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1. HEMATOPOIESIS AND LEUKEMIA

Hematopoiesis is the deterministic process of blood cell formation taking place in the bone 

marrow.1 Mature blood cells are produced by a tightly controlled mechanism from hematopoietic 

stem cells (HSCs) residing in the bone marrow. Upon maturation blood cells are released into the 

peripheral blood and from this point onward can be transported to the different locations of the 

body. The mature blood cells exert different functions dependent on a strictly controlled path of 

maturation. The distinct leukocytes comprising granulocytes, monocytes, macrophages, natural 

killer cells and lymphocytes are essential for the defense against pathogens and foreign invaders, 

erythrocytes play a pivotal role in the transportation of oxygen to remote organs, and platelets 

confer the process of blood clotting.

 Mature blood cells are short-lived and require continuous replenishment. The control of 

the production and the total number of blood cells is conferred by multipotent progenitors 

and a small population of pluripotent HSCs (Figure 1). HSCs reside in the bone marrow of adult 

mammals at the apex of a hierarchy of progenitors which become progressively restricted to 

several and eventually single lineages of blood cells.2 Additionally these pluripotent stem cells 

have the unique ability to self-renew, generating a source for continuous replenishment of the 

complete blood cell system. The hematopoietic stem cell compartment contains stem cells with 

progressively decreased self-renewal capacity with the retention of multi-lineage reconstitution. 

The rare long term HSC (LT-HSC) is at the pinnacle of the hematopoietic hierarchy and is mainly 

quiescent. With the most conserved rate of self-renewal it prevents the depletion of the stem 

cell pool.3 The less rare short term HSC (ST-HSC) still retains a minimal ability for self-renewal 

and is the more active effector cell for hematopoietic replenishment in normal situations.4 The 

main constituent of the hematopoietic stem cell compartment is the multipotent progenitor 

(MPP) which lost its self-renewal capacity, however, kept the ability to give rise to daughter 

cells of different lineages. The daughter cells, common myeloid progenitor (CMP)5 and common 

lymphoid progenitor (CLP)6, are still oligopotent as they give rise to multiple blood cell types, e.g., 

lymphocytes, granulocytes, platelets and erythrocytes.

 The production of mature blood cells is a strictly controlled process that adapts to the needs 

of human physiology, e.g., erythrocyte production after blood loss. The control is asserted mainly 

by external stimuli, e.g., hematopoietic cytokines or growth factors, which are produced by 

constituents of the regulatory microenvironment within the bone marrow niche, other blood 

cells or cytokine secreting organs.7-9 The microenvironment plays a pivotal role in the formation 

of adequate numbers of blood cells of the correct type10 and the hematopoietic cytokines it 

produces allows the hematopoietic system to dynamically adapt to extramedullary events, e.g., 

blood loss, infection or cancer immunoediting.11
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Figure 1. Hematopoiesis. (adapted from Reya et al.3) Within the hematopoietic stem cell compartment reside 
pluripotent stem cells with the ability to differentiate into any mature blood cell type. The hematopoietic 
stem cell compartment comprises three subtypes, at the apex the long term HSC (LT-HSC) which mainly 
self-renews, the short term HSC (ST-HSC) with self-renewal capacity and which transiently differentiates, the 
multi-potent progenitor (MPP) which has lost the self-renewal capacity but still gives rise to daughter cells 
of different lineages. The first single lineage progenitors are the common myeloid progenitor (CMP) and the 
common lymphoid progenitor (CLP). The CMP can give rise to the GMP; granulocyte myeloid precursor, MEP; 
megakaryocyte erythrocyte precursor, ErP; erythrocyte precursor, MkP; megakaryocyte precursor and finally 
the mature blood cells. The CLP gives rise to Pro-B, Pro-T and Pro-NK cells, which upon subsequent maturation 
give rise to B-cell, T-cell, and natural killer cell lymphocytes.

 The malignant transformation of normal hematopoietic stem and progenitor cells (HSPC) 

results in the accumulation of hematopoietic cells in the bone marrow lacking the ability to 

differentiate with increased capacity for proliferation and survival. Sufficient accumulation of these 

non-functional hematopoietic cells impairs the function of the residual normal hematopoietic 

cells, eventually precluding the production of functional mature blood cells. The final outcome 

of this malignant process is termed leukemia and can be subdivided in chronic leukemia and 

acute leukemia. Chronic leukemia is characterized by an increased and unregulated production 

of white blood cells with differentiation capacity whereas acute leukemia is characterized by 
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the accumulation of the most immature hematopoietic stem and progenitor cells without 

differentiation capacity. Acute leukemia is a broad term for heterogeneous malignancies affecting 

the hematopoietic system and can be further subdivided based on the affected lineage, i.e., acute 

myeloid leukemia (AML)12,13 and acute lymphoblastic leukemia (ALL).14,15 The clinical distinction 

can be made on the basis of cell morphology, cell surface marker expression measured by 

immunohistochemical staining or specific gene expression patterns.16,17

2. ACUTE MYELOID LEUKEMIA

The focus of this thesis is primarily set on the genetic and epigenetic delineation of AML 

pathogenesis. AML is characterized by the accumulation of immature hematopoietic cells of 

the myeloid lineage in the bone marrow lacking the ability to differentiate towards functional 

granulocytes or monocytes and in rare cases also affecting the development of erythrocytes and 

megakaryocytes. The term AML specifies a broad spectrum of hematological malignancies and 

could be considered heterogeneous evidenced by the multitude of underlying abnormalities 

conferring variegated prognosis and response to therapy.

Epidemiology and clinical facets
AML is a rare disease with an incidence of approximately 3.8 cases per 100.000 individuals per year 

with a median age of 70 at presentation.13 Additionally, myelodysplastic syndrome (MDS)18 and 

myeloproliferative neoplasm (MPN)19 are pre-leukemic disease entities which can progress towards 

AML. The first clinical symptoms observed at AML onset are infections, fatigue, hemorrhage and 

more rarely extramedullary involvement such as gingival hyperplasia, i.e., abnormal increased 

size of the gum, in cases of acute myelomonocytic or monoblastic leukemia.20 The symptoms 

are the result of impaired normal hematopoiesis due to the accumulation of leukemic blasts in 

the bone marrow, precluding the production of functional mature blood cells. The dysfunction 

and aberrant distribution of malignant blood cells could readily explain the symptoms; infections 

(lack of granulocytes), fatigue (lack of erythrocytes), hemorrhage (lack of platelets), gingival 

hyperplasia (infiltration of malignant blood cells).

 Treatment of AML is divided into an induction phase followed by a post-induction phase. 

The induction phase aims at eradicating the leukemic blasts by treatment with combinatorial 

intensive chemotherapy. Subsequent consolidation therapy is performed, when complete 

remission is received, aiming at the elimination of residual undetectable leukemic blasts by 

means of allogeneic or autologous stem cell transplantation or conventional chemotherapy. The 

type of consolidation therapy is highly dependent on a set of different clinical parameters, e.g., 

age, genetic markers and suitable stem cell donor.
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The genetic and epigenetic landscape of AML
AML is a heterogeneous disease evidenced by the increasing number of cytogenetic and 

molecular abnormalities unveiled over the past decades. Traditionally, the classification of AML 

has been based on morphology, immunohistochemistry and immunophenotyping following 

the French-American-British (FAB) classification system.21 The karyotype of leukemic blasts has 

been a pivotal prognostic marker for many years, although recent years have demonstrated 

that molecular genetic analyses are equally important, particularly for AML patients lacking any 

cytogenetic aberrations. In 2008 the AML classification model has been updated by the World 

Health Organization (WHO), which incorporates besides morphology also cytogenetics and 

molecular abnormalities.22

Cytogenetics in AML

A subgroup within this classification system comprises AML with recurrent cytogenetic 

abnormalities each with distinct clinical behavior and outcome (Table 1). Predominant among 

those are AML entities harboring cytogenetic abnormalities involving inv(16)(p13q22)/t(16;16)

(p13;q22), t(8;21)(q22;q22), t(15;17)(q22;q12) or t(9;11)(p22;q21). These cytogenetic abnormalities 

are well characterized and could be further subdivided on the basis of additionally acquired 

abnormalities or gene expression markers.23-26 Recent addendums to the classification model has 

introduced the AML entity with the cytogenetic abnormality inv(3)(q21q26.2) or t(3;3)(q21;q26.2), 

which results in the overexpression of the gene ecotropic viral integration site-1 (EVI1) localized at 

3q26.2. Evi1 is identified as a common retroviral integration site in murine myeloid disorders.27

Table 1. Recurrent cytogenetic abnormalities in AML.

Cytogenetic abnormality Frequency (%) Genes involved Prognostic significance

Normal karyotype 45 - Intermediate

Complex karyotype 11 TP53 Unfavorable

+8 9 Unknown Intermediate

t(15;17)(q22;q12) 8 PML-RARA Favorable

-7/-7q 8 CUX1, MLL3 Unfavorable

-5/-5q 7 Unknown Unfavorable

t(8;21)(q22;q22) 6 RUNX1-ETO Favorable

inv(16)(p13q22)/t(16;16)(p13;q22) 5 CBFB-MYH11 Favorable

t/inv(11q23) 4 KMT2A Favorable(BRE+)  
Unfavorable(EVI1+)

+21 3 Unknown Intermediate

inv(3)(q21q26)/t(3;3)(q21;q26) 2 EVI1, GATA2 Unfavorable

Adapted from 29-32
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The protein EVI1 is a transcriptional regulator which invokes DNA interaction through its two 

zinc finger domains.28 The cytogenetic abnormality does not result in a transcript fusion and the 

overexpression has long been postulated to be conferred by the repositioning of an enhancer 

element belonging to the gene RPN1 located at 3q21. Hence the definition RPN1-EVI1 for inv(3)

(q21q26.2) or t(3;3)(q21;q26.2) malignancies in the WHO 2008 AML classification. In this thesis, 

and shown by others29, we demonstrate that EVI1 overexpression is conferred by the repositioning 

of a distal GATA2 enhancer towards the human chromosome 3q26.2 region.

Mutational landscape and patterns in AML

The initiation of AML is not conferred by a single aberration as observed in the core binding factor 

(CBF) leukemias24,33,34, i.e., AML with inv(16) or t(8;21) chromosomal abnormalities. Detailed studies 

have demonstrated that combinations of genetic alterations are necessary for the development 

of overt leukemia.35,36 These alterations mainly perturb cellular mechanisms associated with 

differentiation, survival, apoptosis, self-renewal and proliferation. These genetic lesions can be 

dichotomized on size, e.g., large cytogenetic events (translocation, inversions, duplications, 

deletions, and amplifications), and small genetic lesions (mutations and small insertions 

and deletions).   Recent efforts, in conjunction with a new technology called next generation 

sequencing (NGS), has brought to light the multitude of small recurrent genetic lesions acquired 

during leukemogenesis. These combinatorial mutational patterns reflect the heterogeneous 

nature of AML (Figure 2). Several of these recurrently acquired molecular abnormalities, such 

as mutations in the genes nucleophosmin 1 (NPM1), CCAAT enhancer binding protein alpha 

(CEBPA), fms-related tyrosine kinase 3 (FLT3, in particular internal tandem duplication [FLT3-ITD]), 

have independent prognostic values, especially in AML with normal cytogenetics (Table 2). The 

application of NGS has brought to light the existence of mutational patterns in AML.35 Mutations 

in additional sex combs-like 1 (ASXL1) were initially identified in MDS37 and subsequently observed 

in AML. Mutations in ASXL1 confer a dismal prognosis38 and are inversely correlated with NPM1 

mutations and FLT3-ITD.39 Recent efforts have led to the discovery of GATA2 mutations in AML 

patients, more frequently in patients harboring biallelic mutations in CEBPA.40 Strikingly, both 

mutations have been linked to familial predisposition for MDS or AML.41,42

Mutational mutual exclusivity: an example

Mutations in the gene tet methyl-cytosine dioxygenase 2 (TET2)43,44 were initially identified in MDS 

and subsequently detected in AML. The introduction of NGS led to the discovery of isocitrate 

dehydrogenease (IDH) mutations, i.e., IDH1 and IDH245, conferring dismal prognosis in particular 

AML subtypes.46 The protein TET2 plays an important role in the reversion of 5-methylcytosine 

(5-mC) towards ordinary cytosine and requires the cofactor alpha-ketoglutarate (α-KG) to exert 

its function. Mutations in this gene impairs the iterative hydroxylation of 5-mC resulting in its 

accumulation.47 The cofactor α-KG is produced by IDH1 and IDH2 and mutations within each of the 
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genes encoding these proteins give rise to a neomorphic function, which confers α-KG processing 

into 2-hydroxyglutarate (2-HG). The oncometabolite 2-HG binds to TET2 and subsequently 

impairs its hydroxylation function.48 Mutations in TET2, IDH1 and IDH2 are mutually exclusive and 

all perturb the hydroxylation of 5-mC by impairing TET248, providing an example of a mutually 

exclusive mutation pattern affecting the same pathway. Additionally, recurrent mutations in the 

gene DNA (cytosine-5)-methyltransferase 3 alpha (DNMT3A) were observed in AML.49 The DNMT3A 

protein confers the de novo methylation of cytosines, implying that mutations in DNMT3A, TET2, 

IDH1 and IDH2 play a role in leukemogenesis by perturbing DNA methylation dynamics.
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Figure 2. Molecular heterogeneity of AML. Circos plot illustrating the interrelationships of translocations 
and mutations found in a cohort of 498 de novo AML cases. Colored lines illustrate concurrent lesions found in 
one AML patient. Of note, patients can have more than two lesions.
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Epigenetics

The field of epigenetics concerns the discipline investigating the dynamics of DNA conformation or 

accessibility. The DNA sequence serves as a blueprint for the production of functional messenger 

ribonucleic acid (mRNA), which in turn is translated into a protein exerting its functional properties 

according the necessities of the cell. Epigenetic alterations, e.g., DNA methylation50, histone 

modification51, chromatin looping52,53, confers transcriptional control without changing the DNA 

sequence and could be considered as an additional layer of regulation by which the cell controls 

its requirements. Aberrant epigenetic patterns have been observed in AML54,55 and adds a layer 

of complexity to the unraveling of AML pathogenesis. Recent NGS efforts have demonstrated 

that many epigenetic modifiers are recurrently mutated in AML56, potentially resulting in aberrant 

epigenetic alterations.

Table 2. Recurrent molecular abnormalities in AML.

Gene symbol Frequency (%) Prognostic significance Association with cytogenetics

ASXL1 5-10 Unfavorable Normal

BCOR1 4 Undetermined Normal

BCORL1 6 Undetermined Normal

CBL 5 - CBF AMLs

CEBPA 5-10 Favorable Normal

Cohesin complex 5-10 - Normal

DNMT3A 20-25 Unfavorable Normal

FLT3-ITD 20 Unfavorable Normal, t(15;17)

FLT3-TKD 5-10 Controversial Normal

GATA2 2 Controversial CEBPA, inv(3)/t(3;3)

IDH1 8 Unfavorable Normal

IDH2 8 Unfavorable Normal

KIT 2-8 Unfavorable CBF AMLs

KRAS 5 - inv(3)/t(3;3)

MLL-PTD 5-11 (CN-AML) Unfavorable Normal/Trisomy 11

NPM1 25-35 Favorable Normal

NRAS 10-15 - inv(16)/inv(3)/t(3;3)

RUNX1 10 Unfavorable Normal/Trisomy 21
SF3B1 2-5 Undetermined AML with ringed sideroblasts/

inv(3)/t(3;3)

TET2 20 Unfavorable Normal

TP53 <10 Unfavorable Complex karyotype (69%)

U2AF1 4 Undetermined Secondary AML

WT1 10 Controversial Normal

Adapted from 57-61
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3. ACUTE LYMPHOBLASTIC LEUKEMIA

A single chapter of this thesis is dedicated to ALL and therefore mandates a brief introduction 

into this hematological malignancy. ALL is characterized by the accumulation of primitive 

lymphoblastic cells in the bone marrow that have lost the ability to differentiate towards functional 

T-cells, B-cells or NK-cells. Within each respective lineage (Figure 1) there is still a heterogeneous 

group of disorders with variegated underlying genetic abnormalities and clinical behavior. This 

thesis only focusses on adult B-cell ALL (B-ALL) and T-cell ALL (T-ALL).

Epidemiology
The incidence of ALL is approximately 1 case per 50.000 individuals.14,15 Pediatric leukemia 

accounts for approximately 70% of ALL cases and is the most common childhood cancer. The 

incidence of ALL peaks at 0-5 years, while in the adult cases the incidence peaks in patients older 

than 65 years. Clinical symptoms range from general weakness and fatigue to anemia, bone pain, 

and enlarged lymph nodes and spleen. The five-year event-free survival is nearly 80 percent for 

children and approximately 40 percent for adults.62,63

Cytogenetic and genetic lesions
Cytogenetics and the mutational landscape of ALL

Cytogenetics and cytology play a pivotal role in the classification of ALL. Although a FAB 

classification exists for ALL, it is far less used than for AML. First, ALL is stratified according to 

cytomorphology or cell surface markers into B-ALL or T-ALL. Secondly, cytogenetics is used for the 

determination of recurrent chromosomal aberrations. Most of these cytogenetic abnormalities 

are the result of translocations leading to the expression of oncogenic fusion transcripts (Table 

3). Specific B-ALL aberrations comprise: t(12;21)(p13;q22) (ETV6-RUNX1), t(1;19)(q23;p13.3) 

(TCF3-PBX1), t(9;22)(q34;q11.2) (BCR-ABL1) and MLL-rearrangements. Specific T-ALL aberrations 

comprise: del(1p32) (SIL-TAL1). Prognostication in adult ALL is limited to a few prognostic genetic 

markers, e.g., BCR-ABL1 and MLL-AF4. Traditional non-genetic markers, such as age, sex and WBC, 

have a significant effect on treatment outcome. Numerical changes of chromosomes has been 

determined to affect treatment outcome: strong hyperdiploidy (more than 50 chromosomes) 

results in a favorable prognosis status and normal or low hypoploidy results in an intermediate 

and unfavorable prognosis status, respectively.64 The presence of the BCR-ABL fusion results in 

a dismal prognosis and is commonly observed in adult ALL. The determined ALL mutational 

landscape revealed specific mutations in different ALL subtypes: (I) frequent DNMT3A mutations 

in adult early thymocytes progenitor-ALL (ETP-ALL)65, (II) frequent tumor protein P53 (TP53), IKAROS 

family zinc finger 2 (IKZF2) and retinoblastoma 1 (RB1) lesions in pediatric hypodiploid ALL66, (III) 

kinase-activating lesions in BCR-ABL1-like ALL.67
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Table 3. Recurrent cytogenetic abnormalities in ALL.

Cytogenetic abnormality Frequency (%) Genes involved Prognostic significance

Normal karyotype 15-34 - Intermediate

t(9;22)(q34;q11.2) 11-29 BCR-ABL1 Unfavorable

t(4;11)(q21;q23) 4-9 KMT2A-AFF1 Unfavorable

Hyperdiploidy 7-8 - Favorable/intermediate

Hypodiploidy 7-8 - Unfavorable

t(1;19)(q23;p13.3) 1-6 TCF3-PBX1 Intermediate

t(12;21)(p13;q22) 0-4 ETV6-RUNX1 Undetermined

SIL-SCL deletion 3 SIL-TAL1 Unfavorable

Adapted from 64

Recurrent focal genetic lesions in ALL

Beside recurrent cytogenetic abnormalities and small mutations, ALL is characterized by 

recurrent deletions and amplifications perturbing single or multiple genes in both pediatric and 

adult ALL.68,69 A small number of novel and recurrent genetic lesions have been demonstrated 

to be acquired in B-ALL and T-ALL, e.g., the deletion of cyclin dependent kinase inhibitor 2A and 

2B (CDKN2A/B) and the deletion of RB1. The remainder of recurrent genetic lesions are specific 

for B-ALL; deletion of IKAROS family zinc finger 1 (IKZF1), paired box 5 (PAX5), B and T lymphocyte 

associated (BTLA), while others are more specific for T-ALL; deletion of Wilms tumor 1 (WT1) and 

neurofibromin 1 (NF1). These genetic lesions are observed in varying degrees within pediatric and 

adult ALL, e.g., IKZF1 deletions are more prominent in adult than pediatric ALL cases lacking the 

t(9;22) cytogenetic aberration.70 The underlying mechanism for these deletions has long been 

debated to be associated with illegitimate RAG-mediated rearrangements.71 The adaptive immune 

system requires diversification in defense of pathogens or other foreign invaders. It maintains this 

diversity by generating a vast repertoire of antigens by combining the antigen constituents in a 

combinatorial manner.72 The antigen constituents comprise variable (V), diversity (D) and joining 

(J) gene segments in the antigen receptor gene regions. This recombination process is mediated 

by the recombination activating gene (RAG) proteins, i.e., RAG1 and RAG2, which recognize 

recombination signal sequences (RSS) flanking the gene segments. The existence of cryptic RSS 

flanking deletion breakpoints has led to the hypothesis that deletion events are invoked by the 

RAG complex71,73 and recently been shown to be a prominent driver of rearrangements in ETV6-

RUNX1 ALL cases.74

4. GENOME-WIDE APPROACHES FOR THE DELINEATION OF AML

Recent technological advances have allowed for the genome-wide characterization of AML. 

This progression can be explained by the improvement and flexibility of novel experimental 
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tools, the quick procession of measuring devices and statistical or algorithmic developments. 

Detailing each genome-wide characterization technology is warranted for the discernment of its 

advantages and caveats.

Gene expression profiling
The human genome contains thousands of genes and their products, i.e., mRNA and proteins, 

function within a complicated web of biological mechanisms. The attainment of gene expression 

levels allows the researcher to unravel this complex web of interactions. In human disease, gene 

expression level assessment enables the determination of aberrant gene expression patterns 

potentially allowing for the further subcategorization of established AML entities or delineation 

of aberrant mechanisms affiliated to leukemogenesis. Technological advances in the past 

decades have led to a major breakthrough enabling the genome-wide characterization of tumor 

material by array-based technologies. First among these array-based technologies was the gene 

expression array that allows for the genome-wide measurement of the human transcriptome 

(Figure 3A). This genome-wide technique measures the level of thousands of mRNA transcripts 

simultaneously by a process called gene expression profiling (GEP). The glass slide of the array is 

spotted by thousands of DNA probes that can, based on their sequence specificity, competitively 

hybridize to complementary cDNA/cRNA produced from mRNA. The rate of hybridization is 

measured and used for the estimation of gene expression levels. These expression profiles 

have several biologically and clinical relevant applications. Initially, GEPs were utilized for the 

identification of different AML subtypes17,75,76 and were pivotal in cementing the homogeneity of 

AML entities with recurrent cytogenetic abnormalities, i.e., t(15;17), t(8;21) and inv(16)/t(16;16), 

as well as the identification of novel AML subtypes with specific gene expression patterns.77-79 

Prognostic expression markers for clinical purposes can be discerned from GEPs for further 

classification of AML.26,80-82 Importantly, GEP could give insight into the biological mechanisms 

perturbed by the underlying genetic abnormality.78 A multitude of relevant applications can be 

devised for the delineation of AML pathogenesis by GEP, however, it is limited to the single facet 

of gene expression levels and is therefore unable to identify all aberrant processes.

DNA mapping arrays
The gain or loss of chromosomal regions may result in the perturbation of AML initiating genes. 

Traditionally, cytogenetics was employed to detect large chromosomal abnormalities, but was 

limited in its resolution and therefore unable to detect smaller genetic alterations. DNA mapping 

arrays, likewise to gene expression arrays, are utilized by means of hybridization procedures. The 

glass slide is spotted by DNA probes that can, based on their sequence specificity, bind to particular 

segments of DNA. Specific probes are generated to measure the genotype of single nucleotide 

polymorphisms (SNPs), which are variants in the genome observed in at least some percentage 

of the healthy human population. One probe measures the ‘A’ allele of a specific DNA segment 
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while another slightly different probe measures the ‘B’ allele for the same segment. The amount 

of hybridization can be used for the determination of the copy number when compared to an 

appropriate base line control. In a normal situation the copy number equals 2, one chromosome 

from the father and the other chromosome of the mother. The loss or gain of DNA material leads 

to copy number variations (CNVs) and have been implicated in oncogenesis (Figure 3C).83 With 

an appropriate control, e.g., normal tissue or remission material, the loss of heterozygous SNP 

genotypes, i.e., loss-of-heterozygosity (LOH), can highlight regions with cancer-critical genes.84 In 

general AML is characterized by the frequent acquisition of LOH in comparison to the low number 

of observed CNVs85, which are more frequently observed in ALL.68,69 

Next generation sequencing
Technical advances of the last decade have led to the introduction of NGS. Different NGS 

methodologies take as input RNA or DNA derivatives and determine the sequence of millions of 

DNA fragments simultaneously in a manner reminiscent to Sanger sequencing. These fragments 

can be partially sequenced from one side, called single-end sequencing, or partially sequenced 

from both sides, called paired-end sequencing. Different applications for NGS have hitherto been 

developed, e.g., whole genome sequencing (WGS), whole exome sequencing (WES), (m)RNA 

sequencing (RNA-Seq), chromatin conformation capture sequencing (4C-Seq), and chromatin 

immunoprecipitation sequencing (Chip-Seq). These techniques result in millions of reads and 

alignment of these reads to the genome of interest allows for the quantification of processes of 

interest, e.g., gene expression levels, or the identification of genetic lesions (Figure 3C). Due to 

its high sensitivity and accuracy NGS rapidly replaces array based technologies.86 All mentioned 

NGS techniques, vide supra, will be employed during this thesis and therefore mandates a brief 

introduction detailing its use, benefits and pitfalls. 

Whole exome and genome sequencing

The determination of the complete DNA sequence can be achieved by WGS. DNA from the tissue 

of interest is isolated and preprocessed without any form of sequence enrichment. Contemporary 

NGS technology allows for the sequencing of the complete genome, albeit with a low coverage. 

The coverage implies the number or depth of DNA or RNA fragments that have been sequenced 

for a particular region. A higher coverage increases detection power of somatic mutations or a 

better estimation of quantities of interest. Subsequently, WGS is not preferable when mutations 

could be expected to be present in only a fraction of leukemic blasts. A higher coverage is 

achieved by selectively isolating DNA regions of interest, e.g., the exome, and are procured by 

target enrichment or exome capture, before sequencing is performed. WES supersedes WGS at 

detecting mutations within the exome or determining the clonal architecture of AML. The caveat 

of capture procedures concerns the accidental capture of regions with high homology, sometimes 

resulting in biased estimations or false positive mutations.
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Whole transcriptome sequencing

RNA-Seq quantifies the gene expression levels reminiscent to gene expression arrays (Figure 3A). 

RNA-Seq requires no a priori knowledge about the transcriptome which is needed for array-based 

technologies. The number of fragments aligning to a gene, corrected for gene length and the 

total number of sequenced fragments, is used for gene expression level estimation.87 The mRNA 

transcripts originating from a gene can have different forms owing to gene isoforms or RNA splicing 

and could possibly encode proteins with vastly different functions.88 Additionally, RNA-Seq can 

be used for the detection of fusion transcripts89 or mutations in genes if they are expressed.90 

Finally, the accurate detection of gene expression levels is highly correlated with the coverage.

Chip-Seq

Chip-Seq is used for mainly two reasons. First, Chip-Seq can be used for the identification of 

protein-DNA interactions and to quantify the frequency of this interaction (Figure 3B). Second, 

it allows for the detection of epigenetic alterations, e.g., histone modifications. The protein of 

interest is cross-linked with DNA in viable cells and immunoprecipitated.91 The isolated DNA 

fragments are sequenced and the resultant reads are aligned against the genome of interest. 

Subsequently an interaction profile is generated from the aligned reads representing the 

interaction frequency of the protein of interest with particular DNA segments. Gene expression 

is a tightly controlled process that is modulated by the binding of proteins to functional genomic 

elements affiliated with the gene. Classically, these genomic elements comprise promoters, 

enhancers, insulators or CpG islands. Recently, the term super-enhancers is introduced to signify 

highly active epigenetic regions comprising clusters of enhancers and have been associated with 

cell identity and disease.92,93 Chip-Seq allows for the identification of these genomic elements and 

the proteins that bind to them (Figure 3B).

4C-Seq

4C-Seq quantifies the frequency of two DNA segments being in close proximity or interacting.94 

Chromatin loops, under the direction of the cohesion complex, bring specific genomic elements 

in proximity, e.g., the promoter of a gene and an affiliated enhancer, invoking transcriptional 

control.95 In brief, at first a region of interest is chosen and polymerase chain reaction (PCR) 

primers are designed accordingly. DNA segments in close proximity are cross-linked in viable 

cells and DNA is fragmented with a restriction enzyme. Subsequently, the ends of the fragmented 

cross-linked DNA are ligated and cross-linking is removed resulting in circular DNA. Further 

processing with a second restriction enzyme is enacted and PCR amplification is performed with 

the designed primers. These primers are specific for the region of interest and therefore only 

amplifies the interacting DNA segment. These amplified fragments are subsequently sequenced 

and aligned. Interaction profiles are extracted and the density of interaction fragments in a region 

of interest relates to the interaction frequency. 
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EnhancerSuper-enhancer Promoter Gene
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mRNA

RUNX1 POL2BRD4
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Gene expression profilingProtein-DNA binding (Chip-Seq)

Genomic abnormalities (DNA mapping arrays and next generation sequencing)

sequence
...ATTCGAGGGTAGCAT... ...TCGGCGCGA... ...CTGTGGTTACG... ...CTTATAAA... ...CTTACTGCCCTGAA...

AB

C

Figure 3. Genome-wide approaches in human disease. DNA is the blueprint of life and its sequence contains 
a large number of functional genomic elements. (A) The transcription of a gene results in the production of 
mRNA and its expression level can be determined by gene expression profiling. (B) The expression of genes 
is under control of many different genomic elements, e.g., promoters, enhancers, CpG islands and super-
enhancers, on which many different proteins can bind to exert mRNA level control and this binding can be 
ascertained by Chip-Seq. (C) Perturbations of the genetic material is a hallmark of cancer and changes can 
be ascertained by DNA mapping arrays or next-generation sequencing. DNA helix was generated by the 
Illustrator DNA brush of James Hedberg.

5. SCOPE AND OUTLINE OF THE THESIS

The use of different genome-wide analysis approaches has provided avenues for further 

delineation of AML and ALL pathogenesis. This thesis focuses on the use and extension of these 

approaches to provide further insight into these diseases on a genetic and epigenetic level. 

The analytical tools for processing the results from these approaches have thus far been limited 

and therefore novel statistical models have been devised, focusing on their applicability to the 

procured data. Additionally, the functional and prognostic role of the novel detected genetic 

aberrations are further investigated.

 The thesis consists out of three parts related to the different types of genome-wide approaches 

used. The first part (chapter 2, 3) concerns research utilizing gene expression profiling for 

prognostication or AML subtype classification. Classification methodologies for gene expression 

data are limited and unable to provide interpretable prediction signatures. This question is 

addressed in chapter 2 and led to the development of the group lasso penalization framework for 

the multinomial logistic regression model. In chapter 3, we determine if AML patients harboring 

biallelic mutations in the gene CEBPA (CEBPAdm) have distinct prognostic outcomes and GEPs. The 
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multinomial logistic regression model with lasso penalization is used for determining the gene 

expression signature of CEBPAdm AML patients. We demonstrate in a validation cohort that our 

gene expression signature can perfectly discern CEBPAdm cases from all other AML cases.

 The second part (chapter 4, 5) focuses on the use of DNA mapping arrays to determine 

recurrent genetic alterations in AML and ALL. In chapter 4, we describe a software package for 

visualizing CNV profiles in conjunction with GEPs. In chapter 5, we identify recurrent genetic 

lesions in ALL and AML using DNA mapping arrays. We report on the recurrence of particular 

genetic lesions and with the use of NGS we demonstrate that many of the genetic alterations are 

the result of illegitimate RAG-mediated rearrangements in particular ALL subtypes.

 The third part (chapter 6, 7, 8, 9, 10, 11) focuses on the use of NGS to address a multitude of 

research questions concerning the delineation of AML pathogenesis. The first five chapters focus 

on the determination of mutations or genetic aberrations in AML, while the last chapter describes 

a statistical framework for the determination of CNVs from NGS data. In chapter 6, we performed 

a mutational time-series analysis on pre-leukemic or leukemic material from a patient with severe 

congenital neutropenia who progressed towards AML with substantial delay. In chapter 7, we 

focus on understanding the underlying leukemogenic mechanism of inv(3)(q21q26) and t(3;3)

(q21;q26) AML entities. Initially, we determined all the breakpoints in the 3q21 and 3q26 loci 

and discerned an asymptotic pattern of breakpoints in 3q21. The integration of RNA-Seq, Chip-

Seq and 4C-Seq revealed that EVI1 overexpression is the result of the repositioning of a distal 

GATA2 enhancer towards the 3q26 locus, concurrently resulting in the hemizygous and reduced 

expression of GATA2. In chapter 8, we determine mutational patterns in the inv(3)(q21q26) 

and t(3;3)(q21;q26) AML subtypes. We reveal the predominant presence of activating RAS/RTK 

mutations in 98% of the cases and additionally reveal recurrent mutations in GATA2, SF3B1 and 

RUNX1. In chapter 9, we utilized RNA-Seq to discover a previously unreported KMT2A-MYH11 

fusion transcript. In chapter 10, we used targeted resequencing to identify jumping translocations 

involving the gene BCL11B. We demonstrate that the jumping translocation integrates into super-

enhancers with subsequent overexpression of BCL11B. In chapter 11, we develop a new algorithm 

that can determine CNV profiles from WGS and WES data. Algorithms determining CNVs from NGS 

data are still lacking or do not employ valuable noise statistics derived from a NGS reference set 

of diploid cases. We demonstrate that we can attenuate systematic bias and artifacts conferred by 

repeat regions on a set of AML cases characterized by WGS or WES. Finally, the results presented 

in this thesis are summarized and discussed in chapter 12.
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ABSTRACT

Continuous variable selection using shrinkage procedures have recently been considered as 

favorable models in a wide range of scientific research; in particular biomedical research. In 

some cases, it is desirable to select as few predictors as possible, to increase the interpretability 

of the attained prediction rule. One frequently used shrinkage procedure; the lasso, imposes a 

L1 regularization on the regression coefficients of general linear models, inherently leading to 

sparse prediction rules. For multi-class prediction in generalized linear models each predictor has 

a regression coefficient for each class. A major disadvantage is that the lasso selects individual 

regression coefficients instead of the more logical selection of complete predictors. Here we 

demonstrate a new regularization procedure, based on the group lasso in the multinomial logistic 

regression model. This methodology results in a lower number of retained predictors, but with 

similar prediction accuracy when compared to the lasso regularization scheme. To illustrate the 

new regularization applicability we have employed it on a large cohort of acute myeloid leukemia 

patients (AML, n=540) who are characterized on a gene expression microarray.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter2/



Ch
ap

te
r 2

Sparse multi-class prediction based on the group lasso

31

INTRODUCTION

Regression models put an emphasis on determining explanatory variables which predict response 

variables accurately. Contemporary high-throughput technologies, have given rise to vast 

amounts of high-dimensional data. Given the high-dimensionality of the data, it is worthwhile to 

perform variable selection, as sparser prediction rules are generally more interpretable and give 

more prediction power. Best-subset procedures are in most cases computationally intensive; even 

for a moderate number of variables, and are known to be unstable due to their discrete nature.1 

More robust strategies have been proposed for the multinomial logistic regression model2-4 by 

imposing a penalty on the regression coefficients.5 In these logistic regression models each class 

has its own set of regression coefficients and imposing penalizations on these coefficients confers 

modeling constraints. The lasso penalization scheme6 puts a L1 regularization on the regression 

coefficients. If predictors are pair-wise correlated, e.g., genes co-regulated, the penalization 

scheme will only retain one predictor, discarding the remainder of correlated predictors. In the 

usual logistic regression setting we have a continuous response Y Є � ∈ ℝ  
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� ∈ ℝ� n, a n×p design matrix X, a 

regularization parameter λ and a parameter vector β Є � ∈ ℝ  
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� ∈ ℝ� p. The lasso estimator is defined as:
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� ∈ ℝ� 

For large values of λ, some coefficients of the estimator β
^
   become exactly zero and are considered  

unassociated to the response variable. The lasso procedure provides sparse prediction rules, a 

beneficial feature when utilizing high-dimensional data.7 In a multi-class prediction setting each 

class is associated with one set of regression coefficients, reflecting the impact of the predictors 

on the class prediction, and predictors are retained in the model when at least one associated 

regression coefficient is non-zero, irrespective from which class. Table 1 illustrates the regression 

coefficients sets obtained from a four-class classification setting with the lasso penalization 

scheme. The major disadvantage of the lasso penalization scheme relates to the selection of 

individual regression coefficients instead of complete predictors, resulting in the retention of an 

increased number of selected predictors.

 The group lasso penalization scheme8,9 overcomes this problem by defining a suitable 

penalization function. This penalization procedure could be considered as an intermediate 

between the lasso and ridge10 penalization schemes and additionally has the attractive property 

of performing variable selection on predefined groups of predictors. Most logistic regression 

models, which have hitherto solely been based on single predictors, can now be replaced by 

entities reflecting group structures, e.g., pathways or gene sets. This predefined grouping has 

given the possibility to integrate prior knowledge into the model and create structures relevant 

to research; such as pathway analysis. The elastic net11 was developed to take advantage of the 

grouping effect; however it lacks the ability to predefine group structures, which could inherently 

increase the interpretability of the derived prediction signature.
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Table 1. Regression coefficients derived from a 4-class classification problem.

 Probe set Other t(15;17) t(8;21) inv(16) Gene symbol

1553588_at 9.55E-05 0 0 -0.0003 ND3 

200026_at 9.91E-05 0 0 0 RPL34

200665_s_at 0 0 0 0.000659 SPARC

201324_at -0.00024 0 0 0 EMP1

201360_at -0.00014 0 0 0.000246 CST3

201432_at 0.00173 0 0 -0.00039 CAT

201502_s_at 0.000318 0 0 0 NFKBIA

201721_s_at 0 0 -0.00053 0 LAPTM5

202746_at 0 0 0 0.000388 ITM2A

202859_x_at 0 0 0.000122 0 IL8

202902_s_at 0 0 0 0.000201 CTSS

202917_s_at 0 0 0 0.00021 S100A8

203535_at 0 0 0 0.000762 S100A9

The lasso penalization scheme sets many individual regression coefficients to zero.

We have extended the group lasso penalization scheme for the multinomial logistic regression 

model. The imposition of a novel group structure results in the retention of complete predictors 

instead of individual regression coefficients, implying that retained predictors comprise non-zero 

regression coefficients for all defined classes. Interestingly, regression coefficients from the same 

predictor, belonging to the prediction signature of different classes, are now comparable. We utilize 

the gene expression data from a large cohort of AML patients (n=531), with distinct molecular 

entities adaptable as classification subjects, and demonstrate that the new penalization scheme 

has a prediction accuracy comparable to the lasso penalization scheme, with the retention of 

less predictors. We devised two classification problems to test our novel classification framework: 

(1)  the AML entities harboring the favorable cytogenetic abnormalities inv(16)(p13q22), t(8;21)

(q22;q22) or t(15;17)(q22;q12) and the mutually exclusive mutations in the gene CEBPA, (2) AML 

cases harboring combinations of mutations in NPM1 or FLT3 (internal tandem duplications, 

FLT3-ITD). In the former classification setting we demonstrate similar prediction efficiencies, 

compared to the lasso penalization scheme, with less predictors and in the latter case we 

demonstrate increased prediction efficiency, compared to previous efforts12, with less predictors.

METHODS

Multinomial logistic regression
The multinomial logistic regression model is a multi-class prediction procedure, which predicts 

the probability of a class by fitting the data to a logistic curve. Initially, we have a specific number 

of observations; n (e.g., AML cases), a specific number of predictors; p (e.g., genes), and each 
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observation can be assigned to g outcome categories (e.g., classes). The outcome variables Y1,···,Y
n
 

are associated to each observation and a n×p matrix X, containing the data (e.g., gene expression 

levels), is constructed. For convenience the outcome variables are encoded by indicator functions 

corresponding to class participation. We define y
is
= 1{Yi=s} (i = 1 ···, n; s = 1,···, g), and each class has 

its own regression coefficients vector, βi Є � ∈ ℝ  
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� ∈ ℝ� , results in the same probabilities. Commonly, this problem is solved 

by defining one outcome category as a reference category. The choice of reference category 

facilitates the interpretation of the resulting parameter estimates. Instead of choosing a reference 

category, we will treat the outcome categories as symmetrical13,14 as penalized models are not 

invariant to setting reference categories resulting in different prediction rules. Furthermore, the 

penalized general linear models are not affected by overparameterization in terms of function 

identifiability problems. For notational convenience we rewrite the regression coefficient vectors 

into a long vector format: β* = (β1,···, βg ). We also rewrite y
is 
, μis into ng×1 vectors: y = (y11,···, y

n1 
,···, 

y
1g 

,···, y
ng

 ), μ = (μ11,···, μ
n1 

,···, μ
1g 

,···, μ
ng

 ) and the design matrix into X = XƒI
g
, where ƒ is the Kronecker 

product. The log-likelihood of this model is:
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which has the gradient    = X'( y − μ) and the Hessian    = X'WX.

The ng×ng  matrix W is given by:
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Where

diag( ) = diag( )
( )
( ) ( )

The Newton-Raphson algorithm is used to maximize the likelihood due to the convex likelihood 

function. Overparameterization of the model results into a singular Hessian matrix. Moore-

Penrose or projection procedures resolve this issue, however, this caveat plays no role in the 

group lasso penalization scheme as it remains unaffected by overparameterization.
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Penalty structure
The penalized log-likelihood under Lasso regulation (equation 1), imposes a L1 regularization on 

each individual regression coefficient per predictor. Most regression coefficients become zero 

under strong penalization, resulting in sparse prediction rules. In essence the lasso penalization 

scheme selects individual regression coefficients rather than complete predictors, resulting in 

larger number of retained predictors than necessary. In addition, most regression coefficients 

become zero prohibiting the comparison of these coefficients between predefined classes. The 

group lasso penalization scheme allows for the definition of groups of predictors as entities of 

the model, instead of single regression coefficients, retaining predefined groups, facilitating 

interpretation of the obtained prediction signature. We propose a novel group lasso scheme for 

integration into the multinomial logistic regression model.8,9 The beta matrix comprises columns 

of regression coefficient vectors affiliated to each class:

� ∈ ℝ  

� ∈ ℝ� 

�� = argmax
�

�−ℓ(�) � ������
�

���
� (1) 

�� ∈ ℝ��(� = 1�� � �) 
���� � �� 

�(�� = �) = ��� =
����������

∑ �����������
���

(2) 

�� ∈ ℝ��(� = 1�� � �) 

� ∈ �1�� � �� 

� ∈ ℝ 

�∗ = ����� � ���� 

ℓ(�∗) =���������(���)
�

���

�

���
(3) 

��(�)
�� = ��(� − �) 

���(�)
����� = −���� 

� = �
��� ��� � ���
��� ��� ⋮
⋮ ⋱

��� � ���
� 

�� =
�
��
�
���� ��� � ���
��� ��� ���
⋮ ⋱ ⋮
��� ��� � ����

��
�
�
= ��� �� � ��� 

�� ∈ ℝ� 
����� ∈ ℝ��� 

�(�� = �) = ��� =
�����∑ ����� �����

���

∑ �����∑ ����� �����
����

���
(4) 

� ∈ ℝ� 

From the beta matrix many different group structures can be defined and illustrates the underlying 

mechanism of the group lasso penalization scheme. We would like to discard complete predictors; 

i.e. rows of the beta matrix, by setting all regression coefficients of the predictor simultaneously to 

zero. This is accomplished by defining each row vector of regression coefficients as a group in the 

group lasso penalization scheme. We have a p-dimensional feature vector xi = Є � ∈ ℝ  
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out of J groups and denote by df
j
  the degrees of freedom of group j, rewrite xi  = (x'

i,1, x'
i,2, ···, 

x'
i,J 

) and denote the group of variables by x'
i,j 
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� ∈ ℝ� dfj,  j = 1, ···, J. The regression coefficient vector is 

parameterized as β
t
 = ( β0t

, β1t
, β2,t, ···,βJ,t )', t = 1, ···, G.

Given the defined groups of regression coefficients we rewrite (equation 2) as:
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Hence, the penalty function sums the norm of each row of the beta matrix β
~  . Note, we integrate the 

square root of the degrees of freedom of each group in the summation, as described previously.8,9 

The degrees of freedom term is omitted due to equal size for all groups.
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Group lasso estimator
To optimize the penalized log-likelihood function (equation 5), the low-memory BFGS algorithm 

(L-BFGS-B)15 is used. This Quasi-Newton algorithm necessitates a limited number of previous 

function and gradient evaluations to estimate the inverse Hessian. The gradient of the penalized 

log-likelihood function is given by:
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where the gradient of the penalty function is defined as:
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Reparameterization and parameter identifiability
Optimizing the penalized log-likelihood function leads to major problems, as the function is 

only strictly convex and continuous in all internal subspaces of the regression coefficients. The 

derivative of the penalized log-likelihood function remains undefined when one of the regression 

coefficients equals zero. This issue is resolved by reparameterizing the model to a higher 

dimension where the function is strictly convex and continuous. The following reparameterization 

is proposed:
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The reparameterization is realized by decomposing the individual regression coefficients into a 

positive part function (PPF) and a negative part function (NPF). These functions are constrained 

by the fact that each must be non-negative. For this reason we make use of the box constraints 

definable in the L-BFGS-B algorithm. Note that at the convergence either the PPF, NPF or both 

should be equal to zero. This reparameterization results in a model with twice as many parameters, 

which are restricted to a subspace of non-negative regression coefficients. In this single subspace 

the penalized log-likelihood function is strictly convex, continuous, and is differentiable at each 

internal point. Hence, instead of dealing with distinct continuous subspaces where the function 

is non-differentiable at their borders, i.e. when one of the regression coefficients is set to zero, we 

now have one subspace where the function is differentiable. The log-likelihood gradient remains 

unchanged under the reparameterization, but the penalty function gradients are given by:
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A problem occurs when all the regression coefficients of a group become zero, as the penalty 

function is no longer differentiable. To solve this problem the following limit is taken for the sake 

of continuity:

ℓ������(�∗� �) = ℓ(�∗) − �������
�

���
= ℓ(�∗) − �(�∗)	(5) 

�ℓ������(�∗)
��∗ = �ℓ(�∗)

��∗ − � ��(�
∗)

��∗ (6) 

��(�∗)
���� = �

���� �����
� + ⋯+ ���� + ⋯+ ����� + ⋯+ ���� � = ���

����� + ⋯+ ����
(7) 

��� = ���� − ���� �
���� = m������� 0�� ���� ≥ 0	
		���� = −mi������ 0� � ���� ≥ 0 

��(�∗)
�����

= ��(�∗)
����

����
�����

= ��(�∗)
����  

��(�∗)
�����

= ��(�∗)
����

����
�����

= −��(�
∗)

����  

lim�����
���

����� + ⋯+ ����
= 1�			��	��� = ⋯ = ��(���) =��(���) = ⋯ = ��� = 0 

�(�∗) 
�� 
���� = ����� − �����

� = ����� − ��������� + �����(8) 

���� 

���� 

����  

���� = ����� + �����(9) 

ℓ������(�∗� �) = ℓ(�∗) − ���������
� + ������

�
�

���
(10) 

�������
� + ������

� ≥ ����� − �����
� = �������

� − ������
���� + ������

�(11) 

 

Reparameterization affects the optimization of the penalized log-likelihood due to the parameter 

identifiability problem. The penalty function 
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(β*) (equations 5-7) sums the norms of the row 

vectors of the beta matrix β
~  , determined by the squared regression coefficients β 

ij
2  belonging to 

the same group. Under the reparameterization this squared regression coefficient is given by:
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Multiple instances of β 
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+ or β 
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-  could give the exact same β 

ij
2  (equation 8). This problem can be 

resolved by imposing a constraint on this equation. At convergence either the PPF, NPF or both 

should be equal to zero. This implies that the middle term of the factorization of β 
ij
2   should be 

forced to be zero. This leads to the following redefinition of equation 8:
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Redefinition of the penalty function leads to the following rewritten penalized log-likelihood 

function:
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The triangle-inequality shows that:
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 Hence, the redefined penalty function 
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(β*) is always larger or equal than its original definition. 

Given the inequality (equation 11) and the fact that either the PPF, NPF or both are zero at 

convergence, the redefined penalty function becomes equal to the original definition. By this 

redefinition we have solved the parameter identifiability problem and proven the obtainment of 

the exact same prediction rules without convergence problems.

 Table 2 illustrates the results from the same 4-class classification problem, defined earlier, 

based on the modified group lasso penalization scheme. In comparison with Table 1 it becomes 

clear that: (1) the number of predictors is decreased (2) none of the regression coefficient of the 

retained predictors became zero, and (3) the new group structure facilitates comparison of the 

regression coefficients between classes.
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Table 2. Regression coefficients from a 4-class classification problem with the modified group lasso.

 Probe set Other t(15;17) t(8;21) inv(16) Gene symbol

1553588_at 0.00018085 -8.59E-05 5.97E-05 -0.0001546 ND3 

200665_s_at -0.00014592 -1.73E-05 -7.23E-05 0.000235584 SPARC

201324_at -0.00017254 1.18E-05 2.64E-05 0.000134331 EMP1

201360_at -0.00020149 9.67E-06 -6.17E-05 0.000253532 CST3

201432_at 0.000946723 -0.00025838 -3.35E-05 -0.0006548 CAT

201502_s_at 0.000131047 -0.00012284 6.43E-05 -7.25E-05 NFKBIA

201721_s_at 0.000325746 1.74E-05 -0.00034902 5.93E-06 LAPTM5

202746_at -0.00012466 1.67E-05 -0.00011551 0.000223436 ITM2A

202902_s_at -7.06E-06 -1.00E-05 -5.58E-06 2.27E-05 CTSS

202917_s_at -6.06E-05 -0.0001884 -8.16E-05 0.000330612 S100A8

203535_at -0.00018007 -6.25E-05 -9.28E-05 0.000335433 S100A9

The modified group lasso penalization scheme produces sparser prediction rules and facilitates the 
comparison of regression coefficients between classes. 

RESULTS

AML is not a single disease, but a group of neoplasms with various genetic aberrations and variable 

prognosis and response to treatment.16,17 The search for novel molecular markers is essential for 

therapeutical decision-making. A large number of molecular markers have been identified in 

the last decade, however, the complete underlying mechanism of leukomogenesis still remains 

elusive. With the use of gene expression profiling (GEP), the challenge lies in generating reliable 

prediction rules that can discriminate the different AML subtypes; for instance for the improvement 

of treatment decisions or classification. We applied our algorithm to the GEPs of 540 clinically and 

molecularly well-characterized AML cases originating from two different cohorts. The first cohort 

comprises 269 AML cases previously analyzed12,18, while the second cohort was subsequently 

generated and analyzed.12,19,20 All samples are analyzed with Affymetrix Human Genome U133 

Plus 2.0 GeneChips (Affymetrix, Santa Clara, CA, USA). All clinical, cytogenetic and molecular 

information as well as the gene expression data are available at Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo, accession number GSE6981). All data has been preprocessed as 

previously described.12 AML cohort 1 (n=269) has been used as training set while AML cohort 

2 (n=261) is subsequently used as test set. The optimal value for the regularization parameter 

λ was determined by 5-fold cross-validation. The gene expression signatures are available in 

Supplementary Tables 1 and 2.

http://www.ncbi.nlm.nih.gov/geo
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Classification problem 1: AML entities with favorable cytogenetics or 
mutations in CEBPA
Background and classification objective

The first classification objective concerns the correct classification of AML cases belonging  to 

favorable risk categories, i.e. with the cytogenetic abnormalities inv(16)(p13q22), t(8;21)(q22;q22) 

or t(15;17)(q22;q12). An additional class was created for AML cases harboring  mutations in 

the transcription factor CEBPA19-21 associated with myelopoiesis.22 Usually, these molecular 

abnormalities are mutually exclusive, and no overlapping  gene expression patterns were 

expected. Finally, an additional class ‘Other’, was created for the remaining AML cases. Table 3 

depicts the distribution of the different classes over the two cohorts. 

