HOGESCHOOL ROTTERDAM Resource Sharing at the Tera-FLOP Scale

For the BioMedical Research & Care Sectors

The Erasmus Computing Grid & MediGRID

Assist. Prof. U.D. Dr. rer. nat. Tobias A. Knoch

Email: TA.Knoch@taknoch.org

as.

Biophysical Genomics, Kirchhoff Institute for Physics, Ruperto-Carola University Heidelberg, Heidelberg, Germany. Biophysical Genomics & Erasmus Computing Grid, Dept. Cell Biology & Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.

The Erasmus Computing Grid

The largest desktop grid for the biomedical research and care sectors with now ~10 Tera FLOPS and a potential ~30 Tera FLOPS and ~15,000 desktops, at two city wide institutions: the Hogeschool Rotterdam and the Erasmus Medical Center.

Research:

- ***** genomic and proteomic analysis
- epidemiology
- * image analysis, e.g. Applied Molecular Imaging (AMI)

Education:

- ***** training of the coming grid generation of IT specialists
- ✤ developing new concepts for grid computing

Diagnostics:

- clinical image and data analysis
- operation planning and operation support

Industry:

brokerage of computing resources

Dedicated and Secured!

Erasmus Computing Grid

MediGRID and Services@MediGRID

MediGRID and Services@MediGRID operate the national biomedial research and care cluster-grid within the national German D-Grid initiative and integrate various disciplines, institutions, and states throughout Germany.

Module Coordination:

coordination of the distributed office

Module Resource Integration:

Erasmus Computing Grid

sharing of the integrated resources

Module Middleware:

grid technical virtualization

Module Ontology Tools:

ontology development for grid user projects

Module BioMedical Informatics:

✤ user projects in biomedical research

Module Clinical Imaging:

✤ user projects in clinical imaging

Module Clinical Research:

user projects in general clinical research

Module e-Science:

✤ general research on e-grid science

Services@MediGRID:

services towards MediGRID

Large-Scale Resource Sharing in IT:

The *Inverse* Tragedy of the Commons

The grid phenomenon and its implications are similar complicated to the ecology/climate/environmental challenge!

=> A resource belonging to all and being on limited demand is overexploited / destroyed by the users due to responsibility diffusion!

<= transforms into =>

:The Inverse Tragedy of the Commons

A Resource belonging to all and being in affluent availability on limited demand is <= underexploited by potential users due to responsibility diffusion !!!!!

The grid challenge lies in the e-Social embedding of grid phenomenons:

- Similarity: Renewable Energy Resources • Micro-Sociality: the sharing attitude and socialization of the individual.
- Macro-Sociality: the organization culture of the embedding institution.

Autopoietic Social Sub-Systems:

The Grid Challenge of Integration

The social systems theory by Niklas Luhmann (1927-1998) based on the autopoietic concept of Humberto Maturana and Francisco Varela (1946-2001) is so far the most advanced social systems theory existing to describe the complexity of grid implementation.

- Religion
- ✤ Education
- ✤ Science => currently grid involves only considerably => SCIENCE
- Art
- **&** Economy
- Jurisdiction
- Policy

:The Autopeitic Tragedy of Social Sub-Systems

The subsystems have their own code of communication and are separated from each other in a way blocking in principle a consistent integration although they form a society with all their contradictions !!!!!

The e-Social challenge lies in the integration of sub-systems towards a working grid society:

- Micro-Sub-Systems: the sub-system stickiness of individuals.
- Macro-Sub-Systems: the integration of institutionalized sub-systems via soft interfaces.

Grid Psychology

From Individual to Cultural Risk Management

Erasmus Computing Grid

The grid challenge lies in a unified concept addressing the psychology of grid:

- Micro-Risk-Management: the micro-risk in the perception the individual and its emotional well-being.
- Macro-Risk-Management: the macro-risks in the procedural and institutionalization in organizations.

e-Human "Grid" Ecology

Overcoming of the "Dare-To-Share" Attitude

The success of grid is based on a sustainable grid ecology within the e-Society, i.e. the e-Human Ecology of Grid reaches a equilibrated space within the integration of grid psychology with autopoietic e-Social sub-systems. Human Ecology first evolved in Chicago in the 1920's in the area of city development by Robert Park (1864-1944) and Ernest Burgess (1886-1966).

