of chro-

mosome 3 loss. Even though in our study, the percentage of BAP1 mutation does not always 

correlate with the percentage of absent expression, in most cases, these percentages are high 

enough to classify the tumours in the correct category. In one tumour sample (S3), 50% of the 

cells did not stain positive for BAP1 even though no BAP1 mutation was detected by exome 

sequencing. To be sure that the investigated clonal subpopulation were melanoma cells, we 

carried out a staining with HMB-45 and confirmed that this was the case. In this tumour 

S3, LOH of chromosome 3 was detected by FISH and SNP array analysis. Possibly, intronic 

variants which cannot be detected with exome sequencing prevent BAP1 expression in some 

of the cells in this tumour. Alternatively, the apparent LOH might reflect a more complex 

genetic rearrangement, where BAP1 is lost in a proportion of the cells comprising the tumour. 

Somatic BAP1 mutations have been described in other cancers, such as malignant 

pleural mesotheliomas and cutaneous melanoma, and the absence of BAP1 expression in 

mesotheliomas has been demonstrated by immunohistochemistry.15 In contrast to our UM 

cohort, 25% of the mesotheliomas without a BAP1 mutation did not display any immunohis-

tochemistry staining for BAP1. 

In two UM, a mutation was detected by one of the Next Generation Sequencing (NGS) 

approaches but could not be validated with Sanger sequencing (S58 and S63). In both cases, 

the percentage of reads with the mutation was quite low (5% and 4%, respectively). A limita-

tion of conventional Sanger sequencing is that low mosaicism variants are difficult to detect 

below a level of ~ 20%28 and this is likely to be the reason why S58 and S63 could not be 

validated. Both tumour samples stained BAP1-negative.

A recent study suggested that BAP1 inactivation might be more characteristic of epithe-

lioid mesotheliomas.29 We also found a correlation between BAP1 inactivation and UM with 

an epithelioid cell type suggesting that BAP1 deficiency may be particularly involved in the 

pathogenesis of uveal melanoma with an aggressive phenotype. 
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Previous research has shown that BAP1 mutations are present in 47% (27/57) of the 

primary UM and 84% (26/31) of class 2 UM.8 Our findings support the hypothesis that 

somatic BAP1 mutations promote metastases. In the overall study group, we found a BAP1 

mutation in 62% (18/29) of metastasising UM, and it is important to note that this could be an 

underestimation, since in a few patients, limited follow-up data was available. Selection bias 

could have occurred because untypical UM were selected for exome sequencing. Therefore, 

we excluded these tumours from our survival analysis. Nonetheless, it would be interesting 

to enlarge the study group with random, nonselected UM with a longer follow-up. After 

excluding the exome sequencing samples, there were six patients without metastasis after 

a follow-up of 4 years or longer. None of these individuals had a BAP1 mutation. Of the 18 

patients who developed metastases, 15 UM harboured a BAP1 mutation.

In the current study, we only investigated the BAP1 expression in tumours from enucle-

ated eyes. Over the years, eye-sparing therapies have proved to be equally effective in terms 

of patient survival compared with radical treatment.30, 31 With eye-sparing therapies biopsies 

can be taken for prognostication and it is also possible to perform BAP1 immunohistochemis-

try on biopsy specimens in our institute. This technique has an additive value in determining 

the patients’ prognosis.  

Recent work of Matatall and associates32 demonstrated that BAP1 depletion induces a 

primitive, stem-like phenotype and these findings implicate BAP1 in the maintenance of mel-

anocyte identity in UM cells. Therapeutic strategies that target these specific pathways in UM 

are urgently needed. Currently, therapeutic agents targeting BAP1 deficiency are being in-

vestigated. Histone deacetylase (HDAC) inhibitors have shown to reverse the effects of BAP1 

depletion in UM cells.33 As therapeutic options emerge, it is important to be able to rapidly 

identify the patients, enucleated and as conservatively treated patients, who would benefit 

from a specific intervention. Given the costs of BAP1 mutation analysis, immunohistochem-

istry offers an economical and fast alternative. In our study, we demonstrated that there is 

a strong association between BAP1 staining and BAP1 mutation status with a sensitivity of 

88% and a specificity of 97%. We propose that, the BAP1 immunohistochemistry should be 

implemented in the routine histopathological examination of UM. 
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Supplementary Table S1. The primer sequences used to amplify the exons of BAP1

BAP1 Forward Reverse

Exon 1 5’-TCCCGACCCTCCCCTTCG-3’ 5’-GGGTGGGGCGACAAGAGG-3’

Exon 2 and 3 5’-GGAGAGCGACCCAGGTGAGG-3’ 5’-GGGTTCCTGGCACTGTCTTCC-3’

Exon 4 5’-CATCCTTGGCCCTCAGTTCC-3’ 5’-TCCATTTCCACTTCCCAAGC-’3

Exon 5 5’-TTTAGAGTAGGAGGGTGTCTGAGTCC-3’ 5’-CCCTCCCTAGGCCTGTGTCC-3’

Exon 6 and 7 5’-GCTCTCTGAAGCTTTGCCTTCC-3’ 5’-TGCCACTGGGTACCACATACC-3’

Exon 8 5’-CCCGACCAGCTCCTGATTCC-3’ 5’-CAGATTCACCATATGGCCTTGC-3’

Exon 9 5’-GTTGGGGTGGGGCCTATACC-3’ 5’-ACAAATGCTGTGGGGGAAGG-3’

Exon 10 5’-GGTAGAGCCAAGGCCATTATTCC-3’ 5’-TGACGGGGGAAGAACACTGC-3’

Exon 11 5’-GCCGGGGAGACTGTGAGC-3’ 5’-CATGGGAAAATTGCCTGTTGC-3’

Exon 12 5’-CGCTGACTCAGTCTGGAAAACC-3’ 5’-CCCAGGGCCCCAAACTCC-3’

Exon 13a 5’-CTGCAGCTGTCAGAACTTGATGC-3’ 5’-AAGCACTGCCGATCTCAGAGG-3’

Exon 13b 5’-TCAATTCCTCTGTCCATCAAGACTAGC-3’ 5’-TCAGAGTGCAGGACACTTTGTGG-3’

Exon 14 5’-GCCTTGGACTGGCTCACTGG-3’ 5’-CCAGCCACCAATCTTCACACC-3’

Exon 15 and 16 5’-CATGGACTCGCTGCTCATCC-3’ 5’-GAGGGGAGCTGAAGGACACG-3’

Exon 17 5’-TGAGGCTTGAGCAGACCTTGG-3’ 5’-CCAGATGCTGCCTCCTGAGC-3’
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ABSTRACT 

Importance. In this study, we compare chromosomal aberrations and gene mutations be-

tween a primary uveal melanoma (UM) and it’s metastatic hepatic and peripancreatic me-

tastases. 

Observations. DNA was isolated from a large primary UM after fractionated stereotactic 

radiotherapy and three distinct metastases (two liver samples and one peripancreatic lymph 

node) to perform single nucleotide polymorphism array and fluorescent in situ hybridisation. 

We analysed mutations in UM target genes BAP1, GNAQ, GNA11, SF3B1 and EIF1AX. The 

primary tumour revealed no abnormalities in chromosome 3, whereas metastases showed 

deletion of at least 3q12.1-q24 while the BAP1 gene was not mutated. All samples revealed 

the following consistent chromosomal aberrations: loss of 1p, gain of 6p and gain of 8q. 

Subsequently, heterozygous SF3B1 and GNA11 mutations were observed. 

Conclusions and Relevance. The metastases showed more genetic aberrations than the pri-

mary tumour and therefore may represent the genetic status of the tumour prior to irradia-

tion, whereas the current primary tumour shows presumably irradiation artefacts. An early 

occurring mutation in GNA11 was observed in all samples. The SF3B1 mutation seems to 

predispose for late metastatic disease in absence of a BAP1 mutation.
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INTRODUCTION

Uveal melanoma (UM) are known to spread to the liver and less frequently to lungs, bones, 

skin and brain.1 Metastatic disease occurs in half of the UM patients and predominantly in 

those with monosomy 3 tumours. Recent studies have identified BAP1 mutations in meta-

static UM. Mutations of SF3B1 at codon 625 and EIF1AX have been identified in low-grade 

UM with a good prognosis.2, 3, 4 GNAQ and GNA11 mutations occur in the majority of UM 

patients and are not associated with survival.5 

We present a patient with an UM and late occurring metastases in the liver and peri-

pancreatic lymph node. We performed single nucleotide polymorphism (SNP) array analysis 

and fluorescent in situ hybridisation (FISH) on the primary tumour and metastatic tissue. 

Additionally, we analysed UM target genes BAP1, GNAQ, GNA11, SF3B1 and EIF1AX. 

CASE REPORT

In March 2001, a 45-year-old male presented with a decreased vision in his right eye (20/60) 

and normal vision left (20/20), with normal intraocular pressure. Indirect ophthalmoscopy 

and ultrasonography (US) of the right eye showed a dome shaped UM located temporal 

superior (Figure 1A) with a low to medium internal reflectivity, choroidal excavation and a 

largest basal diameter of 15.2 x 14.6 mm and a thickness of 7.8 mm. 

The gamma-glutamyl transpeptidase (gamma-GT) was high, compatible with a pre-ex-

istent alcohol abuse. Metastatic workup, including abdominal ultrasonography (US), revealed 

no abnormalities. Despite the large tumour, the patient opted to have fractionated stereotac-

Figure 1. A dome shaped uveal melanoma of the right eye in 2001 (A). In 2005, ischemic irradiation 
retinopathy developed after fractionated stereotactic radiation therapy (B).
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tic radiotherapy (fSRT) with a total dose of 50 Gray, and according to protocol a magnetic 

resonance imaging and computed tomography (CT) scan was performed for fSRT treatment 

planning. In 2004, the patient developed angle-closure glaucoma due to lens swelling and 

underwent cataract surgery. 

In January 2005, the tumour had regressed and a thickness of 2.9 mm was measured on 

US. Eventually, he developed therapy-resistant neovascular glaucoma due to ischemic reti- 

nopathy (Figure 1B) and the eye was enucleated. Histopathologic analysis showed a mixed-

cell malignant melanoma without ciliary body and scleral invasion, absence of extracellular 

matrix patterns, and mitotic figures in 4 per 50 high power fields. The centre and base of the 

tumour were necrotic without any obvious signs of inflammation. 

During follow-up visits, only gamma-GT values were elevated between 65 U/L and 

150 U/L. In the meantime, the patient requested referral to his primary ophthalmologist. In 

October 2009, the patient presented with abdominal pain and the CT scan showed several 

liver metastases and a peripancreatic lymph node metastasis of 5.9 mm. The patient died one 

month later and metastatic tissue became available with patients’ consent. Autopsy revealed 

that 70% of the liver was infiltrated with UM metastases. As in the primary tumour, mixed-

cells were found in the liver metastasis and in the peripancreatic lymph node. 

Table 1. An overview of chromosomal alterations and mutations of a primary uveal melanoma and mul-
tiple hepatic and peripancreatic metastases.

Primary tumour Liver metastasis 1 Liver metastasis 2 Peripancreatic lymph 
node metastasis

Chromosome 1p Loss p36.33-p13.2 Loss p36.33-p34.3 Loss p36.33-p34.3 Loss p36.33-p11.2 
(whole p-arm)

Chromosome 1q - Gain q21.1-q44 
(whole q-arm)

Gain q21.1-q44 
(whole q-arm)

Gain q21.1-q44 
(whole q-arm)

Chromosome 3p - Gain p26.3-p11.1 Gain p26.3-p14.3 -

Chromosome 3q - Loss q11.2-q24, 
gain q24-q29

Loss q11.2-q24, 
gain q24-q29

Loss q12.1-q24

Chromosome 6p Gain p25.3-12.1 Gain p25.3-12.1 Gain p25.3-12.1 Gain p25.3-12.1

Chromosome 6q - Loss q12-q27 Loss q12-q27 Loss q12-q27

Chromosome 8p Gain p23.3-p12 Loss p23.3-p11.1 
(whole p-arm)

Loss p23.3-p11.1 
(whole p-arm)

-

Chromosome 8q Gain q12.3-q24.3 Gain q11.1-q24.3 
(whole q-arm)

Gain q11.1-q24.3 
(whole q-arm)

Gain q12.3-q24.3 

GNA11 mutation p.Q209L (exon 5) p.Q209L (exon 5) p.Q209L (exon 5) p.Q209L (exon 5)

GNAQ mutation - - - -

BAP1 mutation - - - -

SF3B1 mutation p.R625C (exon 14) p.R625C (exon 14) p.R625C (exon 14) p.R625C (exon 14)

EIF1AX mutation - - - -
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METHODS 

Fresh tumour tissue was harvested and DNA was isolated as described previously.5, 6 Autopsy 

was performed within 4 days after death and metastatic tissue of liver and peripancreatic 

lymph node was fresh frozen. To determine copy number variations, the Illumina Human 

CytoSNP12 Beadchip (Illumina San Diego, California, USA) was used and data were an-

alysed with Nexus version 6 (Nexus BioDiscovery, El Segundo, California, USA). Chromo-

somal abnormalities were validated with FISH analysis on directly fixed tumour cells using 

centromeric or locus-specific probes: 1p36.33, 1p12, 1q21.1, 3p13, centromere 3, 3q11.2, 

3q13.3, 3q22, 3q25.1, 3q26, 6p22, 6q21, 8p21.3, centromere 8, 8q22 and 22q11.22. Chro-

mosome region 5q21.1 was used as a control. Exon 4 and 5 of GNAQ and GNA11, and the 

entire BAP1 gene were sequenced as described previously.3, 5 Exon 14 of SF3B1 (including 

hotspot R625), and exon 1 and 2 of EIF1AX were analysed with Sanger sequencing (protocols 

available upon request). 

RESULTS AND DISCUSSION

Chromosomal alterations and gene mutations as (incomplete and complete) loss of 1p, gain 

of 6p, gain of 8q, a GNA11 mutation and a heterozygous mutation in SF3B1 were observed 

in all samples. The metastases contained more chromosomal aberrations when compared to 

the primary tumour, such as gain of 1q, loss of region 3q11.2-3q24 and loss of 6q (Table 1 

and Figure 2). 

The primary tumour as well as metastatic tissue harboured a mutation in exon 5 of the 

GNA11 gene. Most of the UM contain mutations in GNAQ and GNA11 and these mutations 

are considered to occur early in UM development.7 Estimates of tumour doubling times 

range between 30 to 80 days and support the hypothesis that UM with the propensity to 

metastasise do this when they are small, and prior to detection and treatment of the primary 

tumour.8 

Even though several studies on UM metastases describe that most metastases reflect the 

primary tumour, the patient’s primary tumour was irradiated and shows differences from its 

metastases (Table 1).9 In metastatic samples, we found a gain of 8q and partial loss of chro-

mosome 3q. In the pathogenesis of UM, monosomy 3 is considered to be an early event and 

gain of 8q a secondary hit.10 A large tumour diameter, such as the primary tumour, is associat-

ed with a high percentage gain of chromosome 8q.11 Trolet et al.9 also observed a higher level 

of 8q gain in monosomy 3 metastatic tumours compared to monosomy 3 non-metastatic 

UM. Although abnormalities of chromosome 6 have been associated with a good prognosis, 
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Figure 2. Whole-genome single nucleotide polymorphism array analyses in the primary tumour (A), liver 
metastasis 1 (B), liver metastasis 2 (C), and the peripancreatic lymph node (D). Each panel includes plots 
of log R ratio (upper panel) and B allele frequency (lower panel).
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loss of chromosome 6q has been correlated with decreased survival and has been considered 

to be a secondary event.10,12 

The metastases revealed more chromosomal abnormalities compared to the prima-

ry tumour. With radiation applied to the primary tumour, cell killing is assumed to occur 

through DNA cluster damage. This leads to chromosome aberrations and eventually to clo-

nogenic inactivation.13 Nevertheless, early mutations, such as GNA11, were present in all 

cells. BAP1 mutations, which are assumed to occur later and predispose for metastatic dis-

ease, were absent in the primary tumour, and also in the metastases (Table 1). Monosomy 

3 and BAP1 mutations are associated with poor prognosis. However, a subset of UM with 

a monosomy 3 do not have a BAP1 mutation.2,3 If patients develop metastases, they occur 

much later than metastases in the patients with a BAP1 mutated tumour.3 SF3B1 mutations 

have been associated with good prognostic parameters.4, 14 We observed a SF3B1 mutation in 

the primary tumour and metastases in absence of a BAP1 mutation. This implies that a SF3B1 

mutation does not protect for metastases, and that there are different mechanisms involved 

in developing metastatic disease in UM. 

