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Typical state of the arts view:

Human
Genome

1) human cell nuclei usually have no spherical shape, dy Group

2) the DNA is not a closed pipe,
3) nucleosomes might not be regularly organized into chromatin,
4) chromatin does not float around randomly in the nucleus.
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V. Hennings (illustrator) in Molecular and Cellular Biology by Stephen L. Wolfe, 1993.



The dynamic and hierarchical organization of cell nuclei i Human
span between 10 and 13 orders of magnitude I
concerning length and time scales.
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Fluorescence in-situ Hybridization | i Gonomme

FISH
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Ideogram of chromosome 15 with -
Prader - Willi Region and Angelmann Region. P i Genome
The size and genomic distance of the clones b e

are sufficiently small and well characterized to measure i
the fine structure and organization of chromosome territories. Tobias A. Knoch
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Principle of the Confocal Laser Scanning Microscope
and
Leica TCS NT setup.

Tobias A. Knoch

Laser

—Pinholes

mm e e === _ __ Emmersion
fluid




Chromosomes form distinct territories in interphase and genomic
markers lie within the territories and are clearly separable.
Left: Territory painting by FISH of chromosome 15; by chance the two territories

neighbour each other.
Right: Genomic markers YAC48 and YAC60, genomic separation 1 Mbp.
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Dual colour FISH of genomic markers leads to measurements of
3D-distances which are below the resolution of the microscope.
Critical signals could also be excluded with higher confidence.

Genomic marker A48.1 in red and marker 7A48.14 in green, genomic separation 195 kbp.
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Statistical analysis of the spatial distances between the
PWS-Region (YAC48) and AS-Region (YAC60)
with a genomic distance of 1Mbp = 10m chromatin fiber.
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Multi-Loop-Subcompartment Model o

versus Pl i Genome

Random Walk / Giant Loop Model. €
Rosettes in the MLS-Model correspond to the size of o
chromosomal interphase band domains. Tobias A. Knoch
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Polymer Chain and Potentails | = T e

a polymer chain and harmonic potentials. Tobias A. Knoch
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f
Random-Walk/Giant-Loop model versus Multi-Loop-Subcompartment model.

Simulation results of chromosome 15.
The chromosome is simulated assuming a flexible polymer chain, starting
with ~ 3500 300nm=31kbp and relaxing with ~ 21,000 50nm=5.2kbp segments. |
The starting configuration has the approximate form and size as in metaphase.  Tobias A. Knoch
50 parallel simulations and their evalutation take 5.5 years single CPU-time.
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Ray traced image of the Random-Walk/Giant-Loop model,
loop size 5Mbp, after ~80.000 Monte-Carlo
and 1000 relaxing Brownian-Dynamics steps.
Large loops intermingle freely thus forming
no distinct features like in MLS model.

Ray traced image of the Multi-Loop-Subcompartment
model, loop size 126kbp, linker size 126 kbp, after
~50.000 Monte-Carlo and 1000 relaxing Brownian-

Dynamics steps. Here rosettes form subcompartments
as separated organizational and dynamic entities.

Wire frame image of the
metaphase chromosome
resembling
starting configuration.




The MLS-model leads to low overlap of
chromosome-arms and subcompartments
in contrast to the RWGL-model.
This is also seen in experiments. Tobias A. Knoch )
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Random-Walk / Giant-Loop versus Multi-Loop-Subcompartment model. | =SS
Best agreement between simulations and experiments is reached for a z o

dy Group
Multi-Loop-Subcompartment model with a loop size of 126kbp
and a linker length of 126kbp.
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Shift of a marker ensemble through a rosette in the MLS-model - =Y} Human
in respect to loop bases. ' zdy‘*ér':,‘:,“se

This leads to different sets of 3D-distances for every ensemble position.
Due to the symmetry of the MLS-rosettes periodicities are found.
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In agreement with porous network research fractal analysis

. . . . . o 1 Human

show multifractal behaviour in simulations of chromosome 15. - zd Genome

. . . . . - i y Group
Different fractal dimensions mean different process-dynamics in these spaces. |

Therefore chromosomal territories show a o

higher degree of determinism than previously assumed. Tobias A. Knoch
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Simulation of Chromosomal Elasticity ._
Visualization with " Virtual Microscope" of chromosome 15 (MLS model, 8 subcompartments) . | Human
under external stress. Subcompartments are shown as a projection image of a z E,
confocal laser scanning microscope image series.
left: external force = 0 fN :
right: external force = 1.2 fN Tobias A.Knoch

Genome
y Group




Simulation of Chromosome Elasticity
Force strain curve of an interphase

Multi-Loop-Subcompartment-model (MLS) for chromosome 15.
Young’s modulus for external forces below 5 femtonewtons (fN): (3,00,4) fN.
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4 )
“Virtual Human Cell Nucleus”

Simulation of all 46 chromosomes using the Multi-Loop-Subcompartment model. _ ‘

The nucleus is simulated assuming a flexible polymer chain, modelling i

the 46 chromatin fibers with in total 1,248,794 50 nm = 5.2 kbp segments.

