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Abstract 

 
Energy and agricultural commodities and markets have been examined extensively, albeit 

separately, for a number of years. In the energy literature, the returns, volatility and volatility 

spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility 

or covolatility in another asset), among alternative energy commodities, such as oil, gasoline and 

ethanol across different markets, have been analysed using a variety of univariate and multivariate 

models, estimation techniques, data sets, and time frequencies. A similar comment applies to the 

separate theoretical and empirical analysis of a wide range of agricultural commodities and 

markets. Given the recent interest and emphasis in bio-fuels and green energy, especially bio-

ethanol, which is derived from a range of agricultural products, it is not surprising that there is a 

topical and developing literature on the spillovers between energy and agricultural 

markets. Modelling and testing spillovers between the energy and agricultural markets has 

typically been based on estimating multivariate conditional volatility models, specifically the 

BEKK and DCC models. A serious technical deficiency is that the Quasi-Maximum Likelihood 

Estimates (QMLE) of a full BEKK matrix, which is typically estimated in examining volatility 

spillover effects, has no asymptotic properties, except by assumption, so that no statistical test of 

volatility spillovers is possible. Some papers in the literature have used the DCC model to test for 

volatility spillovers. However, it is well known in the financial econometrics literature that the 

DCC model has no regularity conditions, and that the QMLE of the parameters of DCC has no 

asymptotic properties, so that there is no valid statistical testing of volatility spillovers. The 

purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers 

between energy and agricultural markets using the multivariate BEKK and DCC models, and to 

make recommendations as to how such spillovers might be tested using valid statistical techniques. 

Three new definitions of volatility and covolatility spillovers are given, and the different models 

used in empirical applications are evaluated in terms of the new definitions and statistical criteria. 

 

Keywords: Energy markets, agricultural markets, volatility and covolatility spillovers, univariate 

and multivariate conditional volatility models, BEKK, DCC, definitions of spillovers. 

 

JEL:  C22, C32, C58, G32, O13, Q42. 
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1. Introduction 

 

Energy and agricultural commodities and markets have been examined extensively, albeit 

separately, for a number of years. In the energy literature, the returns, volatility and volatility 

spillovers (namely, the delayed effect of a returns shock in one financial asset on the subsequent 

volatility or covolatility in another asset), among alternative energy commodities, such as oil, 

gasoline and ethanol across different markets, have been analysed using a variety of univariate and 

multivariate models, estimation techniques, data sets, and time frequencies. A similar comment 

applies to the separate theoretical and empirical analysis of a wide range of agricultural 

commodities and markets.  

 

Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which 

can be derived from a range of agricultural products, it is not surprising that there is a topical and 

developing literature on the spillovers between energy and agricultural markets, where the 

emphasis is on testing the magnitude and direction of the volatility spillovers between alternative 

commodities in these markets.  

 

A related area of research is the relationship between energy prices, on the one hand, and food and 

fertilizer prices, on the other, as fertilizer prices have a direct and significant effect on the prices 

of agricultural products (see, for example, Algalith (2010) and Chen et al. (2012)). However, there 

do not seem to be any published papers that have tested for volatility spillover effects between the 

energy and fertilizer markets as existing research has focused on univariate conditional volatility 

models rather than their multivariate counterparts. 

 

Spillovers can be examined in the conditional means, that is, the financial returns on commodity 

prices, or the conditional volatility of the shocks to returns. When spillovers are analysed in the 

context of returns, such testing of spillover effects are based on the well-known Granger (non-) 

causality test in a vector autoregressive process. Estimation and testing are typically undertaken 

within a systems framework for purposes of efficiency in estimation and greater power of the 

associated tests. 
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Spillover effects can also be tested in terms of the conditional volatility. Modelling and testing 

spillovers between the energy and agricultural markets has typically been based on estimating 

multivariate conditional volatility models, specifically the BEKK model of Engle and Kroner 

(1995) and the DCC model of Engle (2002). It has been shown in McAleer et al. (2008) that BEKK 

can be derived from a vector random coefficient autoregressive model, and that the Quasi-

Maximum Likelihood Estimates (QMLE) of the parameters in BEKK have the asymptotic 

properties of consistency and asymptotic normality, but only where the covariance matrix of the 

random coefficient is a diagonal matrix (or the associated special case of a scalar matrix). In 

practice, in the literature on testing for volatility spillovers between energy and agricultural 

markets, virtually all of the published papers seem to have estimated a full BEKK matrix to test 

for spillover effects.  