Table 3. Distribution of the AML samples over the predefined classes.

Classes AML cohort 1 (n=261) AML cohort 2 (n=264) Risk

Other 180 (70%) 204(77%) -

t(15;17) 18(7%) 7(3%) Favorable

t(8;21) 22(8%) 16(6%) Favorable

inv(16) 23(8%) 18(7%) Favorable

CEBPa 18(7%) 18(7%) Favorable

Results

Initially, we applied the global test for the multinomial logistic regression model23 to test whether 

the GEPs contain any information for the discrimination of the AML subtypes. This hypothesis 

test determines whether the global expression patterns significantly relate to the AML subtypes. 

The H0-hypothesis was rejected (p < 0.0001) implying that the GEPs have discriminatory power. 

The optimal regularization parameter λ for the modified group lasso penalization scheme was 

estimated to be 50 by 5-fold cross-validation, resulting in a predictive signature comprising 74 

probe sets (Supplementary Table 1). Figure 1 illustrates the estimated test error curve for eleven 

evaluations of λ. The optimal regularization parameter λ for the lasso penalization was determined 

by the same cross-validation procedure. The regularization parameter was set at 0.02 with 75 

retained probe sets (Supplementary Table 3). For this classification problem it does not matter 

whether to select the lasso or the modified group lasso penalization scheme with respect to the 

number of retained predictors. The retained predictors of both procedures greatly overlap, with 

the exception of a few predictors. Strikingly, the lasso makes four additional miss-classifications 

compared to the group lasso (Table 5 vs. Supplementary Table 6).

 AML subtypes harboring the prognostic favorable cytogenetic abnormalities (t(15;17), t(8;21) 

and inv(16)) were predicted with 100% accuracy (Table 5), which was consistent with previous 

work.12 A substantial proportion of the samples with CEBPA mutations were classified as belonging 

to the ‘Other’ category. After further investigation it became apparent that all misclassified 
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samples contain a single mutation in CEBPA (CEBPAsm) instead of biallelic mutations (CEBPAdm). 

Previous work noted that double, but not single mutated samples have a distinct GEP and can be 

accurately predicted.19,20 Furthermore, overall survival (OS) is significantly different between the 

CEBPAsm and CEBPAdm cases (Figure 2), indicating that CEBPAdm AML cases have a more favorable 

prognosis, compared to CEBPAsm and CEBPAwt AML cases, but also a distinct gene expression 

signature. 
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Figure 1. 5-fold cross-validated error curve for classification problem 1.

Interpretation

In addition to determining the prediction accuracy, the interpretation of the obtained prediction 

signatures could provide vital insight into AML pathobiology. Previous work by Kohlmann et 

al.24 demonstrated accurate discrimination of the same set of AML subtypes (excluding CEBPA 

mutations) by selecting 23 genes. We extracted the gene expression levels of 17 genes belonging 

to the 74-gene prediction signature and performed clustering of the genes (Figure 3 [Top]). The 

bottom of Figure 3 contains regression coefficients for a subset of the genes taken from the 

obtained prediction rule, demonstrating that the regression coefficients of each gene strongly 

reflect the up- or downregulation tendency of that specific class.
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 Note that the retained predictors are not always fully explanatory for the underlying 

leukemogenic mechanism. For instance for inv(16) AML cases, the partial inversion of chromosome 

16 results in a fusion protein, namely CBFB-MYH11. Due to the fusion, the expression level of 

MYH11 is substantially increased compared to other AML subtypes and is used as a gene expression 

marker for this particular AML subtype. Many classification algorithms based on differential 

expression would select this gene, however, this is not the case when the lasso or group lasso 

penalization schemes are applied. These penalization schemes select only one predictor if there 

is a group of pair-wise correlated genes and this could be the case for MYH11.
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Figure 2. Overall survival and event-free survival. Overall survival among CEBPAdm, CEBPAsm and CEBPAwt 
AML cases, pooled: p=0.011. 
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t(15;17)(q22;q12) t(8;21)(q22;q22) inv(16)(p13.1q22) CEBPAdouble mutant

Probe set Other t(15;17) t(8;21) inv(16) CEBPAmut Gene

200665_s_at -6.62E-06 -4.68E-07 -3.00E-06 1.08E-05 -6.94E-07 SPARC

200675_at 0.000442 8.25E-07 -3.19E-06 -0.00019 -0.00025 CD81

204039_at -0.00096 0.000151 -0.00062 -0.00068 0.002107 CEBPA

204150_at -7.40E-05 0.000173 -6.08E-05 -5.21E-05 1.41E-05 STAB1

204563_at -0.00015 -0.00011 -0.00013 0.000199 0.000194 SELL

205529_s_at -0.0001 -4.91E-05 0.000257 -9.36E-05 -7.36E-05 RUNX1T1

206940_s_at -4.49E-05 -2.83E-05 0.000163 -7.21E-05 -1.71E-05 POU4F1

211990_at -0.00012 -0.00022 0.000108 -1.26E-05 0.000243 HLA-DPA1

Figure 3. (Top) Clustering. Clustered genes, colors of the cells relate to up- or downregulation of the gene 
for that particular sample: (green) downregulation, (red) upregulation. (Bottom) Regression coefficients for a 
selection of genes.

Previous work by Wunderlich et al.25 has demonstrated that other genes, such as SPARC and EMP1, 

are highly correlated with MYH11 in inv(16) AML cases. Figure 4 illustrates that these genes are 

significantly upregulated in inv(16) AML cases. Additionally, these genes belong to the top 20 

of highest upregulated genes in inv(16) compared to other groups (Supplementary Table 5). In 

conclusion, we demonstrated that the imposed group structure on the beta matrix β
~   results in less 

retained predictors with equal prediction accuracy compared to the lasso penalization scheme. 

In addition, many retained genes (Supplementary Table 1) have been previously associated with 

leukemogenesis. For example, the genes HOXA9 and TRIB1 are known to be deregulated in AML, 

and have been identified as cooperative genes together with MEIS1.26,27
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Figure 4. SPARC and EMP1 are elevated in the inv(16) AML subgroup. Correlation view of the 531 AML 
patients. Colors of the cells relate to pair-wise Pearson’s correlation coefficient values: red indicates higher 
positive and blue indicates higher negative correlation between samples. The inv(16) aberration status is 
indicated by the first row next to the heatmap (red, mutant; green, wild-type). Histograms next to the heatmap 
reflect the expression levels SPARC and EMP1 respectively, and shows a significant elevated expression for the 
inv(16) AML cases. 

Previous work by Wunderlich et al.25, has demonstrated that other genes, such as SPARC and EMP1, 

are highly correlated with MYH11 in inv(16) AML cases. Figure 4 illustrates that these genes are 

significantly up regulated for in inv(16) AML cases. Additionally, these genes belong to the top 20 

of highest up-regulated genes in inv(16) compared to other groups (Supplementary Table 5). In 

conclusion, we demonstrated that the imposed group structure on the beta matrix  β
~    results in less 

retained predictors with equal prediction accuracy compared to the lasso penalization scheme. 

In addition, many retained genes (Supplementary Table 1) have been previously associated with 

leukemogenesis. For example, the HOXA9 and TRIB1 genes are known to be deregulated in AML, 

and have been identified as cooperative genes together with MEIS1.26,27.

Figure 4. Gene expression levels of SPARC and EMP1 are elevated in the inv(16) AML subgroup. 
Correlation view of the 531 AML patients. Colors of the cells relate to pair-wise Pearson’s correlation coefficient 
values: red indicates higher positive and blue indicates higher negative correlation between samples. The 
inv(16) aberration status is indicated by the first row next to the heatmap (red, mutant; green, wild-type). 
Histograms next to the heatmap reflect the expression levels SPARC and EMP1 respectively, and shows a 
significant elevated expression for the inv(16) AML cases. 

Classification problem 2: NPM1 mutations and FLT3-ITD
Background and classification objective

The NPM1 mutation is the most frequent molecular abnormality observed in AML.28 NPM1 is 

predominantly found in the nucleolus and is thought to be an important chaperone protein and 

to play a role in ribosome biogenesis.29 NPM1 is disrupted by mutations introducing a nuclear 

export signal, which replaces the nucleolar localization signal, resulting in its displacement to the 

cytoplasm.30 It has been demonstrated that NPM1 mutations frequently coincide with FLT3-ITDs 

and frequently occur in AML patients with a normal karyotype. The NPM1 mutation is considered 

a favorable prognostic marker with respect to overall and event-free survival.28
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Table 4. Distribution of the AML samples over the predefined classes.

 Classes AML cohort 1 (n=261) AML cohort 2 (n=268)

NPM1-/FLT3-ITD- 149(57%) 160(60%)

NPM1+/FLT3-ITD- 44(17%) 32(12%)

NPM1-/FLT3-ITD+ 28(11%) 33(12%)

NPM1+/FLT3-ITD+ 40(15%) 43(16%)

 FLT3 is a receptor tyrosine kinase protein situated on the cell membrane, where it is activated 

by cytokines31 initiating a cascade of transduction signals through secondary messengers, such 

as STAT532, and is known to play an important role in cell differentiation, survival and proliferation. 

Frequently the gene FLT3 contains an internal tandem duplication which contributes to the 

development of AML. Furthermore, the FLT3-ITD aberration is considered a poor prognostic 

marker with respect to overall and event-free survival. 

 In this classification problem, we classify patients which have the NPM1 mutation alone 

(NPM1+/FLT3-ITD-), FLT3-ITD alone (NPM1-/FLT3-ITD+), both mutations (NPM1+/FLT3-ITD+) or 

none (NPM1-/FLT3-ITD-). Table 4 depicts the distribution of these classes.

Table 5. Prediction accuracy established with the group lasso penalization scheme integrated into the 
multinomial logistic regression model.

 
 Classes

Test set error Sensitivity Specificity Predictive Value

  Neg Pos % % Neg Pos

Case 1              

  Other 6/81 0/180 100 93 100 97

  t(15;17) 0/243 0/18 100 100 100 100

  t(8;21) 0/239 0/22 100 100 100 100

  inv(16) 0/238 0/23 100 100 100 100

  CEBPAmut 0/243 6/18 67 100 98 100

Case 2              

  Other 23/119 7/160 96 81 93 87

  NPM1+/FLT3-ITD- 17/237 9/32 72 93 96 58

  NPM1-/FLT3-ITD+ 6/236 23/33 30 97 91 63

  NPM1+/FLT3-ITD+ 10/226 17/43 60 96 93 72

The following calculations were used for evaluation: sensitivity=true positives/(true positive + false negatives), 
specificity=true negatives/(true negatives + false positives), positive predictive value=true positives/(true 
positives + false positives), negative predictive value=true negatives /(true negatives + false negatives)

Results

The global test determined that the GEPs contain discriminatory power given the defined AML 

subtypes (p < 0.0001). With 5-fold cross-validation, we have determined the optimal regularization 

parameter (λ=375) for the group lasso penalization scheme as illustrated in Figure 5. The model 
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retained 110 probe sets (Supplementary Table 2). For the lasso penalization scheme we determined 

the optimal regularization parameter to be 10 with 152 retained probe sets. The group lasso 

penalization scheme substantially decreased the number of necessary predictors with a similar 

prediction accuracy compared to the lasso penalization scheme. The group lasso penalization 

scheme misclassifies 56 AML cases whereas the lasso penalization scheme misclassifies 62 AML 

cases (Table 5 vs. Supplementary Table 6).

 Previous gene expression analyses have demonstrated that NPM1 mutations are strongly 

associated with a discriminative HOX-signature.28,32 The obtained prediction signature indicates 

that the HOXA9 and HOXB3 gene expression levels have a strong impact on the classification 

of NPM1+ AML cases. A relatively high number of AML cases were misclassified as having the 

NPM1 mutation. This could have several reasons: (1) many false positives contained an 11q23 

abnormality affecting the MLL protein, which is an important HOX gene expression regulator28 (2) 

some FLT3-ITD AML cases also exhibit strong HOX gene expression deregulation. 
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Figure 5. 5-fold cross-validated error curve for classification problem 2.
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 The major classification problem stem from AML cases harboring the FLT3-ITD abnormality. 

AML cases harboring the abnormality can only be moderately classified as indicated in Table 

5, possibly due to the following reasons: (1) the FLT3-ITD abnormality is sub-clonal. AML cases 

with a sub-clonal FLT3-ITD abnormality might have a weak discriminative expression signature 

(2) a subgroup of AML cases harboring the FLT3-ITD abnormality have different gene expression 

patterns due to concurrent mutations. 

 We can conclude that determining samples with a FLT3-ITD abnormality is difficult based on 

their GEP alone. Most of the NPM1-/FLT3-ITD+ samples are misclassified as wild-type (NPM1-/FLT3-

ITD-). This is in line with the observation that some, if not most, of the NPM1-/FLT3-ITD+ AML 

cases exhibit a weak distinctive GEP. The same holds for the NPM1+/FLT3-ITD+ samples which are 

mostly misclassified as NPM1+/FLT3-ITD-, and vice versa. It seems that the lack of a discriminative 

FLT3-ITD expression signature makes it difficult to concurrently predict all classes with a high 

accuracy. 

3.2.3 Interpretation

The retained predictors show an enrichment for ribosomal, heatshock, immunoglobulin and HOX 

genes. Many genes in the gene expression signature are related to processes of cellular stress, 

inflammation response and DNA repair mechanisms. The large number of ribosomal genes present 

in the signature could be due: (1) the activation of DNA repair or cell homeostasis mechanisms 

in response to stress conferred by the molecular abnormalities, (2) the NPM1 mutation results 

in the dislocation of the protein from the nucleolus to the cytoplasm. The protein is known as a 

chaperon protein for ribosomes; however these results could indicate that it may also be involved 

in ribosome biogenesis.

DISCUSSION

The aim of this study was to develop a sparse multi-class classification model based on the 

group lasso penalization scheme in the multinomial logistic regression model. To create 

such an algorithm, we have developed a new group structure based on the beta matrix. This 

group structure facilitates the selection of an entire predictor instead of individual regression 

coefficients. We have demonstrated that the prediction accuracy is similar to that of the lasso 

penalization scheme, yet with the retention of less predictors. To illustrate that our approach is 

effective we have applied the algorithm on microarray gene expression data of a large cohort of 

well characterized AML patients. Not only have we demonstrated that the group lasso penalization 

scheme achieves good prediction accuracy, but also that it obtains a sparse prediction rule 

containing many previously affiliated genes. We would like to note that the algorithm does not 

always converge under specific circumstances, such as situations with very low number of cases, 

which might be related to numerical instability.
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 We have demonstrated that our algorithm behaves as expected and we would like to make 

note that many different group structures can be developed. We expect in the near future that 

singular entities in contemporary classification procedures will be replaced by group structures, 

which increase the interpretability of the prediction signature and generate the opportunity 

to analyze different aspects of the model. As a final remark we would like to conclude that the 

development of novel group structures could increase the interpretability of the prediction rule, 

the prediction accuracy, and possibly further our understanding of cancer and its pathogenesis.
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ABSTRACT

We evaluated concurrent gene mutations, clinical outcome, and gene expression signatures of 

CEBPA double (CEBPAdm) versus single (CEBPAsm) mutations in 1182 cytogenetically normal AML 

(CN-AML) patients (16-60 years). We identified 151 (12.8%) patients with CEBPA mutations (91 

CEBPAdm and 60 CEBPAsm). The incidence of germline mutations was 7% (5 out of 71), including 

three C-terminal mutations. CEBPAdm patients had a lower frequency of concurrent mutations 

than CEBPAsm patients (P<.0001). Both, CEBPAdm and CEBPAsm were associated with favorable 

outcome compared to CEBPAwt [5-year overall survival (OS), 63% and 56% versus 39%; P<.0001 

and P=.05, respectively]. However, in multivariable analysis only CEBPAdm was a prognostic factor 

for favorable outcome [OS, hazard ratio (HR): .36, P<.0001; event-free survival, HR: .41, P<.0001; 

relapse-free survival, HR: .55, P=.001)]. Outcome in CEBPAsm is dominated by concurrent NPM1 

and/or FLT3 internal tandem duplication (ITD) mutations. Unsupervised and supervised GEP 

analyses showed that CEBPAdm AML (n=42), but not CEBPAsm AML (n=18) expressed a unique 

gene signature. A 25-probeset prediction signature for CEBPAdm AML showed 100% sensitivity 

and specificity. Based on these findings, we propose that CEBPAdm should be clearly defined from 

CEBPAsm AML and considered as a separate entity in the classification of AML.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter3/
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INTRODUCTION

In the current World Health Organization (WHO) classification of acute myeloid leukemia (AML), 

“AML with mutated CEBPA (CCAAT/enhancer binding protein alpha)” has been designated as a 

provisional disease entity in the category “AML with recurrent genetic abnormalities”.1,2 CEBPA 

encodes a transcription factor that is essential for neutrophil development. Targeted disruption 

of Cebpa in mice results in a selective block in early granulocyte development, a hallmark of 

AML.3,4 Two proteins may be translated from the CEBPA mRNA transcript, i.e., a 42kDa (p42) and 

a shorter 30kDa (p30) protein. The p42 isoform contains two regulatory transactivation domains 

(TAD1 and TAD2) in the N-terminus, while the shorter p30 isoform only carries the TAD2 domain. 

Both isoforms contain the C-terminal basic DNA-binding domain and the leucine zipper (bZIP), 

involved in DNA-binding and protein dimerization. In AML, CEBPA mutations mainly occur in 

cytogenetically normal AML (CN-AML) with an incidence of 5-14%.5-14 Two main types of mutations 

can be distinguished: N-terminal frame-shift mutations resulting in the translation of the 30-kDa 

protein only, and the C-terminal in-frame mutations in the basic zipper region affecting DNA-

binding and homo- and heterodimerization.8,15 As a consequence, these mutations create an 

imbalance between proliferation and differentiation of hematopoietic progenitors.10,16 

 AML with CEBPA mutations can be separated into two subgroups, i.e., those with a single 

mutation (CEBPAsm) and those with double mutations (CEBPAdm).17-21 In the majority of CEBPAdm 

AML, both alleles are mutated.19 These biallelic mutations frequently consist of an N-terminal 

mutation on one allele and a C-terminal bZIP mutation on the other. In CEBPAsm AML, mutations 

occur either in the N- or in the C-terminus of the gene. In previous studies, in which these two 

subgroups were not considered, AML with mutated CEBPA had a relatively good outcome.5,7,12,13 

More recent data suggest that this favorable outcome is mainly observed in AML with CEBPAdm 

and not CEBPAsm.17-21 Moreover, it has been suggested that concurrent mutations may occur more 

frequently in CEBPAsm than in CEBPAdm AML. The impact of coexisting mutations remains elusive 

and needs to be validated in large cohorts. 

 By applying gene expression profiling (GEP), it was demonstrated that CEBPAdm AML can be 

distinguished from CEBPAsm and the majority of CEBPAwt AML based on a characteristic signature.18 

However, a CEBPAdm GEP signature did not predict CEBPAdm AML with maximum accuracy, since 

AML in which CEBPA was silenced by promoter hypermethylation (CEBPAsilenced) carried a highly 

similar signature.22,23 Objectives of this study were to evaluate the impact of CEBPAdm versus 

CEBPAsm on clinical outcome of CN-AML and to investigate the impact of concurrent NPM1mutant 

and/or FLT3ITD. In addition, we searched for CEBPA-associated gene signatures and determined 

the frequency of predisposing CEBPA germline mutations. For these purposes, we combined data 

sets from the Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) and Swiss Group for 

Clinical Cancer Research (SAKK) and the German-Austrian AML Study Group (AMLSG).
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PATIENTS AND METHODS

Patients and molecular analyses
Diagnostic bone marrow (BM) or peripheral blood (PB) samples from 1182 younger adults (16-60 

years) with CN-AML were analyzed; 193 patients were enrolled on HOVON/SAKK protocols -04, 

-04A, -29, and -42 (available at www.hovon.nl)24-27, and 989 patients on AMLSG protocols AMLHD93 

(n=74)28, AML HD98A (n=313)29, AMLSG 07-04 (n=376; ClinicalTrials.gov Identifier NCT00151242), 

AML SHG 02-95 (n=94)30, and AML SHG 01-99 (n=180, ClinicalTrials.gov Identifier NCT00209833). 

All patients provided written informed consent in accordance with the Declaration of Helsinki. 

All trials were approved by the Institutional Review Board of Erasmus University Medical Center, 

University of Ulm, and Hannover Medical School.

 Mutation analyses for the genes FLT3 (internal tandem duplications [ITD] and tyrosine kinase 

domain mutations [TKD]) and NPM1 were performed as described previously.31-33 CEBPAdm and 

CEBPAsm AML were identified by denaturing high-performance liquid chromatography (dHPLC) or 

direct sequencing as described.18 Cases that carried an insertion polymorphism18,21 (http://www.

ncbi.nlm.nih.gov/sites/snp; http://genome.ucsc.edu/cgi-bin/hgGateway; http://www.ensembl.

org/Homo_sapiens/Gene/Variation_Gene) or variation(s) that did not lead to amino acid changes 

were considered wild-type. Cases were categorized as CEBPAdm when two different mutations 

or one homozygous mutation were present as determined by sequencing analysis; cases with 

only a single heterozygous mutation were designated as CEBPAsm. In 71 of the 151 patients with 

CEBPA mutations, DNA obtained from buccal swabs (n=52), PB (n=8) or BM (n=11) in complete 

remission (CR) was studied for the presence of CEBPA germline mutations. Patient demographics 

and molecular characteristics are summarized in Table 1. All CEBPA-mutated patients, except for 

07-04 treated patients within the AMLSG protocol, have been previously reported in different 

studies.7,13,18

Gene expression profiling
Data from GEP analysis were available for 674 AML (53% CN-AML, HOVON-SAKK and AMLSG-

cohorts), generated using Affymetrix (Santa Clara, CA, USA; Table S1). Sample processing and 

quality control were carried out as described previously.23,34 For both cohorts, normalization of 

raw data was processed with Affymetrix Microarray Suite 5 (MAS5) to target intensity values at 

100. Intensity values were log2 transformed and mean centered per probeset per cohort. GEP 

data are available at the NCBI Gene Expression Omnibus [accession numbers GSE14468 (HOVON-

SAKK cohort) and GSE22845 (AMLSG-cohort)]. There were 42 CEBPAdm and 18 CEBPAsm cases for 

which the GEP was determined (Table S1). 

https://webmail2.mh-hannover.de/exchweb/bin/redir.asp?URL=http://clinicaltrials.gov/ct2/show/NCT00209833
http://www.ncbi.nlm.nih.gov/sites/snp
http://www.ncbi.nlm.nih.gov/sites/snp
http://genome.ucsc.edu/cgi-bin/hgGateway
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Table 1. Demographics, clinical and molecular characteristics of CEBPAwt, CEBPAsm, and CEBPAdm CN-AML.

Characteristic
CEBPAwt CEBPAsm P, CEBPAsm CEBPAdm P, CEBPAdm P, CEBPAsm 

(n = 1031) (n = 60) vs CEBPAwt (n = 91) vs CEBPAwt vs CEBPAdm

Median age, years (range) 48 (16-60) 46 (18-60) 0.28  44 (16-60) 0.04* 0.66

Sex, n (%) 0.79 0.74 0.74

Male 500 (48) 28 (47) 46 (51)

Female 531 (52) 32 (53) 45 (49)

WBC count, x109/L 0.23 0.062 0.86

Median (range) 28 (0.2-372) 25 (1.1-345) 28 (1.5-262)

Missing 34 1 4

Platelet count, x109/L 0.77 < 0.0001* < 0.0001*

Median (range) 65 (5-746) 62 (10-361) 38 (4-265)

Missing 40 3 4

Bone marrow blasts 0.83 0.53 0.76

Median (range) 80 (0-100) 80 (0-97) 78 (2-100)

Missing 80 7 4

Molecular abnormalities

FLT3ITD, n (%) 347 (33.7) 18 (30) 1 7 (7.7) < 0.0001* 0.00015*

Missing 69 9 5

FLT3TKD, n (%) 95 (9.2) 4 (6.7) 0.81 2 (2.2) 0.018* 0.2

Missing 48 6 3

NPM1+, n (%) 560 (54.3) 21 (35) 0.018* 3 (3.3) 0 < 0.0001*

Missing 88 10 8

Number of cases (percentage), median, range, or missing values are indicated. WBC indicates white blood cell.
*P < .05 computed using the Mann-Whitney U test (continuous variables) and 2-sided Fisher exact test 
(categorical variables).

Statistical analyses
Statistical analyses were performed using Mathworks (Matlab R2009b) with the statistical, 

bioinformatics and pattern recognition toolbox (Prtools). For clinical, molecular, univariate and 

multivariate analyses, patients with CN-AML and age ≤ 60 (Table S1) were included. Molecular 

and clinical variables of both patient cohorts (HOVON-SAKK and AMLSG) were comparable. 

Differences were assessed for CEBPAsm and CEBPAdm groups in comparison with CEBPAwt group 

(Table 1), by using the Mann-Whitney-U test for continuous variables and the two-sided Fisher 

exact test for categorical variables.

 For univariate analysis significance was assessed using the stratified log-rank test and Kaplan-

Meier estimates for overall survival (OS), event-free survival (EFS) and relapse-free survival 

(RFS). The recommended consensus criteria35 were used for the definition of CR and survival. 

Multivariate analysis was performed by using a stratified Cox’s proportional hazard model. For all 

analyses, a P-value ≤ .05 was considered statistically significant and for survival analyses, P-values 
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were computed using the full time span. Note that the closed testing procedure36 was applied 

and a correction for multiple testing37 was only performed if the global log-rank test resulted in 

a P-value ≤ .05. For gene expression-based classification of CEBPAdm cases, GEP of the HOVON-

SAKK cohort was used to derive the 25-probeset predictive signature and the AMLSG-cohort as 

validation set. To summarize, a logistic regression model with Lasso regularization (a continuous 

feature selection procedure) was used as it takes the correlation structure between the probesets 

into account (see Supplementary material).

RESULTS

Frequency and types of acquired CEBPAdm and CEBPAsm mutations
CEBPA mutations were detected in 151 of the 1182 (12.8%) CN-AML; 91 (60%) patients had 

CEBPAdm, within these the combination of N- and C-terminal mutations was the predominant 

genotype (82/91). CEBPAdm cases with only N-terminal or C-terminal mutations were less frequently 

observed (4/91 and 5/91, respectively). Sixty of the 151 (40%) CEBPA-mutated cases had CEBPAsm 

which occurred most frequently in the N-terminus (47/60). Only 13 of the 60 CEBPAsm cases had 

in-frame insertion or deletion mutations affecting the bZIP domain (Figure 1).
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Figure 1. Distribution of concurrent mutations in CEBPAdm and CEBPAsm patients. Columns represent 
patients and rows the genotypes FLT3TKD, FLT3ITD and NPM1mutant (black), wildtype (white) or missing (grey). The 
in-frame insertion or deletion in bZIP and N-terminal truncation mutations in CEBPA are highlighted in black. 
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Table 2. Germline patient demographics and molecular characteristics.

Patient ID
Age at 
diagnosis, 
(year)

Germline 
mutation

Acquired
 mutation*

Additional 
mutation†

Familial 
AML

History 
CEBPA 
mutation

98A-751 28 338delC 1080insGAA None Yes CEBPAdm

07/04-268 (ULM_10) 25 307delG 1122_1123ins
1075_1225

KRAS, WT1 Yes CEBPAdm

BioID 769 51 1096T>C 478_485del None No CEBPAdm

98A-543 33 1164G>A None FLT3TKD, 
NPM1

No CEBPAsm

07/04-48 (ULM_20) 59 1036G>T 1086insAAG None No CEBPAdm

Characteristics of 5 of 71 (7%) CEBPA-mutant AML patients who carried CEBPA germline mutations. KRAS, 
Kirsten Rat sarcoma; WT1, Wilms tumor 1. * Data according to GenBank accession no. Y11525.

Association of acquired CEBPAdm and CEBPAsm mutations with concurrent 
gene mutations and clinical characteristics
Concurrent mutations were seen less frequently in CEBPAdm than in CEBPAsm AML (22% versus 

60%; P<.0001, Figure 1); frequencies for NPM1mutant were 3.3% and 35% (P<.0001), and for FLT3ITD 

were 7.7% and 30% (P=.00015), respectively (Table 1). When comparing CEBPAsm and CEBPAwt AML, 

NPM1mutant were slightly less frequent in CEBPAsm AML (35% versus 54.3%; P=.018); the frequency 

of FLT3ITD was comparable between the two groups (30% versus 33.7%). Regarding presenting 

clinical characteristics, CEBPAdm mutations were associated with younger age (median 44 versus 

48 years; P=.04) and lower platelet counts (median 38x109/L versus 65x109/L; P<.0001) compared 

with CEBPAwt patients (Table 1).

Impact of CEBPAdm and CEBPAsm on response to induction therapy and 
clinical outcome
For clinical outcome analyses, 1182 CN-AML were considered. CEBPAdm was associated with a 

higher CR rate when compared with CEBPAsm (92% versus 78%, P=.02) and CEBPAwt (92% versus 

79%, P=.002). There was no difference in CR probability between CEBPAsm and CEBPAwt patients 

(78% versus 79%, P=.86). The median follow-up time for survival in the 1182 CN-AML patients was 

33 months (95%-CI, 25.6 to 40.4); the estimated 5-year OS and RFS were 42% (95%-CI, 39% to 45%) 

and 34% (95%-CI, 31% to 38%), respectively. 

CEBPAdm AML was associated with a significantly superior outcome compared with CEBPAwt 

AML (5-year OS, 63% versus 39%, P<.0001; EFS, 45% versus 28%, P<.0001; RFS, 44% versus 32%, 

P=.05; Figures 2A and Supplementary Figures S3A and S3D). A somewhat better outcome was 

also found for CEBPAsm AML compared with CEBPAwt AML (5-year OS, 55% versus 39%, P=.05; 

RFS, 49% versus 32%, P=.02; but not EFS, 37% versus 28%, P=.22). No significant difference was 

evident between CEBPAdm and CEBPAsm AML (5-year OS, P=.06; EFS, P=.16; RFS, P=.48). Of note, no 

differences in outcome were observed between CEBPAsm patients with either C-terminal (n=13) 
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or N-terminal (n=47) mutations (5-year OS, 54% versus 56%, P= .58; Figure S4). In multivariate 

analyses considering other prognostic indicators (listed in Table 3), the presence of CEBPAdm was 

an independent prognostic factor for favorable OS (HR, .36, P<.0001), EFS (HR, .41, P<.0001) and 

RFS (HR, .55, P=.001), whereas CEBPAsm did not impact these three endpoints (Table 3). 

Table 3. Multivariate analysis for overall, event-free and relapse-free survival in CN-AML.

Variables HR 95% CI P-value

Overall survival
CEBPAsmα 0.70 0.46 - 1.07 0.1

CEBPAdmα 0.36 0.23 - 0.55 < 0.0001*

FLT3ITDβ 1.78 1.49 - 2.14 < 0.0001*

FLT3TKDβ 0.84 0.61 - 1.15 0.28

NPM1+β 0.56 0.46 - 0.67 < 0.0001*

WBC countδ, x109/L 1.35 1.12 - 1.62 < 0.0001*

AgeЄ 1.02 1.01 - 1.03 < 0.0001*

Event-free survival   

CEBPAsmα 0.86 0.6 - 1.22 0.4

CEBPAdmα 0.41 0.29 - 0.57 < 0.0001*

FLT3ITDβ 1.56 1.33 - 1.84 < 0.0001*

FLT3TKDβ 0.8 0.6 - 1.07 0.13

NPM1+β 0.45 0.39 - 0.53 < 0.0001*

WBC countδ, x109/L 1.27 1.08 - 1.5 0.003*

AgeЄ 1.01 1.01 - 1.02 0.003*

Relapse-free survival   

CEBPAsmα 0.79 0.51 - 1.22 0.3

CEBPAdmα 0.55 0.38 - 0.79 0.001*

FLT3ITDβ 1.75 1.45 - 2.12 < 0.0001*

FLT3TKDβ 0.82 0.59 - 1.13 0.22

NPM1+β 0.56 0.46 - 0.68 < 0.0001*

WBC countδ, x109/L 1.33 1.1 - 1.61 0.002*

AgeЄ 1.01 1 - 1.02 0.001*

Stratified Cox’s proportional hazard model for multivariable analysis of CEBPAdm and CEBPAsm as prognostic 
markers for overall, event-free and relapse-free survival. Analyses included 1182 CN-AML patients with age ≤ 60.
Subgroup: α CEBPA status versus CEBPAwt, β FLT3ITD versus no FLT3ITD mutation, β FLT3TKD versus no FLT3TKD 
mutation, β NPM1mutant versus no NPM1wt, δ WBC count higher than 20x109/L versus lower than 20x109/L, Є Age 
is used as continuous variable 
*P-value ≤ 0.05

Treatment outcome of AML with CEBPAsm is dominated by FLT3/NPM1 
genotypes
We performed explorative subgroup analyses in CEBPAsm and CEBPAwt AML to evaluate the impact 

of four FLT3/NPM1 genotype subgroups: FLT3ITD/NPM1mutant (n=10); FLT3ITD/NPM1wt (n=8); FLT3wt/

NPM1mutant (n=11); and FLT3wt/NPM1wt (n=21). Ten cases from the CEBPAsm group were excluded 
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for which the genotypes were unknown. Among patients with CEBPAsm AML, the FLT3ITD/NPM1wt 

genotype had an inferior OS compared to those with the FLT3wt/NPM1wt genotype (5-year OS, 

25% versus 49%, P=.05; Figure 2B); for EFS and RFS, there was a trend towards an inferior outcome 

(Figure S3B and S3E); in contrast, the FLT3wt/NPM1mutant genotype associated in trend with a 

favorable outcome compared with the FLT3wt/NPM1wt genotype (5-year OS, 78% versus 49%, P=.2, 

EFS: 59% versus 32%, P=.08, RFS: 66% versus 40%, P=.38, Figure 2B, S3B and S3E). In analogy, in 

the CEBPAwt group the FLT3ITD/NPM1wt genotype had a significantly inferior survival compared with 

the FLT3wt/NPM1wt genotype (5-year OS, 17% versus 34%, P=.001; EFS, 11% versus 14%, P=.04; RFS, 

15% versus 24%, P=.002; Figure 2C, S3C and S3F), whereas the FLT3wt/NPM1mutant genotype was 

associated with a favorable outcome (5-year OS, 57% versus 34%, P<.0001; EFS, 47% versus 14%, 

P<.0001; RFS: 50% versus 24%, P<.0001; Figure 2C, S3C and S3F). Thus, we observed comparable 

trends for favorable (FLT3wt/NPM1mutant) and inferior (FLT3ITD/NPM1wt) outcome in the CEBPAsm and 

CEBPAwt subgroups. The outcome for all CEBPAsm FLT3/NPM1 genotypes was higher (not significant, 

P> .05), compared to the CEBPAwt genotypes, however, the distinct groups were relatively small. 

For CEBPAdm AML, sample sizes of the composite genotypic subgroups were too small for analysis.
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Figure 2. Kaplan-Meier survival curves of overall survival. (A) Kaplan-Meier survival curves for OS among 
the three groups CEBPAdm, CEBPAsm and CEBPAwt. (B) Survival curves for OS of the four genotypes FLT3ITD/
NPM1mutant, FLT3ITD/NPM1wt, FLT3wt/NPM1mutant, and FLT3wt/NPM1wt within the CEBPAsm group. (C) Survival curves 
for OS of the four genotypes within CEBPAwt. * P-value by the global log-rank test.
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Unsupervised analyses of GEP showed homogeneity in CEBPAdm AML cases
GEP was performed in a subset of the CN-AMLs patients and also includes cytogenetically 

abnormal patients (Table S1; n=674). Unsupervised analyses, by hierarchical clustering, revealed 

distinct GEP clusters (Figure 3A), including the known clusters of AML with inv(16), t(15;17) or 

t(8;21), as shown previously.23 These subtypes revealed high correlation within the GEP cluster 

(average correlation: .42, .49 and .49, respectively) and differed significantly between the AML 

cases with any of these aberrations (P<.0001, P<.0001, and P<.0001, Figure S5B, S5C and S5E). We 

observed that the CEBPAdm AML cases were highly similar within the cluster (average correlation: 

.35) and differed significantly from cases without a CEBPAdm (P<.0001, Figure S5D). CEBPAsm AML 

cases showed reduced similarity (average correlation: .15) and did not differ from cases without 

CEBPAsm (P=.12, Figure S5A and Figure 3A). 
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Figure 3. Unsupervised analyses and classification results of candidate CEBPAdm cases with their gene 
expression profile and their molecular characteristics. (A) Pair-wise correlations between the 674 AML 
cases; color coding cells: positive (red) or negative (blue) correlations, as indicated by the scale bar. Presence 
of molecular abnormalities, indicated at the top of the plot, are depicted on the diagonal by a red or blue 
bar. CEBPAC-terminal mutation and CEBPAN-terminal mutation indicates the presence of homozygous mutations. (B) Gene 
expression levels of CEBPAdm and CEBPAsm patients for the defined 25-probeset signature. The colors are 
relative to the mean per probeset. (C) Ordered computed posterior probabilities for the CEBPAdm signature 
given the 25-probeset signature. (D) (black) presence of mutation, (white) wildtype, (grey) missing value. 
* germline CEBPAdm cases.

CEBPAdm AML is accurately predicted based on GEP
The previously predictive CEBPAdm signature18 was hampered by the recently reported CEBPA 

silenced AML cases that carry a similar GEP.22 Two independent AML cohorts were used to train 

and evaluate the predictive value of the CEBPAdm signature in terms of sensitivity and specificity. 
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A predictive signature was created, containing 25-probesets by using a logistic regression model 

with Lasso regularization (Figure 3B and Supplementary material Table S2)38,39, which selects 

discriminative probesets between the classes, CEBPAdm (n=26) and all other AML cases, i.e., 

CEBPAwt and CEBPAsm (n=494). Subsequently, a classifier was trained on the entire HOVON-SAKK 

cohort based on a two class approach; 26 CEBPAdm versus 494 cases (CEBPAwt and CEBPAsm). This 

trained classifier subsequently classified 16 candidate CEBPAdm cases (Supplementary Table S3) in 

the AMLSG-cohort out of 154 AML cases (16 CEBPAdm, 6 CEBPAsm and 132 CEBPAwt: Supplementary 

material Table S1). Among the CEBPAdm cases were 5 cases with either homozygous N- or C-terminal 

CEBPAdm mutations, and a CEBPAdm patient with a germline C-terminal mutation. This approach 

showed perfect sensitivity and specificity (both 100%, Figure 3C). In addition, we performed a 

classification between CEBPAdm, CEBPAsm, and CEBPAwt  to infer, if we were able to accurately classify 

CEBPAsm cases. We observed that all CEBPAsm cases were classified as CEBPAwt, thus CEBPAsm cases 

do not have a consistent gene expression pattern and were different from the CEBPAdm group.

DISCUSSION

Here, we established the value of the CEBPAdm mutation in a large cohort of CN-AML patients from 

AMLSG and HOVON-SAKK treatment trials. We detected 91 (7.7%) double CEBPA and 60 (5.1%) 

single CEBPA mutations among 1182 patients. In multivariate analyses, we demonstrate that the 

presence of CEBPAdm, but not CEBPAsm, is an independent factor for favorable outcome in AML, 

which confirms previous findings reported in studies with relatively small cohorts.17-19,21

 Concurrent mutations were significantly less frequent in CEBPAdm compared with CEBPAsm 

AML. This was true for FLT3ITD and in particular for NPM1mutant that were virtually not present among 

CEBPAdm cases, a finding that is consistent with previously published data.20 Compared to previous 

studies17-21, and the large number of cases, we were able to evaluate the prognostic impact of 

the CEBPA mutational status in the context of the FLT3/NPM1 genotypes. Among CEBPAsm AML, 

the four combined genotypes showed similar trend with regard to outcome as compared with 

CEBPAwt AML (Figure 2B and 2C). Nevertheless, we observed a higher outcome (not significant) 

for all CEBPAsm FLT3/NPM1 genotypes compared to the CEBPAwt genotypes, but these groups are 

relatively small. These findings, supported by data from multivariable analysis, strongly suggest 

that not the existence of CEBPAsm per se but rather the combined effects of CEBPAsm and FLT3ITD 

and/or NPM1mutant determine outcome in these AML patients. 

 Here, we generated a refined GEP signature, consisting out of 25-probesets that predict 

CEBPAdm AML cases. This signature showed sensitivity and specificity of 100% and has a better 

predictive power than the CEBPAdm signature previously defined.18 In fact, in contrast to the previous 

signature, the new signature also discriminates CEBPAdm from AML with hypermethylation of the 

proximal promoter region of CEBPA.22 Classification results were not affected by homozygous 

N- or C-terminal CEBPAdm mutations or those due to germline mutation. Currently, nucleotide 
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sequencing is used as the gold standard for the identification of CEBPA mutations. Due to the 

much higher effort of gene expression profiling this technique should not be considered as 

a primary diagnostic tool in AML. However, GEP can be confirmatory, especially in cases where 

the CEBPA gene appears difficult to sequence. More importantly, GEP provides relevant insights 

in the biology of the disease and the affected signaling pathways and therefore allows further 

classification/refinement of AML. 

 Finally, we evaluated the frequency of CEBPA germline mutations in this large cohort of 

CEBPA-mutated cases. Among 71 mutated patients, 5 revealed germline mutations. Of these cases 

4 developed CEBPAdm AML, i.e., these cases acquired a mutation in the second allele, in line with 

previous data.40,41 Interestingly, we for the first time identified 3 C-terminal germline mutations of 

which 2 cases acquired a second CEBPA mutation at the time of AML diagnosis. In GEP analysis 

both cases clustered within the CEBPAdm group and were classified as a CEBPAdm, providing 

evidence that these C-terminal sequence variations are mutations rather than polymorphisms. 

All 3 C-terminal germline mutations were predicted to be damaging for the function and the 

structure of the protein.

 In the current World Health Organization (WHO) AML classification, “AML with mutated CEBPA” 

has been designated as a provisional disease entity in the category “AML with recurrent genetic 

abnormalities”. Based on our data obtained from a large patient cohort together with findings 

from previous reports we propose that CEBPAdm AML should be clearly distinguished from CEBPAsm 

AML and that only “AML with CEBPAdm” should be considered as an independent entity in the 

classification of the disease.
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ABSTRACT 

Background. Accurate analyses of comprehensive genome-wide single nucleotide polymorphism 

(SNP) genotyping and gene expression data sets is challenging for many researchers. In fact, 

obtaining an integrated view of both large scale SNP genotyping and gene expression is currently 

complicated since only a limited number of appropriate software tools are available. 

Results. We present SNPExpress, a software tool to accurately analyze SNP genotype calls, copy 

numbers, polymorphic copy number variations and gene expression in a combinatorial and 

efficient way. In addition, SNPExpress allows concurrent interpretation of these items with Hidden 

Markov Model inferred loss-of-heterozygosity and copy number regions. 

Conclusion. The combined analyses with the easily accessible software tool SNPExpress will not 

only facilitate the recognition of recurrent genetic lesions, but also the identification of critical 

pathogenic genes.
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INTRODUCTION

High-density genome-wide views of biological samples using high-throughput DNA mapping 

and mRNA gene expression microarrays facilitate the identification of recurrent molecular lesions. 

Both types of microarrays, which are being produced by different manufacturers, e.g., Nimblegen, 

Agilent, Sequenom, Applied Biosystems, Illumina and Affymetrix, typically contain large numbers 

of small oligonucleotides that interrogate the genome. Currently available DNA arrays contain 

over 500.000 probe sets, while the gene expression arrays target over 20.000 genes. Efficient 

analysis of these large datasets remains a challenge for many researchers. 

 The Affymetrix and Illumina DNA mapping platforms have been designed to specifically target 

sequences containing single nucleotide polymorphisms (SNPs). SNPs are currently estimated 

to be present at a frequency of 1 out of 300 nucleotides.1 By including different probe sets to 

detect the possible SNP variants, genome-wide genotyping is feasible and these platforms can 

easily be applied to determine copy numbers of these chromosomal markers, similar to array 

comparative genomic hybridization (CGH). Due to the high number of SNPs, sample DNA can be 

examined with an inter-marker distance of 6 to 12 kb, and (micro) deletions and/or amplifications 

are detectable. By comparing disease samples to normal germ line DNA, a detailed overview 

of acquired gains and losses of the genome is obtained. In fact, although our knowledge is still 

developing, it has recently become apparent that that copy number variation (CNV) accounts for 

a substantial amount of genetic variation in the human genome.2 

 The high-resolution scanning technologies enable the analyses of CNV and associated 

phenotypes.2 The power of DNA mapping has been shown extensively in cancer research. 

Chromosomal gains and losses as well as regions of loss-of-heterozygosity (LOH) have been 

shown in, for instance, leukemia3,4, lung cancer5-7 and colon cancer.8 Recognition of recurrent 

lesions will ultimately result in the identification of pathogenic genes. For instance, SNP array 

analysis of a set of cancer cell lines has led to the identification of the microphthalmia-associated 

transcription factor MITF as a melanoma oncogene.9 

 On the Illumina platform genotypes are determined using hybridization of genomic DNA to 

BeadChips followed by an enzymatic discrimination step. On the Affymetrix platform, genotype 

calls and copy numbers are determined by a probe set. In analogy with the expression probe set, 

the genotype and copy number of an individual SNP is dependent on the balance of genotype 

calls in the associated probe set. Several methods for genotype calling10-13 and assessment of copy 

number14,15 have been developed. Advanced analysis methods of DNA mapping array data have 

focused on the identification of regions of LOH, or gains and losses.16-19

 A particular SNP genotype or numerical changes in chromosome copy number can have 

profound effects on gene expression. A possible relation to tumor development was shown in 

breast cancer, where a 17q23 amplification was related to increased expression of genes at this 

locus20 and in acute myeloid leukemia (AML), where amplification of 8p24 was associated with 
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increased expression of genes such as MYC.21 In fact, SNPs as well as CNVs have recently been 

shown to have consistent effects, often in cis, on gene expression.22,23 The integrated analysis of 

gene expression and SNP array data is a prerequisite to recognize these effects. To our knowledge, 

only one software package is able to visualize chromosome copy number and gene expression 

levels.17 Here, we present a package, SNPExpress, which allows concurrent interpretation of 

genotype, HMM inferred LOH regions, CNVs, HMM inferred copy number and gene expression 

data. Due to the simple format of the input data, our package is not restricted to specific methods 

to determine genotype, copy numbers or expression level. Little knowledge of software is 

necessary to use SNPExpress, making the tool widely accessible.

IMPLEMENTATION

SNPExpress, written in JAVA (version 1.5), uses tab-delimited files as input and is currently available 

for use with Affymetrix DNA mapping arrays (10K 2.0, 100K and 500K set), Illumina HumanHap550 

Genotyping BeadChip and Affymetrix GeneChips (HG-U95Av2, HG-U133A and B, HG-U133 plus 

2.0). A file containing a matrix with each column representing the genotypes of one array and 

rows starting with Illumina or Affymetrix SNP IDs is mandatory. The genotype should be formatted 

as homozygous ‘AA’ or ‘BB’, heterozygous ‘AB’, or, ‘noCall’ (Affymetrix)/ ‘NC’ (Illumina). Similar matrix 

files containing copy numbers or gene expression values are optional.  Copy numbers should be 

centered around 2, where 2 represents the normal copy number of the autosomes and 1 for the 

male X chromosome. The maximum displayed copy number is 4, in case the copy number is above 

4 this is indicated by a darkblue background. Copy number-, genotype- and gene expression files 

required for SNPExpress can be generated through tools such as Affymetrix BRLMM13, GCOS/CNAT 

4.024, or dChipSNP.17 In case of Illumina data, SNPExpress includes the non-synonymous SNPs and 

the MHC region, however, mitochondrial SNPs and Y-chromosome SNPs are not visualized. All 

files can be optionally uploaded as tab- or comma-delimited .txt files or binary files. These binary 

files can be created from .txt files by the menu item ‘convert data source’.

 SNPExpress maps both the SNP IDs (Illumina and Affymetrix) and the expression probe set 

IDs (Affymetrix) to the genome through internal alignment tables, using annotation provided by 

the manufacturer. Annotation was generated using NCBI build 36.1. Regions showing LOH are 

calculated through a Hidden Markov Model (HMM), described previously.18 The probability values 

for heterogeneous calls required for the HMM have been generated through sets of genotypes 

of normal samples. For the 100K and 500K array, 90 samples and 270 samples, respectively, of 

different ethnical background from the HapMap project are available through the NCBI GEO 

website (and provided by the manufacturer).28,29 For the 10K array normal matched blood samples 

available through the GEO public repository have been processed.30 Since reference normal 

Illumina genotype datasets are currently not publicly available, LOH regions using this platform 

are not supported in this version of SNPExpress. SNPExpress includes the option to visualize the 
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results of a novel analytical method that infers the copy number of each SNP based on a HMM 

model, which is implemented in dChipSNP.17,31 Also, all CNVs2, currently cataloged in the Database 

of Genome Variants32, can be visualized.

 Example expression, copy number, genotype and HMM copy number example files of two 

AML patients can be downloaded.33

RESULTS

Genotypes and copy numbers are displayed as sequential blocks by which color indicates 

genotype, horizontal coordinate indicates position on the chromosome and vertical coordinate 

indicates copy number (Figure 1). The colored genotype blocks are drawn sequentially in a 

chromosome-wide view and proportional to chromosomal location when zoomed into a region 

of interest. Gene expression levels are visualized as a vertical bar at the chromosomal position of 

the gene-specific probe set. The height of the bar is proportional to the gene expression value.  

The default value is 500 and expression higher than 500 is capped at 500, however, these values 

are user-definable. In the event that multiple probe sets span the same region in the chromosome-

wide view the vertical gene expression bars are red and proportional to the highest expression 

value. Zooming into the location of interest discloses the individual probe sets. Links of SNP IDs to 

public databases are available by holding the ctrl-key and clicking on a SNP ID.

Distinct background colors are used to accentuate genomic changes. Individual copy numbers 

are indicated as gain (pink background) or loss (green background) when their value exceeds a 

user-defined value. The default deviation threshold is 0.5. LOH is highlighted at diploid level by a 

bold magenta line (Figure 1). All colors can be adapted to the users’ preferences.

From the menu, the user is able to choose to visualize either one chromosome of multiple 

samples or the complete genome of one sample. Detailed information, such as SNP ID, associated 

gene symbol, probe set ID, cytoband and expression value, is shown on a mouse-over display. 

Furthermore, a gene of interest is directly visualized through a search function, and its associated 

SNPs are indicated with an orange background color. The options to display known CNVs (purple 

background) or the HMM copy number results (thin magenta line) are included (Figure 1C). 

Finally, relevant data of a particular minimal deleted of amplified region can be exported (i.e., 

Sample, Probe_set_id, Chromosome, Location (bp), Cytoband, Associated gene, Genotype, Copy 

number and Inferred LOH of the selected region) and high-resolution images of the visualization 

can be saved in the Portable Network Graphic (PNG) format. 

To illustrate the power of SNPExpress, DNA mapping array profiles of tumor samples of a series of 

48 AML patients were generated using Affymetrix 250K NspI DNA mapping arrays. Ficoll separation 
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of the mononuclear cells from AML typically yields >80% pure population of leukemic blast cells. 

High molecular weight DNA was isolated from these malignant cells and the Affymetrix mapping 

arrays were used according to the protocol of the manufacturer. Genotypes were calculated using 

BRLMM and copy numbers were assessed using dChipSNP. Biotin-labeled cRNA of the same AML 

samples was hybridized on Affymetrix HG-U133 plus 2.0 GeneChips, as previously described.34 

The resulting dataset was imported in SNPExpress for analyses. Large chromosomal regions 

showing loss or gains of genetic material are known to be apparent in leukemic blasts of AML 

patients. Well-known examples of chromosomal lesions in AML are monosomies of chromosome 

5 and 7, which have been associated with a poor prognosis.35 Using SNPExpress, monosomies of 

chromosome 7 were evidently demonstrated in AML samples, previously shown by cytogenetics 

(Figure 1). SNPExpress also correctly predicted the presence of LOH as a result of the absence of one 

chromosome 7. In fact, 17 out of 21 numerical cytogenetic aberrations, i.e., whole chromosomes 

and interstitial deletions, in 48 AML samples analyzed, were recognized by using SNPExpress. Four 

numerical abnormalities, present in less than 30% of the AML cells, were missed. Chromosomal 

gains, losses as well as uniparental disomy (UPD) may also have other important consequences, 

such as affecting expression of (imprinted) genes. Combinatorial visualization of genotype, copy 

number and gene expression is a prerequisite to recognize these aberrations. For example, the 

majority of genes show located on chromosome 7 show an overall decrease in expression in AML 

cases with a monosomy 7 (Figure 1).

