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Abstract
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data with heavy tails. We solve the long standing problem of estimating the sample
threshold of where the tail of the distribution starts. This is accomplished by the com-
bination of a control variate type device and a subsample bootstrap technique. The sub-
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would only provide convergence in distribution. This permits a complete and compre-
hensive treatment of extreme(P;Q) estimation.
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1 INTRODUCTION

1 Introduction

Economic analysis often depends on assessment of the probability(P ) of extreme
quantiles(Q) : For example, insurance companies focus on the probability of ruin and
commercial banks use the value-at-risk methodology to calculate the loss that can be
incurred with a given low probability on their trading portfolio. In addition, value-at-
risk is used as the basis for determination of the capital adequacy of financial insti-
tutions. Accurate estimation of the borderline in-sample and the out-of-sample(P;Q)
combinations is essential for these problems. The tail characteristics are also important
for econometric issues such as the convergence rate of regression estimators and the
selection of appropriate test statistics.

In this paper we develop a semi-parametric estimator for the tails of the distribu-
tion. From statistical extreme value theory, see e.g. Leadbetter, Lindgren and Rootzen
(1983), we know that the limit law for the extreme order statistics is one of three types
which are determined by whether the distribution has a finite endpoint or not, and by
whether the tails of the densities are declining exponentially fast or by a power. The
distribution is said to be heavy tailed in the case of power decline so that not all mo-
ments are bounded; otherwise the distribution is said to be thin tailed. Hence, if one
is only interested in the extreme(P;Q) combinations, one can rely on the asymptotic
form of the tail of distribution instead of having to model the whole distribution. This
gives the tail focused semi-parametric method an advantage over other methods in tail
applications. This applies both to non-parametric methods in general, and parametric
methods where the type of distribution is unknown. Estimating the parameters of the
wrong distribution typically implies incorrect extreme(P;Q) estimates, both because
of misspecification, and because the data in the center of the empirical distribution
have too much influence over the parameter estimates of the wrong model; while if
only the tails are modelled, this influence is absent. The semi–parametric method may
also be superior to a non–parametric approach because the latter is difficult to use for
constructing out-of-sample(P;Q) estimates.

If the data are generated by a heavy tailed distribution, then its distribution has, to a
first order approximation, a Pareto type tail:

P fX > xg � ax��; a > 0; � > 0;

asx!1: By using the concept of regular variation, defined below, the Pareto nature
of the tails of such distributions as the non-normal stable, Student-t, and the Fr´echet,
can easily be verified. The exponent� equals the number of bounded moments, anda
is a scaling constant. Estimates of� are needed in order to construct extreme(P;Q)
estimates. Suppose there exists a high thresholds above whichax�� is a good approx-
imation ofP fX > xg, and letXi denote the sample realizations such thatXi > s:
Then the maximum likelihood estimator for1=� of the left truncated Pareto distribu-
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tion is the average of thelog (Xi=s) : This estimator is known as the Hill (1975) esti-
mator. It has been shown by Hall (1982) and Goldie and Smith (1987) that there exists
a unique sequence of thresholdssn as a function of the sample sizen such that the
bias squared and variance of the Hill estimator vanish at the same rate. Moreover, this
sequence minimizes the asymptotic mean squared error (AMSE) of1=�̂. As we show
later, given this sequence and the Hill estimate, the construction of extreme(P;Q)
estimates is straightforward. The problem is therefore finding the optimal threshold
sn: Until now, it has not been known how to estimatesn; except under very restric-
tive assumptions, see e.g. the recent survey by Embrechts, Kuppelberg and Mikosch
(1997). This problem has hampered the practical implementation and adoption of ex-
treme value methods, because a key part of the statistical procedure remained arbitrary.
Most empirical papers proceed by plotting estimates of1=� against different choices
for sn: Subsequently, by eyeballing such a plot one tries to locatesn where the bias
squared and variance have the appearance of being in balance.

In this paper we solve the long standing problem of estimatingsn through a bootstrap
of theMSE of d1=�, and by minimizing the bootstrapMSE through the choice ofsn: It
is, however, not straightforward to construct such a bootstrap, because the theoretical
benchmark value1=� is unknown. To solve this problem we use the idea behind control
variates in Monte Carlo estimation, see e.g. Hendry (1984). We subtract from the Hill
estimator an alternative estimator which converges in theMSE sense at the same rate,
albeit with a different multiplicative constant. Hence, this difference statistic converges
at the same rate and has a known theoretical benchmark which equals zero in the limit.
The square of this difference statistic produces a viable estimate of theMSE [1=�] that
can be minimized with respect to the choice of the thresholdsn:

Unfortunately, it can be shown that the conventional bootstrap procedure of this dif-
ference statistic from the entire sample only generatessn levels which relative to the
optimal level converge in distribution. To attain the desired convergence in probability,
we show that one needs to create resamples of smaller size than the original sample
with a subsample bootstrap technique. The reason why the full sample bootstrap tech-
nique fails is due to the linearity of the estimators inlog (Xi=s) : By bootstrapping on
the entire sample, one in essence recreates the full sample estimates, but the use of
smaller resamples produces a weak law of large numbers effect.

We present the material in a comprehensive self contained manner, with known proven
results either in the Appendix or referenced, with the benefit that statistical extreme
value theory becomes accessible to economists. There is a host of interesting applica-
tions in economics and econometrics, some which have been underexploited. Loretan
and Phillips (1994) use estimates of heaviness of the tails to determine whether the
fourth moment is bounded or not, in order to decide upon the proper asymptotic dis-
tribution for the CUSUM statistic. Kearns and Pagan (1997) discuss the issue of tail
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index estimation with dependent financial returns data. Akgiray, Booth and Seifert
(1988), Koedijk, Schafgans and de Vries (1990) and Longin (1996) use tail estimates
to construct a nested test in order to discriminate between such non-nested models
like the sum–stable and Student-t distributions. Information about the heaviness of the
distribution is also useful for obtaining the convergence speed of OLS estimators in
regression analysis, since the speed of convergence deteriorates if the innovations have
finite variance but are heavy tailed instead of being normally distributed. Booth, Brous-
saard, Martikainen and Pattonen (1997) analyze the determination of margin calls in
futures markets, and Jansen and de Vries (1991) studies the prediction of boom and
crashes. Large claims analysis in insurance economics is studied by Beirlant, Teugels
and Vynckier (1994), and Embrechts, Kuppelberg and Mikosch (1997).

We look at one application in some detail, Value-at-Risk. In addition, we provide an
extensive amount of Monte Carlo experiments to test our estimator. We simulate from
a number of i.i.d. and dependent heavy tailed distributions and stochastic processes,
and estimate back known theoretical quantities.

2 Theory

We define the idea of heavy tails rigorously by means of the concept of regular varia-
tion in subsection 2.1 and then develop a whole class of tail estimators. The properties
of these estimators and the optimal choice ofsn for a given distribution are discussed
in subsection 2.3. Subsection 2.4 shows howsn can be estimated from the data if the
distribution is unknown. The last subsection provides the extreme probability–quantile
(P;Q) estimators.

2.1 Regular Variation

A distribution functionF (x) is said to vary regularly at infinity with tail index� if

lim
t!1

1� F (tx)

1� F (t)
= x��; � > 0; x > 0: (1)

The property of regular variation implies that the unconditional moments ofX larger
than� are unbounded. In this sense the class of regular varying distributions is heavy
tailed. This assumption is essentially the only assumption which is needed for the
analysis of the tail behavior ofX. For expository reasons we only focus on the upper
tail of the distribution; the analysis of the lower tail is analogous.

A more detailed parametric form for the upper tail ofF (x) can be obtained by taking
a second order expansion ofF (x) asx ! 1. While there are several expansions
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possible, de Haan and Stadtmuller (1996) show that there are only two non-trivial
expansions. The first expansion is

F (x) = 1� ax��
�
1 + bx�� + o

�
x��
��
; � > 0; asx!1: (2)

Under a mild extra condition, the expansion (2) implies the following expansion for
the density

f (x) = a�x���1 + ab (�+ �) x�����1 + o
�
x�����1

�
: (3)

Here, the theory will be developed on the basis of the expansion for the density (3).
The density expansion facilitates the unified, comprehensive and streamlined treat-
ment of statistical extreme value theory given below. The expansion (3) applies to the
well known cases of non-normal sum–stable, Student-t, Fr´echet, and other fat tailed
distributions. The other non-trivial second order expansion is:

F (x) = 1� ax�� [1 + b log x+ o (logx)] :

The second order term in this expansion decays more slowly than the algebraic rate of
the second order term in (2) and (3)1.

