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ABBREVIATIONS 

3TC: lamivudine 

ACER: average cost-effectiveness ratio 

AIDS: acquired immune deficiency syndrome 

ART: antiretroviral therapy 
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DRM: drug resistance mutation 

EFV: efavirenz 

FDA: United States Food and Drug Administration 
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NVP: nevirapine 

PASER: PharmAccess African Studies to Evaluate Resistance 

PEPFAR: President’s Emergency Plan for AIDS Relief 
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PrEP: pre-exposure prophylaxis 

QALY: quality adjusted life year 

SLT: stochastic league table 

STI: sexually transmitted infection 

TAM: thymidine analogue mutation 

T&T: test and treat 

TDR: transmitted drug resistance 

TDRM: transmitted drug resistance mutation 

VCT: voluntary counselling and testing 

VL: viral load 

WHO: World Health Organization 

ZDV: zidovudine 
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HIV Epidemiology 

The human immunodeficiency virus, or HIV, is the virus that causes acquired immune 

deficiency syndrome (AIDS). There are currently 35 million people living with HIV, and each 

year there are more than two million new HIV infections worldwide.1 While HIV was 

spreading quickly across MSM communities in resource rich settings in the 1980s, HIV was 

also getting a strong foothold among heterosexuals across Africa,2 and later in Asia.3 The 

epidemic is now most strongly concentrated in sub-Saharan Africa, with 70% of the worlds’ 

HIV cases.1  

There has been a rise in the number of new HIV infections in several countries and in specific 

risk groups such as among men who have sex with men (MSM) in Europe.1  In the 

Netherlands, the number of newly infected MSM rose 57% between 2001 and 2013.4 This 

increase is primarily attributed to increases in sexual risk behavior.5 

Meanwhile, while there are still over a million new infections per year in sub-Saharan Africa, 

the number of new infections in sub-Saharan Africa has been decreasing.1 This decrease has 

been attributed primarily to 1) a decline in sexual risk behavior6 and 2) large-scale rollout of 

antiretroviral treatment. When patients are successfully on antiretroviral treatment, they 

cannot generally transmit their infection.1, 7 

 

HIV Natural History & Treatment 

There are several stages of HIV infection: the acute stage, chronic stage and the AIDS stage. 

The acute stage of infection lasts between 10 and 16 weeks, and is characterized by high 

infectiousness.8, 9 This is due to high HIV RNA replication that takes place during that period. 

HIV RNA in plasma is the key determinant of infectiousness.8, 10  The chronic stage of 

infection is much longer, approximately 8 years, and far less infectious than the acute stage 

due to low levels of HIV RNA in plasma.9, 11 The AIDS stage lasts approximately 1-2 years.9, 12 

A patient in the AIDS stage is 3-5 times more infectious than in the chronic stage.9, 12 At any 

point during infection, antiretroviral treatment can be initiated and stop further disease 

progression. Depending on when antiretroviral treatment is initiated, HIV-infected 

individuals can expect a near-full life expectancy.13  

Currently, patients initiate treatment based on their CD4 cell count. Before 2010, the WHO 

recommended to initiate treatment in the AIDS stage of disease, or at a CD4<200 cells/µl.6 

From 2010-2013, the World Health Organization recommended treatment at a CD4 cell 

count of <350 cells/µl, and since 2013 treatment initiation at CD4 <500 cells/µl has been 

recommended.14  
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HIV Treatment and Drug Resistance 

HIV is characterized by its high genetic variability, and as such can easily select for 

resistance-associated mutations.15 When the genetic barrier is high enough, or when the 

number of viral mutations needed to escape selective drug pressure is large enough, then a 

patient can be suppressed on antiretroviral treatment and the risk of acquired drug 

resistance is strongly reduced. In general, three different antiretroviral drugs from two 

different classes of drugs must be used in order to have a sufficiently high genetic barrier 

and effectively suppress HIV so that HIV RNA is undetectable in plasma.15  

If a patient is not fully adherent to treatment however, especially early on in treatment, the 

virus can select for drug resistance associated mutations. This is called an acquired mutation. 

Patients with an acquired HIV mutation can also further transmit their virus, which is called 

transmission of resistance. Drug resistance can also be transmitted from one antiretroviral 

naïve patient to the next untreated individual. Epidemiological studies have reported that 

the primary source of transmitted resistance comes from antiretroviral naïve patients.16, 17 

Transmission of resistance that affects first-line treatment can jeopardize initial 

antiretroviral therapy and should therefore be avoided.18  

There are several ART program-level strategies that can help mitigate the emergence and 

transmission of drug resistance.19-21 The WHO has recently recommended monitoring 

patients by measuring plasma HIV RNA level, or viral load testing, which can reduce 

transmission of drug resistance if implemented at regular intervals (every 6 or 12 monthly). 

Viral load testing can reduce the emergence of HIV drug resistance by early identification of 

patients with virological failure, prompting intensified adherence counselling and switch to 

second-line ART as necessary, thereby minimizing emergence of HIV drug resistance.19, 21  

Second, prompt switching to a protease-inhibitor based second-line regimen of individuals 

experiencing virological failure has been associated with a reduced risk for drug resistance.20, 

22  Finally, pre-therapy genotypic resistance testing to select a fully active regimens guide 

may mitigate acquired drug resistance.23, 24 These three strategies carry additional costs 

however and are not routinely available in sub-Saharan Africa. 

 

HIV Prevention using antiretroviral drugs 

Several prevention strategies using antiretroviral drugs have been shown to be effective in 

reducing new HIV infections: 

Treatment as prevention 

The CD4 threshold at which treatment is initiated has an impact on HIV prevention. As soon 

as a patient is successfully suppressed on antiretroviral therapy, they are no longer 

infectious. The preventative impact of earlier treatment initiation has been shown in a 
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randomized clinical trial. Patients who start treatment early (defined as initiating when the 

CD4 cell count is between 350 and 550 cells/µl) have a 96% reduced risk of transmitting HIV 

to their sexual partners as compared to patients who defer treatment until a CD4 cell count 

of <250 cells/µl 7. Figure 1 depicts how treatment as prevention in Patient X works. If 

treatment is initiated at a CD4 cell count of 350 cells/µl (i), approximately four years after 

initial infection, our hypothetical Patient X will infect Contacts A, B, & C. Patient X then 

begins treatment when their CD4 cell count drops to 350 cells/µl, and the infection to 

contact D is prevented. If Patient X had initiated treatment at a CD4 count of 500 cells/µl (ii), 

then the infections to Contacts B and C could also have been prevented. 

Figure 1. Treatment as prevention schematic 

 

This preventative effect of treatment is one of the reasons that the World Health 

Organization now recommends earlier treatment initiation at a CD4 count of <500 cells/µl.14 

It is unknown, however, what the population level effectiveness of treatment as prevention 

will be.  

A major challenge to treatment as prevention, even in resource-rich settings, is the ability to 

get people into care early in infection. In sub-Saharan Africa, as many as 60% of individuals 

are diagnosed late with a CD4 cell count <350 cells/µl.25 Even in Europe, as many as 44% of 

MSM are diagnosed late. One way to get patients into care earlier is through partner 

notification.26 If partners are notified, they can be diagnosed sooner and initiate treatment. 

A fear of earlier treatment initiation in sub-Saharan Africa is the potential for increased 

levels of drug resistance.18 This is especially the case as viral load and drug resistance testing 

are not routinely performed. This poses a problem to sub-Saharan Africa in particular as 

there are limited options for antiretroviral treatment. Thus, if there is a wide circulation of 

resistance to first-line therapy, treatment options will be severely limited. Ways to expand 

treatment but limited resistance are therefore of utmost importance. 



General Introduction | 15 
 

 
 

Pre-exposure prophylaxis 

Antiretroviral drugs can also be given to uninfected individuals to prevent infection. This is 

known as pre-exposure prophylaxis (PrEP). It has been shown that the more adherent a 

person is to PrEP, the more effective it is in preventing HIV infection.27 Daily oral PrEP with 

tenofovir and emtricitabine has been shown to prevent 44–75% of new HIV infections.28-30 

Two studies31, 32 have found no protective effect of PrEP on prevention of new infections, 

due to limited adherence.  Figure 2 represents how PrEP works when effective. Contacts A 

and B start pre-exposure prophylaxis to prevent HIV. Contact C does not use pre-exposure 

prophylaxis. When infectious Patient X has sexual contact with Contacts A and B, the 

infection in Contacts A and B are therefore prevented.  

Figure 2. Pre-exposure prophylaxis schematic 

There is concern that PrEP could also lead to an increase in drug resistance. This is of 

particular concern in sub-Saharan Africa as there are few treatment options available, and 

the drugs used for PrEP, tenofovir and emtricitabine, are also the drugs recommended for 

first-line treatment.33 Thus, when implementing treatment as prevention or PrEP on a wide 

scale, the potential for an increase in resistance should be taken into account. 

Microbicides 

Microbicides containing antiretroviral drugs have also been shown to be effective in 

preventing new HIV infections in one study.34 In this study, a topical gel containing tenofovir 

applied intra-vaginally, compared to placebo, reduced HIV acquisition by 39%.34 The 

mechanism for prevention is similar to that in Figure 2. Another study31 did not find a 

protective effect of antiretroviral-containing microbicides, likely due to lack of adherence.35 

Microbicides are not discussed further in this thesis.  

 

Mathematical modeling and cost-effectiveness 

Current studies on treatment as prevention and PrEP show the efficacy of both methods 

under well-controlled conditions. Determining the real-life population-level effectiveness of 

both prevention methods will require long-term prospective epidemiological studies. These 

studies would have to be unfeasibly large, expensive and time-consuming. Mathematical 

modeling is a tool that can be used to predict the impact of treatment as prevention and 



16 | Chapter 1 
 

 

1
6

 
1

6
 

PrEP in the long-run. The basic structure of the deterministic models used in this thesis is 

shown in Figure 3.  

Figure 3. Basic design of deterministic model of HIV infection 

 

All models divide disease progression into three basic stages, described earlier, based on 

duration and infectiousness. In the models of this thesis, individuals can test positive for HIV 

at any point in infection depending on the test rate of the modeled population. Once people 

test positive, they can initiate treatment, depending on the observed treatment threshold. 

Once a patient initiates treatment, their infectiousness is assumed to be reduced by 90-

100%.7 This basic model has then been adapted to suit the different research questions 

throughout this thesis. 

In addition to the preventative impact of antiretroviral-based prevention strategies, more 

information is needed to determine what interventions provide the best value for money.  It 

is therefore imperative that cost-effectiveness analyses be conducted to not only determine 

the best intervention in terms of infections prevented, but what the most cost-effective 

interventions are. For a cost-effectiveness analysis, two types of information are needed: 1) 

how much the intervention (Intervention B) costs or saves compared to the reference 

intervention (Intervention A), and 2) how many quality adjusted life years (QALYs) you gain 

or lose by implementing an intervention (Intervention B) compared to a reference 

intervention (Intervention A). A QALY of 1 is considered to be a year of life lived in perfect 

health. The cost effectiveness ratio is calculated as follows:  

Cost of Intervention B – Cost of Intervention A 

Effectiveness of Intervention B – Effectiveness of Intervention A 

 

Figure 4 shows how to interpret results on cost-effectiveness. Most cost-effectiveness 

results fall in quadrant 1, where Intervention B is more effective but also costs more. Within 

this quadrant, the World Health Organization defines an intervention as cost-effective if it 

costs less than three times the gross domestic product per capita of a country per QALY 

gained. In general, if an intervention falls in quadrant 2, it should always be done, as it is cost 

saving, and if an intervention falls in quadrant 4, it should never be done, as it costs more 

and is less effective (also called ‘dominated’).  
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Figure 4. The cost-effectiveness plane(adapted from Drummond 200536) 

 

One limitation to cost-effectiveness analyses is the lack of budgetary analysis. Even if an 

intervention is cost-effective, there may be no budget to implement the intervention. The 

use of stochastic league tables is one way to incorporate budget limitations into a cost-

effectiveness analysis.37-39 Stochastic league tables provide a probability that a given 

intervention is the best way to maximize health in a population given a fixed budget. It is 

then possible to see what the best interventions could be, in terms of health gained, given a 

range of budgets. 

 

Research aims 

The overarching aim of this thesis is to identify optimal antiretroviral-based strategies to 

prevent new HIV infections in terms of infections averted and costs incurred. To address the 

overarching aim, we also evaluated the following sub-aims: 

i. Evaluate the impact of treatment as prevention, pre-exposure 

prophylaxis, and partner notification on the epidemic in terms of 

infections averted and life-years saved using mathematical models. 

ii. Determine the impact of earlier antiretroviral treatment and pre-

exposure prophylaxis on transmitted HIV drug resistance. 

iii. Identify the cost-effectiveness of different antiretroviral-based 

prevention techniques and cost-effectiveness of methods that can 

reduce drug resistance.   
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Outline of thesis  

This thesis includes an in-depth review (Chapter 2) of the previous work on mathematical 

modeling of treatment as prevention or ‘test and treat’, as well as a review of the studies on 

transmitted drug resistance that were available at the start of this PhD research.  

Part 1 of this thesis focuses on the use of treatment as prevention for HIV prevention. 

Chapter 3 addresses the impact of treatment as prevention in regards to infections averted 

and predicted rates of transmitted drug resistance in Eastern Africa. In Chapter 4, the use of 

various patient monitoring techniques are modeled to identify which are the most cost-

effective techniques that reduce the prevalence of transmitted drug resistance in Eastern 

Africa. In resource-rich settings, treatment as prevention can also reduce the number of new 

infections. Chapter 5 looks at how a partner notification system can reduce the HIV-1 

epidemic among men who have sex with men (MSM) in the Netherlands by getting patients 

into care earlier. 

Part 2 of this thesis focuses on the use of pre-exposure prophylaxis for HIV prevention. 

Chapter 6 investigates the epidemic impact and cost-effectiveness of pre-exposure 

prophylaxis in Zambia. Chapter 7 then assesses the impact of the use of pre-exposure 

prophylaxis on drug resistance across three different mathematical models focused in sub-

Saharan Africa. 

Part 3 combines both pre-exposure prophylaxis and treatment as prevention in one model 

to investigate not only which prevention techniques are more cost-effective, but also to 

identify what prevention techniques are affordable (Chapter 8).  

The results of this thesis are then discussed and summarized in Chapter 9.  

 



 

 
 

 

 

Chapter 2 

Test and treat strategies for prevention of HIV infection: impact of 

antiretroviral drug resistance 
 

Brooke E. Nichols, Charles A.B. Boucher, David A.M.C. van de Vijver 

Journal of Internal Medicine 2011; 270(6):532-49 

 

 



20 | Chapter 2 
 

 

2
0

 
2

0
 

ABSTRACT  

‘Test and treat’ is a strategy in which widespread screening for human immunodeficiency 

virus (HIV) is followed by immediate antiretroviral therapy for those testing positive, thereby 

potentially reducing infectiousness in larger cohorts of infected patients. However, there is a 

concern that test and treat could lead to increased the levels of transmissible drug-resistant 

HIV, especially if viral load and/or drug resistance is not routinely monitored. Reviews of the 

existing literature show that up to now, even in the absence of laboratory tests, drug 

resistance has not created major problems in sub-Saharan Africa. Here, we discuss the 

current evidence for the effectiveness of a preventive test and treat approach and the 

challenges and implications for daily clinical practice and public health. 
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INTRODUCTION 

Despite extensive prevention efforts, in 2009 there were still 2.6 million new HIV infections 

worldwide. Most of these new infections occurred in Sub-Saharan Africa.6 A strong increase 

in the HIV epidemic has been observed in Central Asia and Eastern Europe, where the 

reported number of people living with HIV almost tripled from 530,000 in 2000 to an 

estimated 1.4 million in 2009.6 Worldwide, for every two patients who start antiretroviral 

therapy, five become newly infected. Thus, there is a growing need for more effective 

methods to curb the epidemic.40 

A novel potential prevention strategy is referred to as ‘test and treat’ (T&T) in which 

universal testing for HIV is combined with immediate antiretroviral therapy for those 

individuals found infected.41 Universal testing may be able to prevent new infections as 

individuals who become aware of their HIV status could reduce their risk behaviour.42 In 

addition, immediate antiretroviral therapy of infected individuals can prevent new infections 

as antiretroviral drugs suppress viral replication and thereby the HIV RNA load, which is a key 

factor determining transmissibility of HIV.10 This reduction in infectiousness because of 

treatment has also been confirmed in recent studies.7, 43-47 

Montaner et al. were among the first to  propose the T&T approach.41 Granich et al. then 

further explored the benefits of this approach in a mathematical modelling study.48 Based on 

their model, they predicted that annual voluntary HIV screening followed by immediate start 

of antiretroviral drugs for those individuals who test positive, regardless of their CD4 count, 

could reduce the HIV pandemic to one incident case of HIV per 1,000 people per year by 

2016. However, they made several assumptions, which may not be easily implemented in 

daily practice and therefore received some criticism.49-56 

A specific concern using T&T may be the development of drug resistant transmissible 

viruses. The efficacy of treatment of HIV infection can be limited by the development of 

(cross-) drug resistant viruses. Expanded access to drugs in a T&T program will increase the 

number of individuals taking antiretroviral drugs and as such may lead to an increased 

absolute number of patients in whom drug resistance emerges. As a consequence, more 

people will need second-line treatment. A further problem may then be that drug resistant 

viruses will be transmitted to others.24, 57, 58 Transmitted drug resistance has clinical 

ramifications as it is associated with virological failure in patients who receive at least one 

antiretroviral drug to which the virus has lost susceptibility.59 In addition, drug resistance can 

have important implications for public health as it leads to a rebound in viral load,60 which 

increases transmissibility of the virus.  

The objective of this review is to investigate the epidemiological evidence for the potential 

benefits of T&T. We will discuss the challenges and implications of this approach for public 

health and daily clinical practice. We will then consider the potential impact of antiretroviral 

drug resistance on the effectiveness of T&T, focusing on resistance in sub-Saharan Africa 



22 | Chapter 2 
 

 

2
2

 
2

2
 

where most new infections occur and where most benefit from a T&T approach might be 

expected. 

Effectiveness of ‘test and treat’ 

Mathematical modelling has been used extensively to predict if T&T could be an effective 

strategy for prevention of new infections with HIV.41, 48, 61-66 Mathematical models involve 

the deconstruction of transmission of HIV into its key elements to reconstruct a dynamic 

model of the way these elements interact. Using available evidence on each of these 

components, the model can then generate predictions.67, 68  

In this section, we will review the mathematical models that studied the potential impact of 

T&T (summarized in Table 1). The models can be divided into three groups based on the era 

in which they were developed. The first models were developed during the period in which 

the exact effect of antiretrovirals on transmissibility was largely unknown. These models 

were used to investigate the impact of changes in risk behaviour. In the second era, 

modelling gained a lot of momentum, was used to study the effect of T&T on the epidemic in 

general and generated controversy. In the third era, the models were adapted for more 

realistic assumptions and incorporated additional prevention methods. 

The early models on the impact of risk behaviour 

Testing for HIV can have important benefits as it could lead to a reduction in new infections 

in the population. This potential reduction can be ascribed to changes in risk behaviour. 

Individuals who test positive for HIV can reduce their number of sexual partners42, 69, 70 or 

use condoms consistently. But there is concern that due to the strong benefits of 

antiretroviral therapy on morbidity and mortality,71 the fear of becoming infected with HIV 

will be reduced. This may in turn lead to increases in sexual risk behaviour. 

The first models were published in the early 2000s and examined the impact of changes in 

risk behaviour on the epidemic. The initial two models were calibrated to the epidemic of 

North American men who have sex with men (MSM). These models were developed to look 

at the long-term effectiveness and possible benefits derived from antiretroviral therapy.61, 62 

The first early model, by Blower et al., investigated the effectiveness of antiretroviral 

therapy in preventing new infections and the impact of a change in risk behaviours.61 The 

differences in infectiousness of patients in the various stages of HIV infection was not 

incorporated.9 The model showed that antiretroviral therapy can be effective in preventing 

new infections. However, it also revealed that this benefit will be nullified if risk behaviour 

increases. 

Another early model indicated that: (i) a decrease in sexual risk behaviour could mean an 

end to the HIV epidemic; (ii) that the epidemic would be stable if there was no change in risk 

behaviour; but (iii) it would escalate if risk behaviour increased.62  Within the given 
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parameters, this model showed that eradication of HIV is possible, although it could take 

100 years or more to achieve. 

In conclusion, without taking the exact effects on transmissibility into account, the early 

models demonstrated that increased risk behaviour can offset the benefits of T&T. 

Table 1. Summary of main assumptions and main conclusions of studies that were reviewed on 
modelling the impact of ‘test and treat’ 

Study Location   Assumptions 
related to testing 

Assumptions related 
to treatment 

Conclusions 

Extent of reduction in transmission due to a reduced viral load unknown 
61 San 

Francisco 
No assumptions Antiretroviral 

treatment started in 
50-90% of patients 

Antiretroviral therapy 
can be effective in 
preventing HIV, but 
increases in risk 
behaviour can 
counteract this benefit. 

62 San 
Francisco 

No assumptions Antiretroviral 
treatment started in 
50-90%; 50-99% 
reduction in 
infectiousness 

Increased HIV-risk 
behaviour can nullify 
benefits of treatment. 

Extent of reduction in transmission due to a reduced viral load known 
41 Hyper 

endemic 
settings  

All HIV-infected 
individuals 
identified 

All HIV-infected 
people given 
antiretroviral therapy 
in first year of rollout 

HIV prevalence could be 
reduced from >7 cases 
per 1000 people to <0.1 
cases per 1000 in 45 
years. 

63 British 
Columbia 

No assumptions Therapy started at a 
CD4 count of ≤200 
cells/µL 

Increasing antiretroviral 
coverage from 50 to 
100% reduces the 
number of new 
infections from 400 to 
225 per year 

48 South 
Africa 

Universal testing Immediate start of 
treatment after 
positive HIV test 

HIV incidence reduced 
to less than 1 case per 
1000 people within a 
decade, prevalence of 
HIV reduced to <1% 
within 50 years. 

Extent of reduction in transmission due to a reduced viral load known and realistic 
assumptions used 
66 South 

Africa 
90% of the 
population tested 
in the first two 
years 

Immediate treatment 
with improved linkage 
to care and reduced 
loss-to-follow-up 

Reduction of 73.2% of 
new infections 
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65 Washington 
D.C. 

Annual screening Start of treatment 
after positive HIV test 

27.3% reduction in time 
spent with detectable 
viral load 

 

 

Effect of antiretroviral therapy on infectiousness 

Before discussing the models in the second era, it is important to review the evidence for a 

reduction in infectiousness because of antiretroviral therapy. Several studies have quantified 

the effect of antiretroviral drugs on reduction in HIV infectiousness. The results showed that 

antiretroviral therapy strongly reduces transmissibility in serodiscordant couples, ranging 

from no transmission to a 92% reduction in transmission (Table 2).7, 43-47  The largest study 

included 3381 serodiscordant couples from seven countries in sub-Saharan Africa. A strong 

point of this study was that it used phylogenetics to determine whether HIV was transmitted 

inside or outside the serodiscordant relationship. From a total of 142 HIV transmissions 

observed in the study, more than 25% occurred through a partner other than the one 

followed in the study. Of the phylogenetically linked transmissions, only one transmission 

occurred in the partnerships in which the infected partner was on antiretroviral therapy, 

leading to a 92% reduction in transmission.43 This strong reduction was also confirmed in the 

recent HPTN 052 study, in which investigators examined the effect of early start of 

treatment in serodiscordant couples versus delayed start of treatment in 1763 couples from 

nine countries. Of the 28 phylogenetically linked transmissions that occurred during follow-

up, 27 occurred in the delayed treatment group and one in the early treatment group, 

resulting in a 96% reduction in the early therapy group compared with the delayed 

treatment group.7  

 

Table 2. Summary of articles investigating reduction of infectivity on antiretroviral therapy 

Study Location Design N 
Mean Follow-
up time 

Reduction in 
infectivity1 

432 
Sub-Saharan 

Africa Prospective cohort 3381 
2 years 

92% 
7 2 World Prospective cohort 1763 1.7 years 96% 
44 Uganda Prospective cohort 926 0.5 years 98% 
45 World Meta-analysis 5021  100%3 
47 Spain Cross-sectional 625 3.1 years 100% 
46 Uganda Prospective cohort 250 1.54 years 100% 

1Compared to untreated infectiousness 
2Used phylogenetics to genetically link transmission 
3When patient on ART has viral load <400 copies/mL 
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Models of universal T&T including effect of antiretroviral therapy on the infectiousness 

Studies published after the early 2000s benefited from the knowledge that viral load is the 

key driver of transmission in HIV,10 and that antiretroviral therapy can strongly reduce the 

viral load.72  Treatment can therefore have the advantage of reducing the infectiousness of 

HIV-positive patients on antiretroviral therapy. 

The model that brought much attention and subsequent controversy to T&T was published 

in 2009 by Granich et al.48 This model was based on the South African epidemic and 

predicted that HIV incidence could be reduced to less than one case per 1000 people per 

year by 2016, and that the prevalence would be reduced to <1% within 50 years. These 

results were based on the impact of testing all people in the community (aged 15+) for HIV 

every year, and starting people on treatment immediately following a positive test result.48 

Similar results of a modelling study indicating that T&T can lead to global elimination of the 

HIV pandemic within 50 years were reported by Montaner et al.41 

Post controversy models including combination prevention 

Subsequent models focused on T&T in combination with other prevention strategies. One 

study was conducted in South Africa and compared the effectiveness of T&T alone or in 

combination with approaches that reduce the number of individuals lost to follow-up and 

that increase linkage to care. The model demonstrated that the combination of T&T-

associated reduction in loss to follow-up and increased linkage to care could have nearly a 

75% reduction in new infections over 10 years, and T&T alone could reduce new infections 

by 33%, compared to no intervention.66  

Another study, conducted in Washington DC, used modelling to compare the impact of a 

regular T&T approach with an optimized T&T plan. The optimized strategy in this model 

involved improving adherence and assumed a higher suppressive efficacy than reported in 

the literature. The model predicted that the population-time spent with transmissible HIV 

RNA in the next 5 years with the optimized strategy had a 27.3% decrease, and a 14.7% 

decrease with the regular T&T strategy, both compared to no intervention.65 An optimized 

prevention strategy would therefore avoid more infections than a regular T&T approach. 

 

Epidemiologic evidence 

All predictions of T&T have been based on modelling. Clear epidemiological evidence has 

only been described in ecological studies. Ecological studies compare group- or population-

level exposure to a group-level outcome. Consequently, individual risk cannot be inferred 

from these types of studies. 



26 | Chapter 2 
 

 

2
6

 
2

6
 

An ecological study examined the impact of coverage of antiretroviral therapy, population-

level viral load and the HIV incidence between 1996 and 2009 in British Columbia.73 A strong 

correlation was found between the number of patients on antiretroviral therapy and the 

reduction in the number of new infections (P < 0.0001). Similarly, a significant association 

between the reduction in community viral load (i.e. the mean value of the most recent viral 

load in a community) and the decrease in number of newly diagnosed and reported HIV 

infections was also shown from 2004 to 2009 in San Francisco.74 Because of the ecological 

nature of these studies, causality cannot be assumed; increasing antiretroviral therapy 

coverage in these studies could simply be coincidental with an overall decrease in incidence 

in the population. 

 

T&T in daily practice 

Mathematical models are inherently limited by the assumptions that are used to construct 

them.75 Assumptions that are too optimistic may result in an unrealistically strong reduction 

in the HIV epidemic. Later, we will outline the challenges that may limit T&T as a prevention 

strategy and discuss the implications of T&T for clinical practice and public health. 

Universal testing 

Universal testing may not be feasible in daily practice. First, testing everybody for HIV would 

be difficult,49 although not impossible.76 It would also be challenging to repeat testing on a 

yearly basis, as proposed in the universal T&T strategy.77  

Another challenge of universal HIV testing is the window period of antibody-based HIV tests. 

In this brief window, acute HIV infections (first 10–16 weeks of infection) are highly 

infectious, and these infections may be missed.8 This may, however, be addressed by novel 

fourth-generation testing strategies that measure p24 antigen and antibodies. The window 

period in these fourth-generation tests is reduced to about 2 weeks. There is a concern that 

in low-prevalence settings (e.g. most resource-rich settings), the positive predictive value of 

the tests is too low for the identification of acutely infected individuals. This in turn can lead 

to the risk of false-positive results in universal testing. To address this, public health 

programmes in Seattle and San Francisco use a targeted testing approach that restricts 

testing to high-risk individuals.78 

Additional interventions 

The model by Granich et al.,48 which predicted an elimination of the HIV pandemic, assumed 

that other preventive interventions would help to reduce transmission. These interventions 

include male circumcision,79-83 treatment of curable sexually transmitted infections,84, 85 and 

behaviour-change programs (in some settings).86-88 The authors assumed that these other 
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interventions together would reduce transmission by 40% and would be rolled out in parallel 

with the T&T programmes.48 

Male circumcision 

Three randomized controlled trials have shown that male circumcision can reduce 

heterosexual transmission from women to men. A meta-analysis that combined the results 

of these trials found that circumcision reduced transmission by between 38% and 66% over 

24 months.83 For male circumcision to have an impact on a universal scale, however, it must 

be accepted in all communities. Several studies have examined the acceptability of adult 

male circumcision in Africa and have shown that 40–62% of uncircumcised men are willing to 

undergo circumcision.89-91 The risk of transmission is not decreased for a woman if her HIV-

infected partner is circumcised.80  

In many resource-rich settings, sexual transmission between MSM accounts for a majority of 

new infections.92, 93 One randomized controlled trial is currently ongoing in China to 

determine whether circumcision reduces new infections amongst MSM. A recent meta-

analysis examined several observational studies that determined whether male circumcision 

can reduce new infections amongst MSM. The authors of the meta-analysis concluded that 

the studies were very heterogeneous and that there is currently not enough evidence to 

recommend male circumcision for HIV prevention amongst MSM.94 

Treatment of curable sexually transmissible diseases 

There are conflicting results regarding the impact of curable sexually transmissible diseases 

on HIV transmission. It does, however, appear that the treatment of these curable diseases 

results in a reduction in new HIV infections of between 3% and 38%.84, 85, 95  In a more recent 

study, the effectiveness of treatment of curable sexually transmitted infections appeared to 

be 13.1% (95% confidence interval: 8.9–17.8%).96 

Behaviour change 

The early models on T&T found that behaviour change in the sense of a reduction in new 

partners could reduce the number of new infections. This result has been confirmed by 

behavioural change programmes amongst heterosexuals in Uganda, which have been shown 

to have up to a 70% reduction in new HIV infections.87 These programmes have to be very 

culturally specific and are not necessarily effective in all settings.79 Of note, a recent study 

from Israel reported an increase in risk behaviour amongst MSM.97 According to the early 

mathematical models, such an increase can nullify the benefits of T&T. Therefore, 

prevention programmes in high-risk populations are still needed. 

Immediate treatment irrespective of CD4 T-cell count 

A mathematical model predicted that the success of a T&T approach depends on immediate 

treatment regardless of CD4 T-cell count.48 The model investigated the potential impact on 
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the incidence of HIV by placing patients on treatment at a CD4 count of ≤200 and 

≤350 cells mm3 with varying degrees of coverage. It was predicted that with 50% coverage of 

HIV-positive patients and 78.5% adherence, which had been observed in this population, the 

number of new infections would increase over time. However, with coverage increased to 

between 75% and 100%, a reduction in new annual infections of between 40% and 67%, 

respectively, would occur. 

Earlier start of treatment at higher CD4 counts is not only beneficial for public health but 

also offers clinical benefits.98 Several observational cohort studies reported reduced 

mortality in those who start treatment at a CD4 count >500 cells mm3 as compared to those 

who start treatment at between 350 and 500 cells mm3.99-102 (The reduction in mortality did 

not reach statistical significance in all studies101, 102). One large observational study including 

20 971 individuals from Europe and the USA found that initiation of treatment at a CD4 

count of 500 cells mm3 reduced acquired immunodeficiency syndrome (AIDS)-free survival 

by 38% versus initiation at a threshold of 350 cells mm3, and by 90% versus a threshold of 

200 cells mm3.102 Lower CD4 counts were found to be independent risk factors for AIDS-

related and non-AIDS-related malignancies.103  Some guidelines therefore recommend 

starting treatment in asymptomatic patients with a CD4 count >500 cells mm3.98  It should, 

however, be noted that the evidence for the treatment start at such high CD4 levels comes 

from observational studies, which can be limited by the potential for bias because of 

unmeasured confounding.104 A randomized clinical trial (the START study) is currently 

underway with patients randomly allocated to start treatment at a CD4 count 

>500 cells mm3or to defer treatment until a CD4 count between 350 and 500 cells mm3.104 

A favourable impact of early treatment on the HIV epidemic will also depend on the CD4 

count at the time that patients are diagnosed. Of importance, many patients are only 

diagnosed at CD4 counts that are far <500 cells mm3. A UK study reported that one of three 

patients first presented with a CD4 count of <200 cells mm3.105 Studies including multiple 

centres in Europe57 and North-America106 reported that more than 50% of patients were 

identified in treatment centres with a CD4 count of <350 cells mm3.57, 106 Increased testing of 

populations with a high risk of HIV to identify patients at an earlier stage of infection is 

therefore recommended. 

Although immediate treatment offers benefits to patients, providing antiretrovirals at high 

CD4 T-cell counts can be challenging in resource-poor settings because of financial 

constraints. For instance, some hospitals in Uganda place new patients on waiting lists as 

they do not have the resources to provide them with antiretroviral drugs.107 The current 

World Health Organization (WHO) guidelines recommend starting treatment in resource-

limited settings at a CD4 count of 350 cells mm3.108 
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Retention of patients in HIV care 

A systematic review looking at programmes in sub-Saharan Africa that provided 

antiretroviral therapy found that not all patients retained in care, especially at the 24-month 

time-point.109 The authors reviewed 32 publications that reported on 33 cohorts, which 

totalled 74 192 patients in 13 countries. The weighted mean retention rates for 6, 12 and 

24 months were 79.1%, 75.0% and 61.6%, respectively. This is important because patients 

who stop treatment will have a rebound in viraemia, which results in increased infectivity. 

An even bigger challenge may be keeping within the care system asymptomatic HIV-infected 

patients who are not eligible yet for treatment. These patients, who are on average younger 

and have a higher CD4 count, may continue to spread the virus.110  

 

Drug resistance 

A novel prevention strategy such as T&T is most urgently needed in sub-Saharan Africa. This 

strong need for the prevention of new infections in this part of the world is illustrated by the 

disproportionally high number of individuals living with HIV/AIDS. UNAIDS has estimated 

that amongst 33 million individuals infected with HIV in the world in 2009, more than 

22 million are living in sub-Saharan Africa. Similarly, almost 70% of all new HIV infections 

worldwide occurred in this region.6 

Substantial levels of drug resistance can potentially occur in a T&T programme in sub-

Saharan Africa because of the limited virological monitoring that is available. Expensive viral 

load assays are frequently unavailable in this area.19 Therapy failure resulting in viraemia is 

therefore often identified on the basis of clinical events.111, 112 This delayed the identification 

of viraemia allows the virus to replicate in the presence of antiretroviral drugs, which almost 

invariably leads to the emergence of HIV drug resistance.113 This can have important clinical 

ramifications in sub-Saharan Africa as second-line treatment required to treat drug-resistant 

HIV is expensive and often unavailable.114, 115  

Drug resistant HIV can be transmitted to others.24, 58 Studies from Europe found that about 

10% of patients become infected with a drug resistant variant.57, 59, 116 Patients that become 

infected with a drug resistant virus are more likely to experience virological failure.59 In 

addition, they may in turn transmit their drug resistant virus to others.117, 118 Transmitted 

drug resistance may be a particular problem in sub-Saharan Africa as a genotypic-resistance 

test, which determines drug-resistance-associated mutations, is expensive and not readily 

available. 

Later, we will discuss the epidemiology of the emergence and transmission of drug-resistant 

HIV across the world. We will start by giving a brief overview of the epidemiology in 

resource-rich settings. We will then review the recent literature on the emergence and 
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transmission of drug resistance in sub-Saharan Africa and discuss the impact of resistance on 

the effectiveness of the T&T programme in this region. 

 

Epidemiology of drug resistant HIV in resource-rich settings 

Valuable insight into the epidemiology of drug-resistant HIV can be obtained from resource-

rich settings. In Europe, about 10% of patients are diagnosed with a drug-resistant virus.57, 

116, 119 It is noteworthy that the prevalence of transmission of drug-resistant HIV has 

stabilized in recent years.57 Limited information is available about the risk of emergence of 

drug resistance during treatment with antiretroviral agents. A study from the UK reported 

that the cumulative risk of drug resistance was 28% after 8 years.120  It should be noted that 

this proportion may decrease in the coming years as treatment has improved during the past 

decade. This is also highlighted by a report that the proportion of patients with undetectable 

viral loads increased from 65% in 2000 to 87% in 2008 in British Columbia.72   

The results of studies from resource-rich settings cannot be extrapolated to developing 

countries. First, treatment in resource-rich settings has been available for a longer period of 

time. In the past, before combination antiretroviral therapy was introduced, treatment was 

suboptimal and was associated with rapid emergence of drug resistance. There is evidence 

that resistance to zidovudine, which was given as monotherapy in the early 1990s, is still 

circulating.119 Second, sophisticated laboratory tests are not available on a large scale in 

resource-limited settings. 