Large regions of homozygosity are present in approximately 20% of primary AML cases as a 

result of segmental UPD.3,36 These regions of UPD seemed to be non-random and may be used 

to unmask pre-existing recessive mutations in leukemia genes, such as CEBPA, WT1, FLT3 and 

RUNX1.3,37 SNPExpress adequately identified regions of UPD involving e.g. chromosome 11p 

(Figure 1D), in two patients with a normal karyotype. UPD involving chromosome 11 is associated 

with homozygous mutations in WT1.37 Interestingly, in 13 out of 48 AML patients (27%) large 

regions of segmental UPD continuing to the telomere were recognized using SNPExpress.

These examples demonstrate the power of SNPExpress. To our knowledge, no tool is currently 

available that allows concurrent interpretation of genotype, HMM inferred LOH regions, copy 

number, HMM inferred copy number and gene expression data. Moreover, no specialized 

knowledge is necessary to work with SNPExpress.
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Figure 1. SNPExpress screenshot. A. DNA mapping array data from the Affymetrix 250K NspI DNA mapping 
array depicting chromosome 7 of four AML samples. Copy numbers (n=0, 1, 2, 3, 4) are shown for each 
individual patient by horizontal lines. (A) SNP genotypes are sequentially aligned along the chromosome 
(AA: red; BB: yellow; AB: blue, noCall: white). LOH is indicated by a thick magenta horizontal bar (B), gains 
(default n>2.5) by a pink and losses (default n<1.5) by a turquoise background (C). Gene expression levels 
are visualized as vertical white bars. Multiple probe sets spanning the same locus is depicted by a red vertical 
gene expression bar proportional to the highest expression value. The two upper samples display a complete 
monosomy (sample 1) or a deletion of the q-arm of chromosome 7 (sample 2). The chromosome selecter 
(D; where 23 is the X chromosome), the mouse-over function showing info of each SNP or probe set (E), full 
chromosome view (F), zoom function (G) gene search function (H), the links to external databases (I), display 
CNVs (J) and export selected data (K) options are indicated. B. Full chromosome view of samples from Figure 
1A. C. CNV (purple background) and copy number of each SNP based on a HMM model (HMM copy number, 
magenta line) for two AML cases. D. An example of large scale UPD on chromosome 11 in the upper two AML 
patients in comparison to two other AML samples. The overall copy number is two and large regions of LOH 
are indicated by the thick magenta line across the chromosome. SNPs associated with WT1 are depicted with 
an orange background.

DISCUSSION

Since genome-wide DNA mapping array and mRNA expression studies become more cost 

effective, the number of samples profiled on these platforms will increase. Specialized user-

friendly tools for efficient visualization, such as SNPExpress, will therefore be indispensable. In 

fact, the initial version of SNPExpress has already been successfully applied in showing segmental 

uniparental disomy as a recurrent mechanism for homozygous CEBPA mutations in acute myeloid 

leukemia.38
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 Other tools for visualizing and processing SNP array data, such as SNPScan39, SIGMA40, 

ArrayFusion41, Partek Genomics Suite42 and GenePattern43 have been developed. Most of these 

tools incorporate visualization options for displaying LOH (GenePattern, Partek Genomics Suite, 

SNPScan) and copy number (all but ArrayFusion), whereas SNPScan and ArrayFusion have output 

functionality that facilitates linking SNP data to the UCSC genome browser.39,41 Some are linked to a 

private database, which restricts pre-processing of the array data, but gives the advantage of data 

storage.40 GenePattern and the Partek Genomics Suite provide normalization and data smoothing 

functionality. These two packages and SNPScan have also incorporated options for combined 

analysis of paired samples, i.e., tumor and normal. Like SNPExpress, SNPscan, GenePattern, and 

the Partek Genomics Suite can detect regions of LOH, amplification and deletion. None of these 

tools describe the ability to process Illumina BeadArray files. Where SNPExpress may lack the 

opportunity to directly process raw data files (such as Affymetrix CEL-files), it adds integrated 

visualization of expression (Affymetrix) and DNA copy number and genotype (Affymetrix and 

Illumina) data. Moreover, we believe that this is provided in a user-friendly way that does not 

require specialist computer knowledge.

 SNPExpress has some limitations. A full-length chromosome view depicting gains, losses and 

the regions showing LOH is feasible using SNPExpress. However, the large datasets generated 

by the 500K mapping array platform makes it impossible to visualize the sequentially aligned 

SNPs of the full-length chromosomes on one screen. Selecting the most informative SNPs, i.e., 

representative for particular haplotypes, may solve this issue. Such algorithms are currently in 

development. Furthermore, the current implementation of the HMM could also be improved by 

implementing a HMM that takes into account the effects of linkage disequilibrium, i.e., LD-HMM.18 

The number of samples to be visualized concurrently is limited by the memory available to the 

application.

CONCLUSIONS

The power of SNPExpress, as with previously developed tools44, is its high accessibility and 

powerful visualization, which facilitates the identification of biologically and clinically relevant 

entities. We have shown that recurrent biologically relevant entities, such as chromosomal gains 

or losses and LOH in AML, are accurately identified with SNPExpress. Hence, SNPExpress will be 

beneficial to genome-wide studies by providing an integrated view of data from DNA mapping 

and mRNA expression arrays in an easily accessible and accurate way.
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ABSTRACT

Acute leukemia is characterized by the accumulation of somatic genetic alterations in 

hematopoietic stem and progenitor cells eventually resulting in overt leukemia. To characterize 

somatic events associated with leukemic transformation, we performed detailed genome-wide 

copy number analyses of 53 adult B-cell acute lymphoblastic leukemia (ALL), 20 adult T-cell ALL 

(T-ALL) and 100 adult acute myeloid leukemia (AML) cases. We observed recurrent aberrations 

involving CDKN2A/B, IKZF1, PAX5 and BTG1 at relatively high frequencies, with the CDKN2A/B 

pathway being perturbed in all adult T-ALL cases. In adult AML, focal copy number alterations were 

virtually lacking. Interestingly, genetic lesions simultaneously perturbing the genes encoding 

for NF1, involved in RAS pathway inhibition, and SUZ12, a pivotal polycomb repressive complex 

2 (PRC2) member, were recurrently found in T-ALL and AML. Gene expression profiling (GEP) 

analysis revealed the substantial down regulation of both genes supporting the notion that PRC2 

loss cooperates with RAS pathway activation in acute leukemia. Finally, targeted resequencing 

of regions harboring recurrent genetic alterations in 5 selected B-ALL cases revealed extensive 

involvement of the recombination activating genes (RAG) complex as a mutational mechanism 

invoking large deletions as well as complex insertions and deletions in promoters, enhancers and 

open chromatin proximal to genes regulating B-cell development.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter5/
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a heterogeneous disease characterized by a clonal 

proliferation of malignant lymphoblasts, initiated by the accumulation of genetic alterations in 

B- or T-lymphoid precursor cells. ALL is the most common leukemia in children (26% of all cancer 

types and 80% of all paediatric leukemias), but is a rare disease in adults (2-3% of all cancer types 

and 56% of all adult acute leukemias).1-3 With the introduction of different genome characterization 

methodologies much has been learned about the molecular biology of ALL leading to risk-

adapted treatments, however, the long-term survival of adults is still inferior to that of children 

(5-year event-free survival rate 80% versus 40%, respectively).1-3 Cytogenetic characterization of 

adult ALL revealed recurrent interchromosomal aberrations involving BCR-ABL1, E2A-PBX1 and 

MLL-rearrangements in B-cell ALL (B-ALL), and SIL-TAL1 in T-cell ALL (T-ALL).4 Genetic analysis of 

especially paediatric ALL has been extensively carried out, while the genome of adult ALL remains 

scarcely characterized. Array-based genome characterization of predominantly paediatric ALL has 

revealed frequent and recurrent genetic alterations, mostly comprising deletions of promoters 

or complete genes involved in the development of B- or T-lymphoid precursor cells5,6, such as 

deletions affecting CDKN2A/B, IKZF1, PAX5, EBF1 and BTG1. The adaptive immune system requires 

diversification for the defence against the invasion of variegated pathogens. This defence is 

conferred by the diversification of antibody production by cutting and recombining variable 

(V), diversification (D) and joining (J) gene segments by a process named V(D)J recombination. 

Previous studies have postulated that many of the recurrent deletions may be effectuated by 

illegitimate V(D)J recombination utilizing cryptic recombination signal sequence (RSS) motifs in 

the vicinity of the nascent copy number alteration (CNA) breakpoint boundaries.7,8 Recent efforts 

have shown that a substantial number of CNAs are flanked by cryptic RSS motifs in specifically 

paediatric ETV6-RUNX1 ALL patients9, especially in regions marked by active histone markers, such 

as H3K4me3. The RAG complex mediates V(D)J recombination within recombination centre foci 

located in antigen receptor loci, characterized by an enrichment of H3K4me3, H3 acetylation and 

RNA polymerase II binding.10 Altogether, these studies culminate into the hypothesis postulating 

that the RAG endonuclease complex is aberrantly targeted to loci accommodating cryptic RSS 

motifs and subsequently invoking illegitimate genetic lesions perturbing developmental genes 

associated with leukemic and clonal evolution.

 Acute myeloid leukemia (AML) is a malignant and heterogeneous disease characterized by 

the acquisition of genetic lesions in hematopoietic stem and progenitor cells.11 Cytogenetic 

characterization has revealed recurrent interchromosomal aberrations, e.g. t(15;17), t(8;21), 

inv(16) and MLL-rearrangements, which have consecutively been used for prognostication. 

Recent studies adopting next generation sequencing (NGS) technologies have revealed recurrent 

molecular aberrations involving genes associated with transcription activity12, epigenetic 

modifications13,14, spliceosome machinery15, and cohesion complex formation.16 The prognostic 
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significance of many of these newly identified molecular aberrations remains equivocal. Array-

based characterization of the AML genome revealed the general scarcity of CNAs precluding the 

identification of many novel genes involved in leukemogenesis17 and ostensibly highlighting its 

stability.

 In order to determine the frequency of recurrent aberrations and to identify novel genetic 

aberrations in adult acute leukemia, we have characterized 53 B-ALL, 20 T-ALL, and 100 AML cases 

at diagnosis by copy number variation (CNV) analysis. Additionally, we determined which genetic 

lesions are acquired, potentially driving leukemic transformation in concert.

 Subsequently, the CNV analyses revealed that a substantial fraction of the adult ALL cases 

acquired multiple focal deletions located proximal to the transcription start site (TSS) or involving 

the complete promoter of genes associated with development and differentiation processes in B- 

or T-lymphoid precursor cells.5,6 We selected 5 B-ALL cases substantially exhibiting this behaviour 

and with the advent of NGS demonstrated that almost all deletion events are flanked by cryptic 

RSS motifs.

METHODS

Patients samples
After informed consent, bone marrow aspirates or peripheral blood samples of a representative 

cohort of adult ALL and AML patients were collected. Eligible patients had a diagnosis of primary 

ALL or AML, confirmed by cytological examination and immunophenotyping of blood and 

bone marrow. The majority of these cases were treated following the HOVON (Dutch-Belgian 

Hematology-Oncology Co-operative group) protocols (http://www.hovon.nl). Blasts and 

mononuclear cells were purified by Ficoll-Hypaque (Nygaard, Oslo, Norway) centrifugation and 

cryopreserved. All samples contained 80-to-100 percent blast cells after thawing, regardless of 

the blast count at diagnosis.

Gene expression profiling
RNA was isolated from 136 B-ALL, 55 T-ALL and 661 AML adult cases using RNABee. Gene 

expression profiles of the samples were generated using Affymetrix HG-U133 plus 2.0, as described 

elsewhere.18 Gene expression data is available in the ArrayExpress database (www.ebi.ac.uk/

arrayexpress), see Supplementary material. The different cohorts have been made comparable 

by mean-centering the expression levels to 0 per dataset. Differential gene expression analysis 

was performed with the Mann–Whitney U test in the R environment. All additional plots were 

generated by ggplot2.19

http://www.hovon.nl
http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress


Ch
ap

te
r 5

RAG-mediated rearrangements in acute lymphoblastic leukemia

81

Array based copy number analysis
Genome-wide genotyping data of 73 ALL patients, i.e., 53 B-ALL and 20 T-ALL diagnostic samples 

in conjunction with paired remission samples, were generated using Affymetrix 6.0 NspI/StyI DNA 

mapping arrays and for the 100 AML diagnostic samples alone with the Affymetrix 500K NspI/StyI 

DNA mapping arrays. DNA mapping array data is available in the ArrayExpress database (www.ebi.

ac.uk/arrayexpress), see Supplementary material. High-molecular-weight DNA was isolated using 

columns (Qiagen, Hilden, Germany) and the Affymetrix DNA mapping arrays were used according 

to the protocol of the manufacturer (Affymetrix, Santa Clara, CA). In brief, 250 ng of genomic 

DNA was digested with NspI or StyI and ligated to NspI or StyI adapters using T4 DNA ligase (New 

England Biolabs, Ipswich, MA, USA). Samples were then amplified by PCR using TITANIUM Taq 

polymerase (Clontech, Mountain View, CA, USA). PCR products were pooled and purified using 

the Clontech purification kit and subjected to fragmentation using DNaseI. The DNA fragments 

were subsequently biotin-labeled with terminal deoxynucleotidyl transferase, hybridized on the 

array in a GeneChip® Hybridization Oven 640, washed and stained in a GeneChip® Fluidics Station 

450. Data was obtained using the GeneChip Scanner 3000 7G.

Genotypes were calculated using the Birdseed algorithm and copy numbers were assessed using 

dChip.20 The copy numbers of all AML samples were calculated using diploid references. CNV 

profiles of the ALL and AML cases where manually scrutinized with SNPExpress21 and aberrations 

were selected when displaying constitutive loss or gain, i.e., 10 probe sets or more, and not 

observable in matched remission samples or not observable in all leukemia cases, e.g., copy 

number polymorphisms or systematic bias in copy number. Subclonal CNVs were selected only 

when 20 or more probe sets displayed constitutive reduced or increased copy number levels. 

Genes afflicted by CNAs were ranked according to frequency, but due to hyperdiploidy and 

chromosomal losses many passenger genes were simultaneously identified. To ascertain genes 

perturbed by or directly flanking CNAs we have utilized kernel density estimation with a flat-

top Gaussian kernel distribution to account for the unequidistant nature of the probe sets.22 In 

brief, the region encompassing the CNA is weighted equally, while flanking regions are weighted 

according to an exponential decay function based on distance and size of the CNA. To prevent the 

substantial weighting of very small aberration we have put a gamma distribution as a conjugate 

prior on the kernel distribution.

PCR, nucleotide sequencing and denaturing high performance liquid 
chromatography
All PCR reactions were carried out in the presence of 25mM dNTP, 15 pmol primers, 2mM 

MgCl2, Taq polymerase and 1xbuffer (Invitrogen Life Technologies, Breda, The Netherlands) 

at an annealing temperature of 600C. The 16 exons of the SUZ12 were amplified using the 

primers indicated in Supplementary Table 1 and the promoter of BTLA by a forward primer 

http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
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(5’-GAGCCTGGATGATTTTGTGAA-3’) and a reverse primer (5’-CCGTGACATGTACAGGAAAA-3’). 

Cycling conditions were: 1 cycle 5 min at 940C, 35 cycles 1 min at 940C, 1 min at 600C, 1 min at 

720C, and 1 cycle 7 min at 720C. PCR products were purified using the Multiscreen-PCR 96-well 

system (Millipore, Bedford, MA) followed by direct sequencing with the appropriate forward and 

reverse primers using an ABI-PRISM3100 genetic analyzer (Applied Biosystems, Foster City, CA). 

All SUZ12 PCR products of exon 14-15-16 or the BTLA promoter were subjected to denaturing high 

performance liquid chromatography (dHPLC) analyses using a Transgenomics (Omaha, NE) WAVE 

system. Samples were run at 55.60C.

Roche 454 next-generation sequencing
Amplicon sequencing was performed using the Roche GS Junior 454 system (Roche, Basel, 

Switzerland) following the protocols of the manufacturer. Sequence reads were processed and 

analyzed using the GS Amplicon Variant Analyzer (Roche, Basel, Switzerland). The SUZ12 zinc 

finger and VEFS domain are encoded by exons 12-to-16. Primers are indicated in Supplementary 

Table 2). Amplicons carrying MIDs were generated and purified according to the Amplicon 

Library Preparation Method Manual (Roche, Basel, Switzerland). DNA enriched beads, carrying the 

amplification products, were generated according to the emPCR Amplification Method Manual-

Lib-A (Roche, Basel, Switzerland); a beads-to-amplicon ratio of 1:2 was used.

Exome sequencing and targeted resequencing
From the diagnostic and remission material of 5 ALL cases the genomic DNA was sheared with 

the Covaris S2 (Covaris) with default settings for exome sequencing. Subsequently, the sample 

libraries were prepared using the TruSeq DNA Sample Preparation Guide (Illumina). The target 

chromosomal regions were derived from the DNA mapping array identified CNAs of the 5 ALL 

cases. The exons and the targeted regions (Supplementary Table 13) were captured by employing 

custom in-solution oligonucleotide baits (Nimblegen SeqCap EZ plus). The sample libraries were 

subjected to paired-end sequencing (2x100bp) on the HiSeq 2000 (Illumina) and were aligned 

against hg19 using the Burrows Wheeler Aligner (BWA)23 with default settings. Reads aligning into 

undetermined regions of the human genome (hg19), e.g., segments of intron 3 belonging to the 

IKZF1 gene, were aligned against the updated human genome sequence (hg38) containing these 

regions. Whole exome sequencing (WES) and targeted resequencing data derived from patient 

specimens have been deposited at the European Genome-phenome Archive (EGA, http://www.

ebi.ac.uk/ega/), see Supplementary material.
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Variant detection
Variants were determined with SAMtools24, annotated with ANNOVAR25, and filtered by an 

in-house developed algorithm. In brief, the algorithm compares the variant frequency of the 

diagnostic sample to a control sample, e.g., healthy tissue or remission material, taking into 

account the alignment quality of the reads and the local sequence context of the detected variant. 

Somatic complex mutations comprising a combination of insertions, deletions and mutations are 

detected with Pindel.26

Exact breakpoint and RSS detection
Copy number variation profiles from the NGS data of the 5 B-ALL cases were produced with 

CNVsvd (M.A.S., R.H, and P.J.M.V., manuscript in preparation). Exact breakpoint locations were 

determined with BreakDancer27 (v1.12) or were manually scrutinized when undetected. Adjacent 

to either side of the breakpoint 150 base pair of sequence was extracted from hg19 using the 

SAMtools API.24 To ascertain cryptic RSSs we uploaded all the breakpoint sequences to RSSsite28 

for detection of 12-bp spacer RSS or 23-bp spacer RSS based on the human detection algorithm. 

De novo motifs near the breakpoints were inferred by uploading all the breakpoints sequences 

to the MEME website.29 The sequence logo for the detected cryptic RSS motifs by RSSsite were 

constructed with seqLogo.30

Histone markers and protein binding
We procured the histone marker data H3K4me3, H3K27ac, H3K27me3, RNA polymerase II for 

the B-lymphoblastoid cell line GM12878 from the Encyclopedia of DNA Elements (ENCODE) 

project.31 Genome segmentation into 15 definable chromatin states, e.g. active promoter, based 

on combinations of epigenetic markers was constructed by the ENCODE project and procured 

from the UCSC website. Background probability of each chromatin state was determined by 

calculating the ratio of the summarized total length of all regions affiliated with this chromatin 

state with respect to the full genome length. To infer if RAG2 could bind in the vicinity of the 

detected CNA breakpoints we performed a UCSC liftOver from hg19 to mm9 to compare the 

breakpoint loci to Chip-Seq data of Rag2 binding in wild type murine thymocytes10 (GEO omnibus 

GSM530318). Enrichment plots were generated with ngs.plot.32

RESULTS

Copy number variation analysis of adult ALL and AML
We have performed CNV analysis of diagnostic material of 53 B-ALL, 20 T-ALL and 100 AML cases 

(Table 1). In total we observed 1005 genomic alterations in ALL amounting to a mean of 13.77 

genetic alterations per ALL case. In total we detected 268 genetic lesions in AML, amounting to 
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a mean of 2.68 genetic alterations per AML case. Subcategorization of recurrent genetic lesions 

demonstrate that certain aberrations are highly specific for AML or an ALL subtype (Table 2, 

Supplementary Table 3, and Supplementary Table 4). Common amongst B-ALL and T-ALL is the 

deletion of CDKN2A and CDKN2B33 (Figure 1), 57% and 90% respectively, and RB1, 15% in both 

ALL subtypes. Strikingly, the two T-ALL cases without a deletion of CDKN2A/B have a deletion 

involving CDKN2AIP (CDKN2A interacting protein) and CDKN2AIPNL (CDKN2A interacting protein 

N-terminal like), implicating the perturbation of CDKN2A/B through different pathways. We 

detected genetic lesions highly specific for B-ALL involving IKZF1 (47%), PAX5 (36%), CRLF2 (22%), 

BTG1 (19%), BTLA (13%), MKKS (13%) and EBF1 (6%). Additionally, we detected genetic lesions 

highly specific for T-ALL involving NF1/SUZ12 (15%), WT1 (15%) and unbalanced translocations 

affecting TAL-1 (25%).

ALL

DNA mapping arrays

n=73

AML

n=100

Copy number analysis

NF1 microdeletion

GEP 
signatures

Mutation 
detection

NGS selected B-ALL cases

Examine RSS-like sequences

Mutation 
detection

Structural 
variants

CNVs

50 B-ALL 23 T-ALL

Figure 2. Analysis workflow for this study. Genomic characterization of acute lymphoblastic leukemia 
(53 B-ALL and 20 T-ALL) and acute myeloid leukemia by DNA mapping arrays is performed on each data set 
separately. AML and ALL cases with an acquired NF1 microdeletion were compared to all other leukemia cases 
to determine if this subgroup is characterized by a GEP signature. A subset of B-ALL patients was selected, due 
to an increased number of focal deletions, for further genomic characterization. Mutations, structural variants 
and CNVs are detected for these patients and subsequently used for the determination of RSS-like sequences 
near breakpoints. Next generation sequencing (NGS), gene expression profiling (GEP), copy number variation 
(CNV), recombination signal sequence (RSS).

Grouping the adult ALL cases on the basis of molecular subtype reveals specific patterns in relation 

to the total number of deletions and amplifications (Supplementary Table 5). ALL cases have on 

average 8.15 deletions and 4.56 amplifications, which changes negligible when dichotomized on 

B-ALL, 8.06 deletions and 4.74 amplifications and T-ALL, 8.40 deletions and 4.10 amplifications. 
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Table 1. Clinical and molecular data of ALL and AML patients characterized on DNA mapping arrays.

Characteristics
All 
patients

B-ALL 
patients

T-ALL 
patients Characteristics

AML 
patients

n=73 n=53 n=20 n=100
Age (years) Age (years)

median (range) 34 (17-69) 36 (17-69) 31 (18-65) median (range) 43 (15-72)

Gender Gender

male 43(59%) 27 16 male 54 (54%)

female 30(41%) 26 4 female 46 (46%)

WBC count  (x109/L) WBC count  (x109/L)

median (range) 17 (1-375) 49 (1-375) 67(6-338) median (range) 36 (1-234)

>30 15 15 0 Blasts at diagnosis 
 (before ficoll)

>100 4 0 4 median (range) 73 (2-96)

Blasts at diagnosis 
 (before ficoll)

FAB classification

Bone marrow (%) 93 (26-99) 83 (25-98) 78 (43-99) Unknown 8 (8%)

Peripheral blood (%) 66 (10-94) 54 (1-97) 56 (8-93) M1 5 (5%)

Immunophenotype M2 30 (30%)

B-cell 49 (67%) 49 (92%) 0 M3 13 (13%)

T-cell 20 (27%) 0 20 (100%) M4 23 (23%)

Biphenotypic 4 (6%) 4 (8%) 0 M5 17 (17%)

Cytogenetics M6 1 (1%)

t(9;22) (BCR-ABL) 15 (21%) 15 (28%) 0 RAEB 1 (1%)

Hyperdiploid 9 (12%) 9 (17%) 0 RAEB-T 1 (1%)

t(1;19) (E2A-PBX) 1 (1%) 1 (2%) 0 Cytogenetics

TEL-AML1 0 0 0 Favorable karyotype 14 (14%)

SIL-TAL1 4 (5%) 0 4 (20%) 11q23 abnormalities 2 (2%)

NUP214-ABL1 1 (1%) 0 1 (5%) inv(3)/t(3;3) 6 (6%)

SET-NUP214 1 (1%) 0 1 (5%) -7/7q 8 (8%)

11q23 abnormalities 5 (7%) 5 (9%) 0 Normal karyotype 55 (55%)

Normal karyotype 7 (10%) 5 (9%) 2 (10%) Failure 8 (8%)

Failure 5 (7%) 3 (6%) 2 (10%) Molecular aberrations

FLT3-ITD 31 (31%)

NPM1c+ 33 (33%)

DNMT3A mutant 20 (20%)

CEBPA double mutants 12 (12%)

Favorable karyotype comprises AML cases with the inv(16)(p13q22)/t(16;16)(p13;q22), t(8;21)(q22;q22) or 
t(15;17)(q22;q12) cytogenetic aberrations.
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There is a substantial lower number of deletions in ALL cases with a MLL-translocation, while 

hyperdiploid cases are characterized with an increased number of amplifications due to the 

additional chromosomes. Strikingly, we observe a substantial higher number of deletions (17.50) 

in patients with genetic alterations resulting in the overexpression of the receptor CRLF234, 

recently demonstrated to frequently coincide with JAK2 abnormalities35 in BCR-ABL1-like ALL 

cases.36 Finally, the subtypes encompassing BCR-ABL1, SIL-TAL and hyperdiploid ALL have similar 

numbers of deletions and amplifications with respect to ALL on average.

 CNV analysis of AML cases revealed only a few specific recurrent large genetic aberrations 

comprising the loss of chromosome 7 or 7q, gain of chromosome 13, gain of chromosome 11, and 

the gain of chromosome 8. This analysis also revealed the focal deletion of the locus encompassing 

the genes NF1 and SUZ12 in 5 AML cases (Table 2, Supplementary Table 4), as previously reported 

in paediatric AML.37 Interestingly, this deletion was also observed in 3 T-ALL cases highlighting 

that NF1 inactivation might play a role in both myeloid and lymphoblastic adult leukemia.37

The NF1 microdeletion perturbs both NF1 and SUZ12
The NF1 microdeletion is the only common genetic aberration observed in ALL and AML, 

including AML cases with acquired NPM1 mutations or the cytogenetic abnormality t(16;16)

(p13;q22) (Supplementary Table 6), and involves the deletion of a small region of chromosome 

17, i.e., del(17)(q11.2). We normalized the gene expression profiles to ascertain if this deletion 

confers a specific gene expression signature (Figure 2). Empirically, the commonly deleted region 

encompasses the genes encoding for NF1 and SUZ12 (Figure 3), both known to play a pivotal role 

in the malignant transformation of cancer.37-41 Recent NGS efforts demonstrated that both genes 

are perturbed in a multitude of cancers, due to microdeletions or loss of function mutations38,41, 

culminating into the hypothesis that PRC2 loss cooperates with the activation of the RAS pathway. 

Mutations in the remaining wild type allele of NF1 or SUZ12 could exacerbate the phenotype due 

to the complete loss of a functional protein. Previous studies demonstrated that most mutations 

in SUZ12 are located in the VEFS-box domain40,41, important for the interaction with the polycomb 

repressive complex 2 (PRC2) catalytic subunit EZH2. Genomic characterization of exons 12-16, 

encompassing the SUZ12 VEFS-box domain, through dHPLC and targeted deep sequencing 

in 230 unselected ALL patients, revealed somatic mutations in 3 T-ALL cases lacking the NF1 

microdeletion (Figure 4). Subsequent targeted sequencing of the complete coding sequences 

of NF1 in patients with a NF1 microdeletion revealed 1 AML and 1 T-ALL case with a complete 

loss of functional NF1 due to premature stop codon introducing mutations in the remaining 

wild type allele (Supplementary Table 6).  In total we have 5 AML and 3 T-ALL cases with NF1 

microdeletions perturbing both NF1 and SUZ12, and we identified 3 additional T-ALL cases with 

acquired mutations in SUZ12, including one case with a focal EZH2 deletion.

 Differential gene expression analysis of the normalized GEPs comparing acute leukemia cases 

with the NF1 microdeletion (n=8) to those without (n=844) demonstrated that NF1 and SUZ12 are 
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the most strongly down regulated genes (Figure 5A-B, Supplementary Table 7), suggesting and 

underpinning the hypothesis that the RAS pathway is activated in concert with the loss of PRC2.38

LRRC37
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Figure 3. NF1 microdeletion detected in T-ALL and AML. (top) The most commonly deleted genes due to 
the NF1 microdeletion. (bottom) The colored bars represent the regions deleted for T-ALL and AML patients. 
The ends of the bar represent the breakpoint, while some patients have their breakpoint outside of the 
commonly deleted region. Note that all detected deletions affect the genes NF1 and SUZ12.
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Figure 4. Somatic mutations detected in T-ALL. Screening a large cohort of T-ALL patients revealed somatic 
mutations, represented by the circles, in the gene encoding SUZ12. (red) premature stop codon, (open) 
substitution mutation.
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Figure 5. NF1 microdeletion found in AML and T-ALL concurrently perturbs expression of NF1 and 
SUZ12. (A) Comparison of NF1 expression between acute leukemia patients with the deletion to all AML/
ALL cases without reveals a substantial down regulation of NF1. (B) SUZ12 expression levels are lower in NF1 
microdeletion acute leukemia cases as compared to all other AML/ALL cases.

Mutation and structural variation detection in 5 B-ALL cases
Copy number analysis revealed a substantial number of ALL cases with genetic lesions perturbing 

promoters or complete gene bodies of genes important in lymphoid development, postulated to 

be originating from illegitimate V(D)J recombinations.8,9 To investigate whether this mechanism 

invokes the accumulation of genetic lesions in ALL we have performed WES and targeted 

resequencing of all breakpoint regions. We selected 5 B-ALL cases with substantial higher 

number of genetic lesions affecting promoters or genes involved in lymphoid development 

and determined all somatic mutations and structural variants. Of these 5 cases, 3 carry BCR-

ABL1, 1 exhibits a BCR-ABL1-like GEP and 1 is a normal karyotype B-ALL case (Supplementary 

Table 8). In total 102 somatic mutations were detected, amounting to 20.4 somatic mutations 

per ALL case (Supplementary Table 9). No recurrent somatic mutation was detected precluding 

the identification of a commonly perturbed pathway on the basis of somatic mutation data. A 

complex JAK2 mutation (I682>SP, Supplementary Figure 1) was detected in the BCR-ABL1-like 

patient with CRLF2 overexpression, which is in line with previous studies.36

 Structural variant analysis confirmed the copy number changes observed with DNA mapping 

arrays and the CNVsvd algorithm (Supplementary Table 10). In total 64 structural variants were 

detected, amounting to 12.8 structural variants per case on average. All cases had a complete or 

partial deletion of the IKZF1 gene. We detected recurrent deletions of the promoters of MKKS (all 

cases), BTLA (3 cases), and KRAS (3 cases). Notably, other genes reported to be associated with ALL 

are recurrently deleted, i.e., BTG1, PAX5, RB1, and CDKN2A/B.



Ch
ap

te
r 5

RAG-mediated rearrangements in acute lymphoblastic leukemia

91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Position

Motif position

0

0.5

1

1.5

2

Inf
orm

ati
on

 co
nte

nt

CACAGTG------------ACAAAAACCConsensus:

A

B

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Position

0

0.5

1

1.5

2

Inf
orm

ati
on

 co
nte

nt

CACAGTG-----------------------ACAAAAACCConsensus:

0

1

2

b
its

1

C

G
T
A

2 3

C
T
A

4
T
G
A
C

5

T

G
C
A

6

C
A

7

A
8

T

9

C
T
A

10

T
A
C
G

11

C
A
T

12

C
A
G

13

C
T
G
A

14 15

C

T
A

16

G

A
T
C

17

G
T
A

18

G

T

C

19

C

A

20

G
T
A
C

21

T
A
CC
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Proximal cryptic RSS motifs imputes RAG activity
The 128 proximal breakpoint sequences of all the 64 structural variants were extracted and 

subsequently used for de novo motif detection with MEME.29 This analysis discovered 1 significant 

motif characterized by the heptamer sequence CACAGTG (E-value 5.68X10-91, Figure 6A) present 

in 121 out of the 128 breakpoints. Strikingly, this motif equals the conserved heptamer sequence 

that is part of the RSS motif involved in V(D)J recombination. This process is mainly conferred by 

the RAG complex which targets V(D)J recombination sites by utilizing RSS motifs comprising of 

a highly conserved heptamer (CACAGTG), a 12-bp or 23-bp spacer without sequence specificity, 

and a less conserved nonamer (ACAAAAACC). This de novo analysis provides strong evidence that 

off-target RAG activity could mediate the deletions perturbing lymphoid specific genes.

 To ascertain if the breakpoints boundaries are flanked by cryptic RSS motifs we uploaded the 

breakpoint sequences to RSSsite28, which is designed to specifically detect cryptic RSS motifs, and 

demonstrated that most of the breakpoint boundaries are characterized by cryptic RSS motifs. 

Overall, in 58 out of the 64 rearrangements (90.6%), a confident RSS motif was found at one or 

both sides of the lesion (Supplementary Table 10). Strikingly, all IKZF1 deletions in our 5 selected 

B-ALLs were characterized by a cryptic RSS motif proximal to the breakpoint on at least one side 

(Figure 7). All cryptic RSS motifs were extracted from RSSsite and used for the construction of a 

position weight matrix and sequence logo (Supplementary Table 11). As expected, we observed 

the 12-bp spacer RSS motif (Figure 6B) and the 23-bp spacer RSS motif (Figure 6C) with less 

conservation for the nonamer.

 Further diversification of antigen loci is conferred by the amendment of palindromic 

sequences, through the opening of the recombination hairpins by the protein Artemis, or non-

templated sequences randomly incorporated by terminal deoxynucleotidyl transferase (TdT).42 We 

observed that 54 out of the 63 (85.7%) resolved rearrangements demonstrated the incorporation 

of non-templated sequences at the breakpoint (Supplementary Table 10), providing further 

evidence that RAG-mediated cleavage and further processing of the DNA ends play a pivotal role 

in the invocation of rearrangements in ALL.

Epigenetic state at RAG-induced structural variation boundaries
Most of the structural variants are characterized by a flanking cryptic RSS motif on one or both 

sides. We examined if the breakpoint junctions are enriched for particular epigenetic states or 

binding of known proteins. We procured the genome segmentation and Chip-Seq data of the 

B-lymphoblastic cell line GM12878 from ENCODE31 due to its complete characterization. In total, 

we examined 125 breakpoint junctions (Supplementary Table 10), omitting 3 breakpoint junctions 

located in undetermined regions of the human genome sequence (hg19) and lacking ENCODE 

data for the updated human genome sequence (hg38). The genome segmentation divides 

the genome into 15 chromatin states based on different combinations of epigenetic markers. 

We observed a 39.9-fold enrichment of the breakpoints (p < 2.2 X10-16), within active promoter 
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regions (39 out of the 125 of the breakpoints) (Figure 8, Supplementary Table 12). Strikingly, the 

active promoter chromatin state is only assigned to 0.78% of the GM12878 genome. Additionally, 

we observed a strong enrichment for weak promoters (11.4-fold), poised promoters (19.3-fold), 

and strong enhancers (8.5-fold). Overall, this data implies that most breakpoints are not only 

characterized by cryptic RSS motifs, but also active epigenetic markers, e.g., H3K4me3.
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TGTGTCTCCGACAAG TCTGGTGTCACTACACTGGTCCATTCTAGACTCCGAGAAAGACCAA

AGGTTGTTGGTAAACTTTTGGTAGCTTGAAGTCTACCGTGGTTG GGAGTATTTACACCACAG
TCCAACAACCATTTGAAAACCATCGAACTTCAGATGGCACCAAC CCTCATAAATGTGGTGTC

TTATTAGTACATCCC ACAGTGAATTACCACCTTACTAAAATATTCATGGGTATATACTATG
AATAATCATGTAGGG TGTCACTTAATGGTGGAATGATTTTATAAGTACCCATATATGATAC

TTTTAGATTTTGCTGATGGCATTGCTTGTTGAATGTTGCTGTGG AAACATCAAGTCTAGTGT
AAAATCTAAAACGACTACCGTAACGAACAACTTACAACGACACC TTTGTAGTTCAGATCACA

TTATTAGTACATCC CACAGTGAATTACCACCTTACTAAAATATTCATGGGTATATACTATG
AATAATCATGTAGG GTGTCACTTAATGGTGGAATGATTTTATAAGTACCCATATATGATAC

TTTTAGATTTTGCTGATGGCATTGCTTGTTGAATGTTGCTGTGGAA ACATCAAGTCTAGTGT
AAAATCTAAAACGACTACCGTAACGAACAACTTACAACGACACCTT TGTAGTTCAGATCACA

ATGCATCAGGGAAT ACTATCAACAGAGTGAAAAGGCAACTATCAGAATGGAGAAAATACTT
TACGTAGTCCCTTA TGATAGTTGTCTCACTTTTCCGTTGATAGTCTTACCTCTTTTATGAA

TATTATTTTTTGAGATGGAGTTTTACTC TTGTCACCCAGGCTGGAGTGCAGTGGTGTGATCT
ATAATAAAAAACTCTACCTCAAAATGAG AACAGTGGGTCCGACCTCACGTCACCACACTAGA

CTTTTTAAGACAAC TTATATATTGTAACACATTTCTAATGTTTGTGTGGCACACAGTGCCT
GAAAAATTCTGTTG AATATATAACATTGTGTAAAGATTACAAACACACCGTGTGTCACGGA

CTCTCCAGTACTTGTTTAATTCATCAGT GTTCTAATTAGAGTGGTACCTCTTGGAAAACTAC
GAGAGGTCATGAACAAATTAAGTAGTCA CAAGATTAATCTCACCATGGAGAACCTTTTGATG

Proximal breakpoint Distal breakpoint

Figure 7. Detection of cryptic RSS sequences near the observed breakpoints affecting IKZF1. (top) 
Genes located in the region encompassing IKZF1. (middle) Colored bars illustrate the deletion events, 
perturbing IKZF1, detected in the 5 ALL patients. (bottom) Proximal and distal breakpoint sequences for every 
deletion event. The dashed line represents the breakpoint, while the red letters highlights the cryptic RSS 
detected by RSSsite.

Previous studies have shown that recombination foci in the V(D)J loci are characterized by 

H3K4me3, H3 acetylation, and RNA polymerase II binding.10,43,44 We explored if particular histone 

markers and the binding of relevant proteins were enriched at the breakpoint loci using data 

generated from the cell line GM12878. The breakpoint loci are strongly enriched for H3K4me3 

and H3K27ac (Figure 9A-B), while it is completely devoid for the repressive epigenetic marker 

H3K27me3 (Figure 9C). Reminiscent of the V(D)J rearrangement foci in the antigen receptors the 

breakpoints are likewise enriched for the binding of RNA polymerase II (Figure 9D). The RAG2 

protein is able to bind H3K4me3 through its plant homology domain (PHD) and has been shown 

to bind to multiple regions outside of the antigen receptors in murine thymocytes.10 We extracted 

Rag2 Chip-Seq data derived from murine thymocytes and translated the breakpoints positions 

detected in the B-ALL cases to homologous mouse genome positions. From the 125 breakpoint 

positions 65 could be translated to the murine genome. Strikingly, we observe a strong enrichment 

of Rag2 binding in murine thymocytes at the breakpoint loci (Figure 9E).
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Figure 8. Chromatin state distribution of somatic structural variants. Somatic structural variations are 
segmented according to 1 of the 15 chromatin states extracted from ENCODE project data derived from the 
lymphoblastoid cell line GM12878. The structural variants are mainly located in active promoter regions which 
constitute only a small fraction, i.e., 0.78%, of the human genome.
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Illegitimate RAG-mediated mutagenesis of RSS motifs in promoters and 
gene bodies
Exhaustive detection of complex insertion and deletion mutations revealed a substantial number 

of complex mutations situated within gene promoters and gene bodies. Careful inspection 

revealed that most of the complex insertions and deletions take place within cryptic RSS motifs, 

as determined by RSSsite, providing evidence of frequent open-and-shut joints outside antigen 

receptor loci invoked by the RAG complex.45 Interestingly, we detected open-and-shut events in 3 

out of the 5 B-ALL cases within a cryptic RSS motif located in the core promoter of BTLA. Strikingly, 

2 out of the 3 B-ALL cases also lost the other allele due to a large genomic deletion (Figure 10). 

dHPLC analysis of the BTLA promoter revealed 8 additional B-ALL cases, predominantly (6 out 

of 8 cases) belonging to the BCR-ABL1 and BCR-ABL1-like subgroups, with open-and-shut joint 

events in the cryptic RSS motif (Supplementary Table 14). We also detected affected RSS motifs in 

the core promoter of ADAR, in conjunction with the loss of the other allele, and LILRA2 (data not 

shown). Complex insertions and deletions in RSS motifs located within gene bodies have been 

observed in TCF12, ARMC2, ZCCHC7, SCFD2, and PBX3 (Supplementary Figure 2). Finally, these 

complex mutations were also observed in RSS motifs located in classical V(D)J recombination foci 

within T-cell receptor and immunoglobulin genes.

Figure 10. B-ALL somatic lesions in the promoter of BTLA. Somatic complex mutations have been detected 
in the promoters of developmental genes. For BTLA 3 B-ALL cases harbor complex mutations in a RSS motif 
within its promoter of which 2 B-ALL cases also have a deletion encompassing the complete gene. 
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DISCUSSION

This study provides the detailed genomic characterization of 50 B-ALL, 23 T-ALL, and 100 AML 

adult leukemia cases. We observed that many of the genetic lesions identified in paediatric ALL 

are likewise present in adult ALL. In comparison to array-based genome characterization studies 

performed on adult ALL6 and paediatric ALL5, we observed a substantial higher frequency of 

the most common loci perturbed by genetic lesions, e.g. CDKN2A/B, IKZF1, and PAX5. Strikingly, 

we demonstrated that all T-ALL cases acquired CNAs perturbing the CDKN2A/B pathway. An 

explanation of this divergence of genetic lesion frequency is the use of higher resolution DNA 

mapping arrays. In the case of the adult ALL cohort the Affymetrix 250K DNA mapping array was 

used6, while for the paediatric cohort the Affymetrix 50K DNA mapping array.5 We have utilized 

the Affymetrix 6.0 DNA mapping array which has approximately 8-fold and 20-fold more CNA 

measuring probe sets that the Affymetrix 250K and 50K DNA mapping array, respectively.

  Interestingly, joint analysis of ALL and AML revealed a recurrent deletion affecting both 

the genes encoding for NF1 and SUZ12 in 3 T-ALL and 5 AML cases. The NF1 gene encodes for 

neurofibromin 1 and is postulated to be a negative regulator of the RAS signal transduction 

pathway.46 Loss of function mutations in the NF1 locus results in hereditary neurofibromatosis 

type I47, juvenile myelomonocytic leukemia39, and AML.46 The gene encoding SUZ12, a pivotal 

subunit of the polycomb repressive complex 2 (PRC2), which mediates the trimethylation of 

H3K27 (H3K27me3)48 resulting in a repressive epigenetic mark. Recent sequencing efforts 

have demonstrated that the SUZ12 gene is frequently perturbed by loss of function mutations 

in a multitude of cancers, including T-ALL40 and malignant peripheral nerve sheet tumors 

(MPNSTs).41 Subsequent GEP analyses revealed that both genes are substantially down regulated 

underpinning the recently proposed hypothesis that PRC2 complex loss cooperates with RAS 

pathway activation in a multitude of cancers. Finally, sequencing efforts revealed mutations 

within the VEFS-box domain of SUZ12, necessary for the interaction with EZH2, in additional 

T-ALL cases. In 2 out of 11 leukemia cases with perturbations in SUZ12, i.e., mutations or deletions, 

we observed premature stop codon introducing mutations in the remaining NF1 wild type allele, 

demonstrating that aberrations affecting NF1 and SUZ12 could cooperate in the pathogenesis of 

adult leukemia.

 A previous study has demonstrated that RAG-mediated recombination is a prominent driver 

of rearrangements in ETV6-RUNX1 ALL9, a rarely observed fusion protein in adult ALL. Here, we 

report on 5 BCR-ABL1/BCR-ABL1-like B-ALL cases for which the genomic rearrangements are 

predominantly driven by RAG recombination. Initial mutational analysis provided no recurrent 

somatic mutations, precluding the identification of a common pathway associated with 

leukemogenesis. However, de novo motif detection of breakpoint sequences hinted towards the 

pre-eminence of RAG-mediated rearrangements since 90.6% of the structural variants harbored 

a cryptic 12-bp or 23-bp spacer RSS motif flanking one or both of the breakpoint positions. We 

examined the enrichment of epigenetic markers near breakpoint loci and demonstrated, likewise 
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to classical V(D)J recombination10, that these breakpoints are enriched for H3K4me3, H3 acetylation 

and RNA polymerase II binding. Chip-Seq data revealed Rag2 binding near the identified 

breakpoints in murine thymocytes, suggesting that these regions could be predispositioned for 

RAG-mediated recombination.

 Finally, we observed open-and-shut joining events in gene promoters and gene bodies 

involving RSS motifs which are likely introduced by illegitimate RAG activity. RAG-mediated 

deletion of one allele in conjunction with the open-and-shut mutagenic event on the remaining 

allele could result in the complete knockout of a gene. Recurrence of these open-and-shut 

events, e.g. the BTLA core promoter, suggests that these mutagenic events are associated with 

leukemogenesis. The complex mutational patterns hint towards the binding of the RAG complex, 

subsequent nicking, addition of non-templated nucleotides, but the failure to form the synaptic 

complex leading to error-prone non-homologous end joining (NHEJ). This mutational process 

requires additional studies to elucidate the exact mechanism and it would therefore be interesting 

to replicate these results in additional ALL cases or subtypes.

 The prospect of prominent RAG-mediated oncogenic rearrangements in adult leukemia 

provides an interesting topic for further research. Although, we have shown that it is a prominent 

mutational process, especially in regions characterized by RSS motifs and epigenetic markers 

native to V(D)J regions within antigen receptors, it is still unknown why the RAG recombinase 

invokes these lesions outside the antigen loci. Strikingly, most cases with a BTLA promoter 

mutation belong to the BCR-ABL1 or BCR-ABL1-like group. Previous studies have demonstrated 

that c-ABL1 and BCR-ABL1 modulate the activity and protein expression level of the NHEJ 

component DNA-dependent protein kinase catalytic subunit (DNA-PKcs).49,50 Interestingly, a 

recent study has demonstrated that BCR-ABL1-like cases frequently acquire activating lesions in 

kinases36 likewise to the BCR-ABL1 fusion product. However, if kinase-activating lesions modulate 

the NHEJ DNA repair pathway activity or behaviour remains a topic for further investigation.
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ABSTRACT

Severe congenital neutropenia (SCN) is a bone marrow failure syndrome with a high risk to 

progress towards acute myeloid leukemia (AML). The underlying genetic changes involved in 

SCN evolution to AML are largely unknown. We obtained serial hematopoietic samples of an SCN 

patient who developed AML 17 years after initiation of granulocyte-colony stimulating factor 

(G-CSF) treatment. Next-generation sequencing was done to identify mutations during disease 

progression. In the AML phase, we found 12 acquired non-synonymous mutations. Three of these, 

in CSF3R, LLGL2 and ZC3H18, co-occurred in a subpopulation of progenitor cells already in the early 

SCN phase. This population expanded in time, whereas clones solely harboring CSF3R mutations 

disappeared from the bone marrow. The other 9 mutations were only apparent in the AML phase 

and affected known AML-associated genes (RUNX1 and ASXL1) and chromatin remodelers (SUZ12 

and EP300). In addition, a novel CSF3R mutation was found conferring autonomous proliferation 

to myeloid progenitors. We conclude that progression from SCN towards AML is a multistep 

process with distinct mutations arising early during the SCN phase and others later in AML 

development. Sequential gain of two CSF3R mutations implicates abnormal G-CSF signaling as a 

driver of leukemic transformation in this case of SCN.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter6/
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INTRODUCTION

Severe congenital neutropenia (SCN) is a bone marrow failure syndrome characterized by strongly 

reduced neutrophil counts and recurrent, potentially life threatening, opportunistic bacterial 

infections. Treatment with granulocyte-colony stimulating factor (G-CSF) elevates peripheral 

neutrophil counts and reduces the risk of infections.1 Leukemic progression of SCN is a major 

concern with an estimated overall cumulative incidence of approximately 20% after 15 years of 

G-CSF treatment.2 

 Constitutional mutations in the gene encoding neutrophil elastase (ELANE) are common 

defects in SCN.3 In addition, the acquisition of nonsense mutations in the gene encoding the 

granulocyte-colony stimulating factor receptor (CSF3R) is a unique feature in SCN patients.4-7 

These mutations lead to expression of truncated CSF3R proteins, also known as delta forms. 

In cell line models, truncated CSF3R proteins are hampered in transducing signals required for 

proper neutrophil differentiation. Additionally, they confer increased proliferative responses to 

G-CSF treatment but do not cause leukemia in mice.4-6,8-11 CSF3R delta mutations can be detected 

in approximately 30% of SCN patients. In some cases, distinct clones with different CSF3R delta 

mutations are present for many years.7,12 After evolution of SCN towards AML, CSF3R delta 

mutations are found in approximately 80% of the cases.12 Until now, all reported SCN/AML cases 

harboring a CSF3R delta mutation in the SCN phase also carry this mutation in the leukemic 

phase. These observations suggest that leukemic progression in SCN follows a unique pattern, 

with CSF3R delta mutations as an early event, followed by additional genetic and epigenetic 

events that are essential for full leukemic transformation. Chromosomal aberrations, such as loss 

of chromosome 7 and gain of chromosome 21, are apparent in AML arising from SCN and other 

bone marrow failure syndromes like Fanconi anemia and Shwachman-Diamond syndrome.13 

However, mutations that are quite commonly seen in de novo AML have not been reported in 

AML arising from SCN.14 Thus, the additional molecular events involved in leukemic progression 

of SCN remain largely unknown.

 To identify the sequential genetic events in leukemic progression of SCN towards AML, we 

collected serial hematopoietic samples of an SCN patient who developed AML after 17 years of 

G-CSF therapy. Using whole exome sequencing, we found 12 somatic non-synonymous mutations 

in the leukemic blasts of this patient. Three of these mutations, the known CSF3R mutation 

and mutations in LLGL2 and ZC3H18, were already present at low frequencies in the early SCN 

phase, 15 years before AML was diagnosed. Myeloid colony analysis showed that these 3 “early” 

mutations co-existed in the same hematopoietic progenitors in a small subpopulation of bone 

marrow cells. Six years later, in the “intermediate” SCN phase, still 9 years before the AML became 

overt, we observed an expansion of the clone harboring all 3 mutations. The other 9 mutations 

were only apparent in the AML. The latter “late” appearing mutations comprise a second, novel, 

CSF3R mutation in addition to a series of novel and known AML-associated mutations. The novel 

CSF3R mutation is located on the already mutated CSF3R-d715 allele and causes growth factor 

independence of myeloid progenitors.
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MATERIAL AND METHODS

Case report
A 27-year old male SCN patient was diagnosed with AML 17 years after the start of G-CSF treatment 

(10μg/kg/day), on which he reached normal neutrophil counts. The patient had a constitutional 

heterozygous ELANE mutation, G174R. At the age of 12, 2 years after G-CSF treatment was 

initiated, a CSF3R delta mutation (CSF3R-d715) was discovered in the bone marrow.6 At the time 

of AML diagnosis, the peripheral blood contained 24% blasts and dysplasia was observed in the 

bone marrow. G-CSF treatment was stopped at this point. Six weeks later, a bone marrow analysis 

revealed 17% blasts. Immunophenotypically, these blasts were of myeloid origin, i.e., positive for 

CD34, CD117, CD13, CD133, CD33, MPO and CD90. Because no HLA-identical donor was available, 

the patient received a matched unrelated donor (MUD) allogeneic bone marrow transplantation. 