2.2 k-Moment Ratio Tail Index Estimators

Consider the conditionalk�th order log empirical moment from a sampleX1; :::; Xn

of n i.i.d. draws fromF (x) :

uk (sn) � 1

M

MX
i=1

�
log

Xi

sn

�k
�����Xi > sn; (4)

wheresn is a threshold that depends onn, andM is the random number of excesses.
An alternative definition is

uk (mn) � 1

mn

mnX
i=1

�
log

X(i)

sn

�k

; sn = X(mn+1);

whereX(i) are the descending order statistics, andsn is a random threshold. Note that
uk (sn) anduk (mn) are functions of the highest realizations ofX. These two defini-
tions yield identical results and are used interchangeably depending on the expediency
of the proofs.

Danielsson, Jansen and de Vries (1996) introduced the following class of estimators
for the inverse of the first order tail index,1=�:

1. For this class the estimator we develop for1=� is consistent. But the slow decay of the second order
term makes this class sufficiently different from the other class such that it does not easily fit within the
streamlined presentation of the current paper, i.e. it would make the present paper overly long.

5



2 THEORY 2.2 k-Moment Ratio Tail Index Estimators

Definition 1 The k-moment ratio estimator, denoted aswk (sn), for the inverse tail
index is

wk (sn) �d1=� =
uk (sn)

kuk�1 (sn)
; (5)

wherek = 1; 2; ::: are integer valued, andu0 (sn) = 1:

The specific case wherek = 1, andw1 (sn) = u1 (sn), is known as the Hill estima-
tor proposed by Hill (1975). The theoretical properties of the Hill estimator are well
documented by e.g. Hall (1982) and Goldie and Smith (1987), who develop the theory
respectively on the basis ofuk (mn) anduk (sn). The Hill estimator is considered here
as part of the class of moment ratio estimators. There are several motives for a con-
sideration of the whole class ofk-moments ratio estimators. Below we show that the
various members of thek�class have under certain conditions better bias and mean
squared error properties than other members. Secondly, we show that at least two ele-
ments from this class are needed to pin down the optimal thresholdsn.

Hall (1982) and Goldie and Smith (1987) provide proofs of the moment properties of
the Hill statisticw1. We extend the proofs to the general case ofwk. The proofs are
contained in Appendix A.

Theorem 1 For the class of random variables that satisfy (3), the asymptotic bias of
thek moment ratio estimatorwk (sn) is

E

�
wk (sn)� 1

�

�
= � b��k�2

(� + �)k
s��n + o

�
s��n
�
: (6)

Theorem 2 Suppose the thresholdsn is chosen such thatMs�n=an! 1 in probability
asn!1. Then if (3) applies

Var

�
wk (sn)� 1

�

�
=
� (k)

M�2
+ o

�
1

M

�
; (7)

where

� (k) =
(2k)!

(k!)2
+

(2k � 2)!

((k � 1)!)2
� 2

(2k � 1)!

k! (k � 1)!
: (8)

The first few values of the� (k) function are given in Table 1. Note the rapid increase
ask increases.
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k 1 2 3 4 5 6 7
� (k) 1 2 6 20 70 252 924

Table 1: Values of the� (k) function

Together these two theorems imply that for certain sequences ofsn thewk are con-
sistent estimators if theXi are i.i.d. and satisfy the density restriction (3). Thewk

estimators are also consistent under various forms of dependency. Leadbetter, Lind-
gren and Rootzen (1983) contains an extensive treatment of ARMA type dependence,
which preservers the regular variation property, and de Haan, Resnick, Rootzen, and
de Vries (1989) subsequently proved that the unconditional distribution of ARCH pro-
cesses satisfy the regular variation property. Hsing (1991) and Resnick and St˘arică
(1996) show that the Hill estimator is a consistent estimator under respectively ARMA
and ARCH type dependent processes.

2.3 Optimal Choice ofsn

The asymptotic mean squared error (AMSE) ofwk (sn) follows from Theorems 1 and
2:

AMSE (wk (sn)) � � (k)

a�2

s�n
n

+
b2�2�2k�4

(�+ �)2k
s�2�n : (9)

Which of the two terms on the right hand side of (9) asymptotically dominates the
other, is determined by the rate by whichsn ! 1 asn ! 1: Moreover, there is
a unique sequencesn which asymptotically balances the two terms. We derive this
sequence from the first order condition@ AMSE =@sn = 0; it can be verified that the
second order condition is satisfied as well.

Theorem 3 Suppose thatMs�n=an! 1 in probability and that (3) applies. The unique
AMSE minimizing asymptotic thresholdsn is

sn (wk) =

"
2ab2�3�2k�3

(� + �)2k � (k)

# 1
�+2�

n
1

�+2� ; (10)

and the associated asymptotically minimalMSE of wk (sn) equals

MSE [wk (�sn)] =
� (k)

a�

�
1

�
+

1

2�

�"
2ab2�3�2k�3

(� + �)2k � (k)

# �
2�+�

n�
2�

2�+� : (11)
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The asymptotic number of exceedancesmn where the bias and variance parts are bal-
anced is computed by combining (10) with the suppositionMs�n=an! 1:

mn (wk) = a

"
2ab2�3�2k�3

(� + �)2k � (k)

#� �
�+2�

n
2�

�+2� : (12)

From (9-11) it is straightforward to show that ifsn tends to infinity at a rate below
n1=(2�+�); the bias part in theMSE will dominate, while conversely the variance part
dominates ifsn tends to infinity more rapidly thann1=(2�+�): For the classwk (sn) we
show that on the basis of theAMSE criterion the only two elements of interest arew1

andw2:

Theorem 4 Thew1 andw2 statistics are the only two estimators in the classwk; k =
1; 2; 3:::; which are not dominated, in the sense of theAMSE criterion, for all�=� 2
R+ combinations.

Proof. From (11) we have that, for a givenn,

MSE = c� (k)2�=(2�+�)
�

�

� + �

� 2�k
2�+�

;

and wherec > 0: Comparing

MSE (wk�1) R MSE (wk) ;

we find that this is equivalent with

1 +
�

�
R
�

� (k)

� (k � 1)

� �
�

:

Now note that[� (k) =� (k � 1)]�=� dominates1 + �=� for all values of�=� > 0 if
� (k) =� (k � 1) > e � 2:71: From Table 1 it is evident that this holds fork = 3; 4; :::

Because

1 +
�

�
R 2

�
� as � R �;

we find:

Corollary 1 For� > 0, when the Hill and thew2 statistics are each evaluated at their
own asymptoticMSE minimizing thresholds:

MSE (w1) R MSE (w2) as � R �:
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From the previous formulas for the asymptotic bias and variance it can be seen that
both the (optimal) variance and bias squared differ only with respect to the multiplica-
tive constants1=� and1=2�: Hence

BIAS 2 (wk�1) R BIAS 2 (wk), 1 + �=� R
�

� (k)

� (k � 1)

��=�
:

This implies that ifw2 has a lowerMSE thanw1, thenw1 is asymptotically more biased
than thew2: Therefore,w2 dominatesw1 in both theMSE and bias sense for the cases
where the first order termx�� in the asymptotic expansion ofF (x) converges more
rapidly than the second order termx��.

The asymptotic distribution ofwk is given in Theorem 5. The analysis follows Goldie
and Smith (1987) who discuss the special case of the Hill statistic.

Theorem 5 Suppose we choosesn such that

snn
� 1

2�+� !
h
2ab2�3�2k�3 (� + �)�2k � (k)�1

i 1
2�+�

in probability asn!1: Then

p
M (�wk (sn)� 1)

p
� (k)! N

�
�
r

�

2�
sign (b) ; 1

�
in distribution.

The usefulness of Theorem (5) depends on a number of factors. First, the point estimate
wk (sn) is conditional on the choice ofsn: If the asymptotically optimal threshold
sn can be estimated bŷsn such thatŝn=sn converges in probability to 1, then the
asymptotic normality ofwk (sn) also applies to the case wheresn is replaced by its
estimated value. Hall and Welsh (1985) showed that this holds without restrictions
on the convergence rate; it is an implication of the regular variation property of the
MSE in (11). Second, the limiting normal distribution has a mean which depends on
the unknown factor

p
�=2� sign (b) : If this latter factor can be estimated consistently,

then it follows from Slutsky’s theorem that the claim of the asymptotic normality of
wk (sn) also applies to the case where the bias factor must be estimated. This issue will
be taken up at the end of the next section.