 

Emergence of drug resistance in sub-Saharan Africa 

Table 3 summarizes the results of studies of the risk of drug resistance amongst patients 

who used antiretroviral drugs in Africa.111, 112, 121-128 The studies were conducted between 

the end of 2002 and 2008. Most studies were cross-sectional and collected samples for 

resistance testing at one moment in time and recorded how long patients had been taking 

treatment up to that time-point. The vast majority of patients had advanced disease with a 

CD4 count of <200 cells mm3 when they started treatment. Individuals had been taking 

antiretrovirals for a period ranging from 6 months127, 128 to more than 3 years.122, 125 

The choice of antiretroviral drug therapy was fairly consistent in the studies. Patients in all 

studies used a thymidine analogue (zidovudine or stavudine), lamivudine and a non-

nucleoside reverse transcriptase inhibitor (NNRTI).111, 112, 121-128 It should be noted that 

stavudine is no longer recommended because of high rates of side effects including lactic 

acidosis and lipodystrophy.111, 121-123 One study from Botswana included patients who used 

zidovudine, didanosine and an NNRTI.125 In three studies, a minority of patients received 

protease inhibitors121, 122, 128 that are usually used for second-line treatment.  
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Table 3. Summary of results from studies that reported on the emergence of resistance in patients starting combination antiretroviral therapy in Africa 

 

 Location Time Design Duration 
treatment  

N Antiretrovirals1 Measurement 
of viral load  

Resistance2 

111 South-Africa 2002-
‘08 

retrospectiv
e cohort 

Median 17 
(6-31) 
months 

3727 ZDV / 3TC /  
NNRTI 

Every 6 months Any resistance mutation (estimate): 11.3%3 
TAMs: 9% (0.7%)  
M184V: 56% (4.2%)  
NNRTI: 93% (7.0%) 

112 Entebbe, 
Uganda 

2004 longitudinal 48 weeks 300 ZDV / 3TC / NVP4 Not available to 
guide 
treatment 

Any resistance mutation (week 48): 10.8% 
TAMs: 28% (3%) 
M184V: 72% (7.8%) 
NNRTI: 72% (7.8%)  

121 Malawi 2004 Cross-
sectional 

Median 
9.5 (7.4-
15.2) 
months 

398 ZDV or D4T /3TC / 
NNRTI (n=396), 
ZDV/3TC/IND(n=2
) 

Not available to 
guide 
treatment 

Any resistance mutation: 12.3% 
TAMs: 12% (1.5%) taken from 19 
M184V: 76% (9.3%) 
NNRTI: 94% (11.6%) 
K65R: 10% (1.2%) 

122 Soweto, 
South-Africa 

2008 cross-
sectional 

>12 
months; 
63.9% for 
more >36 
months 

998 NNRTI-based (1st 
line, 89%), PI-
based (2nd line, 
11%) 

Available to 
guide 
treatment 

Any resistance mutation (estimate): 10.8%3 

TAMs: 17% (1.4%) 
M184V: 66% (5.6%) 
NNRTI: 94% (8.0%) 

123 Abidjan, Côte 
d’Ivoire 

2006-
‘07 

cross-
sectional 

12 months 942 D4T or ZDV / 3TC 
/ NNRTI 

After 6 and 12 
months 

Any resistance mutation: 11.2% 
TAMs: 8% (0.5%) 
M184V: 69% (7.7%) 
NNRTI: 87% (9.8%) 

124 Maputo, 
Mozambique 

2006 cross-
sectional 

At least 12 
months 

149 D4T or ZDV / 3TC 
/ NNRTI 

Not available to 
guide 
treatment 

Any resistance mutation: 5.3% 
TAMs: 63% (3.3%) 
M184V: 88% (4.6%) 
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 Location Time Design Duration 
treatment  

N Antiretrovirals1 Measurement 
of viral load  

Resistance2 

NNRTI: 100% (5.3%) 
125 Gaborone, 

Botswana 
2002-
‘04 

Longitudinal Median 
104 (IQR 
78-136) 
weeks 

650 ZDV/ddI/NNRTI, 
or D4T or ZDV / 
3TC/ NNRTI 

Every 2 months ZDV/ddI after one year: 5.3%, after two 
years: 13.5% 
Non-ZDV/ddI after one year: 1.0%, after 
two years: 3.2% 

126 Manyara, 
Tanzania 

2007-
‘08 

Cross-
sectional 

Median 22 
(IQR 14-
30) 
months 

212 ZDV or D4T / 3TC 
/ NNRTI 

Only in patients 
with suspicion 
of virological 
failure 

Any resistance mutation: 8.5% 
TAMs: 33% (2.8%) 
M184I/V: 78% (6.6%) 
NNRTI: 100% (8.5%) 
K65R: 6% (0.5%) 

127 Yaoundé, 
Cameroon 

2002-
‘03 

longitudinal 24 weeks 60 D4T / 3TC / NVP Every visit Any resistance mutation: 3.3% 
TAMs: 0% 
M184I/V: 50% (1.7%) 
NNRTI: 100% (3.3%) 

128 N’Djamena, 
Chad 

2006 longitudinal 6 months 88 D4T/3TC and NVP 
(81%) or indinavir 
(19%) 

Not available to 
guide 
treatment 

Any resistance mutation: 25% 
TAMs: 18% (4.5%) 
M184I/V: 82% (20.5%) 
NNRTI: 77% (19.3%) 

1 Abbreviation of drugs in alphabetic order: 3TC = lamivudine, D4T = stavudine, ddI = didanosine, IND = indinavir, NNRTI = Non-Nucleoside 
Reverse Transcriptase Inhibitor, NVP = nevirapine, PI = Protease Inhibitor, ZDV = zidovudine 
2 Resistance to particular (classes of) antiretroviral drugs.19, 129. TAMs = Thymidine Analogue (zidovudine, stavudine) Mutations, M184V confers 
resistance to lamivudine and emtricitabine, K65R confers resistance to tenofovir. 
3 Based on calculation of data provided in paper 
4 The study included an arm ZDV/3TC/ABC which is not presented here 
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Risk of emergence of resistance in resource-poor settings 

The results of the studies demonstrated that resistance was generally limited with a 

prevalence ranging between 1% and 12%.111, 112, 121-127 One study from Chad did, however, 

report a substantial prevalence of 25% amongst patients. It is not known why the prevalence 

was so high especially as follow-up was only 24 weeks.128 Another study also reported a 

higher prevalence of resistance of 13.5%.125 However, patients in this study used didanosine, 

which is no longer recommended in first-line regimens.98, 130 

Gupta et al. have previously reported that frequent monitoring of the viral load limits the 

emergence of drug resistance.19 The studies summarized in Table 4 confirm this finding with 

the lowest prevalence (<5%) reported in studies in which the viral load was determined at 

every visit.125, 127 Studies in which virological monitoring was less frequent, or not performed, 

showed a prevalence ranging between 5.3% and 25%.111, 112, 121-123, 126 

Emergence of resistance to particular (classes of) antiretroviral drugs 

It is also important to know to which (classes of) antiretroviral drug resistance emerged. 

Resistance against NNRTIs was most frequently reported (72–100% of plasma samples with 

at least one resistance-associated mutation). Similarly, the lamivudine-resistance-associated 

M184I/V mutations were also observed in the virus of most patients in whom resistance 

developed (range 50–80%). Thymidine analogue mutations that confer resistance to 

stavudine and zidovudine were detected in up to 33% of samples with any resistance. In the 

majority of cases, the tenofovir-associated K65R mutation was not detected, which is most 

probably due to the fact that tenofovir was not used. 

The substantial difference in the occurrence of resistance to different drugs can be explained 

by dissimilarities in the genetic barrier to drug resistance. The genetic barrier is defined as 

the number of mutations required to overcome drug selective pressure.131, 132 The NNRTIs 

and lamivudine have a genetic barrier of one.133 Because of this low genetic barrier, HIV can 

quickly select for resistance when patients continue using these drugs during virological 

failure. Drug resistance is therefore most commonly found against NNRTIs and lamivudine. 

Conversely, the thymidine analogues, stavudine and zidovudine, have a higher genetic 

barrier, especially when combined with lamivudine or emtricitabine, as relevant resistance 

to these drugs involves the accumulation of several mutations.134  

Emergence of drug resistance in T&T 

Recent studies have shown that drug resistance emerged in only a limited proportion of 

patients who started treatment.112, 121, 122, 124, 125, 127, 128, 135-137 An important strategy that was 

associated with a reduced risk of resistance was intensive monitoring of viral load.138 A T&T 

programme may therefore benefit from inexpensive point-of-care viral load testing to 

identify early virological failure which can limit the emergence of resistance.138 
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Table 4. Recent studies reporting on the prevalence of transmission of drug resistant HIV in Africa  
 

       Resistance (%)1 

 Location Time N Description of 
included patients 

CD4 -
median 

viral 
load -
median 

Any TAMs M184V K65R NNRTI PI 

139 Bobo Dioulasso, 
Burkina Faso 

n/a 51 Pregnant women 637 3.8 0 0 0 0 0 0 

139 Abidjan, Côte d’Ivoire n/a 48 Pregnant women 681 ND 0 0 0 0 0 0 
139 Dakar, Senegal n/a 48 VCT attendees2 652 4.1 0 0 0 0 0 0 
140 Rakai, Uganda 1998-

2003 
104 Newly infected 516 4.9 5.8 2.9 0 0 0 2.9 

141 N’Djamena, Chad 2006-‘07 34 First pregnancy 
and <25 years 

n/a n/a 0 0 0 0 0 0 
141 Yaoundé, Cameroon 44 n/a n/a 6.8 2.2 0 0 4.5 0 
141 Douala, Cameroon 34 n/a n/a 5.9 2.9 2.9 0 2.9 0 
142 Maputo, Mozambique 2002-‘04 683 Drug naïve  355 4.4 

(mean) 
5.9 5.9 4.4 0 1.5 0 

143 Ouagadougou, Burkina 
Faso 

2004-‘06 104 Drug naïve with a 
viral load>1,000 

175 5.5 12.5 10.6 0 0 2.9 0 

144 Lusaka, Zambia 2007-‘08 557 Drug naïve  130 4.9 5.2 0.7 0.4 0.8 3.4 1.1 
145 Dar es Salaam, 

Tanzania 
2004-‘05 44 Youth 13-25 yrs 228 n/a 9.1 2.3 4.5 2.3 9.1 0 

146 Gaborone, Botswana 2007 33 First pregnancy 
and <25 years 

n/a n/a 0 0 0 0 0 0 
146 Francistown, Botswana 2007 39 n/a n/a 0 0 0 0 0 0 
147 Nairobi/Mtwapa/Kilifi, 

Kenya 
2006-‘09 64 MSM, SW and 

their clients4 
n/a n/a 3.1 1.6 0 0 1.6 0 

147 Entebbe, Uganda 2006-‘09 26 HIV discordant 
couples, VCT2 
attendees  

n/a n/a 19.2 3.8 0 0 7.7 3.8 
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147 Masaka, Uganda 2006-‘09 66 HIV discordant 
couples 

n/a n/a 1.5 0 0 0 0 1.5 
147 Kigali, Rwanda 2006-‘09 78 n/a n/a 7.7 1.3 0 0 5.1 1.3 
147 Lusaka/Copperbelt, 

Zambia 
2006-‘09 169 n/a n/a 2.4 1.2 0.6 0 1.2 0 

1 Resistance to particular (classes of) antiretroviral drugs. Any = presence of at least one drug resistance associated mutations, TAMs = 
Thymidine Analogue (zidovudine, stavudine) Mutations, M184V confers resistance to lamivudine and emtricitabine, K65R confers resistance to 
tenofovir, NNRTI is presence of at least one mutation that confers resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI), PI is 
resistance to protease inhibitors. 
2 VCT = Voluntary Counselling and Testing 
3 study included 104 patients from whom 68 RT genotype could be obtained 
4 MSM= Men-having-Sex-with-Men, SW=Sex Workers
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Another potential strategy may be the use of a first-line regimen consisting of tenofovir, 

emtricitabine and an NNRTI. The WHO currently recommends two different regimens as 

first-line therapy. The first consists of zidovudine, lamivudine and an NNRTI, and the second 

consists of tenofovir, emtricitabine and an NNRTI.108 The latter regimen is not used 

frequently in Africa.148 Randomized clinical trials in resource-rich settings have shown that a 

regimen of tenofovir, emtricitabine and the NNRTI efavirenz is associated with a 33% lower 

rate of emergence of resistance compared to a regimen of zidovudine, lamivudine and 

efavirenz.149 This lower rate of resistance should, however, be confirmed in clinical practice 

in Africa. A further argument for the use of a tenofovir-containing regimen as first-line 

treatment may be that patients failing a tenofovir-containing regimen may develop a K65R 

resistance mutation. Viruses with a K65R mutation are sensitive to zidovudine, which could 

then be used as part of a second-line regimen when needed. 

 

Transmission of drug resistance 

A large number of studies have investigated the prevalence of transmission of resistance in 

Africa. It is beyond the scope of this review to discuss all these studies (but several reviews 

have been published on this topic24, 58, 150-152).  We will only consider studies that were 

published between the beginning of 2009 and March 2011139-147 (Table 4). 

Prevalence of transmission of drug resistance 

Most recently published studies on transmission of drug resistance in sub-Saharan Africa 

showed a prevalence of <8%.139-147 This is an important finding as this level of resistance is 

lower than the prevalence of 10–15% found in many resource-rich settings.57, 151, 153  

The prevalence of transmission of drug resistance could increase for several reasons in the 

coming years. First, the availability of antiretroviral drugs has increased considerably only in 

recent years making emergence and transmission of drug resistance more likely. Second, it is 

difficult to identify patients who have recently been infected with HIV.146  As a consequence, 

it is likely that studies to date have included individuals who were infected at a time when 

antiretrovirals were only available to a limited extent. Over time, studies will include more 

patients who became infected when antiretrovirals were more readily available, which may 

result in a higher prevalence of transmission of resistance than has been reported. 

Transmission of resistance to particular (classes of) antiretroviral drugs 

In most studies, transmission of resistance was highest for NNRTIs.24, 58, 139, 141-143, 145, 147, 152 

There are two possible explanations for this. First, resistance to this class of antiretroviral 

drugs was also most frequently found in viral isolates obtained from treated patients (Table 

3). There are two possible explanations for this. First, resistance to this class of antiretroviral 

drugs was also most frequently found in viral isolates obtained from treated patients.154, 155 
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Around the year 2000, it was shown that single-dose nevirapine given to the mother at 

labour onset and to the newborn baby within 72 h after birth reduces the HIV transmission 

rate.156 This simple regimen was sufficient to stimulate the establishment of extensive 

programmes to prevent vertical HIV transmission in low-resource settings worldwide.157 

Resistance to nevirapine can, however, emerge quickly due to its relatively long half-life and 

low genetic barrier to resistance.157  Recent use of single-dose nevirapine is associated with a 

higher probability of virological failure amongst women who start treatment with an NNRTI-

containing regimen.154, 155 As access to antiretroviral drugs has increased during the last 

years, more durable responses can now be achieved with triple combination therapy at a 

wider scale.157   Resistance emerging as a consequence of such prophylactic use of 

nevirapine can also be transmitted to others. As access to antiretroviral drugs has increased 

during recent years, more durable responses can now be achieved with triple combination 

therapy on a wider scale.157 

Thymidine analogue associated mutations were also reported in most studies shown in Table 

4. These mutations were also commonly found in European studies on the transmission of 

resistance.57, 116, 119 

The M184V mutation was found in only small proportions of antiretroviral naïve patients 

(Table 4). At first glance, this is surprising as the M184V mutation was one of the most 

common mutations in treated patients in whom resistance emerged (Table 3). Studies from 

resource-rich settings do, however, confirm that transmission of the M184V mutation is 

limited57, 117, 158-160 despite high levels of this mutation in samples from treatment-exposed 

individuals.161-163 The low prevalence of this mutation in antiretroviral-naïve patients can be 

explained by rapid reversion to wild type after transmission. Reversion can occur because 

the M184V mutation results in a virus that replicates less efficiently than a drug-susceptible 

wild-type virus.164  Thus, the drug-resistant virus could be outgrown by faster-replicating 

revertant viruses. Another explanation for the low levels of transmission of the M184V is 

that this mutation strongly reduces the viral load.165, 166 As viral load is key to the 

transmission of the virus,167 M184V-containing viruses are less likely to be transmitted. 

Transmission of the K65R mutation was rare and only reported in two studies.144, 145 It is not 

surprising that transmission of K65R was not found in most studies as this mutation was also 

uncommon in studies on acquired resistance (see Table 3). Moreover, K65R-containing HIV 

strains are, similar to viruses including M184V, associated with a lower viral load168 which 

makes transmission of this mutation less likely. 

Resistance to protease inhibitors was reported in a few studies, albeit at a limited level of at 

most 3.8%. Protease inhibitors are not widely used in Africa as they are expensive115 and are 

reserved for second-line treatment.114, 122 Some protease inhibitor resistance-associated 

mutations occur naturally at a low level in HIV subtypes A, C, D and G,169 which are common 

in Africa.58, 170 These polymorphic mutations may explain the low level of transmitted 

protease inhibitor resistance found in some studies. 
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It should be noted that virtually all epidemiological studies in resource-poor and in resource-

rich settings used population sequencing to identify drug-resistance-associated mutations. 

Population sequencing does not allow quantification of minority species that are present in 

<25% of the viral populations infecting a patient. There have been several reports of the 

presence of resistance-associated mutations as minority species in viral samples from 

antiretroviral-naïve patients.171-175 Of note, the presence of minority species is associated 

with a reduced virological response.173, 175 

Impact of transmitted resistance on T&T 

Transmission of drug resistance can strongly reduce the benefits of a T&T programme. 

However, in a successful T&T programme increased numbers of patients will start treatment, 

which may lead to larger number of patients in whom drug-resistant viruses emerge. These 

viruses can be transmitted to others. Treatment options are limited in Africa and it is 

therefore likely that if transmission of resistance occurs, future antiretroviral therapy in a 

newly infected individual may be affected. Treatment of a transmitted drug-resistant variant 

is associated with an increased risk of virological failure.59 Patients infected with a drug-

resistant variant may therefore continue to spread their virus to others, leading to forward 

transmission. 

Studies in resource-rich countries have identified transmission networks of drug-resistant 

HIV.16, 176 These networks consist of antiretroviral-naïve patients who become infected with 

drug-resistant variants and who in turn may infect others. Transmission of drug resistance 

could therefore lead to self-sustaining epidemics. 

Treatment guidelines in resource-rich settings recommend genotypic testing in 

antiretroviral-naïve patients to detect the presence of transmitted drug resistance and to 

adapt first-line treatment accordingly.98, 177 However, genotypic-resistance tests are 

expensive and not always available in Africa. There is therefore an urgent need for 

inexpensive genotyping methods. In addition, a wider range of antiretroviral drugs could 

benefit the care of HIV-infected patients in Africa so that alternative options are available for 

patients who become infected with a drug-resistant virus. 

 

DISCUSSION 

We have reviewed the epidemiological evidence for the potential benefits of T&T. This 

evidence comes predominantly from mathematical models that predicted that a strategy of 

T&T can prevent new infections. Some models even forecast that T&T could reduce the 

prevalence to <1% within 50 years.41, 48 However, the models predicting such a strong 

reduction of the HIV pandemic used optimistic assumptions that may not be achieved in 

daily practice. Further epidemiological evidence comes from ecological studies that found an 
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association between increasing numbers of patients on antiretroviral therapy and a 

reduction in new infections with HIV.73, 74  

The strategies that have been studied in mathematical models have been based on testing 

and treating as many people as possible. This may not result in the most efficient use of 

available resources. We suggest a strategy in which selected populations known to have a 

higher risk for infection are targeted for T&T. Most couples living with HIV/AIDS in Sub-

Saharan Africa are serodiscordant.178 One targeted approach could be earlier treatment at 

higher CD4 counts of infected partners in these serodiscordant couples. In addition, contact 

tracing could also be implemented by identifying and offering testing to the sexual partners 

of people who test positive for HIV.179 

In this review, we have also discussed the potential impact of drug resistance on the 

effectiveness of a T&T programme. We limited this discussion to sub-Saharan Africa, where 

most new HIV infections worldwide occur. In addition, virological monitoring of patients is 

frequently not available in sub-Saharan Africa. It is therefore not possible to identify 

virological failure and development of drug resistance in a timely manner. Nonetheless, 

current levels of acquired and transmitted drug resistance are limited in sub-Saharan Africa, 

but this may change after implementation of T&T. In a T&T programme, the proportion of 

patients who are affected by drug resistance could remain the same. However, as more 

patients receive treatment, more patients could also be affected by drug resistance.  

Several prevention strategies using antiretrovirals have shown to be effective in reducing 

new infections with HIV. These strategies include antiretrovirals for prevention of mother-to-

child-transmission,154, 155 topical tenofovir as an intra-vaginally applied microbicide,34 and 

tenofovir combined with emtricitabine as pre-exposure prophylaxis.28 These antiretroviral 

drugs may also be used in a T&T programme. There are potential risks associated with using 

the same drugs for both prevention and for treatment. This has been shown in study from 

Zambia that reported that recent use of nevirapine for prevention of mother-to-child-

transmission was associated with a higher probability of virological failure [58]. There is 

some limited evidence that the benefits of pre-exposure prophylaxis may outweigh the risks 

associated with increasing levels of resistance,33, 180, 181 but this has to be confirmed in 

clinical practice.  

In conclusion, T&T is a promising prevention strategy. However, its benefits have only been 

shown in mathematical models and ecological studies. The promise of T&T should therefore 

be confirmed in large-scale prospective and epidemiological studies. Emergence and 

transmission of drug resistance is currently not a major problem. But more patients will 

receive treatment in a T&T programme. In addition, antiretroviral drugs used for treatment 

may also be used for prevention as pre-exposure prophylaxis and as a microbicide. We 

therefore recommend surveillance of drug resistance in areas in which T&T is introduced to 

confirm that drug-resistance levels remain limited. 
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ABSTRACT 

Background Earlier antiretroviral therapy initiation can reduce the incidence of HIV-1. This 

benefit can be offset by increased transmitted drug resistance (TDR). We compared the 

preventative benefits of reducing incident infections with the potential TDR increase in East 

Africa. 

Methods A mathematical model was constructed to represent Kampala, Uganda, and 

Mombasa, Kenya. We predicted the effect of initiating treatment at different immunological 

thresholds (<350, <500 CD4 cells/μL) on infections averted and mutation-specific TDR 

prevalence over 10 years compared to initiating treatment at CD4<200 cells/μL.  

Results When initiating treatment at CD4<350 cells/μL we predict 18 (Interquartile-range 11-

31) and 46 (IQR 30-83) infections averted for each additional case of TDR in Kampala and 

Mombasa, respectively, and 22 (IQR 17-35) and 32 (IQR 21-57) infections averted when 

initiating at <500. TDR is predicted to increase most strongly when initiating treatment at 

CD4<500 cells/μL, from 8.3% (IQR 7.7%-9.0%) and 12.3% (IQR 11.7%-13.1%) in 2012 to 19.0 

% (IQR 16.5%-21.8%) and 19.2% (IQR 17.1%-21.5%) in 10 years in Kampala and Mombasa 

respectively. The TDR epidemic at all immunological thresholds was comprised mainly of 

resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs). When 80-100% of 

individuals with virological failure are timely switched to second-line, TDR is predicted to 

decline irrespective of treatment initiation threshold.  

Conclusion Averted HIV infections due to the expansion of antiretroviral treatment eligibility 

offset the risk of transmitted drug-resistance, as defined by more infections averted than 

TDR gained. The effectiveness of first-line NNRTI-based therapy can be preserved by 

improving switching practices to second-line therapy. 
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INTRODUCTION   

Since 2010, the World Health Organization (WHO) recommends earlier initiation of 

combination antiretroviral therapy (ART) for HIV-infected persons in resource-limited 

countries. A shift in the immunological criteria for treatment initiation from <200 to <350 

CD4 cells/μL, has resulted in a substantial increase in the number of people eligible to 

initiate ART.182 In addition to the individual clinical benefits,7 earlier initiation of ART may 

reduce HIV incidence rates and the concept of treatment as prevention has attracted 

attention as a means to reduce the global HIV epidemic.7 

As access to ART expands in resource-limited countries, concerns surrounding increasing 

numbers of patient failing treatment and the subsequent emergence of drug-resistant 

viruses will become increasingly important. Resistant virus selected for during treatment 

may subsequently be transmitted to newly infected individuals, undermining the 

effectiveness of currently recommended or available first-line ART.183 A recent 

comprehensive assessment of  transmitted drug resistance (TDR) reported a significant rise 

in prevalence of  predominantly non-nucleoside reverse transcriptase inhibitor (NNRTI)-

associated resistance mutations since ART rollout in east and southern Africa.184 The highest 

TDR levels (9-13%) have been detected in East Africa.185, 186 As NNRTIs are the cornerstone of 

standard first-line ART in sub-Saharan Africa, reduced susceptibility to this drug class is 

especially worrisome in view of the limited availability of alternative first-line drug options.  

Mathematical modeling is an important tool to inform policy makers about the potential 

consequences in terms of HIV drug resistance as a result of increased ART coverage in sub-

Saharan Africa. Models of HIV transmission have been used to predict emergence of TDR,21, 

187-189 but these models have not examined the impact of earlier treatment initiation. In this 

study we used a compartmental mathematical model to predict whether initiation of ART at 

different immunological thresholds and the availability of second-line ART have an effect on 

transmission of drug-class specific resistance in East Africa. Specifically, we examined 

whether the number of new HIV infections averted by early ART initiation offsets a potential 

rise in TDR. 

 

METHODS 

Study design and population 

To predict time trends of TDR our model included resistance data from PharmAccess African 

Studies to Evaluate Resistance (PASER). This comprised two distinct observational studies on 

transmitted (PASER-Surveillance) and acquired (PASER-Monitoring) drug resistance 

conducted in Kampala, Uganda and Mombasa, Kenya (Table 1). PASER-Monitoring used a 

prospective cohort that assessed HIV drug resistance in individuals about to initiate first-line 

ART in 2007-2008 and 24 months thereafter.190 Viral load and drug resistance testing were 
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not used to inform clinical decisions. PASER-Surveillance comprised two cross-sectional 

surveys among newly HIV-1 diagnosed, antiretroviral-naïve individuals attending voluntary 

counseling and testing sites in Kampala and Mombasa in 2009-2010.185, 186 Specimens 

collected in the PASER studies were genotyped in two reference laboratories in Uganda, 

which participated in quality assessment schemes for genotypic drug resistance testing. 

Table 1. Characteristics of patients included in the PASER studies 

 Kampala, Uganda Mombasa, Kenya 

PASER-Surveillance cross-sectional survey among recently infected individuals 

Number of participants 77 81 

Year of enrolment 2009-2010 2009-2010 

Site Type Voluntary Counseling and 
Testing 

Voluntary Counseling and 
Testing 

Age, years 22.0 (20.0-23.0) 23.4 (21.6-24.9) 

Sex, female 54 (70.1) 71 (87.7) 

CD4 cells/μL 417 (318.5-551.5)  400 (239-564)  

Viral load, log10 c/ml 4.49 (3.96-5.28)  4.6 (4.2-5.1) 

Any TDRM 6 (8.6)a 9 (13.2)b 

NRTI mutation 2 (2.9) 1 (1.5) 

NNRTI mutation 3 (4.3) 5 (7.4) 

PI mutation 1 (1.4) 3 (4.4) 

PASER-Monitoring longitudinal study among patients receiving first-line ART 

Number of participants 203 221 

Year of enrolment 2007 2007-2008 

Site Type Government HIV clinic Government general 
hospital 

Age, yrs 36.0 (29.2-40.9) 36.4 (31.2-42.8) 

Sex, female 113 (55.7) 131 (59.3) 

Initial ART regimens   

Zidovudine-containing 122 (60.1) 171 (77.4) 

Tenofovir-containing 81 (39.9) 3 (1.3) 

Stavudine-containing 0 47 (21.3) 

CD4 count at ART initiation, 
cells/μL 

136 (40-206) 128 (63-197) 

Viral load at baseline, log10 
c/ml 

5.4 (5.0-5.9) log10 c/ml 4.6 (4.1-5.4) 

Previous ARV exposure 15 (7.4) 10 (4.5) 

VL > 400 cps/ml at 12 
months 

25 (14.3)c 21 (11.6 )d 

Any DRM at 12 months 17 (77.3)e 6 (46.2)f  

NRTI mutation 12 (54.6) 4 (30.8) 

NNRTI mutation 14 (63.6) 4 (30.8) 
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PI mutation 1 (4.5) 1 (7.7) 

VL > 400 cps/ml at 24 
months 

25 (15.5)g 20 (13.6)h  

Any DRM at 24 months 15 (75.0)i 12 (70.6)j  

NRTI mutation 11 (55.0) 10 (58.8) 

NNRTI mutation 14 (70.0) 12 (70.6) 

PI mutation 1 (5.0) 0 

 

Data are presented as n (%) or median (IQR). aFor n=70 with available genotype; bFor n=68 
with available genotype; cFor n=175 retained in care; dFor n=181 retained in care; eFor n=22 
with available genotype; fFor n=13 with available genotype; gFor n=161 retained in care; hFor 
n=147 retained in care; iFor n= 20 with available genotype; jFor n=17 with available 
genotype. PASER, PharmAccess African Studies to Evaluate Resistance; ART, antiretroviral 
therapy; ARV, antiretroviral; TDRM, transmitted drug resistance mutations; NRTI, nucleoside 
reverse transcriptase inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, 
protease inhibitor.  

 

Model and calibration  

A compartmental deterministic mathematical model was constructed which was described 

with a total of 77 ordinary differential equations and 123 parameters (Figure S1, Table S1). 

The model stratified disease progression into an acute stage, three chronic stages, and two 

AIDS stages. Three chronic stages were included to indicate previous (ART initiation at CD4 

<200 cells/μL 191),182 current (CD4 <350 cells/μL),182 and potential future treatment 

guidelines (CD4 <500 cells/μL).192 Infectivity varied by stage of infection.9, 55 Other key model 

parameters are summarized in Table 2. TDR was defined as the number of individuals 

infected with drug-resistant HIV over total number of HIV infected treatment-naïve 

individuals. In the Kampala model, mono therapy with zidovudine was available to a small 

number of individuals from 1991-1996, dual therapy with zidovudine/lamivudine was 

available to a small number of individuals from 1996-2000. Triple therapy started rollout in 

the model on a small scale from the year 2000 in both Kampala and Mombasa.  

The model identified four sexual activity groups ranging in the number of new sexual 

partners per year.193 Using Monte Carlo filtering techniques,194 we parameterized the 

different sexual activity groups and only accepted the simulations that were associated with 

distinct HIV prevalence from country data195, 196 and TDR prevalence by resistance class in 

the two PASER-Surveillance sites. For Kampala, this resulted in 1017 out of 50,000 

simulations with HIV prevalence between 7.1-8.4% between 2005 and 2009 and TDR 

prevalence between 7.1-10% in 2009. For Mombasa, this resulted in 1247 out of 50,000 

simulations with an HIV prevalence of 5.8-8.2% between 2006 and 2010, and TDR prevalence 

between 11.9-14.9% in 2009 (Figure S2). 
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Table 2. Key Additional Model Parameters*  

Description 
Estimate or 

Range** 
Reference 

Disease stages duration  8, 11 

Acute stage 10-16 weeks  
Chronic stage  >500 cells/μL 0.87-1 year  
Chronic stage  350-500 cells/μL 2.9-3.1 years  
Chronic stage  200-350 cells/μL 3.6-3.9 years  
AIDS stage*** 6-12 months  
Final AIDS stage*** 7-13 months  

Infectivity  9, 55 

Acute stage 
27-43 times that of 

chronic stage 
 

Chronic stage (all) 10% per year  

AIDS stage*** 
3-5 times higher 

than chronic stage 
 

Final AIDS stage*** 0%  
Proportion of people in sexual risk groups  Model Calibration 

Highest 1.5-2.5%  
2nd 10-20%  
3rd 20-30%  
Lowest 47.5-68.5%  

Number of partners per year in each sexual risk 
group 

 Model Calibration 
Highest 9-14  
2nd 1.7-3  
3rd 0.12-0.22  
Lowest 0.04-0.06  

Mortality rates per year  197 

Population 0.02  
Chronic HIV stage 0.098  
AIDS stage 0.63  
On treatment during chronic stage, first year 0.02-0.098  
On treatment during chronic stage, 12+ months 0.02-0.05  
On treatment during AIDS stage, first year 0.03-0.3  
On treatment during AIDS stage, 12+ months 0.03-0.06  

HIV Test Rate   
Baseline 10-30% Model Calibration 

Rate of being tested in the acute stage of HIV Half of the test rate Assumption**** 

Rate of being tested in the chronic stage of HIV test rate Model Calibration 
Rate of being tested in the AIDS stage test rate + 10%  

Linkage to care from test to treat 75-100% Model Calibration 

Reduction in transmissibility of those patients on 
treatment 

90-100% 7, 43, 46 
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Percentage of people that go to second line after 
continued virological failure during first two years on 
treatment 

Kampala, Uganda, on zidovudine-based regimen 
      on tenofovir-based regimen 
 

Mombasa, Kenya, on zidovudine/stavudine-based  
regimen 

      on tenofovir-based regimen 
    

 
 

 
 

33-50% 
33-66% 

 
17.4-34.2% 

20-30% 

 
 

PASER-Monitoring, 
Kampala 

 
PASER-Monitoring, 

Mombasa 
Percentage of those who go onto second-line not 
due to resistance in the first 12 months 

1.5-3% 
198 

*For a complete table of parameters, please see Table S3. 
**All ranges are uniformly distributed 
***Two AIDS stages were included because during the final months before death, patients have 
limited sexual activity 
**** Due to window phase of antibody-based test 

 

Sensitivity analysis 

Sensitivity analyses using recursive partitioning199, 200 were conducted to determine the most 

influential parameters on both TDR prevalence and number of acute infections in Kampala 

and Mombasa, respectively (Figure S4).  

Data and additional parameters 

The PASER-Monitoring data from ARV-naïve patients about to start HIV treatment were used 

as parameters in the model regarding regimens being prescribed and resistance patterns. In 

2008-9, approximately 40% of individuals from PASER-Monitoring in Kampala were receiving 

tenofovir-containing regimens, and 60% zidovudine-containing regimens, both combined 

with emtricitabine or lamivudine and efavirenz or nevirapine. In Mombasa, just 1% of 

individuals were on tenofovir-containing regimens, and all others were on zidovudine or 

stavudine-containing regimens (Table 1). We assumed that stavudine would be phased out 

and replaced by zidovudine in Mombasa. We also evaluated the impact of instead replacing 

stavudine by tenofovir in a sensitivity analysis. Specific drug resistance mutations were 

assumed to be selected for by tenofovir (i.e. K65R) and zidovudine (i.e. thymidine analogue 

mutations [TAMs]), for lamivudine and emtricitabine (i.e. M184V), and as well as efavirenz 

and nevirapine (i.e. NNRTI-specific mutations). Individuals were classified as receiving either 

a zidovudine-containing or tenofovir-containing regimens, and within these regimens, there 

were different probabilities of acquiring the signature mutations of zidovudine/tenofovir as 

well as the M184V or NNRTI-specific mutations. The model also included second-line 

treatment which consisted of a ritonavir-boosted protease inhibitor (PI) in combination with 

two nucleoside reverse transcriptase inhibitors (NRTIs). Each different regimen (zidovudine-, 

tenofovir-, or PI-based) was assumed to have a different likelihood of transmitting acquired 

drug resistant mutations onwards to a susceptible individual.201  In our model, patients with 

an acquired drug resistant virus could either pass on a NRTI mutation (divided further into a 

TAM, M184V, or K65R), NNRTI mutation, or PI mutation. Drug resistance mutations have a 



50 | Chapter 3 
 

 

reduced fitness as compared to a wild-type virus that is susceptible to antiretroviral drugs 

for those with an acquired resistance mutation.164 The fitness cost can result in a lower viral 

load. Because viral load is the key parameter explaining transmission,167 drug resistant 

viruses are less easily transmitted. A specific fitness cost for K65R, PI and TAMs was 

estimated by reductions in replication capacity in the literature.201, 202 The fitness cost for the 

M184V and NNRTI mutations was estimated directly from PASER data as there were a 

sufficient number of patients who acquired these mutations while on treatment. We 

calculated the fitness cost using a published formula by taking the difference between 

baseline viral load and viral load after treatment failure with the respective resistance 

mutation.203 We then took the intra-quartile range of the fitness costs from the transformed 

PASER data as the parameter values (Table S2).  The estimates from the PASER data were in 

line with the literature.204, 205 Reversion to wild-type after infection with a drug resistant 

virus was also considered (Table S3). 

As a baseline scenario, we calculated the TDR prevalence for ART initiation at <200 CD4 

cells/μL (including 20% of patients with CD4 200-350 cells/μL to represent the current 

treatment situation). We then predicted the effect on TDR prevalence of ART initiation at 

CD4 <350 and <500 cells/μL. The total number of people accessing treatment depends on 

the HIV testing and retention rate, both of which were calibrated in the model. We also 

investigated the impact of increasing access to second-line therapy. In the model, we 

assume that second-line is only limitedly available. In accordance with PASER data, the 

proportions of people who switch to second-line therapy after continued virological failure 

in Kampala and Mombasa is 33-66% and 15-30% respectively during the first two years on 

therapy, as is assumed to not be available thereafter. We expected an increased availability 

of second line regimens and viral load testing in the future. Accordingly, we increased the 

proportions of people who switch to second-line therapy after continued virological failure 

in Kampala and Mombasa up to 80-100% for the entire duration of antiretroviral treatment. 