Pictures are shown after a 0.5 ms Brownian Dynamics simulation, one step
taking 10s. As starting configuration a metaphase nucleus was chosen.
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3-D rendering simulated confocal section
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Best agreement between simulations and experiments
is reached for a Multi-Loop-Subcompartment-model
with a loop and linker size of 126 kbp ( 1200nm).

Supposed that defined loop bases exist it might be possible
to determine the positioning of genes relative to each other.

Chromosomes show multifractal behaviour in good agreement
with predictions drawn from porous network research.

Chromosome decondensation and stretching lead
to comparable results from experiments.

Simulations of whole cell nuclei lead to the formation of
distinct chromosome territories.

The Multi-Loop-Subcompartment-model
leads to low overlap of chromosome territories,
chromosome arms and chromosome subcompartments
in contrast to the RandomWalk/Giant Loop-model.
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Three-Dimensional Organization of Chromosome Territories in the

Human Interphase Nucleus

Knoch, T. A., Miinkel, C. & Langowski, J.

Supercomputing at the German Cancer Research Centre (DKFZ), German Cancer Research
Centre (DKFZ), Heidelberg, Germany, 2nd July 1998.

Abstract

The synthesis of proteins, maintenance of structure and duplication of the eukaryotic cell itself are all fine-tuned
biochemical processes that depend on the precise structural arrangement of the cellular components. The
regulation of genes — their transcription and replication - has been shown to be connected closely to the three-
dimensional organization of the genome in the cell nucleus. Despite the successful linear sequencing of the

human genome its three-dimensional structure is widely unknown.

The nucleus of the cell has for a long time been viewed as a 'spaghetti soup' of DNA bound to various proteins
without much internal structure, except during cell division when chromosomes are condensed into separate
entities. Only recently has it become apparent that chromosomes occupy distinct 'territories' also in the
interphase, i.e. between cell divisions. In an analogy of the Bauhaus principle that "form follows function" we
believe that analyzing in which form DNA is organized in these territories will help us to understand genomic
function. We use computer models - Monte Carlo and Brownian dynamics simulations - to develop plausible
proposals for the structure of the interphase genome and compare them to experimental data. In the work
presented here, we simulate interphase chromosomes for different folding morphologies of the chromatin fiber
which is organized into loops of 100kbp to 3 Mbp that can be interconnected in various ways. The backbone of
the fiber is described by a wormlike-chain polymer whose diameter and stiffness can be estimated from
independent measurements. The implementation describes this polymer as a segmented chain with 3000 to
20000 segments for chromosome 15 depending on the phase of the simulation. The modeling is performed on a
parallel computer (IBM SP2 with 80 nodes). We also determine genomic marker distributions within the Prader-
Willi-Region on chromosome 15q11.2-13.3. For these measurements we use a fluorescence in situ hybridisation
method (in collaboration with I. Solovai, J. Crai and T. Cremer, Munich, FRG) conserving the structure of the
nucleus. As probes we use 10 kbp long lambda clones (Prof. B. Horsthemke, Essen, FRG) covering genomic
marker distances between 8 kbp and 250 kbp. The markers are detected with confocal and standing wavefield
light microscopes (in collaboration with J.Rauch, J. Bradl, C. Cremer and E.Stelzer, both Heidelberg, FRG) and
using special image reconstruction methods developed solely for this purpose (developed by R. Eils. and W.
Jaeger, Heidelberg, FRG).

Best agreement between simulations and experiments is reached for a Multi-Loop-Subcompartment model with
a loop size of 126 kbp which are forming rosetts and are linked by a chromatin linker of again 126 kbp. We also
hypothesize a different folding structure for maternal versus paternal chromosome 15. In simulations of whole
cell nuclei this modell also leads to distinct chromosome territories and subcompartments. A fractal analysis of
the simulations leads to multifractal behavior in good agreement with predictions drawn from porous network

research.

The work is part of the Heidelberg 3D Human Genome Study Group, which is part of the German Human
Genome Project.
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