2.4 Estimation ofsn

The estimation ofsn is a non-trivial problem, and up to now the published work on this
problem is by Hall (1990). But Hall’s paper only gives a very partial solution because
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2 THEORY 2.4 Estimation ofsn

it assumes that the first and second order tail indices are equal, i.e.� = �. Nonetheless
Hall’s paper contains the important suggestion to employ a bootstrap procedure to
estimatesn. Sincesn asymptotically minimizes theMSE, the idea is to solve this
minimization problem by the bootstrap. Suppose that fork = 1 we obtain the standard
bootstrap equivalent of the expectation

MSE[w1] = E

"�
w1 (sn)� 1

�

�2
#

by

1

R

RX
r=1

�
(w1;r (sn)� ew1 (~sn))

2� ; (13)

wherew1;r is calculated on a bootstrap resample of the original sample,R is the num-
ber of bootstrap resamples, andew1 (~sn) is some consistent initial estimate. Then one
could minimize this statistic by choice ofsn: There are, unfortunately, three problems
with this approach.

First, this procedure fails to pick up the bias. The log-linearity of the estimator implies
that the bootstrap expectationER of w1;r given the empirical distribution functionFn
equals

E R [w1;r (sn)jFn] = w1 (sn) :

Hence, the bias is calculated to be zero. But, as was shown in the previous section, the
optimalsn must be such that the bias squared and variance are of the same order of
magnitude. Hall (1990) nicely solved this problem by proposing a subsample bootstrap
procedure. Suppose the bootstrap resamples are not of sizen; but of smaller sizen1 <
n; such thatn1=n! 0 asn1; n ! 1: Replacew1;r (sn) in (13) byw1;r (sn1). Then
the average bias from the subsample estimates does not cancel against the bias of
the full sample initial estimateew1 (sn) because the latter is of smaller order, at the
corresponding optimal values ofsn.

Second, the procedure only works when the first and second order tail indexes are
restricted to be equal. The reason for this restriction can be understood as follows.
Once the optimal thresholdsn1 has been estimated for the subsample sizen1; it has to
be inflated to find the corresponding full sample equivalent. From (10) it follows that
the relationship between the optimal threshold values for the different sample sizes is:

�sn = �sn1 (n=n1)
1

2�+� : (14)

The corresponding formula for the number of excesses is from (12)

�mn = �mn1 (n=n1)
2�

2�+� : (15)
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Goldie and Smith (1987) show that (14) and (15) are equivalent solutions to the choice
of a threshold. Hall assumes� = � and focuses on (15), so that the exponent equals
2=3. This restriction applies to certain classes of fat tailed distributions like the type II
extreme value distribution and the stable distributions. But for other distributions, like
the Student-t class where� = 2 and� equals the degrees of freedom, the restriction
does not apply. For a satisfactory general treatment of the class of heavy tailed densities
the exponent in (14) or (15) has to be estimated.

The third problem is that the minimization of the subsample bootstrapMSE

min
sn1

1

R

RX
r=1

�
(w1;r (sn1)� ew1 (~sn))

2� (16)

is still conditional on an initial full sample estimateew1 (~sn) : But for the entire pro-
cedure to work this initial estimate has to be such that~sn=sn ! 1 in probability, and
hence requires an appropriate choice ofesn: If � = � then one might usew1 ( ~mn)
where ~mn = n2=3. This would still ignore the multiplicative constant in (12). But for
the general case this is of no avail anyway, and hence~mn or ~sn have to be estimated.
However, we set out to findsn in the first place. Hence, this problem undermines the
entire procedure sketched thus far. Both the second and the third problem are solved
below.

We propose replacingw1;r (sn1) by a statistic for which the true value is known, i.e. is
independent of�; but with anAMSE that has the same convergence rate, albeit with
a different multiplicative constant, as theAMSE of thewk statistic. When the true
value is known, the bootstrapAMSE is easily implemented, because we do not need
an initial estimate likeew1 (esn) in (16), and the optimalsn ormn can be estimated.

The statistic we propose to use is:

z (sn) � w2 (sn)� w1 (sn) : (17)

We showed earlier the consistency of allwk statistics as estimators of1=� for sn �
cn

1
2�+� . Thez (�sn) converges to0 asn!1: Hence,MSE[z] = E [z2] : We now show

that theAMSE [z] has the same order of magnitude as theAMSE [wk] :

Theorem 6 If sn is such thatMs�n=an! 1 in probability, then

E [z (sn)] =
b�2

� (� + �)2
s��n + o

�
s��n
�
;

and

Var [z (sn)] =
1

�2

1

M
+ o

�
1

M

�
:

11



2 THEORY 2.4 Estimation ofsn

Corollary 2 Suppose thatMs�n=an ! 1 in probability, then theAMSE [z] minimiz-
ing asymptotic threshold level�sn (z) reads

�sn (z) =

�
2ab2�5

� (� + �)4

� 1
2�+�

n
1

2�+� : (18)

By comparing�sn (wk) from (10) with the�sn (z) from (18) we see that

�sn (z)

�sn (wk)
=

 
�2 (� + �)2k�4

�2k�2 � (k)

! 1
2�+�

:

Hence the two threshold values only differ with respect to their multiplicative con-
stants, but increase at the same rate with respect to the sample sizen:

From Corollary 2 we know that the asymptoticMSE [z] is minimized by�sn (z) from
(18). However, the practical problem of finding this value remains. One possibility is
a bootstrap ofz2n (s) ; i.e. calculate the bootstrap average(1=R)

PR
r z

2
n;r (s), and min-

imize this average with respect tos: Unfortunately, for the following reason this does
not produce an estimate which is asymptotic to�sn (z) . In the proof to Theorem (5)
we showed that

p
Muk is asymptotically normally distributed. By the Taylor expan-

sion from the proof to Theorem (6) it then readily follows that
p
Mz is also asymp-

totically normally distributed. HenceMz2 is asymptotic to a�2
(1) distributed random

variable. The mean ofMz2 is easily shown to be asymptotic toM times the value of
theAMSE [z] as stated in (40) in Appendix A. But becauseMz2 only converges in
distribution, the average of the full sample bootstrap valuesMz2n;r has the same distri-
butional properties asMz2: To show this, use the log-linearity of theu1 andu2 in the
data and consider the Taylor expansion ofz as given in the proof to Theorem 6.

Instead of the convergence in distribution, for statistical purposes one would like to
have convergence in probability. We will now show that the desired convergence in
probability can be obtained through the subsample bootstrap procedure. Note that the
argument for using the subsample bootstrap procedure is different from Hall’s (1990)
argument concerning the bias. Before we turn to the proof, we will provide an intuitive
account of what the subsample bootstrap procedure achieves.

Consider the Hill estimator

w1 (sn) =
1

M

MX
1

Yi (sn) ;

whereYi (sn) � log (Xi=sn) given thatXi > sn and whereXi are descending or-

der statistics. From Theorem 5 we know that forsn = �sn;
�
1=
p
M
�PM

i Yi (�sn) is
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2 THEORY 2.4 Estimation ofsn

asymptotically normally distributed. Now suppose thatsn is not of the ordern
1

2�+� ;
cf. (10). Then it follows from (9) that either the bias dominates asymptotically, if

sn = o
�
n

1
2�+�

�
; or that the variance dominates, ifn1=2�+� = o (sn) : This result for

the Hill statistic first appeared in Hall (1982). Now consider taking subsample resam-
ples of sizen1 such thatn1 = O (n1�") ; where0 < " < 1: Let �sn1be theAMSE mini-

mizing threshold level for the sample sizen1: Becausen1 � n1�", �sn1 = o
�
n

1
2�+�

�
:

The subsample bootstrap average of the Hill statistic is:

1

R

RX
r

1

Mr

MrX
i

Yi;r (sn1) =
1

R

RX
r

w1;r (sn1) :

In the original sample, since�sn > �sn1 ; the observations are ordered as follows:

X(1) � ::: � X(M) > �sn � X(M+1) � ::: � X(T ) > �sn1 � X(T+1) � :::

The bootstrapped statisticw1;r (�sn1) evaluated at the subsample optimal threshold value
�sn1 is therefore an average from the set�

