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Fluorescence in situ hybridization (FISH) is used for the specific
marking of chromosome arms (Fig.1A) and pairs of small
chromosomal DNA regions (Fig. 1B). The labeling is visualized with

confocal laser

scanning microscopy f

ollowed by image

reconstruction. Chromosome arms show only small overlap and
globular substructures, as predicted by the MLS-model
(Fig. 1A & 9A). A comparison between simulated and measured
spatial distances between genomic regions as function of their
genomic distances results in a good agreement with the MLS-model
having loop sizes of arround 126 kbp and linker sizes between 63
kbp and 126 kbp (Fig. 2).

Fig. 1A & 1B: FISH-images of a territory painting of chromosome 15
(left, 1A) and genomic markers YAC-48 and YAC60 (right 1B) with a
genomic separation of 1.0 Mbp in interphase of fibroblast cells.

Fig. 2: Comparison of the RW/GL- and the MLS-model with experimentally
determined interphase distances.
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Fig. 3: Simulated obstruction of diffusion
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The diffusion of spherical particles within
a nucleus was simulated using Brownian
Dynamics methods. The mean square
displacement of the particles depends on
the diameter, the radius of the nucleus,
i.e. the obstacle concentration, and also
critically on the interaction between
particles and structure. For typical
biological particles <10 nm the degree of
obstruction Dy is moderate (Fig. 3). Thus
such particles reach most nuclear
locations in less than 10 - 20 ms. This
agrees with the volume occupancy and
mean chromatin fiber spacing. The
diffusion of particles in living interphase
nuclei depends on the local structure. In
vivo chromatin markers allow to
investigate this relation using
fluorescence correlation spectroscopy
(FCS). The correlation between diffusion
obstruction and structure vanishes for
small particles (Fig. 4) and increases with
increasing particle size.

Fig. 4: The degree of diffusion obstruction plotted against the chromatin density,
represented by the H2A-CFP fluorescence intensity. Data from FCS of Alexa568
dye in LCLS103H cell nuclei stably expressing a H2A-CFP fusion protein.
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INTRODUCTION

Despite the successful linear sequencing of the genome its three
dimensional structure is widely unknown although its importance for gene
regulation and replication. By integration of experiments and simulations
ranging from the DNA sequence to the nuclear morphology we show here
an interdisciplinary approach leading to the determination of the three-
dimensional organization and dynamics of the human genome.

Nuclear chromatin morphology by histone Multi-Loop-Subcompartment (MLS) model
H2A-YFP in vivo labelling of chromatin folding (Muinkel et al., 1997)
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Simulations of chromsomes and the whole cell
nucleus show that only the MLS-model leads to the
formation of non-overlapping chromosome territories
and distinct functional and dynamic
sub-compartments. Spatial distances between FISH
labeled pairs of genomic markers as function of their
genomic distance agrees with an MLS-model with
loop sizes of 120 kbp and linker sizes of 63 to 126 kbp.
The in vivo chromatin distribution visualized by
histone-GFP fusion proteins is similar to those found
in the simulation of whole cell nuclei. Fractal analysis
of the simulations reveal the multifractality of
chromosomes. It is possible to quantify the in vivo
chromatin distribution with fractal analysis and to
relate the result to differences in morphology. The
simulated diffusion of particles in the nucleus is only
moderately obstructed by the chromatin fiber
topology in agreement with FCS experiments.
Completely sequenced genomes show fine-structured
multi-scaling long-range correlations favouring again
an MLS like model. Beyond, all these aspects of
genome organization are hollistically connected.

DNA Sequence

Correlations

Correlation analysis of completely sequenced
genomes reveals fine-structured multi-scaling
long-range correlations which are linked to the
three-dimensional genome organization (Fig. 5). The
general multi-scaling behaviour is due to a block
organization and the fine-structure is attributable to
the codon usage and to nucleosomal binding.
Computer generated random sequences agree with
these results. Mutation by sequence reshuffling
destroyed all correlations. Trees constructed from the
species specific correlation behaviour were as
expected for Eukarya (Fig. 6) and led to a new
classification system for Archaea and Bacteria (Fig.
7).

Fig. 5: Comparison of the average correlation behaviour of Eukarya,
Archaea and Bacteria classes.

-0.10

-0.15[ -A-
-0.20F /
-0.25 \ I
=-0.30F / \\\ \ l
S0l et =N ~ / “
2040 /M o M’ i
IR eV sy, M
o-. > A/\///V \ ) " | .
Cosof A s | A Fig. 7: Tree of
= c N 1 M t
0550 £ , e -
o | | Archaea & Bacteria.
o -0.60 | — mean only Archaea c ¢ f
O - mean c\fasg A‘(W\thout Archaea) g ‘ |
0.651 : 5 | ” ;H classes
] I |
-0.70F —m Schizosacharomyces pombe ° B Iy i | ‘i H‘i
— mean Drosophila melanogaster [ S ST KT KUY ST S S | I
-0.75F{ — mean Homo sapiens 100 1000 10° 10° 10 L REL I
window size | [bp] ‘ i
Il 1 Il Il
080, 10 100 1000 10* 10° 10° A
. window size | [bp]
Fig. 6: Tree of Eukarya.
S. cerevisae Chr. 2 S. cerevisae Chr. 5
S. cerevisae Chr. 10 A. thaliana Chr. 1T A
S. cerevisae Chr. 15 [ A. thaliana Chr. 1B
S. cerevisae Chr. 14 A. thaliana Chr. 1T+B A"
S. cerevisae Chr. 12 A. thaliana Chr. 2
0.01
S. cerevisae Chr. 11 A. thaliana Chr. 4 changes