 

A serious technical deficiency and limitation is that the QMLE of a full BEKK matrix has no 

asymptotic properties, except by assumption of the existence of multivariate eighth moments, 

which cannot be verified. Therefore, no statistical test of volatility spillover effects is possible 

within the context of a full BEKK model. This is in contrast with the diagonal BEKK counterpart, 

where the regularity conditions can be verified, so that the asymptotic properties of the QMLE 

allow valid statistical tests of volatility spillovers. 

 

Some papers in the literature have used the DCC model to test for volatility spillovers using 

multivariate conditional covariances and conditional correlations. However, it is well known in 

the financial econometrics literature that the DCC model has no regularity conditions, and that the 

QMLE of the parameters of DCC has no asymptotic properties, except by assumption. Therefore, 

volatility spillovers cannot be tested statistically using the associated conditional covariances and 

conditional correlations.  

  

The purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers 

between energy and agricultural markets using the BEKK and DCC models, and to make 

recommendations as to how such spillovers might be tested using valid statistical techniques. The 

published papers in the literature will be evaluated on the basis of countries, energy and agricultural 

commodities and markets, data sources, sample periods, data frequencies, analytical properties of 
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the model specifications, statistical properties of the associated estimators, convergence of the 

associated estimation algorithms, number of parameters to be estimated, the hypotheses to be 

tested for volatility spillovers, significance of the associated estimators, magnitudes and signs of 

the estimators, use of univariate and multivariate conditional volatility models, the presence or 

otherwise of volatility spillovers, and an overall assessment of the empirical results in the literature 

based on misinterpretations of the models used in estimation. 

 

The plan of the remainder of the paper is as follows. Section 2 presents the stochastic processes 

for the two most widely used univariate conditional volatility models in the first step of estimating 

the two multivariate conditional volatility models with spillover effects. Section 3 analyses 11 

papers that have been published in international journals to evaluate volatility spillovers between 

energy and agricultural markets, and makes recommendations as to how such spillovers might be 

tested using valid statistical techniques. Three new definitions of volatility spillovers are given, 

specifically full volatility, full covolatility spillovers, and partial covolatility spillovers, the 

alternative multivariate models are evaluated in terms of the new definitions, and the different 

multivariate models used in empirical applications are evaluated in terms of the new definitions 

and relevant regularity conditions and statistical criteria. Section 4 gives a summary of the main 

results in the paper. 

 

 

2. Stochastic Processes for Univariate and Multivariate Conditional 

Volatility Models: Full and Partial Volatility and Covolatility Spillovers 

 

In order to accommodate volatility spillover effects, alternative multivariate volatility models of 

the conditional covariances are available. Examples include the diagonal model of Bollerslev et 

al. (1988), the vech and diagonal vech models of Engle and Kroner (1995), the Baba, Engle, Kraft, 

and Kroner (BEKK) multivariate GARCH model of Baba et al. (1985) and Engle and Kroner 

(1995), the constant conditional correlation (CCC) (specifically, multiple univariate rather than 

multivariate) GARCH model of Bollerslev (1990), the Ling and McAleer (2003) vector ARMA-

GARCH (VARMA-GARCH) model, and the VARMA–asymmetric GARCH (VARMA-

AGARCH) model of McAleer et al. (2009), the Engle (2002) dynamic conditional correlation 
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(technically, dynamic conditional covariance rather than correlation model) (DCC), and the Tse 

and Tsui (2002) varying conditional correlation (VCC) model. For further details on most of these 

multivariate models see, for example, McAleer (2005)). 