Y(1) (�sn1) ; :::; Y(M) (�sn1) ; Y(M+1) (�sn1) ; :::; Y(T ) (�sn1)
	
:

It follows that as the number of subsamplesR increases

1

R

RX
r

1

Mr

MrX
i

Yi;r (�sn1)!
1

T

TX
i

Y(i) (�sn1) (19)

in probability. This result can be understood as follows. For a givenn1 the number of
resamplesR�, say, for whichMr has the specific sizem�,m� 2 f1; 2; :::; n1g ; becomes
more numerous asR increases. Hence, eventually the law of large numbers kicks in

such that the sum of the averages
P

R�

�Pm�

Yi;r (sn1) =m
�
�

divided by the number of

resamplesR� for whichMr equalsm� converges to
PT Y(i)=T: The weighted average,

with weightsR�=R, of these averages for specificm� values then also converges toPT Y(i)=T: By the theorem from Hall (1982) we then have that asn!1

1
Tn

TnP
i

Y(i) (�sn1)� 1
�

E
�
w1 (�sn1; n)� 1

�

� ! 1 (20)

in probability. And hence this is also applies to the left hand side of (19). Note that
w1 (�sn1; n) stands for the Hill statistic calculated from the full sample but conditional
on the smaller, subsample optimal, threshold value�sn1: The idea is that subsample
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2 THEORY 2.4 Estimation ofsn

bootstrap averages conditional on the subsample optimal threshold value are compara-
ble to the corresponding full sample statistic evaluated at a smaller threshold than�sn:
But conditional on this smaller threshold value, the full sample statistic converges in
probability rather than in distribution. This embedding idea is the essence of the proof
to our main result.

Theorem 7 Suppose model (3) applies. Letn1 = O (n1�") for some0 < " < 1 be the
bootstrap resample size. For givenn letR!1 and determinêsn1 such that

1

R

RX
r

[zr (ŝn1 ; n1)]
2

is minimal. Then, asn!1
ŝn1 (z) =�sn1 (z)! 1

in probability. Note,�sn1 (z) was given in (18).

Proof. Use the above shorthand notationY k
i;r (s) =

�
log Xi;r

s

�k
; whereXi;r � s:

By the Taylor expansion ofz from the proof to Theorem (6) we can write (using the
shorthands1 for sn1 )

1

R

RX
r

[zr (s1; n1)]
2 (21)

=
1

R

RX
r

8<: 1

�2
+ 4

 
1

Mr

MrX
i

Yi;r (s1)

!2

+
�2

4

 
1

Mr

MrX
i

Y 2
i;r (s1)

!2

� 4

�

1

Mr

MrX
i

Yi;r (s1) +
1

Mr

MrX
i

Y 2
i;r (s1)

�2�
�

1

Mr

�2 MrX
i

Yi;r (s1)
MrX
i

Y 2
i;r (s1)

)
+ o:

For each of the terms within the curled brackets we can use arguments similar to the
ones that were used to find the asymptotic values in (19) and (20) by first driving
R ! 1 and subsequently takingn ! 1. To this end suppose thats1 = o (�sn) :
Hence, for the second term on the RHS of (21) asymptotically

1

R

RX
r

1

M2
r

 
MrX
i

Yi;r

!2
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=
1

R

RX
r

1

M2
r

MrX
i

(Yi;r)
2 +

1

R

RX
r

1

M2
r

MrX
i6=j

MrX
j

Yi;rYj;r

� 1

�2

1

m (s1)
+

1�
1 + bs��1

�2
 
1

�
+

bs��1

� + �

!2

;

wherem (s1) � an1 (sn1)
�� : The last step, whenn!1whilems�n1=n! a; follows

from the arguments in the proof to Theorem 2. To see how the first step can be obtained
consider e.g. the first term. By the reasoning that was applied to arrive at (19), we find
that asR!1

1

R

RX
r

1

M2
r

MrX
i

[Yi;r (s1)]
2 ! 1

m (s1)

1

T

TX
i

Y 2
(i) (s1)

in probability. Where in addition to the arguments behind (19) we used

plim
R!1

n1X
i=1

R�i
R

1

i
=

1

m (s1)
:

By similar reasoning one finds the asymptotic values of the other terms as:

1

R

RX
r

1

M2
r

 
MrX
i

Y 2
i;r

!2

� 1

m (s1)

20

�4
+

4�
1 + bs��1

�2
 

1

�2
+

bs��1

(� + �)2

!2

;

1

R

RX
r

1

Mr

MrX
i

Yi;r

� 1

1 + bs��1

 
1

�
+

bs��1

� + �

!
;

1

R

RX
r

1

Mr

MrX
i

Y 2
i;r

� 2

1 + bs��1

 
1

�2
+

bs��1

(� + �)2

!
;

1

R

RX
r

1

M2
r

MrX
i

Yi;r

MrX
i

Y 2
i;r
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� 1

m (s1)

4

�3
+

2�
1 + bs��1

�2
 

1

�2
+

bs��1

(� + �)2

! 
1

�
+

bs��1

� + �

!
:

Substitute these expressions into the appropriate places within the curled brackets in
(21). After some rearrangement, one arrives at

1

R

RX
r

[zr (s1; n1)]
2 � 1

a�2

s�1
n1

+
b2�4

�2 (�+ �)4
1

s2�1
; (22)

for any s1 = o (�sn) : By Corollary 2 this bootstrapMSE [z] value is minimized at
s1 = �sn1 ; where�sn1 is given in (18). Moreover, it is straightforward to show that on
the one hand fors1 2 (0; �sn1) the right hand side of (22) is monotonic and declining
in s1. On the other hand fors1 = o (�sn) ands1 > �sn1 ; the right hand side of (22) is
monotonic and increasing. Thus�sn1 can be located asymptotically by searching for the
minimum to

1

R

RX
r

[zr (s1; n1)]
2

ass1 is increased from ‘zero’.

Remark 1 An analogous procedure, and proof applies to the interpretation of the Hill
statistic with a fixed number of excesses and a random threshold. In that case one
decreases the number of excesses from the maximal number to the value where

1

R

RX
r

[zr (s1; n1)]
2

bottoms out.

Remark 2 A proof of this claim by means of bounds on the upper class sequences
for the empirical distribution function of the uniform distribution is available from
Danielsson, de Haan, Peng and de Vries (1997). This proof applies to the more general
class (2), but is also more involved. An altogether different approach is taken in a recent
manuscript by Drees and Kaufmann (1997). They establish a law of iterated logarithm
for

p
mw1. The result is then used to construct a sequencem̂n which is asymptotic to

�mn:

The above yields an estimatêsn1 (z) of the optimal threshold�sn1 (z) such that
ŝn1 (z) =sn1 (z) ! 1 in probability. A similar statement applies to the estimate for

16
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m̂n1 (z) for the optimal number of highest order statistics�mn1 (z) : Note that �mn (z)
can be calculated in the same way as that�mn (wk) in (12) was obtained:

�mn (z) = a

�
2ab2�5

� (� + �)4

�� �
2�+�

n
2�

2�+� : (23)

While it is more expedient to present the theoretical derivations in terms of the thresh-
old interpretation, however, in practice the minimization of the bootstrappedMSE [z]
is done in terms of the indexm:

In the end we are not interested in the optimal�mn (z) from (23), but rather we need
the optimal�mn (wk) as in (12). These two quantities are related as follows:

�mn (z)

�mn (wk)
=

"�
�

�

�2�
1 +

�

�

�2k�4
� (k)

#� 1

1+
2�
�

: (24)

Hence, a conversion from̂mn (z) to m̂n (wk) requires a consistent estimate of the ratio
of the first and second order tail parameters�=�: The following result exploits the fact
thatmn1 (z) varies regularly, cf.(1) and (23).

Theorem 8 A consistent estimator for�=� is

d�=� =
log m̂n1 (z)

2 logn1 � 2 log m̂n1 (z)
: (25)

Theorem (8) in combination with (24) implies that

m̂n1 (w2) = m̂n1 (z)

�p
2

log m̂n1 (z)

2 logn1 � 2 log m̂n1 (z)

� 2 log n1�2 log m̂n1 (z)

log n1

(26)

is a consistent estimator for�mn1 (w2) :Similar expressions can be obtained form̂n1 (w1) :
But these estimators do not exploit all the information which is available in the full
sample, because these are restricted to the subsample sizen1: The second conversion
we need is to go from̂mn1 (w2) to m̂n (w2) :

Corollary 3 Under the conditions of Theorems (3) and (7)

m̂n1 (wk)

�mn (wk)

�
n

n1

� 2
2+�=�

! 1 (27)

in probability.
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Proof. Combine the results from both propositions.