S. cerevisae Chr. 9 — H. sapiens Chr. 11

S. cerevisae Chr. 6 H. sapiens Chr. 21

S. cerevisae Chr. 4 H. sapiens Chr. 22

>/\ H. sapiens Chr. 20

S. cerevisae Chr. 13 / i H. sapiens Chr. 15
S. cerevisae Chr. 8 S. cerevisae Chr. 1

S. cerevisae Chr. 16

S. cerevisae Chr. 7 S. cerevisae Chr. 3

SIMULATION

For the prediction of experiments we simulated various models of
human interphase chromosome 15 with Monte Carlo and Brownian
Dynamics methods. The chromatin fiber was modelled as a flexible
polymer fiber. Only stretching, bending and excluded volume
interactions are considered. Chromosomes are further confined by a
spherical potential representing the surrounding chromosomes or
the nuclear membrane. Only the MLS model leads to clearly distinct
functional and dynamic subcompartments in agreement with
experiments (Fig. 8B & 1A) in contrast to the RW/GL models where
big loops are intermingling freely and featureless (Fig. 8C & 8D).

Fi_ﬁ% 8A: Starting configuration
with the form and size of a
metaphase chromosome.
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Fig. 9A & 9B: Simulation of a human interphase nucleus containing all 46
chromosomes with 1,200,000 polymer segments. The MLS-model leads to
the formation of distinct and non-overlapping chromosome territories.

3D-Rendering Simulated Confocal Section

FRACTAL
ANALYSIS

Fractal analysis is especially suited to quantify the unordered and
non-euclidean chromatin distribution of the nucleus. The dynamic behaviour of
the chromatin structure and the diffusion of particles in the nucleus are also
closely connected to the fractal dimension. The fractal analysis of the
simulation of chromosome 15 lead to multifractal behaviour in agreement with
porous network research (Fig. 10). Therefore chromosome territories show a
higher degree of determinism than previously thought. First tests of fractal
analysis of chromatin distributions by histone fusions to fluorescent proteins in
vivo result in significant differences for different morphologies (Fig. 11) and
might favour an MLS-model like chromatin distribution.

Fig. 10: Comparison of RW/GL- and MLS- model with fractal dimension
of the chromatin fiber from simulations.
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Fig. 11: Fractal Dimension as function of the intensity threshold.
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Abstract

Genomes are one of the major foundations of life due to their role in information storage, process regulation and
evolution. However, the sequential and three-dimensional structure of the human genome in the cell nucleus as
well as its interplay with and embedding into the cell and organism only arise scarcely. To achieve a deeper
understanding of the human genome the three-dimensional organization of the human cell nucleus, the
structural-, scaling- and dynamic properties of interphase chromosomes and cell nuclei were simulated and
combined with the analysis of long-range correlations in completely sequenced genomes as well as the
chromatin distribution in vivo. Using Monte Carlo and Brownian Dynamics methods, the 30 nm chromatin fibre
was simulated according to the Multi-Loop-Subcompartment (MLS) model, in which ~100 kbp loops form
rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL) topology, in which 1-5 Mbp loops
are attached to a flexible backbone. Both the MLS and the RW/GL model form chromosome territories but only
the MLS rosettes result in distinct subcompartments visible with light microscopy and low overlap of
chromosomes, -arms and subcompartments. The MLS morphology, the size of subcompartments and chromatin
density distribution of simulated confocal (CLSM) images agree with the expression of fusionproteins from the
histones H1, H2A, H2B, H3, H4 and mH2A 1.2 with the auto-fluorescent proteins CFP, GFP, YFP, DsRed-1 and
DsRed-2 which also revealed different interphase morphologies for different cell lines. Even small changes of
the model parameters induced significant rearrangements of the chromatin morphology. Thus, pathological
diagnoses, are closely related to structural changes on the chromatin level. The position of interphase
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental
findings. The scaling behaviour of the chromatin fibre topology and morphology of CLSM stacks revealed fine-
structured multi-scaling behaviour in agreement with the model prediction and correlations in the DNA
sequence. Review and comparison of experimental to simulated spatial distance measurements between genomic
markers as function of their genomic separation also favour an MLS model with loop and linker sizes of 63 to
126 kbp. Simulated and experimental DNA fragment distribution after ion-irradiation revealed also best
agreement with such an MLS. Correlation analyses of completely sequenced Archaea, Bacteria and Eukarya
chromosomes revealed fine-structured positive long-range correlation due to codon, nucleosomal or block
organization of the genomes, allowing classification as well as tree construction. This shows a complex
sequential organization of genomes closely connected to their three-dimensional organization. Visual inspection
of the morphology reveals also big spaces between the chromatin fibre allowing high accessibility to nearly
every spatial location, due to the chromatin occupancy <30% and a mean mesh spacing of 29 to 82 nm for nuclei
of 6 to 12 um diameter. This agrees with a simulated displacement of 10 nm sized particles of ~1 to 2 um takes
place within 10 ms, i. e. a moderately obstructed diffusion of biological molecules in agreement with
experiments. Thus, the local, global and dynamic characteristics of cell nuclei are not only tightly inter-
connected, but also are integrated holisticly to fulfill the overall function of the genome.
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