  

The first step in estimating multivariate models is to obtain the standardized shocks from the 

conditional mean returns shocks. For this reason, the three most widely used univariate conditional 

volatility models, namely GARCH, GJR and EGARCH, will be presented briefly, followed by the 

two most widely estimated multivariate conditional covariance models, namely variations of 

BEKK and DCC. 

 

Consider the conditional mean of financial returns as follows: 

 

tttt IyEy   )|( 1            (1) 

 

where the returns, ty  = tPlog , represent the log-difference in financial commodity or 

agricultural prices ( tP ), 1tI  is the information set at time t-1, and t  is conditionally 

heteroskedastic. In order to derive conditional volatility specifications, it is necessary to specify 

the stochastic processes underlying the returns shocks, t . 

 

2.1 Univariate Conditional Volatility Models 

 

Alternative univariate conditional volatility models are of interest in single index models to 

describe individual financial assets and markets. Univariate conditional volatilities can also be 

used to standardize the conditional covariances in alternative multivariate conditional volatility 

models to estimate conditional correlations, which are particularly useful in developing dynamic 

hedging strategies.  

 

The three most popular univariate conditional volatility models are discussed below, together with 

the associated regularity conditions, the conditions required for asymmetry and leverage, and the 
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conditions underlying the asymptotic properties of consistency and asymptotic normality, where 

they can be shown to exist. 

 

2.1.1 Random Coefficient Autoregressive Process and GARCH 

 

Consider the random coefficient autoregressive process of order one: 

 

tttt   1           (2)  

 

where 

 

t  ~ iid ),0(  , 

t  ~ iid ),0(  , 

and ttt h/   is the standardized residual. 

 

Tsay (1987) derived the ARCH(1) model of Engle (1982) from equation (2) as: 

 

2
11

2 )|(   tttt IEh   ,         (3)  

 

where th  is conditional volatility, and 1tI  is the information set available at time t-1. The use of 

an infinite lag length for the random coefficient autoregressive process in equation (2), with 

appropriate geometric restrictions (or stability conditions) on the random coefficients, leads to the 

GARCH model of Bollerslev (1986). From the specification of equation (2), it is clear that both 

  and   should be positive as they are the unconditional variances of two different stochastic 

processes.  

 

The QMLE of the parameters of ARCH and GARCH have been shown to be consistent and 

asymptotically normal in several papers. For example, Ling and McAleer (2003) showed that the 

QMLE for GARCH(p,q) is consistent if the second moment is finite. Moreover, a weak sufficient 
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log-moment condition for the QMLE of GARCH(1,1) to be consistent and asymptotically normal 

is given by: 

 

1||,0))log(( 2  tE , 

 

which is not easy to check in practice as it involves two unknown parameters and a random variable. 

The more restrictive second moment condition, namely 1  , is much easier to check in 

practice. 

 

In general, the proofs of the asymptotic properties follow from the fact that ARCH and GARCH 

can be derived from a random coefficient autoregressive process (see McAleer et al. (2008) for a 

general proof of multivariate models that are based on proving that the regularity conditions satisfy 

the conditions given in Jeantheau (1998) for consistency, and the conditions given in Theorem 

4.1.3 in Amemiya (1985) for asymptotic normality).  

 

2.1.2 Random Coefficient Autoregressive Process and GJR 

 

The ARCH and GARCH models are symmetric, that is, positive and negative shocks of equal 

magnitude have identical effects on conditional volatility. Consequently, there is no asymmetry, 

and hence no leverage, whereby negative shocks increase conditional volatility and positive shocks 

decrease conditional volatility (see Black (1976)). 

 

McAleer (2014) showed that the GJR model of Glosten, Jagannathan and Runkle (1992) could be 

derived as a simple extension of the random coefficient autoregressive process in equation (2), 

with an indicator variable )( 1tI   that distinguishes between the different effects of positive and 

negative returns shocks on conditional volatility, namely: 

 

ttttttt I    111 )(         (4)  

 

where  
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t  ~ iid ),0(  , 

t ~  iid ),0(  ,  

t  ~ iid ),0(  , 

)( 1tI   = 1 when 1t < 0,  

)( 1tI   = 0 when 01 t , 

ttt h/   is the standardized residual,  

and the indicator functions, )( 1tI  , are randon variables. 