We then determined the overall and mutation-specific TDR prevalence over 10 years for all 

immunological ART initiation cut-offs. Full model description including equations can be 

found in the Text S1 of the supplement. 

In order to investigate whether the prevention of new infections by earlier initiation of ART 

offsets rising TDR, we calculated the total number of new HIV infections averted for each 

additional case infected with drug resistant HIV. 
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RESULTS 

Impact of ART on the HIV epidemic 

Figure 1A shows the effect of earlier first-line ART initiation on estimated HIV prevalence in 

Kampala and Mombasa. Although the HIV prevalence remains relatively stable when 

treatment is initiated at <200 or <350 CD4 cells/μL due to reduced mortality of infected 

individuals, a decline in HIV prevalence is expected when treatment is initiated at <500 CD4 

cells/μL. HIV incidence is expected to drop 

in both cities when treatment is initiated at 

<350 and <500 CD4 cells/μL (Figure 1B). 

The decrease in HIV incidence is also 

reflected in the proportion of infections 

that can be averted at particular 

immunological thresholds of ART initiation. 

Compared to initiating ART at CD4 <200 

cells/μL, initiating ART at CD4 <350 cells/μL 

averts a median of 12.6% (Interquartile 

range (IQR) 11.3%-13.7%) of infections over 

10 years in Kampala and averts a median of 

11.6% (IQR 10.3%-13.0%) of infections in 

Mombasa. Initiating ART at CD4 <500 

cells/μL averts a median of 28.8% (IQR 

26.0%-31.4%) and a median of 26.3% (IQR 

23.2%-29.5%) in Kampala and Mombasa, 

respectively. 

 

Figure 1. Yearly median of HIV Prevalence, 
incidence, and overall transmitted drug 
resistance prevalence from 2012-2022 when 
initiating treatment at CD4<200 cells/μL, <350 
cells/μL, and <500 cells/μL in Kampala, Uganda, 
and Mombasa, Kenya 

 

Prevention of new infections and increase of TDR 

When treatment is initiated at CD4 <350 cells/μL, a median of 18 (IQR 11-31) infections in 

Kampala and 46 (IQR 30-83) infections in Mombasa will be averted for every additional case 

infected with drug-resistant virus. Similarly, when treatment is initiated at CD4 <500 cells/μL, 

the estimated number of infections averted per additional case of TDR is a median of 22 (IQR 

17-35) in Kampala and 32 (IQR 21-57) in Mombasa. The larger number of infections averted 
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in Mombasa as compared to Kampala is in line with the smaller TDR increase predicted in 

Mombasa. 

Evolution of overall TDR prevalence  

Figure 1C shows that expanding access to ART by initiating treatment at higher CD4-counts is 

expected to increase TDR prevalence in 

both Kampala and Mombasa. Between 

2012 and 2022, the estimated TDR 

prevalence in Kampala increases from a 

median of 8.3% (IQR 7.7%-9.0%) to a 

median of 9.4% (IQR 8.4%-10.5%), 12.2% 

(IQR 10.9%-13.8%) and to 19.0 % (IQR 

16.5%-21.8%) when initiating ART at 

CD4<200, <350 or <500 cells/μL, 

respectively.  During the same period, the 

estimated TDR prevalence in Mombasa 

remains a median of 12.3% (IQR 11.7%-

13.1%) when starting ART at CD4 <200 

cells/μL, but increases to a median of 

13.6% (IQR 12.5%-14.9%) when starting at 

CD4 <350 cells/μL and to a median of 

19.2% (IQR 17.1%-21.5%) when starting at 

CD4 <500 cells/μL. 

 
Figure 2. Yearly median of transmitted drug 
resistant mutation prevalence by mutation, 
from 2012-2022 when starting treatment at 
CD4<200 cells/μL, <350 cells/μL, and <500 
cells/μL in Kampala, Uganda, and Mombasa, 
Kenya 
 
 

Drug resistance by drug class and mutation 

In both settings, current TDR is predominantly characterized by resistance to NNRTIs. 

According to our modeling results, NNRTI mutations are predicted to continue to comprise 

the majority of the future prevalence of TDR (Figure 2A and B). In Kampala, the prevalence 

of transmitted NNRTI resistance is estimated to rise over the next ten years from a median 

of 4.4% (IQR 3.8%-4.9%) to a median of 6.9% (IQR 6.0%-7.9%) when initiating at CD4 <200 

cells/μL. An increase to a median of 9.1% (IQR 7.8%-10.5%) when initiating treatment at CD4 

<350 cells/μL is predicted, and to 14.3% (IQR 11.9%-16.6%) when initiating at CD4 <500 



Averted HIV infections versus transmitted drug resistance | 53 
 

 

5
3 

cells/μL. In Mombasa, NNRTI resistance is estimated to remain stable (median 7.1%; IQR 

6.3%-7.7% in 2012 to median 6.9%; IQR 6.0%-7.9% in 2022) when initiating ART at CD4 <200 

cells/μL, but to increase to a median of 8.7% (IQR 7.6%-9.7%) when initiating at a CD4 count 

of <350 and to 12.2% (IQR 10.9%-13.7%) when starting at <500.  

With respect to the NRTI class, in Kampala, estimated prevalence of TAMs decrease between 

2012 and 2022, regardless of the immunological threshold used. In contrast, the TAM 

prevalence in Mombasa is estimated to slightly increase over the same period. A sensitivity 

analysis in which stavudine was replaced by tenofovir instead of zidovudine yielded similar 

results (Figure S4). Transmitted M184V increases in both Kampala and Mombasa when 

treatment is initiated at CD4 <500 cells/μL, although the prevalence was predicted to remain 

<2% in both areas. In both cities, PI resistance decreases over time, irrespective of 

immunological threshold used to initiate therapy. Transmitted K65R will increase slightly at 

all immunological thresholds but will remain <1% between 2012 and 2022 in both settings.  

 

Increasing access to second-line 

If access to virological monitoring and second-line treatment increases in parallel to the 

further scale-up of first-line ART, TDR is not expected to increase at any of the 

immunological thresholds used for ART initiation. In the scenario where 80-100% of 

individuals with prolonged virological failure are appropriately switched to second-line 

boosted PI therapy, the level of TDR is expected to decline in both locations at all 

immunological thresholds to below the 2012 TDR level. Increasing access to boosted PIs will 

either reduce or stabilize TDR for all drug classes (Figure 3A-D). 

 

Sensitivity analysis 

In the models for both Kampala and Mombasa, higher test rates (greater than 22.5% and 

21.4% respectively) was the strongest predictor for a reduction in new infections. This is 

likely due to the fact that more individuals will get into care sooner, and thus spend a 

greater amount of time with a suppressed virus. In both Kampala and Mombasa, transmitted 

drug resistance depends most strongly on the rate of reversion of a drug resistant mutation 

in a treatment-naïve individual to a wild type virus. This is because if revertancy is slower, a 

patient is more likely to infect another person with a resistant virus instead of a wild type 

virus. (See Figure S3) 
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Figure 3. Yearly median of transmitted drug resistant mutation prevalence by mutation when 
increasing access to second-line treatment for those with continued virological failure to 80-100% 
from 2012-2022 when starting treatment at CD4<200 cells/μL, <350 cells/μL, and <500 cells/μL in 
Kampala, Uganda, and Mombasa, Kenya

 

 

DISCUSSION 

We have modeled the impact of ART initiation at different immunological thresholds on the 

prevalence of TDR in two East African settings over the next ten years. This is the first model 

to show that averted HIV infections due to the expansion of antiretroviral treatment 

eligibility offset the risk of increased TDR. We predict that the number of infections that will 

be averted by earlier ART initiation will far exceed the number of infections with a drug 

resistant virus. When the current WHO treatment guidelines of ART initiation at CD4<350 

cells/μL are fully implemented in these two settings, TDR prevalence is expected to increase 

slightly. Expanding treatment by initiating ART at CD4 <500 cells/μL will lead to an increasing 

TDR prevalence. TDR mutations associated with the NNRTI drug class, the cornerstone of 

current first-line regimens,206 are expected to drive the TDR rise. Importantly, if switches 

from first- to second-line occur for all patients necessitating a switch, then the overall TDR 

prevalence, including NNRTI resistance, will decrease in the next ten years. This implies that 
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wider access to virological monitoring and boosted PIs for second-line therapy will preserve 

the effectiveness of NNRTI-based first-line treatment in all scenarios.  

Current and predicted TDR is predominantly due to NNRTI resistance. This finding 

corroborates a recent meta-analysis of TDR which estimated an increase of predominantly 

NNRTI-related resistance of 29% per year in East Africa.184 This can be explained by the low 

genetic barrier of NNRTIs for HIV drug resistance as only a single amino acid substitution is 

sufficient for high level resistance.15 In addition, transmitted NNRTI-associated mutations 

persist for a prolonged period of time.207 Transmission of NNRTI resistance can have 

important clinical ramifications as their presence is associated with an increased risk of 

virological failure of standard first-line treatment and for further selection of drug resistance 

after treatment initiation.183 Our modeling study suggests that this can be prevented by 

increasing access to boosted PIs in second-line ART. Timely switches to second-line regimens 

are only possible when routine virological monitoring, i.e. at 6- or 12-monthly intervals, is 

implemented. In agreement, a recent model of HIV transmission predicted that routine 

virological monitoring in patients on ART can reduce TDR.21 For this purpose, cheap point-of-

care viral load assays should be developed.21, 184  

This analysis models the changes in treatment initiation guidelines, and thus even when the 

treatment initiation threshold changes, many individuals still initiate therapy late in 

infection. When treatment is initiated at CD4 <500 cells/μL not all individuals initiate 

treatment early due to test rates and retention of the respective settings. In the model, once 

treatment at CD4 <500 cells/μL is fully scaled up in 2013,  43% of individuals initiate 

treatment between CD4 350-500, 38% initiate between CD4 200-350, and 19% initiate when 

CD4 is <200. In 2022, 49% of individuals initiate between 350-500, 34% initiate between 200-

350, and 17% initiate at CD4 <200. 

Our mathematical model has several strengths. To our knowledge, our model is the first to 

examine the impact of initiating ART at different immunological thresholds, including at CD4 

<500 cells/μL, on the prevalence of TDR in sub-Saharan Africa. This is particularly relevant in 

light of increased interest for early initiation of ART as a means to prevent new infections. 

We have demonstrated that the number of new infections prevented by earlier ART 

initiation far outweighs the expected number of infections with drug-resistant virus.  Second, 

our analysis predicts future levels of HIV drug resistance in sub-Saharan Africa in terms of 

the presence of specific mutations to particular drugs, accounting for variation in 

transmissibility between individual mutations. A small number of mathematical HIV 

transmission models have examined the impact of antiretroviral drugs on transmitted drug 

resistance in sub-Saharan Africa.21, 187-189 Almost all previous models used overall TDR rates 

to describe HIV drug resistance.187-189 One model used a classification of HIV drug resistance 

similar to ours, but only reported overall TDR.21 Lastly, this model combines data on 

transmitted and acquired HIV drug resistance from the same geographic areas and time 

period, collected within the same research project. This is important as resistance acquired 
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during treatment constitutes the pool of variants that can be transmitted within a 

population. The TDR predictions were largely similar for the two distinct geographic settings 

even though these two settings have a different history of antiretroviral roll-out. In Uganda, 

antiretroviral drugs became available at least five years ahead of neighboring countries, 

including limited-scale distribution of mono and dual NRTI-based therapies.208 This may 

account for the higher initial rate of TAMs observed in Kampala, but our analysis shows that 

it is unlikely to impact future rates of TDR. 

This study has some potential limitations. First, the data on acquired resistance do not 

exceed 24 months of follow-up. Data on HIV drug resistance beyond 24 months of ART in 

resource-limited settings is scarce. Nonetheless, the PASER-Monitoring study provides the 

most accurate empirical data on acquired resistance patterns currently available in Africa. 

Second, we did not incorporate the type of ART monitoring to guide switching, i.e. clinical, 

immunological or virological, as a variable in our model. Instead, based on PASER-Monitoring 

data we noted that in Kampala 33-66% and in Mombasa 15-30% of patients with virological 

failure were appropriately switched to second-line during the first two years on HIV 

treatment. Third, baseline HIV test rates were assumed to be 10-30% of the populations. 

Increasing HIV testing uptake is likely to lead to greater numbers of people initiating ART at 

higher CD4 counts, although this poses logistical challenges for implementation. Fourth, we 

assumed that drug regimen use would remain constant for the next ten years, as it is difficult 

to make predictions about future drug substitutions. We did, however, account for the fact 

that stavudine is likely to be phased out. We assumed that stavudine would be replaced by 

zidovudine in Mombasa, or instead by tenofovir in a sensitivity analysis, with comparable 

results.  Finally, costs are not included in this analysis as we do not have comprehensive 

costing data for these study sites. Second-line treatment is expensive and using second-line 

to limit drug resistance can increase costs. Conversely, second-line treatment can also result 

in reduced HIV transmission (as less resistance emerges) which can be cost saving due to the 

substantial lifetime costs associated with a new infection.    

Infections averted is a commonly used metric in modeling studies to quantify the impact of 

an intervention on a population. The ratio of infections averted to TDR gained has been 

recently described,209 and can quantify infections averted versus gains in TDR. These metrics 

cannot be validated in large prospective cohort studies, as it is not known how many 

infections would have occurred in absence of an intervention. The ratio of infections averted 

to transmitted drug resistance gained does not, however, take into account all potential 

benefits or detriments of increased treatment. One potential detriment could be higher 

mortality of those individuals with resistance to first-line or to second-line treatment. Data 

from resource rich settings show that there is limited impact of drug resistance on 

mortality.210, 211 Although no data is available, resistance could increase mortality in resource 

limited settings as treatment options are limited.  
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With regard to our modeling strategy, we assumed that individuals could only be infected 

with a wild type virus or a virus containing a single class of resistance mutation, as the 

PASER-Surveillance data from Kampala and Mombasa showed this. While most transmitted 

drug resistance is transmission of a virus containing a single resistance mutation, it has been 

described that in approximately 20% of the time, a virus containing >1 resistance mutation is 

transmitted. But, importantly, this usually involves mutations from the same class. 

Transmission of resistance involving more than one class is rare in sub-Saharan Africa.212 Our 

assumption that only a single mutation can be transmitted therefore is in agreement with 

epidemiological studies on transmission of drug resistant HIV.212 213 In our model, we also 

assumed a closed population for both cities. We have calibrated the model to the closed 

population, thus our predictions on the closed populations should be accurate. For this 

analysis, we do not calculate the number of deaths averted or person-years lived, thus our 

results should not be influenced by this assumption.  

In conclusion, expansion of antiretroviral treatment eligibility will lead to increased TDR, but 

this is not expected to offset the preventative benefit of controlling the HIV epidemic. 

Transmitted NNRTI resistance can potentially have a profound impact on the effectiveness of 

first-line treatment. Importantly, we have demonstrated that further increase of NNRTI 

resistance can be avoided by increasing access to second-line boosted PI regimens. 

Therefore, as ART is scaled-up, efforts should be made to make virological monitoring and 

effective second-line therapy available. Transmitted drug resistance should not be a reason 

to withhold early initiation of ART as averted HIV infections due to expanded treatment 

eligibility are predicted to offset the risk of increased transmitted resistance. 
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Figure S1. Structure of the compartmental deterministic model, full description on next page: 
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Structure of the model, continued. The figure is a schematic representation of the dynamic 

process by which individuals become infected with HIV or resistant HIV due to contact with 

someone with a transmitted or acquired resistant virus, are given treatment. The force of 

infection is the rate by which susceptible individuals become infected. Without treatment, 

infected patients progress through six stages: the recent stage, the chronic stage (divided 

into CD4 counts of >500, 350-500, and 200-350 cells/μL), an AIDS stage in which patients 

have a limited level of sexual activity and the final AIDS stage in which patients have no 

sexual activity. 

 Individuals in the dark grey boxes are carrying a particular drug resistant virus and can pass 

on that virus to a susceptible individual.  Individuals are in light grey boxes when they can 

contribute a wild-type virus to a susceptible individual (and the light grey boxes on 

treatment have a reduced infectiousness, but not quite as reduced as with individuals 

without resistant virus upon treatment initiation).  Individuals on treatment (white boxes on 

bottom) move through three different periods defined by the time since start of 

antiretroviral drug therapy and the disease stage in which treatment was started. These 

periods and disease stages were included as mortality depends on time since start of 

treatment and the CD4 count at start of treatment.  

All boxes have different mortalities. All boxes (except the ones with susceptible individuals) 

contribute to the force of infection, but all with different infectivity. The mathematical 

equations are listed on page 3 of the web appendix. 

 

Table S1. Model equation labels and parameter values 

Model Equation Labels   

Variable 
Label Description   

k HIV infection stages   

 k=1 Acute Stage   

 k=2 Chronic stage  >500 cells/μL   

 k=3 Chronic stage  350-500 cells/μL   

 k=4 Chronic stage  200-350 cells/μL   

 k=5 AIDS stage   

 k=6 Final AIDS stage   

    

 Virus type   

WT Wild type   

R Resistant virus type   

 R=1 M184V-containing virus   

 R=2 K65R-containing virus   

 R=3 TAM-containing virus   

 R=4 NNRTI-containing virus   
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 R=5 PI-containing virus   

Variable 
Label Description   

l Treatment Initiation   

 l=1 Treatment initiated when CD4 >200 cells/μL   

 l=2 Treatment initiated when CD4 <200 cells/μL   

    

m Treatment stages   

 m=1 0-12 months on treatment   

 m=2 12-24 months on treatment   

 m=3 24+ months on treatment   

    

Tx Type of therapy   

 Tx=1 Zidovudine-based therapy   

 Tx=2 Tenofovir-based therapy   

 2nd Second-line protease inhibitor-based therapy   

    

b Resistance to first-line therapy   

 b=1 Not resistant to first-line   

 b=2 Resistant to first-line   

    

2ndR Resistance to second-line therapy   

    

λ Variables involved in the Force of Infection   

    

    

Model parameters, descriptions and values assessed.   

Variable 
Label Description 

Parameter Range 
Assessed Source 

i  Sexual Activity Group   

 Proportion of people in sexual risk groups   

 i=1 Highest 1.5-2.5% 
Model 
Calibration 

 i=2 2nd 10-20%  

 i=3 3rd 20-30%  

 i=4 Lowest 47.5-68.5%  

    

γk HIV infection duration by stage k, k=1..6  8, 11 

 γ1 Acute Stage 10-16 weeks  

 γ2 Chronic stage  >500 cells/μL 0.87-1 year  

 γ3 Chronic stage  350-500 cells/μL 2.9-3.1 years  

 γ4 Chronic stage  200-350 cells/μL 3.6-3.9 years  

 γ5 AIDS stage 6-12 months  

 γ6 Final AIDS stage 7-13 months  

    

μ Yearly Mortality rate  197 
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μ Mortality rate general population 0.02  

μk Mortality rate untreated HIV infection, k=1..6   

 μ1 Mortality during acute infection 0.098  

 μ2 
Mortality during chronic infection (CD4 >500 
cells/μL) 0.098  

 μ3 
Mortality during chronic infection (CD4 350-
500 cells/μL) 0.098  

 μ4 
Mortality during chronic infection (CD4 200-
350 cells/μL) 0.098  

 μ5,  μ6  
Mortality during AIDS stage (CD4 <200 
cells/μL) 0.63  

    

μl,m 
Mortality rate treatment patients in infection 
stage l and treatment stage m (l=1..2, m=1..3)  

197 

 μ1,1 
Mortality rate 0-12 months on treatment, 
initiated when CD4 >200 cells/μL 0.02-0.098  

 μ1,2 
Mortality rate 12-24 months on treatment, 
initiated when CD4 >200 cells/μL 0.02-0.05  

 μ1,3 
Mortality rate 24+ months on treatment, 
initiated when CD4 >200 cells/μL 0.02-0.05  

 μ2,1 
Mortality rate 0-12 months on treatment, 
initiated when CD4 <200 cells/μL 0.03-0.3  

 μ2,2 
Mortality rate 12-24 months on treatment, 
initiated when CD4 <200 cells/μL 0.03-0.06  

 μ2,3 
Mortality rate 24+ months on treatment, 
initiated when CD4 <200 cells/μL 0.03-0.06  

    

ηk 

Proportion of patients who successfully 
initiate therapy (product of test rate, 
retention, and ART initiation threshold, 
k=1..6) Model Calibration 

 

 η1 Acute stage: Initiate at CD4 <200 cells/μL 0  

 Acute stage: Initiate at CD4 <350 cells/μL 0  

 Acute stage: Initiate at CD4 <500 cells/μL 0  

 η2 
Chronic infection (CD4 >500 cells/μL): Initiate 
at CD4 <200 cells/μL 0  

 
Chronic infection (CD4 >500 cells/μL): Initiate 
at CD4 <350 cells/μL 0  

 
Chronic infection (CD4 >500 cells/μL): Initiate 
at CD4 <500 cells/μL 0  

 η3 
Chronic infection (CD4 350-500 cells/μL): 
Initiate at CD4 <200 cells/μL 0  

 
Chronic infection (CD4 350-500 cells/μL): 
Initiate at CD4 <350 cells/μL 0  

 Chronic infection (CD4 350-500 cells/μL): 0.075-0.3  
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Initiate at CD4 <500 cells/μL 

 η4 
Chronic infection (CD4 200-350 cells/μL): 
Initiate at CD4 <200 cells/μL 0  

 
Chronic infection (CD4 200-350 cells/μL): 
Initiate at CD4 <350 cells/μL 0.075-0.3  

 
Chronic infection (CD4 200-350 cells/μL): 
Initiate at CD4 <500 cells/μL 0.075-0.3  

 η5,  η6 
AIDS Stage (CD4 <200 cells/μL): Initiate at CD4 
<200 cells/μL 0.075-0.3  

 
AIDS Stage (CD4 <200 cells/μL): Initiate at CD4 
<350 cells/μL 0.075-0.3  

 
AIDS Stage (CD4 <200 cells/μL): Initiate at CD4 
<500 cells/μL 0.075-0.3  

    

ρk
R 

Proportion of individuals who have reverted 
from a resistant virus, R, to a wild-type virus 
by stage k, R=1..5, k=1..6  

 
 

207 

 ρ1
1 

Reversion from M184V-containing virus to 
wild type during acute stage 38-98%  

 ρ2
1 

Reversion from M184V-containing virus to 
wild type during chronic stage (CD4 >500 
cells/μL) 94-100%  

 ρ3
1 

Reversion from M184V-containing virus to 
wild type during chronic stage (CD4 350-500 
cells/μL) 100%  

 ρ4
1 

Reversion from M184V-containing virus to 
wild type during chronic stage (CD4 200-350 
cells/μL) 100%  

 ρ5
1 

Reversion from M184V-containing virus to 
wild type during AIDS stage 100%  

 ρ6
1 

Reversion from M184V-containing virus to 
wild type during final AIDS stage 100%  

 ρ1
2 

Reversion from K65R-containing virus to wild 
type during acute stage 0-2%  

 ρ2
2 

Reversion from K65R-containing virus to wild 
type during chronic stage (CD4 >500 cells/μL) 0-4%  

 ρ3
2 

Reversion from K65R-containing virus to wild 
type during chronic stage (CD4 350-500 
cells/μL) 0-10%  

 ρ4
2 

Reversion from K65R-containing virus to wild 
type during chronic stage (CD4 200-350 
cells/μL) 1-16%  

 ρ5
2 

Reversion from K65R-containing virus to wild 
type during AIDS stage 0%  

 ρ6
2 Reversion from K65R-containing virus to wild 0%  
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type during final AIDS stage 

 ρ1
3 

Reversion from TAM-containing virus to wild 
type during acute stage 1-7%  

 ρ2
3 

Reversion from TAM-containing virus to wild 
type during chronic stage (CD4 >500 cells/μL) 4-14%  

 ρ3
3 

Reversion from TAM-containing virus to wild 
type during chronic stage (CD4 350-500 
cells/μL) 9-29%  

 ρ4
3 

Reversion from TAM-containing virus to wild 
type during chronic stage (CD4 200-350 
cells/μL) 12-42%  

 ρ5
3 

Reversion from TAM-containing virus to wild 
type during AIDS stage 0%  

 ρ6
3 

Reversion from TAM-containing virus to wild 
type during final AIDS stage 0%  

 ρ1
4 

Reversion from NNRTI-containing virus to wild 
type during acute stage 0-2%  

 ρ2
4 

Reversion from NNRTI-containing virus to wild 
type during chronic stage (CD4 >500 cells/μL) 1-7%  

 ρ3
4 

Reversion from NNRTI-containing virus to wild 
type during chronic stage (CD4 350-500 
cells/μL) 3-17%  

 ρ4
4 

Reversion from NNRTI-containing virus to wild 
type during chronic stage (CD4 200-350 
cells/μL) 6-25%  

 ρ5
4 

Reversion from NNRTI-containing virus to wild 
type during AIDS stage 0%  

 ρ6
4 

Reversion from NNRTI-containing virus to wild 
type during final AIDS stage 0%  

 ρ1
5 

Reversion from PI-containing virus to wild 
type during acute stage 1-4%  

 ρ2
5 

Reversion from PI-containing virus to wild 
type during chronic stage (CD4 >500 cells/μL) 2-8%  

 ρ3
5 

Reversion from PI-containing virus to wild 
type during chronic stage (CD4 350-500 
cells/μL) 4-24%  

 ρ4
5 

Reversion from PI-containing virus to wild 
type during chronic stage (CD4 200-350 
cells/μL) 8-36%  

 ρ5
5 

Reversion from PI-containing virus to wild 
type during AIDS stage 0%  

 ρ6
5 

Reversion from PI-containing virus to wild 
type during final AIDS stage 0%  

    

ψTx Proportion of individuals assigned to a   
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particular first-line regimen Tx, Tx=1..2 

 ψ1 
Proportion of individuals starting a 
zidovudine-based regimen, Kampala 60%  

 
Proportion of individuals starting a 
zidovudine-based regimen, Mombasa 99%  

 ψ2 
Proportion of individuals starting a tenofovir-
based regimen, Kampala 40%  

 
Proportion of individuals starting a tenofovir-
based regimen, Mombasa 1%  

Φm,b 

Proportion of individuals on first-line 
treatment who go to second-line treatment, 
m=1..3, b=1..2  

 

 Kampala   

 Φ1,1 

Individuals on zidovudine-based therapy for 
0-12 months who go to second-line (due to 
toxicity) 

1.5-3% 
 198 

 Φ2,1 
Individuals on zidovudine-based therapy for 
12-24 months who go to second-line 33-50% 

PASER-M 
Data 

 Φ3,1 
Individuals on zidovudine-based therapy for 
24+ months who go to second-line 0% 

PASER-M 
Data 

 Φ1,2 

Individuals on tenofovir-based therapy for 0-
12 months who go to second-line (due to 
toxicity) 1.5-3% 198 

 Φ2,2 
Individuals on tenofovir-based therapy for 12-
24 months who go to second-line 33-66% 

PASER-M 
Data 

 Φ3,2 
Individuals on tenofovir-based therapy for 
24+ months who go to second-line 0% 

PASER-M 
Data 

 Mombasa   

 Φ1,1 

Individuals on zidovudine-based therapy for 
0-12 months who go to second-line (due to 
toxicity) 1.5-3% 198 

 Φ2,1 
Individuals on zidovudine-based therapy for 
12-24 months who go to second-line 17.4-34.2% 

PASER-M 
Data 

 Φ3,1 
Individuals on zidovudine-based therapy for 
24+ months who go to second-line 0% 

PASER-M 
Data 

 Φ1,2 

Individuals on tenofovir-based therapy for 0-
12 months who go to second-line (due to 
toxicity) 1.5-3% 198 

 Φ2,2 
Individuals on tenofovir-based therapy for 12-
24 months who go to second-line 20-30% 

PASER-M 
Data 

 Φ3,2 
Individuals on tenofovir-based therapy for 
24+ months who go to second-line 0% 

PASER-M 
Data 

    

ξm,b
Tx 

The rate of acquired resistance after m time, 
on first-line treatment Tx, m=1..3, b=1..2,  

214, 215, 
PASER-M 
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Tx=1..2 Data 

 Kampala   

 ξ1,b
1 

Acquired resistance after 0-12 months on 
zidovudine-based therapy 10%  

 ξ2,b
1 

Acquired resistance after 12-24 months on 
zidovudine-based therapy 8.3%  

 ξ3,b
1 

Acquired resistance after 24+ months on 
zidovudine-based therapy 0-1%  

 ξ1,b
2 

Acquired resistance after 0-12 months on 
tenofovir-based therapy 6.0%  

 ξ2,b
2 

Acquired resistance after 12-24 months on 
tenofovir-based therapy 4.7%  

 ξ3,b
2 

Acquired resistance after 24+ months on 
tenofovir-based therapy 0-1%  

 Mombasa   

 ξ1,b
1 

Acquired resistance after 0-12 months on 
zidovudine-based therapy 7.2%  

 ξ2,b
1 

Acquired resistance after 12-24 months on 
zidovudine-based therapy 8.2%  

 ξ3,b
1 

Acquired resistance after 24+ months on 
zidovudine-based therapy 0-1%  

 ξ1,b
2 

Acquired resistance after 0-12 months on 
tenofovir-based therapy 6.0%  

 ξ2,b
2 

Acquired resistance after 12-24 months on 
tenofovir-based therapy 7.0%  

 ξ3,b
2 

Acquired resistance after 24+ months on 
tenofovir-based therapy 0-1%  

ξm
2nd 

The rate of acquired resistance to second-line 
therapy after m time, m=1..3  

216 

 ξ1
2nd 

Acquired resistance after 0-12 months on 
second-line PI-based therapy 4-6%  

 ξ2
2nd 

Acquired resistance after 12-24 months on 
second-line PI-based therapy 3-5%  

 ξ3
2nd 

Acquired resistance after 24+ months on 
second-line PI-based therapy 0-0.1%  

    

νTx 

The rate at which individuals who acquired 
resistance to first-line therapy become 
successfully re-suppressed on first-line 
therapy, Tx=1..2  

PASER-M 
Data 

 Kampala   

 ν1 

Resuppression on first-line after acquired 
resistance to zidovudine-based therapy, 12-24 
months on treatment 8.3-33.3%  
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 ν2 

Resuppression on first-line after acquired 
resistance to tenofovir-based therapy, 12-24 
months on treatment 16-49.3%  

 Mombasa   

 ν1 

Resuppression on first-line after acquired 
resistance to zidovudine-based therapy, 12-24 
months on treatment 7.7-30.7%  

 ν2 

Resuppression on first-line after acquired 
resistance to tenofovir-based therapy, 12-24 
months on treatment 40-65%  

    

α 
The reduction in infectiousness on people on 
treatment 90-100% 7, 43, 46 

    

θTx 

The proportion of individuals infected with a 
drug resistant virus that become successfully 
suppressed on first-line, Tx=1..2  

PASER-M 
Data 

 Kampala   

 θ1 

Proportion of individuals infected with a drug 
resistant virus who are successfully 
suppressed on zidovudine after 12 months 70-82%  

 θ2 

Proportion of individuals infected with a drug 
resistant virus who are successfully 
suppressed on tenofovir after 12 months 90-94%  

 Mombasa   

 θ1 

Proportion of individuals infected with a drug 
resistant virus who are successfully 
suppressed on zidovudine after 12 months 78.4-92.8%  

 θ2 

Proportion of individuals infected with a drug 
resistant virus who are successfully 
suppressed on tenofovir after 12 months 82-94%  

 Parameters used in Force of Infection (λ)   

βk 
The infectiousness of an individual in a given 
stage of infection, not on treatment, k=1..6  

9, 55 

 β1 Infectiousness during acute stage 
27-43 times chronic 

stage  

 β2 
Infectiousness during chronic stage (CD4 >500 
cells/μL) 10%/year  

 β3 
Infectiousness during chronic stage (CD4 350-
500 cells/μL) 10%/year  

 β4 
Infectiousness during chronic stage (CD4 200-
350 cells/μL) 10%/year  

 β5 Infectiousness during AIDS stage 3-5 times chronic  
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stage 

 β6 
Infectiousness during final AIDS stage (no 
longer sexually active) 0%  

    

τR
TX 

The proportion of patients who acquire a 
specific drug resistant virus, R, depending on 
the first-line treatment, Tx, R=1..5, Tx=1..2  

PASER-M 
Data 

 τ1
1 

The proportion of patients who acquired an 
M184V mutation on a zidovudine-based 
therapy 33-43%  

 τ2
1 

The proportion of patients who acquired a 
K65R mutation on a zidovudine-based therapy 0-3%  

 τ3
1 

The proportion of patients who acquired a 
TAM on a zidovudine-based therapy 3-6%  

 τ4
1 

The proportion of patients who acquired a 
mutation to NNRTIs on a zidovudine-based 
therapy 43-63%  

 τ5
1 

The proportion of patients who acquired a 
mutation to PIs on a zidovudine-based 
therapy 0%  

 τ1
2 

The proportion of patients who acquired an 
M184V mutation on a tenofovir-based 
therapy 17-36%  

 τ2
2 

The proportion of patients who acquired a 
K65R mutation on a tenofovir-based therapy 0-10%  

 τ3
2 

The proportion of patients who acquired a 
TAM on a tenofovir-based therapy 0%  

 τ4
2 

The proportion of patients who acquired a 
mutation to NNRTIs on a tenofovir-based 
therapy 54-84%  

 τ5
2 

The proportion of patients who acquired a 
mutation to PIs on a tenofovir-based therapy 0%  

    

τR
2nd 

The proportion of patients who acquire a 
specific drug resistant virus, R, to second-line 
treatment, R=1..5  

PASER-M 
Data 

 τ1
2nd 

The proportion of patients who acquired an 
M184V mutation on a second line PI-based 
therapy 57-71%  

 τ2
2nd 

The proportion of patients who acquired a 
K65R mutation on a second line PI-based 
therapy 0-10%  

 τ3
2nd 

The proportion of patients who acquired a 
TAM on a second line PI-based therapy 7-21%  



Averted HIV infections versus transmitted drug resistance | 69 
 

 

6
9 

 τ4
2nd 

The proportion of patients who acquired a 
mutation to NNRTIs on a second line PI-based 
therapy 0%  

 τ5
2nd 

The proportion of patients who acquired a 
mutation to PIs on a second line PI-based 
therapy 7-21%  

ζR 

The fitness cost of a particular mutation R 
based on viral replication capacities of viruses 
that were acquired to first- or second-line 
therapy, R=1..5  

 

 ζ1 The fitness cost of M184V-containing virus 60-70% 
PASER-M 
Data 

 ζ2 The fitness cost of K65R-containing virus 45-60% 202 

 ζ3 The fitness cost of a TAM-containing virus 0-20% 201 

 ζ4 
The fitness cost of a virus containing a 
mutation to NNRTIs 30-70% 

PASER-M 
Data 

 ζ5 
The fitness cost of a virus containing a 
mutation to PIs 0-20% 201 

    

ε Sexual mixing assortativity 0.38-0.54 
Model 
Calibration 

    

i  
Sexual activity groups, number of new sexual 
partners per year Model Calibration 

 

 i=1 Highest  9-14  

 i=2 2nd 1.7-3  

 i=3 3rd 0.12-0.22 
 

 i=4 Lowest 0.04-0.06  
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 Figure S2. Model Calibration to HIV prevalence and transmitted drug resistance prevalence  

 
Figures S2A & S2B show the time period over which the model was calibrated. The WHO 

data from Uganda had two sites in Kampala in which HIV prevalence was estimated, 

hence two lines: Kampala 1 and Kampala 2195. There was one prevalence estimate for 

Mombasa196. We use the transmitted drug resistance prevalence point estimate for 2009 

from the PASER data for Kampala and Mombasa respectively (Figures S2C and S2D). 
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Figure S3: Sensitivity analysis: recursive partitioning 199, 200  

The N in the following recursive partitioning trees represents the number of simulations that fulfill all of the given criteria for a branch in 

the tree. The percentage represents the percent of simulations which are greater than the median number of acute infections or greater 

than the median transmitted drug resistance prevalence, respectively. The percentages highlighted in red represent branches of the tree 

which 50% or more of the simulations resulted in a higher-than-median number of acute infections or higher-than median transmitted drug 

resistance prevalence, respectively. The percentages highlighted in green represent branches of the tree which 50% or less of the 

simulations resulted in a higher-than-median number of acute infections or higher-than median transmitted drug resistance prevalence, 

respectively. Observations for which less than 100 simulations were found were not included. 