One might contemplate using relation (27) as an equality and to replace�=� in the

exponent byd�=� from (25). Unfortunately, even though thed�=� estimates in (25)

is consistent, its rate of convergence is unknown. This frustrates usingd�=� in (27)
because�=� appears in the exponent (and hence its convergence rate may be too slow,
i.e. less than" logn). A solution is to do a second bootstrap on an even further reduced
subsample sizen2; and to choosen2 handily such that the multiplicative factor in (27)
can be replaced by a known value.

Theorem 9 Let n1 = O (n1�") for some0 < " < 1=2 and choosen2 = n21=n:
Supposêmn2 (z) is the consistent estimator of�mn2 (z) from the subsample bootstrap
procedure on subsample resamples of sizen2: Then

(m̂n1 (z))
2

�mn (z) m̂n2 (z)
! 1 (28)

in probability.

Proof. Similar to Corollary 3 we have that

m̂n1 (z)

�mn (z)

�
n

n1

� 2
2+�=�

P�! 1

and
m̂n2 (z)

m̂n1 (z)

�
n1
n2

� 2
2+�=�

P�! 1:

Division combined with the fact that we choosenn2=n21 = 1 yields the claim.

Combine result (28) with (26) to arrive at the ‘consistent’ estimator

m̂n (w2) =
(m̂n1 (z))

2

m̂n2 (z)

�p
2

logmn1 (z)

2 logn1 � 2 log m̂n1 (z)

� 2 log n1�2 log m̂n1 (z)

log n1

: (29)

The other variants likêmn (w1) follow easily.

We have shown howsn; or mn, and�=� can be estimated on the basis of a double
subsample bootstrap procedure. This procedure rests on a choice for the subsample
sizesn1 = n1�"; where1

2
> " > 0; andn2 = n21=n: Asymptotically anyn1 such that

1
2
> " > 0 yields a consistent estimate of�. Hence, asymptotic arguments provide little

guidance in choosing between any of then1, which is desired for practical purposes.
We propose the following criterion.

18



2 THEORY 2.5 Prediction of Extremes

The basis for our estimator of� is the minimization of theirAMSE : The subsample
bootstrap yields estimates of theAMSE (zn1) andAMSE (zn2) : By the same argu-
ments as were used in the proof to Theorem 9, one can show thath

\AMSE (zn1)
i2
= \AMSE (zn2) (30)

is asymptotic toAMSE (z ( �mn)) : The idea is then to choosen1 by

argmin
n1

h
\AMSE (zn1)

i2
= \AMSE

�
zn2(n1)

�
: (31)

Choosingn1 in this way keeps the estimatedMSE to a minimum.

Remark 3 Note that in contrast to the previous literature, no arbitrary choice of pa-
rameters, in particularmn or sn, has to be made in our procedure. Only the tuning
parameters concerning the grid size over whichn1 is varied and the number of boot-
strap resamples has to be chosen. These are dictated by the available computing time.

Finally, we need to address howsign (b) can be estimated consistently. Estimation of
sign (b) is needed in Theorem 5 for the purpose of hypothesis testing. This can be
achieved as follows. Recall the mean ofz (sn) from Theorem 6:

E [z (sn)] = cs��n sign (b) + o
�
s��n
�
;

wherec > 0: This suggests the following consistent estimator

\sign (b) = sign (z (sn)) ; with sn < sn: (32)

Note that we choosesn < sn, or alternativelymn > mn; to guarantee that the bias
asymptotically dominates the variance. We also experimented with the following esti-
mator forsign (b)

sign ([w2 � w1]� [w4 � w3]) :

It is straightforward to check that this estimator is also consistent.

2.5 Prediction of Extremes

The primary objective of the paper is to develop better estimators for borderline in–
sample and out–of–sample quantile and probability(P;Q) combinations. The proper-

ties of the quantile and tail probability estimators follow from the properties ofd1=�:
Out–of–sample(P;Q) estimates are related in the same fashion as the in sample(P;Q)
estimates, i.e. we establish an out–of–sample Bahadur-Kiefer result.
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2 THEORY 2.5 Prediction of Extremes

Consider two excess probabilitiesp andt with p < 1=n < t; wheren is the sample
size. Associated withp andt are large quantilesxp andxt, wherexp : 1� F (xp) = p,
and xt : 1 � F (xt) = t. Sincep < 1=n, it is likely thatxp > max fX1; : : : ; Xng :
The quantilexp can be estimated by extrapolating the empirical distribution function
Fn (x) by means of its regular variation properties. Using the expansion ofF (x) in (2)
with � > 0 we have

t

p
=

�
xp
xt

�� 1 + bx��t + o
�
x��t
�

1 + bx��p + o
�
x��p
� ;

so that

xp = xt

�
t

p

�1=�
0@ 1 + bx��p + o

�
x��p
�

1 + bx��t + o
�
x��t
�
1A1=�

: (33)

This suggests the following estimator. Ignore the higher order terms in the expansion,
replacet by m=n andxt by the(m+ 1)-th descending order statistic, and substitute
for 1=� anwk estimator. This yields:

x̂p = X(m+1)

�
m

np

�wk

: (34)

Alternatively, employ the threshold interpretation of thewk; i.e. the probabilityt is
replaced by the random variableM=n with xt fixed atsn. This gives

x̂p = xt

�
M

np

�wk

: (35)

Theorem 10 Suppose that the conditions of Theorem 5 do hold. In addition take
xt = ŝn; m = [tn], t decreasing buttn ! 1. Suppose thatnpn converges to a con-
stant� which may be zero. Then the quantile estimatorx̂p is asymptotically normally
distributed:

p
m

log (m=np)

�
x̂p
xp
� 1

�p
� (k) � N

�
�sign (b)p

2��
;
1

�2

�
:

The proof for the fixed number of order statistics is similar and omitted.
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3 ESTIMATION AND SIMULATION

An estimator for the reverse problem can be developed as well. Rewrite (33 )

p = t

�
xt
xp

�� 1 + bx��p + o
�
x��p
�

1 + bx��t + o
�
x��t
� ; (36)

and use

p̂ =
M

n

�
xt
xp

��̂

: (37)

Theorem 11 Under the same conditions as in Theorem10, the excess probability esti-
matorp̂ is asymptotically normally distributed, that is

p
m

log (xt=xp)

�
p̂

p
� 1

�p
� (k)! N

�
�2 sign (b)p

2��
; �2

�
in distribution.

Note that the asymptotic distributions of the normed quantiles and probabilities differ
by a multiplicative factor of��2: This is a Bahadur-Kiefer type result for out of sample
(P;Q)combinations, cf. Serfling (1980). In words, it does not matter from which axis
one looks at the distance between the empirical distribution function and the distribu-
tion function, even if out–of–sample the empirical distribution function is replaced by
the(p; x̂) or (p̂; xp) curves.

Remark 4 The algorithm for computing(p; x̂) or (p̂; xp) andw2(mn) is as follows.
For a given choice ofn1 < n draw R bootstrap resamples of sizen1. Calculate
1
R

PR
r [zr (mn1; n1)]

2, i.e. the bootstrapMSE of the difference statisticz at eachmn1 ;
and find them̂n1 which minimizes this bootstrapMSE. Repeat this procedure for an
even smaller resample sizen2, wheren2 = (n1)

2 =n. This yieldsm̂n2 . Subsequently
calculatem̂n from (29). Finally, estimate1=� by w2 (m̂n). The choice forn1 is made
from (31). By using this procedure two tuning parameters have to be chosen, the num-
ber of bootstrap resamples and the search grid size. Last, one estimates the desired
(P;Q) combinations from either (34) or (37).

3 Estimation and Simulation

We investigate the performance of our estimators, both with Monte Carlo experiments
and application to real world problems. In the first experiment, we evaluate the tail
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3 ESTIMATION AND SIMULATION 3.1 Monte Carlo Experiments

index and quantile estimators for a number of heavy tailed distributions and stochas-
tic processes while in the second experiment, we generate data from one model and
estimate back another fully parametric model. In the applications we first evaluate the
tail shape of several financial returns, and then investigate the determination of capital
requirements by Value-at-Risk methods.