"Under e-Human "Grid" Ecology we understand the complete science of the relationships of grid to the surrounding environment to which we can count all conditions of existence in the widest sense."1

> ¹ Haeckel, E., Generelle Morphology der Organismen, Berlin, Band 2, Allgemeine Entwicklungsgeschichte, p. 286, 1866. ² Haeckel, E., Natürliche Schöpfungsgeschichte, 9. Auflage, Berlin, p. 793, 1898

(e-Human "Grid" Ecology "is) ... the relationship between grid and all other e-Social systems."²

The solutions of the grid challenge on the operational layer are addressed by:

• Micro-Operationality: the participative integration of fundamental IT applications of major individual users complying with the psychology of grid in an e-Human Ecology manner.

• Macro-Operationality: the set-up of an open and sustainable management structure complying the Commons! autopoietic e-Social sub-systems in an e-Human Ecology manner.

The Happy End - Profits Sharing the Commons

Both the Erasmus Computing Grid and the MediGRID/Services@MediGRID examples show that the IT challenges mankind faces in the biomedical research and care sectors can be successfully approached by exploitation of the commons by e-Human "grid" Ecology means.

Acknowledgements

Biggest thanks go to: resource donors and grid users!!!

Directors ECG:

Dr. Tobias A. Knoch, Erasmus MC Luc de Zeeuw, HR

Workforce ECG:

Rob de Graaf, ECG Anis Abuseiris, ECG

Advisory Board:

Prof. Dr. Frank G. Grosveld, Erasmus MC Prof. Dr. Hans van den Berg, HR Braam van Laar, Erasmus MC Rob Ketelaar, HR

Institutions:

Erasmus Medical Center Hogeschool Rotterdam

MediGRID:

For the technical: Thomas Steinke & Annette Weisbecker For the organization: Sebastian Semmler For the management: Ulrich Sax and Otto Rienhoff

Institutions:

The Participating Institutions The German MediGRID & Services@MediGRID The D-Grid Initiative(s) The German Ministry for Science and Technology The Erasmus Computing Grid and MediGRID

Knoch, T. A.

HealthGRID 2008. Gleacher Center, Chicago, Illinois, USA, 2nd - 4th June, 2008.

Abstract

Today advances in scientific research as well as clinical diagnostics and treatment are inevitably connected with information solutions concerning computation power and information storage. The needs for information technology are enormous and are in many cases the limiting factor for new scientific results or clinical diagnostics and treatment. At the same time huge computing and storage resources (e.g. $\sim 10^9$ personal computers in the private, public, and industrial domains) have been installed which outwheigh the resources at high-performance computing centers $\sim 50-100$ times and thus could contribute to the challenges mankind faces. Both the Erasmus Computing Grid (ECG) and the MediGRID are two major working resource-sharing entities at public funded organizations:

- i) The ECG in Rotterdam exploits currently the desktop computers of the Erasmus Medical Center (the biggest biomedical research and hospital center in The Netherlands) and the Hogheschool Rotterdam (one of the biggest city universities in The Netherlands) and consists of $\sim 10^4$ hosts with ~ 10 TeraFlops capacity (30 TeraFlops at the end of 2008). The ECG has grown into a vital part of the work of the ~ 10 user groups as well as the organizations, with results which could not have been done without the ECG.
- ii) The MediGRID being part of the German D-Grid initiatives connects local dedicated cluster resources at biomedical universities throughout Germany with a capacity of ~2000 hosts with ~2 TeraFlops capacity. Within MediGRID ~15 user groups conduct basic research as well as clinical applications for diagnosis and treatment. Again the results could hardly be obtained otherwise and thus have provided breakthroughs.

To build these infrastructures two e-social influences had to be overcome: i) the sharing attitude and socialization of the individual, i.e. the micro-sociality, and ii) the organization culture of the embedding institution, i.e. the macro-sociality, as e.g. for the ECG the public funded organizations. Operationally, an these factors were adressed by: i) the participative integration of fundamental IT applications of major users, and ii) the setup of an open and sustainable management structure.

Consequently, we show that the IT challenges mankind faces in the biomedical research and health-care sectors can be successfully approached by appropriate exploitation of the huge

existing resources by grid technology combined with micro and macro e-social means to stimulate sharing on the individual as well as organizational level.