 

The conditional expectation of the squared returns shocks in equation (4), which is typically 

referred to as the GJR (alternatively, as the threshold or asymmetric GARCH) model, is an 

extension of equation (3), as follows: 

 

2
11

2
11

2 )()|(   tttttt IIEh   .       (5)  

 

The use of an infinite lag length for the random coefficient autoregressive process in equation (4), 

with appropriate restrictions on the random coefficients (namely, stability conditions), leads to the 

standard GJR model with lagged conditional volatility. From the specification of equation (4), it 

is clear that all three parameters should be positive as they are the variances of three different 

stochastic processes. 

 

A sufficient condition for the consistency of the QMLE of GJR(1,1) is the existence of the second 

moment, namely 12/   . McAleer et al. (2007) showed that the weaker sufficient log-

moment condition for consistency of the QMLE of GJR(1,1) is given by: 

 

1||,0)]))([(log( 2   ttIE ,  
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which involves three unknown parameters, an indicator function, and a random variable. As in the 

case of the log-moment condition for GARCH(1,1), the more restrictive second moment condition 

is much easier to check in practice. 

 

As in the case of ARCH and GARCH, the proofs of the asymptotic properties follow from the fact 

that GJR can be derived from a random coefficient autoregressive process (see McAleer et al. 

(2008) for a general proof of multivariate models that are based on proving that the regularity 

conditions satisfy the conditions given in Jeantheau (1998) for consistency, and the general 

conditions given in Theorem 4.1.3 in Amemiya (1985) for asymptotic normality). 

 

As shown in McAleer (2014), the GJR model is asymmetric, in that positive and negative shocks 

of equal magnitude have different effects on conditional volatility. Therefore, asymmetry exists 

for GJR if: 

 

Condition for Asymmetry for GJR: 0 . 

 

A special case of asymmetry is leverage, which is the negative correlation between returns shocks 

and subsequent shocks to volatility (see Black (1976)). The differences between asymmetry and 

leverage are frequently misunderstood and misinterpreted in practice, it is worth stating them 

explicitly. The conditions for leverage in the GJR model in equation (5) are: 

 

Condition for Leverage for GJR: 0  and 0 . 

 

The second parametric condition for leverage is typically omitted in the literature on GJR. It is 

clear that leverage is not possible for GJR as both   and  , which are the variances of two 

stochastic processes, must be positive.  

 

2.1.3 Random Coefficient Complex Nonlinear Moving Average Process and EGARCH 
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Another conditional volatility model that can accommodate asymmetry is the EGARCH model of 

Nelson (1990, 1991). McAleer and Hafner (2014) showed that EGARCH could be derived from a 

random coefficient complex nonlinear moving average (RCCNMA) process, as follows: 

 

tttttt    11 ||         (6)  

 

where  

 

t  ~ iid ),0(  , 

t ~  iid ),0(  ,  

t  ~ iid ),0(  , 

 

1t  is a complex-valued function of 1t , 

and ttt h/   is the standardized residual.  

 

McAleer and Hafner (2014) show that the conditional variance of the squared returns shocks in 

equation (6) is: 

 

111
2 ||)|(   ttttt IEh  ,       (7) 

 

where it is clear from the RCCNMA process in equation (6) that all three parameters should be 

positive as they are the variances of three different stochastic processes. 

 

Although the transformation of th  in equation (7) is not logarithmic, the approximation given by:  

 

1))1(1log(log  ttt hhh  
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can be used to replace th  in equation (7) with 1 + thlog . The use of an infinite lag for the 

RCCNMA process in equation (6) would yield the standard EGARCH model with lagged 

conditional volatility. 