 

3a. Recursive partitioning, simulations which lead to an above or below median number of acute infections (a median of 30,810 acute 

infections over 10 years), Kampala, Uganda 

 
 

3a description. In Kampala, a yearly test rate of >22.5% is the strongest predictor for a reduction in new infections. This is likely due to the 

fact that more individuals will get into care sooner, and thus spend a greater amount of time with a suppressed virus.  
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3b. Recursive partitioning, simulations which lead to above or below median transmitted drug resistance prevalence (a median of 9.4% 

after 10 years), Kampala, Uganda 

 
 

3b description. In Kampala, transmitted drug resistance depends most strongly on revertancy. This is because if revertancy is slower, a 

patient is more likely to infect another person with a resistant virus. After revertancy, the prevalence of transmitted drug resistance 

depends on the test rate. This is due to the fact that if the test rate is higher, more people will go onto treatment who may then develop 

resistance. This therefore increases the pool of patients with acquired drug resistance who can then transmit their virus. 
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3c. Recursive partitioning, simulations which lead to an above or below median number of acute infections (a median of 15,075 acute 

infections over 10 years), Mombasa, Kenya 

 

 
 

3c description. In Mombasa, a yearly test rate of >21.4% is the strongest predictor for a reduction in new infections. This is likely due to the 

fact that more individuals will get into care sooner, and thus spend a greater amount of time with a suppressed virus.  
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3d. Recursive partitioning, simulations which lead to above or below median transmitted drug resistance prevalence (a median of 11.0% 

after 10 years), Mombasa, Kenya 

 
 

 

 

3d. description. In Mombasa, transmitted drug resistance depends most strongly on revertancy. This is because if revertancy is slower, a 

patient is more likely to infect another person with a resistant virus. After revertancy, the prevalence of transmitted drug resistance 

depends on the test rate. This is due to the fact that if the test rate is higher, more people will go onto treatment who may then develop 

resistance. This therefore increases the pool of patients with acquired drug resistance who can then transmit their virus. 



Averted HIV infections versus transmitted drug resistance | 75 
 

 

7
5 

Table S2. Acquired resistance mutations*, proportion to which they will contribute to 

transmitted drug resistance (TDR) 

  
Proportions**   

 

 

Fitness 

Cost Reference 
  

Tenofovir-

based 

regimen 

Zidovudine-

based regimen 

Second-line, 

boosted protease 

inhibitor  

M184V 

17-36% 33-43% 57-71%  60-70% 

PASER-

M***204 

K65R 0-10% 0-3% 0-10%  45-60% 202 

TAM 0% 3-6% 7-21%  0-20% 201 

NNRTI 

54-84% 46-63% 0%  30-70% 

PASER-

M***,205 

PI 0% 0% 7-21%  0-20% 201 

*Patients can only transmit a single resistance mutation, as most viruses that transmit only 

contain one resistance mutation217 

**Ranges from PASER data and Gallant et al. 2006215, Pozniak et al., 2006214, and Molina et al., 

2008216  

***Interquartile range of reduction in infectivity to respective mutations in PASER-M cohort 

from Kampala & Mombasa: We used viral load measurements at treatment initiation, and a 

viral load measurement again upon treatment failure with respective mutation present. We 

then calculated the fitness cost (a proxy for reduction in infectivity) of the viruses which 

acquired the M184V and K65R mutations using a published formula.203 The results were in line 

with current literature.204, 205 

Table S2 description: For this analysis, we assume that a person failing treatment can go on 

to transmit a drug resistant virus containing a single mutation. To illustrate how this table 

can be interpreted, the following is how resistance to a tenofovir-based regimen is handled. 

Based on our PASER-M data, 17-36% of patients who fail first line tenofovir-containing 

therapy will go on to acquire an M184V mutation. Between 0-10% will acquire a K65R 

mutation, and 54-84% of patients will acquire a mutation to NNRTIs. Each of these resistant 

viruses also has an associated fitness cost. Therefore, a person failing a tenofovir-based 

regimen will go on to transmit an M184V-containing virus 5.1%-14.4% of the time (17-36% 

multiplied by 1 minus the extremes of the fitness cost range, 30-40%); they will go on to 

transmit a K65R-containing virus 0-5.5% of the time (0-10% multiplied by 1 minus the 

extremes of the fitness cost range, 40-55%); and they will go on to transmit a virus carrying 
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resistance to NNRTIs 16.2-58.8% of the time (54-84% multiplied by 1 minus the extremes of 

the fitness cost range, 30-70%). 

 

Table S3. Rate of reversion to wild-type HIV-1 after being infected with a drug-

resistant HIV virus, by each stage of infection 

  Mutation 

Stage of infection M184V K65R TAM NNRTI PI 

Acute Stage 38-98%* 0-2% 1-7% 0-2% 1-4% 

CD4 >500 cells/μL 94-100% 0-4% 4-14% 1-7% 2-8% 

CD4 350-500 cells/μL 100% 0-10% 9-29% 3-17% 4-24% 

CD4 200-350 cells/μL 100% 1-16% 12-42% 6-25% 8-36% 

CD4 <200 cells/μL 100% 0% 0% 0% 0% 

*All ranges follow a uniform distribution and are based on Jain et al. 

2011207, and model calibration 

 
Text S1. Model Description and equations 

The model is seeded in 1972 with one infected individual. The state variables and HIV 

transmission equations for the model are shown below. There are four activity classes i 

based on the partner acquisition rate change: class 1 in which individuals have 9-14 partners 

per year, class 2 with 1.7-3 partners, class 3 with 0.12-0.22 and class 4 with 0.04-0.06.   

The model included six HIV infection stages k: class 1 is the acute stage, class 2 is the chronic 

stage where CD4 count is >500 cells/μL, class 3 is the chronic stage where CD4 count is 350-

500 cells/μL, class 4 is the chronic stage where CD4 count is 200-350 cells/μL, class 5 is the 

pre-final AIDS stage in which individuals have limited sexual activity. Class 6 is the final AIDS 

stage in which patients do not have any sexual intercourse 9. 

During treatment, the model includes two infection stages l: class 1 are individuals who were 

in the recent or chronic stage before start of treatment, class 2 are patients who were in one 

of the AIDS stage before antiretroviral therapy was initiated. 

A proportion of individuals are infected with a wild type virus, WT, or a resistant virus R. 

There are five types of R, a person is infected with an M184V-containing virus where R=1, a 

K65R-containing virus where R=2, a TAM-containing virus where R=3, an NNRTI-containing 

virus where R=4, and a PI-containing virus where R=5.  
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Patients progress through three treatment stages m: The first two treatment stages occur, 

respectively, during the first 12 months (stage 1) and 12-24 of treatment (stage 2). Patients 

receiving antiretrovirals for more than 24 months are in stage 3. Patients can be on one of 

two first-line therapies, either a zidovudine-based regimen (Tx=1) or a tenofovir-based 

regimen (Tx=2). There are two states of resistance to first-line therapy, those not resistant 

b=1 and those resistant b=2. 

The population used is the catchment area where the PASER data was collected in each city, 

161,000 in Mombasa, and 336,000 in Kampala.  

State variables  

iE   = Entry rate susceptible individuals, i=1..4 

iS   = Susceptible individuals, i=1..4 

,

WT

i kI   = HIV infected individuals infected with a wild-type virus, not on  treatment, 

i=1..4,  k=1..6  

,

R

i kI  = HIV infected individuals infected with a resistant virus, R, not on treatment, 

i=1..4,   k=1..6, R=1..5 

, , ,

Tx

i l m bI   = HIV infected individuals on first-line treatment, Tx, i=1..4, l=1..2, m=1..3, 

b=1..2 

2 ,

, ,

nd Tx

i l mI  = HIV infected individuals on second-line treatment, coming from first-line 

therapy Tx,   i=1..4, l=1..2, m=1..3 

2

, ,

ndR

i l mI   = HIV infected individuals resistant to second-line treatment 

 

Other variables 

total

i    = Total (wild-type + resistant) force of infection, i=1..4 

WT

i  = Force of infection of wild-type virus, i=1..4 

R

i  = Force of infection of resistant viruses, i=1..4, R=1..5 

iN  = Number of individuals in sexual activity class i, i=1..4 

   = Mortality general population 

k   = Mortality untreated HIV infected patients in infection stage k, k=1..6 
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,l m   = Mortality treated patients in infection stage l and treatment stages m, l=1..2, 

m=1..3 

𝛾𝑘         = HIV infection progression rate by stage k, k=1..6 

k  = Proportion of patients who successfully initiate therapy (product of test rate, 

retention, and ART initiation threshold), k=1..6 

R

k  = Proportion of individuals who have reverted from a resistant virus, R, to a 

wild-type virus by stage k, R=1..5, k=1..6   

Tx        = Proportion of infected individuals who go on treatment Tx, Tx=1..2 

,m b       = Proportion of individuals on first-line treatment who go to second-line 

treatment, m=1..3, b=1..2 

,

Tx

m b   = The rate of acquired resistance after m time, on first-line treatment Tx, 

m=1..3, b=1..2, Tx=1..2 

2nd

m   = The rate of acquired resistance to second-line therapy after m time, m=1..3 

Tx   = The rate at which individuals who acquired resistance to first-line therapy 

become successfully re-suppressed on first-line therapy, Tx=1..2 

   = The reduction in infectiousness on people on treatment 

Tx   = The proportion of individuals infected with a drug resistant virus that become 

successfully suppressed on first-line, Tx=1..2 

k   = The infectiousness of an individual in a given stage of infection, not on 

treatment, k=1..6 

Tx

R   = The proportion of patients who acquire a specific drug resistant virus, R, 

depending on the first-line treatment, Tx, R=1..5, Tx=1..2 

2nd

R   = The proportion of patients who acquire a specific drug resistant virus, R, to 

second-line treatment, R=1..5 

R   = The fitness cost of a particular mutation R based on viral replication capacities 

of   viruses that were acquired to first- or second-line therapy, R=1..5 
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Force of infection 

The equation for the force of infection includes a mixing matrix ,i jM  for infected individuals, 

with a different infectiousness for each stage of infection, ,i k . The elements of this matrix 

are i,j and represent the probability that an individual with i new partnerships per year will 

form a new partnership with a member who has j new partners. The rate at which the sexual 

partner changes for individuals in each sexual activity group i is expressed as ic . The values 

of the matrix depend on the degree of mixing ε. This degree can be fully assortative (ε=1), 

where partnerships are only formed within the same activity class. Or fully random (ε=0), 

where partnerships are randomly formed between different activity classes 193.  
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Where δ = 1 when i = j, and δ = 0 when i ≠ j.  
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In which total

i is the force of infection due to contact with an infected person.  Similarly, 

 λ𝑖
𝑇is the force of infection due to contact with a person with a wild-type virus, on 

treatment or not, and R

i is the force of infection due to contact with a person with a 

resistant virus R, either due to acquired or transmitted resistance.  R

i  is the contribution 

to transmitted resistant viruses to each of the five resistant categories R (M184V, K65R, 

TAMs, NNRTI, and PI resistance).  

 

 

 

Figure S4. Sensitivity analysis of having all patients in Mombasa, Kenya, on zidovudine, or moving 

20% to tenofovir in 2012 the other 80% remaining on zidovudine, when initiating treatment at 

CD4<200 cells/μL, <350 cells/μL, and <500 cells/μL 
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ABSTRACT  

Background Earlier antiretroviral therapy initiation reduces HIV-1 incidence. This benefit 

may be offset by increased transmitted drug resistance, which could limit future HIV 

treatment options. We analyse the epidemiological impact and cost-effectiveness of 

strategies to reduce transmitted drug resistance.  

Methods We develop a deterministic mathematical model representing Kampala, Uganda to 

predict the prevalence of transmitted drug resistance over a 10-year period. We then 

compare the impact on transmitted drug resistance and cost-effectiveness of: (1) 

introduction of pre-therapy genotyping (2) doubling use of second-line treatment to 80% 

(50-90%) of patients with confirmed virological failure on first-line ART and (3) increasing 

viral load monitoring from yearly to twice yearly. An intervention can be considered cost-

effective if it costs less than three times the gross domestic product per capita per quality 

adjusted life year gained, or less than $3,420 in Uganda. 

Results The prevalence of transmitted drug resistance is predicted to rise from 6.7% 

(Interquartile range [IQR] 6.2-7.2%) in 2014, to 6.8% (IQR 6.1-7.6%), 10.0% (IQR 8.9-11.5%) 

and 11.1% (IQR 9.7-13.0%) in 2024 if treatment is initiated at a CD4<350, <500, or 

immediately, respectively.  The absolute number of transmitted drug resistance cases is 

predicted to decrease 4.4-8.1% when treating earlier compared to treating at CD4<350 due 

to the preventative effects of earlier treatment. Most cases of transmitted drug resistance 

can be averted by increasing second-line treatment (additional 7.1-10.2% reduction), 

followed by increased viral load monitoring (<2.7%) and pre-therapy genotyping (<1.0%). 

Only increasing second-line treatment is cost-effective, ranging from $1,612-$2,234 (IQR 

$450-dominated) per quality adjusted life year gained.  

Conclusions While earlier treatment initiation will result in a predicted increase in the 

proportion of patients infected with drug-resistant HIV, the absolute numbers of patients 

infected with drug-resistant HIV is predicted to decrease. Increasing use of second-line 

treatment to all patients with confirmed failure on first-line therapy is a cost-effective 

approach to reduce transmitted drug resistance. Improving access to second-line 

antiretroviral therapy is therefore a major priority. 
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INTRODUCTION 

In 2012, an estimated 2.4 million people became newly infected with HIV-1 globally.218 

Alongside behaviour change, male circumcision, and condom use, the need for additional 

HIV prevention strategies remains. The initiation of antiretroviral therapy (ART) at a CD4 cell 

count between 350-550 cells/µl has the potential to prevent 96% of new infections as 

compared to treatment initiation at CD4 <250 cells/µl among sero-discordant couples.7, 219 In 

addition, a 41% reduction in mortality and opportunistic infections has been observed in 

individuals initiating ART at higher CD4 cell counts.7 The World Health Organization (WHO) 

has recently revised its treatment guidelines and now recommends treatment initiation at 

CD4 <500 cells/µl.14, 219 

There is concern that earlier ART initiation (i.e. at higher CD4 cell counts) may result in 

increased emergence and subsequent transmission of drug resistant HIV.20 This could in turn 

jeopardize the effectiveness of future HIV treatment, particularly in the context of restricted 

drug availability in many resource-limited countries. In a previous study, we predicted that 

as more individuals initiate ART early, far more new infections are averted than drug-

resistant infections are gained.20 Despite the predicted reduction in new drug resistant 

infections, strategies to minimize drug resistance will remain essential to preserve the 

effectiveness of currently available drugs.   

There are several ART program-level strategies that can help mitigate the emergence and 

transmission of drug resistance (TDR).19-21 WHO has recently recommended monitoring 

patients by measuring plasma HIV RNA level, or viral load testing, which can reduce TDR if 

implemented at regular intervals (every 6 or 12 monthly). Viral load testing can reduce the 

emergence of HIV drug resistance by early identification of patients with virological failure, 

prompting intensified adherence counselling and switch to second-line ART as necessary, 

thereby minimizing emergence of HIV drug resistance.19, 21  Second, prompt switching to a 

protease-inhibitor (PI) based second-line regimen of individuals experiencing virological 

failure has been associated with a reduced risk for drug resistance.20, 22  Finally, pre-therapy 

genotypic resistance testing to select a fully active regimens guide may mitigate acquired 

drug resistance.23, 24 These three strategies carry additional costs however and are not 

routinely available in sub-Saharan Africa. 

Mathematical modelling in combination with cost-effectiveness analyses can be used to help 

inform policy makers about ways to prevent new HIV infections while simultaneously 

minimizing TDR, at the lowest possible cost. The aim of this analysis was to determine the 

most cost-effective of strategy that can be used to prevent the spread of TDR in settings with 

similar characteristics of Kampala, Uganda. 
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METHODS 

Study design and population 

We used a previously published compartmental deterministic mathematical model20 based 

on an urban population in Kampala, Uganda. To predict time trends of TDR our model 

included drug resistance data from the PharmAccess African Studies to Evaluate Resistance 

(PASER) on transmitted185 and acquired23, 220 drug resistance in Kampala, Uganda.  

Model and calibration  

The model has been extended to incorporate population growth of the catchment area of 

the Joint Clinical Research Centre (JCRC), further expansion of ART and different patient 

monitoring strategies that can be used to reduce drug resistance. Using Monte Carlo filtering 

techniques,194  we accepted 1,438 of 515,000 simulations that were associated with a 

specified TDR prevalence,195 proportion of mutations observed in TDR, HIV prevalence, and 

population size (Table S1 shows the values used for calibration). The model calibration to the 

population size and HIV prevalence is shown in the supplement (Figure S1,S2). All reported 

results are the median and interquartile range (IQR) of the accepted simulations. 

 At the JCRC, the HIV test rate is relatively low, as approximately 50% of individuals are 

tested with and initiate ART at CD4 counts <200 cells/μl. Therefore, even if immediate 

treatment was recommended upon diagnosis, we would expect no more than 10% of 

individuals to initiate at a CD4 threshold of >500 cells/μl (Figure S3 shows this proportion of 

treatment initiation over time) assuming no change in the rate of HIV testing. Yearly viral 

load measurements and twice yearly CD4 cell counts are obtained for all patients on ART. 

After a detectable viral load, adherence counselling is provided, and thereafter a second viral 

load measurement is obtained. Pre-therapy genotypic testing is not provided. 

In accordance with PASER-Monitoring data, the proportion of people who switch to second-

line therapy with confirmed virological failure (defined as a plasma HIV RNA value of ≥1000 

copies/mL) after adherence counselling during the first two years on therapy is 33-66% of 

those on tenofovir-based regimens and 33-50% of those on zidovudine-based regimens.20  

This resulted in approximately 3.5% of patients switching to second-line therapy after one 

year.20  Of the individuals with virological failure during the second year of antiretroviral 

treatment, a median of 33% (range 16%-48%) had viral resuppression on their tenofovir-

based regimens, and a median of 10% (range 8%-21%) on zidovudine-based regimens.20 We 

assumed that these percentages of switching to second-line and resuppression on first-line 

would persist beyond two years on therapy. This would result in many individuals failing on 

first-line therapy to be switched to second-line over several years. Higher rates of switching 

to second-line would result in individuals switching earlier after initial virological failure, on 

average.  The switch rate at the JCRC is not CD4 cell count-dependent. Approximately 40% of 

individuals receive tenofovir-containing regimens at the JCRC, and 60% zidovudine-
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containing regimens, both combined with emtricitabine or lamivudine and efavirenz or 

nevirapine.20 Table 1 shows the key assumptions for this model. 

Table 1. Key Model Parameters20 

Description Estimate or 

Range* 

Reference 

Disease stages duration  8, 11 

Acute stage 10-16 weeks  
Chronic stage  >500 cells/μL 0.87-1 year  
Chronic stage  350-500 

cells/μL 
2.9-3.1 years  

Chronic stage  200-350 

cells/μL 
3.6-3.9 years  

AIDS stage** 6-12 months  
Final AIDS stage** 7-13 months  

Infectivity  9, 55 
Acute stage 27-43 times 

that of 

chronic stage 

 

Chronic stage (all) 10% per year  
AIDS stage** 3-5 times 

higher than 

chronic stage 

 

Final AIDS stage** 0%  
Proportion of people in sexual 

risk groups 

 Model 

Calibration Highest 1.5-2.5%  
2nd 10-20%  
3rd 20-30%  
Lowest 47.5-68.5%  

Number of partners per year in 

each sexual risk group 

 Model 

Calibration Highest 9-14  
2nd 1.7-3  
3rd 0.12-0.22  
Lowest 0.04-0.06  

Mortality rates per year  197 
Population 0.02  
Chronic HIV stage 0.098  
AIDS stage 0.63  
On treatment during chronic 

stage, first year 
0.02-0.098  

On treatment during chronic 

stage, 12+ months 
0.02-0.05  

On treatment during AIDS 

stage, first year 
0.03-0.3  

On treatment during AIDS 

stage, 12+ months 
0.03-0.06  

HIV Test Rate   
Baseline 10-30% Model 

Calibration Rate of being tested in the 

acute stage of HIV 

Half of the 

test rate 

Assumption*** 

Rate of being tested in the 

chronic stage of HIV 

test rate Model 

Calibration Rate of being tested in the   

AIDS stage 

test rate + 

10% 
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Baseline Scenarios 

Three baseline 

scenarios, 

treatment 

initiation at CD4 

<350 cells/μl, CD4 

<500 cells/μl and 

immediate 

treatment upon 

diagnosis, were 

considered in this 

analysis. In our 

baseline scenarios, 

we assume yearly viral load monitoring for patients on treatment. We assumed that these 

monitoring approaches and switching rates from first- to second-line described above would 

persist unchanged. The laboratory monitoring and/or the increase in the use of second-line 

were subsequently evaluated for each treatment initiation threshold.   

Strategies to reduce TDR 

At each CD4 initiation threshold we evaluated scenarios in which we altered three patient 

monitoring strategies in order to reduce TDR. All strategies were modelled to be 

implemented in 2014, scaled-up linearly until 2016, and implemented until 2024. The first 

strategy is increased viral load monitoring every six months (instead of the current practice 

of yearly viral load measurements). We also evaluated the scenario where the biannual viral 

load measurements are provided for just the first two years on treatment. In the scenarios 

that evaluate biannual viral load alone, there is no increased access to second-line treatment 

but the yearly rate of resuppression on first-line is doubled.  

Second, we evaluated a scenario with increased switch rate to second-line treatment. In this 

scenario, individuals with virological failure on first-line therapy after a yearly viral load 

measurement and do not achieve viral resuppression on first-line ART after adherence 

counselling (median resuppression rate 17.7%; range 8.3%-49.3%) are switched to a second-

line regimen after a confirmatory viral load test. Those who do not achieve viral 

resuppression on first-line ART after adherence counselling are then switched to second-line 

therapy (median 82.3%; range 50.7-91.7%). This scenario was also combined with biannual 

viral load testing. 

Third, a scenario was evaluated where pre-therapy genotyping is performed for all 

individuals. Based on the resistance profile, a fully-active first-line regimen then prescribed. 

 

Linkage to care from test to treat 75-100% Model 

Calibration Reduction in transmissibility of 

those patients on treatment 

90-100% 7, 43, 46 

Percentage of people that go to 

second line after continued 

virological failure, yearly after 12 

months on treatment: 

On zidovudine-based regimen 

On tenofovir-based regimen 

 

 

      on tenofovir-

based regimen 

    

 

 

 

 

 

 

33-50% 

33-66% 

 

 

 

 

 

PASER-

Monitoring, 

Kampala 

 

 

Percentage of those who go onto 

second-line not due to resistance 

in the first 12 months 

1.5-3% 
198 

*All ranges are uniformly distributed 
**Two AIDS stages were included because during the final months 
before death, patients have limited sexual activity 
*** Due to window phase of antibody-based test 
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Cost-effectiveness analysis 

Each compartment in our deterministic model was assigned a range of cost and quality 

adjusted life year (QALY) depending on the intervention (Table 2 shows key costs, and Tables 

S2-S4 show detailed costs and QALY assumptions).222 Rates of HIV clinical monitoring tests 

were taken from the JCRC’s standard practice (Table S5). Local costs for hospitalization of 

HIV infected persons, opportunistic infections, HIV testing, and ART, were all taken into 

account. Generally, a health-related intervention can be considered very cost-effective at a 

cost less than the gross domestic product (GDP) per capita ($1,140 in Uganda in 2012223) per 

QALY, and cost-effective if less than three times the GDP per capita ($3,420) per QALY 

gained.224, 225 We calculated both the average cost-effectiveness ratios (ACERs) where we 

compared each scenario to baseline, and the incremental cost-effectiveness ratios (ICERs) 

where we 

compared each 

scenario to the 

next least-costly 

scenario.226  

Patient monitoring 

strategies were 

compared within 

each respective 

treatment 

initiation 

threshold (CD4 

<350 cells/μl, 

<500 cells/μl, and 

immediate 

treatment). All 

costs and QALYs 

have been 

discounted yearly 

at the standard of 

3%.36, 227 

 

 

Sensitivity analysis 

We performed a univariate sensitivity analysis of cost-effectiveness of second-line at each 

treatment initiation threshold. Six key input variables - cost of viral load testing, cost of CD4 

cell count testing, cost of antiretroviral drugs, prevalence of transmitted drug resistance, 

Table 2. Key Cost Parameters*  

Description Estimate** 

Cost of testing negative for HIV per test *** $6 

Cost of testing positive for HIV per test*** $21 

Cost of an outpatient visit in the hospital† $16 

Cost of first inpatient day in the hospital† $24 

Cost of subsequent inpatient day in the hospital† $8 

Cost of zidovudine-based treatment, per year $108 

Cost of tenofovir-based treatment, per year $223 

Cost of boosted protease inhibitor-based treatment, 

per year (second-line therapy) 

$268 

Cost of a CD4 cell count‡ $30 

Cost of a viral load test‡ $71 

Cost of pre-therapy genotypic testing‡ $159 

Exchange rate, Ugandan Shilling to USD over year 2012 2500:1 

*All costs collected from the Joint Clinical Research Centre in Kampala, 

Uganda. 

**All costs are log-normally distributed +/- 10% of the listed cost 221 

***Includes costs of HIV tests, outpatient staff, laboratory personnel  

 †Includes costs related to infrastructure, nurses, doctors, and other 
hospital personnel  
‡Includes the price of an outpatient visit, costs of respective test, and 
laboratory personnel 
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cost discounting, and QALY discounting - were considered to identify the sensitivity of our 

model. To evaluate whether the costs of viral load monitoring or pre-therapy genotyping 

influenced the cost-effectiveness of the scenarios including those tests, we calculated the 

ICERs for those scenarios with a reduction in the price of each up to 90%.  

Availability of second-line treatment is limited throughout sub-Saharan Africa. Access to 

second-line at the JCRC is, however, high. Therefore, we also performed a sensitivity analysis 

in which we assumed that second-line treatment is only limitedly available, as might be 

more representative for other African sites. We modelled this limited availability by reducing 

the number of people switching to second-line by 50-70% (thus on average, 8.8% of all 

patients on second-line treatment at 10 years in the limited second-line scenario, compared 

to 22% in the full scale-up of second-line, when treating at CD4 <350 cells/μl). We then 

calculated the impact on levels of TDR as well as the cost-effectiveness of switching all 

individuals with confirmed virological failure on first-line therapy to second-line therapy.  

RESULTS 

Impact of ART on transmitted drug resistance 

The prevalence of TDR is predicted to rise at all CD4 initiation thresholds (Figure 1). In 2014, 

the prevalence of TDR is predicted to rise from 6.7% (IQR 6.2-7.2%), to 6.8% (IQR 6.1-7.6%), 

10.0% (IQR 8.9-11.5%) and 11.1% (IQR 9.7-13.0%) in 2024 if the treatment initiation 

threshold is CD4 cells <350 cells/μl, <500 cells/μl, and irrespective of CD4 cell count, 

respectively.  

The absolute number of TDR infections is predicted to decrease, however, compared to 

initiating treatment at CD4 <350 cells/μl due to decreasing HIV incidence. Initiating 

treatment at a CD4 count of <500 cells/μl and treating immediately averts 61 or 4.4% (IQR 

44-81 or 3.3%-5.5%) and 110 or 8.1% (IQR 87-142 or 6.6%-9.4%) of TDR infections, 

respectively, as compared to initiating ART at CD4 <350 cells/μl. TDR is predicted to be 

primarily due to NNRTIs, followed closely by resistance to PIs (Figure S4).  
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Figure 1. Yearly transmitted drug resistance prevalence (solid lines) and absolute number of 

yearly TDR cases (dashed lines) by CD4 treatment initiation thresholds of <350, <500 CD4 

cells/μl, and immediate treatment over 10 years 

 

Epidemiological impact of strategies to reduce drug resistance 

Biannual viral load monitoring 

Biannual viral load monitoring had a modest impact on preventing new TDR infections 

(Figure 2). No more than 2.7% of TDR was predicted to be averted over 10 years at any 

treatment initiation threshold. The two viral load strategies (in which 6-monthly viral loads 

were available for the first two years on therapy both with and without additional access to 

second-line) had minimal impact on TDR, averting <1.0% of TDR over the coming 10 years.  

Increase in second-line 

Increasing the use of second-line ART has the largest impact on averting drug resistant 

infections (Figure 2). The largest effect of increased access to second-line was predicted 

when ART is initiated at time of diagnosis (averting 10.2% of TDR, IQR 8.5%-12.0%), followed 

by treatment initiation at CD4 cell counts <500 cells/μl (9.4%, IQR 7.8%-11.2%), and at <350 

cells/μl (7.1%, IQR 5.8%-8.5%), compared to the respective baseline scenarios at each 

treatment initiation threshold.  Combining biannual viral load testing for the duration of ART 

with increased use of second-line ART did not greatly increase the impact on TDR compared 

to increasing use of second-line ART alone. 
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Pre-therapy genotyping 

Pre-therapy genotyping had only a limited impact on preventing spread of drug resistant 

HIV, averting a maximum of 1.0% of TDR over 10 years (Figure 2).  

 

Figure 2.Yearly transmitted drug resistance prevalence (A-C) and absolute number (D-F) of 

yearly TDR cases by antiretroviral treatment initiation threshold, by patient monitoring 

strategy, over a period of 10 years. Panel A & D refer to when all monitoring strategies are 

implemented in combination with treatment initiation at CD4 <350 cells/µl, Panel B & E in 

combination with treatment initiation at CD4 <500 cells/µl, and Panel C & F in combination 

with immediate treatment. 

 

VL= viral load testing 
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Cost-effectiveness of strategies to reduce drug resistance 

Increasing use of second-line treatment was the only strategy that was considered cost-

effective in our analysis, with an incremental cost effectiveness ratio ranging between 

$1,612 and $2,234 per QALY gained depending on the treatment initiation threshold (Table 

3). All other scenarios were dominated by increasing use of second-line, as all scenarios were 

more costly and less effective than second-line alone. 

Sensitivity analysis 

Our sensitivity analysis indicated that the cost of ART, viral load and CD4 cell count testing 

increased the cost-effectiveness ratios so that increasing second-line use was no longer cost-

effective (Figure S5). Three parameters, cost and QALY discounting and TDR prevalence, did 

not change the overall outcome that increasing use of second-line is considered cost-

effective when treating at all thresholds for the ranges tested.  

Even when the cost of pre-therapy genotyping was reduced by 90%, the scenario of 

implementing pre-therapy genotyping was still dominated by other strategies at every 

treatment initiation threshold. Likewise, a 90% reduction in the price of viral load testing 

alone did not change the cost-effectiveness outcomes of any of the strategies associated to 

increased viral load testing. This is likely because viral load tests are also used in the baseline 

scenarios, so the incremental difference in the scenarios with biannual viral loads is limited.  

Under the more realistic assumption that second-line treatment is limitedly used, switching 

all individuals with confirmed virological failure that persist even after adherence counselling 

is still considered  cost-effective when initiating treatment at CD4 <350 (ICER $1,437, IQR 

$643-$3,882) and CD4 <500 ($1,681, $488-$8,491) and very cost-effective when initiating 

treatment immediately ($563, $433-$792). It should also be noted that when second-line 

treatment is limitedly used, the prevalence of TDR is predicted to be as high as 30% in 10 

years with immediate treatment, highlighting the importance of second-line use (Figure S6). 
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Table 3. Cost-effectiveness of strategies to reduce transmitted drug resistance by treatment initiation threshold. Within each treatment 
initiation stratum, average and incremental cost-effectiveness ratios are calculated based on the total additional cost and QALYs gained. 
 

Intervention 
Total Cost (Millions 

USD) 
QALYs Gained Infections 

Averted 
Average Cost- Effectiveness 

Ratio 
Incremental Cost- 

Effectiveness Ratio Conclusion 

Treatment at CD4 <350  33.8 (31.6-36.0)      

Increase second line 34.0 (31.7-36.2) 81 (-199-351) 
104 (83-

130) 
$1,925 ($450-Dominated) 

$1,925 ($450-
Dominated) 

Cost-
Effective  

Viral Load every 6 
months, for first two 
years on treatment 

34.1 (31.8-36.4) 3 (-250-280) 9 (6-12) $95,417 ($1,077-Dominated) 
Dominated ($725-

Dominated) 
Dominated 

Viral Load every 6 
months, for first two 
years on treatment & 
increased 2nd line 

34.2 (31.9-36.4) 29 (-234-287) 31 (23-40) $11,602 ($1,216-Dominated) 
Dominated ($908-

Dominated) 
Dominated 

Pre-therapy Genotyping 34.6 (32.3-37.0) 3 (-285-273) 7 (5-10) 
$329,018 ($3,014-

Dominated) 
Dominated ($3,387-

Dominated) 
Dominated 

Continual Viral Load 
every 6 months 

38.4 (35.9-41.0) 16 (-258-297) 25 (18-34) 
$283,020 ($15,844-

Dominated) 
Dominated ($24,765-

Dominated) 
Dominated 

Continual Viral Load 
every 6 months & 
increased 2nd line 

38.5 (35.9-41.1) 75 (-170-329) 
98 (75-

126) 
$64,539 ($13,884-

Dominated) 
Dominated ($18,177-

Dominated) 
Dominated 

Treatment at CD4 <500 38.5 (36.0-41.3)      

Increase second line 38.7 (36.2-41.5) 87 (-190-375) 
132 (105-

165) 
$2,234 ($505-Dominated) 

$2,234 ($505-
Dominated) 

Cost-
Effective 

Viral Load every 6 
months, for first two 
years on treatment 

38.9 (36.4-41.7) -12 (-302-288) 12 (8-18) 
Dominated ($1,431-

Dominated) 
Dominated Dominated 
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Viral Load every 6 
months, for first two 
years on treatment & 
increased 2nd line 

39.0 (36.5-41.8) 26 (-277-318) 43 (33-56) $18,337 ($1,473-Dominated) 
Dominated ($1,290-

Dominated) 
Dominated 

Pre-therapy Genotyping 39.6 (37.1-42.5) -18 (-298-309) 13 (9-17) 
Dominated ($3,734-

Dominated) 
Dominated Dominated 

Continual Viral Load 
every 6 months 

44.0 (41.1-47.1) 2 (-290-310) 33 (24-43) 
Dominated ($28,250-

Dominated) 
Dominated Dominated 

Continual Viral Load 
every 6 months & 
increased 2nd line 

44.0 (41.2-47.2) 70 (-208-366) 
122 (95-

157) 
$72,975 ($15,593-

Dominated) 
Dominated ($21,720-

Dominated) 
Dominated 

Treat Immediately 39.9 (37.4-42.9)      

Increase second line 40.1 (37.5-43.0) 121 (-165-406) 
137 (109-

169) 
$1,612 ($463-Dominated) 

$1,612 ($463-
Dominated) 

Cost-
Effective  

Viral Load every 6 
months, for first two 
years on treatment 

40.4 (37.7-43.4) 17 (-292-331) 13 (9-19) $25,767 ($1,276-Dominated) 
Dominated ($1,315-

Dominated) 
Dominated 

Viral Load every 6 
months, for first two 
years on treatment & 
increased 2nd line 

40.4 (37.8-43.4) 33 (-276-344) 46 (34-58) $15,100 ($1,517-Dominated) 
Dominated ($1,544-

Dominated) 
Dominated 

Pre-therapy Genotyping 41.2 (38.5-44.2) 18 (-329-341) 14 (10-19) $69,252 ($3,620-Dominated) 
Dominated ($4,541-

Dominated) 
Dominated 

Continual Viral Load 
every 6 months 

45.6 (42.7-49.0) 19 (-276-320) 34 (25-45) 
$292,107 ($17,550-

Dominated) 
Dominated ($27,785-

Dominated) 
Dominated 

Continual Viral Load 
every 6 months & 
increased 2nd line 

45.8 (42.8-49.1) 81 (-212-355) 
127 (97-

160) 
$69,140 ($16,409-

Dominated) 
Dominated ($20,685-

Dominated) 
Dominated 
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DISCUSSION 

This mathematical model of the Kampala, Uganda setting predicts that the prevalence of 

TDR will rise from 6.7% up to between 6.8% and 11.1% over the coming decade. The 

absolute number of TDR cases is predicted to decline due to the preventative effects of 

earlier treatment. Among three patient monitoring strategies assessed in this analysis, the 

most TDR infections can be averted by increasing use of second-line treatment. Pre-therapy 

genotyping and twice yearly viral load monitoring are costly with limited health benefits at a 

population level, and therefore should not be prioritized in ART program implementation.  

We found that increased use of boosted PI-based second-line treatment is the only the cost-

effective approach for reducing TDR. Compared to NNRTIs, boosted PIs have a higher genetic 

barrier (a higher number of mutations are required to overcome drug selective pressure) for 

the development of drug resistance.15 Consequently, use of PIs is associated with a lower 

probability of resistance development during treatment and subsequent transmission of 

resistance to others.216 At the JCRC, yearly viral load monitoring is already common practice, 

as recommended by the WHO.14 No additional laboratory monitoring is therefore necessary 

to implement increased use of second-line treatment in this setting.  

Increasing viral load testing to more than once per year has a limited impact on TDR 

prevalence. This is in agreement with data from literature that showed that the risk of 

virological failure reduces with increased time of virological suppression.228, 229 Combining 

increased use of second-line treatment with twice-yearly viral load resulted in fewer QALYs 

gained than increased use of second-line treatment alone. This is due to the fact that 

increased viral load monitoring will also increase resuppression on first-line therapy.230 

However, the vast majority of resuppressed patients in our dataset went on to fail on first-

line therapy again after one year. Therefore, the increased resuppression rate result in two 

time periods of a patient failing on first-line therapy instead of one time period. Our model 

assigns slightly lower QALYs to the time individuals spend failing on therapy compared to 

being successfully suppressed on therapy (see Table S2). Therefore, more resuppression on 

first-line, as with viral load testing every 6 months, will lead to more instances of viral failure 

on first-line and therefore slightly lower QALYs on a population level over time. Once 

individuals are on a boosted PI-based second-line regimen, the likelihood of failure 

decreases significantly, due to the high genetic barrier.15 Thus, viral load determination 

remains of key importance for monitoring ART, but increasing its frequency to twice-yearly is 

not cost-effective or greatly impact TDR. 

