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Fig..1: Two BACs 650 kbp appart 
were used to determine the overall 
architecture of the PWS/AS region, 
and within the PWS region four 
YACs with  six trilaterable distances 
were used to detect the fine 
structure of the PWS locus and to 
test whether there is a difference 
between the (in-)active alleles. The 
difference between a random 
chromatin fiber and the measured 
spatial distances is obvious.

Introduction

The Prader-Willi/Angelmann Syndrome region (15q11-13; 
Fig..1) is one of the most complex model regions for the 
interplay between sequence, imprinting and 3D structure. 
By 3D-FISH and  a novel Spectral Precision Distance 
Microscopy approach (Fig..2), combined with a comparison 
to computer simulations (Fig..4), the spatial organization 
was approached resulting in trilaterated models of the locus 
(Fig..5). The spatial arrangement agrees with a a chromatin 
organization consisting of small aggregate forming loops as 
proposed by the Multi-Loop Subcompartment model and not 
a Random-Walk/Giant-Loop model. This is in agreement 
with the fine-structured multi-scaling of the DNA sequence, 
the nuclear morphology in vivo, the dynamics of and within 
the architecture as well as the distruction pattern by 
ion-irradiation of the human genome.

3D-Rendering

Confocal Section

EM-FISH Section

EM Section

Igh - LocusPWS/AS - Region

Simulation
For the prediction of experiments we simulated various 
models of human interphase chromosome 15 with Monte 
Carlo and Brownian Dynamics methods. The chromatin fiber 
was modelled as a flexible polymer. Only stretching, bending 
and excluded volume interactions are considered. 
Chromosomes are further confined by a spherical potential 
representing the surrounding chromosomes or the nuclear 
membrane. Only the rosette-like MLS model leads to clearly 
distinct functional and dynamic subcompartments (Fig..6B) in 
experimental agreement, in contrast to the RW/GL models where 
big loops are intermingling freely and featureless (Fig..6C.&.6D).

Despite the succesful linear sequencing of the human genome, the three-dimensional 
chromatin architecture, its dynamics and relation to genome function are still largely 
unknown despite their obvious importance. Through a combination between novel 
experiments and theoretic analysis we show here an interdisciplinary approach 
leading to the determination of the three- dimensional organization of the 
Prader-Willi/Angelmann syndrome region and the Immuno Heavy-Chain locus 
with huge implications for general genome organization and function .

Conclusion
The general 3D architecture and 

dynamics of both the 
Immuno-globin Heavy-Chain locus 

and the Prader-Willi/Angelmann 
syndrome region was determined by a 
novel interdisciplinary combination of 
high-resolution FISH and Spectral 
Precision Distance Microscopy with 
analytical analysis and computer 
simulations resulting for the first time in 
trilaterated spatial models of both genetic 
areas. Not only is the 3D architecture 
strongly related to the dynamics of the 
chromatin fiber and its higher-order 
organization, but also to its function. In both 
cases the spatial arrangement agrees with 
the Multi-Loop Subcompartment model 
proposing small aggregate forming loops 
and not a Random-Walk/Giant-Loop 
model. This agrees with the 
fine-structured multi-scaling of the DNA 
sequence, the nuclear morphology in 
vivo, the dynamics of and the 
diffusion within the human 
genome. Con-sequently, this is 

a framework to understand 
genomes in a 

s y s t e m - b i o l o g i c a l 
manner.
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Fig..6A.-.H: From starting configurations with the 
form and size of metaphase chromosomes (A) 
interphase chromosomes are decondensated: 
5.Mbp loop RWGL model (B), 126.kbp loop and 
linker MLS model (C), 126.kbp RWGL model (D) .  
Simulation of entire nuclei confirm these results 
and give a clear understanding of nano and micro 
effects of nuclear architecture (E-H).
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Fig..2A.&.2B: FISH of chromosome territories 15 (A) and YAC 48 and YAC 60 in human 
fibroblasts (B), show the location of the probes of the PWS locus within the territories. The 
territories show also the morphological specle-like clustering as predicted by a linked 
clustered small loop architecture of chromosomes as predicted by the MLS model.
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Fig..3A.-.D: The distance distributions show that the better the preparation, the smaller the 
distances using different fixations and mono and dual colour detection for BACs (A, B) or YACs 
(C, D) including the true dynamics and functional differences not being resolution 
compromised. (Legends: Fig..4A; Lines: resolution equivalent α, lateral β and axial γ PSFFWHM.)
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Fig..4A.&.4B: Comparison of the average spatial distances to computer simulations 
(Fig..6A.-.D) agrees best with an MLS model of ~ 60 to 150 kbp loop aggregates separated 
by also ~ 60 to 126 kbp linkers. The distances do not agree with RWGL models and 
preparation artefacts get even more clear leading to misleading interpretations.