 

As EGARCH can be derived from a random coefficient complex nonlinear moving average 

(RCCNMA) process, it follows that there is no invertibility condition to transform the returns 

shocks to the standardized residuals. Therefore, there are as yet no asymptotic properties of the 

QMLE of the parameters of EGARCH.  

 

Recently, Martinet and McAleer (2015) showed that the EGARCH(p,q) model could be derived 

from a stochastic process, for which the invertibility conditions can be stated simply and 

explicitly. This theoretical result is likely to lead to the development of asymptotic properties for 

the QMLE of EGARCH.  

 

McAleer and Hafner (2014) show that asymmetry exists for EGARCH if: 

 

Condition for Asymmetry for EGARCH: 0 , 

 

and that leverage exists for EGARCH model if:  

 

Condition for Leverage for EGARCH: 0  and   .  

 

The second parametric condition for leverage is typically omitted in the literature on EGARCH, 

without explanation. As in the case of the GJR model, it is clear that leverage is not possible for 

EGARCH as both   and  , which are the variances of two stochastic processes, must be 

positive.  

 

2.2 Multivariate Conditional Volatility Models  

 

The multivariate extension of univariate GARCH is given in Baba et al. (1985) and Engle and 

Kroner (1995), while the multivariate extension of univariate GJR is given in McAleer et al. (2009). 
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A multivariate extension of the univariate EGARCH model has been considered in Kawakatsu 

(2006), although no asymptotic properties have yet been established for the matrix 

exponential GARCH  model. 

 

It would seem that the conditions for asymmetry and leverage for the GJR and EGARCH models 

should also be applicable to their multivariate counterparts, although this does not seem to be 

common in practice. The asymmetry conditions for multivariate GJR are given in the VARMA-

AGARCH model of McAleer et al. (2009). Leverage has typically been presented for individual 

equations only, as defined by Black (1976) for univariate processes using arguments based on the 

debt-to-equity ratio. The multivariate counterpart of leverage does not yet seem to have been 

defined, primarily because co-leverage across different assets does not have an unambiguous 

meaning in terms of the debt-equity ratio for a portfolio of assets. 

 

In order to establish volatility spillovers in a multivariate framework, it is useful to define the 

multivariate extension of the relationship between the returns shocks and the standardized 

residuals, that is, ttt h/  . The multivariate extension of equation (1), namely 

tttt IyEy   )|( 1 , can remain unchanged by assuming that the three components are now 

1m  vectors, where m is the number of financial assets. The multivariate definition of the 

relationship between t  and t  is given as: 

 

ttt D  2/1  ,           (8) 

 

where ),...,,( 21 mtttt hhhdiagD  is a diagonal matrix comprising the univariate conditional 

volatilities. Define the conditional covariance matrix of t  as tQ . As the 1m  vector, t , is 

assumed to be iid for all m elements, the conditional correlation matrix of t  , which is equivalent 

to the conditional correlation matrix of t , is given by t . Therefore, the conditional expectation 

of (8) is defined as: 

 

 2/12/1
tttt DDQ   .          (9)  
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Equivalently, the conditional correlation matrix, t , can be defined as: 

 

2/12/1  tttt DQD .          (10) 

 

Equation (9) is useful if a model of t  is available for purposes of estimating tQ , whereas (10) is 

useful if a model of tQ  is available for purposes of estimating t . 

 

Equation (9) is convenient for a discussion of volatility spillover effects, while both equations (9) 

and (10) are instructive for a discussion of asymptotic properties. As the elements of tD  are 

consistent and asymptotically normal, the consistency of tQ in (9) depends on consistent 

estimation of t , whereas the consistency of t  in (10) depends on consistent estimation of tQ . 

As both tQ and t  are products of matrices, neither the QMLE of tQ or t will be asymptotically 

normal based on the definitions given in equations (9) and (10).  