Pre-therapy genotyping had little added benefit on a population level and is very expensive. 

Pre-therapy genotyping would potentially have a larger impact on TDR and be most cost-

effective if the baseline prevalence of TDR were higher in the modelled scenarios. Indeed, 

the simulations with the lowest ACERs of pre-therapy genotyping were the simulations in 

which TDR was the highest (data not shown). 
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Previous studies have investigated the impact and/or cost-effectiveness of laboratory-based 

patient monitoring compared to symptom-based patient monitoring.231-235 The majority 

have predicted that laboratory-based monitoring was cost-effective or cost-saving, but 

depends largely on test costs.231-233, 235 One study found that viral load testing every 12 

months is more cost-saving than viral load testing every 6 months, in agreement with our 

results of viral load every 6 months being cost-ineffective.235 Just two studies incorporated 

the preventative effects of laboratory-monitoring techniques on HIV transmission with cost-

effectiveness analyses, and found that regular viral load monitoring was highly cost-effective 

and even cost-saving.231, 233 A study by Phillips et al. evaluated virological monitoring while 

taking into account both drug resistance and HIV transmission.21 This study concluded that 

viral load tests every six months would reduce TDR by about 50% compared to clinical 

monitoring. These results cannot be compared to ours, as our baseline scenario included 

yearly viral load measurements.  

Our mathematical model and cost-effectiveness analysis has several strengths. To our 

knowledge, our model is the first to include multiple ART intervention strategies into a 

population-level model that accounts for HIV transmission dynamics, TDR, and cost-

effectiveness simultaneously within one dynamic model. Second, our model is also the first 

to demonstrate the cost-effectiveness of second-line treatment at several treatment 

initiation thresholds, and the consequences on TDR if second-line is only limitedly available. 

Third, this model combines data on transmitted and acquired HIV drug resistance from the 

same geographic areas and time period, collected within the same research project. Finally, 

comprehensive cost data was also collected and utilized from the same study site. 

This study has some potential limitations. First, data on HIV drug resistance beyond 24 

months of ART in resource-limited settings is scarce. While data from high-income countries 

shows that acquired resistance after two years on therapy diminishes or reaches steady-

state,236, 237 it could be that acquired resistance after 24 months is as high as 12-24 month 

acquired resistance rates. If this were the case, it could be that we underestimated future 

TDR prevalence. Based on our model output it is unlikely that the outcomes of the different 

patient monitoring strategies would contradict our results. Second, our predictions rely on 

the reasonable assumption that drugs used as first-line will remain constant over the coming 

10 years, although ART guidelines are subject to change. Third, the cost of second-line is 

relatively low at the JCRC ($268 per year) compared to tenofovir-based first-line ($223 per 

year). When the costs of second-line are increased to $466 per year, twice that of a 

tenofovir-based regimen, increased second-line is no longer considered cost-effective. All 

other scenarios, however, continue to be dominated by increased second-line.  It is 

therefore of the utmost importance to keep the cost of PI-based second-line drugs as low as 

possible. 

We modelled a setting where second-line is widely used and viral load testing is performed 

annually. Availability of yearly viral load testing and second-line use is not mirrored across 
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sub-Saharan Africa. We have reported that increased use of second-line is cost-effective 

when viral load testing is already in place. We cannot say, however, how cost-effective 

increased second-line use would be in the absence of viral load testing. We attempted to 

address this issue by modelling a 50-70% reduction in second-line use, and found that that 

the cost-effectiveness of second-line became stronger or even cost-saving. We could not 

reliably model absence of viral load monitoring, as we do not have data to accurately 

calibrate the model for such an analysis and wanted our model to reflect available data. 

 

CONCLUSIONS 

While the prevalence of TDR is predicted to increase with ART initiation at higher CD4 cell 

count thresholds, the incident cases with TDR are predicted to decrease. Increasing the 

number of individuals who switch directly to second-line after confirmed first-line failure, in 

a setting where annual viral load monitoring is already in place, is both cost-effective and 

reduces TDR at all treatment initiation thresholds. Our observations are particularly relevant 

in light of the 2013 WHO guidelines which recommend treatment initiation at CD4 <500 

cells/μl.14 With the increasing rollout of first-line treatment, it is imperative to 

simultaneously expand access to yearly viral load testing coupled with  affordable second-

line ART, in order to facilitate appropriate switching to second-line ART.  
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Supplement: Chapter 4 

Table S1. Variables used to calibrate and accept simulations using the Monte Carlo filtering 

technique 

Parameter used to accept 

simulations 

Values Accepted  Source 

Transmitted Drug Resistance 

(TDR) Prevalence 

7.1%-10% in 2009 185 

Proportion of mutations that 

make up TDR* 

7-27% resistance to protease 

inhibitors 

23-43% thymidine analogue 

mutations (TAMs, encoding 

for resistance to zidovudine 

and stavudine) 

40-60% resistance to non-

nucleoside reverse 

transcriptase inhibitors 

(NNRTIs) 

185 

HIV Prevalence 7.1%-8.4% between 2005 

and 2009 

20, 195 

JCRC catchment area 

population 

300,000-372,000 in 2012 Local Data 

* The M184V (associated with resistance to lamivudine or emtricitabine) and K65R 

mutations (associated with tenofovir resistance) were also included in the model, but were 

not calibrated specifically to the model as these mutations were not observed in the PASER-

Surveillance data 185.   
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Figure S1. Simulations of HIV prevalence 1992-2010; Compared to Ugandan HIV Prevalence 

Data 

 

Figure S2. Simulations of HIV population 1992-2012; Joint Research Clinical Centre 

Catchment Area Population, Kampala, Uganda 

 

 



Increasing use of second-line to prevent drug resistance | 101 
 

 

1
0

1 

Figure S3. Proportions of CD4 cell count at treatment initiation by treatment initiation 

guideline 
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Table S2. Assumed utility weightings for QALYs 

Status Utility Weight* 

Susceptible 1.0 

Acutely infected 0.94 

Chronically infected 0.94 

Infected early AIDS stage 0.82 

Infected late AIDS stage 0.7 

Infected on treatment 0.94 

Resistant/failing on treatment 0.82-0.94 (assumption) 

*Weights based on a pooled analysis by Tengs and Lin (2002) 222 
 
 
Table S3. Costs used in treating opportunistic infections, per unit* 

Drug Unit Cost, USD 

Acyclovir 200mg $0.20 

Azithromycin 500mg $1.07 

Amphotericin B 50mg $14.00 

Ceftriaxone 2g $4.00 

Ciprofloxacin 500mg $0.20 

Fluconazole 200mg $0.40 

RHZ 150/75/400mg $0.24 

RHZE 150/75/400/275mg $0.48 

*All costs collected from the Joint Clinical Research Centre, Kampala, Uganda 
 

Table S4. Costs used in diagnosing opportunistic infections and monitoring HIV, per test 

Test/Supply Cost, USD* 

Antigen test $16.80 

Biopsy $23.60 

Complete Blood 
Count $5.00 

CD4 Test $14.00 

Chest X-ray $6.00 

CSF Analysis $19.20 

Liver function $26.00 

Lumbar puncture $40.00 

Renal function $20.40 

Skin biopsy $23.60 

Stool exam $12.00 

Swab & culture $12.00 

Sputum $14.40 

Urine analysis $12.00 

Viral load test $55.00 

*All costs collected from the Joint Clinical Research Centre, Kampala, Uganda; costs are 
inclusive of laboratory and hospital personnel (and exclusive cost of outpatient visit) 
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Table S5. Opportunistic infection rates hospitalization & treatment assumptions* 

Opportunistic 
Infections (OIs) 

Percent 
Hospitalized 

Duration of 
Hospitalization 

Drugs used to 
treat disease: 

Additional lab tests 
needed 

Herpes Zoster 0% N/A 
Acyclovir, 

5x200mg, 7 days - 

Diarrhea 20% 5 days 
Ciprofloxacin, 

2x500mg, 5 days 
Renal function, 

stool exam 

Tuberculosis 30% 7 days 
RHZE 2 months, 
RHZ 4 months 

Chest X-ray, 
sputum, liver 

function 

Pneumonia 30% 7 days 
Ceftriaxone,1x2g, 

7 days - 

Oral Candida 0% N/A 
Fluconazole, 

1x200mg, 7 days - 

Genital Ulcers 10% - 
Acyclovir, 

4x200mg, 14 days Swab & culture 

Esophageal 
Candida 10% 7 days 

Fluconazole, 
1x200mg, 7 days - 

Extra Pulmonary 
TB 50% 10 days 

RHZE 2 months, 
RHZ 10 months 

Chest X-ray, 
sputum, liver 

function 

Cryptococcal 
Meningitis 100% 17.5 days 

Amphotericin B, 
1x50mg, 14 days 

Lumbar puncture, 
CSF analysis, 
antigen test 

Kaposi's Sarcoma- 
Cutaneous 20% 6 days Start ART Skin biopsy 

Herpes Simplex 10% 7 days 
Acyclovir, 

4x200mg, 10 days Swab & culture 

Kaposi's Sarcoma- 
Visceral 100% 7 days Start ART Biopsy 

Urethritis 40% 7 days 
Azithromycin, 
1x2g, 7 days Urine analysis 

*Based on expert opinion of one treating physician and head nurse at the Joint Clinical 
Research Centre in Kampala, Uganda 
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Figure S4. Yearly transmitted drug resistance prevalence separated out by the following resistance 
mutation or class: a TAM mutation, M184V mutation, K65R mutation, or resistance to NNRTIs, PIs. 
Panel A is when treatment is initiated at a CD4 count <350 cells/µl, Panel B at CD4 <500 cells/µl, and 
Panel C is when treatment is initiated immediately.  
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Figure S5. One-way sensitivity analyses of the incremental cost-effectiveness of increasing use 
of second-line treatment at three different treatment initiation thresholds over 10 years. 

 
 
 
This diagram summarizes the results of a series of one-way sensitivity analyses on the 
incremental cost-effectiveness of increasing use of second-line treatment at three different 
treatment initiation thresholds. Each horizontal bar represents the full range of cost-
effectiveness ratios produced by varying a given model parameter across its plausible range. 
The vertical dotted lines represent the incremental cost-effectiveness ratio at each treatment 
initiation threshold ($1,612 per quality adjusted life year for immediate treatment, $2,234 per 
quality adjusted life year gained when treating at CD4 <500 cells/µl, and $1,925 per quality 
adjusted life year gained when treating at CD4 <350 cells/µl). The gray area represents the 
values that can be considered cost-effective. 
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Figure S6.  Sensitivity analysis: transmitted drug resistance prevalence by treatment initiation threshold 
when second-line treatment is limitedly available (solid line) versus scaled up to 80-100% (dashed line) 
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ABSTRACT 

Background Pre-exposure prophylaxis (PrEP) with tenofovir and emtricitabine effectively 

prevents new HIV infections. The optimal scenario for implementing PrEP where most 

infections are averted at the lowest cost is unknown. We determined the impact of different 

PrEP strategies on averting new infections, prevalence, drug resistance and cost-

effectiveness in Macha, a rural setting in Zambia. 

Methods A deterministic mathematical model of HIV transmission was constructed using 

data from the Macha epidemic (antenatal prevalence 7.7%). Antiretroviral therapy is started 

at CD4<350 cells/mm3. We compared the number of infections averted, cost-effectiveness, 

and potential emergence of drug resistance of two ends of the prioritization spectrum: 

prioritizing PrEP to half of the most sexually active individuals (5-15% of the total 

population), versus randomly putting 40-60% of the total population on PrEP. 

Results Prioritizing PrEP to individuals with the highest sexual activity resulted in more 

infections averted than a non-prioritized strategy over ten years (31% and 23% reduction in 

new infections respectively), and also a lower HIV prevalence after ten years (5.7%, 6.4% 

respectively). The strategy was very cost-effective at $323 per quality adjusted life year 

gained and appeared to be both less costly and more effective than the non-prioritized 

strategy. The prevalence of drug resistance due to PrEP was as high as 11.6% when all 

assumed breakthrough infections resulted in resistance, and as low as 1.3% when 10% of 

breakthrough infections resulted in resistance in both our prioritized and non-prioritized 

scenarios.  

Conclusions Even in settings with low test rates and treatment retention, the use of PrEP can 

still be a useful strategy in averting infections. Our model has shown that PrEP is a cost-

effective strategy for reducing HIV incidence, even when adherence is suboptimal and 

prioritization is imperfect.  
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INTRODUCTION 

Despite extensive prevention efforts there were 2.6 million new HIV infections in 2009 

globally.6 While the annual number of new infections has been decreasing since 1997, there 

is still an urgent need for more effective prevention strategies in addition to use of condoms 

and behavior change. Pre-exposure prophylaxis (PrEP) with daily oral tenofovir and 

emtricitabine has been shown to be efficacious in preventing HIV infections.28, 272, 273 In the 

recent Partner’s PrEP study among African heterosexual serodiscordant couples, daily PrEP 

was shown to prevent 73% of infections over three years of follow-up compared to the 

control arm.272 Similarly, the TDF-2 trial among heterosexual men and women in Botswana 

showed that daily PrEP prevented 62% of infections over a median of 1.1 years compared to 

the control arm.273 In the recent iPrEx study, daily PrEP was shown to prevent 44% of 

infections over a median of 1.2 years compared to the control arm in a highly sexually active 

cohort of men who have sex with men (MSM).28  The FEM-PrEP trial, among heterosexual 

African women did not, however, find a protective effect of PrEP, likely due to poor 

adherence.32    

It is unknown who should receive PrEP so that most infections are averted at the lowest 

cost. The cost-effectiveness of PrEP has not been established for a low-income country such 

as Zambia. Two hypothetical PrEP distribution scenarios could be utilized. First, PrEP could 

be given to more sexually active individuals, potentially by identifying a seronegative partner 

in a serodiscordant relationship or people with sexually transmitted infections (STIs) and 

their partners. Another hypothetical approach could be to randomly assign PrEP to 

individuals regardless of level of sexual activity in order to avert infections. 

The drugs used in PrEP regimens are the same as those recommended for first-line 

treatment regimens. A critical issue in PrEP use is therefore the development of HIV drug 

resistance in the population. Potential risks associated with using the same drugs for both 

prevention and for treatment can be illustrated by the use of nevirapine for prevention of 

mother-to-child transmission.33 Recent maternal use of nevirapine for prevention of mother-

to-child-transmission was associated with a higher probability of virological failure in the 

mothers receiving nevirapine as part of their first-line regimen.154  

Our objective is to use mathematical modeling to explore the possibilities of daily oral PrEP 

optimization using realistic data collected in the rural HIV clinic at the Macha Mission 

Hospital in Zambia. Rural settings such as Macha often face more barriers to treatment, such 

as large travel distances to clinics and fewer financial resources available.274 Particularly in 

these settings, optimized PrEP strategies can be of great additional value from both a public 

health and economic perspective. We therefore evaluated the impact of hypothetical 

scenarios in which PrEP is prioritized to individuals with the highest sexual activity or is 

distributed randomly. We could therefore determine cost-effectiveness at both ends of the 

PrEP distribution spectrum, from where PrEP is given to those at highest risk of becoming 
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infected, to giving PrEP to individuals regardless of risk. We additionally aimed to evaluate 

the risk for resistance development.  

 

METHODS 

Setting and population 

Our model is based on the rural population of Macha, Zambia and using data from the HIV 

Clinic at Macha Hospital. Macha is located in the Southern Province of Zambia, and 

approximately 80 km away from the nearest town, Choma.274 The hospital serves as a 

district-level referral hospital for rural health centers within an 80 km radius, with 90,000 

persons that are aged 12 years and over in the Macha Hospital catchment area.274 The 

antenatal prevalence between 2002275 and 2009 [local data] was stable around 7.7%. Macha 

Hospital has provided care to over 7500 HIV-infected adults and children since 2005 through 

the Government of Zambia’s antiretroviral treatment program, with additional support from 

the President’s Emergency Plan for AIDS Relief (PEPFAR) through the non-governmental 

organization, AidsRelief.274 Since the start of the clinic in 2005, treatment is implemented 

according to WHO guidelines, initially at CD4 <200 cells/mm3, and at CD4 <350 cells/mm3 

since 2010. The HIV pharmacy is well-stocked and treatment is readily available for all 

diagnosed patients who drop below the treatment threshold. 

Model and assumptions  

A compartmental deterministic mathematical model was constructed and parameters were 

chosen to represent the Macha setting (Table 1). Our model stratifies disease progression 

into an acute stage, a chronic stage and two AIDS stages (Figure S1). Two AIDS stages are 

included because during the final months before death, patients will have limited sexual 

activity and are therefore assumed not to transmit HIV.9, 12  The acute stage has a duration 

that ranged between 10 and 16 weeks.8 The combined duration of the acute stage and the 

chronic stage is 8.5-8.7 years.9, 276 The pre-final AIDS stage ranged between 6 and 12 

months.9, 12 Compared to the chronic stage, it was assumed that infectivity was 27-43 times 

higher in the acute stage55 and 3-5 times higher in the AIDS stage9, 12 (Table 1).  

Individuals that test positive for HIV can reduce their risk behavior,42, 277, 278 largely due to a 

reduction in acquisition of new partners.277 Based on recent work done in neighboring 

Zimbabwe, it is assumed in our model that patients will reduce the acquisition of new 

partners by 0-40%.279  

Model Description and Validation  

Following earlier model’s methods for defining risk structure,187, 280 the model identifies four 

sexual activity groups ranging in the number of new sexual partners per year.193 Data about 

the proportion of individuals in a particular sexual activity group and their number of new  
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Table 1. Model Parameters  

Description Estimate or Range* Reference 

Test rate 10-20% Macha, Zambia 
Rate of being tested in the acute stage of 

HIV 
50% of the test rate Assumption** 

Rate of being tested in the chronic stage 
of HIV 

test rate Macha, Zambia 

Rate of being tested in the AIDS stage test rate + 10%  Macha, Zambia 

Disease stages duration  8, 9, 12, 276 
Acute stage 10-16 weeks  
Chronic stage 8.31-8.43 years  
AIDS stage 6-12 months  
Final AIDS stage 7-13 months  

Proportion of people in sexual risk groups  Model 
Calibration 

Highest*** 1.0%-2.9%  
2nd*** 15.1%-24.0%  
3rd 10%  
Lowest 63.1%-73.9%  

Number of partners per year in each sexual 
risk group 

  Model 
Calibration 

Highest*** 7-31  
2nd*** 1.5-2.6  
3rd 0.1  
Lowest 0.03  

Mortality rates per year  197 
Population 0.02  
Chronic HIV stage 0.098  
AIDS stage 0.63  
On treatment during chronic stage, first 3 

months 
0.05-0.098 

 

On treatment during chronic stage, second 
3 months 

0.03-0.06 
 

On treatment during chronic stage, 6+ 
month 

0.02-0.05 
 

On treatment during AIDS stage, first 3 
months 

0.1-0.3 
 

On treatment during AIDS stage, second 3 
months 

0.05-0.12 
 

On treatment during AIDS stage, 6+ month 0.03-0.06  

Linkage to care from test to treat  70% Macha, Zambia  

Proportion of people on PrEP     
Non-prioritized PrEP 40-60%† Assumption 
Prioritized PrEP (approximately half of 

highest two sexual risk groups) 
5-15%‡ 

Assumption 
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Effectiveness of PrEP   
28, 272, 273 Moderate Adherence 20-60% 

High Adherence 50-90% 

Reduction in transmissibility of those patients 
on treatment 

90-100% 7, 43, 46 

Rate of resistance among those infected 
despite use of  PrEP 

10%, 50%, 100% 
Assumption 

Rate of discontinuation of PrEP (not due to 
resistance) 

4-5% 215 

Number of HIV tests per year on PrEP   1-4 Assumption  

Number of HIV clinic visits in first year 8 Macha, Zambia 

Number of yearly HIV clinic visits after first 
year 

4 
Macha, Zambia 

Costs 

Cost of PrEP per year (TDF/FTC) (§) $126 ($137.12) 281, 282 

Cost of testing negative for HIV per test (§) $1 ($3.78) Macha, Zambia, 
282 

Cost of testing positive for HIV per test (§) $3.84 ($9.4) Macha, Zambia, 
282 

Cost of an inpatient day in the hospital $10.27 282 

Cost of an outpatient visit in the hospital $2.78 282 

Cost of treatment per year (TDF/FTC+EFV) (§) $194 ($243) 281 

Cost of a CD4 Count test (§) $31-$39  
($34-$42) 

Macha, Zambia, 
282 

   

Cost discounting rate per year 3%   

Exchange rate, Zambian Kwacha to USD over 
year 2011 

3845:1  

*All ranges are uniformly distributed, except where indicated  
** Due to window phase of antibody-based test 
***Not uniformly distributed, see figure S2 
† Not uniformly distributed, median 43% over 10 years; 
‡ Not uniformly distributed, median 12% over 10 years; 
§Comprehensive costs, including costs of outpatient visits, additional laboratory tests, 
laboratory personnel  

 

partners are not available. Using the Monte Carlo filtering techniques283 we parameterized 

the different sexual activity groups and only accepted the 1795 simulations that were 

associated with a prevalence of 7.7% (±0.05%) from 2002 until 2009 in accordance with 

Macha. Monte Carlo filtering allowed us to test the impact of PrEP over a wide range of 

sexual activities, as a wide variety of sexual risk group combinations resulted in the 

appropriate HIV prevalence (Table 1).  

In summary, the highest sexual activity group had an average of 13 new partners per year 

and made up on average just 2% of the population, representing a core group of highly 
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sexually active individuals. This group is instrumental in determining the peak of the 

epidemic. Only simulations where this group was small and their number of partners were 

high allowed the epidemic to peak appropriately. The second highest sexual activity group 

had on average 2 new partners per year and made up a more substantial 18% of the 

population, representing individuals whom are not in steady or monogamous relationships. 

This is the group is an important factor in determining where the equilibrium of the 

epidemic is reached. The only simulations that were accepted into the analysis were the 

ones in which this group allowed the epidemic to reach an equilibrium prevalence of 7.7% 

(±0.05%) from 2002-2009 in accordance with Macha data. The two lowest groups had <1 

new sexual partner per year, representing individuals in long term relationships or 

marriages. The final distribution of proportion of sexual activity groups and number of new 

partners per year are given in Figure S2.  Other variables used to calibrate the model 

included: transmissibility during the acute stage of infection, transmissibility during the AIDS 

stage of infection, the rate at which individuals moved from acute to chronic infection, rate 

at which individuals move from the AIDS stage to the AIDS final stage, and the rate of mixing 

between sexual risk groups (epsilon). Full model description including equations can be 

found in the Text S1.  

HIV testing  

Approximately 10% of individuals aged 12 and older undergo an HIV-test yearly in Macha. In 

our model, we studied the impact on the HIV-epidemic of test rates that were ranged 

randomly between the current level and a double proportion of 20%.284 We assumed 

different test rates for different stages of disease progression (Table 1).  

Treatment  

After a positive HIV-test, 70% of individuals are retained in care. Treatment is then started at 

CD4 <350 cells/mm3. In the AIDS stage, there is therefore immediate treatment after 

diagnosis. Additionally it takes approximately 4 years to progress from infection to CD4 <350 

cells/mm3 11. Treatment reduces the infectivity by 90-100% as compared to the chronic 

stage.7, 43, 46 

 

Scenario Assumptions 

Baseline: Our baseline in this model is the current practice in Macha (i.e. test rate 10-20%, 

retention 70% and start of treatment at CD4 <350 cells/mm3).  

Non-Prioritized versus Prioritized PrEP distribution:  We examined the impact of two 

hypothetical scenarios where PrEP is perfectly and imperfectly prioritized to represent both 

ends of the prioritization spectrum. In the first hypothetical scenario, we examined the 

impact of completely perfect prioritization by assigning approximately half of the individuals 

in the two highest sexual activity groups, 5-15% of the population (4,500-13,500 individuals), 

to receive PrEP. We assigned just half of the highest sexual activity groups, as identifying 

those groups completely would likely not be feasible. In the second hypothetical scenario 
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where PrEP is imperfectly prioritized, PrEP is assigned to half of the population in a non-

prioritized manner by assigning PrEP to 40-60% of the population at random (36,000-54,000 

individuals). Time to reach PrEP coverage was 1-2 years. 

PrEP adherence: Adherence is key in PrEP use as illustrated by all recent PrEP studies.28, 32, 272, 

273 Since it is unknown what level of adherence would be expected in Macha, we examined a 

high population-level adherence scenario and ranged PrEP effectiveness from 50%-90%, 

derived from the highly adherent in recent PrEP trials,28, 272, 273 and a moderate population-

level PrEP adherence scenario, where effectiveness ranged from 20%-60%.  

 

Drug resistance: Rates of drug resistance due to PrEP are currently unknown. Drug resistance 

may emerge in individuals who become infected with HIV despite the use of PrEP. It is 

unknown how rapidly resistance will emerge after PrEP failure. We therefore evaluated a 

scenario with low resistance development, where resistance develops in 10% of 

breakthrough infections (infections despite the use of PrEP). We also evaluated a moderate 

resistance and high resistance scenario, where resistance emerges in 50% and 100% of 

breakthrough infections respectively. The prevalence of drug resistance is expressed as the 

proportion of individuals with a resistant virus over the total number of infections in the 

population.  

Cost-effectiveness analysis 

In order to evaluate the feasibility of the range in PrEP implementations, we conducted a 

cost-effectiveness analysis. Each compartment in our deterministic model was assigned a 

range of cost and quality adjusted life year (QALY) depending on the intervention (Table 1, 

and Tables S1-S3). A QALY of 1 means one year of life lived in perfect health. As our base, a 

susceptible person not on PrEP was considered to have no reduction in health-related 

quality of life. Rates of HIV clinical tests were taken from Macha’s standard practice, 

including the different types of tests and how frequently they are administered. Costs and 

rates for hospitalization of HIV infected persons, opportunistic infections (Table S4), HIV 

testing, and treatment, were all taken into account using costs from Macha and the WHO-

CHOICE costing database.282 Current ARV costs were taken from the 2011 Clinton Health 

Access Initiative negotiated prices.281 An intervention is said to be cost-effective if it costs 

less than three times the gross national income (GNI) per capita ($3210 in Zambia285) per 

QALY gained. An intervention is defined as very cost-effective at a cost up to one times the 

GNI per capital ($1070 in Zambia285) per QALY.224, 225 We calculated both the average cost-

effectiveness ratios where we compared each scenario to baseline, and the incremental 

cost-effectiveness ratios where we compared each scenario to the next least-costly 

scenario.226  We follow methodological guidelines on cost-effectiveness analysis226, and only 

consider the latter as meaningful for making optimal resource allocation decisions. All costs 

have been discounted yearly (converting future costs into present terms) at the standard of 

3%. 



Cost-effectiveness of PrEP in Zambia | 139 
 

 

Sensitivity Analysis 

We performed one-way deterministic sensitivity analysis of cost-effectiveness where our 

baseline model for comparison was the prioritized PrEP model with moderate PrEP 

adherence. Eight key input variables, HIV prevalence, PrEP efficacy, proportion of people in 

highest two sexual activity groups on PrEP, number of HIV tests per year for those on PrEP, 

cost of antiretroviral drugs, total costs depending on the exchange rate, cost and QALY 

discounting were considered to identify the sensitivity of our model. We also determined 

the amount of additional money that could be spent on infrastructure and programmatic 

costs of implementing prioritized PrEP and have the intervention still be (very) cost-effective.  

Ethics Statement 

Written informed consent was obtained from the study participants. Ethical approval was 

granted by the University of Zambia Biomedical Research Ethical Committee in 2008 before 

data collection began.  

 

RESULTS 

Baseline Scenario: Start of Treatment at CD4<350 cells/mm3  

The impact of treatment alone under the current guidelines of treatment at CD4 <350 

cells/mm3 reduces incidence, showing an 18% decline in new infections over 10 years.  The 

prevalence remained stable at 7.7% after 10 years, as treatment dramatically reduces 

mortality and patients therefore remain alive.  

Prioritized versus Non-Prioritized PrEP  

Compared to our baseline scenario of starting treatment at CD4 <350 cells/mm3, prioritizing 

PrEP will result in 3200 infections averted over 10 years (31% reduction; interquartile range 

(IQR) 23%-39%), whereas a non-prioritized PrEP strategy will result in just 2333 infections 

averted (23% reduction; IQR: 16-30%) (Figure 1A, 1E). The prevalence in the prioritized 

approach is lower after 10 years, at 5.7% (IQR: 5.2%-6.2%), compared to a prevalence of 

6.4% (IQR: 6.0%-6.7%) in the non-prioritized strategy (Figure 1B, 1F). 

Impact of adherence 

As expected, high PrEP adherence had a strong impact on the HIV epidemic as compared to 

moderate PrEP adherence in both the prioritized and non-prioritized strategies. The impact, 

however, was stronger than expected. In the non-prioritized strategy, compared to baseline, 

an estimated 4333 infections (42% reduction; IQR: 35%-50%) were averted with high  
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Figure 1. Prioritizing highest sexual risk groups versus a non-prioritized PrEP strategy, 

incidence and prevalence. 
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adherence to PrEP (Figure 1C), 2000 more than with moderate adherence. In the prioritized 

strategy, compared to baseline, an estimated 5697 infections (56% reduction; IQR: 47%-

64%) were averted with high adherence to PrEP (Figure 1G), almost 2500 more than with 

moderate adherence. High adherence also has a strong impact on the HIV prevalence after 

10 years of the intervention, with a median prevalence of 5.1% (IQR: 4.7%-5.5%) in the non-

prioritized strategy and 4.2% (IQR: 3.6%-4.7%) in the prioritized strategy (Figure 1D, 1H).  

Figure 2. Prevalence of drug resistance due to PrEP over 10 years. 

Drug resistance and PrEP 

Investigating the impact 

of PrEP on resistance 

development showed that 

when 100% of 

breakthrough infections 

developed a drug 

resistant virus with 

moderate adherence, the 

prevalence of drug 

resistance due to PrEP 

was strikingly high. In the 

prioritized PrEP scenario, 

there was an 11.6% (IQR 

10.3%-12.8%) prevalence 

of drug resistance due to 

PrEP alone after 10 years 

(Figure 2). Assuming a 

50% and 10% drug 

resistance rate among 

PrEP users resulted in a 

6.1% (IQR 5.3%-6.8%) and 

1.3% (IQR 1.1%-1.4%) 

drug resistance prevalence due to PrEP after 10 years. The results were almost identical in 

our non-prioritized scenario.  

Adherence, however, appears to strongly impact the prevalence of drug resistance due to 

PrEP. With high adherence, the drug resistance due to PrEP was 7.1% (IQR 5.3%-8.8%) in the 

prioritized scenario, approximately 4% lower than in the moderate adherence scenario, 

assuming a 100% drug resistance rate among PrEP users. Assuming a 50% and 10% drug 

resistance rate among PrEP users resulted in a 3.7% (IQR 2.6%-4.6%) and 0.8% (IQR 0.5%-

1.0%) drug resistance prevalence due to PrEP after 10 years in the prioritized scenario. The 

results were again almost identical in our non-prioritized scenario with high adherence. 
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Cost-effectiveness 

We evaluated the cost-effectiveness of the prioritized and non-prioritized PrEP interventions 

compared with the baseline (Table 2). Our baseline scenario cost $4.3 million (IQR: $3.8-$4.7 

million) over 10 years. Of that amount, approximately 54% would be covered under PEPFAR 

as long as PEPFAR continues. A total of 10222 infections would be expected over 10 years. 

The prioritized PrEP strategy cost an additional $11.5 million (IQR: $11.1-$13.4 million) 

compared to the baseline strategy. A median of 36,216 QALYs would be gained (IQR: 26,174, 

45,690) with the prioritized scenario over 10 years.  

The non-prioritized PrEP strategy cost an additional $43.9 million (IQR: $41.4, $46.0 million) 

compared to baseline. A median of 23,571 QALYs would be gained (IQR: 15,680, 31,764) 

with the non-prioritized scenario over 10 years.  

Based on the interpretation of average cost-effectiveness ratios only, both strategies can be 

considered (very) cost-effective. However, the interpretation of incremental costs and 

effects of the prioritized PrEP strategy as compared to the non-prioritized strategy reveals 

that the former strategy is both less costly and more effective, and ‘dominates’ the latter. 

This means that the non-prioritized PrEP strategy cannot be considered economically 

attractive. The incremental cost-effectiveness ratio of the prioritized PrEP strategy is $323 

per QALY (IQR: $257, $428) and this strategy can thus be considered very cost-effective.  

Sensitivity Analysis 
 

One-way sensitivity analyses (Figure 3) highlighted the eight key input parameters of our 

model. Even when just 10% of the highest two sexual activity groups are prioritized for PrEP 

(2% of the total population, or 1,800 individuals), the cost per QALY is actually lower than 

when approximately half of the two highest sexual activity groups are prioritized, at only 

$177 per QALY. This shows that targeting just a small fraction of those individuals in a higher 

sexual activity group would be optimal from a cost-effectiveness perspective.  
 

It appears that PrEP will be more cost-effective in regions with higher HIV prevalence at $161 

per QALY in a region with a prevalence of 15%. In contrast, prioritized PrEP is no longer very 

cost-effective for a prevalence of 1%, at $2062 per QALY. The remainder of the parameters--

frequency of HIV testing on PrEP, PrEP effectiveness (as controlled by adherence28), cost of 

ARVs, cost and QALY discounting rate, and exchange rate-- did not result in large differences 

in cost-effectiveness from our baseline prioritized model. 
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Table 2. Cost-effectiveness of PrEP interventions, and additional money available for programmatic costs in each intervention over 10 years for the 

intervention to remain very cost-effective, or cost-effective 

  

Total Effects 

   

Amount that can be spent 

and still have the intervention 

be: 

Intervention 

Total cost in $ 

Millions (*) 

(IQR**) 

Infections 

averted (% 

averted) 

(IQR) 

QALYs gained 

(IQR) 

Average Cost- 

Effectiveness 

Ratio 

Incremental 

Cost- 

Effectivenes

s Ratio† 

Conclusion 
Very Cost-

Effective in $ 

Millions (IQR) 

Cost-

Effective in $ 

Millions 

(IQR) 

Baseline, standard 

care, no PrEP 

4.3 (54%) (3.8, 

4.7) 
- - - - - - - 

Non-prioritized PrEP, 

PrEP randomly 

distributed 

48.2 (4%) (45.7, 

50.3) 

2333 (23%) 

(16%, 30%) 

23571 (15680, 

31764) 

$1843 ($1386, 

$2724) 
Dominated‡ - - - 

Prioritized PrEP to 

most sexually active 

15.8 (13%) (14.7, 

16.9) 

3200 (31%) 

(23%, 39%) 

36216 (26174, 

45690) 

$323 ($257, 

$428) 

$323 ($257, 

$428) 

Very Cost-

Effective 

25.2 (16.2, 

33.2) 

98.4 (69.4, 

124.9) 

*Percentage of total costs that are currently covered under PEPFAR –primarily ARV treatment. 
** IQR: Interquartile range 
† When non-prioritized PrEP is compared to prioritized PrEP 
‡ Less effective and more costly than prioritized PrEP 
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If implemented, the prioritized PrEP strategy could spend an additional $25.2 million over 10 

years on infrastructure and programmatic costs and remain very cost-effective ($94.8 million 

to remain cost-effective) (Table 2).   

 

 
 

DISCUSSION 
 

Our model has shown that PrEP is a cost-effective strategy for reducing HIV incidence, even 

when prioritized imperfectly and distributed regardless of risk of acquiring HIV. If PrEP can 

be perfectly prioritized to the most sexually active individuals, it is a very cost-effective 

prevention method and averts 31% of infections averted over 10 years at $323 per QALY.  

Even when prioritizing just a small fraction of the highly sexually active, PrEP is very cost-

effective at $177 per QALY gained.  

 

The prevalence of drug resistance due to PrEP could be high. It is therefore important to 

closely monitor patients who become infected despite the use of PrEP for resistance. Drug 

resistance is, however, much lower when adherence to PrEP is higher.  

A strength of our study is access to cost and epidemiologic data from Macha, a rural setting 

in Zambia.  Access to this dataset enables us to make reliable predictions about the potential 

implementation of PrEP. Another strength is that there is limited migration into and out of 

Macha as transportation and mobility are limited. Migration can have a major impact on a 
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local HIV epidemic, and also on a mathematical model attempting to capture HIV dynamics 

in a population. The population in Macha has, however, remained fairly stable over time.   

A limitation of our modeling approach is that highly sexually active individuals are difficult to 

identify. Nonetheless, we found that cost-effectiveness remained the same if only 10% of 

the high sexual activity groups could be prioritized (2% of the total population). Health care 

providers could begin with prioritizing those individuals who present with STI symptoms at 

clinics, or are identified as the seronegative partner in a serodiscordant relationship. Over a 

wide spectrum of adherence and PrEP prioritization, we predict that PrEP will reduce HIV 

incidence and will be cost-effective. 