The Immunoglobin Heavy-Chain locus (Fig..7) is organized 
in distinct regions: variable (VH), diversity (DH), joining (JH) 
and constant (CH) elements form a complex dynamic 
interplay between sequence and 3D structure. By 3D-FISH 
and  a novel epifluorescent Spectral Precision Distance 
Microscopy approach, combined with a comparison to 
computer simulations (Fig..9), the spatial organization was 
approached in diffrent functional states resulting in  
trilaterated models of the locus (Fig..10). The 3D 
architecture agrees with small aggregate forming loops alike 
the Multi-Loop Subcompartment model and not a 
Random-Walk/Giant-Loop model. This agrees with the 
fine-structured multi-scaling of the DNA sequence, the 
nuclear morphology in vivo, the dynamics as well as the 
distruction pattern by ion-irradiation of the human genome.
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Fig..9A.&.9B: Comparison of the average spatial distance to computer simulations 
(Fig..6A.-.D) agree again best with an MLS model of 60 to 150 kbp loops arranged in 
clusters and separated by 40 to 120 kbp linkers. The functional difference between 
prepro-B and pro-B cells results in local rearrangements of the 3D architecture of the Igh 
locus.
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Fig..10A.&.10B: Trilateration of the spatial distances for the prepro-B and the pro-B 
lineages show for the first time the 3D architecture and the functional 
rearrangement of the Igh locus. Two clearly distinct subcompartments are visible 
and show also functional rearrangement (possibly compaction) during activation. 
Thus, the 3D organization and dynamics play again a major role in function.
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Fig..7A.&.7B: The Igh locus was covered with 12 selected markers covering ~2.5 
Mbp using two anchor-points (A & B) to perform dual and triple colour labelling to 
determine the 3D architecture. Thus, in respect to the distinct Igh subregions 
dynamic and functional aspects on local and global scales can be investigated.
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Fig..8A.&.8B: The spatial distance distributions for prepro-B and pro-B cell lines show the 
dynamics of the Igh locus as well as the functional rearrangement due to activation since 
the distribution width is bigger than the resolution limit. Notably, the general 3D architecture 
remains very similar despite larg local rearrangements suggesting a general organization. 
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Fig..7: Trilateration of the spatial distances between the four YAC labels result for 
the first time in the general determination of the architecture of the PWS locus and 
shows its compactness and dynamics considering distance distributions being 
much bigger than the resolution equivalent (Fig..3C.&.3D). Consequently, the 3D 
organization and dynamics play a pivotal role in function.
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Abstract 
 
 

The general 3D architecture of the immunoglobin heavy-chain (Igh) locus was determined by a novel 
interdisciplinary combination of high-resolution FISH and high-resolution epifluorescence spectral distance 
microscopy with analytical analysis, computer simulations, as well as trilateration (Cell 133, 265-279, 2008). 
The Igh locus is organized into distinct regions that contain multiple variable (VH), diversity (DH), joining (JH) 
and constant (CH) coding elements. Determination of distance distributions between genomic markers across the 
entire locus showed that the Igh locus is organized into compartments consisting of small loops separated by 
linkers with in detail dynamic functional relevance: VH, DH, JH, and CH elements showed striking conformational 
changes involving VH and DH-JH elements during early B cell development, culminating in a merger and 
juxtaposition of the entire repertoire of VH regions to the DH elements in pro-B cells allowing long-range 
genomic interactions with relatively high frequency. This is in agreement with our recent study of the Prader-
Willi/Angelmann region using a similar approach (Differentiation 76, 66-82, 2008) and in agreement with the 
Multi-Loop-Subcompartment (MLS) model of chromosome organization predicting 60-150 kbp loop aggregates 
separated by a similar linker (Knoch, ISBN 3-00-009959-X, 2002). Synopsis with previous spatial distance 
measurement studies and combination with sequence correlation analysis of the DNA sequence, fine-structure 
multi-scaling analysis of the chromatin fiber topology or in vivo morphology of entire cell nuclei, electron 
microscopy of chromosome spreading studies and even the diffusion behaviour within the cell nucleus, are all 
suggesting such an MLS architecture. This framework reveals a consistent picture of genome organization 
joining structural and dynamical aspects ranging from the DNA sequence to the entire nuclear morphology level 
with functional aspects of gene location and regulation. Many previously contradictory viewpoints are resolved 
by this framework as well. Consequently, the determination of the general 3D architecture of the Igh locus has 
beyond its major functional relevance, huge implications for the understanding of the entire genome 
understanding in a holistic system-biological manner. 
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