This case report describes an UM with its corresponding metastases which occurred 

many years after primary treatment. Besides loss of 1p and gain of 8q, a SF3B1 mutation 

seems to predispose for late metastatic disease in absence of a BAP1 mutation.
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ABSTRACT

Purpose. Hotspot mutations in the promoter region of telomerase reverse transcriptase (TERT 

promoter mutations) occur frequently in cutaneous and conjunctival melanoma and are ex-

ceedingly rare in uveal melanoma (UM). No information is available on the presence of 

these mutations in the conjunctival melanocytic precursor lesion primary acquired melano-

sis (PAM). We tested a cohort of uveal and conjunctival melanomas as well as conjunctival 

benign and premalignant melanocytic lesions for TERT promoter mutations in order to eluci-

date the role of these mutations in tumour progression.

Methods. TERT promoter mutation analysis on fresh tumour DNA and DNA from forma-

lin-fixed, paraffin-embedded specimens was performed by SNaPshot analysis in 102 UM, 39 

conjunctival melanomas, 26 PAM with atypia, 14 PAM without atypia, and 56 conjunctival 

naevi. 

Results. Mutations of the TERT promoter were not identified in conjunctival naevi or PAM 

without atypia, but were detected in 2/25 (8%) of PAM with atypia and 16/39 (41%) of 

conjunctival melanomas. A single TERT promoter mutation was detected in 102 UM (1%).

Conclusion. We present the second documented case of TERT promoter mutation in UM. 

In comparison with other types of melanoma, TERT promoter mutations occur at extremely 

low frequency in UM. TERT promoter mutations are frequent in conjunctival melanoma and 

occur at lower frequency in PAM with atypia but were not detected in benign conjunctival 

melanocytic lesions. These findings favour a pathogenetic tumour progression role for TERT 

promoter mutations in conjunctival melanocytic lesions. 
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INTRODUCTION

Melanoma is one of the most deadly malignancies of the eye and ocular surface. The in-

cidence of uveal melanoma (UM) (5.6 per million) has remained unchanged for decades,1 

but the incidence of conjunctival melanoma, although rare (0.45 – 0.8 per million),2 shows 

a trend of increasing frequency of diagnosis in Europe and the United States.3, 4 Telomerase 

reverse transcriptase (TERT) promoter mutations occur frequently in cutaneous melanoma5, 

6 and in conjunctival melanoma7 but rarely in cutaneous acral melanomas8 and UM.6, 9 The 

frequency of TERT promoter mutations in primary acquired melanosis (PAM) and conjuncti-

val naevi has not yet been described. Here, we investigated the presence of TERT promoter 

mutations in UM, conjunctival melanoma, PAM with atypia, PAM without atypia, and con-

junctival naevi in order to elucidate the role of these mutations in tumour progression.

MATERIALS AND METHODS

Patients and samples

Tissue specimens were obtained from patients with a conjunctival melanocytic lesion or 

UM who had undergone biopsy, excision, or enucleation between 1972 and 2013 at the 

Erasmus University Medical Centre or The Rotterdam Eye Hospital, the Netherlands. Fresh 

tissue samples were obtained from enucleation specimens of 102 primary UM. Conjunctival 

tissue of all patients diagnosed with conjunctival melanoma or PAM (n = 205), as well as 56 

patients with conjunctival naevi, was selected from the electronic archives of the Department 

of Pathology. Paraffin-embedded tissues were retrieved from the archive, and the amount of 

tissue present in the blocks was assessed. Samples of 125 patients contained enough material 

for further study. Next the original glass slides were retrieved from the archive, and the initial 

diagnoses were reassessed by a pathologist specialised in ophthalmic pathology (RMV), as 

well as mitosis count, Breslow’s thickness, presence of leukocyte infiltration and necrosis (al-

though rare in melanoma). After confirming diagnosis and assessment, 56 conjunctival naevi 

samples, 14 PAM without atypia samples, 26 PAM with atypia samples, and 39 conjunctival 

melanoma samples were used for DNA isolation. Clinical details were obtained from patient 

records. The study was performed accordance with the tenets of the Declaration of Helsinki.

DNA isolation

DNA from UM was extracted directly from fresh tumour tissue or frozen tumour using the QI-

Amp DNA-mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 
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The DNA isolation procedure for the conjunctival naevi, PAM and conjunctival melanoma 

samples was performed on formalin-fixed paraffin-embedded (FFPE) specimens. Criteria for 

DNA collection was the presence of more than 70% tumour cells. For PAM samples this 

percentage was not feasible, and a minimum of 20% tumour cells was used for these cases. 

Microdissection was performed by scraping the tumour cells manually from haematoxy-

lin-stained sections on a glass slide. DNA was extracted from the tissue fragments by incuba-

tion overnight at 56°C in lysis buffer (A7933; Promega, Madison, Wisconsin, USA) contain-

ing 2 mg/ml proteinase K and 5% Chelex 100 resin. Proteinase K was inactivated at 100°C 

for 10 min, and the DNA was separated from cell debris by centrifugation at maximum speed 

in a microcentrifuge for 5 min.

Chromosomal and gene analyses in uveal melanoma

Copy number variations in UM on chromosome 1, 3, 6, and 8 were investigated by fluores-

cence in situ hybridisation (FISH) and single nucleotide polymorphism analysis, as described 

previously.10 The GNAQ and GNA11 mutation status was determined with Sanger sequenc-

ing,11 and BAP1 expression was examined as reported previously.12

Mutation analysis

SNaPshot analysis to determine the presence of mutations in three mutational hotspots, 

C228, C242, and C250 (chr5:1,295,228C>T; chr5:1,295,242-243CC>TT; chr5:1,295,250 

C>T, respectively; hg19), in the promoter region of TERT was performed essentially as de-

scribed previously.13 A 155-bp DNA segment was amplified with upstream primer 5’-AG-

CGCTGCCTGAAACTCG-3’ and downstream primer 5’-CCCTTCACCTTCCAGCTC-3’ as 

described above. Subsequently, a single nucleotide probe extension assay was performed 

with probes designed to anneal to the sites of interest (228 probe: 5’-T23 GGCTGGGAG-

GGCCCGGA-3’; 242-243 probe: 5’-T27 GGAGGGGGCTGGGCGG-3’; 250 probe: 5’-T39 

CTGGGCCGGGGACCCGG-3’). These probes were adapted with poly T tails of different 

lengths to allow separation of the extended products by size. SNaPshot analysis was per-

formed with the SNaPshot multiplex kit (Life Technologies, Bleiswijk, the Netherlands) ac-

cording to manufacturer’s instructions. Thermal cycler conditions were as follows: 35 cycles 

of 10 s at 96°C and 40 s at 58.5°C. Snapshot products were analysed on an ABI Prism 3730xl 

genetic analyser (Applied Biosystems, Bleiswijk, the Netherlands). 

Statistical analyses

All statistical analyses were performed with the Statistical Package for Social Science (IBM 

SPSS Statistics 20, Chicago, IL, USA). P-values equal or below 0.05 were considered to be 
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statistically significant. Correlations were calculated with either the χ2-test or Fisher’s exact 

test (categorical variables) or the Mann-Whitney U test (continuous variables). Kaplan-Meier 

survival curves were made for survival analysis by using the Log rank statistic.

RESULTS

Study cohort

SNaPshot analyses were obtained from the tumour samples of 102 UM, 39 conjunctival mel-

anoma, 26 PAM with atypia, 14 PAM without atypia, and 56 conjunctival naevi patients. The 

samples were primary or recurrent tumours, and seven cases were tested from both primary 

tumour and recurrences, with identical results. In two PAM cases no reliable results could 

be obtained because of insufficient quality of the DNA isolated from FFPE tissue. The UM 

group consisted of 55 men and 47 women with a mean age at diagnosis of 61.5 years (range, 

21 – 86 years). Ninety-one tumours were localised in the choroid and 11 in the ciliary body. 

The mean largest tumour diameter and prominence was 13.4 and 8.2 mm., respectively. 

Thirty-two of 76 (32.4%) investigated UM showed an absent BAP1 expression, and 93 of 

99 (91.2%) tumours harbored a mutation in either GNAQ or GNA11. The clinical, histo-

pathologic, and molecular characteristics of the UM are shown in Table 1. The clinical and 

histopathologic characteristics of the conjunctival melanocytic lesions are listed in Table 2. 

The mean age at diagnosis was 41.3, 48.0, 64.0 and 62.5 years for conjunctival naevi, PAM 

without atypia, PAM with atypia, and conjunctival melanoma, respectively. Recurrences of 

the melanocytic lesions occurred predominantly in the PAM with atypia and conjunctival 

melanoma group (57.7% and 48.7%, respectively). No metastases were observed in patients 

with conjunctival naevi or PAM without atypia. Conjunctival naevi were located at different 

sites on the conjunctiva, while PAM without atypia was located in the bulbar conjunctiva 

in 71% of cases and more specifically at the limbus in another 21%. Of the PAM lesions 

with atypia, 17 were located at the limbus (65%), 3 on the palpebral conjunctiva, 1 on the 

fornix, 1 on the bulbar conjunctiva, and 1 on the caruncula lacrimalis, and 3 were multifo-

cal. Eighteen (46%) conjunctival melanomas were on located at the limbus, 7 on the bulbar 

conjunctiva, 9 on the palpebral conjunctiva, and 2 in the fornix. The mean Breslow thickness 

of conjunctival melanoma was 2.3 mm (range, 0.3 – 17.0 mm).

SNaPshot TERT promoter mutation analysis 

One of 102 UM (1.0%) showed a 250C>T TERT promoter mutation. This tumour had a dis-

omy of chromosomes 1p and 3, and a gain of chromosomes 6 and 8. In addition, this sample 
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Table 1. Clinical, pathologic, and genetic characteristics of the uveal melanoma cohort (n = 102)

Uveal melanoma

Clinical features n = 102

Gender

Male, n (%) 55 (53.9)

Female, n (%) 47 (46.1)

Mean age at diagnosis, years (range) 61.5 (21 – 86)

Metastasis

Present, n (%) 46 (45.1)

Not present, n (%) 56 (54.9)

Survival

Alive, n (%) 35 (34.3)

Death due to metastasis, n (%) 44 (43.1)

Death due to other cause, n (%) 23 (22.5)

Mean metastasis-free survival, months (range) 78.3 (0.8 – 209.1)

Histopathological features

Location

Choroid, n (%) 91 (89.2)

Ciliary body, n (%) 11 (10.8)

Mean largest tumour diameter, mm (range) 13.4 (6.0 – 22.0)

Mean prominence, mm (range) 8.2 (1.5 – 22.0)

Cell type

Spindle, n (%) 45 (44.1)

Mixed / epithelioid, n (%) 57 (55.9)

Extracellular matrix patterns

Present, n (%) 49 (48.0)

Not present, n (%) 52 (51.0)

Lymphocytic infiltration

Present, n (%) 6 (5.9)

Not present, n (%) 31 (30.4)

Not examined, n (%) 65 (63.7)

Necrosis

Present, n (%) 22 (21.6)

Not present, n (%) 16 (15.7)

Not examined, n (%) 64 (62.7)

Extraocular extension

Present, n (%) 12 (11.8)

Not present, n (%) 90 (88.3)

BAP1 expression

Negative, n (%) 32 (31.4)

Positive, n (%) 44 (43.1)
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harboured a heterozygous GNA11 mutation in exon 5 (p.Q209L) and had a normal BAP1 

staining, compliant with a primary low-risk UM signature. Blood of this patient was available 

for TERT analyses revealing a wild-type status. A total of 16 TERT promoter mutations, three 

228C>T, two 242CC>TT, and eleven 250C>T, were found in the 39 conjunctival melanoma 

(41.0%); and 2 of 25 (8.0%) PAM with atypia showed a mutation, one 228C>T (Figure 1) and 

one 250C>T (Figure 2 and Table 3). In one case a conjunctival naevus and a conjunctival 

melanoma were analysed from the same patient as unrelated lesions. In seven cases, concur-

rent PAM and conjunctival melanoma were analysed from the same patient. In none of these 

cases did the lesion contain a TERT promoter mutation. In the two cases of PAM with atypia 

that carried TERT promoter mutations, one recurred once as a PAM with atypia and was then 

radically excised; the other case also had one recurrence as PAM with atypia, which was 

irradically excised. Subsequently, both these patients received successful additional treat-

ment with cryotherapy and topical mitomycin C with no recurrences. No TERT promoter 

mutations were identified in 13 PAM without atypia and 56 conjunctival naevi patients (16 

stromal and 40 compound naevi). 

Correlations of TERT promoter mutation status with clinicopathologic patient 

characteristics

The mean age of patients with conjunctival naevi did not differ significantly from that of pa-

tients with PAM without atypia (41.3 versus 48.0 years, P = 0.284). Patients with PAM with 

Table 1. Clinical, pathologic, and genetic characteristics of the uveal melanoma cohort (continued)

Genetic features

Chromosome 3

Loss, n (%) 52 (51.0)

Normal, n (%) 49 (48.0)

Chromosome 8p

Loss, n (%) 21 (20.6)

Normal, n (%) 61 (59.8)

Gain, n (%) 19 (18.6)

Chromosome 8q

Loss, n (%) 1 (1.0)

Normal, n (%) 37 (36.3)

Gain, n (%) 63 (61.8)

GNAQ or GNA11 mutation

Mutated, n (%) 93 (91.2)

Wild type, n (%) 6 (5.9)
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Figure 1. Histology and SnaPShot analysis results of case 15, primary acquired melanosis with severe 
atypia (A), 228C>T mutation (B) indicated by arrow.

Figure 2. Histology and SnaPShot analysis results of case 72, primary acquired melanosis with moderate 
atypia (A), 250C>T mutation (B) indicated by arrow.

Table 3. Overview of the TERT promotor mutations found in different types of melanocytic conjunctival 

and uveal lesions.

Conjunctival 
naevi

PAM without 
atypia

PAM with atypia Conjunctival 
melanoma

Uveal melanoma

n (%) n (%) n (%) n (%) n (%)

TERT mutation 0/56 0/13 2/25 (8.0%) 16/39 (41.0%) 1/102 (1.0%)

g.1295228C>T - - 1 3 0

g.1295242CC>TT - - 0 2 0

g.1295250C>T - - 1 11 1

Abbreviations: PAM = primary acquired melanosis.

110 Chapter 2.5



atypia and conjunctival melanoma were significantly older than patients with PAM without 

atypia (64.0 versus 48.0, P = 0.025; 62.5 versus 48.0 years, P = 0.017). No significant dif-

ference in mean age was observed between PAM with atypia and conjunctival melanoma 

(64.0 versus 62.5 years, P = 0.708). Overall, TERT mutations did not significantly correlate 

with the development metastatic disease (P = 1.000). For subgroup analysis, no correlations 

could be calculated for UM. The conjunctival melanoma cases with TERT promoter mutation 

did not show a statistically significant correlation with adverse histologic prognostic factors 

when compared to nonmutated cases as to mean Breslow thickness (2.7 versus 2.1 mm, 

respectively, P = 0.824), mitotic count (14.6 versus 7.3, respectively, P = 0.138), or necrosis 

(P = 0.502). There was also no significant association between conjunctival location and the 

presence of a TERT promoter mutation in PAM with atypia and conjunctival melanomas (P 

= 0.153). No significant differences in clinical outcome were observed. The mean survival of 

TERT promoter mutated cases when compared to nonmutated cases did not differ significant-

ly (75.3 versus 60.4 months, respectively, P = 0.490). Six of 16 patients with a TERT mutated 

tumour developed a recurrence of the melanocytic lesion after excision compared to 13 of 

23 patients with a wild-type tumour (P = 0.272, Figure 3A). In total, 8 of 39 patients with 

conjunctival melanoma developed metastatic disease; four of these tumours harboured a 

TERT mutation (P = 0.527, Figure 3B). Three out of 16 mutated conjunctival melanoma cases 

died from metastatic disease compared to none of the wild-type cases.

Figure 3. Kaplan-Meier survival estimate for the time to recurrence of conjunctival melanoma (A) and 
the time to metastasis of conjunctival melanoma (B), showing no significant differences among survival 
between the TERT mutated and wild-type cases.
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DISCUSSION

Melanomas are the most common lethal primary ocular cancers. In the ophthalmic practice, 

melanomas mainly occur in two types, UM and conjunctival melanoma, which differ in 

both genetic and molecular background. We detected TERT promoter mutations in a high 

percentage (41%) of conjunctival melanomas as compared to only 1% of UM. These results 

are in accordance with one other cohort in which TERT promoter mutations were detect-

ed in approximately one-third of conjunctival melanoma.7 We present the second case of 

a TERT promoter mutation in an otherwise cytogenetically and molecularly unremarkable 

case of UM. Both the TERT promoter mutated UM described here and the TERT promoter 

mutation-positive UM described by Dono et al.9 have a cytogenetic low risk signature. Until 

now, TERT promoter mutations have been detected in only 1 out of a total of 97 UM-de-

rived samples from two different cohorts.7, 9 Uveal melanoma, in contrast to conjunctival 

melanoma, lack BRAF or NRAS mutations but frequently have GNAQ, GNA11, BAP1 or 

SF3B1 mutations.9, 11 These findings confirm that since genetic alterations are different,14 the 

molecular pathogenesis of UM is distinct from that of conjunctival or cutaneous melanoma. 