3.1 Monte Carlo Experiments

We generate pseudo random numbers from several known distributions and stochastic
processes. These are listed in Table 2. The tail index estimatorw2 and the quantile esti-
matorx̂p are applied to simulated data, and the results compared with their theoretical
values. For the Student-t the tail index equals the degrees of freedom; for the extreme
value of the Fr´echet type and the log Pareto distributions the hyperbolic coefficient
equals the tail index; and for the non–normal symmetric stable the characteristic expo-
nent equals the tail index. The log Pareto has a distribution for which the second order
term decays slower than the power decay of (2), cf. Footnote (1):

F (x) = 1� x�� [1 + � log x] :

It can be obtained as the distribution of the product of two i.i.d. Pareto random variates.
The Student(3) SV(0:1;0:9) model denotes the following process

Yt = UtWtHt; ; Pr [Ut = �1] = 0:5; Pr [Ut = 1] = 0:5

Ht = �Qt + Ht�1; � = 0:1;  = 0:9; Qt � N (0; 1)

Wt =

s
1� 2

�2

p
3p
Zt

; Zt � �(3):

This process generates volatility clusters butYt still reflects the fair game property
of financial returns, and it is therefore related to the ARCH class of models. It was
designed in this specific way because it follows that the marginal distribution function
of Yt has a Student-t(3) distribution, for which we know all theoretical parameters of
the expansion at infinity. The MA(1,1) Student t(3) refers to the MA1 process,Yt =
Xt+Xt+1 where theXi are i.i.d. Student-t(3) distributed. ThereforeYt has a convoluted
Student-t marginal distribution, for which we can compute all the relevant theoretical
values.

The last process to be simulated is the GARCH(1,1) process with normal innovations.
We use two processes, GARCH(2.0)(0:05;0:8;0:2) and GARCH(4.0)(0:05;0:6;0:2) where the
number in the brackets is the theoretical tail index, and the subscripted values are the
mean, MA, and AR parameters of the volatility process. Kearns and Pagan (1997)
suggest that tail index estimation may not be straightforward for financial returns data
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3 ESTIMATION AND SIMULATION 3.1 Monte Carlo Experiments

Table 2: Simulation Results: Parameters
Distribution Parameter Mean s.e. RMSE True
Student t(1) 1=� 1:012 0:075 0:075 1:000

�=� 1:398 0:305 0:675 2:000
m=m 1:702 0:691 0:984 1:000

Student t(4) 1=� 0:286 0:054 0:064 0:250
�=� 0:600 0:165 0:193 0:500
m=m 2:702 1:982 2:610 1:000

Stable(1:4) 1=� 0:670 0:047 0:065 0:714
�=� 1:497 0:268 0:565 1:000
m=m 7:425 1:993 6:726 1:000

Stable(1:8) 1=� 0:392 0:040 0:168 0:556
�=� 1:226 0:204 0:304 1:000
m=m 21:708 6:492 21:698 1:000

Type II Extreme (1) 1=� 1:026 0:062 0:067 1:000
�=� 2:042 0:623 1:213 1:000
m=m 2:461 1:127 1:844 1:000

Type II Extreme (4) 1=� 0:257 0:016 0:017 0:250
�=� 2:043 0:623 1:214 1:000
m=m 2:462 1:127 1:844 1:000

Log Pareto (4) 1=� 0:302 0:020 0:055 0:250
�=� 2:068 0:702 2:183 0:000
m=m — — — —

Student t(3) SV(0:1;0:9) 1=� 0:360 0:060 0:066 0:333
�=� 0:705 0:181 0:185 0:667
m=m 2:484 1:627 2:200 1:000

MA(1,1) Student t(3) 1=� 0:313 0:077 0:079 0:333
�=� 0:664 0:239 0:239 0:667
m=m 5:994 5:061 7:103 1:000

GARCH(2.0)(0:05;0:8;0:2) 1=� 0:485 0:112 0:113 0:500
�=� 0:905 0:317 — —
m=m — — — —

GARCH(4:0)(0:05;0:6;0:2) 1=� 0:326 0:073 0:105 0:250
�=� 0:695 0:232 — —
m=m — — — —
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3 ESTIMATION AND SIMULATION 3.1 Monte Carlo Experiments

due to the presence of volatility clusters. By including the GARCH and SV processes
in the simulation, where the parameters have been chosen with an eye towards the
Kearns and Pagan (1997) paper, we can investigate this issue. We conclude that our
method still performs well in these cases.

The simulations consist of 250 replications with sample size 5,000. The minimum
sample size for prudent application of extreme value methods lies around 1,500. Given
the currently available sizes of financial data sets, 5000 is a reasonable number.

The simulation estimation proceeds as outlined in Remark 4. Estimation was per-
formed by searching over the minimumMSE (n) by varyingn1 in steps of300 from
800 up to4; 200; as suggested in Remark 1. We note that in an application to a partic-
ular data set, a much finer grid can easily be implemented. For each choice ofn1 and
n2 we drew 500 subsamples in the bootstrap procedure.

In Table 2 we report the estimatew2 of 1=�, the estimates of the ratio�=�, and the
ratio of the optimal number of highest order statisticsmn to the theoretical valuemn

where the latter value is known. For each value we report the mean, standard error
(s.e.), root mean squared error (RMSE), and the theoretical value, where these values
are known. Table 3 reports results from the quantile estimation, with probabilities1=n
and1=3n: We show the theoretical values, the mean, the coefficient of variation over
the simulations, and the average of the sample maxima.

From Table 2 we see that the tail index estimator works reasonably well,w2 is mostly
within two standard errors of the true1=�; and it is often within one standard error of
1=�: This holds also for the dependent data. The stable distribution with a character-
istic exponent close to 2 is, however, more heavily biased. This is due to the fact that
when the characteristic exponent equals 2, the stable law switches from being fat tailed
to the normal distribution which has thin tails. Thus while1=� jumps at the left end
from the open interval(0:5;1) to 0, the estimator smoothly interpolates between0:5
and 0; see e.g. Gielens, Straetmans and de Vries (1996) for further details.

The estimate of�=� is less precise than the estimate of1=�: The reason is that the mea-
surements of second order tail parameters is more difficult, because these are second
order parameters of the Taylor expansion of the distribution at infinity. The extreme
realizations are less informative about this second order behavior than the first order
behavior. Nevertheless, the�=� estimates are often within two standard errors of the
true values. The optimal number of order statisticsmn is a function of the second order
parameters, and hence it is not surprising to observe a similar behavior as for�=�:

For most economic purposes the usefulness of our procedure resides in the estimation
of out-of-sample(P;Q) combinations, rather than in the precise value of the tail index
1=�: Table 3 reports quantile estimatesx̂p on the basis of the estimator in (34). We
report the quantile estimate for the borderline in sample probability1=n and the out-
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3 ESTIMATION AND SIMULATION 3.1 Monte Carlo Experiments

Table 3: Simulation Results: Quantile Estimation

Distribution Predicted Sample

n True mean c.v. mean c.v.

Student t(1) 5000 1591:6 653:6 : 36 14180 5: 12
15000 4774:7 5320 : 47 — —

Student t(4) 5000 10:915 11:54 : 18 13:68 : 37
15000 14:450 15:97 : 23 — —

Stable(1.40) 5000 153:18 133:4 :47 435:2 1: 93
15000 335:57 282:8 : 32 — —

Stable(1.80) 5000 30:398 21:01 : 21 60:68 1: 20
15000 56:028 32:66 : 26 — —

Type II Extreme (1) 5000 5000 5562 : 33 20370 2: 39
15000 15000 17560 : 39 — —

Type II Extreme (4) 5000 8:409 8:547 :0 8 9:875 : 35
15000 11:067 11:35 :10 — —

Log Pareto (4) 5000 15:65 17:02 : 11 19:35 : 37
15000 21:09 23:76 : 13 — —

Student t(3) SV(0:1;0:9) 5000 17:598 18:63 : 21 24:9 : 57
15000 25:432 28:07 : 26 — —

MA Student t(3) 5000 22:452 22:3 : 26 25:52 : 87
15000 32:243 32:17 : 34 — —

GARCH(2.0)(:05;0:8;0:2) 5000 — 17:06 : 57 18:46 1: 01
15000 — 31:01 : 71 — —

GARCH(4.0)(:05;:6;:2) 5000 — 4:737 : 30 5:548 : 72
15000 — 6:941 : 37 —
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3 ESTIMATION AND SIMULATION 3.1 Monte Carlo Experiments