 

2.3 Full and Partial Volatility and Covolatility Spillovers  

 

Volatility spillovers are defined as the delayed effect of a returns shock in one asset on the 

subsequent volatility or covolatility in another asset. Therefore, a model relating tQ  to returns 

shocks is essential, and this will be addressed in the following sub-section. Spillovers can be 

defined in terms of full volatility spillovers and full covolatility spillovers, as well as partial 

covolatility spillovers, as follows, for mkji ,...,1,,  : 

 

(1) Full volatility spillovers: 1/  ktiitQ  , ik  ;       (11)  

 

(2) Full covolatility spillovers: 1/  ktijtQ  , jikji ,,  ;     (12) 

 

(3) Partial covolatility spillovers: 1/  ktijtQ  , jorieitherkji  , .    (13) 
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Full volatility spillovers occur when the returns shock from financial asset k affects the volatility 

of a different financial asset i. 

 

Full covolatility spillovers occur when the returns shock from financial asset k affects the 

covolatility between two different financial assets, i and j. 

  

Partial covolatility spillovers occur when the returns shock from financial asset k affects the 

covolatility between two financial assets, i and j, one of which can be asset k 

 

When 2m , only (1) and (3) are possible as full covolatility spillovers depend on the existence 

of a third financial asset.  

 

As mentioned above, spillovers require a model that relates the conditional volatility matrix, tQ , 

to a matrix of delayed returns shocks. The two most frequently used models of multivariate 

conditional covariances are alternative specifications of the BEKK and DCC models, with 

appropriate parametric restrictions, which will be considered below. 

 

2.4 Diagonal and Scalar BEKK 

 

The vector random coefficient autoregressive process of order one is the multivariate extension of 

equation (2), and is given as: 

 

tttt   1           (14)  

 

where 

 

t  and  t are 1m  vectors, and t  is an mm  matrix of random coefficients, and  

 

t  ~ iid ),0( A , 
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t  ~ iid )',0( QQ . 

 

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vech A can 

have dimension as high as 22 mm  , whereas vectorization of a symmetric matrix A to vec A can 

have dimension as low as 2/)1(2/)1(  mmmm . 

 

In a case where A is either a diagonal matrix or the special case of a scalar matric, maIA  , 

McAleer et al. (2008) showed that the multivariate extension of GARCH(1,1) from equation (14), 

incorporating an infinite geometric lag in terms of the returns shocks, is given as the diagonal or 

scalar BEKK model, namely: 

 

'
1

''
11' BBQAAQQQ tttt     ,        (15) 

 

where A and B are both either diagonal or scalar matrices.  

 

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal or scalar BEKK 

models were consistent and asymptotically normal, so that standard statistical inference on testing 

hypotheses is valid. Moreover, as tQ  in (15) can be estimated consistently, t  in equation (10) can 

also be estimated consistently. 

 

In terms of volatility spillovers, as the off-diagonal terms in the second term on the right-hand side 

of equation (15), ''
11 AA tt   , have typical (i,j) elements ,,...,1,,,11 mjijiaa jtitjjii    there are 

no full volatility or full covolatility spillovers. However, partial covolatility spillovers are not only 

possible, but they can also be tested using valid statistical procedures. 

 

2.5 Triangular, Hadamard and Full BEKK 

 

Without actually deriving the model from an appropriate stochastic process, Baba et al. (1985) and 

Engle and Kroner (1995) considered the full BEKK model, as well as the special cases of triangular 
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and Hadamard (element-by-element multiplication) BEKK models. The specification of the 

multivariate model is the same as the specification in equation (15), namely: 

 

'
1

''
11' BBQAAQQQ tttt    ,        (16) 

 

except that A and B are full, Hadamard or triangular matrices, rather than diagonal or scalar 

matrices, as in (15). 

 

Although estimation of the full, Hadamard and triangular BEKK models is available in some 

standard econometric and statistical software packages, it is not clear how the likelihood functions 

might be determined. Moreover, the so-called “curse of dimensionality”, whereby the number of 

parameters to be estimated is excessively large, makes convergence of any estimation algorithm 

somewhat problematic. 

 

Jeantheau (1998) showed that the QMLE of the parameters of the full BEKK model is consistent 

under a multivariate log-moment condition, while Comte and Lieberman (2003) showed that the 

QMLE are asymptotically normal under the assumption of the existence of eighth moments. 

