Approaching the Three-Dimensional Organization of the Human Genome

Tobias A. Knoch
Acknowledgements

Biophysics of Macromolecules
DKFZ
- Malte Wachsmuth
- Thomas Weidemann
- Gabriele Müller
- Waldemar Waldeck
- Christian Münckel
- Jörg Langowski

Markus Göker, University of Tübingen
Rudolph Lohner, Supercomputin Center Karlsruhe

The Cremer Labs
DKFZ
- Joachim Rauch
- Gregor Kreth
- Irina Solovei
- Michael Hausmann
- Christoph Cremer
- Thomas Cremer

Molecular Genetics
DKFZ
- Katalin Fejes-Toth
- Karsten Rippe
- Karsten Richter
- Peter Lichter

Karin Monier, Scripps Institute
Kevin Sullivan, Scripps Institute

Others from the DKFZ:
- Monika Stöhr, Michael Stöhr, Andreas Hunziker, Angel Alonso

Others:
- Miriam & Volkmar Baumgärtner, Georg Eysel, Kurt Egger and the Humanecology Group as well as BioContact e. V.

High-Performance Computing Center Stuttgart, University of Stuttgart; Supercomputing Center Karlsruhe, University of Karlsruhe; Computing Center, Deutsches Krebsforschungszentrum Heidelberg

Bundesministerium für Forschung und Technology (BMFT) 01 KW 9602/2
(3D-Human Genome Study Group Heidelberg, German Human Genome Projekt)
Deutsches Krebsforschungszentrum (DKFZ)
Approaching the Three-Dimensional Organization and Dynamics of the Human Genome

Knoch, T. A.

Klaus Görtlter Prize Lecture, 15th Heidelberg Cytometry Symposium, German Cancer Research Centre (DKFZ), Heidelberg, Germany, 17th - 19th October, 2002.

Abstract

To approach the still largely unknown sequential and three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic properties of interphase chromosomes and cell nuclei were simulated on the 30nm chromatin fiber level with Monte Carlo, Brownian Dynamics and parallel computing methods. Differences between used models explain various experimental conditions, favouring a Multi-Loop-Subcompartment model with 63-126kbp loops aggregated to possibly rosettes connected by 63-126kbp linkers, and predict correctly the transport of molecules by moderately obstructed diffusion excluding the Inter-Chromosomal Domain hypothesis. Correlation analyses of completely sequenced Archaea, Bacteria and Eukarya chromosomes revealed fine-structured positive long-range correlations due to codon, nucleosomal or block organization of the genomes, allowing classification and tree construction. By construction and expression of fusion proteins from the histones H1, H2A, H2B, H3, H4 and mH2A1.2 with the auto-fluorescent proteins CFP, GFP, YFP, DsRed-1 and DsRed-2, the chromatin morphology could be investigated in vivo during interphase, mitosis or apoptosis and revealed different interphase morphologies for cell lines, quantifiable by scaling analyses. Finally, construct conversions in simultaneous co-transfections due to recombination/repair/replication were discovered in ≤25% of cells and led to a variety of new applications.

Corresponding author email contact: TA.Knoch@taknoch.org
Genome, genomics, genome organization, genome architecture, structural sequencing, architectural sequencing, systems genomics, coevolution, holistic genetics, genome mechanics, genome function, genetics, gene regulation, replication, transcription, repair, homologous recombination, simultaneous co-transfection, cell division, mitosis, metaphase, interphase, cell nucleus, nuclear structure, nuclear organization, chromatin density distribution, nuclear morphology, chromosome territories, subchromosomal domains, chromatin loop aggregates, chromatin rosettes, chromatin loops, chromatin fibre, chromatin density, persistence length, spatial distance measurement, histones, H1.0, H2A, H2B, H3, H4, mH2A1.2, DNA sequence, complete sequenced genomes, molecular transport, obstructed diffusion, anomalous diffusion, percolation, long-range correlations, fractal analysis, scaling analysis, exact yardstick dimension, box-counting dimension, lacunarity dimension, local nuclear dimension, nuclear diffuseness, parallel super computing, grid computing, volunteer computing, Brownian Dynamics, Monte Carlo, fluorescence in situ hybridization, confocal laser scanning microscopy, fluorescence correlation spectroscopy, super resolution microscopy, spatial precision distance microscopy, autofluorescent proteins, CFP, GFP, YFP, DsRed, fusionprotein, in vivo labelling.

Literature References