In contrast to earlier reports, the mere presence of TERT promoter mutations cannot be used 

to distinguish primary UM from (metastatic) cutaneous or conjunctival lesions.7

The core promoter region of the TERT gene encodes the rate-limiting catalytic reverse 

transcriptase subunit of the telomerase ribonucleoprotein complex. The g.1295228C>T, 

g.1295250C>T, or less common g.1295242CC>TT mutations upstream of the transcription 

start site create de novo CCGGAA/T general binding motifs for E-twenty six/ternary complex 

factors (Ets/TCF) transcription factors, which differs from preexisting GGAA/T Ets binding 

sites within the TERT promoter. The Ets transcription factors are downstream targets of RAS-

RAF-MAPK pathways, and TERT promoter mutations are suggested to have synergistic effects 

with activating BRAF or NRAS mutations to promoter tumour cell proliferation. BRAF and 

NRAS mutations have been proposed to be driver mutations in the development of cutane-

ous melanocytic neoplasms since they are present in both benign and malignant neoplastic 

lesions.15, 16

We are the first to show the presence of TERT promoter mutations in a premalignant 

melanocytic lesion, PAM with atypia, and its absence in PAM without atypia and conjunc-

tival naevi. The mutation frequency of 33% reported in primary cutaneous melanomas6, 17 is 

similar to the mutation rate in primary conjunctival melanomas. Conjunctival melanomas, 

like cutaneous melanomas, frequently harbour BRAF or NRAS mutations.7 The high frequen-

cy of TERT promoter mutations and the higher than expected rate of concomitant mutations 

in the TERT promoter and BRAF in cutaneous melanoma6 might suggest that TERT promoter 

mutations are driver mutations in the pathogenesis of melanoma. However, in contrast to 
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BRAF mutations, TERT promoter mutations were not identified in benign cutaneous naevi (n 

= 34),6, 17 nor in conjunctival naevi7 or PAM without atypia. The possible influence of TERT 

promoter mutations in molecular progression is demonstrated by the identification of these 

mutations in a low percentage of premalignant melanocytic lesions PAM with atypia and in 

a higher percentage in conjunctival melanoma. In the past, it has been observed that mild 

atypia does lead to a highly increased chance for malignant progression. Although our cohort 

contained only 14 cases of PAM without atypia, this would be in agreement with that obser-

vation. The acquisition of TERT promoter mutations can be hypothesised to facilitate stabili-

sation of the transformed genome through reversal of telomeric loss. Many conjunctival mel-

anocytic naevi carry BRAF mutations,18 whereas TERT promoter mutations are detected only 

in primary melanoma and, as we have shown, in PAM with atypia. In cutaneous squamous 

cell carcinoma lesions a similar role for TERT promoter mutations can be observed, with 

mutations in 50% of squamous cell carcinoma and 9% of Bowen’s disease (in situ lesions). 

In contrast, the role for TERT promoter mutations as a driver mutation is more convincing in 

urothelial cell neoplasms, where TERT promoter mutations are present in a high percentage 

(74%) in both low-grade and high-grade in situ urothelial cell carcinoma13, 19 as well as in 

invasive urothelial cell carcinoma (53%).13, 20

The increased telomerase expression associated with TERT promoter mutations5 offers 

new therapeutic possibilities in TERT mutated conjunctival melanoma. General reverse tran-

scriptase inhibitors such as AZT (azidothymidine), which acts on the reverse transcriptase 

activity of TERT, may warrant investigation for potential therapeutic potential in conjunctival 

melanoma with TERT promoter mutations.21 Another way to inhibit telomerase function is 

to reduce levels of TERT transcripts. The telomerase nucleotide bases inhibitor, imetelstat 

(GRN163L), has shown effectiveness in melanoma cell lines22 and entered Phase I23 and II 

clinical trials for other tumour types. More specific chemical inhibitors of telomere extension, 

MST-312, BIBR1532, b-rubromycin, PIPER {N,N0-bis [2-(1-piperidino) ethyl]-3,4,9,10-tetra-

carboxylic diimide}, and TmPyP4 are in experimental phase at this moment.24 

In conclusion, we present the first data on TERT promoter mutations in PAM with atyp-

ia and propose its possible role as a molecular tumour progression marker for conjunctival 

melanocytic lesions.
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ABSTRACT

Purpose. To examine the prognostic relevance of expression of the chemokine receptors 

CCR7 and CXCR4 and its ligand CXCL12 in uveal melanoma in non-metastatic and meta-

static patients with correlation to liver metastasis and overall survival. 

Methods. Primary uveal melanoma specimens from 19 patients with correlating liver me-

tastasis specimens and 30 primary uveal melanoma specimens of patients without metas-

tasis were collected between the years 1988 and 2008. Expression of CCR7, CXCR4 and 

CXCL12 were studied using immunohistochemistry. Single nucleotide polymorphism arrays 

were used to examine gains or losses of chromosomes 1, 3, 6 and 8 and the regions of CCR7 

(17q12-q21.2), CXCR4 (2q21) and CXCL12 (10q11.1) genes. 

Results. Strong cytoplasmic staining for CCR7 correlated with the presence of epithelioid 

cells (P = 0.037), tumour thickness (P = 0.011), lymphocytic infiltration (P = 0.041) and 

necrosis (P = 0.045). Nuclear staining for CXCR4 correlated with lymphocytic infiltration (P 

= 0.017). CXCL12 showed no correlation to histological parameters. Single nucleotide pol-

ymorphism analyses showed no copy number variations in the regions of CCR7, CXCR4, or 

CXCL12. Strong expression of CCR7 was observed in 76% of the metastatic patients and 0% 

of non-metastatic patients. In multivariate analysis, CCR7 staining was inversely correlated to 

overall survival and disease-free survival whereas CXCR4 nuclear staining was not.

Conclusions. Our data suggest that CCR7 plays a role in uveal melanoma metastasis and is 

associated with poor survival. CCR7 and its involved related pathways are of prognostic val-

ue in uveal melanoma and may prove to be a target for therapeutic intervention.
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INTRODUCTION

Uveal melanoma (UM) is the most common type of primary eye cancer in adults. Approxi-

mately 0.7/100,000 of the Western population is affected yearly.1 The age-adjusted incidence 

of UM (5.1 per million) has remained unchanged from 1973 to 2008. Despite new and more 

conservative treatments, survival has not improved during this time period.2 Well-known 

clinical prognostic factors are age and location of the tumour. UM patients that are of older 

age tend to have a worse prognosis. The most important clinical prognostic factor is the 

tumour size, which is often used for selection of treatment. A large study showed that each 

increase in millimetre of tumour thickness increased the risk of metastasis by 5%.3 The most 

common location for the initial metastasis is the liver. Median survival with initial liver me-

tastasis is 4 to 12 months.4 UM containing fast growing epithelioid cells, have aggressive be-

haviour, and is therefore are associated with a poor prognosis. Other histologic features that 

have been associated with mortality and metastasis are extrascleral extension, extracellular 

matrix patterns, mitotic count, tumour necrosis, and presence of lymphocytic infiltration.5

Chemokine receptor CCR7 is mainly expressed in lymphoid cells, its function is mainly 

mediating cell migration of naive lymphocytes and mature dendritic cells to secondary lym-

phoid organs towards chemokines CCL19 and CCL21. CCL19 and CCL21 are the ligands of 

CCR7 and are both mainly expressed by stroma cells in lymphoid tissues.6 CCR7 has been 

shown to regulate integrins, which influence the transport of cancer cells and help them 

migrate through the extracellular matrix.7 Wang et al.8 found evidence that CCR7 mediates 

survival and invasion of metastatic squamous cell carcinoma cells through activation of PI3K.

This indicates that CCR7 is involved in tumour progression and metastasis. It is known that 

chemokine receptors are expressed widely on different types of cancers such as non-small 

cell lung cancer, gastric cancer, head/neck cancer, and colon cancer.9-12 CCR7 is also ex-

pressed on B-cell acute lymphatic leukaemia and chronic lymphatic leukaemia.13 Strong 

expression of CCR7 has been associated with poor clinical outcome in patients with cutane-

ous melanoma.14, 15 Recently, strong expression of CCR7 was found in UM cells.16 The role 

of chemokine receptor CXCR4 has been described in multiple malignancies that metastasise 

to the liver, and therefore might provide a pathway for therapeutic intervention. In addition, 

CXCR4 also localises on vascular endothelial cells and mediates the angiogenic activity of 

the chemokine CXCL12.17 A recent study shows that CXCR4 is commonly expressed in UM 

and correlates with epithelioid cell type, a well-established prognostic factor.18 High levels of 

its ligand, CXCL12, in the liver offer an attractive explanation for the selective metastasis of 

UM to the liver.19 It has been hypothesised that the CXCL12/CXCR4 pathway might mediate 

cancer cells to ‘home’ to specific secondary sites, thereby promoting organ-specific hepatic 

metastasis.20 
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In this study, we investigated the expression of CCR7 and CXCR4/CXCL12 in both pri-

mary and metastatic tumour samples. Furthermore, we examined whether expression levels 

are correlated with clinical, histopathologic, and chromosomal parameters as well as sur-

vival, to gain more insight into prognostic factors and possible opportunities for therapeutic 

intervention.

MATERIALS AND METHODS

Patient samples

Forty-nine UM paraffin samples, fresh UM tissue for DNA isolation, and corresponding met-

astatic liver paraffin samples were collected at the Department of Pathology of the Erasmus 

University Medical Centre between 1988 and 2008. Classical histopathologic parameters 

such as cell type, mitotic count (per 8 mm2 equal to 50 high-power fields (HPF)), necrosis, 

lymphocytic infiltration, extraocular extension, and optical nerve invasion were scored by 

haematoxylin and eosin (H&E) staining, and extracellular matrix patterns with periodic ac-

id-Schiff (PAS) staining without haematoxylin staining. Cell type was assigned according to 

the Callender classification system. The research followed the tenets of the Declaration of 

Helsinki.

Construction of Tissue Microarray (TMA) samples

The TMA contained 19 cases of UM patients with histologic confirmed metastasis and 30 pa-

tients without metastasis. These were constructed from representative areas of formalin-fixed 

specimens. The TMA consisted of random located 2-mm core samples of each case. The 

4-μm sections were cut from TMA and were stained with H&E to confirm the presence of the 

expected tissue histology within each tissue core. Additional sections were cut for immuno-

histochemistry analyses and fluorescence in situ hybridisation (FISH) analyses.

Immunohistochemistry CCR7, CXCR4 and CXCL12

In the evaluation set, we assessed expression of CCR7, CXCR4, and CXCL12 by immuno-

histochemistry to determine specificity and sensitivity. The samples were scored positive or 

negative by masked screening. Immunohistochemistry was performed with an automated 

immunohistochemistry staining system (Ventana BenchMark ULTRA; Ventana Medical Sys-

tems, Tucson, AZ, USA) using alkaline phosphatase method for all antibodies and a red chro-

mogen. Briefly, following deparaffinisation and heat-induced antigen retrieval for 64 min, 

with exception of CXCR4 (protease treatment for 4 min at 36˚C), the tissue sections were 
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incubated with primary antibody CCR7 (clone 150503, 1:32000 dilution), CXCL12 (clone 

79018, 1:50 dilution), and CXCR4 (clone 44716, 1:128000 dilution; all from R&D Systems, 

Minneapolis, MN, USA) for 1 h at 36˚C. A subsequent amplification step was followed by 

incubation with haematoxylin II counter stain for 8 min and then blueing reagent for 8 min 

according to the manufacturer’s instructions (Ventana). Liver, tonsil and breast tissue were 

used as positive controls for CCR7, CXCR4 and CXCL12. Tumours were scored according to 

the intensity as negative (-), mildly positive (+), moderately positive (++), or strongly positive 

(+++) of cytoplasmic staining for CCR7 and CXCL12. Nuclear and cytoplasmic staining was 

scored in a similar way for CXCR4. The histopathologic characterisation of the tissue sections 

and the immunohistochemistry staining’s were independently evaluated by an ophthalmic 

pathologist.

DNA isolation

DNA was isolated from fresh received primary tumour samples using the QIAamp DNA-mini 

kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA concen-

tration was measured using the NanoDrop ND-1000 Spectrophotometer (NanoDrop tech-

nologies, Wilmington, DE, USA) and Picogreen assay (Molecular Probes, Eugene, OR, USA). 

DNA was stored at -20˚C. 

Single Nucleotide Polymorphism (SNP) array analysis 

Two hundred nanograms of fresh primary tumour DNA were used as input for whole genome 

analysis by SNP array for each UM sample, to examine gains or losses of chromosomes 1, 3, 

6 and 8 and the regions of CCR7 (17q12-q21.2), CXCR4 (2q21) and CXCL12 (10q11.1) genes 

(Illumina 610Q BeadChip, Illumina, San Diego, CA, USA). The SNP array data were analysed 

with the Nexus 6 software (BioDiscovery, El Segundo, CA, USA).

FISH analysis

To validate non-random chromosomal anomalies on either the short arm (p) and/or long arm 

(q) of chromosomes 1, 3, 6 and 8, FISH was performed on fresh tumour material (n = 31) or 

primary UM paraffin samples (n = 15) as described before.21

Statistical analysis

We used several tests to assess whether clinical, histopathologic and chromosomal parame-

ters were associated with expression levels. The χ2-test and the Fisher’s exact test were used 

for categorical variables. The Mann-Whitney test and the Kruskal-Wallis test were used for 

two and more than two continuous variables, respectively. For survival analyses both the 
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overall survival and the disease-free survival were taken into account. The primary endpoint 

for overall survival was defined as the time to death due to metastasis, whereby death due to 

other causes were treated as censored. The disease-free survival was defined as the time to 

the development of metastatic disease. The influence of single prognostic factors on overall 

survival and disease-free survival were assessed using the Kaplan-Meier method (for categor-

ical variables) or the Cox proportional hazard analysis (for continuous variables). To identify 

the independent value of the prognostic factors on overall survival and disease-free survival, 

we used a multivariate Cox proportional hazard analysis with a forward stepwise method 

based on likelihood ratios. An effect was considered significant if the P-value was less than 

or equal to 0.05. The statistical analyses were performed with the SPSS software version 20.0 

(IBM, Chicago, IL, USA).

RESULTS

A total of 49 patients were included in the study. Twenty-three of the patients were male 

and 26 were female. The mean age was 57 years (range 27 – 84); the mean largest tumour 

diameter was 12.5 mm (range 5.0 – 19.0) and the mean tumour thickness was 6.9 mm (range 

2.0 – 20.0). Twenty-three tumours were classified as spindle cell type, five as epithelioid 

cell type and 21 as mixed. The mean overall survival (follow-up) was 171 months for the 

non-metastatic group and 69 months for the patients who developed metastatic disease. Four 

patients died due to another cause. The clinical and histopathologic tumour characteristics 

for non-metastatic patients and metastatic patients are shown separately in Table 1 and Table 

2, respectively.

Table 1. Patient characteristics of the investigated study group stratified for the presence of metastatic 
disease 

Patient characteristics
Patients without metastasis Patients with metastasis

No. of patients (n) No. of patients (n)

Male 14/30 9/19

Female 16/30 10/19

Mean (range) Mean (range)

Age at time of diagnosis, years 57.7 (34.0 – 84.0) 56.2 (27.0 – 84.0)

Tumour thickness, mm 8.0 (2.0 – 20.0) 5.1 (2.0 – 11.0)

Largest tumour diameter, mm 12.2 (5.0 – 18.0) 12.9 (10.0 – 19.0)

Overall survival, months 171.24 (52.93 – 272.39) 69.02 (6.83 – 181.82)

Disease-free survival, months 171.24 (52.93 – 272.39) 59.78 (6.83 – 156.88)
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CCR7 staining

Variation in intensity of cytoplasmic expression was evaluated for CCR7 and was ranked 

ranging from complete lack of expression to strong cytoplasmic expression (Figure 1). No 

nuclear staining was observed for CCR7. As demonstrated in Table 3, strong CCR7 expres-

sion was observed in 76% (13/17) of metastatic patients and 0% (0/26) of non-metastatic 

patients. When lymphocytic infiltration was observed the lymphocytes showed CCR7 ex-

Table 2. Histopathologic parameters of the investigated study group stratified for the presence of meta-
static disease

Histopathologic parameters
Patients without metastasis Patients with metastasis

No. of patients (n) No. of patients (n)

Localisation tumour

Choroid 25/30 14/19

Ciliary body 5/30 5/19

Cell type

Spindle 19/30 4/19

Mixed 10/30 11/19

Epithelioid 1/30 4/19

Epithelioid cells

Absent 18/30 4/19

Present 12/30 15/19

Necrosis

Absent 19/30 11/19

Present 11/30 8/19

Extracellular matrix patterns

Absent 23/30 10/19

Present 7/30 9/19

Lymphocytic infiltration

Absent 25/30 10/19

Present 5/30 9/19

Extraocular extension

Absent 29/30 17/19

Present 1/30 2/19

Optic nerve invasion

Absent 30/30 19/19

Present 0/30 0/19

Mean (range) Mean (range)

Mitotic figures (per 8 mm2) 4.2 (1.0 – 22.0) 8.0 (1.0 – 40.0)
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Figure 1. Histology and immunohistochemistry of chemokine receptor CXCR4 and CCR7 expression in 
uveal melanoma. Histologic parameters were scored using haematoxylin & eosin (H&E) staining (A and 
D). CXCR4 was scored with either strong nuclear staining (B) or cytoplasmic staining (E). CCR7 expres-
sion was scored with strong cytoplasmic staining (C, 40x) or negative staining (note positive lymphocytes 
and macrophages) (F). Original magnification for all panels x400.

pression. Identical CCR7 expression patterns were found in the metastatic liver specimens. 