Table 4: Performance of GARCH and Worst Case Analysis
Worst Case GARCH Extreme

Truex1=5000 17:60 17:60 17:60
mean of min �24:32 �19:06 �17:54
s.e. of min 20:99 18:60 4:18
max of min �10:11 �6:48 �9:60
min of min �311:07 �158:48 �33:77

of-sample probability1=3n (n = 5; 000) : To estimatex1=n, the financial industry often
uses either the so called worst case analysis or historical simulation. In the former case,
one uses the maximum or minimum sample realizations, and in the latter case one uses
the average of the extreme realizations in bootstrapped replications of the sample data.
Table 3 reports the average of the maximum in the 250 simulations, i.e. the average
worst case analysis. As can be seen from Table 3, this procedure invariably carries with
it more uncertainty and bias than the semi-parametric method. Our semi-parametric
technique is in essence a method which extrapolates the tail shape of the empirical
distribution function. Hence, it relies on the contribution of more than a single order
statistic, and thereby reduces variance and bias. In fact, one can show that the average
worst case analysis overpredicts the quantiles, and that if our semi–parametric method
overpredicts as well, the former method is necessarily more upward biased.

From Table (3) we see the quantile estimatorx̂p performs decently when judged by the
mean and the coefficient of variation. The coefficient of variation (c.v.), i.e. s.e./mean,
is more convenient than the standard error for the purpose of comparison, and hence
we only report the c.v. Since the true mean is unknown in the GARCH case, we use
the sample mean. The c.v. does not change much when moving fromp = 1=n to
p = 1=3n in the extreme value technique case. Moreover, the performance of the
quantile estimator is fairly homogeneous across distributions and stochastic processes
in terms of the c.v. The worst case analysis shows c.v.’s which are consistently larger,
at least twice as large, than c.v.’s for the semi–parametric method.

A comparison between our semi-parametric and fully parametric approaches is also
of interest. We set up an experiment where the researcher is given the knowledge that
the data is fat tailed, but not the correct class of parametric models. We perform one
experiment with sample sizes 5,000 and 250 replications where data is generated from
the Student-t SV(0:3;0:68) model, while the GARCH(1,1) model is estimated back. The
estimated GARCH(1,1) model is subsequently used to generate 500 series of 5,000
observations where each simulated series is used to evaluate one simulated estimate of
the x̂1=n quantile. Again this approach is compared with the semi-parametric and the
worst case analysis.
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3 ESTIMATION AND SIMULATION 3.2 Asset Returns and Value-at-Risk

From Table 4 we see that GARCH outperforms the worst case analysis, but the semi-
parametric procedure is still better and has much lower variance. The reason is that
the tail procedure is less prone to model misspecification because it does not rely on
specific distributional assumptions. It only uses the limit expansion for heavy tailed
distributions. The semi-parametric tail estimates therefore do not have to serve two
masters by matching the parameters to satisfy both tail and center characteristics of
the model.

3.2 Asset Returns and Value-at-Risk

The literature already contains tail index and quantile estimates for financial series.
Typically those estimates are obtained from applying a graphical procedure for locat-
ing the start of the tail, see e.g. Embrechts, Kuppelberg and Mikosch (1997). We used
a set of the highest frequency data from the Olsen company on foreign exchange rate
quotes. The data set contains 1.4 million quotes on the USD-DM spot contract from
October 1992 to September 1993. These quotes are aggregated into 52558 equally
spaced 10 minute returns, and we use the first and last 5,000 observations. The data
are as in Danielsson and de Vries (1997), and a complete description of the data can
be found there. Similarly, we use the first and last 5,000 daily returns from the daily
S&P 500 index over the period 1928 to 1997. For these four datasets we compute a
number of standard statistics. The mean and standard error are annualized by using a
factor of 250 and 52558 for the stock index and FOREX datasets respectively. In ad-
dition the skewness, kurtosis, and the minimum log return are reported. Subsequently,
we applied our estimation procedure to the lower tail of the data, and report estimates
of 1=�; �=�; x̂1=n; andx̂1=3n: Between brackets we give the 95% confidence band.

From Table 5 we note that the FOREX data are fairly symmetric, while the S&P data
clearly reflects the abysmal period of the 1930’s, and the fat years of the present decade.
Nevertheless, the black Monday of 1987 is present in the last 5,000 S&P returns sample
as can be seen from the minimum. The tail index estimates hover around 3. The second
order parameter� appears to be larger than�: From an economic point of view the
interesting estimates are the quantile estimates. Table 5 reveals that the risk of investing
in stocks has come down over time, and that the risk in the FOREX market is fairly
stable over the period of one year.

The other application concerns the Value-at-Risk (VaR) on a portfolio of assets. Finan-
cial institutions have to regularly assess their capital adequacy to cover adverse market
movements, and have to report a number which reflects the (minimum) loss of their
portfolio if a negative return in the lowest quantile materializes; this loss is called VaR.
For example, the lowest quantile may be the 0.5% quantile, and the VaR is the loss
that materializes if exactly this return materializes. Several methods are used in prac-
tice, e.g. historical simulation (HS), the J. P. Morgan RiskMetrics, and normal moving
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Table 5: Daily S&P 500 and Olsen DM/US 10 Minute forex. Lower Tail

Dataset S&P 500 S&P 500 10 minute DM/US 10 minute DM/US
Observations First 5,000 Last 5,000 First 5,000 Last 5,000

Annualized

mean �: 75% 10:0% 112:9% � 23:0%

s.e. 26:4% 14:7% 19:2% 12:8%

skewness 0:089 �3:126 0:464 �0:0814

Kurtosis 8:143 77:96 7:886 17:190

Minimum �13:166 �22:8 �0:693 �0:655

1=� 0:276 0:346 0:301 0:374

(�; �) (0:24; 0:31) (:31; :36) (0:27; 0:32) (0:33; 0:40)

�=� 1:97 1:105 1:60 1:760

^x1=n �13:3 �8:618 �0:690 �0:668

(�; �) (�11:8;�17:1) (�7:82;�10:9) (�0:62;�0:85) (�0:58;�0:91)

^x1=3n �18:0 �12:601 �0:958 �1:01

(�; �) (�16:0;�23: 1) (�11: 4;�15: 9) (�: 86;�1: 17) (�: 88;�1: 4)

2
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3 ESTIMATION AND SIMULATION 3.2 Asset Returns and Value-at-Risk

Table 6: Estimation Results: Average Number of Realized Portfolios that were Larger
than VaR Predictions

Tail Percentage 5% 0:5% 0:1% 0:005%

Expected Number
of Violations 50 5 1 0:05

Expected Frequency
of Violations 20 days 200 days 3:8 years 77 years

RiskMetrics 52:45(7:39) 10:65(2:73) 4:85(2:06) 1:58(1:29)
Historical Simulation 43:24(10:75) 3:69(2:39) 0:95(1:03) —
Tail Estimator 43:14(11:10) 4:23(2:55) 1:06(1:13) 0:06(0:23)
Daily observations in testing = 1000 over period 930115 to 961230. Window size in HS and TK = 1500, initial staring date

for window 870210. Random portfolios = 500. Standard errors in parenthesis. Probabilities expressed in precentages with

sum=100%

average. HS is non-parametric and uses the lowest quantiles of a historical sample.
RiskMetrics combines the normal innovations with an IGARCH model. For 500 ran-
domly weighted portfolios of seven US stocks, i.e. J.P. Morgan, 3M, McDonalds, Intel,
IBM, Xerox, and Exxon, we calculate the VaR on the basis of the first two industry
standard methods, and our semi-parametric approach. To implement our procedure on
the portfolio, we created vectors of portfolio returns by simulating from the original
return per individual stock and then combining these on the basis of initial portfolio
weights to arrive at a vector of portfolio returns (this is the same procedure as followed
by historical simulation.) The length of the vector was set at 1,500. To this vector we
applied our tail estimator procedure. We then reserve 1,000 days at the end of the sam-
ple, do sequential one day VaR prediction, and count the number of days where the
realized return exceeded the VaR. The results of these different techniques towards the
VaR problem are in Table (6).

