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Dynamic and Hierarchical Genome Organization	

10 and 13 orders of magnitude concerning length and time scales are bridged. 	


Are and how are all of these organization levels connected to fullfill their obvious functions, e. g. 
gene regulation or replication, since they are optimized by evolution ? 	
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Simulated Interphase Chromosome Models	

Random-Walk/Giant-Loop (RW/GL) and Multi-Loop-Subcompatment (MLS) Model	




Simulation of Single Chromosomes	

The 30 nm chromatin fiber is modeled as a polymer chain with stretching, bending, and excluded volume 

interactions. Monte Carlo and Brownian Dynamic methods lead to thermodynamical equilibrium configurations.	

All models form chromosome territories with big voids and different chromatin morphologies. Experimental 
territory and subcompartment diameters agree best with an MLS model with 80 to 120 kbp loops and linkers.	


RW/GL  model,  loop  size  5  Mbp,  after 
~80.000 MC and 1000 relaxing BD steps. 
Large loops intermingle freely and reach out 
of the chromsome territory, thus forming no 
distinct features like in MLS model.	


MLS model,  loop size  126kbp,  linker  size 
126  kbp,  after  ~50.000  MC  and  1000 
relaxing  BD  steps.  Here  rosettes  form 
subcompartments as separated organization-
al and dynamic entities.	


RW/GL  model,  loop  size  126  kbp,  after 
~80.000 MC and 1000 relaxing BD steps. 
Large loops intermingle freely thus forming 
no distinct features like in MLS model.	


Metaphase  starting  configuration  with 
ideogram bands in red/green, linker in grey.	
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Spatial Distances between Genetic Markers	

Simulated spatial distances between random genetic markers as function of their genetic separation leads 
to best agreement in a comparison to experiments for an MLS model with 80 to 120 kbp loops and linkers.	

The spatial distance distributions are also model characteristic and show in a set of markers as function of 

their relative position to the chromatin fiber topology characteristic variation, strongly connected.	
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Simulation of Whole Nuclei with all 46 Chromosomes	

Starting with some metaphase arrangement of cylindrical chromosomes, interphase nuclei with a 30 nm fiber 

resolution and at thermodynamical equilibrium are created in 4 steps using simulated annealing and Brownian 
Dynamics methods with stretching, bending, excluded volume and a spherical boundary interactions.	


The chromosome territory position depends on their metaphase position and is reasonably stable.	


t =     5 µs

t = 30 st = 15 st = 10 st =   5.0 st =   1.0 s

t = 100 mst =   50 mst =   25 ms

t =   10 mst =   5 mst =   2.5 mst =   1.0 mst = 750 µs

t =   50 µs t = 100 µs t = 250 µs t = 500 µs
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From Fiber Topology to Nuclear Morphology	

Chromosome territories form in the RW/GL and the MLS model. However, only the MLS model leads 

distinct subcompartments and low chromosome and subcompartment overlap. Best agreement is reached 
for an MLS model with 80 to 120 kbp loops and linkers in nuclei with 8 to 10 µm diameter.	


The simulated nuclear morphology reflects the chromosome fiber topology of different models in detail.	


rendering	


electron microscopy	


electron microscopy territory 
painting	


confocal microscopy	

 100x objective, theoretic resolution	


confocal microscopy 
territory painting	


confocal microscopy	

63x objective, real resolution	


A: MLS in 6 µm nucleus	

      I: 63 kbp loops, 63 kbp linkers	

      II: 63 kbp loops, 252 kbp linkers	

      III: 126 kbp loops, 252 kbp linkers	


B: MLS in 8 µm nucleus	

      I: 126 kbp loops, 126 kbp linkers	

      II: 84 kbp loops, 126 kbp linkers	


C: MLS in 10 µm nucleus	

      126 kbp loops, 126 kbp linker,	

      not totally relaxed	


D: RW/GL in 12 µm nucleus	

      5 Mbp loops	

      not totally relaxed	
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In vivo Morphology & Chromatin Distribution	

The stable expression of fusions between histones and autofluorescent proteins and the integration into 

nucleosomes allows the minimal invasive investigation of the structure and dynamics of chromatin.	

The clustered morphology in detail favour an MLS like chromatin topology.	




Fine Morphology of Nuclei	

High resolution rendering and simulated electron microscopy including territory painting reveal not only 

again the model details but also that any location in the nucleus is accessible to biological molecules <15 nm 
in diameter and that even the Extended Interchromosomal Domain hypothesis is oversimplified.	


MLS 
models 
model with 
126 kbp 
loops and 
linkers in a 
10 µm 
nucleus.	




Scaling of the Chromatin Fiber Topology	

The spatial-distance and exact yard-stick dimension distinguish between the simulated models in detail.The 
MLS model shows  a globular and fine-structured multi scaling behaviour due to the loops froming rosettes. 
This agrees with DNA fragmentation by Carbon ion irradiation and the appearance of fine-structured multi-

scaling long-range correlations found in the sequential organization of genomes.	
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Scaling of the Chromatin Morphology & Distribution	

The local (inverse-) mass dimension distribution distinguishs between the models in detail and show also a 
multi-scaling behaviour with globular feature for the MLS model like the scaling of the fiber topology. With 

the mass dimension as function of intensity separates very well between different nuclei in vivo.	