In a multivariate analysis, CCR7 expression was inversely correlated to overall survival (P < 

0.001) (Figure 2A) and correlated with the adverse prognostic histologic parameters such 

as the presence of epithelioid cells (P = 0.037), tumour thickness (P = 0.011), lymphocytic 

Table 3. An overview of the numbers of cases with chemokine expression levels stratified for non-meta-
static and metastatic uveal melanoma patients

– + ++ +++

Non-metastatic uveal melanoma, n = 30

CCR7 12/30 14/30 4/30 0/30

CXCR4 (nuclear) 11/30 8/30 7/30 4/30

CXCR4 (cytoplasm) 5/30 5/30 13/30 7/30

CXCL12 24/30 6/30 0/30 0/30

Metastatic uveal melanoma, n = 19 (missing value, n = 2)

CCR7 1/17 3/17 0/17 13/17

CXCR4 (nuclear) 6/17 2/17 1/17 8/17

CXCR4 (cytoplasm) 7/17 6/17 2/17 2/17

CXCL12 17/17 0/17 0/17 0/17

The expression levels are classified as: – = negative; + = mildly positive; ++ = moderately positive; +++ = strong-
ly positive.
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infiltration (P = 0.041) and necrosis (P = 0.045). The correlations are shown in Table 4. There 

was no correlation between CCR7 expression and chromosomal abnormalities or losses and 

gains in CCR7 (17q12-q21.2) related regions using SNP analysis.

CXCR4/CXCL12 staining

Expression of CXCR4 showed both cytoplasmic and nuclear expression (Figure 1). The nucle-

ar expression of CXCR 4 was correlated with lymphocytic infiltration (P = 0.017) (Table 4). 

Nuclear expression of CXCR4 was not significantly related to overall survival (P = 0.088) as 

shown in Figure 2B. When lymphocytic infiltration was observed the lymphocytes showed 

CXCR4 expression. There was an identical CXCR4 expression pattern in the metastatic liver 

specimens. There was no significant correlation between CCR7 expression and CXCR4 ex-

pression either cytoplasmic (6/47, P = 0.628) or nuclear (11/47, P = 0.838). CXCL12 was 

only mildly positive in the cytoplasm in a minority of the tumour samples (Table 3) and 

showed mild expression in the biliary epithelium of the liver samples. There were no cor-

relations with chromosomal abnormalities or losses and gains in CXCR4 (2q21) or CXCL12 

(10q11.1) related regions in SNP analysis.

Statistical analysis

Univariate analysis showed that the overall survival was significantly shorter in UM patients 

with tumours with the presence of epithelioid cells (P = 0.010), large tumour thickness (P 

= 0.026), presence of extracellular matrix patterns (P = 0.021), high mitotic count (8 mm2 

equal to 50 HPF) (P = 0.003), presence of lymphocytic infiltration (P = 0.011), chromosome 

Figure 2. Overall survival analysis in relation to chemokine expression. Overall survival analysis showed 
a high significant inverse correlation with strong CCR7 expression (A), nuclear CXCR4 expression 
showed no significance with overall survival (B).
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8p loss (P = 0.004), chromosome 8q gain (P = 0.005) and CCR7 expression (P < 0.001). 

Using multivariate analysis, only high mitotic count (hazard ratio (HR) 1.2, P = 0.007) and 

strong positive CCR7 expression (HR 479.1, P = 0.003) showed to be highly significant and 

independent adverse prognostic factors for overall survival.

For disease-free survival the univariate analysis showed that tumours with the presence 

of epithelioid cells (P = 0.006), tumour thickness (P = 0.018), presence of extracellular matrix 

patterns (P = 0.026), high mitotic count (P = 0.009), and presence of lymphocytic infiltration 

(P = 0.012), chromosome 8p loss (P = 0.008), chromosome 8q gain (P = 0.005) and CCR7 

expression (P < 0.001) were significantly and inversely correlated with disease-free survival. 

In multivariate analysis, only high mitotic count (HR 1.1, P = 0.051), chromosome 8p loss 

(HR 8.4, P = 0.054) and a strong positive CCR7 expression (HR 435.3, P = 0.004) were inde-

pendent predictors for disease-free survival.

DISCUSSION

In this study, we found a highly significant inverse correlation between both overall survival 

and disease-free survival, and CCR7 expression, which shows that CCR7 is associated with 

poor survival in uveal melanoma. In our immunohistochemistry experiments, we demon-

strated that chemokine receptors CCR7 and CXCR4 are expressed on uveal melanoma sam-

ples. There were cases with negative CCR7 staining, but these cases showed positive internal 

controls in lymphocyte infiltration as shown in Figure 1. Negative staining for CCR7 did not 

significantly correlate with negative staining for CXCR4. Neither was there a significant cor-

relation between CCR7 expression and CXCR4 expression in either cytoplasmic or nuclear 

pattern. The chemokine CXCL12 is rarely expressed in uveal melanoma at low levels. It is 

possible that immunohistochemistry might not be sufficiently sensitive to evaluate the differ-

ential expression of CXCL12 in formalin-fixated, paraffin-embedded tissues. Although CCR7 

is linked mainly to lymphogenic metastasis,11 our study strongly indicates that lymphatic dis-

semination is not the exclusive route for CCR7 associated metastasis. No lymphatic vessels 

are present in the choroid of the eye. Others have shown that CCR7 regulates migration and 

adhesion processes of metastatic squamous cell carcinoma cells via αvβ3 integrin,10 these 

findings may be applicable to UM cells. In cutaneous melanoma αvβ3 has been correlated 

to metastatic behaviour,22 and αvβ3 expression has been shown in primary UM and cell lines 

derived from the same tumours.23-25 It can be hypothesised that CCR7 regulates migration 

and adhesion of UM cells through vascular endothelial cells, and thereby enable metastasis 

to secondary organs such as the liver. It is known that ligands of CCR7 (CCL19/CCL21) are 

expressed in the liver,26, 27 thus it may be possible that the CCR7 pathway is activated in 
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metastatic events in patients with UM. Expression of CCL19 and CCL21 was not investigated 

in this study since no significant correlation between these chemokines and metastasis was 

described by Dobner et al.16 Moreover, Rubie et al.28 showed no significant differences in 

CCL19 protein and CCL19 gene expression between hepatocellular carcinoma, colon can-

cer tumour tissue and normal liver tissue.The authors hypothesise that immunohistochemis-

try might not be sufficiently sensitive to evaluate the differential expression of CCL19/CCL21 

in formalin-fixated, paraffin-embedded tissues. A mixed or epithelioid cell type was signifi-

cantly correlated with CCR7 expression (P = 0.006), which is a known histologic parameter 

associated with poor survival.29 We also explored CXCR4 and its ligand CXCL12. CXCR4 is 

expressed in breast, prostate, pancreatic, renal, gastric carcinoma, skin melanoma, glioma, 

and leukaemias.30 We found CXCR4 expression in uveal melanoma both cytoplasmic and/or 

nuclear localised, and similar expression patterns in associated liver biopsy specimens (n = 

19). In contrast to studies in breast carcinoma31 and melanoma cell lines,19 we did not find 

loss of CXCR4 expression or shifts from cytoplasmic to nuclear expression in liver metastases 

of CXCR4 positive primary tumours. Other studies also observed no significant difference 

between expression levels of CCR7 and/or CXCR4 in paired primary and metastatic breast 

cancer32 or in gastric cancer.33 In our analyses, strong nuclear CXCR4 expression was not 

correlated with epithelioid cell type in contrast to previous work by Scala et al.18 This may 

be related to sample size. CXCR4 expression showed no correlation with overall survival 

or disease-free survival. These last findings do not contradict earlier immunohistochemical 

studies of CXCR4 expression in primary UM samples.16, 34, 35 However, we provide the first 

study to compare selected groups of histologically confirmed metastasis and a large group 

of long-term progression-free survival cases. Our data suggest the more important role for 

metastatic disease to be with CCR7 expression as compared to CXCR4 expression in uveal 

melanoma. On the other hand, immunohistochemistry may not be a sensitive enough tool 

for the detection of differential chemokine and chemokine receptor expression in tumours for 

the identification of prognostically significant differences. Other molecular techniques, such 

as mRNA nor even epigenetic regulators such as microRNA expression may provide more 

insight into the importance of chemokines in metastatic spread of uveal melanoma.

Ocular and cutaneous melanoma show different preferential sites for metastatic spread. 

Skin melanoma spread to lymph nodes, distant skin sites, lung, liver, central nervous system 

and bone. Uveal melanoma spreads haematogenous, with a high tendency to metastasise to 

the liver in 90 to 95% of the patients. The absence of lymphatics in the eye is one of the most 

important factors for the difference in metastatic spread. The predominance of liver metas-

tasis cannot be solely explained by circulation because the lungs provide the first capillary 

bed that these cells would encounter. Therefore, it will most probably be a reflection of both 

preferential homing of cells to the liver combined with preferential growth and survival of 
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disseminated uveal melanoma cells in the hepatic microenvironment. The metastatic disease 

occurs almost exclusively in patients whose tumour show chromosome 3 loss. Tumours with 

concurrent loss of chromosome 1p and 3 are at higher risk of metastasising than the tumours 

with other aberrations.36 Partial deletions or translocations have rarely been described on 

these chromosomes making it difficult to map putative tumour suppressor genes. However, 

recently a mutation in the BAP1 gene, located on chromosome 3, has been identified in 

UM and this gene seems to play an important role in the tumour progression,37 but most 

likely not in metastatic potential.38 Apart from the CXCR4/CXCL12 and CCR7/CCL19-CCL21 

pathways that we have investigated in this report, other pathways have been implicated in 

the preferential homing of tumour cells to the liver, such as hepatocyte growth factor (HGF) 

and it’s corresponding receptor c-Met, and insulin-like growth factor 1 (IGF-1).39 Although 

these pathways are not uniquely restricted to melanoma in combination, they may offer an 

explanation for the preferential metastatic spread of uveal melanoma to the liver, and more 

importantly may offer potential for therapeutic interventions. 

In summary, our study shows that CCR7 expression in uveal melanoma plays a role in 

uveal melanoma metastasis, is independently associated with poor patient survival and can 

be used as a prognostic marker. CCR7 expression is not exclusively related to lymphogenic 

metastasis. Further research to validate our findings could be directed to the evaluation of 

CCR7 and CXCR4 mRNA expression by RT-PCR. Further research on CCR7 and associated 

pathways in uveal melanoma is necessary for therapeutic targeting.
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ABSTRACT 

Purpose. To identify the prognostic value of extraocular extension in enucleated uveal mela-

noma patients and to correlate extraocular extension to chromosomal aberrations, metasta-

sis-free survival and clinico-histopathological risk factors. 

Methods. Retrospective study of patients with uveal melanoma treated with enucleation be-

tween 1987 and 2011. Melanoma-related metastasis and death were recorded. Statistical 

analysis (Log-rank test or Cox regression analysis) was performed to correlate metastasis-free 

survival with tumour characteristics, extraocular extension, episcleral diameter of the ex-

traocular extension, cell type, extracellular matrix patterns, inflammation, loss of chromo-

some 3 and gain of chromosome 8q. 

Results. In 43 (12%) of 357 patients, extraocular extension was observed. In this subset of pa-

tients, we noted a reduced survival of 70 months (105.5 months, P = 0.010) compared with 

patients without extraocular extension (175.8 months). Patients with gain of chromosomal 

region 8q in uveal melanoma with extraocular extension had an increased risk of metastatic 

disease (P < 0.001). In multivariate Cox proportional hazard analysis, largest basal tumour 

diameter (P = 0.001), extracellular matrix patterns (P = 0.009), episcleral diameter of the ex-

traocular extension (P = 0.016), loss of chromosome 3 (P < 0.001) and gain of 8q (P < 0.001) 

were independent predictors for metastasis-free survival. 

Conclusions. Larger episcleral diameter of the extraocular extension and additional gain of 

chromosome 8q in extraocular extension uveal melanoma correlates to a worse prognosis. 

Metastasis-free survival is significantly reduced in uveal melanoma with a large basal tumour 

diameter, extracellular matrix patterns, loss of chromosome 3, and gain of chromosome 8q. 
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INTRODUCTION

The age-adjusted incidence of uveal melanoma (UM) is 5.1 per million since 1973.1 During 

the past decades, several risk factors have been identified and related to survival. Clinical 

factors that correlate with poor survival are a large tumour thickness and tumour basal diam-

eter, ciliary body localisation, mushroom configuration and older age.2, 3 The tumour size is 

of great importance, since each millimetre increase in tumour thickness seems to increase 

the risk of metastases by approximately 5%.4 Histopathological risk factors associated with 

decreased survival are epithelioid cell type, high mitotic activity, presence of extracellular 

matrix patterns, and extraocular extension.5-7 UM with epithelioid cells tend to have a more 

aggressive behaviour and are therefore related to a poor clinical outcome. From the known 

prognostic parameters, the genetic alterations are by far the most strongly associated with 

metastatic disease. Loss of chromosome 3 or monosomy 3 is observed in approximately 50% 

of the UM and is not only associated with clinical but also with histopathological prognos-

tic factors and metastatic death.8-11 A higher percentage of monosomy 3 leads to a poorer 

disease-free survival.12 The same is true for gain of chromosome 8q and when these abnor-

malities occur simultaneously, the prognosis is even worse.13 Van den Bosch et al.12 showed 

that gradual increase in copy number of chromosome 8q shortened survival. Extraocular 

extension occurs in 2% to 15% of the UM.3, 5, 14-16 Tumours with extraocular extension are 

classified in a different subcategory of the TNM classification and are associated with a 

worse prognosis.3, 14 Moreover, the larger the extension diameter, the shorter the survival will 

be. The 5-year survival of UM patients with an extraocular extension of 5.1 mm or more is 

between 18% and 22%.14, 16 Extraocular extension has been correlated with monosomy 3; 

however, no associations have been found between extraocular extension and chromosome 

8q alterations.5, 13 Therefore, the aim of this study was to identify monosomy 3 and gain of 8q 

as additional risk factors, besides clinical and histopathological factors, in UM with extraoc-

ular extension and correlate these with metastasis-free survival.  

METHODS

Patients and clinical characteristics

A retrospective study was carried out by the Rotterdam Ocular Melanoma Study group, in 

patients with a choroidal or ciliary body UM who underwent primary or secondary enucle-

ation from 1987 until 2011. We excluded patients with iris melanoma and cases in which 

no sufficient tumour material was available to describe the histopathological characteristics 
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of the tumour. The following data were recorded: gender, location of the tumour, date of 

enucleation, age at time of enucleation, development of metastases, and date and cause of 

death. If measurements of the tumour thickness and largest basal diameter from B-scan ultra-

sonography (US) were not available, we used the tumour’s measurements before histological 

preparation. Tumour measurements obtained prior to fractionated stereotactic radiothera-

py (fSRT) were used if patients had received primary fSRT. Data on extraocular extension 

was registered during US, surgery, or histopathologically. Patients with extraocular extension 

were selected based on their pathology report. 

Informed consent was obtained prior to treatment and the study was performed ac-

cording to guidelines of the Declaration of Helsinki. Until 1999 all patients were enucleated; 

hereafter, enucleation was performed only if the tumour was too large for fSRT (basal tumour 

diameter > 16 mm and tumour thickness > 12 mm) or if the patient requested enucleation.17

Metastasis-free survival was defined as the time in months from enucleation until the 

development of metastasis. We obtained survival data up to April 2013 by reviewing pa-

tients’ charts and contacting their primary physician. Patients were screened for the presence 

of metastasis by testing liver enzymes in peripheral blood every 6 months for the first 5 years 

and thereafter annually. If these were elevated, an abdominal US or computed tomography 

scan was carried out. 