Corresponding author email contact: TA.Knoch@taknoch.org

Keywords:

Human ecology, e-human grid ecology, society, social systems, e-social challenge, inverse tragedy of the commons, grid phenomenon, parallel super computing, grid computing, volunteer computing, micro-sociality, macro-sociality, autopoietic tragedy of social sub-systems, micro subsystems, macro subsystems, micro operationality, grid psychology micro riskmanagement, macro riskmanagement, information browser, visual data base access, holistic viewing system, integrative data management, extreme visualization, three-dimensional virtual environment, virtual paper tool.

Literature References

- Knoch, T. A. Dreidimensionale Organisation von Chromosomen-Domänen in Simulation und Experiment. (Three-dimensional organization of chromosome domains in simulation and experiment.) *Diploma Thesis*, Faculty for Physics and Astronomy, Ruperto-Carola University, Heidelberg, Germany, 1998, and TAK Press, Tobias A. Knoch, Mannheim, Germany, ISBN 3-00-010685-5 and ISBN 978-3-00-010685-9 (soft cover, 2rd ed.), ISBN 3-00-035857-9 and ISBN 978-3-00-0358857-0 (hard cover, 2rd ed.), ISBN 3-00-035858-7, and ISBN 978-3-00-035858-6 (DVD, 2rd ed.), 1998.
- Knoch, T. A., Münkel, C. & Langowski, J. Three-dimensional organization of chromosome territories and the human cell nucleus about the structure of a self replicating nano fabrication site. *Foresight Institute Article Archive*, Foresight Institute, Palo Alto, *CA*, *USA*, http://www.foresight.org, 1- 6, 1998.
- Knoch, T. A., Münkel, C. & Langowski, J. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Nucleus. *High Performance Scientific Supercomputing*, editor Wilfried Juling, Scientific Supercomputing Center (SSC) Karlsruhe, University of Karlsruhe (TH), 27- 29, 1999.
- Knoch, T. A., Münkel, C. & Langowski, J. Three-dimensional organization of chromosome territories in the human interphase nucleus. *High Performance Computing in Science and Engineering 1999*, editors Krause, E. & Jäger, W., High-Performance Computing Center (HLRS) Stuttgart, University of Stuttgart, Springer Berlin-Heidelberg-New York, ISBN 3-540-66504-8, 229-238, 2000.
- Bestvater, F., Knoch, T. A., Langowski, J. & Spiess, E. GFP-Walking: Artificial construct conversions caused by simultaneous cotransfection. *BioTechniques* 32(4), 844-854, 2002.
- Knoch, T. A. (editor), Backes, M., Baumgärtner, V., Eysel, G., Fehrenbach, H., Göker, M., Hampl, J., Hampl, U., Hartmann, D., Hitzelberger, H., Nambena, J., Rehberg, U., Schmidt, S., Weber, A., & Weidemann, T. Humanökologische Perspectiven Wechsel Festschrift zu Ehren des 70. Geburtstags von Prof. Dr. Kurt Egger. Human Ecology Working Group, Ruperto-Carola University of Heidelberg, Heidelberg, Germany, 2002.
- Knoch, T. A. Approaching the three-dimensional organization of the human genome: structural-, scaling- and dynamic properties in the simulation of interphase chromosomes and cell nuclei, long- range correlations in complete genomes, *in vivo* quantification of the chromatin distribution, construct conversions in simultaneous co-transfections. *Dissertation*, Ruperto-Carola University, Heidelberg, Germany, and TAK†Press, Tobias A. Knoch, Mannheim, Germany, ISBN 3-00-009959-X and ISBN 978-3-00-009959-5

(soft cover, 3rd ed.), ISBN 3-00-009960-3 and ISBN 978-3-00-009960-1 (hard cover, 3rd ed.), ISBN 3-00-035856-9 and ISBN 978-3-00-010685-9 (DVD, 3rd ed.) 2002.