Unfortunately, the multivariate log-moment condition is more complicated than the counterparts 

for the GARCH(1,1) and GJR(1,1) models given in sub-sections 2.1.1 and 2.1.2, respectively. 

Specifically, the multivariate log-moment conditions are difficult to verify when the matrices A 

and B are neither diagonal nor scalar matrices, and the eighth moment condition cannot be verified 

for a full BEKK model. Therefore, there are as yet no verifiable asymptotic properties of the full, 

Hadamard or triangular BEKK models. 

 

The full, Hadamard and triangular BEKK models have full volatility spillovers, full covolatility 

spillovers, and partial covolatility spillovers. However, any hypothesis testing relating to such 

spillovers is not possible as the QMLE do not possess any verifiable asymptotic properties. 

Moreover, as tQ  in (15) cannot be shown to be estimated consistently, t  in equation (10) also 

cannot be shown to be estimated consistently. 
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This is in sharp contrast to a number of published papers in the literature whereby volatility 

spillovers have been tested incorrectly based on the off-diagonal terms in the matrix A in equation 

(16). This will be elaborated in Section 3 below. 

 

2.6 Diagonal and Scalar DCC 

 

Another multivariate conditional volatility model has been suggested by Engle (2002), who 

presented, without using any stochastic process for the underlying returns shocks, what is 

purported to be a dynamic conditional correlation (DCC) model. Without distinguishing between 

dynamic conditional covariances and dynamic conditional correlations, Engle (2002) presented 

the scalar DCC specification as: 

 

1
'

11)1(   tttt QQQ           (17)  

 

where Q  is assumed to be positive definite with unit elements along the main diagonal, the scalar 

parameters are assumed to satisfy the stability condition,   < 1, the standardized shocks, t , 

have been defined previously.  

 

As the matrix in equation (17) does not satisfy the definition of a correlation matrix, specifically 

the off-diagonal terms are not necessarily positive or negative fractions, and the diagonal elements 

are not necessarily all equal to one, Engle (2002) uses the following standardization: 

 

2/12/1 ))(())((  tttt QdiagQQdiag .        (18) 

 

As discussed in Hafner and McAleer (2014), there is no clear explanation given in Engle (2002) 

for the standardization in equation (18) or, more recently, in Aielli (2013). The standardization in 

equation (18) might make sense if the matrix tQ  in (17) were the conditional covariance matrix 

of t  or , though this is also not made clear. Despite the title of the paper, Aielli (2013) also 

does not provide any stationarity conditions for the DCC model, and does not mention invertibility. 

t
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Indeed, in the literature on DCC, it is not clear whether equation (17) refers to a conditional 

covariance or a conditional correlation matrix.  

 

Similar comments also apply to the varying conditional correlation (VCC) model of Tse and Tsui 

(2002), where the first stage is based on a standard GARCH(1,1) model using returns shocks. The 

second stage is slightly different from the DCC formulation as the dynamic conditional 

correlations are defined appropriately as correlations. However, no regularity conditions are 

presented, and hence no statistical properties are given. Some useful caveats regarding DCC and 

VCC are given in Caporin and McAleer (2013). 

 

Hafner and McAleer (2014) use a vector random coefficient moving average process to derive a 

scalar DCC model, where it is shown that (i) DCC is a dynamic conditional covariance model of 

the returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation 

for standardization of the conditional covariances to obtain the conditional correlations; and (iii) 

shows that the appropriate GARCH model for DCC is based on the standardized shocks rather 

than the returns shocks. 

 

In what follows, the analysis of Hafner and McAleer (2014) is extended to derive a diagonal DCC 

model, of which a special case is the standard DCC model. Specifically, let: 

 

tttt   1           (19)  

 

where 

 

t  and  t are 1m  vectors, and t  is an mm  matrix of random coefficients, and  

 

t  ~ iid ),0( A , 

t  ~ iid ),0(  . 