Histopathology

Fresh tumour material was obtained within 1 h of enucleation and processed for further his-

topathological and cytogenetic analysis. Conventional histopathological examination with 

haematoxylin and eosin (H&E) staining of formalin-fixed and paraffin-embedded eyes was 

performed on all tumours and confirmed the origin of the tumour. The intraocular part of 

the tumours were evaluated for the presence of inflammation and necrosis. Inflammation 

was defined as any obvious clusters of lymphoid inflammatory cells in the tumour assed by 

H&E staining. Microfoci of necrosis were accepted as positive. H&E staining was used to 

differentiate between an epithelioid, mixed, or spindle-cell type according to the modified 

Callender classification. Extracellular matrix patterns were visualised in tumour specimens 

stained with periodic acid-Schiff (PAS) reagent. The mitotic rate was determined only in tu-

mours with extraocular extension by counting the mitosis in 8 mm2 equal to 50 high-power 

fields. Extraocular extension was confirmed by revision of all histopathological sections by 

an ophthalmic pathologist (RV), and was defined as tumour growth through the sclera and 

beyond the outer scleral surface. Subsequently, the largest diameter of the extension of the 

tumour on the sclera surface was measured. The surgical margin was examined for infiltrating 

UM cells extending from the extraocular extension. We determined the route of extraocular 

spread and involvement of optic nerve, ciliary body, or choroid.
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Cytogenetic analysis

We determined the copy number status of chromosome 3 and 8 of the intraocular part of the 

primary tumour with fluorescence in situ hybridisation (FISH) analysis by using centromeric 

and locus-specific probes on directly fixated tumour cells for chromosome 3 and 8. A dele-

tion was scored if more than 15% of the nuclei showed one signal for centromere 3 (probe 

Pα3.5) and/or 3q24 (probe YAC 827D3). Amplification was scored if more than 10% of the 

nuclei had three or more signals for 8q22 (probe RP-11-88J22). For tumour samples collected 

from December 2000, we used a probe located on 3q25 (RP11-64F6). FISH analysis was 

performed in most tumours. In some tumours, the chromosome status was solely based on 

comparative genomic hybridisation (CGH) (n = 8), karyotyping (n = 18), or single nucleotide 

polymorphism (SNP) array (n = 21). In 78 tumours, both FISH and SNP array were used to 

determine monosomy 3 or gain of 8q. CGH and FISH analysis were performed according to 

the protocol described by Naus et al.18 For whole genome analysis, we used an SNP array 

(Illumina HumanCytoSNP-12 v2.1 BeadChip and Illumina 610Q BeadChip, Illumina, San 

Diego, CA, USA). Two hundred nanograms of fresh tumour DNA was used as input. The data 

were analysed with version 6 of the Nexus software (BioDiscovery, Inc., El Segundo, CA, 

USA). BioDiscovery’s SNP-Rank Segmentation Algorithm, an extension of the Rank Segmen-

tation algorithm (a statistically based algorithm similar to the Circular Binary Segmentation 

algorithm19), was used to make copy number as well as loss of heterozygosity (LOH) calls. 

SNP-Rank Segmentation takes into account both the log-R as well as the B-allele frequency 

value at each probe location to create a segment. The significance threshold for segmentation 

was set at 5.0 x 10-7, also requiring a minimum of three probes per segment and a maximum 

probe spacing of 1000 kilobase pairs (Kbp) between adjacent probes before breaking a seg-

ment. The log ratio thresholds for single copy gain and single copy loss were set at 0.15 and 

-0.15, respectively. The log ratio thresholds for two or more copy gain and homozygous loss 

were set at 0.41 and -1.1, respectively. The homozygous frequency threshold was set to 0.95. 

The homozygous value threshold was set to 0.8. The heterozygous imbalance threshold was 

set to 0.4. The minimum LOH length was set at 100 Kbp. Polyploid tumours with a relative 

loss of chromosome 3 were also considered as monosomy 3 UM. This is also applicable for 

relative gain of chromosome 8q.

Statistical analysis

Tumours with an epithelioid and mixed cell type were classified as tumours containing epi-

thelioid cells for further statistical analysis.  The primary end point for metastasis-free survival 

was the development of metastatic disease. Cases in which the cause of death was unknown 

or not related to their UM, were treated as censored. The importance of prognostic factors 
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Table 1. Tumor characteristics in uveal melanoma patients with and without extraocular extension (EXE)

Variable

Correlations Univariate survival 
analysis

Patients with-
out EXE
(n = 314)

Patients with 
EXE 

(n = 43) P-value P-value

Age at enucleation, n = 357, mean, y (range) 60.2 (21 – 90) 63.9 (29 – 86) 0.085*  HR = 1.019 0.002† 

Gender, n = 357

Male, n (%) 161 (51.3) 29 (67.4) 0.051‡ 164.7 mo 0.617§

Female, n (%) 153 (48.7) 14 (32.6) 172.5 mo

Tumor location, n = 357

Choroid, n (%) 289 (92.0) 35 (81.4) 0.043‡ 170.8 mo 0.249§

Ciliary body, n (%) 25 (8.0) 8 (18.6) 135.4 mo

Tumor size

Largest basal tumor diameter, n = 356, 
mean, mm (range) 12.3 (2.0 – 21.0) 4.2 (6.0 – 22.0) 0.002* HR = 1.138 <0.001† 

Tumor thickness, n = 355, mean, mm 
(range) 7.2 (1.0 – 24.0) 7.7 (1.5 – 22.0) 0.778* HR = 1.060 0.003†

Epithelioid cells, n = 356

Absent, n (%) 113 (36.1) 16 (37.2) 0.868‡ 188.2 mo 0.002§

Present, n (%) 200 (63.9) 27 (62.8) 154.6 mo

Extracellular matrix patterns, n = 302

Absent, n (%) 148 (57.1) 19 (44.2) 0.136‡ 167.6 mo <0.001§

Present, n (%) 111 (42.9) 24 (55.8) 87.1 mo

Inflammation, n = 255

Absent, n (%) 50 (23.6) 33 (76.7) <0.001|| 162.0 mo 0.686§

Present, n (%) 162 (76.4) 10 (23.3) 163.0 mo

Extraocular extension, n = 43

Largest episcleral diameter of the EXE, 
mean, mm (range) 0 2.9 (0.1 – 40.0) <0.001* HR = 1.120 <0.001†

Loss of chromosome 3, n = 286

Absent, n (%) 96 (38.9) 14 (35.9) 0.860‡ 151.6 mo <0.001§

Present, n (%) 151 (61.1) 25 (64.1) 96.8 mo

Gain of chromosome 8q, n = 279

Absent, n (%) 80 (33.2) 11 (28.9) 0.711‡ 169.8 mo <0.001§

Present, n (%) 161 (66.8) 27 (71.1) 97.1 mo

Abbreviations: EXE = extraocular extension; y = years; HR = hazard ratio; mo = months; * = Mann-Whitney test; 
† = Cox regression analysis; ‡ = Fisher’s exact test; § = Log-rank test; || = χ2-test.
The P-values that were significant (defined as a P-value less than or equal to 0.05) are shown in bold.
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on metastasis-free survival was assessed using the Log-rank test (for categorical variables) or 

Cox regression analysis (for continuous variables). The significance of associations between 

clinico-histopathological, chromosomal variables and extraocular extension were calculated 

with the Pearson’s χ2-test or Fisher’s exact test (for categorical variables) and the Mann-Whit-

ney test (for continuous variables). Multivariate analysis using the forward stepwise method 

was conducted for the variables that were significant in univariate analysis. A two-tailed 

P-value less than or equal to 0.05 was considered significant. Statistical analyses were per-

formed with SPSS version 20.0 software (SPSS, SPSS Inc., Chicago, IL, USA). 

RESULTS

Patients

In total, 357 patients were included in this study. The mean age was 61 years at time of 

enucleation (range 21 – 90). The mean largest basal tumour diameter was 12.5 mm (range 

2.0 – 22.0) and the mean tumour thickness was 7.3 mm (range 1.0 – 24.0). Overall, 20 

patients received fSRT as initial treatment, of whom two patients had extraocular extension. 

Two patients received brachytherapy and one patient received proton beam radiation before 

enucleation. These patients did not have extraocular extension. Genetic testing of the UM 

patient who received proton beam radiation was conducted 20 months after the radiation 

and revealed a normal chromosome 3 and 8 status.

The tumour characteristics for the patients with extraocular extension versus patients 

without extraocular extension are shown in Table 1. Extraocular extension was identified 

in 43 (12%) out of 357 patients (Figure 1A). The mean age of the patients with extraocular 

extension was 64 years (range 29 – 86). The mean largest basal tumour diameter and mean 

tumour thickness for this group of patients with extraocular extension were 14.2 mm (range 

6.0 – 22.0) and 7.7 mm (range 1.5 – 22.0), respectively. Tumour localisation (P = 0.043) and 

largest basal tumour diameter (P = 0.002) correlated with extraocular extension (Table 1). 

Histopathology 

Several histopathological features were determined for the extraocular extension (Figure 1B). 

For instance, the (largest) episcleral diameter of the extraocular extension ranged from 0.1 to 

40.0 mm with a mean of 2.9 mm. Necrosis was found in 23 of 43 histopathological slides. 

The mean mitotic rate was 9.95/8 mm2 (range 0.00 – 29.00). Absence of inflammation (P < 

0.001) was associated with extraocular spread (Table 1). Eleven of the choroidal tumours 

invaded the ciliary body and all the ciliary body tumours invaded the choroid. The tumours 
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Figure 1. Slit lamp photograph of a ciliary body melanoma with extraocular extension (A). Extraocular 
extension of choroidal melanoma (indicated with asterisk) in hematoxylin and eosin (H&E) staining (40x) 
and an enlargement is shown with perineural (black arrow) and perivascular invasion (white arrow) of 
extraocular extension in H&E staining (400x) (B). 

Figure 2. Single nucleotide polymorphism (SNP) array results of a male patient with uveal melanoma, 
showing loss of chromosome 3 and gain of chromsome 8q (Log-R upper panel). The lower panel repre-
sents the B-allele frequency showing loss of heterozygosity and allelic imbalance of chromosome 3 and 
8, respectively.
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did not show a significant difference in size of the mean largest basal tumour diameter and 

mean tumour thickness within the extraocular extension group (P = 0.615 and P = 0.517, 

respectively). Combinations of several routes of invasion of the extraocular extension were 

observed (Figure 1B). Seven UM invaded the perilimbal plexus, the anterior part of the eye. 

Five tumours invaded the equator of the eye through vortex veins and two UM invaded 

through the anterior ciliary arteries. Most of the tumours with extraocular extension were 

located posteriorly; 11 UM invaded through the long posterior ciliary nerve, 14 through the 

short posterior ciliary nerve, and 1 through both ciliary nerves. Besides these routes of inva-

sion, 41 tumours also invaded perivascularly and 29 tumours invaded perineurally. In total, 

three UM with extraocular spread invaded the lamina cribrosa through three different routes: 

transscleral, and short and long ciliary nerves. However, the optic nerve resection margin 

was free of malignant cells.  

In 20 patients, infiltrating UM cells extending from the extraocular extension were 

observed at the surgical margin. Of these patients, seven received post-operative irradiation 

and one patient with a 40-mm extraocular extension underwent an orbital exenteration. Thus 

far, orbital recurrence was noticed in one patient with a free surgical margin. Seven of the 

20 patients with irradical enucleation were still alive at the last follow-up date. There was no 

significant difference in mean survival between patients with (72.7 months, 95% confidence 

interval (CI) 46.9 – 98.5, Log-rank test, P = 0.660) and without (120.6 months, 95% CI 67.7 

– 173.6) a free surgical margin.

Cytogenetic analysis

Loss of chromosome 3 was present in 61.5% (176/286) of all UM and in 64.1% (25/39) of the 

tumours with extraocular extension (Table 1). This was not statistically different from cases 

without extraocular extension. Gain of chromosome 8q was present in 67.4% (188/279) of 

all UM and in 71.1% (27/38) of the UM with extraocular extension. Forty-seven patients had 

gain of 8q with disomy of chromosome 3, and 141 patients had gain of 8q combined with 

monosomy 3. An example of a case with loss of chromosome 3 and gain of chromosome 8q 

on SNP array is depicted in Figure 2. Twenty-two extraocular extension patients showed gain 

of chromosome 8q combined with monosomy 3. Due to lack of material, chromosome 3 and 

8 status could not be examined in all extraocular extension patients.

Survival analysis

The mean metastasis-free survival of the overall group was 76.6 months (range 0 – 308.5). Ir-

respective of extraocular extension, 145 patients (40.6%) developed metastasis with a mean 

survival of 41.8 months (range 0 – 207.7) and 158 patients (44.3%) were alive at the end of 
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Table 2. Follow-up of patients stratified for the presence of extraocular extension (EXE)

Patients without EXE (n = 314), n (%) Patients with EXE (n = 43), n (%)

Alive 144 (45.9) 14 (32.6)

Melanoma-related death and metastases 121 (38.5) 24 (55.8)

Death due to other cause 38 (12.1) 5 (11.6)

Lost to follow-up 11 (3.5) 0 (0.0)

Abbreviations: EXE = extraocular extension.

Figure 3. Survival probability plots for chromosome 3 and 8q in the overall group (A and C) and in the 
extraocular extension group (B and D).
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Table 3. Cox multivariate regression analysis correlating with metastatic disease

P-value HR 95.0% CI

Largest basal tumour diameter 0.001 1.094 1.037 – 1.159

Extracellular matrix patterns 0.009 1.674 1.137 – 2.464

Largest episcleral diameter of the EXE 0.016 1.078 1.014 – 1.147

Loss of chromosome 3 < 0.001 2.634 1.570 – 4.420

Gain of chromosome 8q < 0.001 2.874 1.651 – 5.005

Abbreviations: EXE = extraocular extension; HR = hazard ratio; CI = confidence interval.

the follow-up with a mean survival of 104.3 months (range 0.8 – 308.5). Forty-three patients 

(12.0%) died due to other disease causes, such as a ruptured aneurysm or a myocardial 

infarction. The mean survival of this group was 93.4 months (range 0.2 – 270.0). Eleven pa-

tients were lost to follow-up, of which five patients moved abroad and the other six patients 

moved to another city and did not provide their general practitioner with information or 

withdrew from ophthalmologic follow-up.

The follow-up of patients with extraocular extension is shown in Table 2. The survival 

was significantly reduced in patients with extraocular extension versus without extraocular 

extension (105.5 months vs. 175.8 months, respectively, Log-rank test, P = 0.010). 

Univariate analyses of prognostic factors showed a significantly shorter metastasis-free 

survival in tumours with a larger episcleral diameter of the extraocular extension (hazard 

ratio (HR) 1.120, P < 0.001), epithelioid cells (154.6 vs. 188.2 months, P = 0.002), extra-

cellular matrix patterns (87.1 vs. 167.6 months, P < 0.001), monosomy 3 (96.8 vs. 151.6 

months, P < 0.001) and gain of 8q (97.1 vs. 169.8 months, P < 0.001) (Table 1). In addition, 

we conducted univariate survival analysis for extraocular extension UM patients only and the 

episcleral diameter of the extraocular extension remained significant (HR 1.079, P = 0.040). 

The metastasis-free survival was significantly longer in the overall group without chro-

mosomal aberrations compared with patients with these aberrations (Figures 3A and 3C). 

UM with disomy 3 and normal 8q versus gain of 8q (171.6 vs. 123.2 months, P = 0.004) 

showed a prolonged survival compared with UM with monosomy 3 and normal 8q versus 

gain of 8q (143.5 vs. 78.1 months, P < 0.001). 

In the subgroup of extraocular extension, patients with and without monosomy 3 had 

a survival of 3.5 months and 92.0 months, respectively (P = 0.056) (Figure 3B). Patients with 

extraocular extension and gain of 8q had a reduced survival compared with patients with 

normal chromosome 8q (P < 0.001) (Figure 3D). We validated the interaction between ex-

traocular extension and gain of 8q and its effect on the metastasis-free survival in a separate 

multivariate model.

In multivariate analysis, the largest basal tumour diameter, extracellular matrix pat-
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terns, episcleral diameter of the extraocular extension, chromosome 3 loss (HR 2.634, P < 

0.001), and chromosome 8q gain (HR 2.874, P < 0.001) were independent prognostic factors 

on metastasis-free survival (Table 3). Prognostic factors, such as presence of epithelioid cells, 

extraocular spread in general, tumour thickness, and age, were rejected after multivariate 

analysis. 

 

DISCUSSION

UM patients with extraocular extension are a clinically challenging group of patients, as 

there are only a few studies that have a large cohort of patients for analysis and often a lim-

ited duration of follow-up. In our study, we reviewed 357 ciliary body and choroidal UM 

of which 43 (12%) had extraocular extension with a mean follow-up of 6.4 years (range 0 

– 25.7 years). As observed in previous studies, we also found that UM patients with loss of 

chromosome 3 and/or gain of chromosome 8q in their melanoma had a significantly reduced 

metastasis-free survival (P < 0.001). In addition, we observed that gain of chromosome 8q 

was associated with a worse prognosis in patients with extraocular extension. Besides that, 

patients with extraocular extension developed metastases or died due to metastases almost 

6 years earlier, on average, compared with patients without extraocular extension (Log-rank 

test, P = 0.010). 