 

Our model does not take into account administrative program costs286, as they would vary 

widely depending on the precise intervention used. We have also not included indirect costs, 

as these are very difficult to quantify. We have instead shown the additional amount that 

could be spent on those costs and retain cost-effectiveness. The government of Zambia or 

donors could invest an additional $25,200,000 over 10 years in the implementation of 

prioritized PrEP, and have it remain very cost-effective.  

Previous models have shown the potential impact of PrEP. A model by Pretorius et al. 

evaluated cost-effectiveness in a generalized South African epidemic.287 When all individuals 

were assigned to receive PrEP, they showed a decrease in incidence in 2025 of about 40% 

compared to their baseline. This is approximately in line with our findings, albeit a bit low 

considering that we assigned PrEP to half of our population.  

A model by Abbas et al. investigated the factors influencing the emergence and spread of 

HIV drug resistance arising from PrEP rollout, based on a general mature epidemic in sub-

Saharan Africa.288 In their PrEP scenario analyses, the largest decrease in infections was 

achieved with a non-prioritized strategy (31% in an optimistic scenario, similar to our “high 

adherence” scenario; 7% in realistic, similar to our “moderate adherence”) and the smallest 

decrease with the prioritized-by-activity strategy (8% in optimistic, 3% in realistic). The 

benefits of PrEP in this model were much lower than estimates from our model. Reasons for 

this could be their definitions of optimistic and realistic, as well as the level of protection 

offered from PrEP.   

In iPrEx, HIV drug resistance due to PrEP was not a major issue,28 likely due to monthly 

monitoring of participants for seroconversion. The only resistance found was in those with a 

false negative HIV test at randomization and started PrEP. The study by Abbas et al. has also 

examined the emergence of drug resistance due to PrEP in a heterosexual sub-Saharan 

epidemic.288 In agreement with our results, the Abbas model has shown that there is not 

much difference in the prevalence of drug resistance in a non-prioritized or prioritized PrEP 

scenario, but that higher PrEP adherence would result in less drug resistance. The total 

prevalence of resistance in their optimistic scenario was about 1.9-2.5% and 9.2-9.9% in 
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their realistic scenario. If we had evaluated the same measure of drug resistance, these 

figures are likely lower than ours.  

Several prevention strategies using antiretroviral drugs have been shown to be effective in 

reducing new infections with HIV. These strategies include antiretrovirals for prevention of 

mother-to-child transmission,154, 155 topical tenofovir as an intra-vaginally applied 

microbicide34 and earlier start of treatment as prevention.7 Our baseline model looks at the 

impact of starting treatment at a CD4 count of <350 cells/mm3, and found that starting 

treatment at that cutoff is already an intervention. Incidence was reduced by more than 30% 

after 10 years.  

iPrEx is the first study to be published looking at the efficacy of PrEP, and was investigating 

an MSM community with high numbers of sexual contacts. Results on the effectiveness of 

PrEP in heterosexuals have also been reported.32, 272, 273 FEM-PrEP trial had enrolled 1,951 

African women to investigate the efficacy of TDF/FTC as PrEP, and was recently discontinued 

due to lack of an effect, likely due to adherence.32  Two studies, however, found more 

encouraging results. The Partner’s PrEP study of 4,758 serodiscordant couples based in 

Kenya and Uganda found a 73% reduction in risk of the participants on TDF/FTC compared to 

placebo.272 Similarly, the CDC’s Botswana-based TDF2 study found a 63% reduction in risk of 

those assigned to receive daily PrEP.273 Adherence to PrEP is key as the highly adherent in 

both iPrEx and Partner’s PrEP appeared to have the same level of high PrEP efficacy, showing 

that PrEP works similarly irrespective of MSM or heterosexual transmission. 

Even in settings with low test rates and treatment retention, the use of PrEP can still be a 

useful strategy in averting infections. Our model has shown that PrEP is a cost-effective 

strategy for reducing HIV incidence, even when adherence is suboptimal and prioritization is 

imperfect. Particularly in high prevalence settings, prioritizing PrEP to high sexual activity 

groups could be a cost-effective way to curb the epidemic. Effective ways to prioritize high 

sexual activity groups in a heterosexual epidemic and maximize adherence should be 

investigated further in order to increase the numbers of infections averted and cost-

effectiveness.  
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Supplement: Chapter 6 

Figure S1. Structure of the compartmental deterministic model, full description on next page: 
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1: Structure of the model, continued. The figure is a schematic representation of the dynamic 

process by which individuals become infected with HIV or resistant HIV due to PrEP, become 

tested and are given treatment. A proportion of individuals on PrEP will develop a drug 

resistant virus due to PrEP use, and will progress through infection with a resistant virus. The 

force of infection is the rate by which susceptible individuals, on PrEP or not, become 

infected. Without treatment, infected patients progress through four stages: the acute 

stage, the chronic stage, an AIDS stage in which patients have a limited level of sexual 

activity and the final AIDS stage in which patients have no sexual activity. Individuals in the 

dark grey boxes have not been diagnosed with HIV and did not adapt their risk behavior. 

After testing positive for HIV, individuals move to a light grey box with the corresponding 

disease stage and adapt their behavior. Individuals on treatment (white boxes on bottom) 

move through three different periods defined by the time since start of antiretroviral drug 

therapy and the disease stage in which treatment was started. These periods and disease 

stages were included as mortality depends on time since start of treatment and the CD4 

count at start of treatment.  

All boxes have different mortalities. All boxes (except the ones with susceptible individuals) 

contribute to the force of infection, but all with different infectivity. The mathematical 

equations are listed in Text S1. Parameters and ranges can be found in Table 1, as well as in 

Tables S1-S4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Cost-effectiveness of PrEP in Zambia | 149 
 

 

 
 
 
 
 
 
 
 



150 | Chapter 6 Supplement 
 

 

Text S1. Model Description and equations 

The state variables and HIV transmission equations for the model are shown below. There 

are four activity classes i based on the partner acquisition rate change: class 1 in which 

individuals have 7-31 partners per year, class 2 with 1.5-2.6 partners, class 3 with 0.1 and 

class 4 with 0.03.   

The model included four HIV infection stages k: class 1 is the acute stage, class 2 is the 

chronic stage, class 3 is the pre-final AIDS stage in which individuals have limited sexual 

activity. Class 4 is the final AIDS stage in which patients do not have any sexual intercourse 9. 

During treatment, the model includes two infection stages l: class 1 are individuals who were 

in the recent or chronic stage before start of treatment, class 2 are patients who were in one 

of the AIDS stage before antiretroviral therapy was initiated. 

A proportion of individuals can be assigned to receive pre-exposure prophylaxis (PrEP) or not 

( ). Of those that are assigned PrEP, a proportion will develop resistance due to PrEP ( ). 

The model includes two states of drug resistance r, state 1 is infected with a non-resistant 

virus, state 2 has a resistant virus due to PrEP use. 

Patients progress through three treatment stages m: The first two treatment stages occur, 

respectively, during the first three months (stage 1) and months four to six after start of 

treatment (stage 2). Patients receiving antiretrovirals for more than six months are in stage 

3. 

State variables  

iE         = Entry rate susceptible individuals, i=1..4 

iS   = Susceptible individuals, i=1..4 

P

iS        =           Susceptible individuals on PrEP, i=1..4     

, ,

U

i k rI   = HIV infected individuals, unaware of their infection, i=1..4, k=1..4, r=1..2 

, ,

T

i k rI    = HIV infected individuals who tested positive for HIV, i=1..4, k=1..4, r=1..2 

Ii,l ,m

Rx  = Infected individuals receiving treatment, i=1..4, l=1..2, m=1..3 

Other variables 

,i k   = Force of infection, i=1..4, k=1..4 

,

P

i k         =         Force of infection, with use of PrEP, i=1..4, k=1..4 

iN   = Number of individuals in sexual activity class i, i=1..4 

   = Mortality general population 

k   = Mortality untreated HIV infected patients in infection stage k, k=1..4 

,

Rx

l m       = Mortality treated patients in treatment stages l and m, l=1..3, m=1,2 

k          = HIV infection progression rate by stage k, k=1..4 

k          = Proportion of patients tested for HIV in stage k, k=1..4 

kRX      = Proportion of patients starting treatment in progression stage k, k=1..4 

   = Proportion of patients that are retained in care 

           =          Rate of development of HIV-resistant virus due to PrEP use 
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   =          Proportion of patients on PrEP 

d   = Rate of discontinuation of antiretroviral treatment 

   = Effectiveness of PrEP 

   = Reduction in transmissibility of breakthrough infection 

Ordinary Differential Equations 

(1) 
, , , , ,90,000 P U T Rx

i i i i k r i k r l mE S S I I I       
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(1 )i i i i k i

k
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
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(3) 
4
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1
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k
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
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4 4
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k

        


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Force of infection 

The equation for the force of infection includes a mixing matrix ,

U

i kM  for patients unaware of 

their infection and a matrix 
,

T

i kM   for patients aware of their infection, with a different 

infectiousness for each stage, ,i k  . The elements of this matrix are i,k and represent the 

probability that an individual with i new partnerships per year will form a new partnership 

with a member who has k new partners. The rate at which the sexual partner changes for 

individuals in each sexual activity group i is expressed as ic . The values of the matrix depend 

on the degree of mixing ε. This degree can be fully assortative (ε=1), where partnerships are 

only formed within the same activity class. Or fully random (ε=0), where partnerships are 

randomly formed between different activity classes 193.  

(15)
, 4

1

(1U

i k

i i

i

k kM
c

N

N

c



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
 

(16)
, 4

1

(1T

i
k

k

i

i

k

i

M

c N

c N




 


 

Where δ = 1 when i = k, and δ = 0 when i ≠ k. Furthermore, ζ is the proportional reduction in 

acquisition of new partnerships after patients become aware of their infection. ζ ranges 

between 0 and 40% for k=1,2 and ζ = 0 for k=3,4. 
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In which ,

U

i k is the force of infection due to contact with patients unaware of their infection. 

Similarly, ,

T

i k and ,

RX

i k are the forces of infection due to contacts with patients tested positive 

for HIV and patients receiving treatment. Additionally, ,

P

i k is the force of infection due to 

contact of people on PrEP with all infected patients. 
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Table S1. Assumed utility weightings for QALYs 

Status Utility Weight* 

Susceptible 1.0 

Susceptible on PrEP 98-100%: 1.0 

0-2%: 0.9-1.0** 

Acutely infected 0.94 

Chronically infected 0.94 

Infected early AIDS stage 0.82 

Infected late AIDS stage 0.7 

Infected on treatment 0.94 

*Weights based on a pooled analysis by Tengs and Lin (2002) 222 

**0-2% will suffer from renal failure on these ARVs289, which could result in a reduction in 

quality of life, or go unnoticed.  

 

Table S2. Costs used in treating opportunistic infections, per unit 

Drug Unit Cost, USD Source 

Aciclovir 200mg $0.014 Macha, Zambia 

Amoxicillin 250mg $0.037 Macha, Zambia 

Amphotericin 

B 50mg $6.12 

Macha, Zambia 

Ciprofloxacin 250mg $0.029 Macha, Zambia 

Doxycycline 100mg $0.011 Macha, Zambia 

Fluconazole 200mg $0.125 Macha, Zambia 

RHE 150/75/400mg $0.025 290 

RHZE 150/75/400/275mg $0.06 290 

 

Table S3. Costs used in diagnosing opportunistic infections and 

monitoring HIV, per test 

Test/Supply Cost, USD* 

Antigen test $0.82 

CD4 Test $31-$39 

Chest X-ray film $0.83 

Creatinine test $0.15 

Hepatitis B $1.87 

Lumbar puncture $2.78 

Microscope slide $0.03 

RPR $0.16 

Cost of lab personnel, per minute $0.007 

*All costs taken from Macha, Zambia 



 
 

 

1
5

4 | C
h

ap
ter 6

 Su
p

p
lem

en
t 

Table S4. Opportunistic infection rates* and hospitalization & treatment assumptions** 

Opportunistic Infections 
(OIs), observed in Macha 

dataset 

Rate of OI 

Percent 
Hospitalized 

Duration of 
Hospitalization Drugs used to treat disease: 

Additional lab 
tests needed Chronic AIDS 

On 
Treatment 

Herpes Zoster 2.00% 6.40% 4.10% 5-15% 7 days Aciclovir, 5x800mg, 7 days - 

Diarrhea 0.46% 3.10% 2.10% 5-10% 3-7 days 
Ciprofloxacin, 2x500mg 3-5 
days - 

Tuberculosis 0.92% 3.10% 2.20% 90-100% 14 days RHZE 2 months, RHZ 4 months 

Chest X-ray, 3 
acid-fast bacillus 
(AFB) smears 

Pneumonia 1.00% 2.20% 1.20% 75-85% 5-7 days Amoxicillin, 4x1000mg, 7 days - 

Oral Candida 0.46% 2.40% 1.80% 0% - Fluconazole, 1x100mg, 7 days - 

Genital Ulcers 0.31% 1.40% 1.10% 0% - Doxycycline, 2x100mg, 7 days 
Rapid plasma 
reagin (RPR) 

Esophageal Candida 0.00% 0.15% 0.15% 20-30% 5-7 days 
Fluconazole, 1x200mg, 7-14 
days - 

Extra Pulmonary TB 0.15% 0.69% 0.38% 90-100% 14-21 days RHZE 2 months, RHZ 10 months 
Chest X-ray, 3 
AFB smears 

Cryptococcal Meningitis 0.08% 0.23% 0.08% 100% 21-28 days 

Amphotericin B, 2x50mg, 14 
days; Fluconazole, 1x400mg, 
14-365 days 

Antigen test, 
lumbar puncture 

Kaposi's Sarcoma- 
Cutaneous 0.00% 0.23% 0.23% 20-40% 7 days Start ART - 

Herpes Simplex 0.08% 0.46% 0.46% 0% - Aciclovir, 3x400mg, 5-10 days - 

Kaposi's Sarcoma- Visceral 0.00% 0.08% 0.00% 80-90% 14-28 days Start ART - 

Urethritis 0.08% 0.08% 0.08% 0% - Doxycycline, 2x100mg, 7 days - 

*Based on data from Macha 
**Based on expert opinion of three physicians, one in Macha, two from Erasmus MC 
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ABSTRACT 

Background Preexposure prophylaxis (PrEP) with tenofovir and emtricitabine can prevent 

new HIV-1 infections, but there is a concern that use of PrEP could increase HIV drug 

resistance resulting in loss of treatment options. We compared standardized outcomes from 

three independent mathematical models simulating the impact of PrEP on HIV transmission 

and drug resistance in sub-Saharan African countries. 

Methods All models assume that people using PrEP receive an HIV test every 3-6 months. 

The models vary in structure and parameter choices for PrEP coverage, effectiveness of PrEP 

(at different adherence levels) and the rate with which HIV drug resistance emerges and is 

transmitted. 

Results The models predict that the use of PrEP in conjunction with antiretroviral therapy 

will result in a lower prevalence of HIV than when only antiretroviral therapy is used. With or 

without PrEP, all models suggest that HIV drug resistance will increase over the next 20 years 

due to antiretroviral therapy. PrEP will increase the absolute prevalence of drug resistance in 

the total population by less than 0.5% and amongst infected individuals by at most 7%. 

Twenty years after the introduction of PrEP, the majority of drug-resistant infections is due 

to antiretroviral therapy (50-63% across models), whereas 40-50% will be due to 

transmission of drug resistance, and less than 4% to the use of PrEP. 

Conclusion HIV drug resistance resulting from antiretroviral therapy is predicted to far 

exceed that resulting from PrEP. Concern over drug resistance should not be a reason to 

limit the use of PrEP. 
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INTRODUCTION 

In 2011, an estimated 2.5 million people became infected with HIV-1.291 Alongside behavior 

change, male circumcision, and condom use, there is an urgent need for novel HIV 

prevention strategies. Daily oral pre-exposure prophylaxis (PrEP) with tenofovir and 

emtricitabine can prevent 44-75% of new HIV infections.28, 272, 273 Two studies have found no 

protective effect of PrEP on prevention of new infections, but this was probably due to 

limited adherence.32, 292 

The use of PrEP can result in the emergence and spread of drug resistance33 if individuals on 

PrEP are infected with HIV before, or while taking PrEP. Only a single point mutation in the 

viral genome is required for resistance to tenofovir (K65R), and another single point 

mutation is required for resistance to emtricitabine (M184V).33 Drug resistance can 

therefore quickly emerge in HIV infected individuals that use PrEP. Indeed, resistance was 

shown to develop in most patients who started PrEP in the trials whilst also having an 

unrecognized acute infection.28, 32, 272, 273 However, in those individuals that became infected 

following assignment to PrEP, resistance developed in only a few, perhaps due to suboptimal 

adherence.28, 272, 273 

There is a concern that the preventive benefits of PrEP could be offset in the long-term by an 

increase in drug resistance to commonly prescribed antiretroviral drug regimens.293 The 

World Health Organization (WHO) recommends the use of tenofovir in first-line regimens. In 

addition, any first-line regimen is recommended to include lamivudine or emtricitabine,108 

which have comparable resistance profiles. The concern over resistance is highlighted by the 

US food and drug administration (FDA) that approved PrEP under the condition that drug 

resistance is evaluated in viral isolates from individuals that become infected while using 

PrEP.294 

Determining the impact of PrEP on the development of drug resistance requires prospective 

epidemiological studies. These studies would have to be unfeasibly large, expensive, and 

time consuming. Mathematical modeling has therefore been used to predict if PrEP can 

increase drug resistance in infected populations.288, 295-297 However, these mathematical 

models can make diverse predictions. This heterogeneity can be the result of differences in 

assumptions used in reconstructing HIV transmission and drug resistance, differences in the 

risk behavior structure, differences in the setting being modeled, or simply differences in the 

way the question is posed and the results articulated. 

We compared standardized outcomes from three independent mathematical models that 

determined the impact of PrEP on HIV transmission and drug resistance in areas in sub-

Saharan Africa where antiretroviral therapy (ART) is available. The outcomes of the models 

were standardized so that differences in results could not be due to differences in the way 

the results were articulated.  
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METHODS 

Study design 

We reviewed PubMed for mathematical models that studied the impact of PrEP in the 

presence of antiretroviral therapy on HIV drug resistance in sub-Saharan Africa (Keywords: 

PrEP, resistance, model). We also reviewed the proceedings of the main HIV conferences for 

similar models (the conferences considered were the Conference on Retroviruses and 

Opportunistic Infections -CROI, the meeting of the International AIDS Society- IAS and the 

AIDS meeting). Three groups agreed to participate in the model comparison exercise. The 

models included are (i) the Synthesis Transmission Model,21, 298 (ii) the South African 

Transmission Model,296 and (iii) the Macha Transmission Model297 (Table 1). The Synthesis 

Transmission model reports that PrEP will not increase the number of people living with a 

drug resistant virus.21, 298 The other models used a different metric and find that drug 

resistance can increase amongst infected individuals after PrEP implementation.296, 297  

Mathematical models 

The Synthesis Transmission Model is an individual-based stochastic model that simulates the 

HIV epidemic in Sub-Saharan Africa starting in the 1980s and incorporates age (range 15 to 

65 years), gender, condom-less sex, CD4 count, specific antiretroviral drugs and resistance. 

For this model comparison, the model was calibrated to the HIV epidemic in South-Africa. 

The overall adult HIV prevalence was 15.4% in 2013, when PrEP is introduced. Availability of 

ART starts in 2003 with initiating therapy in those with WHO stage 4 or CD4 cell count<200 

cells/µl. After 2010, the model assumes that ART is initiated at a CD4 count<350 cells/µl.21  

PrEP introduction in the model was implemented in the form of a program targeting sero-

discordant couples currently having condom-less sex.  

The South African Transmission Model is a deterministic mathematical model that simulates 

the HIV epidemic in the adult population (15-49 year-olds) of South Africa. The model 

assumes an HIV prevalence of 17% at the end of 2003 when roll-out of ART was started. The 

model assumes a treatment eligibility threshold of CD4< 200 cells/µl until the end of 2009 

when the threshold changes to CD4<350 cells/µl. The model is stratified according to 

gender, sexual activity level, stage of HIV-infection, drug resistance, and use of ART or PrEP. 

In this comparison, we use the base-case scenario.296 

The Macha Transmission Model is a deterministic mathematical model that focuses on 

Macha, a rural area in southern Zambia. The model assumes an HIV prevalence of 7.7% from 

2002 until 2009. Treatment is started in patients with a CD4 count<350 cells/µl. The model is 

stratified according to sexual activity level, stage of HIV-infection, drug resistance due to 

PrEP, and use of ART or PrEP.297 For this model comparison, the model was extended to 

simulate acquired resistance due to ART based on previously reported data.220  
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Assumptions of the models regarding PrEP 

The models assume that PrEP becomes available in areas where antiretroviral drugs have 

already been used for HIV treatment for 8 to 10 years. All models assume that people 

receiving PrEP will be tested for HIV at intervals between three and six months (Table 1). 

The models use different assumptions about the uptake of a future PrEP intervention. The 

Synthesis Transmission Model assumes that eventually 5% of the entire uninfected 

population will use PrEP. The South African Transmission Model and the Macha Transmission 

Model assume that 30% and 15% of the uninfected population, respectively, will receive 

PrEP once it is rolled out. 

The models assume that PrEP has a high efficacy in preventing infection with HIV and that 

the effectiveness of PrEP in daily practice depends on adherence.28, 272, 273 The Synthesis 

Transmission Model assumes that PrEP prevents all infections with HIV when a patient is 

fully adherent. When patients are partially adherent, the model assumes that percentage 

reduction in effectiveness of PrEP is equivalent to the percentage of PrEP doses taken.28 The 

South African Transmission Model also assumes that the effectiveness of PrEP depends on 

adherence, but used the efficacy of the Partners PrEP study.272 The South African 

Transmission Model and the Macha Transmission Model assume an average PrEP 

effectiveness of 75%296 and 44%,28 respectively. 

Assumptions of the models regarding drug resistance 

The outcomes of the models are standardized according to three important events that 

contribute to drug resistance: acquired resistance due to treatment with antiretroviral drugs, 

transmission of drug resistant HIV at the time of infection and acquired drug resistance due 

to the use of PrEP whilst infected. In the following paragraphs we discuss the assumptions 

(summarized in Table 1) made in the different models regarding these events. 

The Synthesis Transmission Model assumes that drug resistance due to PrEP is characterized 

by the M184V and/or K65R mutations.21, 298 The other models do not specifically represent 

different drug-resistance mutations but assume that resistance due to PrEP results from the 

M184V mutation, as was previously reported.28, 272, 273 

Epidemiological studies report wide variations in the risk of acquired drug resistance during 

treatment.120, 213, 299 The proportion of people on ART in whom acquired resistance 

developed by the end of the first year was 7% in the Synthesis Transmission Model, 16% in 

the South African Transmission Model19, 300 and 7% in the Macha Transmission Model.220 All 

models assume that the risk of acquired resistance gradually decreases after one year of 

ART.  

The models all assume that transmission of drug resistant HIV depends on the plasma HIV 

RNA viral load. The Synthesis Transmission Model assumes that the risk of transmitting wild- 
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Table 1.  Comparison of mathematical models and key assumptions 
 

Model name Synthesis 
Transmission Model 

South-African 
Transmission Model 

Macha HIV 
Transmission Model 

Setting and structure of the models 
Model authors Valentina Cambiano, 

Deenan Pillay, Jens 
Lundgren, Geoff 
Garnett, Andrew 
Phillips 

Ume Abbas, Robert 
Glaubius, John 
Mellors 

Brooke Nichols, 
Charles Boucher, Jan 
Nouwen, Janneke 
van Dijk, Phil Thuma, 
David van de Vijver 
 

Target population for 
PrEP 

Sero-discordant 
couples having 
unprotected sex in 
sub-Saharan Africa 

South African 
population, aged 15-
49 years 

Catchment area of 
rural Macha mission 
hospital, Zambia 
 

Structure Individual-based 
stochastic 

Deterministic Deterministic 

    
    
HIV related parameters 
Prevalence (years) 15.4% (2013) 17% (2004) 7.7% (2002 – 2009) 

 
Transmission Depends on plasma 

HIV-1 RNA viral load 
Probability in 
chronic stage is 
0.0017 per sex act, 
10-fold increase 
during acute stage, 
3-fold during final 
stage/AIDS 

10% per partnership 
per year, 4.9 fold 
increase in acute 
stage and 4.3 fold 
during AIDS stage 9 
 

    
CD4 count at start of 
treatment 

Before 2010 <200 
cells/µl; 2010 and 
later <350 cells/µl  

Before 2010 <200 
cells/µl; 2010 and 
later <350 cells/µl 

<350 cells/µl  

    
PrEP related parameters 
Coverage 5% (couples) 30% 15% 

 
Implementation of 
PrEP  

10 years after roll-
out of antiretroviral 
therapy 

8 years after roll-out 
of antiretroviral 
therapy 

8 years after roll-out 
of antiretroviral 
therapy 
 

HIV testing for those 
on PrEP 

Every 3 months Every 6 months Every 6 months 

Transmission 
reduction due to PrEP 

Depends on 
adherence  
taken from iPrex.28 
PrEP had a 100% 

Depends on 
adherence. Taken 
from Partners PrEP. 
272 PrEP has 90% 

Depends on 
adherence. An 
average value of 
40% was taken 28 
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efficacy when a 
patient was fully 
adherent. 
Otherwise, the level 
of protection 
depended on the 
level of adherence. 
The distribution of 
the level of 
adherence was 
taken from iPrEX  

efficacy when a 
patient has taken 
PrEP. 88% of persons 
receiving PrEP took 
the drugs 95% of the 
time, 12% took the 
drugs 1% of the 
time. 

Drug resistance 
Acquired resistance on 
treatment 

6.6% during first 
year, 8.9% after two 
years, 10.9% after 
three years, up to 
29.8% after 20 years 

16% during first 
year, 5% show 
virological failure 
after one year with 
60% of those 
developing 
resistance 

7% during the first 
year, additional 3% 
during the second 
year 220 and then 
additional 0.5% per 
year 
 

Acquired resistance on 
PrEP 

Depends on 
adherence and 
ranges between 25% 
and 44% after three 
months on PrEP  

Depends on 
adherence, 33% 
resistance within 
one month on 
average 

A pessimistic 
scenario was taken 
in which resistance 
always emerged 
 

Transmission of drug 
resistance 

Depends on plasma 
HIV-1 RNA viral load, 
M184V reduced by 
80% and K65R by 
30% 
 

75% probability 
relative to wild-type 
in case of acquired 
and 100% in case of 
transmitted ART or 
PrEP resistance.   

50% probability as 
compared to wild-
type 
 

Effectiveness of PrEP 
in preventing infection 
against resistant virus 

0-50% efficacy 
relative to wild-type 
(dependent on 
presence of M184V 
and/or K65R) 
 

25% efficacy relative 
to wild-type 

50% efficacy relative 
to wild-type 
 
 

Reversion of 
resistance after PrEP 
removal 

M184V reverts back 
to wild-type at a rate 
of 0.8 per three 
months , K65R at a 
rate of 0.2 per three 
months 
 

PrEP resistance 
reverts on average 
after 1.5 months 

A pessimistic 
scenario was taken 
in which reversion 
was assumed to not 
occur 
 

Impact on future 
treatment after PrEP 
failure 

Diminished 
(dependent on 
presence of specific 
mutations) 

Diminished Diminished 
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type or drug resistant HIV is the same for a given plasma HIV RNA viral load. However, 

because individuals with drug resistant virus are more likely to be on antiretroviral drugs, 

they are less likely to transmit because they have a lower plasma HIV RNA viral load.167 Given 

that a person with a virus containing the M184V mutation is the source of a new infection, 

the probability that this mutation is transmitted is 20%; the corresponding figure for K65R is 

70%.166, 301 The South African Transmission Model assumes that drug resistant virus acquired 

during treatment has a reduced fitness on average164 and is therefore 25% less 

transmissible167 than wild-type virus. Conversely, a virus with transmitted drug resistance is 

assumed to be equally transmissible as wild-type virus. The Macha Transmission Model 

assumes that resistance to PrEP involves the M184V mutation which is associated with 50% 

lower plasma HIV RNA level as compared to a wild-type virus165 and is assumed to be 50% 

less transmissible.181 In addition, all of the models assume residual virological efficacy of 

antiretrovirals against drug resistant viruses,302 resulting in partial effectiveness of PrEP in 

preventing infection with a resistant virus. In particular, the Synthesis Transmission Model 

assumes a partial effectiveness of PrEP against a drug resistant virus (in the presence of K65R 

or M184V) that is 50% lower than the effectiveness of PrEP against a wild-type virus. PrEP is 

assumed not effective against a virus containing both the K65R and the M184V mutations. 

Similarly, the South Africa Transmission Model and the Macha Transmission Model assume 

that drug resistance reduces the effectiveness of 75% and 50%, respectively.181 

The assumptions relating to the emergence of drug resistance amongst persons who 

continue or start using PrEP after becoming infected differ for the three models. Emergence 

of drug resistance in the Synthesis Transmission Model depends on number of active drugs, 

viral load and adherence. It is assumed that continued use of PrEP after infection results in 

the emergence of drug resistance in 25-44% of patients after three months with the risk 

continuing at the same rate thereafter.  The South African Transmission Model assumes that 

drug resistance will emerge in 33% of persons on average after one month of inappropriate 

use of PrEP after becoming infected and with the same risk thereafter. The Macha 

Transmission Model uses a worst-case scenario meaning that resistance will always develop 

after PrEP failure.  

The Synthesis Transmission Model and the South African Transmission Model assume that 

once PrEP is stopped, the virus can revert to a majority variant that is not resistant to 

antiretroviral drugs while off ART. There is evidence that the M184V mutation, which is the 

most frequently observed in PrEP failure, can revert within weeks to a wild-type virus that is 

susceptible to antiretroviral treatment.207 The Synthesis Transmission Model assumes that 

M184V reverts to a wild-type virus at a rate of 80% per three months. This rate is 

comparable to the South Africa Transmission Model that assumes that reversion takes 

places after an average of 1.5 months. The Macha Transmission Model follows a worst-case 

scenario assuming that reversion will not occur. The other models assume that after 

reversion, drug resistance remains present in a minority of viruses303 resulting in an 

increased likelihood of developing HIV drug resistance after start of ART initiation. 
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Output metrics 

To enable comparison between the models, each model simulated two strategies over 

twenty years: In the first strategy ART was provided and in the second strategy both PrEP 

and ART were provided. The key outputs of the models for comparison were the prevalence 

of HIV in the general population, the prevalence of HIV-drug resistance in the general 

population, the proportion of infected individuals with resistant infections, and the source of 

drug-resistant infection.  

 

RESULTS 

Impact of ART and PrEP on the 

prevalence of HIV 

All models assume that access to ART 

will increase in the next twenty years 

and that ART can prevent new HIV 

infections.7 Baseline model projections 

suggest that if PrEP is not 

implemented, HIV will decrease by a 

modest amount without PrEP: by 

almost 2% in the South-African 

Transmission Model and by less than 

1% in the two other models (Figure 1).  

All models find that availability of PrEP 

will result in greater decreases in HIV 

prevalence as compared to a situation 

where PrEP is not available. The 

greatest decrease is predicted in the 

South African Transmission Model  

 

Figure 1. Prevalence of HIV-1 in the next 
twenty years.  
The graphs show a comparison of the 
prevalence of HIV in the coming twenty 
years when pre-exposure prophylaxis 
(PrEP) is available (solid line) and when 
PrEP is not available (dashed line). 
Antiretroviral drugs are available for 
treatment of HIV, irrespective whether 
PrEP is available or not. Implementation of 
PrEP starts in year 0. 
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(from 18.2% prevalence at implementation of PrEP to 13.8% after twenty years) (Figure 1b). 

Smaller reductions in HIV prevalence are reported by the Synthesis Transmission Model 

which reports a decrease from 15.5% to 12.7% (Figure 1a) and the Macha Transmission 

Model which finds a reduction from 8.0% to 6.8% (Figure 1c). Results from previous models 

have suggested implementing PrEP in addition to ART can result in a reduction in the 

prevalence of HIV compared to the use of ART alone.287, 304 The larger decrease in HIV 

prevalence reported by the South African transmission model therefore seems to be 

ascribed to the greater proportion of uninfected individuals (30%) that are assumed to 

receive PrEP in this model as compared to the other models (PrEP coverage of 5% in the 

Synthesis Transmission Model 15% and the Macha Transmission Model) (Table 1). 

Impact of ART and PrEP on HIV drug resistance 

All of the models find that HIV drug resistance in the general population will increase in the 

next twenty years, and to fairly similar levels regardless of whether PrEP is used or not 

(Figure 2). In the Synthesis Transmission Model the population prevalence of drug resistance 

(measured as the proportion of drug resistance in the total population) will increase from 

less than 1% to approximately 4% in the next 20 years (Figure 2a). In the South-African 

Transmission Model the population prevalence will increase from about 1% to just over 2% 

(Figure 2b) and in the Macha Transmission Model the population prevalence of resistance 

will rise from about 1% but will remain at less than 2% (Figure 2c). The comparatively large 

increase observed in the Synthesis Transmission Model might be due to the higher long term 

probability of acquiring resistance during treatment assumed in this model which reaches a 

prevalence of 29.8% after twenty years (Table 1). Notably, all models suggest that PrEP will 

only have a modest impact on the population prevalence of HIV drug resistance with an 

increase of at most 0.34% (or an additional 34 individuals infected with a drug resistant virus 

out of 10,000 individuals) as found in the Macha Transmission Model (Figure 2c). Similarly, 

the South African Transmission Model predicts an increase of 0.18%. The Synthesis 

Transmission Model predicts that PrEP will result in a 0.29% reduction in the population 

prevalence of HIV drug resistance, which is ascribed to prevention of new HIV infections due 

to PrEP. 

In addition, the models predict that the prevalence of HIV drug resistance amongst those 

infected will increase over the next twenty years with and without the use of PrEP (Figure 

2d-f). The largest increase is observed in the Synthesis Transmission Model which predicts 

that, without PrEP, the prevalence of infected patients carrying a drug resistant virus will 

increase over the next twenty years from 4% to 29%, when PrEP is not available, or to 32% 

when PrEP is used (Figure 2d). Drug resistance in the South-African Transmission Model is 

predicted to rise from 5% to 14% when PrEP is not available, and from 5% to 17% if PrEP is 

used (Figure 2e). In the Macha Transmission Model resistance is predicted to increase from 

13% to 18% if PrEP is not implemented, but to about 25% if PrEP is used (Figure 2f). The 

relatively large discrepancy between the level of drug resistance in infected individuals with  
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Figure 2.  Prevalence of HIV-1 drug resistance in the next twenty years 
Figures a, b and c show the population prevalence of HIV-1 drug resistance (measured as the 
proportion of the total population that is infected with a drug resistant virus) when pre-exposure 
prophylaxis (PrEP) is available (solid line) and when PrEP is not available (dashed line). Figures d, e 
and f show the prevalence of HIV-1 drug resistance amongst individuals infected with HIV-1 when 
pre-exposure prophylaxis (PrEP) is available (solid line) and when PrEP is not available (dashed line). 
Antiretroviral drugs are available for treatment of HIV, irrespective whether PrEP is available or not. 
Implementation of PrEP starts in year 0. 

 

and without PrEP in the Macha Transmission Model is due to the assumption that the virus 
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b) South-African Transmission Model

0 5 10 15 20
0

1

2

3

4

5

Years

P
o

p
u

la
ti

o
n

 p
re

v
a
le

n
c
e

H
IV

 d
ru

g
 r

e
s
is

ta
n

c
e

(%
)

e) South-African Transmission Model

0 5 10 15 20
0

5

10

15

20

25

30

35

Years

P
re

v
a
le

n
c
e
 H

IV
 d

ru
g

 r
e
s
is

ta
n

c
e

(%
)

c) Macha HIV Transmission Model

0 5 10 15 20
0

1

2

3

4

5

Years

P
o

p
u

la
ti

o
n

 p
re

v
a
le

n
c
e

H
IV

 d
ru

g
 r

e
s
is

ta
n

c
e

(%
)

f) Macha HIV Transmission Model

0 5 10 15 20
0

5

10

15

20

25

30

35

Years

P
re

v
a
le

n
c
e
 H

IV
 d

ru
g

 r
e
s
is

ta
n

c
e

(%
)

with PrEP No PrEP



166 | Chapter 7 
 

 

Conversely, the other models assumed that acquiring resistance due to PrEP depends on 

adherence and that not all individuals will acquire a resistant virus (Table 1). 

Factors contributing to HIV drug resistance 

Figure 3 shows the proportional contribution of the three different factors that contribute to 

HIV drug resistance after 20 years. Of all persons living with a drug-resistant HIV infection 

after twenty years, the majority (50-63% across models) is due to drug resistance arising 

from combination ART for treatment of HIV. Transmission of resistance is the cause of drug 

resistance in 40-50% of individuals across models. The cause of resistance in the remainder 

of persons living with a drug-resistant infection (less than 4%) can be directly attributed to 

the acquisition of resistance whilst infected and using PrEP.  