Induction therapy was given according to the induction therapy scheme HOVON42A of the 

Hemato-Oncology Foundation for Adults in the Netherlands.15 At initiation of induction therapy, 

the bone marrow contained 15.7% blasts, with 10-50% dysplasia in all lineages. Routine 

cytogenetic and molecular diagnostics revealed a trisomy 21 (47, XY, +21 [14] /46, XY [4]), with 

no additional abnormalities (AML-ETO, CBFB-MYH11, FLT3ITD, FLT3TKD, mutations in NPM1, NRAS, 

KRAS, c-KIT, JAK2 and CEBPA). After the second induction cycle trisomy 21, was undetectable in 

a marrow cytogenetic analysis. The MUD transplantation was administered after myeloablative 

conditioning with chemotherapy and total body irradiation. Two months after the transplantation 

28% blast were detected in the bone marrow, indicating a recurrence of the AML and the patient 

died 3.5 months after the transplant. Figure 1 gives a schematic overview of the disease history.

Figure 1. Chronological overview of the clinical course of the SCN/AML patient. Distinct events in the 
disease course are indicated above the timeline, i.e., the diagnosis of SCN, the initiation of G-CSF therapy, the 
discovery of the CSF3R-d715 mutation and the diagnosis of AML. 

Patient cell samples
Ficoll-gradient separated bone marrow cells from the SCN phases and CD34+ leukemic blasts 

from the peripheral blood in the leukemic phase were used. Control DNA was isolated from bone 

marrow-derived fibroblasts. All cell samples were obtained and frozen according to established 

procedures for viable cell cryopreservation as previously described.16 The study was performed 

under the permission of the Institutional Review Board of the Erasmus MC, registration number 

MEC-2008-387 for biobanking and MEC-2012-030 for the genetic analysis of leukemic progression 

in SCN patients. 
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Nucleotide sequencing
Whole exome sequencing (WES). 

Sequencing libraries were prepared according to the SureSelect Target Enrichment system for 

Illumina, protocol version 2.2.1, Nov. 2010. In short, 3 μg genomic DNA was sheared to fragments 

of approximately 170 base pairs using the Covaris S-series Single Tube Sample Preparation 

System, Model S2 (Covaris, Woburn, MA, USA). Fragment sizes were checked on the Bioanalyzer 

(Agilent, Santa Clara, CA). Adapter ligated libraries were prepared according to the manufacturer’s 

protocol using the Paired-End Genomic DNA Sample Prep Kit PE-102-1001 (Illumina, San Diego, 

CA); 5 cycles of amplification were used. Five hundred ng of prepped library was taken for 

hybridization with the SureSelect Human All Exon Kit (G3362A, Agilent). A sample concentration 

of 5.5 picomolar was loaded for sequencing on the Hiseq2000 (Illumina) using 101-bp paired-end 

reads. 

 Sequencing reads were processed with the Casava pipeline (version 1.7, Illumina). For 

alignment the hg18/NCBI36 assembly (March 2006) was used. Detection of single nucleotide 

variants, deletions and insertions was performed with otherwise default settings, while 

snpCovCutoff and indelsCovCutoff were switched off. Variations detected in the AML sample 

in 2 independent sequence runs were further analyzed after removal of germline variations 

(present in the fibroblasts) and single nucleotide polymorphisms (SNPs, dbSNP).17 Next, non-

synonymous variants were determined. Integrative Genome Browser was used for sequence read 

visualization.18

Sanger sequencing. 

WES results were validated by Sanger sequencing, performed according to the manufacturer’s 

protocol (Applied Biosystems, Foster City, CA, USA) using primers indicated in Table S1. Before 

amplicon generation, genomic DNA or cDNA was first amplified using a Whole Genome 

Amplification kit (WGA2, Sigma-Aldrich, Zwijndrecht, The Netherlands). DNA was purified with 

a PCR purification kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol and 

diluted to 50 ng/μl. Hundred nanograms of amplified DNA was used for amplicon generation; 

cycling conditions were 30” at 95°C, 30” at the indicated annealing temperature (Table S1) and 

45’’ at 72°C for 35 cycles. In some instances, the unamplified material was used directly for Sanger 

sequencing (Table S1).

Amplicon-based deep sequencing. 

Amplicons were generated and purified according to the Amplicon Library Preparation Method 

Manual (version May 2010, Roche, Basel, Switzerland). Primers and annealing temperatures are 

indicated in Table S2; 35 cycles were used for amplification. DNA enriched beads, carrying the 

amplification products, were generated according to the emPCR Amplification Method Manual 

– Lib-A (version May 2010, Roche); a beads to amplicon ratio of 1:2 was used. Amplicons were 
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analyzed with the GS junior (Roche). Sequence reads were analyzed using the GS Amplicon 

Variant Analyzer (Roche). For the SCN samples, coverage of at least 1600 was achieved to identify 

mutations present in minor clones within the bone marrow. For the AML sample coverage of 80 

was considered sufficient to validate mutations.

Human myeloid colony assay
Bone marrow was thawed at 37°C, washed twice with IMDM (Gibco Invitrogen, San Diego, CA) 

with 10% FCS (PAA laboratories, Pasching, Austria). Per 4 ml of culture medium, 2.9 ml MethoCult 

(H4230, Stem Cell Technologies, Vancouver, Canada), 980 μl IMDM and human GM-CSF (Immunex, 

Seattle, WA), human G-CSF (Neupogen, Amgen, Thousand Oaks, CA) and human IL-3 (R&D 

Systems, Minneapolis, USA) in final concentrations of respectively 2 ng/ml, 200 ng/ml and 25 ng/

ml were used. Cells were plated at a density of 0.8 x 105/ml. After 2 weeks genomic DNA of single 

colonies was isolated, followed by amplification using the Whole Genome Amplification kit and 

Sanger sequencing of CSF3R-d715, LLGL2 and ZC3H18, as described above. Results were validated 

in an independent round of whole genome amplification for (1) colonies harboring a mutation, 

(2) colonies with unclear sequences and (3) a number of randomly chosen non-mutated colonies 

to rule out amplification artifacts. All colonies harboring mutations in CSF3R, LLGL2 or ZC3H18 

were also analyzed for the presence of the remaining 9 mutations found in the AML sample.

Murine colony assays
Four different CSF3R expression constructs (WT, d715, T595I, d715/T595I) were generated and 

retrovirally transduced into bone marrow cells of Csf3r-deficient FVB/N mice.19 Colony assays of 

these transduced progenitors were performed as previously described.20 Further details of these 

procedures are given in the Supplementary Materials and Methods.

RESULTS

Whole exome sequencing reveals acquired mutations in SCN/AML
WES was done on genomic DNA from the CD34+ leukemic blast fraction and the fibroblast 

control sample. Acquired non-synonymous mutations were detected by identification of single 

nucleotide variants and small insertions and deletions, followed by subtraction of variants 

present in the control fibroblasts and known single nucleotide polymorphisms.17 Twelve non-

synonymous acquired mutations were identified and validated by Sanger sequencing (Table 1, 

Figure S1). Except for the mutation in FBXO18, all mutations occurred in evolutionary conserved 

amino acids (Figure S2). With the exception of LAMB1, all mutant transcripts were detectably 

expressed in the leukemic blasts (Figure S3). Mutations in ASXL1 and RUNX1 are known in myeloid 

malignancies.21,22 
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Deletions in EP300, distinct from the 7-bp deletion found in this patient, have been reported in 

lymphomas.23,24 The ATT insertion in SUZ12 duplicates an isoleucine at amino acid position 597, 

located in the conserved VEFS-box. Mutations in this region, which is involved in the interaction 

between SUZ12 and the histone methyltransferase EZH2 in the polycomb repressor complex 

2 (PRC2), have recently also been identified in myelodysplastic/myeloproliferative neoplasms 

(MDS/MPN) with 17q abnormalities.25 As expected, the previously identified CSF3R delta mutation 

(CSF3R-d715) was present in the leukemic blasts, but remarkably a new CSF3R mutation, T595I, 

was now also present. Furthermore, the CSF3R-T595I mutation was located on the same allele as 

the delta mutation, as determined by Sanger sequencing of single amplicons generated from 

cDNA. Using exome sequencing data from 199 AML cases reported by The Cancer Genome Atlas 

(TCGA), a similar single CSF3R-T595I mutation was detected. Additionally, mutations in ASXL1 

(n=5), CCDC155 (n=1), LLGL2 (n=1), MGA (n=1), RUNX1 (n=17), SUZ12 (n=2) and ZC3H18 (n=2) were 

found in the TCGA data set (Table S3).26 

Amplicon-based sequencing reveals an early pre-leukemic clone that 
expands over time
Amplicon-based deep sequencing was applied to analyze the presence of all 12 somatic mutations 

in the bone marrow samples obtained at 15 and 9 years before AML was diagnosed (Figure 1). Not 

only the known CSF3R-d715 mutation, but also mutations in LLGL2 and ZC3H18 were already present 

in these earlier disease phases (Figure 2A, Table S4). We investigated the clonal hierarchy of these 

mutations in single myeloid colonies cultured from the earliest bone marrow sample (15 years 

before AML diagnosis). In the individual colonies (n=88), the mutation status of CSF3R-d715, LLGL2 

and ZC3H18 was determined. Fifteen colonies (17%) harbored both the CSF3R-d715 and the LLGL2 

mutation, whereas none of the colonies exhibited exclusively either the LLGL2 or the CSF3R-d715 

mutation (Figure 2B, Table S5). Two of the CSF3R-d715 and LLGL2 mutated colonies also carried the 

ZC3H18 mutation (Figure 2B, Table S5), indicating that this mutation had emerged later in time. 

None of the other 9 mutations found in the AML cells was apparent in these colonies (Table S5). 

 A previous report has shown that multiple CSF3R delta mutations can be present in distinct 

progenitors in the bone marrow of an individual SCN patient.7 In line with this previous report, 

we found myeloid colonies with CSF3R-d717 (n=2) and CSF3R-d725 (n=1) (Figure 2B, Table S5). 

Each of these mutations and yet an additional delta mutation (CSF3R-d730) were detected in the 

SCN phase at low frequencies by amplicon-based deep sequencing (Figure 2C, Table S6). None 

of these variant CSF3R mutant clones harbored LLGL2 or ZC3H18 mutations, nor were they seen 

as dominant clones in the AML (Figure 2, Table S5-S6). No viably frozen cells were available from 

the bone marrow sample obtained 9 years before AML development and colony analysis could 

not be performed at this stage. However, by amplicon-based deep sequencing we observed a 

parallel increase of the CSF3R-d715, LLGL2 and ZC3H18 mutations from 15 to 9 years before AML 
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development (Figure 2A). Together with the finding that these mutations are present in the same 

myeloid progenitor cells (Figure 2B), this observation is consistent with a selective outgrowth of 

clones carrying these 3 mutations.

Figure 2. Acquisition of mutations in the evolution of SCN towards AML. (A) The 12 somatic non-
synonymous mutations identified in the leukemic blasts were analysed in the SCN phase using amplicon-
based deep sequencing. Per mutation, the percentage of mutated amplicons is shown. (B) Single myeloid 
colonies grown from the bone marrow sample obtained 15 years before leukemia development were 
analysed for the presence of mutations in CSF3R, LLGL2 and ZC3H18. See also Table S5. (C) The presence of 
different CSF3R mutations in the bone marrow obtained 15 and 9 years before leukemia development and in 
the leukemic phase was investigated by amplicon-based deep sequencing. Per mutation, the percentage of 
mutated amplicons is shown. T595I: CSF3R mutation T595I, d715-d730: CSF3R delta mutations at amino acid 
position 715 to 730. 

Sequential gain of a second CSF3R mutation results in G-CSF independence
A new CSF3R mutation, acquired at the CSF3R-d715 mutant allele, was found exclusively in the 

AML blasts and changed a polar threonine residue at amino acid position 595 into a nonpolar 

isoleucine. This residue is located in a highly conserved threonine-rich region in the extracellular 

domain of the G-CSF receptor (Figure S2). Introduction of human CSF3R mutant receptors, 

carrying this new T595I mutation (Figure 3A), into Csf3r-deficient primary mouse bone marrow 
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progenitors resulted in the autonomous outgrowth of myeloid colony-forming cells (Figure 3, 

Table S7). Thus, in the AML phase of disease evolution two different co-existing mutations, i.e., the 

T595I single amino acid substitution and the CSF3R-d715 mutation had accumulated in the gene 

encoding the G-CSF receptor. Because expression of the new CSF3R mutant without the delta 

mutation conferred G-CSF independence as did the mutant receptor carrying both the delta and 

the extracellular mutation, this gain of function can entirely be attributed to the T595I mutation. 

However, the T595I/d715 colonies were bigger than the T595I colonies (Figure S4), which is 

suggestive of a higher proliferation capacity by the addition of the CSF3R-d715 mutant.

Figure 3. Functional analysis of CSF3R mutants in myeloid progenitor cell assays. In vitro colony growth 
of Csf3r-deficient murine hematopoietic progenitor cells expressing different CSF3R mutants. (A) Graphical 
representation of the different CSF3R constructs. Wild type (wt), T595I (containing the extracellular mutation 
at amino acid position 595), d715 (containing the intracellular mutation, Q716X, causing the introduction of 
a stop codon at amino acid position 716) and T595I/d715, containing both mutations as found in the SCN/
AML patient. Ig: Immunoglobulin like domain; CRH: cytokine receptor homology domain; FNIII: fibronectin 
type III repeats; TM: transmembrane domain; cyto: cytoplasmic domain. Nomenclature has been adopted 
from Layton et al.27 (B) Colonies were grown in the presence of puromycin, either without growth factor (no 
GF) or with 100ng/ml human G-CSF. The induced colony growth is dependent on the transduction efficiency 
and the type of CSF3R construct. The transduction efficiency can be deduced from the number of GM-CSF-
induced colonies under puromycin selection as the CSF3R constructs confer puromycin resistance, but do not 
affect GM-CSF-induced colony growth. Hence, by dividing the number of colonies by the number of GM-CSF 
induced colonies the transduction efficiency was corrected for.
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DISCUSSION

The results of the present study identified non-synonymous mutations acquired in an SCN patient 

who progressed to AML.The availability of sequential hematopoietic samples from the childhood 

SCN phase to overt AML, spanning a period of 17 years, provided the unique opportunity to 

identify the early and late genetic defects associated with leukemic progression (Figure 4). The 

CSF3R-d715 mutation and a mutation in LLGL2, encoding the human homologue of the Drosophila 

lethal giant larvae (Lgl) gene, were the first 2 acquired mutations in the early SCN phase. Loss of 

Lgl in Drosophila leads to inadequate distribution of the cell polarity protein Numb, resulting in 

inappropriate cell fate determinations and tumor formation in epithelial tissues and the brain.28-30 

In man, the NUMB protein has been implicated in controlling the balance between symmetric 

versus asymmetric hematopoietic stem cell divisions. Interestingly, deregulation of NUMB 

expression has been associated with blast transformation of chronic myeloid leukemia.31,32 How 

the LLGL2 mutation found in this study affects hematopoietic stem cell divisions is still unknown; 

however, the fact that CSF3R-d715 and LLGL2 mutations were uniformly present in the same 

myeloid cells could suggest that they cooperate. Hierarchically, the next genetic abnormality 

occurring in the early SCN phase in the CSF3R-d715- and LLGL2-mutated clone was a mutation 

in ZC3H18. ZC3H18 is a putative mRNA binding protein with a still unknown function, but in 

trypanosomes it is shown to be essential for differentiation.33 

 Additionally, we found small subpopulations harboring distinct CSF3R delta mutations in the 

bone marrow at the early SCN stage. All these clones disappeared during the disease course, 

except the CSF3R-d715 clone which evolved towards AML. The different CSF3R delta mutations 

cause expression of distinct truncated G-CSF receptors that all have similar consequences for 

signaling; they result in a sustained activation of signal transducer and activator of transcription 

5 (STAT5).8 STAT5 is a transcription factor, implicated in abnormal signaling responses of leukemic 

cells with mutated forms of the FLT3 receptor (FLT3-ITD) in AML and the BCR-ABL fusion protein in 

CML.34,35 Furthermore, why one of these CSF3R delta mutant clones survived in vivo and progressed 

towards a fully transformed AML clone while the other CSF3R delta variants extinguished during 

disease development currently remains unexplained. However, it is conceivable that the additional 

mutations in LLGL2 and ZC3H18, exclusively present in the CSF3R-d715 clone, conferred a 

competitive growth advantage of this particular subclone representative of essential early steps in 

leukemic progression that cooperate with the aberrant signaling from the truncated G-CSF receptor.

 Besides early genetic events, we found 9 mutations that occurred later in the process of 

leukemic transformation. Of particular interest is the novel CSF3R mutation (T595I), which 

appeared exclusively in the AML stage and imposed growth factor independence on an already 

functionally defective G-CSF receptor. A different mutation in the CSF3R transmembrane domain, 

CSF3R-T617N, with a similar downstream effect was previously found as a constitutive mutation in 

a family with hereditary chronic neutrophilia and as an acquired mutation in 2 AML patients. This 

mutation is suggested to cause ligand independent homodimerization and induces growth factor 
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independent proliferation and differentiation.36,37 The major difference between the T617N and the 

T595I mutation in our patient is that the latter one is located on the already affected CSF3R-d715 

allele, which has been shown to cause increased proliferation and impaired differentiation in 

cell line and animal models8,38,39 and which could explain the increase in colony size between 

the T595I mutant and the T595I/d715 mutant. The acquisition of autonomous growth abilities by 

myeloid progenitor cells that already express a hyper-responsive G-CSF receptor mutant strongly 

suggests that perturbed G-CSF signaling was of vital importance for malignant transformation in 

this case of SCN. To our knowledge, this is the first example of a gain of 2 different mutations in the 

same receptor in the process of malignant transformation. An important, but still open question, 

is whether the administration of G-CSF to this patient had contributed to the acquisition of this 

additional mutation. Possibly, the continuous proliferative pressure imposed by G-CSF on clones 

carrying mutations in CSF3R-d715 and LLGL2 and later also in ZC3H18 may have provided the 

context for the selection of a clone harboring this self-activating CSF3R mutation, pushing it to 

become an autonomously proliferating and dominant leukemic clone. 

 Abnormalities appearing in the AML phase included mutations in ASXL1, SUZ12, and EP300, 

genes encoding proteins involved in chromatin modification. Mutations in ASXL1 have been 

reported previously in AML and are associated with an unfavorable prognosis.40 SUZ12 is a 

member of the PRC2 complex that also contains EZH2, the histone methyl transferase responsible 

for the di- and tri-methylation of lysine 27 in the tail of histone 3 (H3K27), imposing a chromatin 

mark that represses gene expression. Mutations affecting EZH2 and less frequently SUZ12 have 

been detected in MDS/MPN patients.25,41,42 In contrast, mutations in EP300 and the highly related 

CREBBP, encoding histone acetyl transferases that act as transcriptional co-activators, have not 

yet been reported in myeloid malignancies but are the most frequent structural abnormalities 

in follicular lymphoma and diffuse large B cell lymphoma.23,24 Mutations in CCDC155, encoding 

coiled-coil domain containing protein 155 with unknown function; FBXO18, encoding a DNA 

helicase involved in DNA repair and genomic integrity; LAMB1, encoding an extracellular matrix 

protein; and MGA, encoding a Max gene associated antagonist of Myc oncoproteins, all represent 

novel mutations with currently unknown functional significance. 

 Recurrence is an important criterion to discriminate driver from passenger mutations in 

the process of malignant transformation. Interestingly, mutations in CCDC155, LLGL2, MGA and 

ZC3H18 were recently also reported by the TCGA consortium in a panel of AML patients (n=199), 

albeit at low frequencies.26 Because frequencies of specific mutations have been shown to vary 

with the natural history of AML, e.g. de novo versus secondary to MDS/MPN or different bone 

marrow failure syndromes14,43, it will be of interest to establish how often the newly identified 

genes are affected in distinct subtypes of secondary AML. Specifically, it will be important to 

determine whether LLGL2, ZC3H18 or functionally related genes are more generally affected in 

bone marrow failure syndromes prone to progress to AML and to establish how these mutations 

contribute to malignant transformation in conjunction with cooperative gene defects.  
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Figure 4. Schematic representation of the clonal evolution of SCN towards AML. The sequential genetic 
events, starting with the presence of a germ line mutation in the gene encoding neutrophil elastase (ELANE) 
are indicated. A sequential gain of CSF3R delta mutations and an LLGL2 mutation is observed in the early SCN 
phase. Only the clone harboring the CSF3R-d715 and the LLGL2 mutation gained an additional mutation in 
ZC3H18, followed by its expansion in the intermediate SCN phase. Gain of 9 additional mutations and trisomy 
21 in the mutated population preceded complete transformation towards AML. CSF3R-d715-d730: CSF3R 
delta mutations at amino acid position 715 to 730.
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ABSTRACT

Chromosomal rearrangements without gene-fusions have been implicated in leukemogenesis by 

causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML 

with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying 

functional genomics and genome-engineering, we demonstrate that both 3q-rearrangements 

reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 

functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS 

and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 

silencing and led to growth inhibition and differentiation of AML cells, which could be replicated 

by pharmacologic BET-inhibition. Our data show that structural rearrangements involving single 

chromosomal repositioning of enhancers can cause deregulation of two unrelated distal genes, 

with cancer as the outcome.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter7/
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INTRODUCTION

Chromosomal inversions and translocations play a central role in the pathogenesis of almost 

all types of cancers, frequently by formation of oncogenic fusion genes via rearrangement of 

coding sequences of the involved partner genes.1-3 Mechanisms of transformation remain largely 

unknown in malignancies arising from chromosomal inversions/translocations that do not cause 

fusion products, although it is thought that destabilization of cryptic regulatory elements affects 

genes in the vicinity of the structural rearrangement, as has been shown in Burkitt’s4 or follicular 

lymphoma.5,6

 In the World Health Organization (WHO) category of myeloid malignancies with inv(3)

(q21q26.2) or t(3;3)(q21;q26.2), deregulation of the proto-oncogene EVI1 (also termed MECOM 

or PRDM3) at 3q26.2 is speculated to occur via juxtaposition of a cryptic enhancer of the 

housekeeping gene RPN1 from 3q21.7 However, this hypothesis has not been experimentally 

validated and the molecular basis of this prognostically unfavorable subtype of malignancies 

remains obscured. EVI1 expression and function is indispensable for proper regulation of 

the hematopoietic stem cell compartment and genomic integrity.8-10 The gene was originally 

described as a hotspot for proviral integration in retrovirally induced murine myeloid leukemias11, 

and also represents an important insertional mutagenesis site in humans following gene therapy 

for X-linked granulomatous disease.12

 We tested the hypothesis that rearrangements causing the transcriptional activation of EVI1 

involve the reallocation of an enhancer element to the ectopic 3q26.2/EVI1 target site, which 

may possibly coincide with a loss of enhancer activity at its endogenous location. We applied an 

integrated functional genomics and genome-engineering approach to identify a distal enhancer 

of the GATA2 gene that, upon chromosomal 3q-rearrangements, ectopically activates EVI1 

expression. Simultaneously, the removal of this enhancer from its natural genomic context causes 

functional GATA2 haploinsufficiency, i.e. reduced GATA2 expression only from the remaining 

normal allele.

RESULTS

An 18 kb non-coding region near RPN1 commonly translocates to EVI1 in 
inv(3)/t(3;3) disease
We performed targeted next generation sequencing (NGS) of the long arm of chromosome 3 

(3q-seq) using genomic DNA isolated from 41 samples with confirmed EVI1 overexpression (EVI1+) 

and harboring an inv(3)(q21q26.2) or a t(3;3)(q21;q26.2) [inv(3)/t(3;3)]. The samples included 38 

primary bone marrow samples from patients, i.e. AML (n=33), CML-BC (n=2), and MDS cases (n=3), 

as well as three cell lines (MUTZ-3, MOLM-1, and UCSD-AML1) (Table S1). Chromosomal breakpoint 

positions and novel junction sequences of each case were determined by a breakpoint detection 
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algorithm in conjunction with a de novo assembly tool and validated by Sanger sequencing. 

Characteristic breakpoint patterns emerged at both 3q21 and 3q26.2 breakpoint cluster regions 

(Figure 1A). At the 3q26.2 site, samples harboring an inv(3) exclusively exhibited breakpoints in 

the last intron or downstream of EVI1. Breakpoints in t(3;3) cases distinctly mapped upstream 

of EVI1, i.e. within the gene locus of the longer splice variant that includes MDS1-EVI1 (Figure 

1A). At the 3q21 site, breakpoints occurred in a 130 kb region between GATA2 (centromeric) and 

RPN1 (telomeric). A minimal 18 kb non-coding region 3’ of RPN1 demarcated by chromosomal 

breakpoints was identified as a commonly translocated segment (hereafter referred to as CTS) 

(Figure 1B), which in all cases underwent transpositioning to the vicinity of EVI1 due to the 

inv(3)/t(3;3) rearrangement. This converging tell-tale pattern of 3q21 breakpoints toward an 

unaffected 18 kb genomic segment led us to predict the presence of potent regulatory elements 

within the CTS, essential for aberrant activation of EVI1 upon rearrangement.

The EVI1 promoter and the 18 kb CTS physically interact
A hallmark of distal enhancer elements is their engagement in chromatin loops physically 

contacting with promoters to induce transcription factor assembly and polymerase II 

recruitment.13-16 To test whether the CTS harbored elements physically interacting with the 

EVI1 promoter, we performed high-resolution chromosome conformation capture sequencing 

(4C-seq) experiments.17 Using viewpoints placed on the EVI1 promoter in viable inv(3)/t(3;3) 

AML samples and cell lines, we identified a genomic segment of approximately 9 kb size within 

the 18 kb CTS contacting with the EVI1 promoter (Figures 1C and 1D). Other contact regions 

located centromeric of this 9 kb contact hotspot in closer distance to the EVI1 promoter after 

the rearrangement, as observed in individual samples with different breakpoint positions, were 

considered less likely enhancer candidates. These regions were non-overlapping across different 

samples and thus represented less specific contacts, which became more evident after integrative 

analysis of all 3q-rearranged AML samples (Figure 1D). Reciprocal 4C-seq experiments with the 

putative 9kb region as viewpoint showed that the interaction with the EVI1 promoter area was 

also evident (Figure S1). As expected, no substantial chromatin interactions with the distant 

EVI1 promoter could be detected in 4C-seq experiments with non-3q-rearranged control (U937), 

suggesting an inv(3)/t(3;3) disease-specific feature (Figures 1C and S1).
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Figure 1. Chromosomal breakpoint architecture in inv(3)/t(3;3) AML and local 3q21 chromatin 
interaction profiles of the EVI1 promoter. (A) Mapping of chromosomal breakpoints (arrowheads) by 
targeted 3q-capture NGS revealing two characteristic breakpoint patterns at 3q21 (left panel) and 3q26.2 (right 
panel). (B) The 3q21 breakpoint cluster and rearranged chromosomal segments of individual AML samples are 
represented by red arrowed lines, plotted by distance to the RPN1 gene locus. A breakpoint-free commonly 
translocated segment (CTS) of 18 kb size is indicated (blue box). (C) The local chromatin interaction profile 
of the EVI1 promoter region with the 3q21 breakpoint cluster was determined by 4C-seq in representative 
inv(3)/t(3;3) cases. The 4C signal is measured by the calculation of a sliding window average (running mean) 
of the normalized read counts (window size is 21 fragment ends). The vertical axis is scaled to the maximum 
4C signal per sample. An overlapping contact hotspot of 9 kb size within the CTS in 3q-rearranged cases is 
highlighted as a blue box. The non-3q-rearranged cell line U937 was used as control. (D) Integrated local 
contact profile analysis of all 3q-rearranged samples. In the top panel (main trend), the contact intensity (black 
line) is calculated by using a running median analysis of normalized read counts with a 5 kb sliding window. 
The 20th and 80th percentile are visualized as a grey trend graph. In the bottom panel, contact intensities 
are computed using linearly increasing sliding windows (scaled 2-50 kb) and are displayed as a color-coded 
heatmap of positive 4C signals (maximum of interaction set to 1). Local color changes are log-scaled to 
indicate changes of statistical enrichment of captured sequences, corresponding to the enhancer-promoter 
interaction.
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A p300-bound genomic element in the 18kb CTS is essential for EVI1 
activation
In order to identify a more defined, targetable key enhancer element within the 9 kb EVI1-

promoter-contact part of the 18 kb CTS, we integrated data from 4C-seq with ChIP-seq data 

obtained from inv(3) cell lines MOLM-1 and MUTZ-3 (Figures 2A and S2). Prominent deposition of 

H3K27ac, H3K4me3, and H3K4me1 was observed within the 18 kb CTS, as well as strong binding 

of p300 to two regions of approximately 1 kb size in MOLM-1 (Figure 2A). 
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Figure 2. Combined ChIP-seq and 4C-seq discloses putative enhancer elements in the EVI1 promoter 
interacting rearrangement site. (A) Binding of p300 (red track) in the 9 kb EVI1-interaction domain of the 18 
kb CTS (divided blue box) is detectable in inv(3)/t(3;3) samples. ChIP-seq profiles of p300 and active chromatin 
marks H3K27ac, H3K4me3, and H3K4me1 of the inv(3) cell line MOLM-1 indicate an inv(3) cell-type specific 
enrichment in the CTS, not found in non-3q rearranged cell lines of various tissue origin (ENCODE: GM12878, 
H1-hESC, HeLa-S3, HepG2, HSMM, HUVEC, K562, NHEK, NHLF). Based on ChIP-seq enhancer profiles and CpG 
island prediction, two candidate enhancer regions were selected both inside (denoted 1st p300 and CpG1; blue 
and green bars) and outside (denoted 2nd p300 and CpG2; blue and green bars) of the 9 kb EVI1-interaction 
domain of the CTS, respectively, for subsequent reporter assays. (B) Selected candidate elements were cloned 
into EVI1-promoter luciferase reporter constructs and transfected into MUTZ-3, MOLM-1, HEK293T, or Jurkat 
cells. After 48 h, cells were harvested and luciferase assays were performed. Relative luciferase induction is 
plotted as fold change compared to enhancer-empty control vector (mean ± s.e.m.).
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In MUTZ-3 cells only one p300-interacting region was identified (Figure S2), which is the p300 peak 

located in the 9kb EVI1-promoter-contact part of the CTS as determined by 4C-seq. Comparison 

with ENCODE ChIP-seq data of various non-myeloid cell lines and transcription factor motif 

analysis pointed to a 1 kb myeloid hematopoiesis-specific enhancer (Figures 2A and S2). This p300 

binding site was chosen as the most likely candidate enhancer element responsible for ectopic 

EVI1 activation after the rearrangement event. We placed the two candidate enhancers (1st and 

2nd p300) into an EVI1-promoter luciferase reporter construct to study their potential enhancer 

activity (Figure 2B). A strong induction of reporter gene activity could be observed specifically 

in inv(3) myeloid cell lines MUTZ-3 and MOLM-1 using the first candidate enhancer element, 

whereas the second candidate enhancer element (2nd p300 peak) located within the 18 kb CTS, 

but outside of the 9kb EVI1-promoter-contact region, showed no enhancer activity. No activity 

was found for two distinct CTCF-interacting CpG islands co-localizing to the CTS. Moreover, EVI1 

promoter reporter assays demonstrated no substantial enhancing effect of the candidate 1 kb 

enhancer in non-myeloid HEK293T or Jurkat cells, pointing to a myeloid-specific transcription 

factor repertoire required for successful enhancer-EVI1-promoter engagement.

Genome-editing of the translocated p300-interaction domain leads to 
EVI1 silencing and growth inhibition of inv(3) AML cells
We next undertook a TALE nuclease genome-editing approach to target the ectopic EVI1 

enhancer locus in the MUTZ-3 cell line and to examine whether EVI1 transcriptional activity in 

inv(3) AML cells is dependent on the presence of the rearranged candidate enhancer (1st p300 

peak). TALE nucleases were assembled as previously published18, and targeting of the minimal 

ectopic enhancer site was performed in a 2x2 design (details in Experimental procedures section), 

directing TALEN heterodimers to enhancer-flanking recognition sequences to induce a segmental 

deletion by double-strand breaks (DSB) (Figure 3A). Mutation-specific primers allowed for allelic 

detection of the deletion event (Figure 3B) and for screening of clones using an informative SNV 

in the candidate enhancer locus of MUTZ-3 (Figures 3B, S3A, and S3B). Overall targeting efficiency 

was 1% with 4/384 single-cell derived clones harboring a monoallelic enhancer deletion on the 

inv(3) allele (Figure S3C). Enhancer-targeting effectively attenuated EVI1 mRNA expression in 

deletion clones as compared with non-targeted MUTZ-3 control clones taken along in the same 

targeting process (Figure 3C). RPN1 and GATA2 mRNA expression remained unchanged in inv(3)-

targeted clones. Notably, all four TALEN-modified MUTZ-3 clones showed severely impaired 

colony-forming and replating capacity compared to non-targeted clones (Figure 3D).
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Deletion of the ectopic EVI1 enhancer releases the maturation block of 
inv(3) AML cells
Genome-editing in MUTZ-3 AML cells using TALENs did not allow for high yields of viable cells 

lacking the enhancer because of the low targeting efficiency of this genetic tool in the inv(3) cell 

line model followed by a long and indirect selection process of growth-impaired deletion clones. 

To better characterize the cellular phenotype and fate after enhancer deletion, we designed an 

alternative targeting approach using the CRISPR/Cas9 genome-editing system with a site-specific 

homology repair (HR) donor for direct labeling and tracking of successfully targeted cells (Figures 

4A and 4B). In brief, enhancer deletions were induced by two short guide-RNAs (gRNA) directing 

hSpCas9 to two enhancer-flanking recognition sequences for DSB formation and HR-mediated 

repair of the induced segmental deletion by means of a co-transfected HR donor construct 

containing a conditional (loxP-) GFP selection cassette directed against the enhancer (details in 

Experimental procedures section). The pCMV-GFP cassette was subsequently removed by using 

exogenous cell-permeant Cre recombinase (TAT-Cre). This approach enabled us to isolate sufficient 

cell numbers for phenotypic characterization. Deletion events and transcriptional changes were 

confirmed by Sanger sequencing and qPCR (Figures 4C and S3D). Compared to untargeted control 

MUTZ-3 cells, targeted cells exhibited a markedly reduced proliferative rate as assessed by viable 

cell count using trypan blue staining (Figure 4D). Cell cycle analysis showed depletion of S phase 

and G2/M phase combined with higher rates of cell death (sub-G0/G1 peak) and a stationary G0/

G1 cycle arrest (Figure 4E). Remarkably, flow cytometric immunophenotyping of engineered cells 

using a panel of informative myeloid differentiation markers (see Supplemental Experimental 

Procedures for detailed list) according to published guidelines19 revealed a substantial skew 

toward a more mature, myelomonocytic stage as per cMPO and CD14 expression levels three 

weeks after genome-editing (Figure 4F). Cytologic evaluation of enhancer-targeted MUTZ-3 cells 

in week 3 after genomic modification confirmed morphologic changes from the predominantly 

immature, myelomonocytic appearance of untargeted cells toward a more differentiated, 

monocyte/macrophage-like shape (Figure 4G). This also translated into a higher apoptotic rate of 

CRISPR-targeted MUTZ-3 cells three weeks after enhancer deletion (Figure 4H).

Figure 3. TALEN-targeted candidate enhancer-deletion clones exhibit severely reduced EVI1 mRNA 
levels and replating capacity. (A) Schematic of the targeting construct and target sites flanking the previously 
identified p300-binding candidate enhancer (red ChIP-seq track) in the 9 kb EVI1-interaction domain of the 
CTS (blue box). Four TALENs were designed for pairwise heterodimeric binding to indicated target sequences 
(blue) and cleavage at the 16-18 bp intervening linker sequence (black). Arrows indicate primer locations for 
PCR analysis. (B) Representative gel image demonstrating efficient induction of segmental deletions only in 
the presence of two TALEN pairs (MUTZ-3 cell line; 2.4% targeting efficiency as per gel quantification 48 h 
after transfection). (C) EVI1, GATA2, and RPN1 mRNA expression analysis by qPCR of genome-edited MUTZ-3 
mutants after TALEN-targeting of the candidate enhancer on inv(3). (D) Comparison of colony formation of 
targeted and unmodified clones. Colony numbers and sizes were determined after two and six weeks after 
replating in methylcellulose.



Chapter 7

Chapter 7

126

 Off-target mutagenesis at alternative in silico predicted sites was excluded by Sanger 

sequencing (Figure S3E). The phenotype observed upon enhancer deletion by genome-editing 

tools was highly comparable to what was found with small hairpin RNA (shRNA)-mediated EVI1 

knockdown in the MUTZ-3 cell line (Figures S4A-S4H), emphasizing that MUTZ-3 cells are addicted 

to EVI1 and blocked in their differentiation. We did not observe outgrowth of biallelic enhancer 

deletion or monoallelic mutants of the non-rearranged chromosome 3 allele, hinting toward 

negative selection of these mutants upon disruption of the enhancer at its natural genomic 

location. 
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The candidate enhancer translocated to EVI1 is an original upstream 
enhancer of GATA2
The most likely candidate for off-target mutagenesis at the original enhancer-associated domain 

on the normal chromosome 3 allele appeared to be RPN1 due to its immediate proximity to 

the candidate enhancer. Concordantly, RPN1 has therefore generally been the assumed origin 

of ectopic EVI1 regulatory elements, since it is located in the proximity of the chromosome 3 

breakpoint cluster.7,20 Thus, disturbance of the housekeeping function of RPN1 on the remaining 

normal allele in our TALENs experiment would most likely be deleterious. However, analysis of our 

4C-seq profiling data instead revealed substantial interactions between the candidate enhancer 

and the promoter of GATA2 rather than with the promoter of RPN1 (Figures 5A, 5B, and S5A). 

GATA2 is a crucial hematopoietic stem cell regulator, located on the contralateral side of the 3q21 

breakpoint cluster. This suggests that the candidate enhancer is an original upstream regulatory 

element for GATA2, rather than RPN1. Hi-C data confirm that the candidate enhancer is together 

with the GATA2 locus in a topological domain, physically segregated from the more proximal 

RPN1 promoter (Figure S5B).21 

 Consequently, we first aimed to examine the effect of loss of the candidate enhancer in a 

human cell line without 3q-rearrangements and the functional impact on either RPN1 or GATA2 

expression. We generated custom CRISPR/Cas9 nucleases against the candidate enhancer locus 

in the GATA2-expressing erythroleukemia cell line K562 (Figure 6A). We effectively deleted the 

candidate enhancer in K562 cells and observed profoundly reduced levels (10.8-fold) of GATA2 

mRNA in targeted K562 pools (Figure 6B), whereas RPN1 expression levels remained unchanged. 

Luciferase GATA2-promoter reporter studies confirmed strong GATA2-specific enhancer activity of 

the candidate locus in a myeloid context (Figure 6C). Thus, the candidate ectopic enhancer, which 

upon translocation is repositioned to the EVI1 locus, is a strong enhancer of GATA2 in its original 

chromosomal context.

Figure 4. Genomic enhancer excision induces proliferative and differentiation changes in inv(3) AML 
cells. (A) Schematic representation of the CRISPR/Cas9 licensing gRNAs with protospacer-adjacent motifs 
(PAM) highlighted in blue, the target locus, and the donor construct for site-directed homology repair using 
a conditional, floxed pCMV-GFP selection cassette. (B) Timeline of genomic targeting of MUTZ-3 AML cells. (C) 
Detection of deletion events by genomic PCR of sequential cell fractions. Representative Sanger sequencing 
tracks of purified PCR amplicons of the GFP-insertion band (2.3 kb) and a remaining lower-running, normal 
allele band of 1.5 kb size are shown (from GFP+ fraction of day 14), revealing a monoallelic deletion indicated 
by a loss of heterozygosity of the SNV present in the targeted enhancer locus (red asterisk). (D) Proliferation 
of untargeted control and targeted cells was measured by counting of viable cells using trypan blue. (E) 
Cell cycle analysis of control and genome-edited MUTZ-3 cells harvested after three weeks of selection. (F) 
Immunophenotyping of control and enhancer-targeted MUTZ-3 cells. The left panel includes two dot plots per 
sample (CD34/CD14 and CD34/cMPO) that show the myelomonocytic maturation. The right panel shows the 
distribution of the various maturation stages, simplified in three stages: immature (CD34+/CD14-) = blast cell; 
intermediate (CD34-/CD14-) = promonocyte; mature (CD34-/CD14+) = monocyte. (G) Representative images 
of May-Grünwald-Giemsa staining of control and enhancer-targeted MUTZ-3 cells (100x magnification). 
(H) Assessment of apoptosis in control (top panels) and enhancer-targeted MUTZ-3 cells (bottom panels). 
Representative flow cytometry plots for Annexin V and 7-AAD staining with percentages for each gate are 
shown.
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Figure 5. The non-rearranged candidate enhancer is part of the GATA2 enhancer complex. (A) 
Representative 4C data (n=7 biological replicates) showing the local contact profile using a window of 21 
fragment ends with the 1st p300 peak site as viewpoint (red dashed line) (B) Integrative 4C analysis using 
a viewpoint from the GATA2 promoter region (n=7 biological replicates). In the top panel (main trend), the 
contact intensity (black line) is calculated by using a running median analysis of normalized read counts with 
a 5 kb sliding window. The 20th and 80th percentile are visualized as a grey trend graph. In the bottom panel, 
contact intensities are computed using linearly increasing sliding windows (scaled 2-50 kb) and displayed as 
a color-coded heatmap of positive 4C signal (maximum of interaction set to 1). Local color changes are log-
scaled to indicate changes of statistical enrichment of captured sequences, corresponding to the enhancer-
promoter interaction (red dashed lines).

Rearrangement of the GATA2 enhancer to EVI1 causes functional 
haploinsufficiency of GATA2
To study the effects of the enhancer translocation on GATA2 expression in inv(3)/t(3;3) AML 

samples, we analyzed allele frequencies of informative SNPs in the GATA2 locus by combining 

3q-seq and RNA-seq data. This integrative analysis revealed a monoallelic expression pattern of 

GATA2 in all 36 inv(3)/t(3;3) cases studied (Figures 6D and S6). Non-3q-rearranged AML patient 

samples and cell lines, as well as variant t(3q26) AML cases with breakpoints outside of the 3q21 

cluster region [e.g., inv(3)(q21q25); t(3;7)(q26;p15)] displayed a normal, biallelic GATA2 expression 

pattern (not shown). To ascertain monoallelic GATA2 expression originating from the normal 

chromosome 3 allele, we performed an allele-specific chromosome conformation capture 

sequencing approach (Experimental procedures for details), in which captured informative SNPs 

of the GATA2 locus can only be amplified by allele-specific primers on the non-rearranged, linear 

chromosome 3 template. Results were validated by long-range, breakpoint-spanning PCR and 

Sanger sequencing. By integration of results from these NGS platforms (3q-seq, RNA-seq, and 

allele-specific 4C; Figure 6D), we found monoallelic GATA2 expression as a consequence of GATA2 

inactivation on the rearranged allele in cases harboring inv(3) or t(3;3). Notably, GATA2 expression 

levels in primary inv(3)/t(3;3) AML cases and cell lines (n=69) were found to be significantly 

reduced as compared to controls (213 AML patients) (Figure 6E). Thus, our data indicate that the 

inversion/translocation event in inv(3)/t(3;3) malignancies reorganizes an originally upstream 

regulatory element of the GATA2 domain, causing reduced and monoallelic expression of GATA2.
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Figure 6. Loss of the GATA2 candidate enhancer leads to functional haploinsufficiency of the affected 
GATA2 allele. (A) Schematic of the CRISPR nuclease design for candidate enhancer targeting. Arrows indicate 
primer locations for PCR analysis. For each construct, the protospacer sequence and the Cas9-specific 
proximal-adjacent motif (PAM; magenta highlight) are indicated. (B) Upon transfection of the candidate 
enhancer-flanking CRISPR constructs, K562 cells were analyzed by deletion-specific PCR (gel image). Unsorted 
cells represented pools of CRISPR-targeted and non-targeted cells. GFP-sorted and isolated deletion clones 
harbored predominantly biallelic deletion mutants. GATA2 and RPN1 mRNA expression was analyzed by qPCR 
(right panel). (C) The p300-binding core enhancer region and an adjacent control region (2nd p300 peak 
region) were cloned into a GATA2-promoter luciferase reporter construct, and luciferase activity was measured 
48 h after transfection of indicated cell lines. GATA2+ MUTZ-3 cells, as well as GATA2 non-myeloid HEK293T and 
Jurkat cells were assayed. (D) Integrated analysis of 3q-DNA-seq, RNA-seq, and allele-specific 4C-seq data of a 
representative inv(3) AML case reveals monoallelic expression of GATA2 mRNA from the intact chromosome 
3q21 allele. (E) GATA2 expression level analysis by qPCR in inv(3)/t(3;3) AML (n=69) and unselected, non-3q-
rearranged AMLs (n=245; Mann-Whitney-U test, p=0.002).

The 18 kb CTS and p300-interaction domain are part of a translocation-
derived super-enhancer
We have shown that targeting of the candidate enhancer site in inv(3) AML cells by genome-

editing techniques is feasible, based on the premises that the enhancer element interacts with 

the EVI1 promoter, binds the transcriptional co-activator p300, and is embedded in a region of 
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open, potentially regulatory chromatin, and thereby also accessible for endonucleases. However, 

ChIP-seq data obtained from the inv(3) cell line MOLM-1 manifested a large segment of H3K27ac 

deposition that extends beyond the entire 18 kb CTS and p300-interaction domain, covering a 

region of approximately 40 kb (Figures 2A and 7A). These exceptionally large enhancer domains 

with high levels of H3K27ac and the chromatin regulator BRD4 have recently been characterized as 

super-enhancers.22,23 Using the bioinformatic analysis tool ROSE22, the 40 kb H3K27ac-deposition 

region was identified as a super-enhancer, ranking second among 291 super-enhancers in the 

MOLM-1 genome (Figures 7A and 7B). RNA-seq analysis revealed the presence of intense read-

through enhancer RNAs (eRNAs) spanning the entire super-enhancer area including the 18 kb 

CTS in MOLM-1 (Figure 7A). Of note, read-through transcription commenced precisely at the 

breakpoint positions, representing the fusion point of 3q21 with 3q26/EVI1 segments. RNA-seq 

carried out in all available inv(3)/t(3;3) leukemia samples disclosed identical patterns of large 

read-through areas of eRNAs (Figure 7A). Consistently, BRD4-occupancy was found at the super-

enhancer site in 3q-rearranged samples, particularly in the p300-interaction domain (Figure S7A). 

Non-3q-rearranged samples entirely lacked traces of transcriptional read-through (Figure 7A) and 

exhibited no H3K27ac deposition, or, if any at all, only in a confined 3-4 kb region immediately 

downstream of the RPN1 gene, as shown by comparison with ENCODE ChIP-seq data of various 

non-3q-rearranged cell lines (Figures 2A and S2). Furthermore, combining 3q-capture DNA-

seq with ChIP-seq data of MOLM-1 showed the presence of informative heterozygous SNPs in 

the putative 3q21 super-enhancer locus on genomic DNA level, whereas the chromatin after 

H3K27ac pull-down revealed a skew in the allelic ratio of these SNPs in the same locus (Figure 7C). 

These observations suggest the presence of an active, rearranged super-enhancer in inv(3)/t(3;3) 

leukemia samples, as was previously observed for MYC-rearrangements in multiple myeloma.22

BET-inhibition leads to EVI1 silencing and growth arrest of inv(3)/t(3;3) 
AML cells
Our genome-editing results underline that EVI1 is the key oncogenic driver in inv(3)/t(3;3) AML and 

vulnerable to interference with its ectopic enhancer. As reported previously, BET-bromodomain 

inhibition of super-enhancers represents a novel therapeutic avenue to target genes particularly 

regulated by super-enhancers.22,23 The observation that the p300-binding ectopic EVI1 enhancer is 

embedded in a large 3q21 super-enhancer complex (Figures 7A and 7B) prompted us to investigate 

whether EVI1 transcription in inv(3)/t(3;3)-rearranged AMLs is sensitive to enhancer interference 

by treatment with BET-bromodomain inhibitors (JQ1). Exposure of MUTZ-3 and MOLM-1 cells, 

as well as primary inv(3)/t(3;3) AML samples to JQ1 profoundly inhibited proliferation with 

concentrations >50 nM (Figures 7D and S7C). EVI1-expressing K562 cells (no 3q-rearrangement), 

however, were not responsive to JQ1, as was previously shown.24 EVI1 mRNA levels in MUTZ-3 and 

MOLM-1 cells significantly decreased after JQ1 treatment contrary to K562 cells, in which BRD4 

density at the enhancer locus is lower by comparison (Figures 7E, S7A, S7D, and S7E). 
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Figure 7. The ectopic enhancer is part of a 3q21 super-enhancer. (A) H3K27ac ChIP-seq (orange track) of 
the MOLM-1 cell line and RNA-seq (black tracks) of representative inv(3)/t(3;3) samples and non-3q-rearranged 
cell lines. Red arrowheads denote chromosomal breakpoint positions per sample. The super-enhancer region 
defined by the H3K27ac enrichment score is indicated as a red bar. (B) Ranking of super-enhancers identified 
in the MOLM-1 genome as per H3K27ac enrichment. (C) Allelic imbalance of the 3q21 super-enhancer region 
is determined by comparison of allelic ratios obtained from 3q-seq and H3K27ac ChIP-seq using informative, 
heterozygous SNPs (n=6) present in the super-enhancer domain. Allelic imbalances for SNPs are tested using 
a χ2 goodness-of-fit test to identify regions exhibiting ChIP-seq allelic ratios significantly different from the 
genomic allelic ratios (H0 = allelic ratios identical between ChIP-seq and 3q-DNA-seq experiments). (D) JQ1 
treatment is effective in 3q-rearranged AML cells (MUTZ-3) vs. non-3q-rearranged cells (K562). JQ1 sensitivity 
was measured by mitochondrial dehydrogenase (MTT assay) after 6, 24, 48, and 72 h of exposure with JQ1 (5, 
50, 500, or 1,000 nM) or vehicle control (DMSO, 0.05%). (E) Analysis of EVI1 and GATA2 mRNA expression levels 
in MUTZ-3 and K562 by qPCR at different time points following JQ1 exposure (1,000 nM). (F) ChIP-seq binding 
profiles for BRD4 (blue) and H3K27ac (orange) at the 3q21 super-enhancer locus (left panel) or at the WDR74 
upstream enhancer after treatment of MOLM-1 cells with JQ1 (1,000 nM) or DMSO (0.05%) for six hours. (G) 
Cell cycle analysis of MUTZ-3 cells after treatment with DMSO (0.05%; upper panel) or JQ1 (1,000 nM; lower 
panel) for 24 h. (H) Transient EVI1 rescue counteracts JQ1 antiproliferative effect. Cells were nucleofected either 
without DNA (mock), or with an empty GFP-expressing vector (EV) or an GFP-EVI1-expressing construct (EVI1), 
GFP-sorted after 24 h, and subsequently exposed to JQ1 (1,000 nM) for following viability measurements at 
indicated time points.

Furthermore, GATA2 mRNA levels did not change upon JQ1 treatment, substantiating the notion 

that the ectopic super-enhancer/core p300 element is indeed a fusion result regulating EVI1 on 

the rearranged allele rather than GATA2 on the remaining normal allele. BRD4 load as well as 
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read-through transcription at the ectopic EVI1 super-enhancer site were substantially decreased 

after JQ1 treatment (Figures 7F and S7B), whereas displacement of BRD4 in typical enhancer 

regions was less profound, as has previously been reported.23 Similar to the observed effects 

upon enhancer excision, we observed a profound S phase reduction along with a G0/G1 cell cycle 

arrest, higher rates of maturation and apoptotic events upon BRD4-inhibition (Figures 7G, S7F, 
S7G, and S7H). Reintroduction of EVI1 by nucleofection of MUTZ-3 cells prior to JQ1 treatment, 

allowing for transient EVI1 expression, partly rescued MUTZ-3 from JQ1 cytotoxicity, arguing for 

relative selectivity of JQ1 for the EVI1 super-enhancer as opposed to globally inhibiting other 

putative oncogenic drivers (Figure 7H).