Monosomy 3 and gain of chromosome 8q (or concurrent presence of abnormalities 

on chromosome 3 and 8) and extraocular extension have already separately been identified 

as risk factors in several other studies.3, 11, 13, 14, 20 Nevertheless, gain of chromosome 8q in 

combination with extraocular extension has not been related to survival. A near significant 

trend (P = 0.056) was observed between monosomy 3 and extraocular extension regarding 

survival. With a larger patient group, a relation to patient survival could be noted. Histo-

pathological factors have been described and related to survival in patients with extraocular 

extension. Coupland and associates5 found that epithelioid cell type and high mitotic rate 

were related to extraocular spread and poor prognosis. In our series, UM with an epithelioid 

cell type were also related to a reduced survival, though this did not correlate with extraoc-

ular extension (P = 0.868). Because the percentages of epithelioid cells in the group of ex-

traocular extension and without extension were similar, and although a difference in survival 

was measured, epithelioid cell type appeared not to be the most important prognostic factor 

in our population. In our multivariate analysis, the presence of epithelioid cells, extraocular 

spread in general, tumour thickness, and age were rejected. These prognostic factors were 

significant predictors of survival in the univariate analysis. In the multivariate analysis, age 

nearly reached statistical significance as an independent prognostic marker (P = 0.051). In 
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previous studies, older age and presence of epithelioid cells have proven to have a significant 

effect on survival.3, 5

In concordance with previous studies, we also found that clinical factors, such as a 

larger basal tumour diameter and the presence of extracellular matrix patterns, were as-

sociated with a decreased survival, whereas the size of the extraocular extension did not 

correlate significantly with metastatic death in all studies.3, 5, 14 With an increasing size of 

extraocular extension diameter, the 5-year survival seems to decline: 81% in patients with-

out extension, 49% in patients with a 0.1- to 5-mm extension diameter, and 18% in patients 

with 5.1-mm or more extension diameter.14 In our analysis, we found that an increase of 1 

mm in episcleral diameter led to a nearly 1.1 times increase in risk of developing metastatic 

disease (HR 1.078). We had only three patients in the subcategory of greater than or equal to 

5.1 mm, and for this reason we could not perform statistical analyses for this group. In these 

three patients, one patient had metastasis at time of diagnosis (diameter extension of 40 mm) 

and another patient died due to a non-melanoma-related cause without metastasis (diameter 

extension of 9 mm) with a follow-up of 110.4 months at an age of 86 years. The third patient 

with a 6-mm extension was still alive at 41.9 months and had other favourable prognostic 

factors, such as the absence of genetic aberrations, absence of extracellular matrix patterns, 

absence of mitotic figures, and a free surgical margin. Interestingly, all three UM contained 

epithelioid cells. 

Orbital recurrence has been reported in 3% to 23% of the patients undergoing enucle-

ation for UM with extraocular extension.16, 21-23 In our study, only one patient, with an initial 

tumour free surgical margin, had an orbital recurrence after 7 months and was exenterated. 

Nevertheless, orbital recurrence is described even 20 and 42 years after enucleation.24 In 20 

of 43 UM patients with extraocular spread, melanoma cells extending from the extraocular 

extension were found at the surgical margin. Of the irradiated patients, the mean survival 

was 71.2 months (range 10.4 – 257.1), and was almost similar to patients without additional 

treatment, 79.2 months (range 0 – 254.2). Nevertheless, incomplete surgical removal of the 

tumour, especially if the extraocular part of the tumour is nonencapsulated, remains one of 

the most important risk factors for orbital recurrences.23 In our group of patients with incom-

plete resection, we found no cases with orbital recurrence. Nowadays most patients with 

extraocular extension will be treated with additional therapy or surgery.  

In this study, we associated extraocular extension with chromosomal abnormalities 

of chromosome 3 and 8 in UM. Compared with other studies, our patient group has a long 

follow-up with a mean metastasis-free survival of 6.4 years, and only a few patients were 

lost to follow-up. Extraocular extension was histologically proven and reviewed by an ocular 

pathologist in a relatively large group of UM. Because this is a retrospective study, some data 

were missing. For example, we could not detect histopathological or chromosomal aberra-
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tions in all patients due to necrosis or lack of material. Because we studied only enucleated 

eyes and not patients who have had eye-conserving treatments, our group contained relative-

ly large UM. This selection bias could influence survival, because in general larger tumours 

have a worse prognosis. Still, in our multivariate analysis, other parameters remained signif-

icantly associated with a decreased survival. Chromosome 3 and 8q status was determined 

in almost all patients with FISH, and in some cases with additional SNP array analysis. In-

tratumour heterogeneity has been described in a small number of UM in our research group 

previously, although no structural difference in monosomy 3 distribution occurred between 

the base and the apex of the tumour.25 On the other hand, genetic heterogeneity of chromo-

some 3 and 8 has been reported between the intraocular and extraocular part of the UM, and 

for monosomy 3 between the apex and base of the tumour.26, 27 This variation of monosomy 

3 in intra- and extraocular parts of UM was demonstrated by Lake et al.26 with multiplex 

ligation-dependent amplification (MLPA) in only ten patients. Despite a certain heterogene-

ity, tumours can be classified correctly for monosomy 3 or gain of chromosomal region 8q, 

as is the case in our study, as we used either FISH and/or confirmed these results with SNP 

array in a large group of our patients. Moreover, from previous studies we know that the per-

centage of chromosomal aberrations does not influence the development of metastases, but 

can influence the time to development of metastatic disease.12 In our series, we found that 

metastasis-free survival is significantly reduced in UM with a large basal tumour diameter, 

extracellular matrix patterns, loss of chromosome 3, and gain of chromosome 8q. Loss of 

chromosome 3 itself is not related with extraocular extension, but a gain of chromosomal 

region 8q in tumours with extraocular extension increases the risk of metastatic disease.
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The histological findings of malignant melanoma may be highly variable, and the tumour can 

mimic many other neoplasms.1 We describe a case of clear cell uveal melanoma. Cytoplas-

mic clear cell change of uveal melanoma cells can be observed as balloon cells,1 clear cells,2 

and signet ring cells.1 The histologic differential diagnosis has to be made with metastatic 

clear cell carcinomas, seminoma, and clear cell sarcoma as well as xanthomatous cells. 

REPORT OF A CASE

A 38-year-old male visited the outpatient department of Ophthalmology with signs of blurred 

vision and metamorphopsia due to a foreign body in the right cornea. Best-corrected visual 

acuity was 20/125 OD and 20/20 OS. On dilated funduscopic and ultrasonographic (US) 

examination of the left eye, a dome-shaped pigmented subretinal mass was seen with a thick-

ness of 5 to 6 mm, a diameter of 15.5 mm, and medium to low internal reflectivity (Figure 

1A). No atypical cutaneous pigmented lesions were observed. Systemic radiologic evalua-

tion revealed no metastatic lesions. The patient opted for enucleation. After a follow-up of 16 

months, there were no signs of metastases.

Sections of the eye confirmed a dome-shaped tumour composed of both spindle-type and 

epithelioid-type cells with clear cytoplasm in more than 75% of the tumour cells (Figure 1B). 

The cytoplasm stained positive with periodic acid–Schiff stain sensitive to diastase treatment 

compatible with glycogen (Figure 1C). Mitotic figures were present at 5 per 8 mm2 (equiva-

lent to 50 high-power fields). A closed-loop extracellular matrix pattern was not present. The 

tumour showed extrascleral extension with a diameter of 0.5 mm and a free orbital resection 

margin. Tumour cells stained positive for Melan-A, HMB-45 and tyrosinase, confirming mel-

anocytic lineage (Figure 1D).

Fluorescence in situ hybridisation (FISH) analysis of a tumour sample revealed no chromo-

somal rearrangements at 22q12 (Vysis). Single-nucleotide polymorphism (SNP) array anal-

ysis (HumanCytoSNP-12 v2 BeadChip; Illumina) showed gain of chromosome 6p, loss of 

chromosome 6q, gain of chromosome 8q and loss of the long arm of chromosome 16. Se-

quence analysis of BAP1 revealed a new missense mutation located in exon 5 (resulting in 

p.Met115Val). Using the in silico tool PolyPhen-2, this transition was predicted to be benign. 

A second variant was located in an intron. Immunohistochemistry for BAP1 showed normal 

protein expression. 
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COMMENT

Primary uveal melanoma is classified as spindle cell, mixed cell, or epithelioid cell type. The 

epithelioid cell type is associated with a significantly worse prognosis. Unusual cytomorpho-

logic variants of malignant melanoma have been described as metaplastic, balloon cell, clear 

cell, signet ring cell, myxoid, small cell, oncocytic,3 and rhabdoid melanoma.1 Although the 

prognostic significance of these cytomorphologic variants is unknown, they should be recog-

nized to avoid misdiagnosis with metastatic neoplasms. The clear cell change in melanoma 

cells can be due to accumulation of intracytoplasmic vimentin filaments as described in 

signet ring melanoma, to accumulation of fat as has been described in some cases of balloon 

cell melanoma,4 or to accumulation of glycogen5 as in our case. The histologic differential 

diagnosis has to be made with metastatic renal cell carcinoma, other metastatic clear cell 

Figure 1.  Ultrasonographic, histologic, and immunohistochemical appearance of the tumour. B-scan 
ultrasonography of the tumour shows a dome-shaped subretinal mass in the posterior pole (A). The 
tumour was mainly composed of spindle and irregular polygonal cells with distinct borders and a clear 
cytoplasm that sometimes contained brown pigment. The cells were interspersed in a delicate capillary 
network. Nuclei were enlarged with coarse open chromatin and prominent irregular nucleoli (haema-
toxylin-eosin, original magnification ×630) (B). The cytoplasm stained positive for periodic acid-Schiff 
sensitive to diastase treatment (original magnification ×630) (C). The cells stained positive for the mel-
anocytic marker HMB-45 (original magnification ×400) (D).
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carcinomas, metastatic seminoma and metastatic clear cell sarcoma as well as benign in-

flammatory conditions with xanthomatous cells. For most of these differential diagnoses, 

immunohistochemical stains can be used to aid in diagnosis. In this case, we additionally 

were able to determine beyond doubt that clear cell uveal melanoma is distinct from clear 

cell sarcoma because the cytogenetic results showed typical changes of uveal melanoma 

and did not show the typical t(12;22)(q12q13) translocation that is associated with clear cell 

sarcoma and not with melanoma.6 To our knowledge, this is the first report of clear cell uveal 

melanoma complete with cytogenetic investigations.
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SUMMARY AND GENERAL DISCUSSION

In the last decade, genetic research in uveal melanoma (UM) has shifted from primarily cy-

togenetic workups to extensive molecular genetic analyses. Despite progress that has been 

made in understanding the genetic framework of UM, this disease still carries high mortal-

ity and patient survival rates have remained unchanged. Advances have been made in the 

primary treatment of UM with more eye-sparing treatment modalities; however, for liver 

metastases no standardised therapies are available. Research efforts are directed at the iden-

tification of prognostic parameters to select those patients who develop metastasis. The past 

years we have learned increasingly more about the genes involved in UM tumourigenesis. 

Only a few years ago prognostication of UM patients was primarily done only by examin-

ing the histopathological or chromosome status of the tumour. Nowadays, we can predict 

the patient prognosis more accurate based on chromosome and gene mutation status. The 

work presented in this thesis aimed at further enlightening the genetic background of UM 

and thereby providing possible new targets for therapy. We studied the prognostic value of 

several new genes in UM. In the previous chapters, the merits and limitations of each study 

have been described in detail. In the current chapter, a summary is presented and the main 

findings of this thesis are recapitulated and placed in a broader perspective. Special empha-

sis will be given on experimental considerations, the implications of our results for clinical 

practice, and finally, future prospects will be discussed.

Which genes are implicated in uveal melanoma carcinogenesis?

During the past decade, much effort has been made to identify genes involved in UM and re-

cent advances in Next Generation Sequencing (NGS) have dramatically changed the process 

of gene identification. The human genome consists of approximately 21.000 genes. With ex-

ome or whole genome sequencing, scientists can detect both new and previously described 

sequence variants at gene level, and obtain information on depth coverage, heterogeneity, 

and accuracy of sequencing is provided.1, 2 Although this technique has been available since 

2004, only the past few years NGS has been widely applied in many hereditary and non-he-

reditary diseases as well as cancers. Target capture of custom designed regions and exome 

sequencing has allowed identification of causal variants in several Mendelian disorders,3 var-

iants associated with complex diseases,4 and recurrently mutated cancer genes.5 Interesting 

target genes in UM that harbour mutations, deletions and insertions have been discovered 

with NGS.6, 7 

In the second chapter of this thesis, we performed targeted mutation analyses of several im-
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plicating genes in UM to gain more insight in the tumourigenesis. Mutations in GNAQ and 

GNA11 occur in roughly 5% of all tumours sequenced to date.8 Several years ago, GNAQ 

was found to be frequently mutated in uveal melanocytic tumours, including benign nevi, 

primary melanomas of all stages and metastatic lesions.9, 10 Mutations in GNA11 (paralog of 

GNAQ, together referred to as Gα) were reported in blue naevi and UM shortly thereafter.11 

Other cancers with GNAQ mutations, although less studied, include a subset of cutaneous 

melanomas (6%),9 leptomeningeal melanocytomas (50%) and melanomas arising from the 

meninges (25%).12 In concordance with previous studies, we also found high mutation rates 

up to 93% in GNAQ as well as GNA11 (codon Q209 and R183) in 92 primary UM (Chapter 

2.1). GNAQ and GNA11 encode the heterotrimeric guanine nucleotide-binding protein G 

subunit alpha q and 11, respectively, which play a role in G protein-coupled receptor (GPCR) 

signalling. Through mutations these subunits become activated and abrogate their intrinsic 

GTPase activity, which is required to return them to an inactive state. This oncogenic con-

version is suggested to be the cause of constitutive mitogen-activated protein kinase (MAPK) 

pathway activation producing inappropriate proliferation,13, 14 although the exact molecular 

events underlying these GNAQ/GNA11-driven malignancies are not yet defined. Two recent 

studies stated that Gα mutants found in UM promote tumourigenesis by activating YAP.15 16 

Nuclear localisation and dephosphorylation of YAP are triggered in Gα mutants. YAP is an 

oncoprotein and a key effector of the Hippo tumour suppressor pathway, which controls 

tissue growth and cell fate through the regulation of cell proliferation and apoptosis.17 The 

major implication of these findings is that the classic GPCR signalling may not be the only 

mechanism for mutant GNAQ/GNA11 activity. YAP is located on chromosome 11q22.2 that 

is generally not altered in UM. However, copy number variations in this region have been 

reported in the COSMIC database in other cancers, such as breast, lung, and ovary and 

pancreas cancer. More research is necessary to examine this chromosomal region and fur-

ther unravel the role of YAP in UM. In our study, we found no association between GNAQ/

GNA11 mutations and metastasis or patient survival whereass in the literature several lines 

of evidence are presented suggesting that GNA11 mutations might be more harmful than 

GNAQ mutations. In our cohort, patients with GNAQ and GNA11 mutations had similar sur-

vival rates. Also, no associations were found with other prognostic factors, such monosomy 

3, gain of chromosome 8q or BAP1 mutations. This supports the hypothesis that these onco-

genic mutations are early or perhaps initiating events in UM progression and they require 

additional mutations to acquire metastatic potential.

Loss of chromosome 3 or monosomy 3 is by far the most important chromosomal abnormal-

ity, and strongly associated with a decreased patient survival.18-21 It is considered an early 

event in UM pathogenesis. In the past, research groups have delineated the minimal deleted 
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regions on chromosome 3 in attempt to find candidate genes on chromosome 3, but have 

been unsuccessful in identifying the specific mutations needed to establish pathogenetic 

relevance.22-27 Just before we started on the studies in this thesis, Harbour et al. discovered an 

implicating tumour suppressor gene on chromosome 3, BAP1, in predominantly metastasis-

ing UM.6 We evaluated the effect of BAP1 mutations in 74 primary UM (Chapter 2.2), and 

confirmed that BAP1 mutated tumours were present in nearly half of UM, mostly monosomy 

3 tumours, and that BAP1 mutations enhance the metastatic potential of UM. As we have 

shown in Chapter 2.2, lack of BAP1 expression highly associates with BAP1 mutations and 

our data shows that BAP1 acts as a classic tumour suppressor gene in UM whereby loss of 

one copy of chromosome 3 may unmask inactivating mutations in BAP1 on the remaining 

chromosome 3, which is in concordance with current literature.28, 29 

It is well known that tumours with disomy 3 (a normal chromosome 3 status with two 

different allelic copies) rarely metastasise. Two genes, EIF1AX and SF3B1, have recently been 

investigated and literature suggests that they would have a protective effect regarding UM 

metastases since they are associated with disomy 3 UM.7, 30, 31 We also found that EIF1AX 

mutations associate with low-grade metastatic UM (Chapter 2.3). EIF1AX encodes the essen-

tial eukaryotic translation initiation factor 1A (eIF1A) and stimulates the transfer of methionyl 

initiator tRNA to the 40S ribosomal subunit,32 mediating start codon recognition in mRNA by 

assembly of the eukaryotic translation preinitiation complex (PIC).33 This process is essential 

for accurate gene expression. It can be hypothesised in EIF1AX mutated tumours the recogni-

tion of 5’ AUG codon of other specific tumour-related transcripts might be suppressed, which 

may lead to an increased survival in those patients. Although it is true that the chromosome 

3 status is an incredible strong predictive factor, we have a small group of patients in our 

cohort that develop metastasis despite the disomy 3 status of their tumour. In fact, in Chapter 

2.3 we state that SF3B1 mutations and disomy 3 predispose to late metastases that occur 

on average 7.5 years after enucleation. SF3B1 encodes a component of the spliceosome, 

and a recent study revealed that recurrent SF3B1 mutations in UM were associated with 

alternative splicing of protein coding genes (ABCC5 and UQCC), and of the long noncoding 

RNA CRNDE.34 This long RNA transcript has also shown to be up regulated in solid tumours 

(such as colorectal cancer) and leukaemias.35, 36 SF3B1 mutations have been observed in 

15% of the chronic lymphocytic leukaemia (CLL) and associate with a worse prognosis,37 

whereas these mutations in patients with myelodysplastic syndrome (MDS) are associated 

with a better prognosis.38 Thus, it seems that SF3B1 mutations have a diverse effect on pa-

tient survival in different kinds of cancer. Interestingly, the SF3B1 mutated CLL cases all had 

deletions in chromosome 11q which is already associated with a poor prognosis in patients 

with CLL.37 One can speculate that the SF3B1 mutations in UM in combination with a high 

level of chromosome abnormalities would increase metastatic risk compared to those with a 

Summary and general discussion 187



SF3B1 mutation and less chromosomal abnormalities. However, when comparing the copy 

number status of the SF3B1 mutated UM with metastases with the SF3B1 mutated UM with-

out metastases, this was not the case. Also, in CLL and MDS a different hotspot is affected 

(K700 instead of the R625 mutations observed in UM). Whether both mutated hotspots have 

a similar effect  on alternative splicing remains to be determined and investigations aimed at 

comparing the downstream effects are ongoing.