Consequently, the chromatin morphology is causally and quantitatively connected to the fiber topology.	
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DNA Fragment Distribution after Ione-Irradiation	

The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous 

spatial  double strand breackage probability depends on the detailed folding topology of the chromatin 
fiber and the RW/GL and MLS models differ largely. 	


Experiments always agree best with the MLS model independent of the irradiation conditions.	
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Diffusion of Particles in the Nucleus	

Due to the volume and spatial relation ships in the nucleus typical particles reach almost any location in the 

nucleus by moderately obstructed diffusion: a 10 nm particle moves 1 to 2 µm within 10 ms.	

The structural influence on the obstruction degree is random for Alexa 568  as function of the chromatin 
distribution visualized by H2A CFP in vivo and measured by fluorescence correlation spectroscopy (FCS)	
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Sequential Organization of Genomes	

Determination of the concentration fluctuation function C(l) and its local slope the correlation coefficient 
δ(l) reveal multi-scaling long-range correlation up to 106 to 107 bp in Homo sapiens which clearly deviate 

from random sequences with high significance (decreasing the nearer to the cut-off).	

On large scales this might only be due to a strong and definite three-dimensional genome organization.	
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Fine-Structured Multi-Scaling Long-Range	

Correlations of Homo sapiens	


The general behaveour is characterized by first maximum of the correlation coefficient d(l) at ~250 bp and at 
1x105 to 3x105 bp, both due to a globular block structure of genomes. Due to their fine structure the first is 

attributable to nucleosomal binding and the latter due to aggregation of chromatin loops as in the MLS model.	


Thus, the sequential organization is closely connected to the three-dimensional organization of genomes. 	


general behaviour	


fine structure	


the fine structure 
survives averaging 
over several human 
chromosomes. 	
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Conclusion	

Every structural level of nuclear organization including its dynamics is	


connected and represented in all the other levels.	


Ø  	
 Only the MLS model leads to chromosome territories with subcompartments agreeing 
qualitatively and quantitatively with experiments.	

	


Ø  	
 Comparison  between  simulated  and  experimental  spatial  distances  between  genetic 
markers favours and MLS model with 80 to 120 kbp loops and linkers.	


Ø  	
 The nuclear morphology or chromatin distribution is tightly connected to the folding 
topology of the chromatin fiber.	


Ø  	
 Scaling analysis of the chromatin fiber topology and nuclear morphology reveals a fine-
structured multi-scaling behaveour and allows a detailed description model changes. 	


Ø  	
 Most biological particles (molecules, proteins…) could reach almost any location in the 
nucleus by only moderately obstructed diffusion in agreement with in vivo experiments.	


Ø  	
 The sequential organization of genomes is characterized by fine-structured multi-scaling 
long-range correlations,  which are specie  specific and tightly connected to the three-
dimensional organization of genomes. On large-scales again an MLS model is favoured.	


Ø  	
 The  DNA  fragment  distribution  after  ion  irradiation  reflects  the  chromatin  fiber 
topology not only in detail but also favours always an MLS model.	
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Abstract 
 
 
 
To approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic 
properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics  
methods. The 30 nm chromatin fiber was folded according to the Multi-Loop-Subcompartment (MLS) model, in 
which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL) 
topology, in which 1-5 Mbp loops are attached to a flexible backbone. Both the MLS and the RW/GL model 
form chromosome territories but only the MLS rosettes result in distinct subcompartments visible with light 
microscopy and low overlap of chromosomes, -arms and subcompartments. This morphology and the size of 
subcompartments agree with the morphology found by expression of histone autofluorescent protein fusions and 
fluorescernce in situ hybridization (FISH) experiments. Even small changes of the model parameters induced 
significant rearrangements of the chromatin morphology. Thus, pathological diagnoses based on this 
morphology, are closely related to structural changes on the chromatin level. The position of interphase 
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental 
findings. The chromatin density distribution of simulated confocal (CLSM) images agrees with the MLS model 
and with recent experiments. The scaling behaviour of the chromatin fiber topology and morphology of CLSM 
stacks revealed fine-structured multi-scaling behaviour in agreement with the model prediction. Review and 
comparison of experimental to simulated spatial distance measurements between genomic markers as function of 
their genomic separation also favour an MLS model with loop and linker sizes of 63 to 126 kbp. Visual 
inspection of the morphology reveals also big spaces allowing high accessibility to nearly every spatial location, 
due to the chromatin occupancy <30% and  a mean mesh spacing of 29 to 82 nm for nuclei of 6 to 12 µm 
diameter. The simulation of diffusion agreed with this structural prediction, since the mean displacement for 10 
nm sized particles of ~1 to 2 µm takes place within 10 ms. Therefore, the diffusion of biological relevant tracers 
is only moderately obstructed, with the degree of obstruction ranging from 2.0 to 4.0 again in experimental 
agreement. 
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