DISCUSSION

In summary, inv(3)/t(3;3) chromosomal rearrangements cause dysregulation of two specific AML 

predisposition genes by aberrant activity of a single enhancer element in its ectopic chromatin 

environment: (I) Overexpression of EVI1 is caused by inappropriate transcriptional control of 

the ectopic GATA2 regulatory element, while (II) GATA2 transcriptional impairment results from 

the removal of that same enhancer from its genomic origin. These dual events mediated by a 

single enhancer rearrangement, without formation of an oncogenic fusion product, highlight the 

vulnerability of genome organization into long-range regulatory interaction domains in case of a 

chromosomal break. The enhancer we identified appears to originally control transcription of the 

110 kb distant GATA2 gene at 3q21, and not the nearby gene RPN1. Our finding is in accordance 

with reports demonstrating a highly homologous -77 kb enhancer element to constitute a 

component of the murine Gata2 master regulatory complex25, and that this element is indeed 

leukemogenic via EVI1 activation in transgenic mice harboring the human 3q21q26-rearranged 

allele.26 In case of an inv(3)/t(3;3), the rearranged enhancer engaged in chromatin loops with the 

EVI1 promoter, in certain samples over a distance of more than 200 kb. Our data emphasize that 

the function of an enhancer is not only determined by its location, but in particular by its ability 

to physically bind to an appropriate promoter, which can even occur in a different chromosome 

topology. Our findings show that not RPN1, as reported in the nomenclature of the WHO2008 

classification [inv(3)/t(3;3)/RPN1-EVI1], but rather the GATA2 locus is the source of the ectopic 

enhancer activating EVI1 in this type of leukemia.

 Besides aberrant EVI1 activation, rewiring of parts of the GATA2 and EVI1 domains led to a 

reduction of GATA2 expression levels. EVI1 activation in this subtype of AML argues for a primitive 

HSC defect.8,9,27-31 Since GATA2 is a critical hematopoietic stemness factor, primitive hematopoietic 

precursors will be particularly susceptible to disturbances of GATA2 homeostasis. Thus, GATA2 

deficiency may provide the right spatiotemporal context for EVI1 oncogene activation, i.e. in the 

right cell at the right stage of differentiation for subsequent malignant transformation. Functional 

haploinsufficiency arising from inactivating mutations in GATA2 DNA-binding domains or in 

GATA2 regulatory sequences represents a well-established underlying cause of MDS/AML and 
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Emberger/MonoMAC syndromes32-36, of which the latter are characterized by monocytopenia, 

immune deficiency, and predisposition to myeloid leukemia with frequent monosomy 7. AML 

with inv(3)/t(3;3) most commonly associates with monosomy 7 and trilineage dysplasia, and, 

as demonstrated here, it is accompanied by impaired GATA2 expression as well. It will be of 

particular interest to investigate whether in Emberger and MonoMAC patients 3q26 defects 

and consequently aberrant EVI1 expression are also drivers of disease progression toward AML/

MDS. Of note, the enhancer-containing 3q21 locus is rarely, but consistently involved in other 

chromosomal rearrangements with PRDM homologues of the EVI1 gene (e.g. BLIMP1/PRDM1 or 

MEL1/PRDM16) and their aberrant activation.37 Both disease categories [inv(3)/t(3;3) and other 

t(3q21) AMLs] resemble each other by their high white blood cell and exceptionally high platelet 

counts at diagnosis. Further studies using in vivo models are warranted to investigate how the 

combined effects of GATA2 haploinsufficiency and overexpression of EVI1 or its homologues 

cooperate in malignant transformation of primitive hematopoietic progenitors.

 The ectopic EVI1 enhancer was embedded in a genomic region exhibiting large deposition of 

active chromatin marks and presence of read-through transcripts. This class of DNA elements has 

recently been recognized as so-called super-enhancers23, which represent large open chromatin 

regions of >10 kb in size with key regulatory function for cellular identity and oncogene 

regulation in cancer. The observation that the GATA2 enhancer region upon translocation had 

acquired characteristics of a super-enhancer, dominantly ranking in the MOLM-1 genome, 

provided the rationale for treatment with bromodomain/BET-inhibitors.22 The presence of a 3q21 

super-enhancer might also explain why JQ1 is effective in inv(3)/t(3;3) cell lines as opposed to 

various non 3q-rearranged AML cell lines with EVI1 overexpression.24 The effects seen after JQ1 

treatment recapitulated the observations obtained by genome-editing experiments involving 

the translocated p300-interaction domain. Remodeling of the cancer genome by using in vivo 

nuclease as applied in this study helped to experimentally validate EVI1 as an oncogenic driver 

lesion and warranted further pharmacologic experiments interfering with enhancer activity. 

These experiments emphasized that targeting EVI1 transcriptional regulation using drugs 

directed against enhancer complexes could have therapeutic potential for this highly refractory 

subgroup of AML and diseases driven by similar mechanisms.

EXPERIMENTAL PROCEDURES

Subjects
Patient recruitment and sample processing were performed according to protocols from the 

German-Austrian Acute Myeloid Leukemia Study Group (AMLSG trials 06-04, 07-04, HD93A, 

HD98A/B) and the Dutch-Belgian Hematology/Oncology Cooperative Group (HOVON trials 04/A, 

29, 42, 43, 81, 92). All studies were approved through institutional human ethics review board, and 

all patients provided written informed consent in accordance with the Declaration of Helsinki.
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Generation of TALEN constructs
Construction of TALE DNA-binding domains directed to selected genomic loci was performed as 

described previously.18 Genomic target coordinates were selected and filtered for off-target sites 

using the TAL Effector Nucleotide Targeter 2.0 tool (https://tale-nt.cac.cornell.edu/node/add/

talen). Spacer length was defined within a range of 16-20 bp, and repeat array length was set to 20 

bp. The NN repeat variable domain targeting base G was chosen in the assembly. In brief, hexamer 

modules were assembled from a PCR-amplified monomer library using a hierarchical digestion-

ligation reaction and subsequently cloned into a full-length TALEN construct. Plasmids were 

verified by Sanger sequencing and tested for functionality upon transfection in HEK293T cells. To 

induce a genomic deletion, two TALEN pairs were transfected owing to dimerization requirement 

of the FokI nuclease for double-strand break formation. Repair of chromatin cleavage at the left/

upstream and right/downstream boundaries of the target locus relies on non-homologous end 

joining (NHEJ) in the absence of a repair donor and results in the deletion of a TALEN-targeted 

DNA segment.

Generation of CRISPR constructs
In this study, the RNA-guided endonuclease genome-editing system was employed in 

experiments involving the cell line K562 owing to its cell line-specific superior targeting efficiency 

compared with TALENs genome-editing approaches.38 Publicly available plasmids expressing 

the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system were used 

for cloning of targeting constructs following recently published protocols.38,39 In brief, custom 

target-specific oligonucleotides were cloned into a chimeric guide RNA array of an hSpCas9-

expressing targeting vector. Oligonucleotides for site-specific chromatin cleavage of genomic 

target regions were designed following described guidelines and selected for uniqueness using 

a bioinformatic filtering tool (http://www.genome-engineering.org/crispr/). To induce segmental 

deletions of candidate regulatory DNA regions, two CRISPR plasmids were transfected into cells. 

Each construct was directed to flanking target site positions of the intervening DNA segment for 

induction of NHEJ-mediated repair upon DSB formation. Cells were screened for deletion events 

48 hours later by mutation-specific PCR analogous to TALENs experiments.

Clone screening and sequencing
Upon expansion of TALEN- or CRISPR-targeted clones, genomic DNA was isolated with the 

QuickExtract DNA Extraction Solution (Epicentre) and screened for deletion events by mutation-

specific PCR using primers spanning the breakpoint junction. A shift in amplicon size visualized 

by appearance of a lower running band on gel electrophoresis indicated successful targeting, and 

candidate clones were subsequently checked for monoclonality. The native amplicon and novel 

fusion fragment of candidate clones were separately purified, and sequences of informative, 

https://tale-nt.cac.cornell.edu/node/add/talen
https://tale-nt.cac.cornell.edu/node/add/talen
http://www.genome-engineering.org/crispr/
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heterozygous SNVs in the target region was determined by Sanger sequencing. Monoallelic 

targeting was confirmed by loss of heterozygosity at the SNV-specific nucleotide site. Monoclonal 

biallelic deletion mutants were detected by loss of the native amplicon and presence of a single, 

novel fusion fragment represented by the lower running band.
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ABSTRACT

Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most 

therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this 

disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has 

not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies 

harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In 

addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, 

and genes encoding epigenetic modifiers frequently co-occur with the inv(3)/t(3;3) aberration. 

Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) AML, 

CML, and MDS cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single 

disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling 

mutations may provide a target for a rational treatment strategy in this high-risk patient group.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter8/
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INTRODUCTION

Acute myeloid leukemia (AML) with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) [inv(3)/t(3;3)] is a distinct 

disease entity in the current World Health Organization classification.1 High therapy-resistance 

is the common feature of myeloid malignancies, particularly AML with 3q21/3q26 aberrations, 

manifesting in low rates of complete remission and subsequent failure of current treatment 

strategies.2-4 Appearance of the characteristic 3q aberrations also indicates disease progression 

and portends adverse outcome in myelodysplastic syndrome (MDS) and chronic myeloid 

leukemia (CML).5-7 Therapy resistance in this subtype of malignancies is linked to the inappropriate 

activation of the proto-oncogene Ecotropic Viral Integration-1 (EVI1) as a consequence of the 

chromosome 3 rearrangements. EVI1 is a hematopoietic stemness factor and transcription factor 

with chromatin remodeling activity.8-10 EVI1 is also overexpressed in approximately 11% of all 

AML cases in the absence of 3q aberrations and represents an independent adverse prognostic 

factor in these patients.11 We and others have shown that, as a consequence of inv(3)/t(3;3) 

rearrangements, EVI1 becomes activated via structural repositioning of a distal GATA2 enhancer 

from 3q21 to the EVI1 locus at 3q26.12,13 Relocation of the enhancer additionally confers reduced 

and monoallelic GATA2 expression in this AML subtype. Notably, GATA2 deficiency has been 

shown to impair hematopoietic stem cell frequency and fitness14-16, and Evi1 activation in murine 

inv(3)/t(3;3) models is followed by leukemia onset after a long latency of 6 months.13 Hence, we 

hypothesize that additional cooperating genetic events, other than EVI1 and GATA2 deregulation, 

are required for full leukemic transformation, resulting in a myeloid disease with dismal outcome. 

Full understanding of the complete spectrum of molecular defects associated with this highly 

refractory AML subtype may provide additional rationale for treatment and to overcome 

therapeutic nihilism in this incurable disease category. Therefore, within this study, we sought to 

extend the molecular characterization of myeloid disorders with inv(3)/t(3;3) aberrations by next-

generation sequencing (NGS).

METHODS

Patient samples
From the combined study groups of the Dutch-Belgian Cooperative Trial Group for Hematology-

Oncology (HOVON) and the German-Austrian AML Study Group (AMLSG) we selected 32 AML 

(including 2 cell lines MUTZ-3 and UCSD-AML1), 4 CML-BC (including 2 cell lines HNT-34 and MOLM-

1), and 5 MDS cases for NGS analysis. Included patients harbored an inv(3)/t(3;3) aberration on 

chromosome banding analysis (Supplemental Table 1) and was subsequently confirmed by NGS 

analysis. Cultured CD3+ T-cells from diagnostic bone marrow served as whole exome sequencing 

(WES) germline control. Written informed consent was obtained from all individuals. All samples 

were sequenced on the Illumina HiSeq 2500 system and processed as described previously.12
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3q-capture sequencing
From the collected patient material the genomic DNA was sheared with the Covaris S2 device 

(Covaris) with default settings. Subsequently, the sample libraries were prepared using the TruSeq 

DNA Sample Preparation Guide (Illumina). The target chromosomal regions 3q21.1-3q26.2 (~40Mb) 

were captured by employing a custom in-solution oligonucleotide baits (Nimblegen SeqCap EZ 

Choice XL). The final sample libraries were subjected to paired-end sequencing (2x100bp) and 

were aligned against the human genome 19 (hg19) using the Burrows Wheeler Aligner (BWA) 

with default settings.17 Exact breakpoint positions were determined with Breakdancer v1.1.18 

Exact breakpoint sequences were resolved by extracting proximal reads supporting or spanning 

the breakpoint using the identified breakpoint positions and an algorithm able to extract the 

relevant reads from BAM files by employing the Samtools API.19 Relevant reads were identified by 

their discordant distance to the paired mate read due to the inv(3)/t(3;3) aberration (supporting 

reads) or being a member of a cluster of truncated reads with the same clipping position 

(spanning reads). The extracted reads were subsequently used as input for the de novo assembler 

Velvet v1.0.1720 with default settings and the assembled region was validated with UCSC Blat.21 If 

resolved, the breakpoint sequences of 3q21 and 3q26 were used for the estimation of the variant 

allele frequency (VAF) to infer the cellular prevalence of the inv(3)/t(3;3) aberration. All 3q-capture 

sequencing (3q-Seq) reads were aligned against the resolved breakpoint sequences of 3q21 and 

3q26 and their respective native wild type sequences. The VAF was estimated by comparing the 

total number of reads aligning on the breakpoint sequence to the total number of reads aligning 

to the respective native wild-type sequence.

RNA-Seq and whole exome sequencing
From the collected patient material total RNA was extracted with phenol-chloroform and 

subsequently transcribed by using Superscript II RT (Invitrogen). Shearing of the cDNA was 

performed with the Covaris S2 device (Covaris) with the default settings and further constructed 

according to the TruSeq RNA Sample Preparation v2 Guide (Illumina). The sample libraries were 

subjected to paired-end sequencing (2x75bp) and aligned against hg19 using TopHat v2.22 

Genomic DNA from patients and in vitro cultured control CD3+ T-cells were processed similar to 

3q-Seq protocols and captured by exome bead capture (SeqCap EZ Human Exome Library v3.0). 

The sample libraries were paired-end sequenced (2x100bp) and subsequently aligned against 

hg19 using BWA with default settings.17

 Overall, we performed whole transcriptome sequencing (RNA-Seq) on 41 and WES on 10 out 

of these 41 inv(3)/t(3;3) myeloid malignancies. Read and alignment statistics for RNA-Seq and 

WES data are found in the Supplement (Supplemental Figures 1A-C, Supplemental Table 4). On 

average we observed a medium to high coverage for the targeted exome in WES data (~62x), 

sufficient to detect mutations with a VAF of 10% or more. Reads generated for RNA-Seq analyses 
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predominately fell within transcribed regions (~52%), i.e. ribosomal genes, coding sequence, and 

UTRs, according to the RefSeq Transcriptome database, and on average 91% of the reads could 

be aligned to hg19. Gene expression profiles (GEP) for 24 inv(3)/t(3;3) patients were constructed 

for differential expression, clustering, and principle component analyses with the DESeq2 

package.23 Copy number variation (CNV) profiles from the WES data were calculated by CNVsvd 

(M.A.S., R.H, and P.J.M.V., manuscript in preparation; Supplemental Figure 2). In brief, per patient 

the total number of fragments was determined for each exon or determined from consecutive 

500 nucleotide-wide windows for large exons. The estimation of CNVs is hampered by systematic 

variance introduced by sequence technology bias or repetitive and homologous sequences, 

which can be observed in all sequenced cases. By utilizing a control reference data set under 

the assumption that these cases have a normal karyotype (i.e., the in vitro cultured CD3+ T-cells) 

allows for the determination of the local variance composition. These estimated local variance 

components can be used to attenuate the systematic variance in all sequenced cases. Finally, the 

normalized count statistics were used for the estimation of the CNV WES profile.

Variant detection
RNA-Seq data were preprocessed for variant detection by splitting the exon boundary spanning 

reads using the Genome Analysis Toolkit (GATK).24 Subsequently, the variants were determined 

with the Samtools API and MuTect for RNA-Seq and WES data.19,25 The detected variants were 

annotated with AnnoVar26 and further characterized by multiple read statistics determined by 

an in-house developed algorithm. In brief, the algorithm determines for each variant the VAF, 

local read statistics based on the alignment and base qualities, mutation likelihood given the 

local sequence context, recurrence given the catalogue of somatic mutations in cancer (COSMIC), 

recurrence determined from population-based sequencing efforts (1000 genomes project), and, 

when available, the likelihood of the mutation given the same set of read statistics in a control 

sample. The validity of our approach combining WES data with RNA-Seq data to infer variants 

is substantiated by the observation that nonsense-mediate decay (NMD) was negligible for 

mutant allele detection, as demonstrated by similar VAFs of mutant disease alleles observed 

within cases characterized by both WES and RNA-Seq (Supplemental Figure 3). Frameshift and 

premature stop codon-introducing mutations were selected and dichotomized on their location 

in the gene body. Mutations located in the terminal exon or approximately 50 bp from the exon 

boundary of the penultimate exon should, theoretically, be unaffected by NMD while stop codon-

introducing mutations situated in other locations of the gene body should be affected. Finally, 

variants were examined when recurrently detected in more than two patients or previously 

linked to leukemogenesis or cancer pathogenesis.27,28 All listed variants were validated by Sanger 

sequencing, except for FLT3-ITD which was determined by RT-PCR.
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Allelic imbalance of GATA2
In total, 30 inv(3)/t(3;3) cases accommodate informative heterozygous single nucleotide 

variants (SNV) in the GATA2 locus according to the 3q-Seq data. We have previously shown 

that the inv(3)/t(3;3) causes monoallelic expression of GATA2 from the non-rearranged allele.12 

Subsequently, we determined the allelic contribution of the genotypes of the heterozygous SNV 

in the matched RNA-Seq case. The average of the allelic contribution was taken when multiple 

heterozygous SNVs were accommodated in the GATA2 locus. The polar histogram was constructed 

with the R package “phenotypicForest”.29

Clonality analysis
The VAFs of the acquired mutations were estimated from the 10 paired inv(3)/t(3;3) myeloid 

malignancies characterized with WES. The VAF of the inv(3)/t(3;3) aberration was estimated from 

the 3q-Seq data, unless the breakpoints could not be resolved or no 3q-Seq data was available. In 

these cases the cytogenetically determined inv(3)/t(3;3) positive metaphases were used. The VAFs 

were corrected by the local CNV, determined by CNVsvd, and possible loss-of-heterozygosity, 

ascertained by determining the loss of proximal heterozygous SNVs with respect to the control 

WES data. The clonal architecture was illustrated in violin plots. In brief, the density of mutations 

with a similar VAF was determined by a kernel density approach and is represented by the width 

of the graph. These plots were generated by the R package “easyGgplot2”.30

RESULTS

Mutant disease allele categorization
We first assigned mutations to mutational categories in order to discern patterns of mutations 

within inv(3)/t(3;3) myeloid disease (Figure 1A).28 All identified mutations were confirmed to be 

somatic in samples with available paired T-cell control (10 out of 41 cases). In addition to the 

“hardwired” deregulated expression of EVI1 and GATA2, all 41 samples contained at least one 

additional mutation in one of the categories relevant for leukemia pathogenesis (average 2.3 

category mutations per sample [Figure 1A, Supplemental Tables 2 and 3]). Notably, all AML and 

CML-BC, as well as 4 of 5 MDS samples contained mutations in genes activating RAS/RTK signaling, 

amounting to an incidence of 98% of all malignancies with an inv(3)/t(3;3). Furthermore, mutations 

were frequently found in myeloid transcription factor genes (32%), splice factor-encoding genes 

(29%), epigenetic modifier genes (29%), tumor-suppressor genes (10%), DNA-methylation genes 

(10%), and cohesin-complex genes (5%) (Figure 1A).

 Complementing previous reports on the high incidence of NRAS mutations in inv(3)/t(3;3) 

AML,3,6 we found on aggregate 47% of all samples containing mutations directly affecting RAS, i.e. 

NRAS (27%), KRAS (11%), and NF1 (9%) (Figure 1B). These mutations were mutually exclusive and 
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also largely non-overlapping with any other mutation affecting signaling pathways involving RAS, 

i.e. PTPN11 (20%), FLT3 (13%), CBL (7%), KIT (2%), and BCR-ABL1 (12%) (Figure 1B). GATA2 was the 

most commonly mutated transcription factor in inv(3)/t(3;3) myeloid malignancies (15%; 5 AML 

and 1 MDS patient) and occurred in all cases in one of the two GATA2 zinc finger domains. RUNX1 

mutations were present in 12% and did not coincide with GATA2 mutations, however mutations in 

the splice factor encoding gene SF3B1 (27%) were enriched in GATA2 mutated samples. Mutations 

in GATA2, SF3B1, and RUNX1 were established to be somatic in all cases with control material 

available. Interestingly, we detected novel truncating mutations and CNVs resulting in the loss of 

one copy of the transcription factor FOXP1 (10%), which is recurrently involved in chromosomal 

aberrations within lymphoma31, but its association with AML pathogenesis is unknown. The 

predominant monosomal karyotype within inv(3)/t(3;3) myeloid malignancies, mainly conferred 

by monosomy 7 (68%), is contrasted by the low incidence of TP53 mutations (5%) (Figure 1A), 

which had been suggested to be involved in the etiology of complex and of monosomal karyotype 

AML.32,33

 No mutational pattern alluded to the high coincidence of the loss of chromosome 7 in 

inv(3)/t(3;3) myeloid disease (Figure 1A, Supplemental Tables 2 and 3). However, previous reports 

have indicated that haploinsufficiency for CUX1, a gene strongly downregulated in our cohort 

of inv(3)/t(3;3)/-7 patients (Supplemental Table 5), activates phosphoinositide 3-kinase (PI3K) 

signaling by transcriptional downregulation of the PI3K inhibitor PI3KIP1,34 and could therefore 

be an important cooperating lesion in inv(3)/t(3;3)/monosomy 7 myeloid syndromes.35

 To date, no independent prognostic factor within the inv(3)/t(3;3) AML subset has been 

identified due to its low incidence and the extremely short median survival of inv(3)/t(3;3) AML 

patients (10 months).3 Baseline patient characteristics and clinical outcome data were available in 

21 individuals with inv(3)/t(3;3) AML. The high frequency of RAS/RTK pathway mutations allowed 

us to perform an exploratory analysis within this small patient cohort. There were no statistically 

significant differences in patient characteristics, nor overall and event-free survival in cases with 

RAS mutations (NRASmut, KRASmut, NF1mut) compared to cases with other mutations activating 

signaling pathways (Supplemental Figure 4). The median overall survival (OS) of RASmut patients 

was 9.8 months versus 8.9 months of RTKmut patients.
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ZRSR2 1 2
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AML
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Figure 1. Mutational spectrum observed in inv(3)/t(3;3) myeloid malignancies. (A) Distribution of 
acquired mutations in 41 inv(3)/t(3;3) myeloid malignancies in conjunction with the aggregation of the 
mutations into mutational categories: mutant (green), positive for cytogenetic abnormality (dark gray), 
wild-type (gray). (B) Distribution of mutations within mutational categories present in more than 10% of the 
inv(3)/t(3;3) myeloid malignancies.
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Clonality analysis
To address the question whether the highly overrepresented RAS/RTK pathway mutations and 

other recurrent somatic alterations in inv(3)/t(3;3) AML co-occurred in the same dominant clone, 

we assessed the allelic ratios of the EVI1-rearranged and mutant candidate disease alleles (Figure 

2). WES analysis in conjunction with germline T-cell control was available from 10 AML patients. 

Cytogenetic evaluation of blast percentage and NGS read count estimation of the percentage of 

the 3q21q26.2 fusion (allele frequency) were concordant. In two cases (AML 20908 and 29656) 

without available 3q-Seq data cytogenetics served to estimate the percentage of the inv(3) 

allele. The inv(3)/t(3;3) aberrations were detectable in the majority of cases (7/10 cases) in up to 

100% of the cells (i.e., resulting in an allelic ratio of the heterozygous 3q21q26.2 fusion allele of 

approximately 0.5), reflecting high blast percentage in these cases. The RAS and RTK mutations 

were mainly found in the dominant EVI1-rearranged clone, and a similar pattern is found for all 

other identified alterations (e.g., in transcription factor, splice factor, and epigenetic modifier 

genes), which mostly co-occur at similar frequency as the RAS/RTK mutations. 

Figure 2. Clonal architecture inferred from somatic mutations observed in 10 inv(3)/t(3;3) myeloid 
malignancies. Distribution of estimated variant allele frequencies (VAF) determined from whole exome 
sequencing. The width of the graph represents the density of mutations with similar VAFs. The yellow dot 
denotes the VAF of the 3q-aberration [(inv(3)/t(3;3)], the blue dot denotes the VAF of the RAS/RTK-associated 
mutation, and open circles denote the VAF of all other mutations.

However, in AML 12383 (PTPN11 mutation) and AMLs 29656 and 30309 (both NF1-mutated), 

the 3q-rearrangement was found in the major clone, whereas the RAS pathway mutations were 
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present in only about half of these cells. In 2 cases (AML 20613 and 20908) the inv(3)/t(3;3) 

aberrations were less frequent than other concomitant mutations. In the inv(3) MDS case 28382 

without any detected activating signaling mutation, the allelic ratio of the inv(3) was about 0.25, 

suggesting that both dysplastic-appearing cells as well as myeloblasts (blast percentage as per 

cytologic evaluation <20%) carried both the inv(3) aberration and coincident gene mutations 

(SF3B1, TP53, DNMT3A; see Figure 1A). Together, these data suggest that the inv(3) or t(3;3) 

aberration is the primary genetic hit in this subset of malignancies, with high proportion of clones 

harboring concurrent activating signaling mutations. Owing to the very short survival of these 

patients and general failure to achieve CR, no time-course monitoring could be performed to 

reveal clonal evolution.

Expression of mutant GATA2
The inv(3)/t(3;3) chromosomal rearrangements separate an upstream GATA2 enhancer from 3q21 

and fuse it to the 3q26.2/EVI1 locus, thereby acquiring features of a monoallelic super-enhancer 

on the rearranged 3q allele.12,13,36,37 Integrative analysis of RNA-seq with 3q-capture DNA-seq data 

using informative, heterozygous SNPs revealed almost exclusive monoallelic expression of the 

mutant GATA2 alleles in 30 inv(3)/t(3;3) cases including cell lines available for analysis (Figure 3), 

as shown in the polar plot by the contribution of the rearranged 3q and nonrearranged 3q allele 

read counts for GATA2 on the basis of the SNVs (SNPs plus somatic mutations) for each patient.

* GATA2 mutation on the non-rearranged

 
allele

Figure 3. Polar histogram plot of allelic imbalance of GATA2 expression observed in RNA-Seq. For each 
patient the average VAF is estimated from informative heterozygous SNVs from the 3q-Seq data. Average 
RNA-Seq GATA2 VAF is estimated from the same SNV positions. Asterisks denote the presence of a somatic 
GATA2 mutation in the indicated sample on the non-rearranged allele.
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This observation indicates that the remaining active, non-rearranged GATA2 allele acquired 

the mutation, whereas the non-mutated GATA2 allele was silenced due to the chromosomal 

rearrangement. Thus, in our inv(3)/t(3;3) AML cohort, heterozygous GATA2 mutations were 

“functionally” hemizygous due to GATA2 silencing.

A

B

Type -7/-7q SF3B1 GATA2 NRAS ASXL1

Legend
Absent
Present

Figure 4. Gene expression profile (GEP) analysis. (A) Clustering of GEPs using the Euclidean distance metric 
and hierarchical clustering. The adjacent table details the acquired mutations of the clustered malignancies. 
(B) Principle component analysis performed on the GEPs of 24 inv(3)/t(3;3) myeloid malignancies displays no 
discrimination between AML and MDS.
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Gene expression and mutation patterns in AML and MDS
It is a matter of debate whether MDS with the distinct inv(3)(q21q26.2) or t(3;3)(q21;q26.2) should 

be regarded as AML irrespective of blast percentage in the bone marrow, similar to the current 

WHO guidelines applied in diagnosis of core binding factor AML with inv(16)/t(16;16) or t(8;21) and 

of acute promyelocytic leukemia with t(15;17).1,5,6,38 In an effort to discriminate MDS and AML with 

inv(3)/t(3;3) based on gene expression programs and the spectrum of coincident gene mutations 

we performed cluster and principle component analyses (Figures 4A and 4B). No cluster formation 

emerged, neither based on the MDS/AML dichotomy nor any other unsubstantiated group within 

our dataset. Furthermore, we performed a differential expression analysis to infer genes that 

could differentiate between MDS and AML. In summary, after Benjamini-Hochberg correction for 

multiple testing, we could only detect two differentially expressed genes (C11orf45: p=0.0009, 

CILP: p=0.04) without a documented role in leukemogenesis. Additionally, we observed that MDS 

patients with inv(3)/t(3;3) are equally therapy-resistant as their AML counterparts in a small set 

of cases analyzed (data not shown). In conclusion, we were unable to detect cluster formation, 

indicating the strong homogeneity of inv(3)/t(3;3) myeloid malignancies based on GEPs and the 

pattern of cooperating genetic lesions.

DISCUSSION

Collectively, we present data that suggest a common genetic background of myeloid malignancies 

harboring inv(3) or t(3;3) and show that RAS alterations and activating RTK mutations are more 

frequent in this disease subset than previously reported.3,6,39,40 The spectrum of secondary genetic 

lesions is generally found in the same EVI1-rearranged dominant clone. No unique cluster within 

inv(3)/t(3;3) myeloid malignancies could be identified, neither by gene expression or mutation 

profiling, nor by analysis of patient characteristics or clinical outcome. Thus, our data further 

support the notion that inv(3)/t(3;3) myeloid disorders could be categorized as AML irrespective 

of blast count, similar to WHO AML categories t(8;21), inv(16)/t(16;16), or t(15;17), which is also 

suggested by the molecular pathobiology common to all inv(3)/t(3;3) myeloid malignancies.12,13

 Reclassification of the currently annotated WHO AML subtype inv(3)/t(3;3); RPN1-EVI1 as 

inv(3)/t(3;3); GATA2-EVI1-rearranged AML is supported by the observation that GATA2 allelic 

imbalances and monoallelic expression of heterozygous GATA2 mutations occur due to the 

distinct chromosomal rearrangements. Whether or not this and other myeloid transcription factor 

alterations contribute to disease biology and the highly adverse clinical phenotype of inv(3)/t(3;3) 

patients remains to be shown, although GATA2 and other transcription factor disturbances have 

described to be preleukemic lesions.28,41-45 Of note, myeloid malignancies with inv(3) or t(3;3) 

define yet another subset of AML with high enrichment of GATA2 mutations next to CEBPA-

mutated AML.46,47

 We included CML cases in blast crisis with an inv(3)/t(3;3) under the assumption that CML-BC 

closely resembles AML biology.48 The BCR-ABL1 fusion is an RTK mutant that in itself activates RAS 
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pathways and is the first event in transformation of myeloid precursors, as opposed to MDS and 

AML cells that first acquired inv(3)/t(3;3).49,50 Despite the difference of biology and etiology of CML, 

the mutational spectrum of inv(3)/t(3;3) CML-BC cells appears to be same, as further suggested by 

transcriptome analysis, which showed that gene expression profile of the single CML-BC case did 

not differ from that of AML and MDS cases. However, the small number of inv(3)/t(3;3) MDS and 

CML cases in our study preclude conclusive assessment of the role of inv(3)/t(3;3) with regards to 

clinical phenotype.

 In summary, inv(3)/t(3;3) myeloid malignancies harbor a common set of molecular alterations, 

i.e. EVI1 and GATA2 deregulation coupled with mutations activating key signaling pathways. The 

dependence on constitutive RAS/RTK signaling activity of inv(3)/t(3;3) transformed AML cells 

might be the molecular correlate of the observed high white blood cell counts in this disease 

subset. Also, in view of the negative impact of GATA2 deficiencies on proliferation and regeneration 

of myeloid progenitors,15,41,51,52 these activated signaling mutations may be indispensable for 

survival and propagation of inv(3)/t(3;3)-transformed myeloid progenitors. The high mutational 

burden of inv(3)/t(3;3) cells as compared to other AML subtypes27 (Supplemental Table 2) could 

also provide clues as to why inv(3)/t(3;3) malignancies invariably associate with an extremely poor 

prognosis. As these rare inv(3)/t(3;3) myeloid malignancies form a highly unmet medical need, 

novel therapeutic approaches could be derived from the observation of constitutive activation of 

the MAPK pathway in almost 100% of these tumors. Exploiting signaling pathways therapeutically 

by using FLT3- or PI3K-inhibitors53 or hypothetically by interfering with RAS-signaling, possibly in 

combination with BET-inhibitors12, may serve as valuable adjuncts to the scarce armamentarium 

of chemotherapeutic drugs effective in this subset of malignancies.
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ABSTRACT

Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are heterogeneous 

malignancies characterized by a variety of acquired genetic abnormalities and variable response 

to treatment.1,2 In the last decade a number of novel molecular genetic abnormalities have been 

revealed in MDS and AML by applying novel genome-wide technologies, such as massively parallel 

sequencing.2,3 The different recurrent genetic aberrations shed light on possible mechanisms 

involved in leukemogenesis and refine risk-stratification of both diseases.1 Although recurrence 

of aberrations in MDS and AML is the major guide to reveal general mechanisms regarding 

leukemogenesis, unique abnormalities can also be highly informative. Here we describe a unique 

fusion of the lysine (K)-specific methyltransferase 2A (KMT2A) gene (mixed-lineage leukemia gene 

(MLL)), located on chromosome 11q23, and the gene encoding smooth muscle myosin heavy 

chain 11 (MYH11), located on chromosome 16p13, in a patient with MDS and subsequently AML, 

both harboring the cryptic translocation t(11;16). KMT2A and MYH11 are involved in recurrent 

translocations in AML, but fusions of these two genes have never been demonstrated. 
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INTRODUCTION

KMT2A is a transcriptional activator, which regulates gene expression, including HOX genes, by 

methylation of histone H3 lysine 4 (H3K4).4 The KMT2A gene on 11q23 is involved in translocations 

in approximately 5% of adult AML cases4 and more than 70 translocation partners of KMT2A have 

been described.5 The majority of KMT2A fusions incorporate the N-terminal portion of KMT2A, 

containing three short AT-hook motifs, two speckled nuclear localization sites and a transcriptional 

repression domain (Figure 1B).4,5 Leukemic KMT2A fusions impair H3K4 methylation and transform 

hematopoietic cells very efficiently. 

 MYH11 is a subunit of a major contractile protein consisting of two heavy chain subunits 

and two pairs of non-identical light chain subunits. An pericentric inversion or translocation 

of chromosome 16 (inv(16)(p13q22) or t(16;16)(p13;q22)), involving the MYH11 gene, define a 

specific subtype of AML characterized by eosinophilia and favorable treatment outcome and 

are characteristic for core-binding factor (CBF) leukemias.1 These chromosome 16 abnormalities 

result in fusion of MYH11 and core-binding factor β (CBFB) on 16q22. The resulting fusion 

transcript CBFB-MYH11 encodes a protein consisting of the first 133-165 residues of the N- 

terminus of CBFB and variable C-terminal portions of MYH11. There are two models proposed 

for CBF-leukemogenesis both based on impairment of the master regulator RUNX1.6 Briefly, the 

CBFB-MYH11 fusion protein affects RUNX1 either by sequestering RUNX1 from its target genes or 

interfering with RUNX1-mediated gene expression by binding of transcriptional repressors to the 

MYH11 moiety in CBFB-MYH11.6

 The most frequent CBFB-MYH11 fusions in adult AML fuses exon 5 of CBFB to exon 12 (type 

A,>85%), exon 8 (type D,<5%) or exon 7 (type E,<5%) of MYH11.7 Several other fusions of CBFB 

and MYH11 have been demonstrated, however, these are relatively rare (<1%). The variability 

among CBFB-MYH11 fusions makes routine detection of this favorable marker in AML by RT-PCR 

challenging. By applying RT-qPCR aimed for expression of the 3’end of MYH11, which is normally 

not or at very low level expressed in hematopoietic cells, all AML inv(16) cases are reliably 

detectable, independent of the type of CBFB-MYH11.8

RESULTS

Here we describe a 67 year old patient who presented with MDS. After informed consent, 

bone marrow aspirates and peripheral blood samples were taken at diagnosis and at relapse. 

Cytological blood smear examination at diagnosis demonstrated a shift to the left in the blood 

smear with 7% myeloblasts, as confirmed by flow cytometry. Hypogranulated neutrophils were 

observed as were Pseudo Pelger-Huet nuclei and occasionally Auer rods. White blood cell count 

(WBC) was 13.5x109/l. The bone marrow smears were hypercellular with 96% myelopoietic cells 

and 2% myeloblasts. Dysmyelopoiesis was seen, however, no increase of abnormal eosinophils. 
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 The patient was diagnosed as MDS-RAEB II according to the WHO 2008 classification. A 

diagnosis MDS was considered based on the elevated WBC and the shift to the left. The karyotype 

of the patient at diagnosis was 53,XY,+6,+8,+9,+13,+14,+19,+21[15]. Standard FISH both on 

interphase nuclei and metaphases using probes for KMT2A/11q23 (break apart), centromere 7 

and 8, and probes for 5p15.2 and 5q31 revealed a translocation of KMT2A/11q23 to chromosome 

16p13. The t(11;16)(q23;p13) was present in 96% of all cells (LSI MLL Dual color break apart 

probeset (Vysis)). The patient was treated according to the HOVON43 protocol (http://www.hovon.

nl) and a complete remission was achieved, but the patient relapsed after 41 months. At relapse 

the patient was treated with AS602868, a pharmacological inhibitor of the IKK2 kinase, in a Phase 

1 trial, but succumbed after progression of the AML. Cytological examination at relapse showed a 

hypercellular bone marrow, 72% myeloblasts, dysmyelopoiesis and dysmegakaryopoiesis (Figure 

1A). Again Auer rods were seen but no eosinophilia or abnormal eosinophils.  The karyotype was 

53,XY,+6,+8,+9,+13,+14,+19,+21[1]/46,XY[19] FISH demonstrated the t(11;16)(q23;p13) to be 

present in 90% of all interphases.

 All our AML cases are screened with RT-qPCR to detected possible CBFB-MYH11 fusions. 

Interestingly, although the patient did not show an inv(16)(p13q22), t(16;16)(p13;q22) by 

cytogenetic analysis or CBFB-MYH11 by RT-PCR, MYH11 was highly expressed at diagnosis and 

at relapse shown by RT-qPCR8, suggesting that MYH11 was part of a unknown fusion transcript 

between 11q23 and 16p13. However, morphologically this case did not show any signs of inv(16)-

associated eosinophilia.

 To unravel the composition of the MYH11-containing mRNA transcript, we performed RNA 

sequencing (RNA-Seq) on patient material at diagnosis as part of our ongoing AML research. 

In brief, total sample RNA was extracted with phenol chloroform and reverse transcribed using 

Superscript II RT (Life Technologies). The cDNA was sheared with the Covaris device and further 

processed according to the TruSeq RNA Sample Preparation v2 Guide (Illumina). Amplified sample 

libraries were paired-end sequenced (2x36bp) on the HiSeq 2000 system and aligned against the 

human genome (hg19) using TopHat2.9

Figure 1. RNA-Seq reveals the KMT2A-MYH11 fusion transcript (A) May-Grünwald-Giemsa staining of bone 
marrow from MDS and AML patient #5291. (B) Schematic representation of KMT2A, MYH11 and the KMT2A-
MYH11 fusion protein. The KMT2A-MYH11 contains three short DNA-binding AT-hook motifs (ATH 1–3), two 
speckled nuclear localization sites (SNL1 and SNL2) and a transcriptional repression domain (TRD) followed by 
full length MYH11 (plant homology domain (PHD), transcriptional activation (TA) domain, methyltransferase 
domain (SET). The main KMT2A breakpoint region (BCR) is indicated.5 (C) RT-PCR for the KMT2A-MYH11 fusion 
transcript in (patient #5291 (duplicate)); cell lines HL60 and HEL (upper: primer set 13-561/562, lower: primer 
set 13-563/564) as negative controls. (D) Sanger sequencing of the KMT2A (exon 8) and MYH11 (exon 2) 
fusion gene. (E) Pearson’s Correlation View with pair-wise correlations between AML patients with KMT2A-
rearranged AML [KMT2A cases], AML patients with inv(16) [CBFB-MYH11 cases] and patient #5291 [KMT2A-
MYH11] (indicated with arrow). The cells in the visualization are colored by Pearson’s correlation coefficient 
values with deeper colors indicating higher positive (red) or negative (blue) correlations. Molecular data are 
depicted in the columns along the Correlation View: (I) KMT2A rearrangement and (II) CBFB-MYH11 fusion (red 
bar: present and green bar: absent); gene expression of MYH11 (III; 201497_x_at), BRE (IV; 205550_s_at) and 
EVI1 (V; 221884_at). The bars are proportional to the level of expression.

http://www.hovon.nl
http://www.hovon.nl
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All reads were aligned against genes annotated within the Ensembl database, as provided 

with the TopHat package. The Integrated Genome Viewer10 was used for data visualization and 

assessment of MYH11 fusion transcripts. The alignment of the RNA-Seq data confirmed the 

overexpression of MYH11, starting in exon 2 upstream of the ATG-start codon. Interestingly, 

paired-end sequencing reads of exon 2 of MYH11 aligned to sequences of exon 8 of KMT2A. These 

results suggested that the t(11;16) resulted in a gene fusion of KMT2A (exon 8) and MYH11 (exon 

2) (Figure 1B). The KMT2A-MYH11 fusions were confirmed by cDNA amplification using the primer 

sets 13-561MLL-MYH11 FW1 (KMT2A ex7): 5’-TTCCAGGAAGTCAAGCAAGC-3’ and 13-562MLL-

MYH11 RV1 (MYH11 ex2): 5’-CTCGAAGCCCTGCTTCTC-3’ (amplicon:298bp) or 13-563MLL-MYH11 

FW2 (KMT2A ex7): 5’-CCGTCGAGGAAAAGAGTGAA-3’ and 13-564MLL-MYH11 RV2 (MYH11 ex2): 

5’-CGTGACCTTCTTGCCATTCT-3’ (amplicon:443bp) (0.25mM dNTP, 15pmol primers, 2mM MgCl2, 

Taq polymerase and 1xbuffer [Life Technologies]). Cycling conditions: 1 cycle 5 min at 94˚C, 35 

cycles 1 min at 94˚C, 1 min at 60˚C, 1 min at 72˚C, and 1 cycle 7 min at ’72˚C. PCR amplification 

with both primer sets resulted in products with the expected size (Figure 1C). These PCR products 

were sequenced by using forward and reverse primers on the ABI PRISM3100 genetic analyzer 

(Applied Biosytems Life Technologies). Sanger sequencing confirmed the KMT2A-MYH11 fusion 

transcript encoding an in-frame KMT2A-MYH11 fusion (Figure 1D). The KMT2A-MYH11 fusion 

was demonstrated to be present at relapse (data not shown). Lack of high quality protein lysates 

prevented detection of the KMT2A-MYH11 fusion protein in the patient's MDS and AML phase. 

 Gene expression analyses demonstrated that the KMT2A-MYH11 AML did not show any 

correlation with CBFB-MYH11 AML (Figure 1E).11,12 Interestingly, however, based on gene 

expression the KMT2A-MYH11 AML grouped together with MLL-rearranged AML (Figure 1E). 

More specifically, the KMT2A-MYH11 AML clustered with MLL-rearranged AML with high EVI1 

expression13 instead of high BRE expression.14

 Extensive analyses of the RNA-Seq data demonstrated a mutation in a well-known AML- and 

MDS-related gene, a non-synonymous mutation in the splicing factor gene U2AF1 (exon2:c.

C101T:p.S34F). This mutation in U2AF1 has been confirmed by Sanger sequencing. Whether this 

mutation is somatic or germline remains to be elucidated.

DISCUSSION

In the past several t(11;16) patients have been described, however, these cases appear to be 

rare. In a study of two MDS patient with a t(11;16)(q23;p13) a recurrent fusion of the genes 

encoding KMT2A and CREB-binding protein (CREBBP (CBP)) was demonstrated.15 A subsequent 

study of eight patients revealed that the t(11;16)(q23;p13) occurred exclusively in patients with 

therapy related t-AML or t-MDS, i.e., previous treatment with Topo2 inhibitors for a variety of 

malignancies.16 Although the breakpoint was not determined in all t(11;16)(q23;p13) cases, it 

is unlikely that these patients carried a KMT2A-MYH11 fusion considering the FISH probes used. 

Furthermore, our patient did not receive any treatment for any prior malignancy.
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 In this MDS/AML patient we have revealed a unique fusion of the N-terminal part of KMT2A 

and the complete MYH11 protein. This fusion involves two proteins known to be present in 

chromosomal translocations in highly distinct AML subtypes. All KMT2A fusions are subdivided 

in 4 groups based on the KMT2A-fusion partner.4 MYH11 contains several repeated helical rod 

domains important for self-dimerization and multimerization in its C-terminus, which also binds 

transcriptional corepressors. The novel KMT2A-MYH11 fusion most probably belongs to group 

2 of MLL-fusion proteins, including SH3GL1/EEN, MMLT4/AF6, GAS7 and AFX1/FOXO4, which 

all contain oligomerization domains important for transformation. The presence of the t(11;16)

(q23;p13) fusion at diagnosis and relapse suggests that KMT2A-MYH11 occurred in the founding 

clone of the MDS/AML and appears essential for this disease.
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ABSTRACT

Acute myeloid leukemia (AML) is a neoplasm characterized by recurrent molecular aberrations 

traditionally demonstrated by cytogenetic analyses. We have used high density genome-wide 

genotyping and gene expression profiling to reveal acquired cryptic abnormalities in AML. By 

genome-wide genotyping of 137 primary AML cases, we disclosed a recurrent focal amplification 

on chromosome 14q32, which included the BCL11B, CCNK, C14orf177 and SETD3 genes, in two 

cases. The BCL11B gene showed consistent high mRNA expression in the affected cases, whereas 

the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 

AML cases with high BCL11B mRNA expression (2.5-fold above median; 40 out of 530 cases 

(7.5%)) revealed 14q32 abnormalities in 2 additional cases. In the 4 BCL11B-rearranged cases the 

14q32 locus was fused to different partner chromosomes. In fact, in 2 cases, we demonstrated 

that the focal 14q32 amplifications were integrated into transcriptionally active loci resulting 

in increased expression of full-length BCL11B protein. The BCL11B-rearranged AMLs expressed 

both myeloid and T-cell markers and all carried FLT3 internal tandem duplications, a characteristic 

marker for AML. Generally, in AML, BCL11B mRNA expression appeared to be strongly associated 

with expression of other T-cell specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing 

Bcl11b showed decreased proliferation rates and less maturation. In conclusion, by an integrated 

approach involving high-throughput genome-wide genotyping and gene expression profiling 

we identified BCL11B as a candidate oncogene in AML.

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter10/
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INTRODUCTION

AML is a heterogeneous clonal neoplasm characterized by accumulated genetic aberrations, 

which result in enhanced proliferation, a block in differentiation and increased survival of 

the leukemic blast cells and variable response to therapy.1,2 In the past decades a number of 

recurrent cytogenetic abnormalities have been identified in AML, such as the chromosomal 

aberrations t(8;21) and inv(16).1,2 These recurrent molecular lesions result in the expression of 

fusion proteins of which the leukemic potential, in combination with additional genetic events, 

has been demonstrated by in vitro and in vivo models.3 In addition to cytogenetic abnormalities, 

acquired mutations in disease genes, such as FLT3, NPM1, RUNX1 and CEBPA, have recently been 

demonstrated to be involved in AML.1,2 Several acquired molecular aberrations carry prognostic 

value and have been incorporated in routine molecular analyses of AML.1,2

 Contemporary genome-wide approaches, such as gene expression profiling (GEP), genome-

wide genotyping and next generation sequencing (NGS), enable detailed analyses of hematologic 

malignancies for the identification of novel pathogenic genes.2,4,5 For example, gene mutations in 

IDH1, TET2, DNMT3A, ASXL1, and EZH2  have been demonstrated with these novel technologies in 

myeloproliferative neoplasms.6-11 In addition to balanced translocations, loss or gains of genetic 

material are apparent in the leukemic blast of AML patients, e.g., those involving the partial or 

complete loss of chromosome 5 and 7.1 In the past two decades, attempts to identify the tumor 

suppressor genes located on these chromosomes have failed. By genome-wide SNP genotyping 

it has become possible to simultaneously genotype hundred thousands of single nucleotide 

polymorphisms (SNPs) in a single assay. In addition, SNP platforms can also be conveniently used 

to determine chromosomal copy numbers, similarly to array comparative genomic hybridization 

(CGH). Genomic DNA can be examined with an inter-marker distance of several hundreds of 

base pairs, which makes it feasible to detect (micro)deletions and/or amplifications that are 

missed with conventional cytogenetics. The application of high-throughput SNP genotyping has 

been elegantly demonstrated to be powerful for the identification of disease genes, such as for 

ALL4,12,13 or AML.14 Another major advantage of SNP arrays is the fact that allele losses are directly 

recognizable as loss-of-heterozygosity (LOH). In fact, SNP arrays revealed that approximately 20% 

of AMLs exhibit large non-random regions of homozygosity without changes in copy number 

as a result of segmental uniparental disomy (UPD), often indicating mutations in genes within 

these regions. These areas of UPD have been associated with mutations in CEBPA, WT1, FLT3 and 

RUNX1.15,16 In addition, deletions, amplifications and UPDs could alter the gene expression levels 

of proximal genes. Juxtaposition of regulatory sequences may result in increased or decreased 

expression of affected genes. Thus, genome-wide analyses to detect copy number changes and 

LOH in the context of gene expression may also pinpoint towards pathogenic genes. We recently 

developed SNPExpress, an easily accessible software tool to accurately analyze SNP genotype 

calls, copy number and gene expression in an efficient combinatorial way.17
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 In this study, we identified BCL11B as a candidate oncogene in AML through an integrated 

approach of genome-wide genotyping and GEP, followed by NGS. BCL11B is a Kruppel family 

zinc finger family gene located at 14q32, associated with transcriptional co-repressor complexes 

in mammalian cells and a pivotal regulator of differentiation and survival of haematopoietic 

cells, especially T-cells.18 We demonstrate that BCL11B is involved in a number of cryptic 14q32 

translocations in AML, in which BCL11B and T-cell associated genes expression levels are 

increased concomitantly. Overexpression of BCL11B in a murine myeloid cell line model inhibits 

proliferation. 

METHODS

Patients samples
This study has been approved by our local Medical Ethical Committee (MEC-2004-030 and 

MEC2007-364). After informed consent, bone marrow aspirates or peripheral blood samples of a 

representative cohort of AML patients were collected. Eligible patients had a diagnosis of primary 

AML, confirmed by cytological examination of blood and bone marrow. All patients were treated 

according to the HOVON (Dutch-Belgian Hematology-Oncology Co-operative group) protocols 

(http://www.hovon.nl). For details see Supplementary material.

Genome-wide genotyping and gene expression profiling
Genome-wide genotyping data sets of 48 patients with various subtypes of AML were generated 

using Affymetrix 500K NspI/StyI DNA mapping arrays and 89 patients with cytogenetically normal 

AML (CN-AML) using Affymetrix 250K NspI or StyI DNA Mapping arrays. The copy numbers of all 

AML samples were calculated using diploid references, i.e., 15 normal karyotype AML samples. For 

details see Supplementary material.