We can see that the IGARCH normal based RiskMetrics performs well at the 5%
level, but is unable to cope with lower probabilities. Using the empirical distribution
function (historical simulation), gives results which are similar to the semi–parametric
approach in sample. It can not provide estimates for the 0.005% level, or an event
which happens once every 77 years, since we only have windows with 1500 days.
The semi–parametric tail estimator preforms well at all probability levels, except those
which are far inside the sample.
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4 Conclusion
In this paper we develop a complete semi–parametric method for estimating large, i.e.
borderline in–sample and out-of-sample, probability-quantile(P;Q) combinations for
heavy tailed distributions. The key parameter to be estimated is the tail index which
determines the tail shape and dominates the large(P;Q) estimators. For both tail index
estimation and large(P;Q) estimation, it is essential to know the number of extreme
order statistics that have to be taken into account. In this paper we solve the hitherto
unknown determination of the optimal number of extreme order statistics by means of
a two step subsample procedure in combination with a control variate type method.
The subsample bootstrap procedure is essential for convergence in probability; a full
sample bootstrap would deliver convergence in distribution. The theory is presented in
a comprehensive and self contained manner.

In addition to establishing the theoretical properties of our estimators, we subject
them to a number of Monte Carlo experiments, where we simulate from a variety of
heavy tailed distributions and stochastic processes. These experiments are designed so
that the finite sample properties of the estimators can be established for most DGP’s.
For the most frequently used fat tailed distributions, and stochastic processes such as
GARCH, we demonstrate that the estimators have good performance.

There are a number of problems in economics where extreme value analysis plays a
key role. We focus on two applications in finance. First we investigate the change in
risk over time with of the daily SP-500 index, and 10 minute foreign exchange quotes,
then we apply the method to the problem of determining capital requirements in trading
portfolios with the Value-at-Risk method. We demonstrate that there are large gains to
be made in precision if one uses the semi–parametric method advocated here, rather
than a fully parametric or a non–parametric approach.

We are currently working on several other applications of our tail estimator, e.g. the
problem of capital determination for financial institutions, optimal hedging, options
pricing, and intra–day risk management. Further theoretical work is focused on the
rate of convergence problems in regression estimators.

A Mathematical Derivations
Before we can proof the first two theorems we need the following calculus result. The
argument is used repeatedly.

Lemma 1 Given the model (3) and conditional onM � 1

E [uk (sn)] = k!

 
1

�k
+

bs��n
(�+ �)k

!
+ o

�
s��n
�
; (38)
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for sn !1 asn!1.

Proof. From calculus we have the following result:

�

Z 1

s

�
log

x

s

�k
x���1dx = �s��

Z 1

1

(log y)k y���1dy

= ks��
Z 1

1

(log y)k�1 y���1dy

=
k!

�k�1
s��

Z 1

1

y���1dy

=
k!

�k
s��:

Now apply this result twice to compute the conditional expected value of(log x=s)k

when the density adheres to (3). Hence, the conditional expectation in (38) follows
from

E [uk (s)] =
1

1� F (s)

Z 1

s

�
log

x

s

�k
f (x) dx

=
k!

1 + bs��

"
1

�k
+

bs��

(� + �)k

#
+ o

�
s��
�
:

ass!1:

To obtain the mean ofwk one first takes a first order expansion ofwk in uk anduk�1.
Subsequently, using the fixed threshold interpretation ofuk (sn), one needs to compute
the conditional expected value of(logx=s)k : This is facilitated by means of the calcu-
lus result from Lemma (1) above.

Proof of Theorem 1.Developwk (sn) into a first order Taylor expansion of the ratio
of the two argumentsuk=k! anduk�1= (k � 1)! around the point

�
1=�k; 1=�k�1

�
and

with remaindero:

wk =
1

�
+ �k�1

�
uk
k!
� 1

�k

�
� �k�2

�
uk�1

(k � 1)!
� 1

�k�1

�
+ o: (39)

By application of Lemma (1) we get asymptotically

E

�
wk (sn)� 1

�

�
= �k�1

bs��

(� + �)k
� �k�2

bs��

(� + �)k�1
+ o

�
s��
�
:

From this result the claim in (6) is easily established.
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We proceed by investigating the variance of the estimators. Before we can do so, we
need to say more about the relation between the size of the threshold and the number
of excesses. Note that the Bernoulli character of the empirical distribution function
implies forM from (4):

E

�
M

n

�
= 1� F (s) :

Hence, by the weak law of large numbers we know that for the proportion of excesses
over a fixed but large thresholds

M

n
! as��

�
1 + bs��

�
+ o

�
s����

�
; asn!1

in probability. Now letsn !1 asn!1, and choose the sequencesn such that

Ms�n
an

! 1

in probability. This ensures that the contribution of the second order term becomes
negligibly small in large samples. We can now state the result for the variance. The
proof is similar to the proof for the mean but involves more terms.

Proof of Theorem 2.By using the Taylor expansion in (39) we have that

Var

�
wk (sn)� 1

�

�
= �2k�2Var

huk
k!

i
+ �2k�4Var

�
uk�1

(k � 1)!

�
�2�2k�3Cov

�
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k!
;

uk�1
(k � 1)!

�
+ o:

We calculate the various parts by using the definition ofuk in (4), the independence of
Xi andXj , and Lemma (1). For the variance part we find:

Var
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i
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Where the last step follows from our assumption regardingsn andM . Similarly,
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Putting the various parts into place then yields the claim.

Proof of Theorem 5. Let Gs (y) be the conditional distribution ofY = logX=s;
given thatX > s: For a given thresholds the dominant terms of the mean� (s) ;
the variance�2 (s) and the third moment ofY can be easily obtained by using the
Lemma (1). Note that the second moment is bounded away from zero, and that the
third moment is bounded above ass!1: By assumption and conditional onM; the
random variableslogX1=sn; :::; logXm=sn are i.i.d. with distribution functionGs (y) :
Therefore by Liapounov’s double array central limit theorem with independence within
rows, see (Serfling 1980, sect. 1.9.3), we have that

p
M (uk � �)

�

converges in distribution to a standard normal distribution asn ! 1: Note that as
n ! 1; the number of extreme order statisticsM ! 1 with probability 1. By (39)
and Cram´er’s theorem (1974, sect. 28.4), it follows that

p
M (�wk � 1) converges in

distribution to a normal distribution. The mean and variance of this normal distribu-
tion readily follow from Theorems 1 and 2, and the fact that

p
M=s�n converges in

probability tom1=2
n =s�n; wheremn andsn are given in (12) and (10) respectively
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Proof of Theorem 6.Use the Taylor expansion of (39) forw2 to show that
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By Lemma (1) we then find
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And similar to the proof of Theorem (2), we derive
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Proof of Corollary 2. From Theorem (6) we calculate theAMSE [z] as

1

�2a

s�

n
+

b2�4

�2 (� + �)4
s�2�: (40)

Minimizing theAMSE with respect tos then yields the claim.

Proof of Theorem 8.Note that�mn (z) from (23) is itself a regularly varying function
with tail index2�= (� + 2�) : By Proposition 1.7 from Geluk and de Haan (1987) on
the properties of regularly varying functions we have that

log �mn1 (z)

logn1

! 2�=�

1 + 2�=�

in probability asn!1:Then use the fact that̂mn1 (z) =mn1 (z)! 1 in probability.
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Proof of Theorem 10.Use the threshold interpretation and write
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We are given thatm = [tn] ; and thattn!1 so thatm!1; and thatlimn!1 npn =
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Where in the last resultx
��

p ! 0 andx��t ! 0 is used. Thus the first term in the
sequence is asymptotic to

p
m (wk � 1=�). We already know that

p
m (�wk � 1) con-

verges in distribution to the normal distribution function by Theorem (5). The second
term can be split into two terms:
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term. By assumptionxt is asymptotic tocn1=(2�+�); while
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m is asymptotic top
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Thus the first term equals0 in probability asn ! 1 (recallnp ! � by assumption).
With respect to the second term, recall that by assumption

M=n! ac��n��=(2�+�)

in probability. On the other hand by construction

ax��t ! ac��n��=(2�+�):

Hence
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We already showed thatlimn!1 x��t
p
m is constant and by assumptionlimn!1 np =

� . The factor in the denominatorlog (m=np) ; though, diverges. Therefore the second
term converges to0 as well.

Proof of Theorem 11.Developp̂ (M; 1=wk) into a Taylor series around the point
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From this point onwards, the proof is similar to the proof of the previous proposition.
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