- Knoch, T. A. Towards a holistic understanding of the human genome by determination and integration of its sequential and three-dimensional organization. *High Performance Computing in Science and Engineering* 2003, editors Krause, E., Jäger, W. & Resch, M., High-Performance Computing Center (HLRS) Stuttgart, University of Stuttgart, Springer Berlin-Heidelberg-New York, ISBN 3- 540-40850-9, 421-440, 2003.
- Wachsmuth, M., Weidemann, T., Müller, G., Urs W. Hoffmann-Rohrer, Knoch, T. A., Waldeck, W. & Langowski, J. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. *Biophys. J.* 84(5), 3353-3363, 2003.
- Weidemann, T., Wachsmuth, M., Knoch, T. A., Müller, G., Waldeck, W. & Langowski, J. Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J. Mol. Biol. 334(2), 229-240, 2003.
- Fejes Tóth, K., Knoch, T. A., Wachsmuth, M., Frank-Stöhr, M., Stöhr, M., Bacher, C. P., Müller, G. & Rippe, K. Trichostatin A induced histone acetylation causes decondensation of interphase chromatin. J. Cell Science 177, 4277-4287, 2004.
- Ermler, S., Krunic, D., Knoch, T. A., Moshir, S., Mai, S., Greulich-Bode, K. M. & Boukamp, P. Cell cycledependent 3D distribution of telomeres and telomere repeat-binding factor 2 (TRF2) in HaCaT and HaCaTmyc cells. *Europ. J. Cell Biol.* 83(11-12), 681-690, 2004.
- Kost, C., Gama de Oliveira, E., Knoch, T. A. & Wirth, R. Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (*Atta spp.*). J. Trop. Ecol. 21(6), 677-688, 2005.
- Winnefeld, M., Grewenig, A., Schnölzer, M., Spring, H., Knoch, T. A., Gan, E. C., Rommelaere, J. & Cziepluch, C. Human SGT interacts with BAG-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. *Exp. Cell Res.* 312, 2500-2514, 2006.
- Sax, U., Weisbecker, A., Falkner, J., Viezens, F., Yassene, M., Hartung, M., Bart, J., Krefting, D., Knoch, T. A.
 & Semler, S. Grid-basierte Services f
 ür die elektronische Patientenakte der Zukunft. E- HEALTH-COM -Magazin f
 ür Gesundheitstelematik und Telemedizin, 4(2), 61-63, 2007.
- de Zeeuw, L. V., **Knoch, T. A.**, van den Berg, J. & Grosveld, F. G. Erasmus Computing Grid Het bouwen van een 20 TeraFLOP virtuelle supercomputer. *NIOC proceedings 2007 het perspective of lange termijn*. editor Frederik, H. NIOC, Amsterdam, The Netherlands, 52-59, 2007.
- Rauch, J., Knoch, T. A., Solovei, I., Teller, K. Stein, S., Buiting, K., Horsthemke, B., Langowski, J., Cremer, T., Hausmann, M. & Cremer, C. Lightoptical precision measurements of the Prader- Willi/Angelman Syndrome imprinting locus in human cell nuclei indicate maximum condensation changes in the few hundred nanometer range. *Differentiation* 76(1), 66-82, 2008.
- Sax, U., Weisbecker, A., Falkner, J., Viezens, F., Mohammed, Y., Hartung, M., Bart, J., Krefting, D., Knoch, T. A. & Semler, S. C. Auf dem Weg zur individualisierten Medizin - Grid-basierte Services für die EPA der Zukunft. *Telemedizinführer Deutschland 2008*, editor Jäckel, A. Deutsches Medizinforum, Minerva KG, Darmstadt, ISBN 3-937948-06-6, ISBN-13 9783937948065, 47-51, 2008.
- Drägestein, K. A., van Capellen, W. A., van Haren, J. Tsibidis, G. D., Akhmanova, A., **Knoch, T. A.**, Grosveld, F. G. & Galjart, N. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. *J. Cell Biol.* 180(4), 729-737, 2008.
- Jhunjhunwala, S., van Zelm, M. C., Peak, M. M., Cutchin, S., Riblet, R., van Dongen, J. J. M., Grosveld, F. G., **Knoch, T. A.**⁺ & Murre, C.⁺ The 3D-structure of the Immunoglobulin Heavy Chain Locus: implications for long-range genomic interactions. *Cell 133(2)*, 265-279, 2008.
- Krefting, D., Bart, J., Beronov, K., Dzhimova, O., Falkner, J., Hartung, M., Hoheisel, A., **Knoch, T. A.**, Lingner, T., Mohammed, Y., Peter, K., Rahm, E., Sax, U., Sommerfeld, D., Steinke, T., Tolxdorff, T., Vossberg, M.,

Viezens, F. & Weisbecker, A. MediGRID - Towards a user friendly secured grid infrastructure. *Future Generation Computer Systems 25(3)*, 326-336, 2008.