Figure 3. Proportional contribution of events contributing to HIV-1 drug resistance twenty years after 
the introduction of pre-exposure prophylaxis (PrEP)

 
DISCUSSION 

We compared three independently developed mathematical models that predicted the 

impact of the implementation of PrEP on HIV drug resistance in sub-Saharan Africa. To 

facilitate the comparison, the models were re-analyzed to report common outcomes.  The 

models represented different generalized HIV epidemic settings and different PrEP 

intervention strategies. Despite these differences, all models predict that the prevalence of 

drug resistance will increase in the coming twenty years due to increased acquired and 

transmitted resistance. But, importantly, PrEP is predicted to have a limited impact on future 

levels of drug resistance and just a small proportion (less than 4%) of resistant infections are 

predicted to be directly attributable to PrEP. This result was consistently found in models 

with high and low PrEP coverage.  
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The models made different assumptions regarding the acquisition, loss and transmission of 

drug resistance and the effectiveness of PrEP, which reflects the existing uncertainty about 

these processes. Nevertheless, the relative consistency between the models is reassuring 

and shows that PrEP is not likely to have a major impact on future levels of drug resistance.  

The models included in this comparison have several limitations. First, the risk of acquired 

resistance due to antiretroviral treatment in sub-Saharan Africa used in the models was 

based on available data from the literature.19, 213, 220, 300 This risk for resistance has generally 

been collected in settings where laboratory monitoring techniques (estimation of plasma 

HIV RNA load and genotypic resistance tests) were not routinely available. Previous studies 

have shown that availability of such laboratory monitoring techniques is associated with a 

reduction in the incidence of drug resistance.19, 213 This reduction can be due to a reduced 

accumulation of drug resistance associated mutations as virological failure is identified in a 

timely manner. In addition, patients experiencing virological failure can be advised to 

improve adherence which may then reduce the risk of resistance. If laboratory techniques 

become widely available in the coming years, then the risk of acquired drug resistance is 

expected to decrease and therefore the proportion of drug resistance due to PrEP could 

increase. The absolute number of drug resistant infections that can be ascribed to PrEP 

would, however, be expected to remain limited; and more frequent monitoring of persons 

on PrEP for breakthrough infection would be expected to further limit resistance. 

Our standardized model comparison used a simple classification of drug resistance. As such, 

a distinction between particular drug resistance associated mutations or resistance to 

particular classes of antiretroviral drugs was not considered.  

The mathematical models assume that individuals with an undiagnosed acute infection can 

start using PrEP. However, the models did not assume that resistance will develop faster if 

PrEP is used during the acute stage compared to if PrEP is used during chronic infection. 

Randomized clinical trials have found that resistance due to PrEP is predominantly found 

among patients who start PrEP with an unrecognized acute infection,28, 32, 272, 273 suggesting 

that drug resistance mutations when using PrEP are potentiated by high viral replication. The 

resultant underestimation of the contribution of PrEP to drug resistance in the models 

compared here is likely to be small since the acute stage has a brief duration of 10-16 weeks8 

meaning that few people will start PrEP in this phase of infection. 

The purpose of this model comparison is to highlight the potential contribution of PrEP to 

resistance, given this has been a major issue in the FDA approval of PrEP and in public health 

arguments concerning PrEP.293, 294, 305 Therefore, the simulated interventions were simplified 

to enable comparison between models, and the results should not be taken as our 

prediction or recommendation for how to scale-up PrEP. The comparison did not standardize 

and simulate the roll-out of antiretroviral drugs, adherence to antiretroviral treatment, 

particular antiretroviral drug treatment or the availability of viral load monitoring.  
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In conclusion, drug resistance will always be a risk with the use of antiretroviral drugs. Drug 

resistance due to ART and transmission of drug resistance will, however, far exceed drug 

resistance due to PrEP. Expanding access to antiretroviral drugs will require careful planning 

so that most infections can be averted at the lowest cost. However, with good monitoring of 

persons initiating and remaining on PrEP, drug resistance should not be a reason to withhold 

PrEP. 
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ABSTRACT 

Background Earlier ART initiation and pre-exposure prophylaxis (PrEP) prevent HIV, though 

at a substantial cost. We use mathematical modeling to compare the cost-effectiveness and 

economic affordability of antiretroviral-based prevention strategies in rural Macha, Zambia.  

Methods We compare the epidemiological impact and cost-effectiveness over 40 years of a 

baseline scenario (treatment initiation at CD4<350 cells/μl) with treatment initiation at 

CD4<500 cells/μl, and PrEP (prioritized to the most sexually active, or non-prioritized). A 

strategy is cost-effective when the incremental cost-effectiveness ratio (ICER) is <$3480 (<3 

times Zambian per capita GDP). Stochastic league tables then predict the optimal 

intervention per budget level. 

Results All scenarios will reduce the prevalence from 6.2% (interquartile range 5.8%-6.6%) in 

2014 to about 1% after 40 years. Compared to the baseline, 16% of infections will be averted 

with prioritized PrEP plus treatment at CD4<350, 34% with treatment at CD4<500, and 59% 

with non-prioritized PrEP plus treatment at CD4<500. Only treating at CD4<500 is cost-

effective: ICER of $62 ($46-$75). Non-prioritized PrEP plus treating at CD4<500 is borderline 

cost-effective: ICER of $5,861 ($3,959-$8,483). Initiating treatment at CD4<500 requires a 

budget increase from $20 million to $25 million over 40 years, with a 96.7% probability of 

being the optimal intervention. PrEP should only be considered when the budget exceeds 

$180 million. 

Conclusion Treatment initiation at CD4<500 is a cost-effective HIV prevention approach that 

will require a modest increase in budget. Although adding PrEP will avert more infections, it 

is not economically feasible as it requires a ten-fold increase in budget.  
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INTRODUCTION 

In 2011, 2.5 million individuals became newly infected with HIV.306 Every person that 

becomes infected will need costly lifelong treatment. The treatment of currently infected 

individuals is already very costly, so ways in which to prevent new infections is important in 

order to keep costs under control. 

It has been shown that daily oral antiretroviral drugs can prevent sexual transmission of HIV-

1 in two ways.7, 43 One strategy is to give daily pre-exposure prophylaxis (PrEP) with the 

antiretroviral drugs tenofovir and emtricitabine to uninfected individuals in order to prevent 

HIV infection. Daily PrEP efficacy has been shown to be as high as 44-75% when adherence is 

high.28, 272, 273 Some studies, however, failed to show an impact of PrEP, likely due to sub-

optimal adherence.32 Another strategy is earlier initiation of antiretroviral treatment among 

individuals that are infected with HIV-1 as prevention. As compared to delayed antiretroviral 

treatment at a CD4 cell count of <250 cells/μl, initiating antiretroviral treatment between 

CD4 350-550 cells/μl led to a 96% reduction in HIV transmission from a patient to their 

uninfected partner.7 Importantly, this approach of “treatment-as-prevention” also provides 

clinical benefits as patients starting treatment at higher CD4 counts have a reduced risk for 

opportunistic infections and death.7, 13, 98 Based on these benefits of earlier ART initiation, 

the WHO has now moved from recommending treatment at CD4 <350 cells/μl to treating 

earlier in infection at CD4 <500 cells/μl.14 The resources needed to implement treatment at 

CD4 <500 cells/ul, however, are substantial. In many resource limited settings, however, not 

all HIV patients eligible for treatment under the former guidelines receive care due to late 

diagnosis of HIV infection and poor linkage to- and retention in- care.218, 307, 308 Thus the 

resources needed to fully implement treatment at the earlier immunologic threshold of CD4 

<500 cells/μl are substantial.  

Treatment as prevention has been estimated to eliminate the epidemic when all patients are 

diagnosed early in infection and placed immediately on treatment.48, 309  In practice, 

however, approximately 70% of patients in studies from Zambia are diagnosed with a CD4 

count below 350 cells/μl310 and thus would not be able to initiate treatment early (CD4 350-

550 cells/μl)7. Even if individuals are diagnosed in time, there are still problems with linkage 

to- and retention in- pre-ART care, resulting in individuals not initiating treatment on time.297 

Although PrEP is less effective than treatment as prevention, PrEP can still play a role in 

preventing infections, particularly among high-risk individuals.311   

Stochastic league tables (SLT) are an innovative approach to report on the cost-effectiveness 

of HIV/AIDS interventions in the context of uncertainty around the costs and effects 

estimates, and especially future funding. Previous cost-effectiveness analyses typically 

identify whether interventions are cost-effective compared to some international 

threshold.282, 297 In this paper, we improve on this approach by using stochastic league 

tables. First, we identify the optimal mix of interventions by reference to an explicit budget 

level, and thereby avoid the use of cost-effectiveness thresholds. Second, we move away 
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from deterministic approaches to cost-effectiveness analyses that report uncertainty ranges 

around a mean – instead we use a bootstrapping procedure in which we calculate the 

probability that an intervention is included in this optimal mix. Third, given the uncertainty 

about HIV funding, we determine the optimal mix of interventions for different budget 

levels. Given that international funding has stagnated or declined in recent years while the 

absolute number of HIV-infected individuals increases,312 this type of analysis is essential as 

costs will have to be taken on by country health systems. 

We aim to evaluate the epidemic impact and cost-effectiveness of PrEP and treatment as 

prevention, and their combinations in the context of a previously described mathematical 

model of the HIV epidemic in the rural setting of Macha, Zambia. We aim to introduce SLT to 

the HIV field, and use it to assess what mix of interventions is most efficient at different 

budget levels.297 We also report standard cost-effectiveness ratios to indicate the differences 

between the two scenarios. 

 

METHODS 

Setting and Population 

Our model is based on the rural population of Macha, Zambia and uses data from the HIV 

Clinic at Macha Mission Hospital in the Southern Province of Zambia.274, 297 The hospital 

serves as a district-level referral hospital for rural health centers within an 80 km radius, with 

approximately 90,000 persons that are aged 12 years and over in the Macha Mission 

Hospital catchment area as of 2011.274 The antenatal prevalence between 2002275 and 2009 

was stable around 7.7%, and declined to below 5% in 2010 [local data]. Since the start of the 

ART clinic in 2005, treatment is implemented according to WHO guidelines, initially at CD4 

<200 cells/μl, and at CD4 <350 cells/μl since 2010. 

Mathematical Model 

A previously described deterministic mathematical model was constructed and parameters 

were chosen to represent Macha.236, 297 Compared to the published model, the current 

model has now been adapted to incorporate population growth, updated HIV prevalence 

data from Macha, and treatment rollout in line with the treatment rollout experienced in 

Macha. Using Monte Carlo filtering techniques283 we accepted 539 of 85,000 simulations 

that were associated with an HIV prevalence of 7.7% (6.7%-8.7%) from 2002 until 2009, and 

a decreasing prevalence between 2009 and 2010 in accordance with Macha data (where a 

prevalence of <5% were observed for 2010 and 2011). The accepted simulations also had to 

have an adult population (aged 12 and over) of 90,000 (80,000-100,000) in 2007, and an 

extrapolated adult population of 96,000 (86,000-106,000) in 2012. After 40 years the 
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population is predicted to be 197,000 (IQR 186,000-208,000). The model calibration to the 

population and HIV prevalence is shown in Figures S1 and S2 respectively.  

Baseline scenario 

 Our baseline scenario is the current practice in Macha, with an annual population HIV test 

rate of 10-20%, which leads to approximately 50% of patients initiating ART with a CD4 <200 

cells/μl.297 Therefore, not all individuals are diagnosed before their CD4 count reaches the 

treatment initiation threshold. After a positive HIV-test, 70% of individuals are retained in 

care.297 Treatment is then started at CD4 <350 cells/μl. Patients who then initiate treatment 

have a reduced infectivity between 90-100%.7, 43, 46 We assumed that all these variables 

remained constant over the 40-year period. 

Intervention Scenarios 

In this analysis, we evaluated the costs and effects associated with a change in treatment 

guidelines to initiate treatment at CD4 <500 cells/μl (in line with the new WHO guidelines14). 

We also evaluated the costs and effects of two hypothetical PrEP scenarios. Both PrEP 

scenarios assumed that treatment would continue at CD4 <350 cells/μl. We also evaluated 

both PrEP scenarios combined with a treatment initiation threshold of CD4 <500 cells/μl. All 

interventions are implemented in 2014, scale up linearly over 1-2 years, and are 

implemented until 2054. 

Non-Prioritized versus Prioritized PrEP distribution  

It is not known how PrEP will be implemented in daily practice. We therefore examined the 

impact of two hypothetical scenarios where PrEP is perfectly and imperfectly prioritized to 

represent both ends of the prioritization spectrum.297 In the first hypothetical scenario, we 

examined the impact of perfect prioritization by assigning approximately half of the 

individuals in the two highest sexual activity groups, 5-15% of the population, to receive 

PrEP. We assigned PrEP to just half of the highest sexual activity groups, as identifying those 

groups completely would not be feasible. In the second hypothetical scenario where PrEP is 

imperfectly prioritized, PrEP is assigned to 40-60% of the population at random. For these 

analyses, we assumed moderate population-level PrEP adherence, where effectiveness 

ranged from 20%-60%.28  

Early Treatment Initiation 

For this scenario, the treatment initiation threshold is CD4 <500 cells/μl. The test rate and 

retention in care remain the same as in the baseline scenario,297 thus individuals may still be 

diagnosed and initiate treatment late in infection. With these test and retention rates, there 

will still be approximately 20% of patients who are diagnosed with a CD4 cell count between 

350 and 500 and therefore initiate treatment early in this scenario. 
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PrEP Combined with Early Treatment 

For the combination scenarios, we looked at the impact of expanding the treatment 

initiation threshold to CD4 <500 cells/μl combined with prioritized and non-prioritized PrEP 

respectively.  

Cost-effectiveness analysis 

Standard cost-effectiveness analysis typically identifies a single cost-effectiveness ratio for 

an intervention (with an uncertainty range), which is then compared to a cost-effectiveness 

threshold. The World Health Organization suggests that interventions are cost-effective if 

they cost less than three times the gross national income (GNI) per capita (Three times GNI 

in Zambia is $3480)285 per quality-adjusted life year (QALY) gained. Decisions are then made 

upon the incremental cost-effectiveness ratio (ICER) where each scenario is compared to the 

next least-costly scenario.36 The stochastic league table method is preferable however, as 

the analysis calculates the probability of selection of an intervention, and then calculates this 

probability for different budget levels. This probability reflects the likelihood that an 

intervention is the most economically attractive option. Using this method, no comparison 

of results to an arbitrary cost-effectiveness threshold is required, and thus could be more 

suitable tool for resource prioritization in diverse settings.  

The construction of stochastic league tables requires four steps.38 Firstly, using Monte Carlo 

simulations, random draws are taken from estimated distributions of total costs and effects 

for all interventions, defined a priori. The distribution of effects is taken directly from the 

output of the 539 model simulations. To reflect uncertainty, costs are here assumed to be 

log-normally distributed,221 with a standard deviation of +/-10% of the cost values collected 

in Macha to represent small potential variations in price. We defined uncertainty around 11 

variables of quantities and prices (for a table of full ranges and distributions of costs and 

effects used, see Table S1 and S2). The covariance is assumed to be zero. The conclusions are 

not dependent on these assumptions. Random draws are then taken from these 

distributions for all interventions. We then determine the average cost of the baseline 

scenario to treat HIV and opportunistic infections in Macha. We estimate this based on 

current HIV treatment costs collected from Macha combined with the results from our 

mathematical model.  

The second step is to determine the optimal mix of interventions for given levels of resource 

availability (at increments of $100,000 in this analysis) for mutually exclusive 

interventions.38, 313 The baseline intervention is then evaluated according to its average cost-

effectiveness ratio (versus doing nothing), while the cost-effectiveness of others in the 

mutually exclusive set are evaluated incremental to the baseline intervention.38 

Third, this process is repeated 10,000 times to provide 10,000 estimates of the optimal mix 

of interventions.38 P represents the number of times an intervention is included in the 

optimal mix, and P/10000 is the probability that the intervention is included. Thus P is the 
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proportion of samples for which the intervention is estimated to be optimal based on the 

sample average and incremental cost-effectiveness ratios.38  

Fourth, the  procedure is repeated for varying levels of resource availability to reveal the 

‘resource expansion path’, showing the probability that each intervention will be included at 

different levels of resource availability (in increments of $100,000).38 Decision-makers can 

use this information to prioritize interventions should more resources become available for 

HIV prevention. The probability that a more expensive alternative will be included increases 

with resource availability.38 We present results from the current budget up to a twelve-fold 

increase of the current budget for illustrative purposes. 

In order to evaluate the long term effects of treatment and PrEP interventions, we 

conducted the analysis over a 40 year time horizon. Each scenario was run in our 

mathematical model. All model outputs used to populate the stochastic league analysis can 

be found in Table S1. Costs have been discounted appropriately to implement interventions 

beginning in 2014, and discounted at an annual rate of 3% thereafter (a table of cost used 

for this analysis can be found in Table S2). QALY estimates were then multiplied by the 

number of people in each disease state at each time point and were discounted at an annual 

rate of 3% to get a total number of QALYs expected in the population over the 40 year time 

period (a table of QALY estimates can be found in Table S3).36, 227 Stochastic league tables 

were generated with MCLeague Software (Version 1.1.1).  

 

RESULTS 

Impact of baseline scenario, treating at CD4 <350 cells/μl 

Treating patients at a CD4 <350 cells/μl alone is predicted to strongly reduce the epidemic 

over the coming 40 years and is predicted to reduce prevalence from 6.2% (Interquartile 

range (IQR) 5.8%-6.6%) in 2014, down to 1.3% (IQR 0.9%-1.9%) in 2054 (Figure 1). In line 

with prevalence reduction, incidence is predicted to decline from 5 per 1000 susceptible 

individuals (IQR 4-5.9 per 1000 individuals) in 2014 down to 0.7 per 1000 individuals (IQR 

0.4-1.4 per 1000 susceptible individuals) after 40 years (Figure 1).  
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Figure 1. HIV prevalence (a) and 
incidence (b) over 40 years in 
Macha, Zambia 

 

Impact of interventions 

All interventions were 

predicted to reduce incidence 

even further as compared to 

the baseline scenario of 

treating at CD4 <350 cells/μl. 

The hypothetical prioritized 

PrEP scenario, where PrEP is 

prioritized to half of the most 

sexually active had the smallest 

impact on new HIV infections of 

all interventions evaluated, 

averting 16% (IQR 7.8%-28.0%) 

over 40 years, compared to 

treating at CD4 <350 cells/μl 

alone (Figure 2). The 

intervention with the greatest 

impact on new HIV infections 

was the hypothetical non-prioritized PrEP (giving PrEP to half of susceptible individuals) in 

combination with treatment 

initiation at CD4 <500 

cells/μl, averting 59% of new 

infections (IQR 52.7%-65.2%) 

over 40 years compared to 

treating at CD4 <350 cells/μl.  

 

 

Figure 2. Cumulative median 
percentage of infections averted 
(and interquartile range) after 
40 years of implementation by 
intervention, compared to the 
baseline of treating at CD4 <350 
cells/μl 
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Standard cost-effectiveness analysis 

In the standard cost-effectiveness analysis, the only intervention that is cost-effective is 

initiating treatment in those with a CD4 <500 cells/μl at $62 per QALY gained (IQR $46-$75) 

after 40 years (Table 1). There was one strategy, non-prioritized PrEP and initiating 

treatment at CD4 <500 cells/μl, that straddled the standard cost-effectiveness threshold. 

The median ICER of this scenario is $5,861 (IQR $3,959, $8,483), which by definition is not 

cost-effective. However, 20.0% of simulations were considered cost-effective by the 

standard threshold with an ICER of <$3,480 per QALY gained.  

Stochastic League Tables  

We predict that it will cost on average $20,000,000 to treat HIV and opportunistic infections 

over the coming 40 years in Macha if treatment is continued at CD4 <350 cells/μl. Therefore, 

this is also the most likely economically attractive prevention scenario for the $20,000,000 

budget. This scenario had a 52.0% probability of being included in the optimum mix of 

interventions. Initiating treatment at CD4 <500 cells/μl had a probability of being included of 

just 7.0%. In the remaining cases (41.0% of all random draws), costs of each possible option 

overrun the 

available 

resources and no 

intervention can 

be funded fully. 

This explains why 

the probabilities 

do not add up to 

100% at low 

budget levels.  

 

 

Figure 3. Stochastic 
league curves for six 
HIV prevention 

interventions: 
probability of 
inclusion (%) in the 
optimum package 
of HIV prevention 
techniques, by 40 
year available 
budget (B zoomed 
in version of A) 
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For a $25,000,000 budget (25% increase in budget), changing the treatment initiation 

threshold to CD4 <500 cells/μl is the best intervention to support, with a 96.7% probability 

of being included in the optimum mix of interventions. Keeping the treatment initiation 

threshold at CD4 <350 cells/μl has a 3.3% probability of inclusion in the optimum mix of 

interventions. For budgets between $25 and $80 million (25%-400% increase in budget), the 

probability of including treatment at CD4 <500 cells/μl in the optimum mix of interventions 

is nearly 100%.  

Only at much higher budget levels, greater than $110,000,000 (>550% increase in budget), is 

PrEP worth the economic investment. At a budget of $110,000,000 over 40 years, the most 

likely optimal HIV prevention mix includes prioritized PrEP in addition to initiating treatment 

at CD4 <500 cells/μl, with a probability of inclusion of 59.6%. The probability of inclusion of 

treatment at CD4 <500 cells/μl alone at this budget level is still 40.4%. At a budget of 

$200,000,000 (1000% increase in budget), the most likely optimal mix transitions to include 

non-prioritized PrEP in addition to initiating treatment at CD4 <500 cells/μl, with a 

probability of being included of 51.5%. At this budget level, the probability of including 

prioritized PrEP and treatment at CD4 <500 cells/μl is also high at 45.8%.  

Prioritized PrEP would never be included as an optimal prevention strategy without 

simultaneously treating individuals with CD4 <500 cells/μl, as the probability of including 

prioritized PrEP in the absence of treating at CD4 <500 cells/μl optimal mix is 0 at all budget 

levels. The probability of including non-prioritized PrEP in the absence of expanded HIV 

eligibility criteria is very low (0.1%-1.7%), at 40-year budgets between $130-260 million. 

 

DISCUSSION 

We predict that the optimal mix of HIV interventions for small budget increases 

(>$3,000,000 over 40 years, or a 15% increase in budget) is to change the treatment 

initiation threshold to CD4 <500 cells/μl. Our analysis shows that PrEP should not be 

considered without also expanding the treatment eligibility criteria, as scenarios with PrEP in 

absence of expanded treatment were never included in the optimal mix of interventions at 

any budget level. The PrEP scenarios that do include expanded HIV eligibility criteria of CD4 

<500 cells/μl should not be considered, however, unless the 40-year budget for HIV care and 

prevention in the setting is at least $110,000,000, or greater than a 550% increase in budget.  

In our standard cost-effectiveness analysis, we found that non-prioritized PrEP in addition to 

changing the treatment initiation threshold to CD4 <500 cells/μl was considered cost-

effective in 20% of simulations. It is important to note that the budget level in which this 

combination is included in the optimal mix of interventions is $200,000,000, or ten-times the 

cost of treating at CD4 <350 cells/μl alone. Thus, even though non-prioritized PrEP and  
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Table 1. Cost-effectiveness of treatment at CD4 <500 cells/μl, PrEP interventions, and combinations thereof over 40 years 

Intervention 
Total cost in $ 
Millions (IQR*) 

Infections 
Averted (IQR) 

QALYs gained 
(IQR) 

Average Cost- 
Effectiveness 
Ratio (IQR) 

Incremental 
Cost- 

Effectiveness 
Ratio (IQR) Conclusion 

Treatment available at CD4 
<350 cells/μl, standard care, 
no PrEP 

19.7 (17.5, 
22.0) 

- - - - - 

Treatment available at CD4 
<500 cells/μl 

22.0 (19.8, 
24.5) 

3,388 (2,179, 
5,329) 

40,643 
(29,353, 
53,676) 

$62 ($46, $75) $62 ($46, $75) 
Very cost-
effective 

Prioritized PrEP to most 
sexually active 

75.9 (50.7, 
113.1) 

1,502 (740, 
2,775) 

13,611 (7,032, 
24,305) 

$4,103 ($2,890, 
$5,803) 

Dominated** Dominated** 

Prioritized PrEP to most 
sexually active and 
Treatment available at CD4 
<500 cells/μl 

78.9 (53.8, 
117.6) 

4,494 (3,003, 
6,935) 

50,936 
(38,117, 
67,270) 

$1,153 ($686, 
$1,756) 

Weakly    
Dominated**

* 

Weakly 
Dominated**

* 

Non-prioritized PrEP, PrEP 
randomly distributed 

170.1 (159.1, 
182.4) 

4,053 (2,480, 
6,708) 

40,318 
(26,512, 
61,199) 

$3,730 ($2,454, 
$5,691) 

Dominated** Dominated** 

Non-prioritized PrEP, PrEP 
randomly distributed and 
Treatment available at CD4 
<500 cells/μl 

173.6 (161.9, 
185.8) 

5,894 (3,832, 
8,876) 

67,835 
(48,809, 
89,899) 

$2,253 ($1672, 
$3,188) 

$5,861 
($3,959, 
$8,483) 

Not cost-
effective 

* IQR: Interquartile range 
** Less effective and more costly than the next least-expensive scenario  
***Incremental cost-effectiveness ratio is higher than the next most effective program 
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initiating treatment at CD4 <500 cells/μl had borderline cost-effectiveness by standard cost-

effectiveness analyses, the total cost to implement it would make it infeasible. This indicates 

the importance of explicitly referring to budget levels in economic analyses of health 

interventions.  

Similar to previous modeling studies,209, 314 we found that PrEP and earlier ART initiation 

thresholds both reduce incidence. In line with these studies, we predicted that the 

combination of PrEP and ART reduces incidence even further.209, 314 Many studies have 

recently looked into the cost-effectiveness of oral daily PrEP in generalized epidemics,287, 295, 

315-317 and approximately half have found that PrEP can be cost-effective.315-317 Of the two 

studies that found PrEP is not cost-effective, one assumed that individuals on PrEP would 

increase their number of partners,295 and the other assumed changes in condom use.287 

These reasons are thought to be key drivers of those two cost-effectiveness results.318 Other 

than the differences in changes of risk behavior, the differences in cost-effectiveness 

depended largely on the assumptions regarding PrEP adherence, coverage, and prioritization 

strategy.318 In our study we assumed low to moderate PrEP adherence, as modeled by a 20-

60% efficacy, we predicted that PrEP-only scenarios were not cost-effective. Given our 

assumption about relatively low efficacy, our PrEP-only scenarios fall in line with models by 

other groups.  

Pretorius et al. used a population-based model to predict the cost-effectiveness of PrEP 

compared with and in combination with increasing treatment.287 This model examines PrEP 

in the context of ART scale-up in the context of the South African epidemic. They have 

predicted that PrEP and “universal access to testing and treatment” would have a similar 

impact on incidence after 10 years, and the combination of the two would have the 

strongest impact. They have also predicted, however, that universal access to testing and 

treatment was cost-effective, while PrEP would need to cost more than five-times less than 

treatment to be more cost-effective than universal access to testing and treatment. Our 

model has shown similar results, and has the added value of putting the cost-effectiveness in 

the context of a budget. 

Due to tightening budgets worldwide, ways in which to maximize HIV prevention in an 

affordable way are crucial. In addition, studies evaluating the impact and cost-effectiveness 

on HIV prevention of PrEP in the context of expanding ART guidelines are needed. The 

stochastic league table approach allows decision makers to see how to maximize 

effectiveness with potential budget increases, and put PrEP and treatment as prevention in 

the context of budget constraints. This approach also enables us to simultaneously take into 

account uncertainty regarding costs, quantities and effects, leading to comprehensive 

results. Another strength of our study is access to cost and epidemiologic data from Macha, 

Zambia, enabling us to make reliable predictions about the potential impact of expanded HIV 

eligibility criteria and PrEP implementation.  
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This study has some potential limitations. First, we have estimated what the cost of treating 

HIV and HIV-related conditions would be over 40 years based on current costs, though the 

true long-term costs are unknown. If the actual budget is lower than our calculation, it may 

be difficult to consider implementing any intervention other than treating at CD4 <350 

cells/μl, and it could be difficult to fully implement that treatment guideline. If the actual 

budget is higher, then other interventions may be more effective at comparatively lower 

budget increases. Second, we have not taken into account the health system capacity or the 

programmatic costs associated with implementing an intervention. While there may be a 

budget to implement PrEP, there may not be the personnel available to implement the 

intervention. Third, programmatic costs could be substantial. We have left this out as it 

would depend on the specific plan of action chosen by decision makers for each intervention 

and would add further uncertainty into the model. Fourth, we have chosen the baseline 

scenario to initiate treatment at CD4 <350 cells/μl. We do this as even though the new WHO 

guidelines recommend initiating treatment between CD4 350 and 500 cells/μl, the guidelines 

first recommend prioritizing to individuals with CD4 <350 cells/μl.14 Finally, more lab 

monitoring, such as regular viral load monitoring or resistance testing, could be 

implemented instead of or in addition to expanding the treatment eligibility criteria, but we 

have not incorporated different patient monitoring techniques into this analysis.319 In the 

future, the stochastic league approach can be utilized to aid resource allocation decisions 

both between and within the realms of patient monitoring and HIV prevention. Our results 

should also be confirmed across settings in other validated mathematical models to allow for 

broader generalizability.  

In conclusion, expanding treatment to treat those with CD4 <500 cells/μl is the optimal 

strategy for reducing the HIV epidemic with modest budget increases in a generalized 

epidemic. If PrEP is being used, it should only be implemented in combination with increased 

access to antiretroviral treatment in order to be considered. While strategies involving PrEP 

can be considered cost-effective using standard cost-effectiveness analyses, it is important 

to consider if a budget exists to implement PrEP, at what scale, and whether or not those 

funds could be more effective if allocated elsewhere. 
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Supplement: Chapter 8 

Figure S1. Model calibration to Macha population  

 

Figure S2. Model calibration to HIV prevalence in Macha 
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Table S1: Quantity component to the stochastic league analyses for each of the six interventions, the quantities shown here are then multiplied 
by the costs to get the total population-level cost. 

 

 Number of person years spent in the following states (this is then multiplied by the cost of being in these 

states): 

Scenarios PrEP 
Acute infection 

(undiagnosed) 

Chronic 

infection 

(undiagnosed) 

AIDS 

(undiagnosed) 

Acute 

infection & 

tested 

positive (in 

care, not on 

treatment) 

Chronic infection 

& tested positive 

(in care, not on 

treatment) 

Baseline, treat at CD4 

<350 cells/uL 

0 

 
1793 (SD 41)* 20507 (SD 469) 2794 (SD 67) 42 (SD 1) 14733 (SD 201) 

Treat at CD4 <500 

cells/uL 

0 

 
1246 (SD 28) 15512 (SD 358) 2181 (SD 53) 25 (SD 0.5) 6991 (SD 76) 

Prioritized PrEP 
499,122 (SD 

14,497) 
1516 (SD 38) 17928 (SD 436) 2475 (SD 62) 36 (SD 1) 13472 (SD 191) 

Non-Prioritized PrEP 
1,141,078 (SD 

4,967) 
1093 (SD 21) 13960 (SD 280) 1980 (SD 42) 26 (SD 0.5) 11577 (SD 124) 

Prioritized PrEP + treat at 

CD4 <500 cells/uL 

504,720 (SD 

14659) 
1076 (SD 26) 13894 (SD 331) 1978 (SD 49) 22 (SD 0.5) 6566 (SD 73) 

Non-prioritized PrEP + 

treat at CD4 <500 

cells/uL 

1,147,208 (SD 

5113) 
818 (SD 16) 11445 (SD 240) 1672 (SD 38) 17 (SD 0.5) 5921 (SD 53) 
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Number of person years spent in the following states 

(this is then multiplied by the cost of being in these 

states): 

Number of: Outcome** 

 

AIDS & tested 

positive (in 

care, not on 

treatment) 

Treatment 

(initiated during 

chronic stage) 

Treatment 

(initiated during 

AIDS stage) 

Negative HIV 

tests 

Positive HIV 

tests 

QALYS lived in 

the total 

population 

Baseline, treat at CD4 

<350 cells/uL 
2886 (SD 32) 39296 (SD 394) 34041 (SD 187) 

611951 (SD 

7983) 

11839 (SD 

302) 

3090413 (SD 

8695) 

Treat at CD4 <500 

cells/uL 
1928 (SD 17) 52519 (SD 495) 33885 (SD 186) 

622160 (SD 

8110) 
7617 (SD 187) 

3134497 (SD 

8692) 

Prioritized PrEP 2681 (SD 31) 37406 (SD 378) 34008 (SD 187) 
513405 (SD 

7210) 
9710 (SD 284) 

3108905 (SD 

8710) 

Non-Prioritized PrEP 2371 (SD 20) 34552 (SD 306) 33957 (SD 187) 
391063 (SD 

5064) 
6532 (SD 137) 

3138027 (SD 

8647) 

Prioritized PrEP + treat at 

CD4 <500 cells/uL 
1836 (SD 16) 50287 (SD 480) 33870 (SD 186) 

520627 (SD 

7320) 
6377 (SD 174) 

3146423 (SD 

8680) 

Non-prioritized PrEP + 

treat at CD4 <500 

cells/uL 

1697 (SD 12) 46858 (SD 393) 33847 (SD 186) 
395826 (SD 

5181) 
4562 (SD 94) 

3165295 (SD 

8658) 

*All standard deviations represent the standard deviation of the 539 model simulations. 

**This is the total effects of each respective intervention, and is thus not multiplied by any costs.  
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Table S2: Cost component to the stochastic league analyses for each of the six interventions, the 
costs shown here are then multiplied by the quantities to get the total population-level cost. 

 Cost, 2012 USD 
(SD)* 

Cost Components 

Yearly costs   

PrEP $134.36 (SD 
$13.40) 

Twice yearly HIV tests**, one year 
of daily tenofovir & emtricitabine 

Acute HIV infection (undiagnosed) $1.73 (SD $0.17) Cost of opportunistic infections**,† 

Chronic HIV infection (undiagnosed) $0.54 (SD $0.05) Cost of opportunistic infections**,† 

AIDS (undiagnosed) $1.38 (SD $0.14) Cost of opportunistic infections**,† 

Acute infection & tested positive (in 
care, not on treatment) 

$32.21 (SD 
$3.20) 

Cost of opportunistic infections**,†, 
and CD4 test** 

Chronic infection & tested positive (in 
care, not on treatment) 

$37.25 (SD 
$3.70) 

Cost of opportunistic infections**,†, 
and CD4 test** 

AIDS & tested positive (in care, not on 
treatment) 

$48.07 (SD 
$4.80) 

Cost of opportunistic infections**,†, 
and CD4 test** 

Treatment (initiated during chronic 
stage) 

$221.00 (SD 
$22.10) 

Cost of opportunistic infections**,†, 
CD4 test**, one year of treatment 
(tenofovir, emtricitabine, efavirenz), 
patient monitoring tests 

Treatment (initiated during AIDS 
stage) 

$229.52 (SD 
$23.00) 
 

Cost of opportunistic infections**,†, 
CD4 test**, one year of treatment 
(tenofovir, emtricitabine, efavirenz), 
patient monitoring tests 

One-time costs   

Testing negative for HIV (and not on 
PrEP) 

$3.46 (SD $0.35) Cost of HIV rapid test** 

Testing positive for HIV $40.81 (SD 
$4.10) 

Cost of HIV rapid test**, HIV 
confirmatory test**, CD4 test** 

* All costs follow a lognormal distribution 
**Comprehensive costs, including costs of outpatient visits, additional laboratory tests, 
laboratory personnel. 
†  Rates of opportunistic infections differ by stage of HIV and treatment status. Full breakdown 
of opportunistic infections can be found in our previous publication.297  
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Table S3: Assumed utility weightings for QALYs297 

Status Utility Weight* 

Susceptible 1.0 

Susceptible on PrEP 98-100%: 1.0 
0-2%: 0.9-1.0** 

Acutely infected 0.94 

Chronically infected 0.94 

Infected early AIDS stage 0.82 

Infected late AIDS stage 0.7 

Infected on treatment 0.94 

*Weights based on a pooled analysis by Tengs and Lin (2002) 222 
**0-2% will suffer from renal failure on these ARVs289, which could result in a reduction in 
quality of life, or go unnoticed.  
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Antiretroviral drugs can prevent new HIV infections.7, 272, 273 Questions still remain, however, 

how an increase in the use of antiretroviral drugs will affect drug resistance. It is also not yet 

known what the most cost-effective way to use antiretroviral drugs to prevent HIV infections is. 

The overarching aim of this thesis is therefore to identify optimal antiretroviral-based strategies 

to prevent new HIV infections in terms of infections averted and costs incurred. This thesis 

addresses these concerns in three parts.  

A discussion of the research aims, as outlined in chapter 1, are presented below: 

1. Evaluate the impact of treatment as prevention,  PrEP, and partner notification on the 

epidemic in terms of infections averted and life-years saved using mathematical models 

In Kampala, Uganda, and Mombasa, Kenya, treatment as prevention is predicted to prevent 

infections (Chapter 3). Compared to initiating ART at CD4 cell count below 200 cells/µl, initiating 

ART at CD4 cell count below 350 cells/µl averts a median of 12.6% of infections over 10 years in 

Kampala and averts a median of 11.6% of infections in Mombasa. Initiating ART at CD4 cell 

count below 500 cells/µl averts a median of 28.8% and 26.3% in Kampala and Mombasa, 

respectively. In Macha, Zambia, treatment at a CD4 cell count of <500 compared to treatment at 

a CD4 cell count of <350 cells/µl is predicted to prevent approximately 34% of new infections 

over 40 years.  