  Gene expression profiles of the same AMLs were generated using Affymetrix HG-U133 plus 2.0, 

as described elsewhere (GEO Series accession number GSE6891).19 Pearson correlation analyses 

was performed as described previously.20 The genome-wide genotyping and gene expression 

profiling data sets were examined using SNPExpress.17 

Fluorescence In Situ Hybridization (FISH)
Dual color fluorescence in situ hybridization (FISH) was performed with BAC clones RP11-431B1, 

RP11-876E22, RP11-830F3, RP11-782I5, RP11-450C22, RP11-57E12, RP11-1069L3 and RP11-242A7 

covering the BCL11B encompassing region and regions up- and downstream (BACPAC resources, 

Oakland, USA). For details see Supplementary material.

http://www.hovon.nl
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Targeted sequencing of the 14q32 genomic region
Library preparation and targeted resequencing was performed following the protocols as described 

previously.21 In brief, high molecular weight DNA of AML #2301 and #7073 were sheared using a 

Covaris E210 waterbath sonificator. The BCL11B 14q32 – tel. genomic region (chr14:93930247-

105928955 (hg19)) was captured with a Roche/Nimblegen SeqCap EZ Choice XL Library. The 

captured region was subsequently paired-end sequenced using the Illumina HiSeq2000. The data 

has been analyzed using an in-house pipeline which identifies single nucleotide variants, small 

and large indels and copy number variations. The chromosomal breakpoints, in the 14q32 region 

and the partner chromosome, were identified using Breakdancer.22 The genomic fusions were 

subsequently confirmed by Sanger sequencing.

Western blot analyses
Western blot analyses were carried out using an affinity-purified rabbit polyclonal anti-BCL11b 

antibody (Novus Biologicals, Littleton, USA). Immune complexes were detected by binding anti-

mouse IgG conjugated to horseradish peroxidase (DAKO, Heverlee, Belgium) followed by the 

enhanced chemiluminescence assay (Amersham Bioscience, Piscataway, NJ) and GAPDH was 

stained with primary affinity-purified rabbit polyclonal antibody (α-GAPDH FL-335) (Santa Cruz 

Biotechnology, California, USA). For details see Supplementary material.

DNA constructs and generation of BCL11B expressing 32D/GCSFR cells
Murine Bcl11b cDNA (kindly donated by Dorina Avram, Albany Medical Center, Albany, NY) was 

subcloned into a pLXSN expression vector under control of a 5’ long terminal repeat (LTR) of the 

Moloney murine sarcoma virus (MoMSV) (Clontech, Mountainview, USA). Vector constructs were 

confirmed by nucleotide sequencing and retrovirally transfected into 32D cells that stably express 

human granulocyte colony-stimulating factor receptor (GCSF-R)23 using Fugene transfection 

reagent (Roche, Indianapolis, USA). Cells were stimulated with interleukin-3 (IL3, 25ng/ml) or 

GCSF (25 ng/ml), counted and assessed for proliferation and granulocytic differentiation. For 

details see Supplementary material.

RESULTS

Genome-wide genotyping of cytogenetically abnormal and normal AML 
cases
In total, DNA mapping array profiles of 137 AML cases were generated (Figure 1), containing 48 

AML cases selected based on previous GEP studies, i.e., 21 AML cases from GEP clusters #4 and #15 

(100% CEBPA mutant or CEBPA silenced24), 13 AML cases from GEP cluster #9 (100% inv(16)) and 

14 AML cases from GEP cluster #10 (adverse prognosis).20 In addition, DNA mapping array profiles, 
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i.e., Affymetrix 250K NspI or StyI DNA mapping array, of 89 CN-AML cases were generated. With 

the Affymetrix 500K NspI/StyI DNA Mapping arrays, all known numerical cytogenetic aberrations, 

i.e., whole chromosome and interstitial deletions and amplifications that had been identified with 

cytogenetic banding analysis, were recognized in the 48 cytogenetically abnormal AML samples, 

as long as the abnormalities were present in over 30% of the AML cells.17 Also, in approximately 

25% of all cases large regions of segmental uniparental disomy were detected, often involving 

whole chromosome arms.17 

 In addition to the known cytogenetic aberrations, relatively low numbers of small interstitial 

deletions and amplifications were detected in the 137 AML cases. However, some of these were 

indicative for the presence of cryptic translocations, such as cryptic t(5;11), t(9;22) and t(4;11), 

which are known to encode chimeric fusion proteins essential for leukemogenesis. All fusion 

transcripts involved in these translocations, i.e., NUP98-NSD125, BCR-ABL and MLL-AF4, were 

confirmed by RT-PCR. Thus, although relatively small numbers of aberrations were found, most 

being non-recurrent, they may reliably mark relevant leukemic lesions. 

Figure 1. Research design. GEP: gene expression profiling.

Integrated analysis of genome-wide genotypes and gene expression 
profiles
By an integrated approach using genome-wide genotyping data and previously determined 

GEPs of the primary AML samples (Figure 1)20, we searched for genes aberrantly expressed as 

a result of numerical changes in the AML genome. Using SNPExpress17, we identified 2 AML 

cases with relatively small interstitial amplifications in the 14q32 region (#2301 amplification: 

482 Kb, 3 copies and #7073 amplification: 460 Kb, 3 copies) (Figures 2A and B). The amplified 

region encompassed BCL11B, CCNK, C14orf177 and SETD3. Interestingly, BCL11B mRNA was highly 

expressed in the 2 AML cases with numerical changes, whereas expression of C14orf177, CCNK 
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and SETD3 were unperturbed compared to other AML cases (Figures 2A and B). In addition, 

BCL11B mRNA is highly expressed in AML #2301 and #7073, whereas expression is low or absent 

in control AML cases (Figure 2A). This could indicate that as a result of a genomic rearrangement, 

BCL11B has become overexpressed in these AML cases. The small interstitial amplifications in AML 

#2301 and #7073 may pinpoint towards cryptic translocations.

Figure 2. Identification of interstitial amplifications on 14q32.2 using SNPExpress. (A) Copy number 
profiles of chromosome 14q32.2 for four AML samples. Copy numbers are shown for each patient by horizontal 
lines (n=0, 1, 2, 3, 4). SNP genotypes are color coded: AA: red; BB: yellow; AB: blue, No call: white. Gains (default 
n>2.5) are depicted as pink background. Gene expression levels are visualized as vertical white bars. Multiple 
probe sets spanning the same locus is depicted by a green bar proportional to the highest expression value 
observed. Green boxes represent genes and accompanying arrow indicates its orientation. In AML #2301 and 
AML #7073 clear amplifications are visible, whereas these aberrations are absent in the two control AMLs. (B) 
Snapshot of SNPExpress showing the amplified region in AML case #2301 and #7073 including genes located 
within this region. C14orf177 and BCL11B are amplified in both AML cases, whereas SETD3 and CCNK only in 
AML #7073. BCL11B expression is increased in AML #2301 and #7073, as indicated by the green bar (multiple 
probe sets), and absent in control AML cases (Figure 2A).

FISH reveals translocations in AML cases #2301 and #7073 involving BCL11B 
To confirm the amplifications in the BCL11B locus in the 2 AML cases, we performed FISH analysis 

with a probe covering the BCL11B gene (RP11-431B1) and a probe flanking this locus (RP11-74H1) 

(Figure 3A). On metaphase spreads of both AML cases an additional BCL11B allele was apparent 

(Figure 3B). This is in line with the expected copy number change for the BCL11B locus (n=3) as 
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shown with SNPExpress (Figures 2A and B). In fact, through verification using chromosomal paints 

we showed that BCL11B was translocated to chromosome 6 in AML case #2301 and  chromosome 

8 in AML #7073 (data not shown). 

Figure 3. FISH analysis of AML cases #2301 and #7073 using probes specific for BCL11B and its flanking 
region. (A) Schematic representation of the FITC-labeled BAC probe (RP11 431B1) covering the BCL11B locus 
and Texas Red-labeled BAC probe (RP11 242A7) covering the adjacent region. (B) Microscope images of FISH 
analysis performed on metaphases chromosomes of AML cases #2301 and #7073 showing additional green 
signal (RP11431B1) indicative for an extra copy of the BCL11B locus.

Amplified 14q32 genomic regions are integrated into transcriptionally 
active loci 
We performed paired-end sequencing of the 14q32 captured region in AML cases #2301 and 

#7073. We observed paired-end reads spanning 14q32 and 6q25.3 (chr6:156717480 and 

chr14:99110325; chr6:156587275 and chr14:99748893) in AML case #2301 and reads spanning 

14q32 and 8q24.21 (chr8:130485869 and chr14:99179210) in AML case #7073, indicating 

translocation events to partner chromosomes 6 and 8, respectively. These breakpoints were 

confirmed by PCR on genomic DNA, followed by Sanger sequencing. The BCL11B encoding-

amplified DNA integrated into two transcriptionally active regions on chromosome 6 and 8, i.e., 

on 6q25.3 into an expressed sequence tag CB984582  and on 8q24.21 into the large non-coding 

(lnc) RNA gene Coiled-Coil Domain Containing 26 (CCDC26). Both polyA genes are transcriptionally 

active in the 2 AML cases, and various other AML cases, and are subjected to mRNA splicing as 

demonstrated by RNA sequencing (data not shown), indicating that these RNAs are expressed 

in myeloid cells. No fusion transcripts between BCL11B and RNAs encoded by the partner 

chromosomes could be detected by RNA-seq, suggesting that regulatory sequences on 6q25.3 

and 8q24.21 may activate the BCL11B gene in the BCL11B-rearranged AML cases. 
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AML case #2301 expresses full-length BCL11B
The translocations involving BCL11B could result in increased expression of either full-length 

BCL11B or a fusion protein involving BCL11B. In fact, BCL11B mRNA expression in AML#2301 and 

AML#7073, were, respectively, 12- and 8-fold over mean BCL11 mRNA expression in 530 AML cases 

(219528_s_at; 22895_s_at; 224310_s_at).19 Next, we examined the expression profiles obtained 

with Affymetrix Human Exon 1.0 ST Array for AML case #2301. This analysis showed that in AML 

#2301 all four exons of BCL11B were expressed at similarly high levels (data not shown). The fact 

that exon 1 of BCL11B, containing the ATG start codon was expressed, suggested that full-length 

BCL11B is expressed rather than a fusion protein involving parts of BCL11B. Western blot analyses 

of whole, cytoplasmic and nuclear cell lysates of AML case #2301 were used to assess both the size 

and localization of the BCL11B protein. Immunodetection with BCL11B antibodies confirmed the 

expression of full length BCL11B protein restricted to the nucleus (Figure 4). Of note, full-length 

BCL11B was also highly expressed in AML case #2238, an AML without any known aberration 

involving BCL11B.

Figure 4. Western blot analysis of BCL11B in AML case #2301. Western blot analysis with a BCL11B-specific 
antibody demonstrates high expression of full length BCL11B in AML case #2301, in the nuclear compartment 
(upper panel). Whole cell lysates from Jurkat, an acute T-cell leukemia cell line, and AML #2238 show high 
BCL11B expression. AML cases #2195 and #2240 with low BCL11B mRNA expression were used as negative 
controls (#2301w:whole cell lysate; #2301c: cytoplasmic lysate; #2301n: nuclear lysate). β-actin was used as 
loading control (lower panel).   

FISH analyses of selected AML cases with high BCL11B mRNA expression 
reveals additional cases with BCL11B translocations 
FISH analysis of AML cases with high BCL11B expression revealed translocations involving BCL11B, 

thereby raising the possibility that other AML cases with aberrantly high BCL11B expression would 

harbour BCL11B-rearrangements as well. GEP of 530 AML cases19 showed variable expression of 

BCL11B mRNA in AML subsets, including case #2301 and #7073 (Figure 5A). We selected 40 AML 

cases with increased BCL11B mRNA expression, i.e., >2.5-fold above mean BCL11B expression 

in primary AML (Figure 5A), and performed FISH analysis on the BCL11B chromosomal region. 

FISH analyses revealed 2 additional AML cases with a BCL11B translocation (AML #6366 and 

#6451 (Figure 5A and B)). With specific chromosomal paints, we showed that in AML case #6451 
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the BCL11B locus was translocated to chromosome 7 (data not shown). Further FISH could not be 

carried out on AML #6366 due to the lack of material. 

Figure 5. Correlation view based on gene expression profiling of 530 AML cases. (A) Pearson correlation 
view of 530 AML cases showing gene expression correlation based on 2847 probe sets. The black bars 
indicate expression of BCL11B 1: BCL11B expression: 219528_s_at and 2: BCL11B expression: 222895_s_at, 
where the size of the bars is proportional to the levels of BCL11B expression; 3: selection of AML with BCL11B 
overexpression (>2.5-fold mean). The BCL11B-rearranged cases #2301, #6451, #6366 and #7073 are indicated 
by an arrow. (B) FISH analysis performed on metaphase spreads of AML cases #6451 showing disassociation of 
the probe RP11242A7 (red) and RP11431B1 (green) indicating translocation of BCL11B. 

Immunophenotyping and molecular analyses of AML cases carrying BCL11B aberrations

Immunophenotyping of the AML cases harbouring BCL11B translocations expressed, besides 

myeloid markers, also lymphoid markers such as CD2, CD3, and CD7 (Table 1). Cytoplasmic(cy) 

CD3 expression was present in case #2301, suggesting its classification as T-ALL, however, cyCD3 

was absent in the remaining cases. In fact, these AML cases appeared to have a biphenotypic 

signature, i.e., expressing (early) myeloid as well as T-cell associated markers. Well-known recurrent 

molecular abnormalities were determined in the BCL11B-rearranged AML cases, demonstrating, 

with no exception, that these cases carried mutations in the FLT3 gene (Table 1), i.e., internal 

tandem duplications (ITD) or mutations in the tyrosine kinase domain (TKD). We did not identify 

mutations in K-RAS, N-RAS, c-KIT, IDH1, IDH2, ASXL1 or CEBPA. Case #6366 also carried a DNMT3A 

mutation (Table 1).
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 We have analyzed the immunophenotype of the BCL11B non-rearranged cases with BCL11B 

overexpression and did not find a specific pattern of T-cell specific markers. Several cases do 

express CD7, however, this aberrant marker is relatively frequent present on myeloid leukemic 

blasts (app. 30%). Moreover, we were unable to demonstrate a significant association between 

BCL11B overexpression and FLT3-ITD or -TKD mutations in BCL11B non-rearranged AML cases.

Table 1. Clinical, molecular and immunophenotypic data of the AML cases with BCL11B translocations.

Patient number AML #2301 AML #7073 AML #6451 AML #6366

FLT3-ITD pos pos pos pos

FLT3 TKD835 neg neg pos neg

DNMT3A mutation neg neg neg pos

FAB M1 M4 M1 M2

WHO 1 WHO 1 WHO 2 WHO 0 WHO

Gender M M F F

Karyotype 46,XY[21]/ 
?46,XY,inc[9]

46,XY[20] 46,XX,del(7)(q21q35)
[5]/46,idem,add(13)
(q3?4)[17]/ 
46,idem,add(9)(q3?4)
[2]/46,XX[15]

53,XX,+4,+8,+10,+13, 
+14,+15,+20[4]/ 
46,XX[35]

Immunophenotype CD45(+), 
HLA-DR-, 
CD34+, 
TdT+, 
MPOpartial+, 
CD1-,CD2+, 
CD3+,CD4-,CD5-

CD15partial+, 
CD33+,CD7+, 
CD36partial+, 
CD56-,CD65s-, 
CD117partial+, 
CD133+, 
CD4partial+

CD45(+), 
HLA-DR+,CD34+,  
TdTpartial+, 
MPOpartial+, 
CD11c-, 
CD13+,CD15-, 
CD15s partial+, 
CD33-, CD65s-, 
CD117+, CD133+, 
CD2+, CD7partial+

CD45(+),HLA-DR+, 
CD34partial+,TdT-, 
MPOpartial+, 
CD11c partial+, 
CD13partial+, 
CD15partial+, 
CD33+,CD36partial+, 
CD117 partial+, 
CD133+, 
CD4 partial+, CD7(+)   

The mutation status for FLT3, NPM1, N-RAS, K-RAS, CEBPA, c-KIT, ASXL1, IDH1, IDH2 and DNMT3A was determined 
as described previously.26-28 No mutations were present in the 4 AML cases in NPM1, N-RAS, K-RAS, CEBPA, KIT, 
ASXL1, IDH1, and IDH2 (Pos: mutant; Neg: wild-type).

BCL11B is aberrantly expressed in AML and associated with T-cell gene expression signature 

To investigate whether other AML cases with elevated BCL11B mRNA expression show full-

length BCL11B expression, we carried out Western blot analyses on a limited number of cases. 

All analyzed samples with high BCL11B mRNA showed full length BCL11B protein expression at 

variable levels (Figure 6). Due to lack of specimens, BCL11B protein expression analyses in non-

rearranged BCL11B cases was limited to those shown in Figures 4 and 6. To examine which genes 

are co-expressed with BCL11B in AML, we performed a Pearson correlation analysis using GEP data 

of 530 AML cases.19 BCL11B co-regulated probe sets were calculated across all AML patients. The 

top 50 BCL11B correlating probe sets are highly associated with T-cells and T-cell development 

(Supplementary table 1). In fact, the majority of BCL11B associated genes are T-cell specific genes, 

such as CD3, TRBV19, IL32, LCK, TCF7 and CD2, among many others (Supplementary table 1). 
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Figure 6. Western blot analyses for BCL11B primary AML. Immuno-detection of the BCL11B protein in 
AML cases with elevated levels of BCL11B mRNA (+) and cases with undetectable levels of BCL11B mRNA (-) 
(upper panel; Jurkat cell lysate as positive control). GAPDH was used as loading control (lower panel).

Figure 7. Effects of BCL11B overexpression in murine 32D(GCSF-R) cells. (A) Western blot analyses for 
BCL11B in 32D(GCSFR) cells. 32D(GCSFR) clones overexpressing BCL11B are indicated by #2, #4, and #12 (IL3 
for 1 and 10 days). Lysates obtained from these clones were immunostained for BCL11B at day 1 and day 
10 (Jurkat cells: positive control; 32D: 32D(GCSF-R) cells). GAPDH was used as loading control (lower panel). 
(B) Growth curve of 32D(GCSFR) cells with (squares, dashed line) and without (round, solid line) BCL11B 
expression and parental 32D(GCSFR) cells (triangle, dotted line) incubated with interleukin 3. 32D cells were 
counted every 24 h for ten days. (C) May-Grünwald-Giemsa-stained cytospins of 32D(GCSF-R) cells with 
(upper panel) and without (lower panel) BCL11B expression incubated with GCSF for 7 days. Granulocytic 
differentiation is monitored by the presence of cells with segmented nuclei.  

Increased Bcl11b expression results in decreased proliferation of the 
myeloid cell line 32D(GCSF-R)
To investigate the effect of Bcl11b expression on proliferation and differentiation, immortalized 

myeloblast-like murine bone marrow cells stably expressing human GCSF-R (32D(GCSF-R)) 

were transfected with full length murine Bcl11b cDNA. Three 32D(GCSF-R) clones expressing 

Bcl11b were selected and incubated for ten days in the presence of interleukin-3 (IL3) or 
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granulocyte stimulating factor (GCSF). Western blot analyses demonstrated that BCL11B was 

expressed at every time point (Figure 7A). BCL11B expressing 32D(GCSF-R) clones showed a 

consistent decreased proliferation rate when cultured in the presence of IL3 in comparison to 

32D(GCSF-R) clones containing a control empty vector (Figure 7B). Additionally, we evaluated 

the granulocytic differentiation abilities of the same 32D(GCSF-R) clones upon stimulation 

with GCSF. Morphological analyses of cytospins did not show consistent maturation defects in 

the BCL11B expressing 32D(GCSF-R) clones. However, less maturation towards granulocytes in 

32D(GCSF-R) cells expressing BCL11B and more undifferentiated blast cells compared to cells with 

empty vector were present in some 32D(GCSF-R) BCL11B expressing clones (Figure 7C). This effect 

was most apparent in 32D(GCSF-R) BCL11B clones #4 and #12, the 32D(GCSF-R) clones with the 

highest expression levels of BCL11B (Figure 6A).

DISCUSSION

Integrative analyses of genome-wide genotyping and copy number data with GEP enables 

the identification of pathogenic genes aberrantly expressed due to genomic imbalances. The 

outlined integrative approach resulted in the identification of BCL11B as a novel oncogene in 

AML. Interstitial amplification of 14q32 was initially revealed in 2 AML cases by genome-wide 

genotyping encompassing the BCL11B gene. Although other genes were affected by these copy 

number changes, these 14q32 aberrations resulted in unique BCL11B mRNA and full-length 

BCL11B protein overexpression. FISH in a selection of 40 AML cases with high BCL11B mRNA 

expression identified 2 additional AML cases bearing BCL11B translocations.

 The BCL11 family has two members BCL11A and BCL11B.18 Bcl11a was identified as a common 

retroviral insertion site (Evi9) in murine myeloid leukemias and is required for normal B-cell 

development.29 Mice carrying biallelic inactivation of Bcl11b developed thymic lymphomas, 

indicating that loss-of-function mutations in Bcl11b contribute to mouse lymphomagenesis 

and possibly to human cancer development.30 BCL11B is a four-exon gene located on 14q32, 

encoding a Kruppel family zinc finger transcription factor and a key regulator of differentiation 

and survival of thymocytes.18 BCL11B was first associated with hematological malignancies due 

to its recurrent involvement with the homeobox transcription factor TLX3 in a relatively high 

percentage of pediatric and adult T-cell acute lymphoblastic leukemia (T-ALL) carrying the 

cryptic t(5;14)(q35;q32).31,32 Less frequent, T-ALL samples with an inv(14)(q11.2q32.31) carry an in-

frame transcript of BCL11B and the T-cell receptor gene segment TRDV1. These ALL cases do not 

express wild type BCL11B transcripts, suggesting that BCL11B disruption may contribute to T-cell 

malignancies in humans.33 Interestingly, recently a DNA copy number and sequencing analyses 

approach revealed mono-allelic BCL11B deletions and missense mutations in 10-15% of T-ALL.34,35 

Structural homology modeling revealed that several of the BCL11B mutations disrupted the 

structure of the zinc finger domains required for DNA binding.
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 A number of myeloid, mixed-lineage, and non-lymphocytic leukemias with 14q32 abnormalities 

have been reported, however, in these instances the affected genes were not identified.36-40 The 

first evidence of BCL11B involvement in 14q32 translocations in AML was reported by Bezrookove 

et al.37 They reported one case of t(6;14)(q25~q26;q32) in an adult with AML and used bacterial 

artificial chromosomes to demonstrate the involvement of BCL11B in this AML case.37 Due to lack 

of patient material, the investigators could neither establish the deregulation of BCL11B nor the 

identification of the partner genomic locus.37 Of note, the breakpoint in this AML case appeared 

to be located upstream of the BCL11B gene. This is similar to the AML cases described here and 

suggests that the breakpoints in AML are clustered upstream, whereas in ALL they are downstream 

of BCL11B. Specific chromosomal paints demonstrated that different partner chromosomes were 

involved in the AML cases with a BCL11B translocation. The fact that in 2 AML cases the BCL11B-

containing amplified region integrated in transcriptionally active lncRNAs may suggest that 

different regulatory regions of the lncRNAs are capable to activate the BCL11B oncogene. The 

breakpoints in AML #2301 and #7073 are 10kb and 600kb away from the transcriptional start site 

of BCL11B. There is no obvious reason why specifically BCL11B and not the other genes would 

become activated. Interestingly, however, the rearranged BCL11B allele in both AML #2301 and 

AML #7073 is juxtaposed to recently described super-enhancers, which have been shown to act 

as key oncogenic drivers.41,42 These putative super-enhancers are present in the cell line MOLM-1 

and seem to be linked to ARID1B on chromosome 6 (#2301) and MYC/GSDMC on chromosome 8 

(#7073) and may be responsible for increased BCL11B expression. The selective overexpression of 

BCL11B may give the cells a specific advantage, whereas the other genes located on 14q32 would 

not. Interestingly, BCL11B protein appeared to be expressed in additional primary AML cases 

that did not carry BCL11B translocations. In these AML cases other mutations may be present or 

BCL11B may be activated by other means.   

 The 14q32 region, including BCL11B, has been subjected to translocations in T-ALL and 

acute mixed lineage leukemia.23,36-40 In fact, the involvement of 14q32 translocations and BCL11B 

in AML has been debated.43 However, the immunophenotyping and molecular analyses of the 

AML samples with BCL11B translocations described here showed that these leukemias have a 

biphenotypic immunophenotype, but also all carry a common AML-associated FLT3-ITD mutation. 

These leukemias do, therefore, share a characteristic genetic feature with AML. 

 BCL11B is expressed in T-lymphocytes and T-cell leukemias and is a pivotal regulator of a 

number of genes related to T-cell proliferation and differentiation such as IL2, NF-kappaB, TCRβ 

and p21.44-48 It was shown recently that the expression of BCL11B in T-cell lines resulted in markedly 

increased apoptosis resistance following treatment with radiomimetic drugs accompanied by 

a cell cycle delay caused by accumulation of cells at G1.49 We examined the consequences of 

Bcl11b overexpression on proliferation and differentiation in a mouse myeloid 32D(GCSF-R) cell 

line model. 32D(GCSF-R) cells, expressing full length murine Bcl11b cDNA, showed a consistent 

decreased proliferation rate compared to cells expressing the empty vector or to the parental 
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untransfected cells. Upon stimulation with GCSF, 32D(GCSF-R) cells overexpressing BCL11B 

showed less maturation towards granulocytes compared to cells expressing empty vector, giving 

supporting evidence that BCL11B is partially blocking or delaying differentiation in 32D(GCSF-R)  

cells. The decreased proliferation rate in BCL11B expressing cells may suggest that a proliferative 

mutation, such as a FLT3-ITD, may indeed be required for full leukemic transformation.

 In conclusion, we show that BCL11B is involved in 14q32 translocations with different putative 

chromosomal partners in well-characterized AML cases using high-throughput genome-wide 

genotyping, cytogenetics and GEP. In these translocations, full length BCL11B is highly expressed 

concomitantly with T-cell specific markers. We speculate that due to the translocations, BCL11B 

expression is influenced by active transcriptional elements on the partner chromosomes 

resulting in high BCL11B expression and consequently T-cell associated genes. The murine cell 

line 32D(GCSF-R) overexpressing BCL11B shows decreased proliferation and partial delayed 

differentiation, which provides evidence that BCL11B may have suppressive and disruptive effects 

on cell proliferation and differentiation of myeloid cells. Altogether, these analyses revealed 

BCL11B as a putative oncogene in AML with and possibly without aberrations involving 14q32.
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ABSTRACT

A major cancer research field involves itself with the accurate detection of genetic lesions for 

the identification of novel cancer-related genes. Different next generation sequencing (NGS) 

platforms generate high-quality data enabling the estimation of copy number variations (CNVs). 

Various CNV estimation algorithms for NGS data have been developed, however, the ability to 

fully mitigate recurrent noise is still lacking. Therefore, a robust assessment of CNVs in high-

variable regions, conferring recurrent statistical noise, is required. We developed a statistical 

framework utilizing information derived from diploid reference set samples and demonstrated 

a highly improved CNV estimation compared to contemporary methodologies. To exemplify 

the algorithm’s strengths we applied our model on datasets derived from two distinct genome 

sequencing archetypes: (1) whole genome sequencing (WGS) data generated by Complete 

Genomics (CG) technology and targeted resequencing data generated on the Illumina HiSeq 

2000, and (2) whole exome sequencing (WXS) data. The former embodies library strategies 

generating sequencing data from continuous regions, while the latter embodies a library strategy 

generating sequencing data from non-continuous and non-equidistant regions. To proof the 

effectiveness of our algorithm we compared our detected CNVs to those obtained with the 

Affymetrix DNA mapping arrays. We established that an increase in model resolution correlates 

with the number of detectable focal genetic lesions, largely corroborated by structural variants 

(SVs). Finally, our statistical framework produces good results for WGS and WXS data derived from 

different sequencing platforms, establishing its general applicability. 

Supplemental material: http://hema13.erasmusmc.nl/mathijs_sanders/chapter11/
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INTRODUCTION

Next generation sequencing (NGS) data enable the high-resolution characterization of cancer 

genomes.1-4 In general, the purpose of sequencing genomic material of cancerous tissues is to 

uncover acquired mutations, short insertion-deletions (indels), and structural variants (SV). 

However, NGS reads can also be used for the estimation of copy number variations (CNV). In fact, 

high-density sequence reads enable the detection of genetic lesions serving as guides towards 

the identification of novel cancer-related genes.5-9 

 Estimating CNVs is particularly difficult within high-variable regions. These regions mainly 

comprise repeat elements (e.g. LINEs, SINEs, and LTRs) which are notorious genomic elements 

conferring improper or ambiguous aligned reads. Additionally, systematic bias inherent to the 

individual sequencing technologies result in specific and incorrect fragment count patterns, 

presenting yet another unanswered challenge. These biases result in a consistent number of 

regions with under, but mostly, over-estimated copy number estimations observable in all 

sequenced samples. Additionally, most CNV estimation algorithms provide a spatial resolution 

too large for robust detection of genetic lesions affecting small genetic elements, e.g. exons. 

For example, the Complete Genomics (CG) pipeline provides a spatial resolution of 100 kb for 

sequenced tumor cases, which is sufficient for detecting large genetics lesions, however, is too 

coarse for revealing genetic lesions smaller than the spatial resolution.

 To mitigate these biases and ameliorate the quality of CNV detection, we developed a statistical 

framework for CNV estimation from NGS data by integrating information derived from reference 

set samples. De facto, the high-variable regions are located on the same physical position in 

different individuals, although with different fragment count magnitudes (Supplementary Figure 

1), enabling the extraction of these intrinsic characteristics from the fragment reference sample 

count profiles. These characteristics are used to filter and normalize the noisy fragment count 

profiles from samples of interest, ultimately, producing filtered CNV profiles which could serve as 

input for further analyses.

 We demonstrate the improved CNV estimation procedure by applying it to three distinct 

datasets derived from two genome sequencing archetypes. The first archetype embodies 

technologies sequencing continuous regions, implying that a particular region of the genome 

is completely sequenced without non-sequenced interfering regions. For this archetype context 

we applied the model on whole genome sequencing (WGS) data generated from 3 acute myeloid 

leukemia (AML) cases and matched controls by CG DNA nanoball sequencing technology. 

Subsequently, we utilize our model on targeted resequencing data from the chronic myeloid 

leukemia (CML) cell line K562, generated by the Illumina HiSeq 2000 platform. For the second 

sequencing archetype context, we applied the model on whole exome sequencing (WXS) data 

derived from 6 unrelated de novo AMLs with matched controls and matched relapse samples. 

To assess the model sensitivity we compared the determined CNVs to those obtained with 

Affymetrix DNA mapping arrays. We established that an increased model resolution leads to a 
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gain in detectable CNVs and validated the veracity of these CNVs by corroborating them with the 

independent in silico methodology of structural variants (SVs). In conclusion, we demonstrated 

that the algorithm enables the prediction of CNVs using diverse NGS platforms.

MATERIAL AND METHODS

Package
We compiled all described methods in the package CNVsvd, freely available from http://hema13.

erasmusmc.nl/CNVsvd/. Our package is a C++ (gcc 4.7.2) and R (R 2.15.2) package that extracts 

coverage information from appropriate source materials – coverage information files for CG 

sequencing data and BAM files for other sequencing platforms – according to user preferences 

and generates CNV profiles ready for importation into SNPExpress10, included in the package, 

or CNV segmentation algorithms11,12 for further processing. The package is tested on different 

operating system platforms (Linux: Ubuntu 10.04, Windows: Windows XP and 7).

Sample processing
Complete genomics

Files containing coverage information for 45 healthy reference set samples were downloaded 

from the CG website (Complete Genomics Diversity set repository13, NCBI 36, Pipeline 1.10.0). Our 

3 CG AML samples and their matched controls were processed using NCBI 36 and Pipeline version 

1.10.0. Consequently, the reference set and AML samples are directly comparable. Affymetrix 

500K DNA mapping arrays for the same 3 AMLs were processed as reported previously.10

Targeted resequencing

Targeted resequencing data of chromosomal regions 3q21 and 3q26 was generated by targeted 

custom capture beads (Nimblegen v2) for 8 AML samples (cell line K562, and 7 normal karyotype 

AMLs [NK-AMLs]) following the manufacturer’s protocols. Captured samples were sequenced on 

the Illumina HiSeq 2000 and aligned against human genome 19 (hg19) using the Burrows-Wheeler 

Aligner 0.5.9.14 Coverage information per window was extracted by using the SAMtools API 

0.1.1315, included in the software package. Structural variants were determined by BreakDancer 

1.1.16

Whole exome sequencing

WXS sequencing data was generated from exome bead captured material (SeqCap EZ Human 

Exome Library v3.017) for 6 de novo AML cases (Supplementary Table 1), 6 matched in vitro 

expanded T-cell controls, 4 matched relapse AML cases out of the 6, and 24 unrelated in vitro 

expanded T-cell controls functioning as an addition to the reference dataset. Captured samples 

http://hema13.erasmusmc.nl/CNVsvd/
http://hema13.erasmusmc.nl/CNVsvd/
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were sequenced on the Illumina HiSeq 2000 and aligned against hg19 using BWA. We developed 

an algorithm that utilizes a provided BED file containing the exon interval structure and extracts 

the fragment counts accordingly. The fragments are extracted by using the SAMtools API.15 

Affymetrix 250K Styl DNA mapping arrays were processed as previously reported.10

In vitro T-cell expansion

T-cells were isolated from the diagnostic material of each AML case and expanded with anti-CD3 

and anti-CD28 monoclonal antibodies in the presence of IL-2. After 2 weeks T-cells were enriched 

with MACS separation columns. All diagnostic material derived T-cell populations were shown to 

be >98% pure and served as normal controls.

Window estimations
Continuous sequenced regions

Fragment count statistics were determined from coverage information within consecutive 

non-overlapping windows positioned along the genome. The window size, i.e. resolution, is 

determined based on the application of desire, e.g., detecting small CNVs with higher resolution. 

Too large windows could result in missing small focal aberrations, while too small windows might 

yield substantial fragment count variability. Coverage information from all nucleotide positions 

within a given window contribute equally to the count statistic. We removed all windows with 

a consistent low or zero coverage in all reference set cases to improve numerical stability. 

Population variation is a strong confounder for estimating CNVs in particular genomic loci due to 

population divergence. Options in the algorithm are included to omit regions devoid of reads in 

a fraction of the reference set to avoid population variation confounding. Due to low numbers of 

male references samples, we excluded chromosome Y and multiplied the coverage information 

of all windows within chromosome X by two for male samples.

Non-continuous sequenced regions

Given the non-continuous nature of WXS we extracted the fragment counts according to the 

exon structure. Fragment counts are extracted from BAM files by utilizing a BED file containing 

the captured region intervals. The algorithm requires, as an input, the desired size of the window 

ω (Figure 1). Captured fragments originating from interval edges normally extend beyond 

the interval, therefore we included a parameter σ extending the interval edges enabling the 

extraction of full fragments. Fragments are only considered when uniquely aligned and count 

estimates are stratified on map quality. Unpaired reads are retained only when aligned uniquely 

with a sufficient mapping quality. Consecutive non-overlapping windows are used when an exon 

is sufficiently large to encompass multiple windows. If a portion of the exon remains uncovered 

by a window, i.e. due to the window size, a new window is introduced if this portion is larger than 

half of the window size; otherwise it is added to the adjacent window.
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Figure 1. Generating CNV profiles from WXS data. Specific regions of the genome are captured, e.g. exome. 
The algorithm determines based on the window size ω, the extension parameter σ and exome structure how 
to optimally place the windows. For each window the fragment counts are determined. Within the depicted 
locus a region, encompassing partially exon 2 and completely exon 3, is deleted resulting in a lower number of 
fragment counts. The deletion also results in a SV depicted by a paired-end read with discordant distance. The 
fragment counts are processed by the algorithm and compared to the reference set. The resulting CNV profile 
is illustrated in SNPExpress10 and the same deletion is visualized for two patients (baby blue).

Normalization
Supervised quantile normalization

All resulting count profiles derived from continuous regions were normalized by supervised 

quantile normalization.18 Reference set samples were used to construct a reference distribution 

and all samples, including AML samples, were normalized against this distribution. 

Adapted FPKM

We developed a normalization technique based on the fragments per kilobase of exon per 

million fragments mapped (FPKM) statistic. Given the non-continuous exome structure and 

differing window sizes the FPKM statistic would better suit the nature of WXS. The adapted FPKM 

is calculated for every window by:
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Where FPKM
i
 is the FPKM statistic, F

i
 is the fragment count, and L

i 
the length for window i. Finally, 

the statistic is normalized by the total number of counted fragments N passing the quality criteria.
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Scaling

Subsequently, the fragment statistics are scaled for further processing. First, the mean fragment 

count for each window was computed from the reference set samples. For all samples, including 

the reference set samples, the fragment counts were divided by the calculated mean per window. 

If the genomic locus of the current window is not afflicted by a genetic lesion, the resultant 

statistic would equate to 1.

Singular value decomposition of the reference samples

We assume that for reference set samples, e.g. healthy individuals, on average the copy number 

equals 2. Commonly healthy individuals harbor many different natural CNVs19,20, nevertheless, we 

assume that these are not recurrent in the majority of the reference set samples. Given these 

assumptions we hypothesized that recurrent variation stems from high-variable regions and 

systematic biases inherent to the sequencing technology. The high-variable regions share the same 

genomic loci for all sequenced cases, irrespective of disease background (Supplemental Figure 1 

and Figure 2A). Interestingly, this variation is described by the first few principal components 

derived from the reference set fragment count profiles, called systematic noise components. We 

found that typically the first two components contain most of the systematic variance (data not 

shown), however, an appropriate number of components can be determined from the singular 

values.21 Utilizing singular value decomposition (SVD) for noise eliminating is an established 

methodology.22 Systematic noise removal by principal components for AML cases harboring 

monosomies, i.e. loss of chromosomes, or a complex karyotype, i.e. a mixture of chromosomal 

losses and gains, presents a difficult context. Numerical changes of chromosomes is prevalent 

among different cancer subtypes and strongly associated with prognosis and treatment outcome, 

e.g. AML.23 Utilizing principal components, without appropriate preprocessing, results in the 

obscuration of chromosomal losses or gains. This conundrum is solved by calculating a mean 

statistic from the normalized count profile for every chromosome of a sample. This mean statistic 

is subtracted from the normalized profile per chromosome resulting in a count profile centered 

around 0. These statistics are preserved to be re-added after noise removal. This procedure is 

viable as it does not interfere with SVD or noise removal. First, we calculate:
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 is the normalized count profile centered around 0 for sample i and 

chromosome j, 
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 is the normalized count profile and μ
i,j the mean statistic of the count profile 

for sample i and chromosome j. For every chromosome the normalized data of the reference set 

samples are structured into a data matrix X (n samples x m covariates, n < m). Using SVD we have 

the following:
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Here U (n x n) and V (n x m) are matrices with orthogonal basis vectors. The matrix Σ (n x n) contains 

the singular values. The matrix V contains the systematic noise components, describing variance 

observed in the reference set while the singular values amount to the variance strength. 

 For SVD it is important not to include the centered count profiles of cancer samples into X. 

Including cancer samples runs the risk of removing components describing recurrent genetic 

aberrations seen in the disease of interest, especially if the reference data set is small relative to 

the cancer data set. To determine the systematic noise components from these large matrices 

would be computational intensive. Therefore, we combined eigenvalue and singular value 

decomposition:
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The data matrix given in (equation 1.3), is only of size n x n (i.e. 45 x 45 for the CG data, 7 x 7 for the 

targeted resequencing, and 30 x 30 for the WXS data), and enables the fast computation of the 

matrices D and U. We subsequently determined the  noise component matrix V:
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Principal component regression

SVD determines n high-dimensional noise components per chromosome. We used the g strongest 

noise components in a principal component regression procedure estimating their contribution 

to the count profiles of the AML and matched control samples:
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The systematic noise present in the fragment count profile of sample i and chromosome j is 

modeled by 
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, determined by fitting the systematic noise components to the centered 

fragment count profile (Figure 2A). Ultimately, we remove the estimated noise contribution from 

the normalized data and re-add the mean statistic to preserve the possibility to detect whole 

chromosome aberrations:

����� =
��

�� � � 

 
����� 
 
�� 
 
�� 
 
���������������� = ������� � ����	(�� �) 

 

��������������  

 
�����  

 
����  

 

� = ����	(�� �) 
 

��� = �������� = ����� = ����	(�� �) 
 

�� = √�������	(�� �) 
 
����������� = ��������� � �� ���������	(�� �) 
 
����������� 
 

���������������� = ���������������� � ����������� � ����	(�� �) 

The resultant filtered fragment count profiles contain residual sample specific noise and copy 

number variations. 
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Copy number estimation

Principal component regression is effective for noise removal in high variable regions, however, 

it cannot reduce sample specific noise. Therefore we performed spatial filtering (median 

smoothing) for applications involving continuous regions, trading some spatial resolution for less 

noisy coverage estimation. Finally, the filtered residuals are linearly transformed to represent the 

correct copy number variation estimations (Figure 2B). Due to the non-equidistant spacing of the 

exome, median smoothing has not been applied on WXS data. Instead, for WXS we considered a 

genetic aberration detected if three adjacent windows with similar CNV estimates were observed.

Figure 2. Fitting noise components to the count profile. (Blue) Count profile for chromosome 3 was 
generated with a 0.5 kb resolution from CG data (Red). Noise profile was determined by fitting the noise 
components to the count profile. (A) First noise component fitted to the count profile of an AML case. Of 
note, some blue peaks are almost completely covered by the noise profile. (B) Estimated CNV profile after 
normalization and noise removal of the same AML case.
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DATA DESCRIPTION AND VALIDATION

Complete genomics data set: continuous sequenced regions
(I)  Comparing to CG CNVs

We obtained 3 unrelated AMLs with matched controls sequenced with CG’s DNA nanoball 

sequencing technology. Initially, we compared the CNVs detected by our algorithm with different 

window sizes, 5 and 10 kb, to those detected with CG’s pipeline which uses 100 kb windows for 

tumor samples.

(II) Comparing to DNA mapping arrays

To demonstrate the sensitivity of our algorithm we characterized all 3 AMLs on the Affymetrix 

500K DNA mapping array. Subsequently, we compared CNVs detected with our algorithm, yielded 

with a 5 kb window size, to those detected with the array. 

(III) Increased resolution within the algorithm

To infer if an increase in the resolution of the algorithm yielded a gain in CNV detection sensitivity, 

we compared CNVs detected with a window size of 5 kb those obtained with a window size of 0.5 kb.

(IV) Corroboration with structural variants

The veracity of detected CNVs, detected with a 0.5 kb window size, is assessed by corroboration 

with SVs. This in silico methodology independently detects genetic lesions and provides further 

evidence. SVs are mainly used for the detection of deletions, large inter- and intrachromosomal 

events (e.g. translocation, inversions), and tandem duplications, however, is not used for detecting 

amplifications or complex genetic aberrations. The nature of the SVs prevents the detection of  all 

amplification events, resulting in our primary focus on deletion CNVs, i.e. copy number of 0 or 1, 

for corroboration with SVs.

(V) Somatic CNVs

Finally, assessing the somatic status of CNVs (sCNV) is essential for cancer research. The matched 

control is used to determine the number of somatic CNVs detected with a 0.5 kb window size.

Targeted resequencing data set: continuous sequenced regions
(I)  CNV estimation 

We determined CNVs in the CML cell line K562 from targeted resequencing of the 3q21 and 3q26 

chromosomal loci. In total 7 NK-AMLs were utilized as reference set samples. CNV detection was 

performed by setting the window size to 0.5 kb. SVs were detected and used as corroborating 

evidence for the determined CNVs.
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Whole exome sequencing data set: non-continuous sequenced regions
(I) CNV estimation

CNVs were determined from the WXS dataset with a 0.5 kb window size, an extension parameter 

of 0.1 kb, and utilizing a BED file describing the exon structure. The data set comprises 6 diagnostic 

de novo AML with 4 matched AML relapse samples and for all samples a matched T-cell control, 

implying that 2 de novo AML cases did not have matched relapse samples. The reference set 

included 24 unrelated T-cell control samples derived from other AML patients and the 6 matched 

T-cell control samples.

(II) Comparing to DNA mapping arrays

All 6 de novo AML samples were characterized on Affymetrix 250K StyI DNA mapping arrays. We 

compared the CNVs detected by our algorithm to those obtained with the DNA mapping arrays.

(III) Conundrum and validation

Validating CNVs in WXS data is challenging. Unless the breakpoint occurs directly in an exon 

or its proximity, there are no structural variants validating the determined CNVs. To resolve this 

issue detected CNVs in the AML samples were deemed true if it was also detected in the relapse 

samples, but not in the T-cell controls, i.e., a sCNV, or in both the relapse and control samples, i.e., 

a germline CNV.

RESULTS

We investigated the robustness of the newly developed algorithm within two genome 

sequencing archetypes. Each sequence archetype presents its own set of conundrums addressed 

by the novel statistical framework irrespective of the sequencing platform. Using three data sets 

representing the two archetypes we highlight examples and aspects exemplifying the strength 

and adaptability of the algorithm.

CNV estimations in continuous sequenced regions
Complete Genomics DNA nanoball sequencing technology

We demonstrate the algorithm sensitivity and exactness of the detected CNVs by using different 

comparisons. The results are highlighted by a single index AML patient, AML #1. The results for 

the remaining AML cases, AML #2 and #3, are listed in the tables or in the supplementary material 

whenever noted.
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Comparison to the CG pipeline

We appraised the efficiency of noise estimation and removal by comparing the CNVs determined 

by the CG pipeline to those obtained with our algorithm with 5 and 10 kb window sizes. Genome-

wide CNV profiling by the CG pipeline revealed a number of regions with medium to very high 

copy numbers (Figure 3A) observed consistently in the AML as well as reference samples (data not 

shown), comprising high-variable or pericentromeric regions, impairing robust CNV estimation. 

Our model mitigates this intrinsic bias, thereby decreasing the contribution of systematic noise to 

the AML CNV profiles (Figure 3B an 3C). Interestingly, the model revealed additional focal genetic 

lesions, smaller than the spatial resolution of the CG pipeline (orange box Figure 3, detailed in 

Supplementary Figure 2). Irrespective of the window size, 5 or 10kb, similar CNV profiles were 

estimated with only some additional genetic lesions detected using the smaller window size, 

indicating that an increased resolution correlates with CNV detection efficiency (Figure 3B).

Figure 3. Copy Number estimations for the complete genome of one AML case. (A) CG CNV profile 
estimated with 100 kb windows. (B) Copy number estimations from consecutive 5 kb windows. (C) Copy 
number estimations from consecutive 10 kb windows. (Orange box) Some deletions detected by our 
algorithm, but not by CG’s pipeline. Regions shown in more detail in Supplementary Figure 2.

CNV estimation is essential for delineating genetic events

Enhanced CNV estimation provides a beneficial feature for disease delineation. Not all genetic 

lesions are detected by SVs and enhanced CNV estimation could provide further evidence for 

genetic lesion acquisition. For example, the AML index patient revealed copy number gains 

encompassing the gene BCR on chromosome 9 and ABL1 on chromosome 22 (Supplementary 

Figures 3 and 4), formed by an unbalanced translocation, resulting in the BCR-ABL1 fusion 
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transcript, a tell-tale marker of CML, missed by routine cytogenetics. We confirmed the presence 

of the BCR-ABL1 fusion transcript in AML#1 by RT-PCR (Supplemental Figure 5). The translocation 

was detect by SVs, however, the gain of genetic material on each side of the breakpoint remained 

undetected.

Detecting additional CNVs with respect to DNA mapping arrays

DNA mapping arrays are the traditional methodology for estimating CNVs. Probe sets designed 

to measure single nucleotide polymorphism (SNP) genotypes are also utilized for CNV estimation. 

We compared the CNVs detected by our algorithm to those obtained with the DNA mapping 

array and determined the overlap and differences (Table 1A), revealing that our algorithm detects 

substantially more CNVs (e.g., Figure 4). CNV analysis on the index AML case demonstrated that 

the algorithm detected all genetic lesions observed with DNA mapping arrays and more (Table 

1A and Supplementary Figure 6). Interestingly, not all CNVs detected by DNA mapping arrays for 

the remaining two AML cases were detected by our algorithm. Diligent visual inspection of the 

missed CNVs revealed that these are presumably false positives, given the local pattern of CNV 

profile variance (e.g. intermittent gains and losses at the same genomic locus), or are located at 

regions difficult for reliable CNV estimation (e.g. pericentromeric or high-variable regions). The 

latter case demonstrates that the principle component procedure attenuates the effect of these 

regions on the CNV profile estimation.

Figure 4. CNV on chromosome 3. (A) Deletion of a region (baby blue) on chromosome 3 for AML sample #1 
detected by CNV estimates from our algorithm utilizing CG data. (B) This deletion is not detected when AML 
sample #1 was analyzed using the Affymetrix 500K DNA mapping array.

Increased resolution correlates with enhanced CNV detection

An increased resolution of the CNV estimation algorithm enables the detection of smaller genetic 

lesions, which could play a pivotal role in the pathogenesis of leukemia.24 While large genetic 

lesions frequently occur in cancerous tissues, small and specific genetic lesions enable the 
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determination of novel cancer-related genes, especially in regions harboring CNVs of different 

sizes. Focal aberrations substantially smaller than the window size will not confer a large difference 

in the total fragment count and are therefore likely to be missed.

 Increasing the algorithm’s resolution from 5 kb to 0.5 kb enhanced the CNV detection rate. Most 

additionally detected CNVs were of the size 1.5-6 kb, implying that a 5 kb resolution is insufficient 

for detecting lesions. In the AML index patient, all but a single CNV identified with a 5 kb resolution 

were also identified with a 0.5 kb resolution (98% for AML #1, Table 1B). Similar patterns were 

observed in the other two AML cases (68% and 80% for AML #2 and AML #3 respectively). CNVs 

remaining undetected with the higher resolution, 0.5 kb, but detected with the lower resolution, 

5 kb, are mostly associated with regions encompassing multiple high-variable regions increasing 

the fragment count variance substantially. The increased granularity, due to a higher resolution, 

enables the delineation of local systematic noise signatures into separate components.

Structural variants corroborate the detected CNVs

WGS enables the determination of structural variants which are utilized for determining indels, 

translocations, and inversions.25 Paired-end reads derived from homologous regions, e.g. repeat 

regions and pseudogenes, are the leading cause for detecting false positive SVs, if aligned to 

ambiguous positions. CNV estimations could serve as independent corroborating evidence for 

deletion events, further increasing the detection likelihood for true genetic lesions.

 Increasing the model resolution led to a gain in CNVs detected, however, the question 

remains if they represent true genetic lesions. We determined that most CNVs detected by a 5 

kb resolution are corroborated by SVs increasing the likelihood that these CNVs are true genetic 

lesions. Subsequently, we determined that the majority of detected CNVs with a 0.5 kb resolution 

case are corroborated by SVs (Table 1C). On average, 60% of additionally detected CNVs are 

corroborated by SVs. Careful visual inspection confirmed that most non-corroborated CNVs are 

likely true genetic lesions. Strikingly, these CNVs are supported by multiple consecutive windows 

with consistent similar copy number estimates. In some instances, the same CNV is detectable in 

the matched control sample hinting at a germline CNV not detected by SVs. Likewise, analyses 

from the other 2 AMLs demonstrated a similar pattern, a substantial proportion of CNVs are 

corroborated by SVs (Table 1C). Similar to the index patient the non-corroborated CNVs are strongly 

supported by CNV estimates from multiple consecutive windows (Supplementary Figure 7).

Somatic CNVs

CNV profiles for matched controls where generated, i.e from in vitro expanded T-cells, by applying 

the same statistical framework, enabling the determination of sCNVs. Surprisingly, most of the CNVs 

detected in the three AML cases appeared germline CNVs as they were detected in the matched 

control. In the index AML patient only 10 CNVs were deemed somatic (Table 1D), which comprised 

small (1.5 – 6 kb) and large CNVs. For the other two AML cases the number of sCNVs was even lower.
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Table 1. Detection of CNVs in 3 AML cases characterized by NGS and DNA mapping arrays.

A. SNP array - 5kb. windows B. 5kb. - 0.5 kb. windows C. Detected by SV 
(deletions) D. 0.5 kb

Array 5 kb. Overlap 5 kb. 0.5 kb. Overlap 0.5 kb. Overlap Somatic
AML #1 9 42 9(100%) 42 121 41(98%) 80 54(68%) 10(8%)
AML #2 5 31 3(60%) 31 112 21(68%) 81 48(59%) 2(2%)
AML #3 3 44 1(33%) 44 110 35(80%) 66 44(67%) 8(7%)

(A) Novel against traditional. The NGS algorithm utilizing CG data with 5kb resolution in comparison to the 
Affymetrix 500K DNA mapping array. (B) Resolution. CNVs detected by increasing the resolution from 5 kb to 
0.5 kb. (C) Intersection of CNVs detected with a resolution of 0.5kb and the detected SVs (D) sCNVs detected 
in the tumor sample.