In the majority of patients liver metastases are detected within two years after diagnosis. 

Recently, Dimicheli et al.39 analysed the mortality dynamics of 3672 UM patients from three 

different databases and concluded that there is a bimodal pattern of mortality with a peak 

at three and nine years after treatment. This indicates that UM metastatic development is 

not a continuous growth model and that it is complex. Often micrometastatic spread is al-

ready present at time of diagnosis. Besides genetic features, tumour dormancy and seeding 

of metastasis before primary tumour removal are likely to play a role in this process. Despite 

successful eradication of the ocular tumour, about 50% of all UM patients develop metastat-

ic disease.40 Studies on liver biopsies have shown that the genetic profile of the metastasis 

corresponds to the primary tumour. Not many studies have been performed on metastases 

themselves. One study on metastases showed that GNA11 mutations within the metastases 

were associated with a worse survival.41 A recent study examined the BAP1 expression in five 

primary UM tissue as well as matching UM metastases and found complete concordance 

between the BAP1 expression.42 We investigated primary tumour and several metastases ma-

terial from one patient who developed metastasis 8 years after initial diagnosis (Chapter 2.4), 

and both tumour and metastases tissue harboured an identical GNA11 and SF3B1 mutation. 

These findings support our hypothesis that SF3B1 plays a role in late metastasising UM.

Based on all these results we propose the following UM progression model (Figure 1), 

in which GNAQ and GNA11 mutations occur early and play a role in melanocytic transfor-

mation, followed by either a BAP1 or SF3B1 mutation, which determines the risk for growth 

of metastases, or an EIF1AX mutation that plays a relative protective role with a low risk of 

metastasising.

In Chapter 2.5, we present the second documented case of TERT promoter mutation in 

UM. In comparison with other types of melanoma such as skin and conjunctival melanoma, 

TERT promoter mutations are extremely rare in UM. Only one other study by Dono et al.43 

revealed a single mutated UM in a group of 50 examined UM. Although these mutations 

are rare in UM, TERT promoter mutations are frequent in conjunctival melanoma (41%) and 

occur at lower frequency in primary acquired melanosis with atypia (8%). Since TERT was 

not altered in benign conjunctival melanocytic lesions, we propose a role for TERT promotor 

188 Chapter 5



Normal uveal 
melanocyte

Premalignant 
melanocytic laesion

M3

D3

Uveal melanoma Metastasis

BAP1

SF3B1

EIF1AX
Low risk

High risk
GNAQ 
GNA11

Figure 1. Simplistic tumour progression model with accumulation chromosome abnormalities and mu-
tations in uveal melanoma. D3: disomy 3; M3: monosomy 3.

mutations as pathogenetic tumour progression marker in conjunctival melanocytic lesions. 

In addition, our findings confirm that the molecular pathogenesis of UM is distinct from con-

junctival melanomas. Conjunctival melanomas are more similar to cutaneous melanomas 

that typically harbour BRAF, NRAS, and the recent discovered TERT mutations.44-46

Other frequent occurring chromosomal changes in UM, besides monosomy 3, include loss 

of 1p and 6q, and amplification of chromosome 6p and 8q. Previously, copy number var-

iations in UM have been studied using low-resolution technologies such as karyotyping, 

fluorescence in situ hybridisation (FISH), comparative genomic hybridisation (CGH) and 

multiplex ligation-dependent probe amplification (MLPA). With specific NGS techniques not 

only variants can be detected in at base pair level but in some cases also copy number var-

iations can be determined. One of such is the HaloPlex target enrichment NGS technique. 

Targeted capture followed by sequencing of selected genomic regions of interest provides an 

attractive, cost-effective alternative compared to whole genome sequencing. In Chapter 3.1, 

we validated the HaloPlex targeted capture method in 6 tumour samples and all the known 

mutations were validated. In addition, we concluded that the variant percentages were in 

general a good reflection of the copy number variation of chromosome 1p and 3. An ad-

vantage of NGS is that tumour heterogeneity, a frequent occurring phenomenon, can be de-

tected. Tumour development is often associated with genomic instability and acquisition of 

genomic heterogeneity,47 generating both clonal and non-clonal tumour cell populations.48 

In the HaloPlex pilot study, we observed one tumour with a clonal BAP1 mutation, which 

was supported by the BAP1 expression data. Our group previously reported on intratumour 

heterogeneity of chromosome 3 and 8q in UM which is important to consider when taking 

biopsies for diagnostic purposes for instance.49, 50 
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Histopathological and chromosomal factors investigated

As mentioned previously, over the years many studies have been conducted finding prog-

nostic factors in UM. Besides genetic parameters, there are a number of features that are 

predictive for metastasis, including large tumour diameter, ciliary body involvement, ex-

traocular spread, a mixed or epithelioid melanoma cytomorphology, high mitotic count, vas-

cular mimicry. Other potential prognostic features are the expression of chemokine recep-

tors CCR7 and CXCR4, and increased expression of these chemokine receptors have been 

described in several types of cancer including UM.51-53 We have investigated CCR7, CXCR4 

and CXCL12 expression in 49 primary UM and corresponding liver metastasis (Chapter 4.1).  

A strong cytoplasmic staining for CCR7 correlated with bad prognostic features, such as ep-

ithelioid cell type and lymphocytic infiltration. In addition, strong CCR7 expression led to a 

significant worse prognosis in patients compared to those with CCR7 expression in a lesser 

grade or an absent CCR7 expression. These findings suggest the more important role for 

metastatic disease to be with CCR7 expression as compared with CXCR4 expression in UM. 

CCR7 could be used as prognostic marker in the future. Another well-established prognostic 

factor is extraocular extension of UM and these tumours are classified in a different subcat-

egory of the TNM classification since they are associated with a worse prognosis.54, 55 We 

revised 357 UM patients and 43 (12.0%) had extraocular extension of the tumour (Chapter 

4.2). The risk of metastatic disease even increased when additional gain of chromosome 8q 

was present in tumours with extraocular extension. This study stresses the importance of both 

histopathological and chromosomal analyses in the work-up of UM.

In Chapter 4.3, an unusual case of UM with specific histopathological changes is 

demonstrated. Both spindle and epithelioid cells with a clear cytoplasm were found and the 

tumour had typical UM chromosomal alterations and not the translocation observed in clear 

cell sarcoma, concluding that this tumour was not associated with clear cell sarcoma but 

with UM. To date, no metastasis have been detected, but further follow-up in this patient is 

required to evaluate whether metastasis develop in this patient with a clear cell UM.

EXPERIMENTAL CONSIDERATIONS

Although well-established markers such as chromosome 3 loss and 8q gain are excellent for 

effective prognostication, combining the information on chromosomal aberrations with mu-

tation analysis are important steps in a better prognostic prediction. The genetic landscape of 

this cancer is slowly coming into focus. In the past, genes involved in malignant melanoma 

development and progression have regularly been investigated, as these tumours are fre-

quently compared. However, both types of melanoma have a different aetiology. Currently, 
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we are learning increasingly more about the genetics of UM. The investigated UM genomes 

display a mutational burden with abnormalities in the GNAQ, GNA11, BAP1, SF3B1 and 

EIF1AX genes. Based on the studies described in this thesis, patients can now be prognos-

tically categorised according to their mutational content: BAP1 being responsible for early 

metastasis in monosomy 3 tumours, SF3B1 for late metastasis in disomy 3 tumours and 

EIF1AX for a good prognosis. As mentioned previously, we know that GNAQ and GNA11 

mutations are early events in the pathogenesis. To this end, it would be interesting to perform 

mutation analysis on uveal naevi to gain more insight into the progression of a normal uveal 

melanocyte into an UM. 

The experiments in this thesis have been performed on predominantly large tumours 

since these patients still get enucleated and tissue is available for genetic testing. Even though 

eye-conserving therapies are extensive used for small and medium-sized melanomas, they 

can still metastasise dependent on their chromosomal and mutational status. Biopsies are 

interesting for genetic prognostication purposes. Although, a risk of sampling error can occur 

if fine-needle aspiration biopsy (FNAB) or small incisional biopsy of the tumour is performed, 

misclassification due to tumour heterogeneity is reported in only 1% of tumours.56 Tumour 

heterogeneity has been further investigated and it was concluded that analysis of tumour 

biopsies in UM gave an accurate prediction of the high-risk characteristics.49 Still, when 

taking a FNAB or small incisional biopsy the risk of seeding and local metastasis remains a 

concern. Studies on the risk of local metastasis have been conducted and no increased risk 

was observed in FNABs57 and the risk was even smaller if a transvitreal route was chosen for 

the FNAB.58, 59 However, local recurrence or locoregional spread is still possible.59, 60 Even 

though the risk for metastatic spread or local recurrence is minimal, the patient still needs 

surgery to obtain the tumour material. The surgery itself can have complications such as vitre-

ous bleeding, retinal detachment, and endophthalmitis.59, 61-63 Therefore, future experimental 

efforts need to be directed towards non-invasive detection of DNA abnormalities in blood 

or serum, which would be no extra burden to the patient since blood is routinely drawn to 

monitor basic liver functions of the patients, such as liver and kidney. 

 

CLINICAL IMPLICATIONS

As metastatic disease occurrence has not changed in the past decade, it is likely that mi-

crometastatic disease is present at time of diagnosis. For UM metastases, tumour-doubling 

times have been calculated with an median of 63 months, and it was assumed that with 

a constant growth rate, most metastases had initiated within 5 years before primary treat-

ment.64 Therefore, adjuvant treatment should be considered in an early stage of the disease, 
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and ideally at the time of diagnosis in order to prevent metastasis from growing. With the 

discovery of major key genes involved in UM development as GNAQ, GNA11, BAP1, SF3B1 

and EIF1AX mutations, further refinement of the classification of subclassification of UM is 

possible with mutation profiling in addition to chromosome 3 analysis. This will hopefully 

influence diagnostic concepts and therapeutic strategies based on the specific mutated gene. 

An accessible method for routinely prognostic testing BAP1 is immunohistochemistry since it 

allows clinicians to properly categorise UM patients, and is more practical and cheaper than 

NGS (Chapter 2.2). BAP1 immunohistochemistry can also be applied on biopsied tumour 

material (unpublished results), allowing also risk prediction of metastatic disease in patients 

with smaller melanomas. Another way to sequence multiple genes is with targeted NGS 

using special designed capture methods such as the HaloPlex (Chapter 3.1) or multiplex 

polymerase chain reaction (PCR). 

While diagnostic methods for UM prognostication are rapidly improving, for the in-

dividual patient it is even more important to develop new therapeutic concepts. Although, 

the Gα-protein mutations themselves do not serve as a prognostic marker for the prediction 

of metastatic disease, due to the high frequency of occurrence they seem promising markers 

for tumour confirmation or therapeutic intervention in an early stage of the disease. The 

therapeutic goal is to inhibit downstream signalling molecules in the MAPK pathway that are 

activated. Preclinical studies show that inhibition of MAPK pathway in UM cell lines results 

in decreased cell proliferation.9 There are several key molecules in the MAPK pathway, which 

have been explored as potential therapeutic targets. One of such is MEK, and Gα-protein 

mutant UM cells showed to be mildly sensitive to the MEK inhibitor AZD6244.65 Another 

recent preclinical study proposed to target both the MAPK and PI3K/AKT pathway since both 

pathways are activated in UM. A combination of MEK and PI3K inhibition treatment resulted 

in induction of apoptosis in a Gα-mutant UM cells.66 Another aspect to consider is that sin-

gle-agent therapies for advanced cancers are rarely curative, due to the rapid development of 

resistance. A recent study showed that 6 out of 16 cutaneous melanoma tumours analysed in 

vitro acquired epidermal growth factor receptor (EGFR) expression after the development of 

resistance to BRAF or MEK inhibitors.67 These tumours that developed vemurafenib resistance 

regained sensitivity to the drug after a so-called drug holiday. These findings highlight that not 

only combinations of certain drugs are important but also the timing of the therapy. Other 

potential targets in the MAPK pathway are currently being investigated, including protein 

kinase C, which is a component of signalling from GNAQ to ERK1/2.68 Obstacles to these 

studies include the rarity of UM, and clinical trials are ongoing to evaluate the effect of these 

Gα-targeted regimens in UM patients. With the recent discovery of the involvement of the 

YAP-dependent pathway in Gα mutant UM (described above), YAP can also possible serve as 

a potential drug target for UM patients carrying mutations in GNAQ or GNA11. Verteporfin 
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has been identified as an inhibitor of YAP activity,69 and recently, Feng et al.16 and Yu et al.15 

demonstrated that verteporfin inhibits the growth of UM in xenograft mouse models. More 

studies are needed to explore the therapeutic potential of this in metastatic UM. 

Therapeutically targeting UMs with a BAP1 mutation works in a different manner than 

the Gα-protein mutations, since BAP1 acts as a tumour suppressor gene. Regaining lost func-

tions of suppressor genes are in general more challenging than inhibiting an overactive onco-

gene. Nevertheless, one preclinical study shows that histone deacetylase (HDAC) inhibitors 

can reverse the histone H2A hyperubiquitination that occurs in cultured UM cells depleted 

of BAP1, and it induces morphologic differentiation, cell-cycle exit, and shifts to a differenti-

ated, melanocytic gene expression profile.70 Examples of HDAC inhibitors are valproic acid, 

trichostatin A, LBH-589, and suberoylanilide hydroxamic acid. 

Mutations in SF3B1 occur in a variety of cancers and recently spliceosome inhibitor 

E7107 has been tested in patients with advanced solid tumours in a phase I clinical trial.71 

None of the patients were diagnosed with UM but since the same pathway is affected, per-

haps this spliceosome inhibitor can be applicable for UM patients with a SF3B1 mutation? 

Clinical trials are needed to evaluate the effect of these compounds in UM patients, and 

hopefully individualised patient care and targeted therapy based on mutational content will 

lead to improved patient survival.

FUTURE PROSPECTS

An important step has been made by identifying particular key genes in UM. A next step 

would be to non-invasively determine mutations in these genes. Exploring ways of non-inva-

sive detection and screening of patients at high risk is a new field within UM research. Mi-

cro-RNAs (miRNAs) are used in many other types of cancer for diagnostic and classification 

purposes and have been reported as plasma or serum biomarkers for solid and haematolog-

ical tumours.72 In UM predictive plasma/serum biomarkers for metastasis are not available 

and biomarkers for early detection are important to identify patients at high risk for develop-

ing metastatic disease. It would be interesting to characterise miRNAs in UM, and especially 

the relation with development of metastases.