- Knoch, T. A., Lesnussa, M., Kepper, F. N., Eussen, H. B., & Grosveld, F. G. The GLOBE 3D Genome Platform
 Towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function. *Stud. Health. Technol. Inform. 147*, 105-116, 2009.
- Knoch, T. A., Baumgärtner, V., de Zeeuw, L. V., Grosveld, F. G., & Egger, K. e-Human Grid Ecology: Understanding and approaching the Inverse Tragedy of the Commons in the e-Grid Society. *Stud. Health. Technol. Inform.* 147, 269-276, 2009.
- Dickmann, F., Kaspar, M., Löhnardt, B., Knoch, T. A., & Sax, U. Perspectives of MediGRID. Stud. Health. Technol. Inform. 147, 173-182, 2009.
- Knoch, T. A., Göcker, M., Lohner, R., Abuseiris, A. & Grosveld, F. G. Fine-structured multi-scaling long-range correlations in completely sequenced genomes - features, origin and classification. *Eur. Biophys. J.* 38(6), 757-779, 2009.
- Dickmann, F., Kaspar, M., Löhnhardt, B., Kepper, N., Viezens, F., Hertel, F., Lesnussa, M., Mohammed, Y., Thiel, A., Steinke, T., Bernarding, J., Krefting, D., Knoch, T. A. & Sax, U. Visualization in health-grid environments: a novel service and business approach. *LNCS* 5745, 150-159, 2009.
- Dickmann, F., Kaspar, M., Löhnhardt, B., Kepper, N., Viezens, F., Hertel, F., Lesnussa, M., Mohammed, Y., Thiel, A., Steinke, T., Bernarding, J., Krefting, D., Knoch, T. A. & Sax, U. Visualization in health-grid environments: a novel service and business approach. *Grid economics and business models - GECON 2009 Proceedings, 6th international workshop, Delft, The Netherlands.* editors Altmann, J., Buyya, R. & Rana, O. F., GECON 2009, LNCS 5745, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-03863-1, 150-159, 2009.
- Estrada, K.^{*}, Abuseiris, A.^{*}, Grosveld, F. G., Uitterlinden, A. G., **Knoch, T. A.⁺** & Rivadeneira, F.⁺ GRIMP: A web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. *Bioinformatics* 25(20), 2750-2752, 2009.
- Kepper, N., Schmitt, E., Lesnussa, M., Weiland, Y., Eussen, H. B., Grosveld, F. G., Hausmann, M. & Knoch T. A., Visualization, Analysis, and Design of COMBO-FISH Probes in the Grid-Based GLOBE 3D Genome Platform. *Stud. Health Technol. Inform.* 159, 171-180, 2010.
- Kepper, N., Ettig, R., Dickmann, F., Stehr, R., Grosveld, F. G., Wedemann, G. & Knoch, T. A. Parallel highperformance grid computing: capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency. *Stud. Health Technol. Inform.* 159, 264-271, 2010.
- Skrowny, D., Dickmann, F., Löhnhardt, B., Knoch, T. A. & Sax, U. Development of an information platform for new grid users in the biomedical field. *Stud. Health Technol. Inform. 159*, 277-282, 2010.
- Knoch, T. A., Baumgärtner, V., Grosveld, F. G. & Egger, K. Approaching the internalization challenge of grid technologies into e-Society by e-Human "Grid" Ecology. *Economics of Grids, Clouds, Systems, and Services GECON 2010 Proceedings*, 7th International Workshop, Ischia, Italy, editors Altman, J., & Rana, O. F., Lecture Notes in Computer Science (LNCS) 6296, Springer Berlin Heidelberg New York, ISSN 0302-9743, ISBN-10 3-642-15680-0, ISBN-13 978-3-642-15680-9, 116-128, 2010.
- Dickmann, F., Brodhun, M., Falkner, J., Knoch, T. A. & Sax, U. Technology transfer of dynamic IT outsourcing requires security measures in SLAs. *Economics of Grids, Clouds, Systems, and Services – GECON 2010 Proceedings*, 7th International Workshop, Ischia, Italy, editors Altman, J., & Rana, O. F., Lecture Notes in Computer Science (LNCS) 6296, Springer Berlin Heidelberg New York, ISSN 0302-9743, ISBN-10 3-642-15680-0, ISBN-13 978-3-642-15680-9, 1-115, 2010.