Targeted resequencing of predefined genomic loci

We investigated whether the algorithm is applicable to sequencing data derived from different 

sequencing platforms, e.g. Illumina HiSeq 2000. The CNV profile for the K562 cell line was 

determined by utilizing a reference set comprising 7 NK-AMLs. In total, 7 CNVs, i.e. 6 tandem 

duplications and 1 focal deletion, were detected and mainly conferred by tandem duplications 

as evidenced by SVs. For example, an amplification involving the gene PPM1L was detected 

(Supplementary Figure 8 and 9) and revealed by SV analysis to be a consequence of a tandem 

duplication.

 Additionally, our algorithm detected, in conjunction with a corroborating SV, a specific 

tandem duplication within the gene MECOM (MDS1-EVI1 complex locus), encoding for MDS1 

and EVI1 (Supplementary Figure 10). The gene EVI1 encodes a proto-oncogene which, upon 

overexpression, confers a dismal prognosis in AML.26,27 This yet unreported genetic lesion may 

explain EVI1 overexpression, previously reported for K562.28 The identified tandem duplication 

was validated by Sanger sequencing (Supplementary Figure 11).

Conclusion

Ultimately, these data demonstrate that our analysis tool is applicable to sequencing data derived 

from different sequencing platforms. Both sequence methodologies, i.e. CG DNA nanoball 

sequencing and Illumina HiSeq 2000, demonstrate systematic noise in the fragment count profiles, 

which is substantially mitigated by our algorithm. We have established its general applicability, 

increased sensitivity, and overall increased specificity on data derived from continuous sequenced 

regions.

CNVs estimations in non-continuous sequenced regions
Whole exome sequencing

Sequencing of non-continuous and non-equidistant regions is difficult for robust CNV estimation 

due to the mainly unrelatedness of adjacent windows. Although WXS data is less affected by high-
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variable regions, located mainly in intergenic and intronic regions, it is still perturbed by other 

inherent properties of the capture design, e.g. the capture of pseudogenes.

Detecting CNV aberrations

We next investigated the robustness of the newly developed algorithm for CNV detection in 

non-continuous sequencing data. First, we demonstrated that our algorithm is able to detect 

whole chromosomal aberrations, therefore accommodating the detection of aneuploidy. A gain 

of chromosome 8 was detected in the leukemic blasts of patient 2215 corroborated by a DNA 

mapping array and standard cytogenetics (Supplementary Figure 12A, Supplementary Table 1). 

Of note, cytogenetics denoted that this gain was present in 60% of the cells, implying that the 

algorithm detects subclones. An acquired gain of chromosome 11 was detected in patient 2226, 

corroborated by a DNA mapping array and cytogenetics (Supplementary Figure 12B). Finally, 

multiple CNVs of differing sizes have been detected for all 6 AML patients (range: 7-21, Figure 5).

Comparison to DNA mapping arrays

All 6 de novo AML cases were characterized by DNA mapping arrays. Careful inspection revealed 

that the algorithm was able to corroborate all CNVs detected by DNA mapping arrays, except for a 

single CNV encompassing the pseudogenes IGLL3P and LRP5L. Visual inspection of DNA mapping 

array data revealed that this region remains difficult for robust CNV estimation (data not shown), 

as it comprises multiple pseudogenes and could be equated to high-variable regions. The effect 

of this region on the fragment count profile was mitigated by the noise removal methodology 

within the algorithm.

 AML patients have an exceptionally low number of CNVs, with a mean of 2.38 CNVs per case 

as determined by DNA mapping arrays.29 Strikingly, compared to the DNA mapping arrays, the 

algorithm detected additional CNVs in all 6 AML cases. Interestingly, most additionally detected 

CNVs are corroborated by the matched control or relapse samples. We observed a significant 

increase in CNVs detected by our algorithm when compared to DNA mapping arrays (p=0.0345, 

Figure 5).

The detection of the clinically relevant MLL-PTD
Initially, a gain was detected in the gene MLL, located on chromosome 11, in patient 2226. This 

patient harbors a gain of chromosome 11, however, a specific region within MLL is additionally 

amplified and not observed in the matched control or relapse samples (Supplementary Figure 13). 

Given current knowledge, this implies that the patient acquired a MLL partial tandem duplication 

(MLL-PTD), which remained undetected by DNA mapping arrays. The aberration MLL-PTD 

comprises a duplication of consecutive exons within the gene MLL and is postulated to result in a 

recessive gain-of-function30 and to associate with shortened remission time.31 The partial tandem 

duplication is hard to detect by standard PCR methodology as there is no consensus on which 
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consecutive exons are duplicated in tandem, necessitating multiplexed PCR, which occasionally 

produces false positives. The algorithm enables the detection of this aberration, which was 

corroborated by a SV, demonstrating that the MLL-PTD was acquired (Supplementary Figure 14).
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Figure 5. Number of CNVs detected with DNA mapping arrays and WXS. (Pink) Number of CNVs detected 
in 6 de novo AML cases by DNA mapping arrays (Blue) Number of CNVs detected in the same 6 de novo AML 
patients using WXS data. P-value was determined with the Wilcoxon rank-sum test.

DISCUSSION

We developed a statistical model enabling improved and reliable CNV estimation from NGS 

methodologies by removing systematic variation introduced by high-variable regions. The optimal 

choice of systematic noise components depends on the pervasiveness and correlation structure 

of the systematic noise. A scree plot, depicting the persistence of the noise components through 

eigenvalues, facilitates the choice of the optimal number of noise components.21 Choosing a too 

low number of components results in the retention of systematic noise, while there is no heuristic 

for choosing too many components. Systematic noise is mainly contained within the first few 

noise components, while the remaining components mainly comprise variance conferred by 

natural CNVs. These remaining noise component will not optimally fit to count profiles if cases 

of interest do not harbor these natural CNVs, thereby conferring the regression coefficient to 
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become approximately zero and omitting the noise component from contributing to the noise 

estimation. Interestingly, for WXS sequencing applications, only one principal component seems 

sufficient, contrasting to WGS data for which at least two components are necessary. We advance 

the hypothesis that this is due to the nature of the exome, containing little to no repeat sequences. 

Systematic noise in WXS data mainly arises from systematic technical noise and the accidental 

capture of pseudogenes. Using normalization in combination with noise reduction we were able 

to generate high-resolution CNV estimations from NGS coverage information. Essential for our 

methodology is the presence of a reference data set of diploid controls, used for normalization 

and determination of the systematic noise components.

 In comparison, the WGS based CNV estimation algorithm CNVnator5 uses fragment count 

information from tumor and normal pairs, however, is unable to reduce systematic variance as it 

does not utilize variance information derived from a reference set. Varscan 27, a WXS based CNV 

estimation algorithm, uses fragment count information from tumor and normal pairs to estimate 

CNVs, however, it does not provide methods for dealing with high-variable regions. CoNVEX32, 

specifically designed for WXS data, uses discrete wavelet transformation (DWT) for noise reduction 

and estimates the CNVs using a Hidden Markov Model (HMM). It uses average read depth ratios 

from tumor and matched normal as input. Although the DWT will reduce noise in some instances, 

it will not be able to: (I) calculate the absolute CNV, only denoting if regions are gained or lost, (II) 

capture the normal population fragment count variance. The latter results in the retention of high-

variable regions, especially when not present in the matched normal control. CoNIFER33, specific 

for WXS based CNV estimation, closest resembles our algorithm. Likewise, it employs SVD to 

normalize count profiles of samples of interest. Fundamental differences lay in the normalization, 

derivation of the SVD and the use of its singular value components. CoNIFER derives the SVD from 

all sequenced samples simultaneously, i.e., from a mix of cases and controls. This methodology is 

valid only under the assumption that there are no recurrent genetic aberrations in the sequenced 

samples of interest, which could contribute to a strong systematic noise component. Sequencing 

experiments involving cancerous tissues with similar genetics lesions provides an example which 

invalidates this assumption. CoNIFER generally classifies these aberrations as noise, subsequently 

removes them, and is therefore unable to detect whole chromosome aberrations in aneuploidic 

samples. Known examples of whole chromosomal aberrations involve chromosome 5 and 7 in 

AML, which have been associated with poor prognosis.34,35 Missing those aberrations would omit 

vital information for correct classification or prognostication of these AML cases. Similar to our 

algorithm, CoNIFER normalizes the fragment count statistics to make them comparable. However, 

unlike our algorithm, CoNIFER’s Z-RPKM loses the ability to detect absolute copy number without 

a large set of additional samples. Knowing the absolute copy number could be essential for 

prognostication and delineating the pathogenesis of the disease of interest.36,37

 The algorithm enables CNV estimation on data generated from different library strategies. 

We demonstrated, based on a CG data set, that the algorithm detects more validated CNVs than 
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provided by CG’s native algorithm and at a higher resolution. Additionally, the comparison of 

high-density DNA mapping arrays to our algorithm demonstrated the superiority of the latter to 

detect novel CNVs. We have increased the detection resolution as far as 0.5 kb and compared it to 

a statistically more robust, but less detailed resolution of 5 kb. The algorithm detected additional 

CNVs, mostly corroborated by SVs, with sizes as small as 1.5 kb. Subsequently, we detected 

many tandem duplications in the targeted resequencing data of the cell line K562 which were 

corroborated by SVs. We demonstrated a tandem duplication within the MECOM locus, which 

could result in the overexpression of the dismal marker EVI1.

 In addition we demonstrated that our algorithm is applicable to sequencing data from non-

continuous regions. We demonstrated that the algorithm, using WXS data, is able to detect all 

CNVs detected with DNA mapping arrays except one. Interestingly, the algorithm detected more 

CNVs compared to DNA mapping arrays, which is striking as consensus dictates that AML has 

a very low frequency of genetic aberrations. Additionally, we were able to detect aberrations 

leading to partial tandem duplications in the gene MLL, which were not detected by the DNA 

mapping arrays. 

 In conclusion, we demonstrated that our novel statistical framework reliably detects more 

focal CNVs in different types of NGS data which is of great importance for detecting genetic 

abnormalities underlying the disease of interest.
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1. SUMMARY

The advent of array-based and next generation sequencing (NGS) technologies has increased 

our knowledge about the underlying genetic abnormalities in human acute myeloid leukemia 

(AML). Subsequently this led to further molecular categorization reflected by the recognition 

of AML entities defined by genetic mutations (WHO 2008). It is increasingly recognized that 

the epigenetic landscape, beside the genetic landscape, plays a pivotal role in leukemic 

transformation as evidenced by recurrent epigenetic alterations. The work presented in this thesis 

provides a detailed account on the use of genome-wide approaches in conjunction with novel 

bioinformatic methodologies to further progress the understanding of human leukemogenesis. 

Rapid succession in technological advances has generated a multitude of analytical tools for the 

genome-wide characterization of AML, with a central role for gene expression profiling (GEP), 

DNA mapping arrays and NGS in the work presented in this thesis.

 In chapter 2, we devised a statistical framework utilizing the multinomial logistic regression 

model with a modified group lasso penalization scheme enabling sparse gene expression 

signature determination and the prediction of multiple classes simultaneously. A gene expression 

signature comprising a limited number of genes is produced for all predetermined classes and 

a gene within this signature is weighted according to the impact of its expression on the class 

prediction. We established, in agreement with previous observations, that the AML entities with 

favorable cytogenetics, i.e., t(15;17), t(8;21) and inv(16), can be predicted with maximum accuracy 

and that the gene expression signatures reflect their molecular characteristics. Additionally, we 

demonstrated that the framework provides a more accurate classification of AML cases harboring 

a combination of mutations in the genes NPM1 and FLT3 (FLT3-ITD). In chapter 3, we investigated 

the clinical outcome and gene expression signatures of CEBPAdm and CEBPAsm AML cases, i.e., 

biallelic mutations or monoallelic mutations in CEBPA, and their respective mutational spectra. 

We observed that CEBPAdm patients are characterized by low numbers of concurrent mutations, 

while CEBPAsm patients frequently harbor concurrent mutations in the genes NPM1 and FLT3. 

We demonstrated that the CEBPAsm marker bears no prognostic significance and, contrastingly, 

we reported that CEBPAdm is a strong prognostic marker associated with favorable outcome. We 

employed logistic regression model with a lasso penalization scheme, reminiscent to the model 

described in chapter 2 for two-class prediction, and demonstrated that CEBPAdm AML cases can be 

accurately classified in a validation AML cohort while the CEBPAsm cases do not exhibit a consistent 

gene expression signature.

 In chapters 4 and 5, we investigated the genetic aberrations underlying AML and acute 

lymphoblastic leukemia (ALL) by utilizing DNA mapping arrays. In chapter 4, we reported on a 

software package enabling the visualization of data from DNA mapping arrays with the capacity 

to integrate GEP data. Copy number variation (CNV) profiles of multiple patients can be displayed 

simultaneously enabling the identification of recurrent genetic aberrations. In addition, we 

constructed a hidden markov model for the inference of loss-of-heterozygosity (LOH) regions 



Chapter 12

206

Chapter 12

for AML cases without data derived from remission or normal tissue control material. In chapter 

5, we investigated the recurrence of genetic aberrations in adult ALL and AML cases by DNA 

mapping arrays and NGS. We demonstrated that ALL is characterized by a multitude of recurrent 

small deletions and amplifications, while AML has scarce recurrent genetic aberrations. We 

observed genetic aberrations common in ALL or specific for B-ALL or T-ALL. Strikingly, all T-ALL 

cases acquired a deletion of the genes CDKN2A/B or genes involved in the same pathway. We 

discovered that the proximal genes NF1 and SUZ12 are commonly deleted in a subset of T-ALL 

and AML patients, strikingly, both genes were significant down regulated. Deep sequencing of 

the remaining NF1 wild-type allele demonstrated concurrent mutations. In line with previous 

reports we postulated that the loss of NF1, activating the RAS pathway, cooperates with the loss 

of the polycomb repressive complex 2 (PRC2). Finally, we observed specific B-ALL cases with 

deletions predominantly involving promoters or the first few exons of genes. Whole exome 

sequencing (WES) and targeted resequencing of deleted regions in 5 B-ALL cases revealed cryptic 

recombination signal sequences (RSSs) flanking the breakpoints, on one or both sides, for 91% of 

the somatic deletions and the insertion of random nucleotides at the breakpoints. De novo motif 

detection demonstrated that the deletions are flanked by 12-bp and 23-bp spacer RSS motifs 

implying that the rearrangements are the result of illegitimate V(D)J recombination. Analyses 

of epigenetic data derived from a B-lymphoblastic cell line revealed that the breakpoints are 

enriched for H3K4me3, H3K27ac and RNA polymerase II binding reminiscent to antigen receptor 

rearrangement foci. Cross-species analysis revealed that the human breakpoints are enriched for 

Rag2 binding in murine thymocytes. Finally, we demonstrated that RAG-rearrangements invoke 

open-and-shut joints of RSS motifs likely through error-prone non-homologous end joining 

(NHEJ).

 Chapters 6 through 10 focus on the understanding of the AML genetic and epigenetic 

landscape determined by NGS approaches while chapter 11 focuses on a novel algorithm for 

detecting CNVs from NGS data. In chapter 6, we utilized WES for determining the longitudinal 

mutational spectrum of a severe congenital neutropenia (SCN) patient who develops AML after 

17 years of G-CSF treatment. We detected in total 12 somatic alterations, including mutations in 

the genes RUNX1, ASXL1 and SUZ12, in the leukemic phase and revealed that 3 mutations were 

already present in the early SCN phase, including the truncating mutation CSF3R-d715. In the 

leukemic phase an additional CSFR3 mutation, i.e. CSF3R-T595I, is acquired, on the same allele 

as the truncating mutation, conferring G-CSF independence. In chapter 7, we investigated 

the underlying mechanism driving the overexpression of the proto-oncogene EVI1 upon the 

acquisition of inv(3)(q21q26.2) or t(3;3)(q21;q26) (inv3/t(3;3)) in myeloid malignancies. Targeted 

resequencing of the breakpoint loci revealed an asymptotic pattern of breakpoint positions in 

the 3q21 locus, implying that a breakpoint-free common translocated segment (CTS) always 

repositions towards the 3q26 locus. We demonstrated by integrating RNA-Seq, Chip-Seq and 

4C-Seq data that a distal GATA2 enhancer is located within this CTS and upon repositioning 
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interacts with the EVI1 promoter driving its overexpression. Concurrently, GATA2 expression is 

reduced and only expressed from the non-rearranged allele. Ablation of the ectopic enhancer 

in the cell line MUTZ-3, by genome editing technology, demonstrated the abrogation of EVI1 

expression and subsequent growth inhibition and differentiation of the cell line. Finally, upon 

translocation of the 3q21 locus a super-enhancer is formed demonstrated by the high levels of 

H3K27ac spanning the complete CTS region. Treatment of the inv(3)/t(3;3) cell lines MOLM1 and 

MUTZ-3 with a BET-bromodomain inhibitor (JQ1) demonstrated abrogation of EVI1 expression, 

growth inhibition, differentiation and increased apoptosis reminiscent to the genome editing 

experiment, while this was not observed in the EVI1 overexpressing cell line K562. In chapter 

8, we determined the mutational spectrum of inv(3)/t(3;3) myeloid malignancies by WES and 

RNA-Seq. We observed that 98% of the inv(3)/t(3;3) cases acquire activating mutations in the 

RAS/RTK signaling pathways. In addition, mutations in the remaining wild type allele of GATA2 

as well as heterozygous alterations in SF3B1, RUNX1 and genes encoding epigenetic modifiers 

frequently co-occured with the inv(3)/t(3;3) aberration. Notably, we observed neither differences 

in mutational patterns nor GEP across inv(3)/t(3;3) myelodysplastic syndrome (MDS), chronic 

myeloid leukemia in blast crisis (CML-BP) and AML cases, suggesting that inv(3)/t(3;3) myeloid 

malignancies could be recognized as a single disease entity. In chapter 9, we employed RNA-Seq 

on leukemic blasts from a patient which progressed from MDS to AML. We discovered that the 

unreported KMT2A -MYH11 fusion transcript was already present in the MDS phase. In chapter 10, 

we investigated AML cases with an amplification involving the gene BCL11B and its consequent 

overexpression. Targeted resequencing of the BCL11B locus in these AML cases revealed that the 

additional copy is the consequence of a jumping translocation by which the donor BCL11B locus 

integrates into super-enhancer regions located on different chromosomes. In chapter 11, we 

provided a novel statistical framework for estimating CNV profiles from NGS data. We constructed 

an algorithm that infers systematic noise from a reference dataset comprising diploid cases, i.e., 

healthy individuals or remission material, and demonstrated that these inferred systematic noise 

components can be utilized to generate accurate CNV profiles from whole genome sequencing 

(WGS) and WES data. In comparison to classical DNA mapping arrays, we demonstrated that the 

framework detects more CNVs corroborated by structural variants.

2. GENERAL DISCUSSION

This final part puts the results and remaining hypotheses, provided in this thesis, in the perspective 

of contemporary knowledge and their possible implications are discussed in detail. The work 

presented in this thesis was divided in three parts each addressing different research questions 

by employing a specific genome-wide approach. Concluding, the prospectives and perspectives 

of future leukemic research are provided with a focus on mutational and functional relevance, 

clonal evolution, genome editing and translational medicine.
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2.1 Gene expression profiling in acute myeloid leukemia
Initially, transcriptome-driven analyses revealed the heterogeneity of AML and the existence 

of molecularly defined AML subtypes.1-3 It remained a pending question whether GEP-based 

classification could replace traditional diagnostic methodologies, e.g., cytogenetics and 

standard PCR-based techniques, or would only serve as a discovery tool for research purposes. 

Therefore, additional experiments were conducted demonstrating that GEP profiling is valuable 

for classifying AML entities with favorable cytogenetics2, i.e., characterized by t(15;17), t(8;21), 

inv(16) cytogenetic abnormalities, and AML cases with mutations in the genes CEBPA4 and 

NPM15, however, predictive signatures could not be found for AML cases with mutations in RAS 

or receptor tyrosine kinase (RTK) affiliated genes, e.g., FLT3, NRAS and KRAS. Reasons for the miss-

classification of AML cases were focused on the greater than expected heterogeneity within AML 

subgroups, the number of AML cases, the minimal effect of activating RAS/RTK mutations on 

gene expression levels and the classification algorithm utilized. The absence of predictive value 

for a molecular AML marker could be due to the following: (I) the effect of the genetic alteration 

on gene expression levels is minimal, (II) the gene expression signature conferred by a genetic 

alteration is overpowered by that of a concurrent mutation. The first situation is intractable and 

could necessitate the use of different genome-wide approaches for class prediction purposes, 

e.g., detection of epigenetic alterations. The second situation necessitates statistical frameworks 

enabling the modeling of concurrent genetic alterations thereby generating independent gene 

expression signatures. In chapter 2 we devised a multinomial logistic regression model with a 

modified group lasso penalization scheme6,7 enabling multiple class prediction and providing 

weighted sparse prediction signatures. Prediction signatures were established from a training 

AML cohort and validated on a large independent AML cohort for the following situations: (I) 

AML cases with mutually exclusive favorable cytogenetic abnormalities reflecting transcriptional 

homogeneous AML subgroups, (II) AML cases harboring mutations in the gene NPM1 (NPM1+) 

and/or internal tandem duplications in the gene FLT3 (FLT3-ITD) reflecting transcriptional 

heterogeneous AML subgroups. The first experiment demonstrated that these AML entities 

are predicted with maximum accuracy, while the second experiment demonstrated increased 

prediction accuracy in comparison to a previous study2, attributed to the adopted multiple class 

prediction procedure. In the previous study, the molecular heterogeneity was not captured due to 

the two-class prediction procedure employed as the NPM1+/FLT3-ITD specific expression pattern 

confounded the predictive signatures of the NPM1+ or FLT3-ITD markers alone. In molecular 

heterogeneous situations GEP-based classification has debatable additive value with respect to 

standard PCR detection techniques, however, for research purposes could be utilized for novel 

class prediction or the provision of gene expression signatures reflecting pivotal biological 

processes underlying the disease of interest.

 Different studies utilized gene expression signatures for prognostication.8,9 Gene expression 

signatures derived from functionally validated leukemic stem cells (LSCs) associate with inferior 
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clinical outcome in AML.10-12 This association reflects the persistence of stemness or stem cell 

programs in the leukemic blasts in poor outcome AML subtypes. Prognostication, likewise to 

GEP-based classification, is limited by molecular heterogeneity precluding the identification 

of prognostically valuable gene expression markers. Correlation of gene expression patterns 

presents another conundrum affecting discrimination and prognostication of AML subtypes. An 

important consideration is whether novel predictive gene expression markers add prognostic 

value to already established prognostic parameters or are completely redundant. Previously, 

we demonstrated that MLL -rearranged AML cases are stratified into a prognostically favorable 

and intermediate group based on gene expression levels of the gene BRE, demarcating a MLL-

rearranged subgroup with a strong gene expression signature.13 Previous reports demonstrated 

that EVI1 gene expression levels enable the stratification of MLL-rearranged AML cases in a 

prognostically poor and intermediate group14 and is anti-correlated to BRE15, rendering the 

question which gene expression marker is prognostically more accurate. Efforts should be directed 

towards the development of statistical frameworks accounting for molecular heterogeneity 

and gene expression correlation structures for classification and prognostication purposes. 

In conclusion, GEP enables the accurate classification and prognostication of a limited set of 

AML entities, however, molecular heterogeneity precludes further classification unless further 

subcategorizations can be introduced.

2.2 Copy number variations
DNA copy number variations (CNVs) are genetic hallmarks of cancer.16,17 The advent of DNA 

mapping arrays enabled the high-resolution identification of CNVs, however, the particular 

challenge is to identify CNVs perturbing specific cancer-related genes. Most CNVs are large 

enough to affect multiple genes thereby invoking the “passenger-driver” obstacle, implying that 

particular genes drive oncogenesis while others are affected by mere coincidence.

2.2.1 Copy number variations in acute leukemia: recurrence and origin

Genetic lesion recurrence is valuable for further subcategorization of molecular subtypes. In 

chapter 5, we determined genetic alterations in 173 adult acute leukemia cases by DNA mapping 

arrays. Strikingly, all T-ALL cases acquired CNVs perturbing the CDKN2A/B pathway. The deletion 

of CDKN2A disrupts cell cycle control and frequently co-occurs with NOTCH1 mutations which 

affects the self-renewal capacity of cells.18,19 The relevance of co-occurrence and the underlying 

mechanism of the frequent deletion of CDKN2A remains unanswered and a topic for future 

research.

 We observed a deletion affecting the proximal genes NF1 and SUZ12 in 5 AML and 3 T-ALL 

cases. NF1 loss activates the RAS pathway due to its inhibitory function20, while SUZ12 is a 

pivotal member of the PRC2 complex.21 Subsequent GEP analysis revealed that both genes were 

significantly down regulated, giving interesting perspectives as recent reports demonstrated 
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that loss of NF1 cooperates with loss of PRC2 in malignant peripheral nerve sheath tumors 

and melanoma.22,23 Deep targeted resequencing of the remaining NF1 wild type allele revealed 

premature stop codon introducing mutations imparting its complete loss. Following the same 

line of reasoning as the previous reports, we expect that RAS activation cooperates with PRC2 

loss in a subset of patients with AML or T-ALL. It is valuable to investigate if the reduced SUZ12 

expression causes a disintegration of the PRC2 complex, subsequently reducing H3K27me3 levels 

and changes in gene expression levels.

 Previous studies demonstrated that pediatric and adult ALL acquire recurrent CNVs affecting 

genes involved in lymphoid development.24-26 A recent study demonstrated that the recurrent 

genetic lesions are partially invoked by RAG-mediated rearrangements.27 Targeted resequencing 

of the deletions in 5 BCR-ABL1/BCR-ABL1-like cases revealed that the breakpoints were 

predominantly flanked (91%) by cryptic RSS motifs, implying RAG-mediated rearrangements 

in almost all deletion events. A pending question remains why the illegitimate RAG-mediated 

rearrangements occur outside the antigen receptors in ALL. Fulfillment of these rearrangements 

must meet a few prerequisites: (I) expression of the proteins RAG1 and RAG2, (II) presence of 

12/23-bp spacer RSS motifs, (III) accessible DNA marked by H3K4me3 and H3 acetylation, (IV) 

CTCF binding and long range interactions, (V) a functional NHEJ pathway.28-30 Most of the B-ALL 

cases continually express RAG1 and RAG2, or temporarily expressed these proteins as evidenced 

by extensive V(D)J

rearrangements. We provided evidence that the breakpoints are predominantly flanked by 

cryptic RSS motifs and enriched for active chromatin markers. In all likelihood the long range 

interactions occurred due to the proximity of the breakpoints during repair. The increased activity 

of illegitimate RAG-mediated rearrangements could be twofold: (I) increased activity of the RAG 

complex, (II) deficiency in the DNA repair capacity. The HMG-box family proteins HMGB1 and 

HMGB2 are required for RAG complex assembly and modulate its activity by bending the DNA 

in a catalytically favorable manner for cleavage.31,32 The increased activity hypothesis provides 

an interesting perspective as the RAG2 protein harbors a PHD domain enabling the binding 

to H3K4me3.29,33 Rag2 Chip-Seq data derived from murine thymocytes revealed the genome-

wide binding to H3K4me3 enriched loci33 deposited mainly in promoter and enhancer regions 

predisposing these regions to RAG-mediated rearrangements. We did not find any changes in 

HMGB1 or HMGB2 expression levels and efforts should be directed to infer if there are changes on 

the protein level or through posttranslational modifications. The deficient DNA repair pathway 

hypothesis provides another interesting perspective as the sequenced cases comprised BCR-ABL1 

and BCR-ABL1-like cases. Previous studies demonstrated that c-ABL and BCR-ABL1 interact with 

and down regulate the pivotal NHEJ DNA repair protein DNA-PKcs.34,35 This warrants the study of 

DNA-PKcs protein expression level or its phosphorylation by BCR-ABL1 or other kinase-activating 

lesions. Whether the RAG activation or the deficient repair pathways confers illegitimate RAG-

mediated rearrangements remains yet elusive.
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2.2.2 Driver or passenger: one car multiple seats

CNVs predominantly affect multiple genes simultaneously and determining the specific gene 

driving oncogenesis remains difficult. Different studies resort to defining a minimally affected 

region (MAR), however, this procedure would preclude the identification of cancer-related 

genes cooperatively affected or those flanking the recurrent CNV. For example, in chapter 5, we 

identified the recurrent deletion simultaneously affecting the promoter of the gene MKKS and 

the gene SLX4IP (Figure 1A). We observed that SLX4IP expression levels remain unperturbed while 

MKKS expression levels became significantly reduced (Figure 1B). The MAR procedure would have 

identified SLX4IP as a potential oncogenic driver, while GEP would have highlighted MKKS as a 

potential oncogenic driver. Promoter deletion is common in B-ALL pathogenesis and warrants 

a different cancer-related gene detection approach. We adopted a kernel density procedure 

with a flat top normal distribution kernel36 for the identification of recurrently affected genes. 

This procedure enriches for genes affected by genetic lesions if it is: (I) frequently affected, 

(II) specifically affected or (III) frequently flanking breakpoint loci. The disadvantage of this 

methodology is that it still relies on frequencies for enriching genes.
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Figure 1. Deletion perturbs gene expression levels MKKS. (A) Common deletion of the MKKS promoter in 
ALL, (B) MKKS is significantly down regulated in ALL cases with the deletion of the MKKS promoter (MKKS-, p 
< 0.001).

2.3 Next generation sequencing
2.3.1 Next generation sequencing in AML

Whole exome and genome sequencing

The recent introduction of next generation sequencing (NGS) commenced the determination 

of the genetic and epigenetic landscape of different human diseases.37-39 The broad spectrum 

of NGS approaches enables the molecular characterization of cancer material. Chief amongst 

those approaches are whole genome sequencing (WGS) and whole exome sequencing (WES) 
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enabling the determination of the mutational spectrum of cancer material, e.g. de novo AML.40 

The mutational spectrum provides details related to the process of leukemogenesis, concurrence 

or mutual exclusivity of mutations, and signatures of mutational processes.41 In chapter 6, we 

determined the longitudinal mutational spectrum of a SCN patient progressing towards AML. 

Specific focus is put on the process of leukemic transformation and clonal evolution, however, a 

large gap of 9 years between the SCN and leukemic phase precludes the accurate identification of 

mutations driving leukemic transformation as some might be acquired during the pre-leukemic 

phase or lost due to clonal tides.42 In chapter 8, we conducted WES on inv(3)/t(3;3) myeloid 

malignancies and demonstrated mutations affecting the RAS/RTK signaling pathways, GATA2, 

SF3B1, RUNX1 and epigenetic modifiers. Both chapters use WES for determining the mutational 

spectrum and the process of clonal evolution. Novel tools are continuously developed for the 

analysis of WGS and WES data. Variant detection analysis tools, such as SAMtools43 or MuTect44, 

sometimes sub-optimally analyze the data. The different variant detection lists generally overlap, 

however, there are some differences. In the end, the final variant list is created by a pipeline which 

efficiently combines all variant lists produced by different variant detection tools. Future efforts 

should focus on developing a variant detection tool capable of accounting for all requisites 

established in the various variant detection tools.

 Alignment algorithms accidentally introduce false positive mutations, especially in regions 

containing repeat elements or multiple complex SNPs. Recent efforts produced variant detection 

algorithms based on de novo assembly procedures45 which could, with a proper germline control, 

resolve this issue. Standard alignment algorithms commonly introduce insertions and deletions 

in reads to achieve genome alignment, frequently resulting in ambiguous alignments. De novo 

assembly procedures disregard the target genome and produce linear assembled sequences, 

making them directly comparable between case and control.

 CNV profiles can be determined from WGS or WES data46,47, yet many algorithms are impaired 

by the systematic noise inherent to the sequencing technology. In chapter 11, we constructed a 

novel statistical framework for determining CNVs from WGS and WES data by taking into account 

systematic noise extracted from a diploid reference set. This methodology attenuated systematic 

noise and accurately detects more CNVs than DNA mapping arrays. Additionally, the framework 

is applicable to NGS data derived from different organisms (data not shown). This study implies 

that traditional DNA mapping arrays could be replaced by NGS derived CNV estimates due to its 

increased accuracy and detection resolution.

Whole transcriptome sequencing

Transcription deregulation plays an important role in leukemic transformation. RNA-Seq enables 

gene expression level estimation, transcript isoform detection, transcript fusion detection, 

and variant detection. The pending question remains if RNA-Seq can completely replace 

microarray technology, traditional cytogenetics and PCR-based techniques, for determining 
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molecular AML entities and prognostication.48 RNA-Seq, in addition to the gene expression level 

estimation, enables the determination of recurrent cytogenetic abnormalities by fusion transcript 

detection49, including information of the fusion transcript exon structure making it comparable 

to standard PCR detection. Interestingly, fusion detection in RNA-Seq supersedes standard PCR 

detection in some aspects as it enables: (I) the detection of multiple fusion transcripts in one 

experiment, (II) the detection of novel, complex or non-canonical fusion transcripts. RNA-Seq, 

in contrast to microarray technology, is not limited to a predefined set of measurable loci and 

enables the detection of more transcripts including long non-coding transcripts. Gradually, 

traditional microarray technology and standard PCR detection protocols will be replaced by RNA-

Seq approaches due to its generality and the additional molecular information provided.

Epigenetics

Epigenetic alterations represent an additional layer of control conferring regulation of cellular 

processes. These alterations, e.g., DNA methylation or histone methylation, are dynamically 

removed or deposited.50 Epigenetic characterization of leukemic blasts by array-based 

approaches, e.g., tilling and Chip-on-Chip arrays, demonstrated that AML is also heterogeneous at 

the epigenetic level.51 Additionally, mutational profiling demonstrated that AML is characterized 

by frequent mutations in epigenetic modifiers.52,53 Recent studies examining the epigenetic 

landscape of cancer demonstrated the existence of super-enhancers driving the expression of 

proto-oncogenes, e.g. MYC.54

 NGS approaches enable the determination of many different aspects of the epigenetic 

landscape in detail: (I) DNA methylation: bisulphite sequencing, MeDIP-Seq, (II) Protein binding 

and histone alterations: Chip-Seq, (III) chromatin conformation: 4c-Seq, HiC, ChiA-PET, (IV) open 

chromatin: DNAse-Seq. The many different NGS approaches developed and the increased 

resolution it provides implies the gradual replacement of array-based technologies.

 Epigenetic regulation is a dynamic process mandating a demarcated experiment for optimal 

detection, e.g, type of epigenetic alteration, cell type or timing, as determining these alterations 

ad libitum could present confounding results. The unprecedented epigenetic characterization of 

AML enables the determination of dynamic leukemogenic mechanisms, however, it will also likely 

introduce additional sources of heterogeneity complicating AML subcategorization.

2.3.2 Integrative approaches

Determining the mutational, transcriptional or epigenetic landscape enables further delineation 

of the leukemogenic process. Further improvements in understanding leukemogenic processes 

should be expected from integrating these data types. Epigenetic alterations modulate the 

transcriptional activity of target genes, while mutations modulate genome-wide epigenetic 

patterns, implying interactions on different levels. In chapter 7, we demonstrated that the proto-

oncogene EVI1 is overexpressed due to the repositioning of a distal GATA2 enhancer through 
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the integration of targeted resequencing, RNA-Seq, Chip-Seq and 4c-Seq data. In chapter 10, 

we demonstrated that the gene BCL11B becomes overexpressed due to an amplification of the 

encompassing region as detected by DNA mapping arrays and GEP. Subsequent breakpoint 

detection by targeted resequencing revealed that a jumping translocation involving BCL11B 

integrates into loci characterized by super-enhancer elements driving the overexpression of the 

translocated BCL11B. These chapters provide examples of integrative approaches utilized for 

understanding the underlying mechanistic process associated with leukemogenesis. 

 Continuous efforts should be put into the development of novel statistical frameworks for 

the analysis and integration of NGS data. The introduction of public NGS databases and projects, 

e.g., the cancer genome atlas (TCGA), requires researchers to distribute their published data and 

enables procurement of already generated or published data. The number of public data sets 

is rapidly increasing and renders generating novel data superfluous, except for very specific 

research questions. Developments in the fields of bioinformatics and statistics introduced novel 

frameworks for integrating NGS datasets. Some of these data integration tools are very specific, 

e.g., the detection of mono-allelic expression55,56, while others are more general57 and are used for 

integrating different types of NGS data. Although general data integration tools are beneficial, 

most specific research questions are addressed by specialized integration methodologies. 

Additionally, novel NGS approaches are continuously developed which require specific data 

processing techniques. The development of data integration tools is an emerging field and, given 

the limited number of tools, requires international efforts for bringing it to maturity.

2.4 Prospects and perspectives on future leukemia research
2.4.1 Basic understanding of mutation functionality and disease development

Functional consequences of mutations

In recent years we have witnessed an increase of NGS studies identifying novel genetic lesions 

associated with cancer development. AML is one of the most well characterized cancer types 

and, in all likelihood, the number of newly detected genetic lesions will decrease rapidly.40,53,58,59 

Currently, the larger question at hand relates to the implications of the already discovered genetic 

alterations. NGS has furnished leukemic research with a wealth of additional genetic markers, 

however, the basic understanding of the implication of most recurrent mutations is still lacking. 

In addition, a considerable number of genetic lesions display patterns of co-occurrence or mutual 

exclusivity implying relatedness, however, a larger number of mutations are patient-specific 

precluding the understanding of their functional implications. Hence, the heterogeneity of AML 

is more than expected based on genome-wide approaches previously employed.

Enigmatic functional consequences: an example

For example, recent efforts demonstrated that DNMT3A is mutated in approximately 20% of the 

AML cases58,60 and mutations are predominantly located in the methyltransferase domain.61 The 
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gene DNMT3A encodes a de novo methyltransferase important for establishing de novo genomic 

DNA methylation patterns.62 Given its function as a de novo methyltransferase, deductive 

thinking provided the hypothesis that mutations impair the establishment of genome-wide 

DNA methylation patterns thereby driving leukemic transformation. Initial experiments 

demonstrated minimal changes in genome-wide methylation levels58,60 and subsequent studies 

observed only limited and focal DNA methylation changes63-65, contrastingly, at some loci 

increased methylation levels. The correlation between methylation level differences and gene 

expression levels is considered weaker than expected in DNMT3A mutated AML cases, especially 

when corrected for the frequently concurrent NPM1 mutation.58,60,63 The question remains why 

mutations in the methyltransferase domain have such limited effect. Recent deep sequencing 

studies demonstrated that DNMT3A mutations are sometimes pre-leukemic66,67 and detectable 

in healthy individuals.66 These pre-leukemic clones can take years before they progress towards 

leukemia.68 The pending question remains if DNMT3A mutations truly invoke leukemic conditions 

by altering DNA methylation levels as: (I) a substantial number of mutations are observed outside 

the methyltransferase domain, (II) methylation changes are limited and focal, (III) mutations 

are found in pre-leukemic clones, taking years to develop, and healthy individuals. Leukemic 

progression in these cases could be due: (I) a necessary concurrent mutation in another gene is 

acquired resulting in synergistic effects driving leukemic development, (II) mutations in DNMT3A 

predisposes for leukemia by another currently unknown mechanism. 

 Previous studies linked DNMT3A aberrations in mouse embryonic stem cells (mESC), including 

ablation, to DNA hypomethylation64,65,69, subsequently associating it to AML. Recent studies in 

the overgrowth syndrome, a group of disorders characterized by an abnormal increase of the 

body or a body part, demonstrated congenital DNMT3A mutations previously identified in 

AML.70 Although an increased incidence of cancer has been observed in overgrowth syndrome 

subgroups, these patients do not specifically develop AML. These two studies provide contrasting 

accounts concerning DNMT3A mutations demonstrating that their functional consequences still 

remain enigmatic.

Basic understanding of mutations in leukemogenesis

Overall, the assessment of mutational functionality is a difficult task with many pitfalls. The 

mutations in DNMT3A remain functionally enigmatic, however, this holds for many genes 

involved in leukemic transformation, e.g., NPM1. The basic understanding of gene mutations is 

fundamental for progressing the mechanistic knowledge of leukemogenesis and becomes even 

more complex when considering concurrently mutated genes. Initially, novel gene mutations are 

postulated to affect the primary function of the protein it encodes, although logical, this might not 

always provide the best hypothesis. For instance, IDH1 and IDH2 mutations result in a neomorphic 

function71 and NPM1 mutations introduce a nuclear export signal72, both partially or completely 

unrelated to their primary protein function. The advent of NGS resulted in the detection of many 



Chapter 12

216

Chapter 12

novel genetic lesions, however, what these lesions functionally engender remains a topic of 

future leukemic research.

2.4.2 Leukemic heterogeneity: making sense of mutational patterns

Mutation patterns, i.e. concurrence or mutual exclusivity of genetic lesions, provide an avenue 

for understanding how recurrent genetic lesions contribute to leukemic development. Genes 

more frequently mutated can be assumed to have a greater impact on disease development. 

Furthermore, mutation patterns are better discernable from genes frequently mutated. 

Mutational patterns exhibiting mutual exclusivity hint towards genes with similar functions. For 

example, aggregating gene mutations into pathways demonstrates how frequently a particular 

process is affected. In chapter 8, we observed that the RAS/RTK signaling pathway is affected in 

98% of inv(3)/t(3;3) myeloid malignancies.

 For example, mutational pattern analysis revealed that mutations in the genes TET273, IDH1 

and IDH2 are mutually exclusive implying functional relatedness. Recent efforts demonstrated 

that all mutations within these genes impair the conversion of 5-methylcytosine to 

5-hydroxymethylcytosine resulting in genome-wide hypermethylation.74,75 Patterns of mutual 

exclusivity were also observed for mutations in the splicing machinery76 and cohesion complex 

genes.53 

 Information concerning synergistic effects can be inferred by ascertaining patterns of 

concurrence. Mutations in DNMT3A, NPM1 and internal tandem duplications in FLT3 are frequently 

co-occurring, however, the underlying synergistic mechanism remains yet to be elucidated. 

 The strength of discerning mutational patterns is highly dependent on: (I) how frequently  

the genes are mutated, (II) frequency of concurrence, (III) frequency of exclusivity, or (IV) the total 

number of patients screened. Genetic alterations observed in a single or a few AML cases remain 

difficult to interpret and could only be investigated by experimental approaches or put in the 

context of contemporary knowledge. The integration of different data types, e.g., RNA-Seq or 

Chip-Seq, could further help elucidate the underlying mechanisms as demonstrated in chapter 7.

2.4.3 Clonal evolution

NGS approaches detect variants at different allele frequencies, therefore enabling the 

determination of the clonal composition.77 Recent time-series or diagnosis-remission-relapse trios 

studies demonstrated the existence of oligoclonality and variegated clonal evolution in AML.78,79 

Small subclones, whether or not derived from the dominant clone, can have survival advantages. 

Therapeutic abrogation of the dominant clone enables the treatment insensitive subclone 

to expand and confer leukemic relapse. In therapy-related AML these subclones could have 

already been present, without developing leukemia, before therapy induction.80 In addition, the 

subclone can acquire additional mutations making it potentially more malignant. Clinically, these 

subclones remained undervalued due to the detection limitations of cytogenetics and standard 
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PCR techniques. Studies investigating the clonal composition of AML demonstrated strong clonal 

evolution propensities, precluding the persistence of remission, in specific AML subgroups.78 For 

example, mutations in DNMT3A, TET2, IDH1 and IDH2 have been demonstrated to exist in pre-

leukemic clones.66,81 Pre-leukemic clones harboring DNMT3A mutations remain unperturbed by 

current treatment protocols as they remain detectable in remission material and confer a strong 

relapse risk, strikingly, sometimes after several years.66 Discerning the clonal architecture and 

understanding the dynamics of clonal evolution provides therapeutic actionable options and 

insight into relapse initiating processes. Treatment modalities can be modulated or combined 

with the knowledge of the complete clonal architecture preventing outgrowth of subclones 

insensitive for standard treatment protocols.

 Recent efforts focused on understanding the clonal architecture and its preceding evolution 

by determining which mutations are acquired in the same clone. The production of subclones 

occur by the following principals (Figure 2A): (I) branching: a mutagenesis sensitive pre-leukemic 

or leukemic clone produces multiple offspring subclones by continual acquisition of mutations, 

(II) linear: a pre-leukemic or leukemic clone acquires an additional mutation and produces a 

subclone with potentially more malignant or treatment-insensitive properties. The principles 

of branching and linear clonal evolution result in a clonal composition decomposable by their 

unique features of inheritance. However, the complete determination of the clonal dynamics 

is frustrated by clonal evolution caveats (Figure 2B): (I) recurrence: multiple subclones acquire 

independently the same subset of mutations invalidating the pattern of unique inheritance, (II) 

clonal tides42: subclones are produced by receding parental clones precluding the correct parental 

clone attribution. The problem of recurrence relates to clonal identifiability and correlates to the 

total number of clones present and genetic markers detected. The addition of detected genetic 

markers increases the identifiability of clonal dynamics as it improves the separation of clonal 

constituents. The caveat of clonal tides remains intractable, unless: (I) the missing clone can 

still be detected with very deep sequencing, (II) strong assumptions are made about mutation 

acquisition order, (III) determination of clonal composition at multiple time points enabling 

enhanced disentanglement of the clonal architecture.

 Current efforts are directed at determining the mutual composition of each clone and the 

complete clonal architecture. Detecting which mutations are acquired in the same clone remains 

difficult. Initially, the variant allele frequency was used for inferring the clonal architecture and 

necessitated strong mutational pattern assumptions. For instance, mutations observed in 50% of 

the reads could be heterozygous in all leukemic blasts or homozygous in only half of the leukemic 

blasts, e.g., SF3B1 mutations are heterozygous therefore observed in all leukemic blasts. These 

assumptions are produced for a limited number of well-characterized mutations, however, are 

rendered invalid when these mutations are acquired in (multiple) subclones. Recent statistical 

developments provided statistical inference algorithms for determining the clonal architecture 

based on very deep sequencing.82,83 Although substantially more efficient than pre-existing 
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methodologies, it still necessitates a priori knowledge concerning: (I) copy number of the affected 

region, (II) LOH status of the affected region, (III) probability that the mutation is heterozygous or 

homozygous in the subclone. In addition, it necessitates very deep sequencing (> 1000x coverage 

depth) and time-series, e.g., diagnosis, relapse and second relapse samples, to determine the 

clonal architecture. These algorithms are rendered invalid when the principle of recurrence is 

established (vide supra) to occur.

Branching Linear

Recurrence Clonal tides

? ?

A

B

Figure 2. Mechanisms of clonal evolution. (A) Principles on clonal evolution. (Branching) A parental clone 
acquires mutations producing one or more subclones. Subsequently these subclones can acquire mutations 
and produce one or more subclones. Unique inheritance of mutations enables the delineation of the clonal 
architecture, (Linear) A parental clone acquires mutations and its offspring subsequently acquires additional 
mutations. Unique inheritance of mutations enables the determination of the clonal architecture. (B) Pitfalls 
in determining clonal evolution (Recurrence) Subclones are produced in a branching or linear manner, 
however, a mutagenic environment enables the recurrence of particular mutations in two or more subclones. 
Very similar clones, only differing in one mutation, can produce subclones from which the inheritance is 
undiscernible precluding the delineation of the clonal architecture, (Clonal tides) Like recurrence a particular 
mutations has been recurrently acquired except the parental clone has receded. Statistical models would 
attribute this subclone to the false parental clone. (Solid arrow) Correct attribution of inheritance, (Dashed 
arrow) incorrect attribution of inheritance.
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Figure 3. Decomposition of the clonal architecture. (A) (I) Genetic alterations are determined from the 
leukemic blasts by WES. (II) Subsequent targeted single cell resequencing of the mutations reveal the clonal 
architecture. Mutations missed by WES, due to reduced coverage or a very minor clone, will not be targeted 
and prohibit the complete decomposition of the clonal architecture. (B) WES single cell mutational analysis 
provides information about concurrence and mutual exclusivity of mutations, while coverage statistics and 
genotype information provide estimations for copy number variations and regions of loss-of-heterozygosity. 
Combined, these data enable the complete decomposition of the clonal architecture. Estimation of the 
clonal contribution to the bulk of the leukemic blasts should subsequently be estimated by targeted deep 
sequencing of the observed mutations.
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 Targeted single cell sequencing enables a more precise definition of the complete clonal 

architecture84 and the introduction of single cell WES enables greater insight in clonal dynamics 

and architecture.85 Two schemes are proposed for delineating the clonal architecture by 

combining WES/WGS with single cell sequencing. The first scheme proposes the use of WES for 

determining mutations in the bulk of leukemic blasts (Figure 3A(I)). These mutations are used for 

targeted single cell sequencing (Figure 3A(II)) enabling the determination of mutational patterns 

and subsequently the delineation of the clonal architecture. WES mutation detection has some 

disadvantages as mutations could be missed due to: (I) minimal or no coverage of the target 

region, (II) undiscovered low abundant clones, (III) the introduction of proximal false positive 

mutations by alignment algorithms.

 The second scheme involves WES of multiple single cells for determining the clonal 

composition (Figure 3B). The total contribution of clones is difficult to estimate from single cell WES 

and subsequent targeted deep sequencing of the mutations in bulk material enables estimating 

the contribution of the clones. The second scheme produces more practical information, however, 

the total cost would render it impractical for analyzing a large AML cohort. The first scheme 

enables the detection of almost all mutations and subsequent targeted single cell sequencing 

enables the characterization of thousands of cells simultaneously. Finally, recently single cell 

approaches for RNA-Seq86,87 and genome-wide bisulfite sequencing88 have been adopted and 

enable the inference of transcriptional heterogeneity and clonal epigenetic variety. Single cell 

RNA-Seq enables clonal decomposition by identifying the genetic lesions in the RNA-Seq reads, 

reminiscent to chapter 8.

2.4.4 Genome editing

Genome editing is a novel field enabling the modulation of the DNA sequence or gene expression 

in vivo. Multiple proteins are able to bind specific DNA sequences and introduce DNA double 

strand breaks (DSB): (I) zinc finger nucleases89, (II) transcription activator-like effector nucleases 

(TALENs)90, and (III) the CRISPR/Cas9 system.91 The induction of proximal DSBs enables the 

deletion of complete regions in cell lines or mouse models. Additionally, target regions can be 

edited by providing an exogenous DNA template during the homology directed repair (HDR) 

of DSBs, enabling the introduction or editing of disease causing mutations.92 In chapter 7, we 

employed TALENs and the CRISPR/Cas9 system in the cell line MUTZ-3 to ablate the repositioned 

enhancer. These genome editing approaches enable the introduction of artificial chromosomal 

rearrangements93 thereby modeling known translocations in an isogenic system. A recent study 

described a protocol for gene editing the components of the human hematopoietic stem and 

progenitor cell (HSPC) compartment retaining engraftment and repopulation capacity.94 Minor 

changes to genome editing approaches enable the specific silencing of genes (CRISPRi) or 

activation of genes (CRISPRa) with minimal off target effects.95
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 Efforts should be directed towards developing genome editing approaches for understanding 

basic mutation functionality. In addition, it enables the modeling of concurrent genetic lesions in 

isogenic systems. The paradigm of clonal evolution can be modeled by observing the behavior of 

successfully edited and engrafted cells at steps of evolution. The isogenicity of the edited model 

system prevents the variability observed in: (I) murine disease models due to different in genetic 

backgrounds, (II) cancer cell lines being notoriously genetically unstable, (III) patient material due 

to additional concurrent mutations, (IV) patients overall due to different genetic backgrounds. 