An autopsy study analysed the liver specimens from UM patients,73 and this study 

indicated that UM latency was primarily due to the inability of cells in metastatic sites to 

grow. Single cells or a few cells in a single clump were found within the liver of otherwise 

asymptomatic patients. These were likely to be derived from circulating tumour cells.73 Cir-

culating tumour cells as well as circulating tumour DNA (ctDNA) can be assessed non-inva-

sively in the peripheral blood circulation.74, 75 Circulating cell-free tumour DNA, extracellular 
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DNA, has been suggested as a cancer biomarker for several types of solid tumours76 next to 

circulating tumour cells.74, 75 The ctDNAs are composed of small fragments of nucleic acid 

and not associated with viable cells or cell fragments.77 Circulating tumour cells (CTCs) are 

cells shed form the primary tumour and circulate in the blood stream. In UM, CTCs have 

been explored before and the usefulness as an early prognostic marker has not been fully 

elucidated.78, 79 Nevertheless, presence of CTCs was confirmed in patients with metastatic 

UM.78, 79 For this purpose ctDNA seems to be more promising. With the current techniques, 

the ability to identify ctDNA has become easier as the protocols have been improved. For in-

stance in solid tumours, such as colon carcinoma, a total amount of ctDNA has been related 

with the oncogenic load of the tumour and ability of the tumour to metastasise.76 Detectable 

levels of ctDNA were present in 49% to 78% of the patients with localised tumours and in 

86% to 100% of the metastatic colorectal, gastroesophageal, pancreatic and breast cancers. 

Within this study in many cases in which ctDNA was detected (81%), no circulating tumour 

cells were detectable. Specific mutations within the ctDNA were in concordance with the 

mutations detected in the primary tumour.76 Also in UM the usefulness of ctDNA has been 

explored, and Madic et al.80 have identified the presence of ctDNA in UM patients’ serum. 

Studies with deep sequencing of the GNAQ and GNA11 genes on ctDNA of metastasised 

UM have shown that this approach can be used for detection of disseminated disease.81 Be-

sides specific mutations, also copy number variations are detectable in circulating DNAs.82 

In concordance with prenatal testing for small amounts of foetal DNA in maternal blood also 

copy number variations, present in the tumour or metastases, can be identified.74, 82 

Although progress has been made unravelling the genetic landscape of UM, more genes will 

probably get discovered with NGS in the future. In Chapter 2.3 we showed that BAP1, SF3B1 

and EIF1AX mutations occur in a largely mutually exclusive pattern (Figure 2, page 79). Re-

gardless of the Gα mutation status, nearly a quarter of UM had no mutations in either BAP1, 

SF3B1 or EIF1AX suggesting that there are more genes involved in the UM tumour pathogen-

esis. Fundamental or basic research in the field of Ocular Oncology will still be necessary 

to gain more knowledge on current UM target genes as well as newly discovered genes, and 

to study their effect on the UM pathogenesis. It would be interesting to experiment with a 

zebra fish model. The zebra fish (Danio rerio) has been successfully applied as an organism 

to elucidate the aetiology of human genetic diseases and different types of cancer.83, 84 Due 

to its transparent embryo that develops outside the mother’s body the zebra fish represents 

an ideal vertebrate model system to study embryonic development. Gene expression in the 

zebra fish embryos can be manipulated with, for example, the morpholino antisense tech-

nology to achieve gene knockdown. It would be interesting to examine the effect of BAP1 

depletion in zebra fish. Will these embryos develop different kind of tumours?  In addition, 
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future experiments can focus on exposing zebra fish to different kinds of pharmacological 

compounds to examine the in vivo effect of newly developed medication. 

In summary, UM is a genetic disease with a 50% risk of metastasis dependent on the tu-

mours’ chromosomal and mutational status, resulting in premature death. Genetic testing 

provides us with valuable prognostic information and will be critical to increase the under-

standing of UM progression. Targeting the pathways of GNAQ/GNA11, BAP1 and SF3B1 

offer therapeutic opportunities, and clinical trials are ongoing. New non-invasive techniques 

such as screening of miRNAs and ctDNA will likely be crucial tools to improve diagnosis 

and therapy in the future by selecting patients for adjuvant treatment and monitoring for early 

metastatic disease.
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Het uveamelanoom is een kwaadaardige vorm van kanker in het oog en ontstaat uit de 

gepigmenteerde cellen (melanocyten) in het vaatvlies (uvea) in het oog. Het is de meest 

voorkomende intra-oculaire maligniteit in Europa en de Verenigde Staten met een incidentie 

van zeven per miljoen mensen. Ongeveer de helft van de patiënten overlijdt uiteindelijk ten 

gevolge van levermetastasen. Er zijn bekende klinische, histopathologische en genetische 

factoren welke een invloed hebben op het al dan niet optreden van metastasen. De belan-

grijkste chromosoomverandering in de tumor is verlies van chromosoom 3 (monosomie 3). 

Ondanks de huidige sterk verbeterende oogsparende behandelingen van de primaire tumor 

(stereotactische bestraling, brachytherapie, protonenbestraling) en chirurgische verwijdering 

van het oog (enucleatie), is de prognose van patiënten met een uveamelanoom de afgelopen 

decennia niet veranderd. Wel zijn er in de laatste 5 jaar belangrijke inzichten verkregen 

door analyse van het tumor DNA met nieuwe moleculaire technieken. Zo kunnen we nu 

op basis van bepaalde genafwijkingen beter voorspellen welke patiënten metastasen zullen 

ontwikkelen. Daarnaast kunnen de onderzochte genen en pathways in de toekomst mogelijk 

als aangrijpingspunt dienen voor mutatiegerichte therapie in uveamelanomen. Het doel van 

dit proefschrift is om de genetische achtergrond van uveamelanomen verder op te helderen.

In hoofdstuk 2 van dit proefschrift worden verschillende kandidaat genen beschreven die be-

trokken zijn in de ontwikkeling van het uveamelanoom. Zo vonden we in Hoofdstuk 2.1 dat 

het merendeel van de tumoren (93%) een specifieke hotspot mutatie in het GNAQ of GNA11 

gen hebben. Patiënten met GNAQ en GNA11 mutaties hadden eenzelfde overlevingsduur en 

er werden geen associaties gevonden met andere prognostische factoren. Deze bevindingen 

ondersteunen de hypothese dat de oncogene GNAQ/GNA11 mutaties vroeg in de tumor-

ontwikkeling ontstaan en dat er additionele mutaties in andere genen nodig zijn voor het 

optreden van uitzaaiingen. Een gen wat wel een belangrijke rol speelt bij metastasering van 

uveamelanomen is het BAP1 gen gelokaliseerd op chromosoom 3p21.1. Voorgaande studies 

hebben reeds laten zien dat verlies van chromosoom 3 sterk geassocieerd is met een ver-

minderde overleving. Hoofdstuk 2.2 laat zien dat afwijkingen in het BAP1 gen voornamelijk 

voorkomen in agressieve tumoren met verlies van chromosoom 3. Patiënten met afwijkingen 

in dit gen hebben een zeven keer hoger risico op het ontwikkelen van metastasen vergeleken 

met patiënten zonder afwijkingen in dit gen. Daarnaast vonden wij dat BAP1 mutaties sterk 

geassocieerd waren met een afwezige BAP1 eiwit expressie in de tumor. Op basis van deze 

bevindingen adviseren wij BAP1 immunohistochemische kleuringen standaard te verrichten 

in de histopathologische work-up van uveamelanomen.

Een andere groep van uveamelanomen zijn de tumoren met een normale chromosoom 

Nederlandse samenvatting 207



3 status (disomie 3). Het merendeel van deze patiënten hebben een gunstige prognose en 

ontwikkelen zelden metastasen. Echter, in ons cohort is er een specifieke groep patiënten 

met disomie 3 die na enkele jaren toch metastasen ontwikkelen. In Hoofdstuk 2.3 zien wij 

dat afwijkingen in het SF3B1 gen hierbij een rol spelen. Patiënten met een disomie 3 tumor 

en een SF3B1 mutatie hebben een hogere kans op het ontwikkelen van late metastasen. 

Daarnaast vonden we dat een ander gen, EIF1AX, een beschermend effect heeft op metas-

tasering. Het belang van het SF3B1 gen mutaties voor de voorspelling van late metastaser-

ing wordt nogmaals benadrukt in Hoofdstuk 2.4 waarin een patiënt wordt beschreven die 

ongeveer 8 jaar na het stellen van de diagnose meerdere metastasen heeft ontwikkeld in de 

lever en alvleesklier. Wij vonden een GNA11 en SF3B1 mutatie in zowel de primaire tumor 

als ook in de metastasen.

Hoofdstuk 2.5 schets de rol van TERT promotor mutaties als tumor progressie marker 

in conjunctivale melanocytaire laesies. Deze mutaties zijn zeldzaam in uveamelanomen 

maar in conjunctiva melanomen (41%) en primary acquired melanosis (PAM) ofwel pri-

maire verworven melanose (8%) komen deze TERT promotor mutaties frequent voor. Te-

vens bevestigen we in deze studie dat de moleculaire pathogenese van het uveamelanoom 

en conjunctiva melanoom wezenlijk verschillend is. Conjunctiva melanomen hebben meer 

overkomsten met huidmelanomen met mutaties in het BRAF, NRAS en TERT gen.

In het derde hoofdstuk van dit proefschrift evalueren we of Next Generation Sequencing met 

een speciaal ontworpen HaloPlex target enrichment kit een betrouwbare techniek is voor 

het opsporen van mutaties in de oogmelanoom kandidaat genen (Hoofdstuk 3.1). In deze 

pilotstudie werden zes tumoren met mutaties in GNAQ, GNA11 en BAP1 onderzocht en 

alle bekende mutaties werden met de HaloPlex techniek gevalideerd. Daarnaast waren de 

variantfrequenties over het algemeen een goede weerspiegeling van het aantal kopieën van 

chromosoom 1p en 3 in de desbetreffende tumoren. Gericht sequencing biedt een aantrek-

kelijk kosteneffectief alternatief voor genoom-breed sequencing indien slechts een gen panel 

getest dient te worden. 

Naast genetische factoren zijn er ook andere klinische en histopathologische factoren wel-

ke van invloed zijn op de prognose van uveamelanoom patiënten, zoals de grootte van de 

tumordiameter, betrokkenheid corpus ciliare, extraoculaire extensie, een gemengd of puur 

epitheloïde cel morfologie, hogere mitosefrequentie en de aanwezigheid gesloten vaatpatro-

nen. In Hoofdstuk 4.1 hebben we de expressie van CCR7, CXCR4 en CXCL12 onderzocht 

in primaire uveamelanomen en bijbehorende levermetastasen. Een sterke cytoplasmatische 

CCR7 aankleuring was geassocieerd met prognostische kenmerken zoals een epitheloïde 

celtype en lymfocyten infiltratie in de tumor. Daarnaast hadden de patiënten met een sterke 

208 Chapter 6



CCR7 expressie in de tumor een significant slechtere overleving vergeleken met patiënten 

zonder CCR7 expressie. CCR7 zou daarom in de toekomst als prognostische marker kunnen 

dienen. Een ander bekende prognostische factor is extraoculaire extensie van de tumor waar-

bij de tumor door de sclera heen groeit. In Hoofdstuk 4.2 reviseerden we 357 uveamela-

nomen waarvan 43 (12%) extraoculaire extensie hadden. Hieruit bleek dat het risico op me-

tastasen verder toeneemt als er naast extraoculaire extensie ook winst van chromosoom 8q 

aanwezig is. Deze studie benadrukt het belang van zowel histopathologische als genetische 

analyses in de work-up van uveamelanomen. In Hoofdstuk 4.3 wordt een zeldzaam geval 

van een clear cel uveamelanoom gepresenteerd met specifieke histopathologische verand-

eringen. De tumor had chromosomale afwijkingen (chromosoom 6p, 6q en 8q) passend bij 

een uveamelanoom en niet bij clear cel sarcoma. De typische t(12;22)(q12q13) translocatie 

welke gerelateerd is met clear cel sarcoma werd met behulp van fluorescentie in situ hybri- 

disatie (FISH) niet gevonden. Tot op heden heeft de patiënt een gunstig beloop gehad, echter 

opvolging van het beloop is nodig om vast te stellen of er niet alsnog uitzaaiingen ontstaan.

Tenslotte worden in Hoofdstuk 5 de belangrijkste bevindingen en implicaties van de re-

sultaten in dit proefschrift bediscussieerd. Daarnaast worden in dit hoofdstuk overwegin-

gen voor toekomstig onderzoek gegeven. De inhoud van dit proefschrift heeft ons meer 

inzicht gegeven tot het genetische profiel van uveamelanomen en is mogelijk bruikbaar voor 

het ontwikkelen van nieuwe gengerichte therapieën en non-invasieve detectiemethoden in 

uveamelanoom patiënten.
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aa  amino acid

AKT3  v-akt murine thymoma viral ocogene homolog 3

ASAP1  arf-GAP with SH3 domain, ANK repeat and PH domain-containing

  protein 1

AZT  azidothymidine

BAP1  BRCA1-associated protein 1

BCL-2  B-cell CLL/lymphoma 2

bp  base pair

BARD1  BRCA1-associated RING domain protein 1

BCVA  best corrected visual acuity

BRAF  v-raf murine sarcoma viral oncogene homolog B1

BRCA1  breast cancer 1, early onset

BWA  Burrows-Wheeler Aligner

CCND1  G1/S-specific cyclin-D1

CDKN2A cyclin-dependent kinase inhibitor 2A

cDNA  copy deoxyribonucleic acid

CD45  cluster of differentiation 45 (leukocyte common antigen, protein tyrosine  

  phosphatase)

CI  confidence interval

CGH  comparative genomic hybridisation 

CCL19  chemokine (C-C motif) ligand 19

CCL21  chemokine (C-C motif) ligand 21

CCR7  C-C chemokine receptor 7

CLL  chronic lymphocytic leukaemia

COSMIC  catalogue of somatic mutations in cancer

CT  computed tomography

CTCs  circulating tumour cells

ctDNA  circulating tumour deoxyribonucleic acid

CXCL12  C-X-C motif chemokine 12

CXCR4  C-X-C chemokine receptor 4

del  deletion

DNA  deoxyribonucleic acid

EGFR  epidermal growth factor receptor

eIF1A  eukaryotic translation initiation factor 1A

EIF1AX  eukaryotic translation initiation factor 1A, X-linked

List of  abbreviations 213



Ets/TCF  E-twenty six/ternary complex factors

EXE  extraocular extension

FFPE  formalin-fixed paraffin-embedded

FISH  fluorescent in situ hybridisation 

FNAB  fine-needle aspiration biopsy

fSRT  fractionated stereotactic radiotherapy

gamma-GT gamma-glutamyl transpeptidase

GEP  gene expression profiling

GNAQ  guanine nucleotide-binding protein G subunit alpha q

GNA11  guanine nucleotide-binding protein G subunit alpha 11

GPCR  G-protein-coupled receptor

gp100  glycoprotein 100

GRN163L imetelstat

Gα  GNAQ and GNA11 genes

HBM  HCF1-binding domain-like motif

HCF1  host cell factor 1

HDAC  histone deacetylase

HGF  hepatocyte growth factor

hg19  human genome build 19

HMB-45  human melanoma black-45

HPF  high-power fields

HR  hazard ratio

H&E  haematoxylin and eosin

I-125  iodine-125

IGF-1  insulin-like growth factor 1

IHC  immunohistochemistry

InDel  insertion of deletion

ins  insertion

kb  kilobase

Kbp  kilo base pairs

LOH  loss of heterozygosity

LTD  largest tumour diameter

MAPK  mitogen-activated protein kinase

MAQ  multiplex amplicon quantification

Mb  megabase

MDS  myelodysplastic syndrome

MEK  mitogen-activated protein kinase kinase
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Melan-A  melanoma antigen recognized by T cells (MART-1)

min  minutes

miRNA  micro ribonucleic acid

MLPA  multiplex ligation-dependent probe amplification

mo  months

MRI  magnetic resonance imaging

mRNA  messenger ribonucleic acid

MYC  v-myc myelocytomatosis viral oncogene homolog (avian)

NBN  nibrin

NGS  Next Generation Sequencing

NLS  nuclear localisation signal

NRAS  neuroblastoma RAS viral (v-ras) oncogene homolog

N/A  not available

OCT  optical coherence tomography

OD  oculus dexter

OS  oculus sinister

PAM  primary acquired melanosis

PAS  periodic acid-Schiff

PCR  polymerase chain reaction

PIC  preinitiation complex

PI3K  phosphoinositide 3-kinase

PI3K/AKT phosphoinositide 3-kinase/protein kinase B (PKB)

PTEN  phosphatase and tensin homolog

qPCR  quantitative polymerase chain reaction

RNA  ribonucleic acid

ROMS  Rotterdam Ocular Melanoma Study group

RT-PCR  real-time polymerase chain reaction

Ru-106  ruthenium-106

s  seconds

SER  secondary enucleation rate

SF3b  splicing factor 3B

SF3B1  splicing factor 3B subunit 1

SNP  single nucleotide polymorphism

S-100  acidic protein, 100% Soluble in ammonium sulphate at neutral pH

TERT  telomerase reverse transcriptase

TFSOM  to find small ocular melanoma

TMA  tissue microarray
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TNM  tumour node metastasis

TP53  tumour protein p53

tRNA  transfer ribonucleic acid

TTT  transpupillary thermotherapy

UCH  ubiquitin carboxyl-terminal hydrolase

ULD  UCH37-like domain

UM  uveal melanoma

US  ultrasonography

UTR  untranslated region

VCF  variant calling file

y  years

YAP  Yes-associated protein

YY1  Yin Yang 1
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