While the models and populations are quite different, the model based in East Africa and the 

one based in Zambia both predict a similar impact of earlier treatment initiation. The 

effectiveness of treatment as prevention could be improved with increased testing, linkage to 

care, and retention in care. In a side analysis of our model, when treating regardless of CD4 cell 

count and increased HIV testing in Macha, Zambia, up to 50% of infections can be prevented 

over 10 years (Chapter 6). This will not, however, lead to elimination of the epidemic, as has 

been shown in some modelling studies.48, 320 Possible explanations why treatment as prevention 

will not lead to elimination of the epidemic include the role of the highly infectious acute stage 

of infection in disease transmission,8, 280, 321 as well as poor linkage rates from testing to 

treatment.297, 322 

We show that  PrEP can prevent new infections (Chapter 6). The impact of a targeted PrEP 

strategy is modeled, where PrEP is given to those in the highest sexual risk groups, and a 

random PrEP strategy, where PrEP is given to approximately 50% of the population, regardless 

of risk. In this study, ART initiation is at a CD4 cell count of <350 cells/µl. PrEP is predicted 

prevent 23-31% of infections averted over 10 years. When we used an updated version of this 

model we find that the effect of PrEP over 40 years is somewhat attenuated, preventing 

between 16-41% (Chapter 8). A key limitation in our modeling of prioritized PrEP to the most 

sexually active is that the highest sexual risk groups in our model are artificial. Our model 

divides the population into four sexual risk groups which are then used to calibrate the model to 

the epidemic in Macha. We use this structure and calibration technique to estimate the sexual 

network as the true sexual mixing structure of a population is unknown.283 The first group in our 
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model has the highest number of  new partners per year (on average 13) and makes up just 2% 

of the population, the second group has on average 2 new partners per year, making up 18% of 

the population. The third and fourth groups has less than 1 new partner per year and represents 

people in long term relationships or marriages. The two groups with the highest number of new 

partners per year were the ones targeted for PrEP in our models.  These most sexually active 

groups are hypothetical and do not directly refer to any easily identifiable group. The most at-

risk individuals can be difficult to identify in practice. Models incorporating multiple specific risk 

sub-groups, such as sero-discordant couples, sex-workers, or people who frequent STI clinics, 

could help identify which groups should be targeted for PrEP to maximize its effectiveness.  

PrEP and treatment as prevention are combined in one analysis (Chapter 8). We find that there 

is less than an additive effect between PrEP use and earlier treatment initiation: prioritized PrEP 

alone prevents 16% of new infections, treating at a CD4 cell count of <500 cells/µl alone 

prevents 34% of new infections, but when combined, only 45% are prevented. Non-prioritized 

PrEP alone prevents 42% of new infections, but when combined with earlier treatment, just 59% 

of new infections are prevented. This is likely due to an overlap of the interventions, or two 

different prevention techniques preventing the same infection, leading to inefficiency. There is 

less inefficiency with a combination of prioritized PrEP to the most sexually active and earlier 

treatment than with non-prioritized PrEP and earlier treatment. Thus, in order to maximize the 

effect of both PrEP and treatment as prevention, PrEP should be prioritized to those at highest 

sexual risk to maximize the efficiency of the preventative effect.  

Finally, in order to maximize the preventative benefit of an earlier treatment initiation 

threshold, patients need to get into care earlier in infection at higher CD4 cell counts. This is a 

major challenge with treatment as prevention, even in resource-rich settings. In Europe, where 

infrastructure and healthcare systems are good, 44% of MSM on average are still diagnosed late 

with a CD4 cell count <350 cells/µl.242  Models to date have modeled the effect of getting large 

numbers of individuals tested and into care, but have yet to model the challenges of getting 

people into care on time.219, 309, 314, 320, 323, 324 One way to get patients into care earlier is through 

partner notification. If partners are notified, then can be diagnosed sooner and initiate 

treatment. We modeled the long-term impact of partner notification, supported by an online-

partner notification system, among men who have sex with men (MSM) in the Netherlands 

(Chapter 5). The partner notification system, however, is not predicted to prevent many new 

infections, with <0.5% of infections prevented over 5 years. This small percentage of prevented 

infections can be attributed to the fact that most individuals who presented for HIV testing 

through notification had similar CD4 cell counts as those who presented for HIV testing without 

being notified. If partner notification could be used to target the partners of acutely infected 

patients, a larger impact may be observed. If partner notification can be used to get a larger 

percentage of patients into care, this will also increase the preventative effect.  Other ways to 

get patients into care early should be further modeled and investigated. Mobile testing units 

have had successes in a broad variety of settings,261-264 and could also be an important way to 

diagnose MSM at sex-clubs or parties in resource-rich settings, or heterosexuals in rural sub-
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Saharan Africa. Both increasing awareness among general practitioners and efforts to normalize 

HIV testing can also be of importance, particular in resource-rich settings with low general HIV 

prevalence.265-267  Many patients who were diagnosed late in infection had visited their general 

practitioner in the years before diagnosis with symptoms that could suggest an HIV infection. 

General practitioners that do more frequent HIV testing, especially among known at-risk 

populations such as MSM, can help to identify HIV. As such, increased HIV testing by general 

practitioners can lead to a reduction in the number of infected individuals who are diagnosed 

late.266, 267 

In summary, this thesis has demonstrated that treatment as prevention, PrEP and partner 

notification can all prevent new infections (Chapters 3, 5, 6, 8).7, 26, 272, 273 The magntitude by 

which the HIV epidemic is reduced does depend on the setting, the people that are targeted for 

a particular intervention, the CD4 treatment initiation threshold, linkage to care, patient 

retention, and the number of patients that can be identified early in their HIV infections. 

 

2.  Determine the impact of earlier antiretroviral treatment and PrEP on transmitted HIV 

drug resistance 

One important consideration with the increasing usage of antiretroviral drugs for prevention is 

the development and further transmission of HIV drug resistance. This is particularly the case in 

sub-Saharan Africa where there are a limited number of antiretroviral drugs available for HIV 

treatment. 

We addressed the impact of treatment as prevention in regards to infections averted and 

predicted rates of transmitted drug resistance in Mombasa, Kenya and Kampala, Uganda 

(Chapter 3) . When antiretroviral therapy is initiated at CD4 cell count below 350 cells/µl in 

these two settings, the prevalence of transmitted drug resistance is expected to increase 

slightly. Expanding treatment by initiating ART at CD4 cell count below 500 cells/µl will lead to 

an increasing prevalence of transmitted drug resistance from 8.3% and 12.3% to 19% and 19.2% 

over the coming 10 years in Kampala and Mombasa respectively. It is predicted, however, that 

the number of infections averted by earlier treatment initiation will far exceed the number of 

infections with a drug-resistant virus: between 18 and 46 infections averted due to the 

preventative impact of earlier treatment for every additional case of drug resistance that arises. 

We were able to show that that while prevalence of transmitted drug resistance is predicted to 

increase, the absolute number of transmitted drug resistance cases will decline with earlier 

treatment initiation (Chapter 4). 

As the proportion of individuals infected with a drug resistant virus is predicted to increase, this 

will make treating HIV more difficult and complex over time. It is therefore still important to 

minimize transmitted drug resistance in order to preserve currently available antiretroviral 

regimens. There are several ART program-level strategies that can help mitigate the emergence 

and transmission of drug resistance (Chapter 4). Viral load testing can reduce the emergence of 
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HIV drug resistance by early identification of patients with virological failure, prompting 

intensified adherence counselling and switch to second-line ART as necessary, thereby 

minimizing emergence of HIV drug resistance.21, 138 Second, prompt switching to a protease-

inhibitor based second-line regimen of individuals experiencing virological failure has been 

associated with a reduced risk for drug resistance.22, 325 Finally, pre-therapy genotypic resistance 

testing to select a fully active regimen may mitigate acquired drug resistance.23, 24 Of these three 

patient monitoring strategies to reduce drug resistance, implementing yearly viral load testing 

and switching patients to second-line ART as soon as possible after confirmed failure is shown to 

prevent the most drug resistance: preventing approximately 10% of transmitted drug resistance 

cases over 10 years at all treatment thresholds.  

One issue with the use of PrEP could be an increase in transmitted drug resistance. This could 

also have implications for treatment, as the drugs currently used as PrEP are also popular in first 

line antiretroviral treatment. We compared the results of three models of PrEP and drug 

resistance in sub-Saharan African countries (Chapter 7). The models predict that, even without 

PrEP, drug resistance will increase in the next 20 years due to antiretroviral therapy. When PrEP 

is added into the models, less than 4% of total resistance is attributed to PrEP, while 40-50% is 

due to transmission of resistance, and 50-63% is due to antiretroviral therapy 20 years after the 

introduction of PrEP. Therefore, it is concluded that drug resistance should not be a reason to 

limit the use of PrEP. 

The potential for drug resistance should not, therefore, be a reason to withhold either earlier 

treatment initiation or PrEP. Yearly viral load testing and appropriate switching to second-line 

therapy should be rolled out simultaneously with earlier treatment initiation to minimize the 

development and transmission of drug resistance. Surveillance of drug resistance should be 

carried out in areas where earlier treatment and PrEP are implemented in order to monitor drug 

resistance.  

3. Identify the cost-effectiveness of different antiretroviral-based prevention techniques and 

cost-effectiveness of methods that can reduce drug resistance. 

New prevention techniques should only be implemented if they are both cost-effective and 

affordable. It is therefore essential to conduct cost-effectiveness analysis on antiretroviral-based 

prevention and monitoring strategies as they can be very costly. It is important to note that 

even if interventions are considered cost-effective, that does not mean that an intervention will 

save money. Large investments may need to be made up front before any benefits can be 

realized, an in many cases, cost-savings will not be achieved. Once money is spent, it cannot be 

spent elsewhere, either within HIV treatment and prevention, or on another disease. Identifying 

optimal investments to maximize health in a population by considering many options against 

each other simultaneously is ideal.  

We found that PrEP is predicted to prevent up to 31% of new infections over 10 years, and that 

PrEP is considered cost-effective at $323 per quality adjusted life years gained when targeted to 
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the most sexually active individuals (Chapter 6). PrEP and treatment as prevention were 

combined in one model to investigate not only which prevention techniques are more cost-

effective, but also to identify what prevention techniques are affordable in Macha, Zambia 

(Chapter 8). We find that, when treatment as prevention is added into the PrEP model, it is 

shown that PrEP alone is more costly and less effective in terms of prevented HIV infections 

than earlier treatment initiation at CD4 <500 cells/µl. Treatment as prevention is also shown to 

be the most affordable. With a small increase in budget (<25%), treating earlier in infection is 

the best way to maximize health in the population. It is shown that while a combination of PrEP 

and treatment as prevention is predicted to avert the largest number of infections, that it is not 

affordable. A combination of PrEP and earlier treatment initiation is only found to be the best 

way to maximize health in a population when there is a 9-fold increase in budget. If that large 

increase in budget was possible, it is likely that the money could better be spent elsewhere in 

the health sector to maximize health in the population. 

There are several ways to increase the cost-effectiveness and affordability of antiretroviral-

based prevention strategies by addressing general barriers to healthcare. Universal healthcare 

or a single payer system can be of importance in removing financial barriers to care, and thus 

increasing uptake to HIV-related care.326 Access to healthcare services can also be improved for 

rural settings in particular. A main barrier to accessing healthcare can be the physical distance 

from a provider.327, 328 Thus, programs to bring skilled healthcare workers to rural settings, or 

making transportation available for people in rural settings to get to a healthcare clinic, can be 

of importance.327  

While this thesis has shown that PrEP is not cost-effective when compared to earlier treatment, 

PrEP could be more cost-effective in different formulations. Currently vaginal rings98, 329-333 are 

being tested in randomized clinical trials for efficacy, and long-acting injectables are being 

tested for safety and acceptability.334 These types of PrEP formulations would likely improve 

adherence, and thus efficacy of PrEP. It is also possible that they would be less costly than daily 

oral PrEP. PrEP may also be better suited to a more specialized group of at-risk individuals, and 

not just the most-sexually active, as has been modeled in this thesis. When results of the trials 

on different PrEP formulations are available, the cost-effectiveness of PrEP should be 

reassessed. 

When treating earlier, it is essential to minimize drug resistance, as described in Aim 2. Of the 

three patient monitoring techniques investigated, increased use of boosted protease-inhibitor-

based second-line treatment is shown to be the only cost-effective approach for reducing 

transmitted drug resistance in East Africa at between $1,612 and $2,234 per quality adjusted life 

year gained. Pre-therapy genotyping and twice yearly viral load monitoring are costly with 

limited health benefits at a population level. This is in line with current recommendations.14 

Unfortunately, yearly viral load monitoring and second-line therapy are not widely available in 

sub-Saharan Africa.1  
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Alternatives to the current viral load test should be implemented to reduce costs and increase 

feasibility. Viral load tests can be made more accessible in rural settings with the use of the 

dried blood spot.335 There is also a reluctance to switch to second-line therapy after confirmed 

failure on first-line therapy.336 Barriers to switching have included infrequent viral load 

monitoring, infrequent clinic visits, delayed clinic attendance, and clinical parameters, but 

inclination to switch differs largely by study site.336 Barriers to switching should be further 

investigated.  Addressing these barriers for switching in sub-Saharan Africa could help foster 

optimal monitoring and switching practices, which can in turn keep drug resistance to a 

minimum.  

Finally, while the implementation of a partner notification system will not make a large impact 

in terms of infections averted,  <0.5% infections prevented over 5 years, it is shown that that the 

system is still cost-effective with at €49,011 (IQR €47,688-€49,582) per quality adjusted life year 

gained over 5 years. As HIV is very expensive to treat in the Netherlands, any intervention that 

prevents even a small number of infections and is relatively cheap will likely be cost-effective. 

Since this system is easy to implement, and the burden lies primarily on the patient to contact 

their partners, it is recommended that partner notification be used throughout the Netherlands 

and in countries with similar epidemics. Other ways to get patients into care earlier should be 

investigated. If multiple methods can be tested (such as increased HIV testing at the general 

practitioner, and mobile HIV testing) and pared against each other in a stochastic league table 

analysis, as described in Chapter 8, a truly optimal strategy or combination of strategies for 

getting patients into care on time can be identified.  

 

Critical assessment of models used and model developments throughout this thesis 

A similar deterministic model structure was used throughout this thesis (See Chapter 1, Figure 

3). This basic structure has been used in modeling studies of other research groups.48, 309, 337 This 

modeling approach has the advantage of being transparent.338 The boxes in the model all 

represent a disease state, and it is easy to visualize how people move from one box to another. 

The models in this thesis all use four different sexual risk groups of different sizes and differing 

sexual activity per group. As there is very limited and unreliable sexual behavior data, models 

have to rely on calibration of their sexual network to the current epidemic. As such, our model 

creates an approximate sexual network that results in the given prevalence or incidence that 

the model then matches. This similarity of results between studies in this thesis could in part be 

explained by the comparable model structures. Even when very different modeling structures 

were used to model the effect of treatment as prevention and PrEP, all models found that both 

interventions were effective.219 

There are limitations to the models throughout this thesis. One limitation is assuming that there 

is sufficient availability of ART when initiating treatment at earlier CD4 cell counts. Stock outs of 

antiretroviral drugs, however, could be a real limitation in scaling up ART.339 ART stock outs 
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could lead to patients dropping out of HIV care, or needing to switch to a sub-optimal regimen. 

Importantly, if patients are driven to non-adherence or treatment interruption due to ART stock 

outs, patients can acquire HIV drug resistance mutations and transmit their drug resistant virus 

to others.340 If stock outs had been incorporated into the modeling of treatment as prevention, 

the predicted prevalence of transmitted drug resistance may have been higher than reported in 

this thesis. Stock outs could not be included in the models of this thesis however, as no data on 

stock outs were available for the regions that were modeled. 

Another limitation of the modeling in this thesis is that the models project the current situations 

into the future. Therefore, if anything changes in HIV treatment, monitoring or prevention, then 

the exact predictions will be incorrect. Models are useful in predicting the direction of an 

epidemic or the direction of an effect of an intervention, but not for exact numbers or 

percentages.  

Improvements have been made over time on the current models. The initial model presented in 

Chapter 6 was a model based in Macha, Zambia. In order to keep the model simple we assumed 

that the population size would remain constant over the duration of the model. We then used 

this model again in Chapter 8, but improved on the model by adding in population growth, and 

treatment rollout in line with the treatment rollout experienced in Macha, and new information 

that became available. This changed the sexual network dynamics behind the model, the HIV 

prevalence trend, and as such, altered our exact predictions. As a consequence, in Chapter 8 we 

predicted that PrEP would prevent fewer infections than in Chapter 6.   In Chapter 8 we add in 

earlier treatment initiation to the prevention options, and find that PrEP is no longer cost-

effective. When we add earlier treatment initiation to Chapter 6, we also find that earlier 

treatment initiation is both less expensive and more effective than PrEP alone. During the time 

of this PhD research, the CD4 cell count treatment initiation threshold has changed, thus also 

explaining the differences in thresholds used between chapters in this thesis. Before 2010, 

treatment was recommended at CD4 <200 cells/ul. From 2010-2013, treatment at CD4 <350 

cells/ul was recommended, and since 2013, treatment at a CD4 cell count of <500 cells/ul is 

recommended. Therefore, while our exact estimates differ, our general conclusions of the 

models between chapters remain the same. 

Similar improvements were made in the models between Chapter 3 and Chapter 4.  The 

population was assumed to remain constant in Chapter 3, and population growth was 

incorporated in the model of Chapter 4. Also, additional drug resistance data was incorporated 

into the model in Chapter 4. In both studies, an increase in drug resistance is predicted when 

ART is initiated earlier, but the magnitude is diminished in Chapter 4 due to the inclusion of and 

calibration to additional data. In Chapter 3 a bigger influence of second-line is predicted than in 

Chapter 4. This is because the predicted transmitted drug resistance prevalence in Chapter 3 is 

much larger, and therefore can be reduced by a greater magnitude. As such, our general 

conclusions of the models between chapters remain the same. 
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The accuracy and reliability of models depends on the data that goes in. In all models we 

incorporate the most robust and up-to-date information available. The models on drug 

resistance in this thesis make use of the best currently available data on acquired and 

transmitted drug resistance in sub-Saharan Africa, resulting in reliable predictions. As more data 

becomes available, models from all chapters can continue to be improved.  

Generalizability 

The effect of treatment as prevention and PrEP was studied in African settings in this thesis. 

These results cannot easily be extrapolated to European settings without additional modeling 

work. The epidemics are very different: in Europe the HIV epidemic is mainly concentrated 

among MSM. MSM report a far greater number of sexual partners than heterosexuals.341 As 

such, it could be that PrEP among MSM is even more cost-effective than in Africa, especially 

when targeted to the most sexually active MSM.  On the other hand, earlier treatment initiation 

would probably be less cost-effective than in Africa. For one, the cost of treatment is much 

higher in Europe than in Africa. Secondly, the role of the acute stage in HIV transmission could 

play a greater role among European MSM due to higher sexual risk behavior than among African 

heterosexuals. If this were the case, the effectiveness of earlier treatment initiation could be 

diminished. Additionally, results regarding drug resistance cannot be generalized between 

Europe and Africa. This is because of differences in regimens used, differences in HIV monitoring 

strategies, and prior circulating resistance in Europe from the early years of HIV treatment.342 

Our results on drug resistance and treatment as prevention and PrEP could be extrapolated to 

other countries within sub-Saharan Africa that have similar treatment experience, however. The 

exact predictions may differ, but the direction of the predictions is likely to be similar.  

Partner notification was studied among Dutch MSM. While these results are not directly 

generalizable to heterosexuals in sub-Saharan Africa, similar results could be expected if partner 

notification is tailored to each setting. Given the ubiquity of mobile phones in Africa, a mobile-

phone based partner notification system, instead of the internet-based system developed for 

the Netherlands, could increase effectiveness.343, 344 The cost-effectiveness ratio would likely be 

much lower in Africa, as the cost of HIV testing and treatment is lower, and the burden would 

still be primarily on the infected individual to contact their partners. 

 

Conclusions and Future Research 

Based on the contents of this thesis, the following is concluded: 

1) Investing in treatment as prevention, as compared to PrEP, is a better way to maximize health 

in countries with a generalized HIV epidemic and limited budgets;  
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2) HIV drug resistance can be kept to a minimum by both ensuring the availability of yearly viral 

load monitoring and by prompt switching to protease-inhibitor-based second-line therapy after 

confirmed failure on first-line therapy;  

3) Initiating HIV treatment earlier at higher CD4 cell counts will lead to increases in drug 

resistance. Due to the preventative impact of earlier treatment initiation however, far more 

infections are predicted to be averted than cases of drug resistance gained;  

4) Online partner notification alone will have a small impact on the HIV epidemic, but is a cost-

effective tool for getting HIV patients into care and on treatment earlier; 

5) PrEP can prevent new infections. If PrEP is used as part of an HIV prevention strategy, it 

should be given to those at highest sexual risk, and is not predicted to contribute substantially 

to HIV drug resistance. 

Since the start of this PhD research, earlier treatment initiation at a CD4 count of <500 cells/µl, 

is recommended by the World Health Organization for clinical benefit to the patient and in 

order to prevent new infections.14 While earlier treatment is recommended, it is not yet widely 

implemented, and stock outs of ART occurred even under previous guidelines.1, 339, 340 It is 

important not only to recommend earlier treatment, but to help realize the recommendation in 

daily practice. A parallel investment should be made in the scale up and use of yearly viral load 

monitoring as well as increasing the availability and use of second-line protease inhibitor drugs 

when indicated. Proper implementation of viral load monitoring and use of second-line protease 

inhibitor based treatment can help curb drug resistance that is predicted with treatment scale 

up. 

PrEP has also since been approved for use by the Food and Drug Administration for HIV 

prevention.345 PrEP has not been registered, however, by the European Medicines Agency, and 

has only been used limitedly in Africa, primarily as part of trials. As PrEP has been shown to 

prevent HIV infections, especially when adherent, a move should be made to register 

antiretrovirals for use as PrEP. PrEP can then be used for prevention among those who are at 

substantial risk for HIV infection.  

Future studies should focus on identifying specific risk groups that would benefit most from 

PrEP to maximize its effectiveness. This could be, for example, individuals who have a known 

HIV-infected partner that is not yet on treatment, who have had to make use of post-exposure 

prophylaxis after sexual exposure, who have regular unprotected anonymous sex, women in 

HIV-endemic settings who want to protect themselves, or sex workers. 

Future research should also focus on improving the cascade of care: identifying ways to get 

patients into care earlier and retaining patients in care. Without proper linkage to care and 

retention in care, treatment as prevention will have limited success, and there is a potential for 

increases in drug resistance. 
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There are currently 35 million people living with HIV, and each year there are more than two 

million new HIV infections worldwide. HIV-infected patients will need lifelong treatment and 

care. HIV prevention is needed to reduce the number of new infections as, first and foremost, 

HIV is a very serious infection, and secondly HIV treatment is very expensive and should be kept 

economically sustainable. Early treatment initiation prevents new infections. When a patient is 

successfully suppressed on antiretroviral therapy, they are no longer infectious. Antiretroviral 

drugs can also be given to uninfected individuals to prevent infection, known as pre-exposure 

prophylaxis. The overarching aim of this thesis is to identify optimal antiretroviral-based 

strategies to prevent new HIV infections in terms of infections averted and costs incurred. 

Within this thesis mathematical modeling and cost-effectiveness analysis have been utilized to 

address the following aims: 1) Evaluate the impact of treatment as prevention,  pre-exposure 

prophylaxis (PrEP), and partner notification on the epidemic in terms of infections averted and 

life-years saved using mathematical models; 2) Determine the impact of earlier antiretroviral 

treatment and PrEP on transmitted HIV drug resistance; 3) Identify the cost-effectiveness of 

different antiretroviral-based prevention techniques and cost-effectiveness of methods that can 

reduce drug resistance. 

Treatment as prevention, PrEP and partner notification are all predicted to prevent new 

infections (Chapters 3, 6, 7, 8). In Kampala, Uganda, and Mombasa, Kenya, treatment as 

prevention is predicted to prevent 29% and 26% respectively, over a 10 year period (Chapter 3). 

In Zambia, treatment as prevention is predicted to prevent 34% of new infections over 40 years, 

and PrEP alone is predicted to avert between 16%-42% (Chapter 8). When PrEP and treatment 

as prevention are combined, nearly 60% of infections are predicted to be averted over a 40 year 

period in Macha, Zambia. Among men who have sex with men (MSM) in the Netherlands, 

partner notification was predicted to avert only a small number of infections over 10 years, 

<0.1% (Chapter 5) 

PrEP is shown to be cost-effective when ART is started at a CD4<350 cells/µl (Chapter 6) in 

Macha, Zambia. In the same analysis it is shown that the more that PrEP can be targeted to the 

most sexually active individuals, the more cost-effective it can be.  In Chapter 8, however, when 

treatment as prevention is added into the PrEP model, it is shown that PrEP alone is more costly 

and less effective in terms of new HIV infections that are averted than earlier treatment 

initiation at CD4 <500 cells/µl. Treatment as prevention is also shown to be the most affordable. 

With a  While the implementation of a partner notification system in the Netherlands was not 

predicted to make a large impact in terms of infections averted, it is shown that that the system 

is still cost-effective with at €49,011 (IQR €47,688-€49,582) per quality adjusted life year gained 

over 5 years. Since this system is easy to implement, and the burden lies primarily on the 

patient to contact their partners, it is recommended that partner notification be used 

throughout the Netherlands and in countries with similar epidemics. 

There is fear that treatment as prevention will lead to increased drug resistance. Treatment as 

prevention was predicted to increase the prevalence of transmitted drug resistance (Chapter 3). 
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It is predicted, however, that the number of infections averted by earlier treatment initiation 

will far exceed the number of infections with a drug-resistant virus: between 18 and 46 

infections averted due to the preventative impact of earlier treatment for every additional case 

of drug resistance that arises. In Chapter 4, it is shown that while prevalence of transmitted drug 

resistance is predicted to increase, the absolute number of transmitted drug resistance cases 

will decline with earlier treatment initiation. There are several ART program-level strategies that 

can help mitigate the emergence and transmission of drug resistance, including increased viral 

load monitoring, pre-therapy genotyping, and increased use of boosted protease-inhibitor-

based second-line treatment (Chapter 4). Of the strategies modelled, increased use of boosted 

protease-inhibitor-based second-line treatment in combination with yearly viral load monitoring 

is shown to be the only cost-effective approach for reducing transmitted drug resistance in East 

Africa at between $1,612 and $2,234 per quality adjusted life year gained. 

One issue with the use of PrEP could be an increase in transmitted drug resistance. In Chapter 7 

the results of three models of PrEP and drug resistance in sub-Saharan African countries are 

compared. The models predict that, even without PrEP, drug resistance will increase in the next 

20 years due to antiretroviral therapy. When PrEP is added into the models, less than 4% of 

total resistance is attributed to PrEP, while 40-50% is due to transmission of resistance, and 50-

63% is due to antiretroviral therapy 20 years after the introduction of PrEP. Therefore, it is 

concluded that drug resistance should not be a reason to limit the use of PrEP. 

Based on the contents of this thesis, the following is concluded: 1) Investing in treatment as 

prevention, as compared to PrEP, is a better way to maximize health in countries with a 

generalized HIV epidemic and limited budgets; 2) HIV drug resistance can be kept to a minimum 

by both ensuring the availability of yearly viral load monitoring and by prompt switching to 

protease-inhibitor-based second-line therapy after confirmed failure on first-line therapy; 3) 

Initiating HIV treatment at early CD4 cell counts will lead to increases in drug resistance. Due to 

the preventative impact of earlier treatment initiation however, far more infections are 

predicted to be averted than cases of drug resistance gained; 4) Online partner notification 

alone will have a small impact on the HIV epidemic, but is a cost-effective tool for getting HIV 

patients into care and on treatment earlier; 5) PrEP can prevent new infections. If PrEP is used 

as part of an HIV prevention strategy, it should be given to those at highest sexual risk, and is 

not predicted to contribute substantially to HIV drug resistance. 

In conclusion, the use of antiretroviral drugs as prevention is a cost-effective method for curbing 

the HIV epidemic. Resistance can occur and increase as a result, but should not be a reason to 

withhold antiretroviral drugs. 
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Er zijn momenteel wereldwijd 35 miljoen mensen geïnfecteerd met het humaan 

immunodeficiëntie virus (HIV). Elk jaar komen er twee miljoen nieuwe infecties bij. HIV is een 

zeer ernstige infectieziekte die zonder behandeling met HIV-remmers tot de dood zal leiden. 

Omdat geneesmiddelen die gebruikt worden om het HIV virus te remmen relatief duur zijn en 

deze levenslang moeten worden geslikt, is de behandeling van HIV momenteel een kostbare 

aangelegenheid. Recent onderzoek heeft aangetoond dat patiënten, die succesvol behandeld 

worden met HIV-remmers, nog maar een hele kleine kans hebben om hun seksuele partners 

met HIV te infecteren. Daarom is men gestart met het voorschrijven van HIV remmers bij 

mensen die zich in een vroeg stadium van de HIV infectie bevinden. Dit vroege behandelen heet 

behandeling ter preventie. Behandeling ter preventie kan alleen succesvol zijn als zoveel 

mogelijk patiënten vroeg starten met de behandeling. Helaas is van veel patiënten die zich in 

een vroeg stadium bevinden, vaak nog niet bekend dat ze geïnfecteerd zijn met HIV. 

Partnerwaarschuwing is een methode om het aantal patiënten sneller te diagnosticeren. 

Partnerwaarschuwing is het actief opsporen en uitvoeren van HIV-testen van partners van 

mensen bij wie recent een infectie is vastgesteld. Ook is aangetoond dat mensen die HIV-

remmers gebruiken maar niet geïnfecteerd zijn, een sterk verminderd risico hebben om 

geïnfecteerd te raken met HIV. Dit preventieve gebruik van HIV remmers door mensen die niet 

geïnfecteerd zijn, wordt ook wel Pre-Expositie Profylaxe (PrEP) genoemd. Het algemene doel 

van dit proefschrift is om de beste strategie te vinden waarmee HIV-remmers kunnen worden 

toegepast voor preventie, zodat de meeste infecties kunnen worden voorkomen tegen zo laag 

mogelijke kosten. 

 

In mijn proefschrift heb ik gebruik gemaakt van wiskundige modellen die voorspellen hoeveel 

infecties kunnen worden voorkomen door het gebruik van HIV-remmers. Met behulp van deze 

wiskundige modellen heb ik ook de kosteneffectiviteit berekend. In mijn proefschrift 

beantwoord ik de volgende vraagstellingen: 1) Hoeveel HIV-infecties kunnen voorkomen 

worden met behandeling ter preventie,  PrEP en het waarschuwen van partners van patiënten 

van wie recent is vastgesteld dat ze HIV geïnfecteerd zijn? 2) Kan behandeling ter preventie en 

het gebruik van PrEP leiden tot meer nieuwe infecties met een geneesmiddelenresistent HIV? 3) 

Wat is de kosteneffectiviteit van de verschillende preventiestrategieën en hoe kan 

geneesmiddelenresistentie tegen HIV-remmers op een kosteneffectieve manier beperkt 

worden? 

 

Behandeling ter preventie, PrEP en partnerwaarschuwing kunnen allemaal nieuwe infecties 

voorkomen (hoofdstuk 3, 6, 7 en 8). Over een periode van tien jaar, kan behandeling ter 

preventie in Kampala (Oeganda) en in Mombasa (Kenia) tussen de 25% en 30% van de nieuwe 

HIV infecties voorkomen (hoofdstuk 3). In Zambia, voorspel ik dat over een periode van 40 jaar,  

behandeling ter preventie 34% van de infecties voorkomt en PrEP tussen de 16% en 42% 

(hoofdstuk 8). Combinatie van zowel behandeling ter preventie en van PrEP is zeer effectief en 

voorkomt 60% van de HIV-infecties in Zambia. Partnerwaarschuwing bij mannen-die-seks-

hebben-met-mannen (MSM) heeft in Nederland een kleine impact op het aantal nieuwe 



Samenvatting | 229 
 

 

infecties en voorkomt naar verwachting minder dan 0.1% van alle infecties over een periode van 

tien jaar (hoofdstuk 5). 

 

PrEP is kosteneffectief in Zambia. De kosteneffectiviteit kan nog verder worden verhoogd als 

PrEP aan mensen wordt gegeven die op seksueel gebied het meest actief zijn (hoofdstuk 6). In 

hoofdstuk 8 laat ik zien dat in vergelijking met behandeling ter preventie, PrEP duurder is en 

minder HIV infecties voorkomt. Hoewel partnerwaarschuwing niet veel nieuwe infecties zal 

voorkomen  is het wel kosteneffectief. Dit komt omdat de behandeling met HIV-remmers zeer 

kostbaar is. 

 

In hoofdstuk 3 laat ik zien dat behandeling ter preventie in Afrika zal leiden tot een toename van 

het aantal nieuwe infecties met een geneesmiddelenresistent virus. Belangrijk hierbij is dat 

behandeling ter preventie wel zal leiden tot een veel sterkere afname van het aantal nieuwe 

infecties dan dat er nieuwe gevallen van infecties met resistente virussen bijkomen. 

Samengevat worden er tussen de 18 en 46 nieuwe infecties voorkomen voor iedere nieuwe 

infectie met een geneesmiddelenresistent virus. In hoofdstuk 4 laat ik zien dat resistentie op 

een kosteneffectieve wijze kan worden verminderd door het regelmatig meten van de 

virusdeeltjes in het plasma van patiënten die HIV-remmers gebruiken. Als dan blijkt dat de HIV-

remmers die zo’n patiënt sinds het begin van de behandeling gebruikt niet werken (men noemt 

deze eerste behandeling de eerstelijns therapie) dan moet die worden vervangen door een 

andere behandeling, of ook wel tweedelijns therapie genoemd. 

  

Geneesmiddelenresistentie kan ook een belangrijk nadeel zijn bij het gebruik van PrEP. De HIV-

remmers die deel uitmaken van PrEP worden ook veel toegepast in de behandeling van HIV. 

Hoewel PrEP het risico op een HIV-infectie zeer sterk kan verminderen, kunnen gebruikers van 

PrEP toch nog geïnfecteerd raken. Er is een angst dat er resistentie kan ontstaan bij deze 

mensen die geïnfecteerd zijn geraakt, ondanks het gebruik van PrEP. Deze resistentie kan dan 

een nadelige invloed hebben op de latere behandeling en deze resistentie kan mogelijk 

overgedragen worden op andere mensen. Hoofdstuk 7 presenteert het resultaat van een 

vergelijking van drie onafhankelijke modellen in Afrika, ten zuiden van de Sahara. Deze 

modellen voorspellen allemaal dat geneesmiddelenresistentie in de komende 20 jaar sterk zal 

toenemen, omdat steeds meer mensen worden behandeld met HIV-remmers. Alle drie de 

modellen voorspellen dat over 20 jaar niet meer dan 4% van alle patiënten die een 

geneesmiddelenresistent virus bij zich dragen, toe is te schrijven aan PrEP. 

Geneesmiddelenresistentie lijkt daarom geen reden om PrEP niet te geven aan mensen die 

risico lopen op een HIV infectie. 

 

Op grond van mijn proefschrift trek ik de volgende conclusies: 1) Investeren in behandeling ter 

preventie is, in vergelijking met PrEP, de beste methode om HIV te bestrijden in Afrika, ten 

zuiden van de Sahara, omdat zij een beperkt budget ter beschikking hebben, 2) De omvang van 

geneesmiddelenresistentie kan beperkt worden door jaarlijks vast te stellen hoeveel HIV-
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deeltjes een behandelde patiënt in zijn plasma heeft. (Bij een patiënt die succesvol behandeld 

wordt is het aantal HIV-deeltjes gedaald tot onder de detectielimiet) Als blijkt dat de HIV-

remmers niet goed meer werken moet men zo snel mogelijk een andere behandeling met  HIV-

remmers starten, 3) Het vroeger behandelen van HIV zal leiden tot een toename van 

geneesmiddelenresistentie en tot een afname van het aantal nieuwe HIV-infecties. Belangrijk is 

dat de toename in resistentie veel beperkter is dan de afname van het aantal nieuwe infecties, 

4) Hoewel partnerwaarschuwing het aantal nieuwe infecties onder MSM in Nederland maar 

zeer beperkt zal laten afnemen, blijkt het wel een kosteneffectieve methode voor het opsporen 

van onbekende infecties, 5) PrEP kan nieuwe HIV-infecties voorkomen. PrEP moet aan de meest 

seksueel actieve mensen worden gegeven. PrEP heeft maar een heel beperkt effect op 

geneesmiddelenresistentie. 

 

Samenvattend is de conclusie van mijn proefschrift dat HIV-remmers een kosteneffectieve 

methode is om de HIV epidemie in te dammen. Gebruik van HIV-remmers ter preventie zal 

leiden tot een toename van resistentie. Maar deze toename in resistentie is beperkt en weegt 

daarom niet op tegen de veel grotere beperking van de epidemie door HIV-remmers. 

Resistentie is daarom geen reden om geen HIV-remmers ter preventie te gebruiken. 
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