Genome editing enables the modeling of infrequently observed mutations or subclones 

found with low leukemic burden contribution. Genome editing in combination with xenograft 

models enable further behavioral understanding of leukemic development and the effect of 

recurrent mutations. Determining which mutations are causally related to leukemogenesis 

and their functional etiology remains a major challenge, therefore modeling of mutational 

patterns observed in leukemia through genome editing enables the etiological delineation of 

leukemogenesis.96

2.4.5 Translational medicine

The increasing insight of the functional implications of genetic lesions should at one point 

translate to treatment improvements. The current treatment armamentarium of particular AML 

entities remains scarce, e.g., inv(3)/t(3;3) myeloid malignancies. We demonstrated that these AML 

cases are sensitive for BET-bromodomain inhibitors97 and demonstrated that almost all cases 

acquire activating RAS/RTK signaling pathway mutations. Although many of the RAS pathway 

constituents are notoriously difficult to target98,99 it provides valuable information for treatment 

design if they ever become targetable, e.g., FLT3-ITD.100 Recent efforts led to the development of 

treatment modalities against epigenetic modifiers. Azacytidine prevents hypermethylation and is 

used for high-risk MDS treatment.101,102 Recently, specific mutant IDH2 inhibitors have been shown 

to induce differentiation in primary human AML cells103, whereas mutant IDH1 inhibitors induced 

expression of gliogenic genes in glioma.104 Mislocated enzyme activity of DOTL1 is postulated as 

the oncogenic driver in mixed lineage leukemia and inhibition of DOTL1 results in the apoptosis 

of cells carrying the MLL-rearrangement.105 Initial results of these studies are promising, however, 

if targeted therapeutic agents will ever fully replace current therapeutic protocols remains yet to 

be determined.

 Genes or pathways investigated for treatment development should be selected on: (I) the 

frequency of mutations, (II) the dependency of the cell on the presence of the mutations (Achilles 

heel), (III) the degree of being targetable. High-throughput drug screening with a valuable output 

statistic, e.g., effect on proliferation, survival or resumed differentiation, enables the discovery 

of novel therapeutic compounds affecting AML cells with particular mutational compositions. 

Reverse engineering the etiology of the therapeutic agent produces valuable insight into the 

leukemogenic mechanism of the genetic lesions. Combinatorial treatment modalities, reflecting 
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the mutational composition of the leukemic blasts, could be provided in a personalized medicine 

approach. 

 In conclusion, genome-wide approaches provided the general view that leukemia is a highly 

heterogeneous disease conferred by combinations of genetic lesions. NGS enabled the detection 

of these genetic lesions and demonstrated the existence of clonal dynamics. The major challenges 

ahead will not relate to the detection of additional genetic lesions but in understanding the 

functional implications of the acquired genetic abnormalities. Future research will increasingly 

focus on understanding the leukemogenic mechanism underlying the disease and the dynamics 

of clonal evolution and at one point should translate this understanding into tailored therapies 

for AML patients.
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Hematopoëse is een continue proces waarbij dagelijks verschillende bloedcellen in zeer grote 

aantallen aangemaakt worden. Er zijn een aantal verschillende typen bloedcellen en elk type 

heeft een specifieke functie in het lichaam. Witte bloedcellen, onderverdeeld in granulocyten, 

monocyten, macrofagen en lymfocyten, spelen een belangrijke rol in de verdediging van het 

lichaam tegen pathogene indringers, terwijl rode bloedcellen een belangrijke rol spelen bij het 

vervoeren van zuurstof door het lichaam en bloedplaatjes bij bloedstolling. Al deze bloedcellen 

ontstaan uit één type niet-gespecialiseerde cellen, genaamd “hematopoietische stamcellen”, 

in het beenmerg. Deze hematopoietische stamcellen hebben de capaciteit om voldoende 

functionele bloedcellen te produceren naar gelang de fysiologische behoeften van het lichaam. 

Hematopoietische stamcellen produceren dochtercellen welk verder uitrijpen door een proces 

genaamd “celdifferentiatie”. Na uitrijping worden deze bloedcellen vrijgelaten in het perifere 

bloed vanwaar zij hun functionele eigenschappen kunnen uitvoeren.

 Leukemie, ook wel bloedkanker genoemd, is een ziekte van het beenmerg. De uitrijping 

van één type bloedcel is verstoord en de ongelimiteerde vermenigvuldigingen van deze cel 

leidt tot de complete overwoekering van het beenmerg en leukemische cellen in het bloed. 

De opeenhoping van deze niet-functionele leukemische cellen in het beenmerg verstoort de 

normale productie van bloedcellen wat leidt tot de bijna complete afwezigheid van functionele 

bloedcellen in het bloed. In dit proefschrift is er onderzoek gedaan naar acute myeloïde leukemie 

(AML) en in mindere mate acute lymfatische leukemie (ALL). Acute leukemie wordt onder andere 

gekarakteriseerd door genetische afwijkingen in het DNA. Door klinisch wetenschappelijk 

onderzoek is aangetoond dat bepaalde genetische afwijkingen associëren met een goede 

prognose, terwijl andere minder goede vooruitzichten bieden. De afgelopen jaren zijn er grote 

vorderingen geboekt in de kennis aangaande verworven mutaties en hun (klinische) associatie 

met acute leukemie. Uit deze onderzoeken is gebleken dat AML, maar ook ALL, een verzameling 

van aandoeningen is, waarbij verschillende genetische afwijkingen ten grondslag liggen. Deze 

acute leukemie subtypen worden geïdentificeerd aan de hand van verworven genetische 

afwijkingen in combinatie met klinische en cytomorfologische eigenschappen. De correcte 

bepaling van acute leukemie subtypen is van uitermate belang voor de juiste behandeling en 

prognosestelling en behoeft verder bestudering.

 Recente technologische ontwikkelingen hebben ervoor gezorgd dat het genetische 

materiaal van AML patiënten in detail gekarakteriseerd kunnen worden en hebben geleid tot 

een verbeterde bepaling van de verschillende AML subtypen. De vooruitgang in technologische 

methodieken stelt de onderzoeker in staat om veel verschillende genetische eigenschappen van 

de leukemische cellen te bepalen, denkend aan miljoenen metingen, met bijkomend nadeel dat 

de data onoverzichtelijk wordt voor standaard empirische waarnemingen. De oplossing tot dit 

probleem behoeft het gebruik van computationele biologie of statistische modelering om de 

meeste waardevolle data uit te lichten. Het werk beschreven in dit proefschrift richt zich op de 

identificatie van genetische en epigenetische afwijkingen in AML aan de hand van genoombrede 
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technologieën. De nadruk ligt vooral op het gebruik van drie verschillende genoom-brede 

technologieën: (1) genexpressie microarrays voor gen expressie bepalingen, (2) DNA mapping 

arrays voor het detecteren van genetische afwijkingen; vooral kopieaantal verschillen, (3) next 

generation sequencing (NGS) voor het vaststellen van genetische en epigenetische afwijkingen. 

In dit proefschrift werden deze genoom-brede technologieën, soms in combinatie, gebruikt voor 

de identificatie van nieuwe AML subtypen of om meer inzicht te krijgen in het mechanistische 

proces ten grondslag aan de ontwikkeling van leukemie.

 In hoofdstuk 2 hebben wij een statistische methode ontwikkeld die gebruikt maakt van 

het multinomiale logistische regressie model in combinatie van een aangepaste groep lasso 

regularisatie procedure. Deze methode produceert ijle genexpressie predictie patronen waarmee 

de participatiekans per patiënt voor verschillende klassen tegelijkertijd bepaald kan worden. 

Genexpressie predictie patronen, bestaand uit een gelimiteerd aantal genen, worden voor alle 

vooraf bepaalde klassen bepaald. In elk genexpressie predictie patroon wordt een gen gewogen 

aan de hand van zijn invloed op de klasse-predictie. Wij hebben vastgesteld, vergelijkbaar aan 

voorgaande studies, dat AML subtypen met klinisch gunstige cytogenetische afwijkingen, zoals 

t(15;17), t(8;21) en inv(16), accuraat ingedeeld kunnen worden. Verder hebben wij aangetoond 

dat onze statistische methode een verbeterde indeling geeft voor AML patiënten met een 

combinatie van mutaties in de genen NPM1 en FLT3. In hoofdstuk 3 hebben wij onderzocht wat 

de klinische relevantie is van CEBPA enkel- of dubbelmutanten, genaamd CEBPAsm en CEBPAdm. 

Daarbij is onderzocht of deze mutaties geassocieerd zijn met een specifieke genexpressie patroon 

of gekarakteriseerd worden door een specifiek mutatie spectrum. CEBPAdm AML patiënten 

hebben weinig extra recurrente mutaties, terwijl CEBPAsm AML patiënten veelal mutaties hebben 

in de genen NPM1 en FLT3. Vervolgens stelden wij vast dat de genetische marker CEBPAsm 

geen prognostische waarde heeft, terwijl de genetische marker CEBPAdm een sterke associatie 

heeft met een gunstig klinisch vooruitzicht. Gebruikmakend van een multinomiale logistische 

regressie model met een lasso regularisatie procedure, vergelijkbaar aan het model beschreven 

in hoofdstuk 2, hebben wij aangetoond dat CEBPAdm AML patiënten accuraat voorspeld kunnen 

worden in een AML validatiecohort, terwijl dit niet mogelijk is voor CEBPAsm patiënten.

 In hoofdstukken 4 en 5 hebben wij onderzocht welke genetische afwijkingen aanwezig zijn 

in AML en ALL patiënten door het gebruik van DNA mapping arrays. In hoofdstuk 4 beschrijven 

wij de ontwikkeling van een softwarepakket voor het visualiseren van data afkomstig van 

DNA mapping arrays in combinatie met genexpressie data. DNA kopieaantal veranderingen, 

op dezelfde plaats in het genoom, kunnen worden gebruikt als gids voor het identificeren van 

genen met een belangrijke rol bij de ontwikkeling van leukemie. Voor het bepalen van het 

verlies van heterogeniteit voor AML patiënten zonder beschikbaar genetisch materiaal van 

remissie of normaal weefsel hebben wij een nieuw statistisch model ontwikkeld. In hoofdstuk 

5 onderzochten wij terugkerende genetische afwijkingen in AML en ALL patiënten doormiddel 

van DNA mapping arrays en NGS technologieën. Genetisch materiaal van ALL patiënten vertonen 
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relatief veel kleine verliezen (deleties) of amplificaties in het DNA, terwijl genetisch materiaal van 

AML patiënten weinig (terugkerende) genetische afwijkingen vertonen. Sommige genetische 

afwijkingen zijn ALL-breed, terwijl andere genetische afwijkingen heel specifiek zijn voor B-ALL 

of T-ALL. Opvallend hierbij was dat alle T-ALL patiënten deleties van de genen CDKN2A/B of genen 

geassocieerd met CDKN2A/B hadden verworven. Daarnaast ontdekten wij dat de proximale genen 

NF1 en SUZ12 samen afwijkend zijn in T-ALL en AML subgroepen. De aangetoonde afwijking 

veroorzaakt een significante verlaging van de genexpressie levels van beide genen. Opvallend is 

dat er vaak mutaties gevonden worden op het overgebleven normale NF1 allel. In samenspraak 

met voorgaande studies postuleren wij dat het verlies van NF1, een remmer van het oncogen 

RAS, samenwerkt met het verlies van het polycomb repressive complex 2. Een interessante 

bevinding is dat specifieke B-ALL patiënten een tendens vertonen voor het overmatig genetisch 

verlies van gen promotors of een gedeelte van een gen. DNA sequentiebepalingen van regio’s 

die de deleties flankeren in het genetisch materiaal van 5 B-ALL patiënten, door middel van NGS, 

demonstreerde de aanwezigheid van zogeheten cryptische recombinatie signaalsequenties 

(RSSs). Deze sequentiemotieven waren aanwezig aan één of beide zijdes voor 91% van de 

verworven deleties en bovendien werden er vaak willekeurige nucleotiden aan de breekpunten 

toegevoegd. Sequentiemotief zonder enige vorm van voorkennis toonde aan dat meeste 

deletiebreekpunten worden gekarakteriseerd door 12-basepaar-afstand RSS en 23-basepaar-

afstand RSS sequentie motieven. Dit impliceert dat de deleties het gevolg zijn van onrechtmatige 

genetische herschikkingen door het recombinatie-activerende genen (RAG) eiwitcomplex. 

Epigenetische data analyses op data afkomstig van een B-lymfocytaire cellijn toonde aan dat de 

deletiebreekpunten verrijkt zijn voor de epigenetische veranderingen H3K4me3 en H3K27ac, 

en de binding van RNA polymerase II. Deze epigenetische veranderingen zijn vergelijkbaar 

aanwezig in gebieden welk immuunreceptor-herschikkingen ondergaan door het RAG 

eiwitcomplex. De vertaling van de humane breekpuntlocaties naar homologe gebieden in het 

muisgenoom toonde aan dat deze locaties verrijkt zijn voor Rag2 binding gedetecteerd in muis 

thymocyten. Naast de inductie van deleties kan het RAG eiwitcomplex zogeheten open-en-dicht 

aberraties veroorzaken door gebruik te maken van foutgevoelige DNA-herstelmechanismen. Dit 

mechanisme is momenteel het onderwerp van actieve bestudering

 De hoofdstukken 6 tot 10 richten zich op het onderzoek aan genetische en epigenetische 

veranderingen, terwijl hoofdstuk 11 zich richt op de ontwikkeling van een nieuwe statistische 

methodologie voor het schatten van kopieaantal veranderingen aan de hand van NGS data. In 

hoofdstuk 6, worden de genetische afwijkingen in de sequentiële bloed- of beenmergmonsters 

van een ernstig aangeboren neutropenie (SCN) patiënt bepaald die uiteindelijk na 17 jaar G-CSF 

behandeling leukemie ontwikkelt. In totaal werden er 12 verworven mutaties gevonden in de 

leukemische fase, waarvan 3 van deze mutaties al aanwezig waren in een laag aantal cellen 

jaren voordat de leukemie ontwikkelt. Eén van deze mutaties was verworven in het gen dat 

de G-CSF receptor codeert, daarnaast werd er in de leukemische fase nog een G-CSF receptor 
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mutatie ontdekt. Deze laatst verworven G-CSF receptor mutatie maakt dat de leukemische 

cellen onafhankelijk worden van het G-CSF cytokine. In hoofdstuk 7 onderzochten wij hoe 

afwijkingen op de lange arm van chromosoom 3, zoals inv(3)(q21q26.2) of t(3;3)(q21;q26) 

(afgekort inv(3)/t(3;3)), een overexpressie van het proto-oncogen EVI1 veroorzaken. Inv(3)/t(3;3) 

DNA breekpuntbepalingen toonde aan dat een specifiek gebied altijd wordt gerepositioneerd 

naar het chromosomale 3q26 gebied. De integratie van RNA-Seq, Chip-Seq en 4C-Seq data 

demonstreerde dat er een GATA2 enhancer aanwezig is in het gerepositioneerd gebied. Deze 

gerepositioneerde enhancer ondergaat een interactie met de EVI1 promotor met overexpressie 

als gevolg. Het GATA2 gen verliest een essentiële enhancer op het afwijkende chromosoom, 

waardoor GATA2 alleen nog maar tot expressie komt vanaf het resterende normale chromosoom. 

Inactivatie van de gerepositioneerde enhancer in de cellijn MUTZ-3 veroorzaakt compleet verlies 

van EVI1 expressie. Tijdens het repositioneren van het chromosomale 3q21 gebied vormt er een 

super-enhancer gekarakteriseerd door de verrijking van de epigenetische verandering H3K27ac. 

Behandeling van de cellijn MOLM1 en MUTZ-3 met een BET-bromodomein remmer (JQ1) 

veroorzaakt EVI1 genexpressie verlies, vergelijkbaar met eerdere experimenten. In hoofdstuk 8 

hebben wij verworven mutaties in kaart gebracht voor myeloïde maligniteiten met inv(3)/t(3;3) 

cytogenetische afwijkingen. In 98% van de inv(3)/t(3;3) patiënten worden mutaties in genen van 

het RAS/RTK signaaltransductie-netwerk verworven. Heterozygote mutaties werden gevonden 

in het resterende normale GATA2 allel en de genen SF3B1 en RUNX1. Verschillende verworven 

mutaties werden gevonden in genen coderend voor epigenetische modificeerders. Een 

interessante bevinding is dat mutatie noch gen expressie patronen kunnen differentiëren tussen 

verschillende inv(3)/t(3;3) myeloïde maligniteiten, suggererend dat deze maligniteiten mogelijk 

als één ziekte beschouwd kunnen worden. In hoofdstuk 9 detecteren wij een nog onbekend 

KMT2A-MYH11 fusietranscript in een patiënt die na een myelodysplastische fase uiteindelijk AML 

ontwikkelt. Interessant is het feit dat dit fusietranscript al aanwezig was in de myelodysplastische 

fase. In hoofdstuk 10 beschrijven wij AML patiënten met een verworven extra kopie van het 

gen BCL11B. De extra kopie is het gevolg van een springende translocatie waarbij het BCL11B 

locus integreert in super-enhancers gelegen op andere chromosomen, met BCL11B overexpressie 

tot gevolg. In chapter 11 beschrijven wij de ontwikkeling een nieuw statistische methode voor 

het schatten van DNA kopieaantal veranderingen aan de hand van NGS data. Deze methode 

bepaalt de aanwezigheid van systematisch statistische ruis in een referentie dataset van gezonde 

diploïde (twee kopieën per chromosoom) individuen. De bepaalde systematisch statistische ruis 

wordt vervolgens gebruikt voor het accuraat schatten van DNA kopieaantal veranderingen in 

chromosomen vanuit NGS verkregen data. In vergelijking met de traditioneel gebruikte DNA 

mapping arrays kunnen wij met onze statistische methode meer en preciezer gevalideerde 

DNA kopieaantal veranderingen detecteren. In het afsluitende hoofdstuk 12 worden de meest 

belangrijke bevindingen en hypothesen uit dit proefschrift in een breder context behandeld.
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“Of all the things which wisdom provides to make us entirely happy,
much the greatest is the possession of friendship.”

Epicurus

Beste lezers, jaren van onderzoek zijn aan dit proefschrift voorafgegaan. Met veel plezier en trots 

kan ik zeggen dat mijn boekje voltooid is. Het voltooien van mijn proefschrift zou zonder de hulp 

van vele mensen nooit gelukt zijn. Daarvoor maak ik gebruik van dit laatste, edoch meest gelezen 

gedeelte van het proefschrift, om een aantal mensen persoonlijk te bedanken.

 Mijn eerste woorden richt ik tot mijn promotor, Bob Löwenberg. Als beginnend bachelor 

student mocht ik op jouw afdeling te werk gaan aan verschillende opeenvolgende projecten 

en uiteindelijk als PhD-student onder jouw hoede. Je stond altijd open voor mijn ideeën en wij 

hebben vele projecten besproken in jouw kamer achterin de kopkamer. Jouw kritische, maar 

opbouwende, kanttekeningen gemaakt tijdens mijn presentaties zijn altijd ten faveure geweest 

voor de kwaliteit van mijn werk. Beste Bob, bedankt voor jouw betrokkenheid, visie en steun. Het 

was mij een waar genoegen om jou als promotor gehad te hebben.

 Tijdens mijn PhD-traject is een additionele promotor toegevoegd, Ruud Delwel. Beste Ruud, 

ik wil jou bij deze bedanken voor jouw persoonlijke en intensieve begeleiding, zeker gedurende 

de laatste maanden tijdens de afronding van dit proefschrift. Op bijna elk moment van de dag 

was jij beschikbaar, waardoor ik altijd kon binnenstormen als ik iets nieuws had te vertellen. 

Met een grap wist jij mijn soms wat iets te naïeve en serieuze houding te doorbreken. Zeker als 

mijn mentor gedurende de volgende stap van mijn onderzoekscarrière zullen wij nog aan vele 

projecten samenwerken.

 Specifieke aandacht wil ik schenken aan mijn co-promotor, Peter Valk. Beste Peter, ik had 

mij geen betere begeleider kunnen toewensen. Als bachelor student ben ik in jouw groep 

begonnen en 10 jaar later eindig ik mijn PhD-traject onder jouw hoede. Het bellen tijdens jouw 

vakanties heb ik toch enigszins gemodereerd. We hebben, wegens congressen, veel reizen naar 

het buitenland gemaakt en tijdens deze reizen hebben wij een voorkeur ontwikkeld om elke 

hoge toren te beklimmen met een niet geringe kans dat ik weer eens van de trap val tijdens de 

afdaling. Ik heb zeer genoten van het Peter-Ruud één-tweetje, waarbij de grappen steeds flauwer 

worden gecorreleerd aan de hoeveelheid geconsumeerd bier. Vanuit mijn PhD-traject hebben 

wij nog projecten ten overvloede om de komende jaren met plezier te vullen. Bedankt voor jouw 

intensieve steun, betrokkenheid, input, drive en de mogelijkheid om op elk moment van de dag 

bij jou langs te komen.
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Beste prof. dr. Jelle Goeman, prof. dr. Sjaak Philipsen en prof. dr. Gert Ossenkoppele bedankt 

voor jullie deelname in de beoordelingscommissie van mijn proefschrift. Beste Jelle, bedankt voor 

jouw begeleiding, inzet en motivatie. Je bent een toonbeeld voor statistici met een verfrissende 

nieuwsgierigheid in de biologische kant van het verhaal. Jouw begeleiding heeft mij geholpen 

bij mijn statistische kennisontwikkeling. Onze reizen naar Frankrijk voor verschillende statistische 

congressen zal ik nooit vergeten. Op zoek naar een restaurant waar geen, maar dan ook zeker 

geen, toeristen komen in de zijstraten van Parijs. De Lamprei-schotel in Bordeaux zag er toch 

wat minder appetijtelijk uit. Ik wens je heel veel succes als nieuwbakken professor statistiek in 

Nijmegen en ik hoop nog op vele projecten samen te werken. Beste Sjaak en Gert, bedankt voor 

jullie deelname en inzet in de kleine commissie.

Beste prof. dr. Ivo Touw, prof. dr. Wouter den Laat en dr. Bert van der Reijden, bedankt voor 

jullie deelname aan de verdediging van mijn proefschrift. Beste Ivo, ook wij werken alweer 10 jaar 

samen. Ik weet nog goed dat ik bij jou op de kamer zat voor een interview over hoe wij MADEx 

konden verbeteren. Jouw aanwezigheid en kritische, doch opbouwende, opmerkingen zijn altijd 

zeer gewaardeerd en waardevol geweest. Bedankt voor jouw inzet, advies en motivatie. Beste 

Wouter, bedankt voor de deelname. Zonder jouw 4C-Seq technologie was onze Cell paper nooit 

tot stand gekomen. Bedankt dat wij de 4C-Seq technologie van jouw groep mochten leren. Beste 

Bert, het was mij een waar genoegen om op een aantal projecten samen te werken. Ik heb altijd 

zeer genoten van jouw advies en inbreng. 

De (ex-)leden van de Valk/Rijneveld research groep; François, Annelieke, Adil, Jasper, Anikó 

en Carla. François, man van het zuiden. Ik heb met heel veel plezier met jou samengewerkt. 

Jouw rigoureuze en accurate handelswijze is bewonderenswaardig. Mocht Dries Roelvink in de 

buurt zijn dan gaan we er samen heen. Annelieke, bedankt voor de vele experimenten die jij 

voor mij in het verleden hebt uitgevoerd en alvast bedankt voor de vele die nog gaan volgen. 

Ik vind het noemenswaardig dat je niet terugdeinst voor het uitvoeren van volledig onbekende 

experimenten (ook binnen de afdeling). A brief switch to English to address our friend from 

Oman, Adil. Adil, the latest addition to the Valk group, your journey has just started and I wish you 

the best. I already observed great potential in your work and scientific career ahead. Soon-to-be 

father, I wish you all the best. You’ll notice it will be tough in the beginning but also the best time 

of your life. Jasper, metal-gast en Euphorbia Leuconeura-man. Een tijdje geleden de Valk groep 

ingewisseld voor de Sonneveld groep, maar niet vergeten. Wij hebben een gedeelde passie voor 

metal muziek en tuinieren, toch wel een beetje vreemde combinatie als je het mij vraagt. Zodra 

Insomnium weer in het land is zullen wij elkaar daar, in de concertzaal, weer ontmoeten. Anikó, 

recent begonnen in de Rijneveld groep en nog iemand die mijn passie voor tuinieren deelt. Mijn 

deur staat altijd open voor NGS-vragen! Carla, bedankt voor alle hulp die je mij geboden hebt! 

Heel veel plezier met de kleine!
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De dames van de Valk diagnostiek groep; Isabel, Wendy, Pauline, Sonja, Marloes, Chantal 

en Antoinette. Ik wil jullie bedanken voor jullie ondersteuning tijdens het voltooien van mijn 

onderzoek en proefschrift. Isabel, rooibos thee is niet te drinken! Wendy, de diagnostiek backup 

staat veilig! Pauline, veel succes met toekomstige wielrenklassiekers! Sonja, ik zal de klinische 

tool binnenkort repareren! Marloes, heel veel succes in Utrecht binnenkort! Chantal, rij niet te 

hard op de motor! Antoinette, succes in Groningen en ik wens je heel veel plezier op de boerderij!

Mijn (ex-)mede-bioinformatici: Remco, Rowan, Erdogan en niet te vergeten Roel Verhaak. 

Beste Remco, wij kennen elkaar al sinds de TU Delft waar wij een overgroot gedeelte van het 

curriculum samen hebben gevolgd. Ik vind het nog steeds geweldig dat je bij ons bent komen 

werken, ondanks je soms wat rare grappen en grollen (*kuch* plakband over de sensor van mijn 

muis *kuch*). Ik hoop nog vele jaren samen te werken. Rowan, de jongste van het stel. Het was 

super dat je het laatste jaar ons kwam vergezellen op de kamer. Ik wens je nog heel veel succes 

toe met het afronden van jouw proefschrift en misschien krijgen wij dan eens de veel beloofde 

appeltaart. Erdogan, de Circos plot-sensei. Ik heb genoten van onze samenwerking en discussies 

over totaal irrelevante onderwerpen. Heel veel succes met de voortzetting van jouw werk bij de 

TU Delft. Roel, mijn voorganger en voorgaande mentor. Dit  proefschrift is een voortzetting van 

jouw en Peter’s werk. De jaren voor mijn PhD-traject zijn een goede voorzet geweest tot waar ik 

nu ben. Recent nog gesproken en ik weet dat je nog steeds van metal houdt. Zelfs nu je ouder en 

wijzer bent en kinderen hebt.

Leden van de Delwel groep; Stefan G., Roberto, Marije, Claudia en Eric. Stefan G., the man 

with the golden hands. Without your excellent scientific and lab skills the EVI1 project wouldn’t 

have gotten as far as it does today. I’m still impressed at what you achieved during just a few 

years in Rotterdam. I sincerely apologies for the frequent midnight calls during the Cell paper 

submission and revision. I still have a bottle of Château Haut-Bages Libéral at home that we 

need to finish. I bid you good luck in Heidelberg and I’m confident you’ll achieve great scientific 

wonders. Roberto, you eat, sleep and breathe CEBPA. I’m confident that “peak 6”, also dubbed 

the black hole-enhancer, will provide you with sufficient scientific material for years to come. I 

thank you for all the discussions we had on a wide variety of scientific and non-scientific topics! 

Claudia en Marije, heel erg bedankt voor de ondersteuning die jullie geleverd hebben aan onze 

projecten. Zonder jullie was het nooit gelukt. Eric, de EVI1-man. De “go-to man” voor al uw vragen 

over EVI1, lab experimenten of next generation sequencing. Heel erg bedankt voor alle inzet en 

adviezen tijdens mijn projecten. Jouw inbreng tijdens mijn werkpresentaties wordt altijd zeer 

gewaardeerd.
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De P.I.’s; Anita, Mojca, Marc, Stefan E., Jan C., Eric B., Frank, Moniek, Dick, Tom en Pieter. Ik 

wil jullie bij deze bedanken voor jullie contributie aan dit proefschrift en niet te vergeten de vele 

opmerkingen en adviezen verkregen tijdens de werkbesprekingen. Ik wens jullie en de projecten 

onder jullie hoede het beste toe.

Dear Elwin, Su Ming, Bas, Sanne, Renée, Jurgen, Eric V., Ferry, Julien, Piotr, Adrian, Saman, 

Mark van Duin, Paulette, Hans de Looper, Annemiek, Tomasia, Menno, Anita S., Peter van 

Geel, Niken, Michael, Natalie, Martijn and Egied, thank you for all your help! Dear Noemi, Kasia, 

Si, Zhen, Keane, Avinash, Davine, Julia, Patricia O., Patricia D., Monica, Michelle, Farshid and 

Roel P., I wish you the best of luck with writing your theses!

De dames van het secretariaat; Leenke, Annelies en Ans. Leenke, bedankt voor alle hulp tijdens 

mijn PhD-traject. Ik ben me ervan bewust dat ik soms erg verstrooid kan zijn. Annelies, bedankt 

voor alle hulp gedurende het einde van mijn PhD-traject. Zonder jou was deze dag nooit tot stand 

gekomen. Ans, recent met pensioen gegaan, wil ik alsnog bedanken. Ik hoop dat je ondertussen 

al een leuke hobby hebt kunnen vinden om je vrije tijd aan te besteden.

Beste Jan van Kapel, man van de computers, software en het jagen. Ik wil je bedanken voor de 

technische ondersteuning die je de afgelopen jaren hebt geboden.

Beste (ex-)collegae van de afdeling medische statistiek en bio-informatica in Leiden, ik 

wil jullie allemaal bedanken voor jullie input, voor de leuke discussies op wetenschappelijk en 

filosofisch gebied en de tijd dat ik bij jullie heb mogen spenderen. Beste Rosa, bedankt voor alle 

hulp en de leuke discussies die wij gevoerd hebben. Veel succes met het afronden van het PhD-

traject.

Most scientific progress results from fruitful collaborations and I wouldn’t do justice without 

thanking all scientific collaborators. Lars Bullinger, Konstanze Döhner and Hartmut Döhner 

(Ulm university), I’m indebted to you for all the valuable input given during the last years and 

AML samples sent in the different projects described in this thesis. I had a great time visiting 

your department this year and hope that we could collaborate on different projects in the future. 

Berna Beverloo (afdeling Klinische Genetica), bedankt voor alle cytogenetische bepalingen en 

het verzorgen van correcte cytogenetische annotatie. Kirsten van Lom (afdeling Hematologie), 

bedankt voor alle cytomorfologische bepalingen, thee en advies. Vincent van der Velden en 

Ton Langerak (afdeling Immunologie), bedankt voor alle bepalingen. Harmen van der Werken 

(afdeling Urologie), dank voor jouw hulp met het verwerken van 4C-Seq data. Elzo de Wit en 

Britta Bouwman (Hubrecht Institute), dank voor jullie hulp voor het opzetten van de 4C-Seq 

technologie binnen onze afdeling. Joop Jansen (afdeling Hematologie, Raboud University Medical 

Centre), dank voor jouw advies en inzet. Marta Pratcorona (Hospital Clínic de Barcelona) helped 
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in setting up the research described in Chapter 5. I wish you all the best back in Barcelona! Dank 

voor alle deelnemende HOVON-centra – zonder hen was dit proefschrift niet tot stand gekomen. 

Wim van Putten en Yvette van Noorden, bedankt voor de up-to-date patiënteninformatie en 

wetenschappelijke input. Jonas Jutzi and Heike Pahl (Freiburg University), I really enjoyed your 

scientific input and time spent together in Rotterdam and Ulm. Hopefully, I could visit Freiburg 

once and enjoy your hospitality.

Beste (oud-)collegae van de afdeling hematologie, ik wil jullie bedanken voor jullie tomeloze 

inzet en wetenschappelijke input, voor alle gezellige tijden samen gespendeerd, leuke discussies 

en alle hulp die ik van jullie heb mogen ontvangen.

Mijn paranimfen Jeffrey van Heck en Mark van den Berg. Het dynamische trio is weer eens 

samengekomen. Al vrienden sinds de kleuterschool en nog steeds goed bevriend na zoveel jaren. 

Ik ben dankbaar voor jullie hulp om deze dag een succes maken. Jeffrey, alweer wat jaartjes 

verhuisd naar Hilversum, maar nog steeds in goed contact. Je bent een goede vriend en een 

echte levensgenieter. Vroeger leken wij heel erg op elkaar, waardoor mensen ons nooit uit elkaar 

konden houden. Recent getrouwd, wat toch als een verrassing kwam, omdat je het nooit wilde 

doen. Ik waardeer je gesprekken, inzet en levensinstelling enorm. Ik hoop nog vele avonturen 

samen te beleven. Mark, tevens hechte vriend en tennis-mattie. We kennen elkaar al sinds 

de kleuterschool waar we vaak bij elkaar thuis verbleven. Bovendien hebben wij jaren samen 

tennis gespeeld, iets wat je nog steeds fanatiek doet. Ik vind het geweldig dat je mij deze dag 

bij wilt staan en moge wij nog vele jaren bevriend blijven! Lieve vrienden, dank jullie voor alle 

bijeenkomsten, feestjes, vrijgezellenfeestjes, de vele avonden samen en de goede gesprekken.

Lieve familie, ik wil jullie bedanken voor al jullie steun gedurende de afgelopen jaren. Ton, Hannie, 

Tom, Lisa, opa en oma Smit, bedankt voor jullie ondersteuning gedurende het verhuizen, de 

geboorte en de drukke dagen. Ik weet dat Jonathan altijd graag bij jullie op bezoek komt.

Lieve grote zus Jorunn, als kleine broer moet ik toch altijd naar je opkijken. Je hebt je eigen weg 

gevolgd, bent meester in de rechten geworden en daarmee altijd gelukkig geweest. Afgelopen 

jaren de moeder geworden van Sana, Isra en Maysa, drie prachtige dochters. Nabil, je bent een 

geweldige zwager. Misschien moet je mij binnenkort toch maar weer eens leren autorijden.

Lieve pa en ma, ik heb enorme bewondering voor jullie. Altijd druk bezig geweest met jullie bedrijf 

en de enige twee mensen die ik ken die zoveel gewerkt hebben. Van jongs af aan hebben jullie 

mij en Jorunn altijd een vrije keuze gegeven en wij hebben ons nooit hoeven te bekommeren of 

de mogelijkheid tot deze keuze wel bestond. Geluk moesten wij zelf maken en ons hart volgen 

en dat hebben wij ook gedaan. Ik dank jullie voor de steun in alle jaren, zonder jullie was dit 

proefschrift nooit tot stand gekomen.
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Mijn laatste woorden wil ik uiteraard wenden aan mijn lieve Kristel en Jonathan. Lieve Kristel, 

wij zijn alweer tien jaar ontzettend gelukkig samen en zijn daarom recent getrouwd. Jij maakt mij 

compleet en bent een rots in de branding van mijn toch iets chaotische leven. Daarnaast ben je 

een lieve en zorgzame moeder die alles voor onze lieve zoon over heeft. Bedankt dat je er altijd 

voor mij bent! Lieve Jonathan, helaas kan je nog niet lezen, maar ooit ergens in de toekomst zal 

je dit “dan oude” proefschrift oppakken en het misschien wel begrijpen. Naast de ontmoeting van 

jouw moeder ben jij het mooiste wat mij is overkomen! Wie weet, in de toekomst, kunnen wij dit 

proefschrift met elkaar bediscussiëren.

Mathijs
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De auteur van dit proefschrift werd op 24 augustus 1984 geboren in Rotterdam. Na het afronden 

van het Hoger Algemeen Voortgezet Onderwijs aan het Gemini College in Ridderkerk startte hij 

de studie Hogere Informatica aan de Hogeschool Rotterdam in september 2002. Hij voltooide vier 

jaar later de opleiding met een afstudeeronderzoek getiteld, “Cluster analyse van genoom-brede 

gene expressie profielen en het visualiseren van genoom-brede SNP patronen”, onder supervisie 

van dr. Roel G.W. Verhaak en dr. Peter J.M. Valk op de afdeling hematologie van het Erasmus 

Universitair Medisch Centrum (Erasmus MC). Vervolgens begon hij in september 2006 aan de 

opleiding Bio-informatica aan de Technische Universiteit te Delft (TU Delft). Als masterexamen 

(doctoraalexamen) voerde hij aan het Leids Universitair Medisch Centrum (LUMC), onder 

supervisie van dr. Jelle J. Goeman en prof. dr. Marcel J.T. Reinders, 9 maanden onderzoek naar 

specifieke gen expressie predictie patronen verkregen door de integratie van een gemodificeerde 

groep lasso procedure in multinomiale logistische regressie modellen. Na het cum laude behalen 

van het masterexamen begon hij in december 2009 als promovendus in de onderzoeksgroep 

van dr. Peter J.M. Valk op de afdeling hematologie van het Erasmus MC (promotoren prof. dr. Bob 

Löwenberg en prof. dr. Ruud Delwel). Aldaar vond het onderzoek beschreven in dit proefschrift 

plaats. In december 2014 begon hij als postdoctoraal onderzoeker op de afdeling hematologie 

van het Erasmus MC (prof. dr. Ruud Delwel).





Chapter 8

Publications

APPENDIX





Publications

249

P

1 Sanders MA, Kavelaars FG, Zeilemaker A, Al Hinai AS, Abbas S, Beverloo HB, van Lom K, and 

Valk PJ, RNA sequencing reveals a unique fusion of the lysine (K)-specific methyltransferase 2A 

and smooth muscle myosin heavy chain 11 in myelodysplastic syndrome and acute myeloid 

leukemia, Haematologica, 100 (2015), e1-e3l.

2 Gröschel S*, Sanders MA*, Hoogenboezem R, Zeilemaker A, Havermans M, Erpelinck C, 

Bindels EM, Beverloo HB, Dohner H, Lowenberg B, Dohner K, Delwel R, and Valk PJM, Mutational 

spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of 

RAS/RTK signaling pathways, Blood, 125 (2015), 133-9.

3 Taskesen E, Havermans M, van Lom K, Sanders MA, van Norden Y, Bindels E, Hoogenboezem 

R, Reinders MJ, Figueroa ME, Valk PJM, Lowenberg B, Melnick A, and Delwel R, Two splice-factor 

mutant leukemia subgroups uncovered at the boundaries of MDS and AML using combined 

gene expression and DNA-methylation profiling, Blood, 123 (2014), 3327-35.

4 Abbas S, Sanders MA, Zeilemaker A, Geertsma-Kleinekoort WM, Koenders JE, Kavelaars FG, 

Abbas ZG, Mahamoud S, Chu IW, Hoogenboezem R, Peeters JK, van Drunen E, van Galen J, 

Beverloo HB, Lowenberg B, and Valk PJM, Integrated genome-wide genotyping and gene 

expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 

14q32 aberrations, Haematologica, 99 (2014), 848-57.

5 van der Velden VH, Hoogeveen PG, de Ridder D, Schindler-van der Struijk M, van Zelm MC, 

Sanders MA, Karsch D, Beverloo HB, Lam K, Orfao A, Lugtenburg PJ, Bottcher S, van Dongen 

JJ, Langerak AW, Kappers-Klunne M, and van Lom K, B-cell prolymphocytic leukemia: a specific 

subgroup of mantle cell lymphoma, Blood, 124 (2014), 412-9.

6 Gröschel S*, Sanders MA*, Hoogenboezem R, de Wit E, Bouwman BA, Erpelinck C, van der 

Velden VH, Havermans M, Avellino R, van Lom K, Rombouts EJ, van Duin M, Dohner K, Beverloo 

HB, Bradner JE, Dohner H, Lowenberg B, Valk PJM, Bindels EM, de Laat W, and Delwel R, A 

single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation 

in leukemia, Cell, 157 (2014), 369-81.

7 Sanders MA, and Valk PJM, The evolving molecular genetic landscape in acute myeloid 

leukaemia, Curr Opin Hematol, 20 (2013), 79-85.

8 Sanders MA, and Valk PJM, Genome-wide gene expression profiling, genotyping, and copy 

number analyses of acute myeloid leukemia using Affymetrix GeneChips, Methods Mol Biol, 

1015 (2013), 155-77.

9 Beekman R, Valkhof MG, Sanders MA, van Strien PM, Haanstra JR, Broeders L, Geertsma-

Kleinekoort WM, Veerman AJ, Valk PJM, Verhaak RG, Lowenberg B, and Touw IP, Sequential 

gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia, 

Blood, 119 (2012), 5071-7.



Publications

250

P

10 Alemdehy MF, van Boxtel NG, de Looper HW, van den Berge IJ, Sanders MA, Cupedo T, Touw 

IP, and Erkeland SJ, Dicer1 deletion in myeloid-committed progenitors causes neutrophil 

dysplasia and blocks macrophage/dendritic cell development in mice, Blood, 119 (2012), 

4723-30.

11 Noordermeer SM, Monteferrario D, Sanders MA, Bullinger L, Jansen JH, and van der Reijden 

BA, Improved classification of MLL-AF9-positive acute myeloid leukemia patients based on 

BRE and EVI1 expression, Blood, 119 (2012), 4335-7.

12 Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA, 

Zeilemakers A, Lowenberg B, and Valk PJM, Acquired mutations in ASXL1 in acute myeloid 

leukemia: prevalence and prognostic value, Haematologica, 97 (2012), 388-92.

13 Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders MA, Abbas S, Figueroa 

ME, Zeilemaker A, Melnick A, Lowenberg B, Valk PJM, and Delwel R, Mutant DNMT3A: a marker 

of poor prognosis in acute myeloid leukemia, Blood, 119 (2012), 5824-31.

14 Noordermeer SM, Sanders MA, Gilissen C, Tonnissen E, van der Heijden A, Dohner K, Bullinger 

L, Jansen JH, Valk PJM, and van der Reijden BA, High BRE expression predicts favorable 

outcome in adult acute myeloid leukemia, in particular among MLL-AF9-positive patients, 

Blood, 118 (2011), 5613-21.

15 Taskesen E, Bullinger L, Corbacioglu A, Sanders MA, Erpelinck CA, Wouters BJ, van der Poel-

van de Luytgaarde SC, Damm F, Krauter J, Ganser A, Schlenk RF, Lowenberg B, Delwel R, 

Dohner H, Valk PJM, and Dohner K, Prognostic impact, concurrent genetic mutations, and 

gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically 

normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease 

entity, Blood, 117 (2011), 2469-75.

16 Sanders MA, Verhaak RG, Geertsma-Kleinekoort WM, Abbas S, Horsman S, van der Spek PJ, 

Lowenberg B, and Valk PJM, SNPExpress: integrated visualization of genome-wide genotypes, 

copy numbers and gene expression levels, BMC Genomics, 9 (2008), 41.

17 Wouters BJ, Sanders MA, Lugthart S, Geertsma-Kleinekoort WM, van Drunen E, Beverloo HB, 

Lowenberg B, Valk PJM, and Delwel R, Segmental uniparental disomy as a recurrent mechanism 

for homozygous CEBPA mutations in acute myeloid leukemia, Leukemia, 21 (2007), 2382-4.

18 Verhaak RG, Sanders MA, Bijl MA, Delwel R, Horsman S, Moorhouse MJ, van der Spek PJ, 

Lowenberg B, and Valk PJM, HeatMapper: powerful combined visualization of gene expression 

profile correlations, genotypes, phenotypes and sample characteristics, BMC Bioinformatics, 7 

(2006), 337.



Publications

251

P

19 Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, 

Erpelinck CA, Delwel R, Lowenberg B, and Valk PJM, Mutations in nucleophosmin (NPM1) in 

acute myeloid leukemia (AML): association with other gene abnormalities and previously 

established gene expression signatures and their favorable prognostic significance, Blood, 

106 (2005), 3747-54.

* These authors contributed equally to this work





Chapter 8

Abbreviations

APPENDIX





Abbreviations

255

A

4C-Seq Circularized chromosome conformation capture deep-sequencing

ABL1 c-Abl oncogene 1

ALL Acute lymphoblastic leukemia

Allo-HSCT Allogeneic hematopoietic stem cell transplantation

AML Acute myeloid leukemia

AML1 Acute myeloid leukemia 1

ASXL1 Additional sex combs like 1 (Drosophila)

Auto-HSCT Autologous hematopoietic stem cell transplantation

BAC Bacterial artificial chromosome

BCL11B B-cell CLL/lymphoma 11B

BCR Breakpoint cluster region

BET Bromodomain and extraterminal domain family

BM Bone marrow

BRD4 Bromodomain-containing protein 4

BTLA B and T lymphocyte associated

Cas9 CRISPR associated protein 9

CBF Core binding factor

CBFB Core binding factor beta subunit

CD Cluster of differentiation

CDKN2A/B Cyclin-dependent kinase inhibitor 2A/2B

CEBPA CCAAT/enhancer binding protein alpha

CGH Comparative genomic hybdridization

Chip-Seq Chromatin immunoprecipitation followed by deep-sequencing

CI Confidence interval

CLP Common lymphoid progenitor

CML Chronic myeloid leukemia

CML-BC Chronic myeloid leukemia in blast crisis

CMP Common myeloid progenitor

CN Cytogenetical normal

CNV Copy number variation

CNVsvd Copy number variation by singular value decomposition package

CR Complete remission

CRISPR Clustered regularly interspaced short palindromic repeat

CRISPRa CRISPR activation

CRISPRi CRISPR interference
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A

cRSS Cryptic recombination signal sequence

CSF3 Colony-stimulating factor 3

CSF3R Colony-stimulating factor 3 receptor

CSF3R-d715 to d730 Mutated CSF3R, truncated receptors at amino acid position 715 to 730

CSF3R-T595I Mutated CSF3R, substitution of threonine to isoleucine at amino acid 
position 595

CSF3R-T595V Mutated CSF3R, substitution of threonine to valine at amino acid position 
595

CTS Common translocated segment

dHPLC Denaturing high performance liquid chromatography

DNA Deoxyribonucleic acid

DNA-pkcs DNA-dependent protein kinase catalytic subunit

DNMT DNA methyltransferase

DSB Double strand break

EFS Event-free survival

ELANE Neutrophil elastase

emPCR emulsion PCR

ErP Erythrocyte precursor

ETO Eight twenty one

ETP Early thymocyte progenitor

EVI1 Ecotropic virus integration site 1

EZH2 Enhancer of zeste homolog 2 

FAB French-American-British 

FISH Fluorescence in situ hybridization

FLT3 fms-related tyrosine kinase 3

GATA2 GATA binding protein 2

G-CSF Granulocyte colony stimulating factor

GEO Gene expression omnibus

GEP Gene expression profiling

GFP Green fluorescent protein

GM-CSF Granulocyte-macrophage colony stimulating factor

GMP Granulocyte monocyte progenitor

GMP Granulocyte myeloid precursor

gRNA Guide RNA

HDR Homology directed repair

HMGB1 High-mobility group protein B1
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A

HMGB2 High-mobility group protein B2

HMM Hidden Markov model

HOVON Dutch-Belgian Hemato-Oncology Cooperative Group

HR Hazard ratio

HSC Hematopoietic stem cell

HSCP Hematopoietic stem cell and progenitor

IDH1 Isocitrate dehydrogenase 1

IDH2 Isocitrate dehydrogenase 2

IKZF1 IKAROS family zinc finger 1 

IL-2/-3/-6 Interleukin 2/3/6

Indel Insertion or deletion

IP Immunoprecipitation

ITD Internal tandem duplication

JAK2 Janus kinase 2 

KMT2A lysine (K)-specific methyltransferase 2A

KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

L-BFGS-B Bounded low-memory BFGS

LINE Long interspersed nuclear element

LLGL2 Lethal giant larvae homolog 2 (Drosophila)

lncRNA Long non-coding RNA

LOH Loss-of-heterozygosity

LSC Leukemic stem cells

LTR Long terminal repeat

MAS MicroArray Suite

MDS Myelodysplastic syndrome

MECOM MDS1 and EVI1 complex locus 

MEP Megakaryocyte erythrocyte precursor

mESC Mouse embryonic stem cells

MkP Megakaryocyte precursor 

MLL Mixed lineage leukemia

MPN Myeloproliferative neoplasm 

MPP Multipotent progenitor

mRNA Messenger RNA

MYH11 Myosine, heavy chain 11 

NF1 Neurofibromin 1 
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NGS Next generation sequencing

NHEJ Non-homologous end joining

NOTCH1 Notch homolog 1 

NPM1 Nucleophosmin 

NRAS Neuroblastoma RAS viral oncogene homolog 

OS Overall survival

PAX5 Paired box 5 

PB Peripheral blood

PCR Polymerase chain reaction

PML Promyelocytic leukemia 

PRC2 Polycomb repressive complex 2

PTD Partial tandem duplication

RAEB(t) Refractory anemia with excess of blasts(in transformation)

RAG1 Recombination activating gene 1

RAG2 Recombination activating gene 2

RARA Retinoic acid receptor, alpha 

RAS Rat sarcoma

RFS Relapse free survival

RNA Ribonucleic acid

RNA-Seq RNA profiling by deep-sequencing

RQ-PCR Quantitative real-time reverse transcription PCR

RSS Recombination signal sequence

RTK Receptor tyrosine kinase

RT-PCR Reverse transcription PCR

RUNX1 Runt-related transcription factor 1 

SCN Severe congenital neutropenia

SF3B1 Splicing factor 3B subunit 1 

SINE Short interspersed nuclear element

SNP Single nucleotide polymorphism

SNV Single nucleotide variation

STAT3/5 Signal transducer and activator of transcription

SUZ12 Supressor of zeste polycomb repressive complex 2 subunit 

SV Structural variant

TAD Transactivation domain

TALEN Transcription activator-like effector nuclease
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TCGA The cancer genome atlas 

TET2 Tet methylcytosine dioxygenase 2

TKD Tyrosine kinase domain

UPD Uniparental disomy

VAF Variant allele frequency

WBC White blood cell count

WES Whole exome sequencing

WGS Whole genome sequencing

WHO World health organization

WT1 Wilms tumor 1

ZC3H18 Zinc finger CCCH-type containing 18 
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Erasmus MC Department: Hematology Promotors: Prof. dr. B. Löwenberg, 
Prof. dr. R. Delwel
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Next Generation Sequencing Training: CLC Bio 2011 0.5
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Annual conference American Society of Hematology (ASH) (2x) 2012, 2014 2
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Workdiscussion (department of Hematology, Erasmus MC) 2009-2014 5
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Supervising practical training and excursions   
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Science students (LUMC)
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Stellingen behorende bij het proefschrift

Computational Biology-Driven Genomic and Epigenomic Delineation
of Acute Myeloid Leukemia

1. De aanduiding van het RPN1-EVI1 leukemietype moet binnen het World Health 
Organisation classificatiesysteem worden gewijzigd naar GATA2-EVI1 (dit proefschrift).

2. Naast het Burkitt’s lymfoom en het multipel myeloom, moet ook acute myeloïde leukemie 
worden beschouwd als een hematologische maligniteit die gedreven kan worden door de 
aberrante activatie van proto-oncogenen door het herpositioneren van super-enhancers 
(dit proefschrift).

3. Genetische afwijkingen bij acute lymfatische leukemie met kinase-activerende afwijkingen 
zijn het gevolg van onrechtmatige genetische herschikkingen door het RAG eiwitcomplex 
(dit proefschrift).

4. Verworven mutaties in RAS/RTK genen dragen essentieel bij aan de leukemische 
transformatie van AML met inv(3)/t(3;3) afwijkingen (dit proefschrift).

5. Het combineren van verschillende genoom-brede technieken kan nieuwe mechanistische 
inzichten verschaffen in de ontwikkeling van leukemie (dit proefschrift).

6. Mutaties in DNA methylatie-gerelateerde genen in pre-leukemische stamcellen spelen 
een belangrijke rol in het vroege ontstaan van acute myeloïde leukemie. (Shlush et al, 
Nature 2014;506:328-33; Jaiswal et al, NEJM 2014;371:2488-98; Genovese et al, NEJM 
2014;371:2477-87)

7. De functionele synergie tussen verschillende co-existente genmutaties is als een 
complex raderwerk; pas wanneer de functie van elk onderdeel bekend is, kan door kleine 
aanpassingen in de functie van elk van de onderdelen het mechaniek van het geheel 
begrepen worden.

8. Communicatieve vaardigheden zijn essentieel bij de uitvoering van multidisciplinair 
onderzoek.

9. Falsificationisme is de grootste vijand van menig wetenschapper.

10. Geen één leukemie is hetzelfde.

11.  “When you are studying any matter, or considering any philosophy, ask yourself only what 
are the facts and what is the truth that the facts bear out. Never let yourself be diverted 
either by what you wish to believe, or by what you think would have beneficent social 
effects if it were believed, but look only, and solely, at what are the facts.” (Bertrand Russell)

Mathijs Sanders

Rotterdam, 17 februari 2015
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