 

The conditional covariance matrix of (19) is given as: 
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''
11 AAQ ttt   .          (20) 

 

As in the case of the derivation of the BEKK model, it is assumed that A is either a diagonal or 

scalar matrix, otherwise the derivation in (20) will not be possible because of non-conformity of 

the matrices in the matrix product.  

 

A straightforward extension of (19) to a vector random coefficient moving average process of 

order infinity, with appropriate geometric restrictions, leads to an extension of (20), as follows: 

 

'
1

''
11 BBQAAQ tttt    ,        (21) 

 

where B is also a diagonal or scalar matrix. The scalar version of DCC in (21), in which 2/1A  

and 2/1B  gives the scalar DCC model in (17). The standardization of t  given in (18) ensures 

that the elements of the standardized matrix satisfy the definition of a matrix of correlation 

coefficients.  

 

The diagonal and scalar versions of DCC do not have full volatility or full covolatility spillovers, 

but partial covolatility spillovers are possible. However, it is well known that the QMLE of DCC 

have no regularity conditions or asymptotic properties (see, for example, Aielli (2013) and Caporin 

and McAleer (2013)). Hafner and McAleer (2014) demonstrate stationarity and invertibility of the 

DCC specification given in equation (21), which is an important step in demonstrating the 

asymptotic properties of the QMLE of the parameters of scalar BEKK. It follows, therefore, that 

any statistical tests of volatility spillovers, specifically partial covolatility spillovers, will be 

invalid. 

 

This is in marked contrast to a number of published papers in the literature whereby volatility 

spillovers have been tested incorrectly based on the off-diagonal terms in the matrix A in equation 

(21). This will be elaborated in Section 3 below. 
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3. Critical Analysis of the Empirical Literature 

 

A useful analysis of the empirical literature on examining volatility spillovers has been presented 

in “The dynamic pattern of volatility spillovers between oil and agricultural markets” by Saucedo, 

Brümmer and Jaghdani (2015). The authors examined 23 published papers predominantly on the 

basis of univariate and multivariate conditional volatility models, as well as one paper on each of 

univariate stochastic volatility and univariate realized volatility. It is clear that conditional 

volatility models, as discussed in the previous section, dominate in any empirical analysis that tests 

for volatility spillover effects. 

 

The papers discussed in Saucedo, Brümmer and Jaghdani (2015) were analysed on the basis of 

products (or energy and agricultural commodities), region or country, model (specification), time 

frame (or sample period), (data) frequency, and empirical findings regarding spillovers. As 

discussed in the previous section, sensible analysis of volatility spillovers requires multivariate 

models to estimate and test for full volatility spillovers, full covolatility spillovers, and partial 

covolatility spillovers.  

 

For this reason, in this paper we have chosen 11 of the 23 published empirical papers that have 

used the multivariate full BEKK model (in one paper, the diagonal BEKK model), and two papers 

that estimated both the full BEKK and scalar DCC models. The scalar BEKK model was not used 

at all, and in some cases a univariate conditional model was presented in addition to the 

multivariate conditional volatility models.  

 

The 11 papers that will be appraised in chronological order are: “Ethanol, corn, and soybean price 

relations in a volatile vehicle-fuels market” by Zhang, Lohr, Escalante and Wetzstein (2009), 

“Volatility spillovers between food and energy markets: A semiparametric approach” by Serra 

(2011), “Price volatility in ethanol markets” by Serra, Zilberman and Gil (2011), “Volatility 

spillover effects and cross hedging in corn and crude oil futures” by Wu, Guan and Myers (2011), 

“Volatility spillovers in US crude oil, ethanol and corn futures markets” by Trujillo-Barrera, 

Mallory and Garcia (2012), “Inside the Black Box: The price linkage and transmission between 
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energy and agricultural markets” by Du and McPhail (2012), “Do energy prices stimulate food 

price volatility? Examining volatility transmission between US oil, ethanol and corn markets” by 

Gardebroek and Hernandez (2013), “Price volatility in food markets: can stock building mitigate 

price fluctuations?” by Serra and Gil (2013), “Volatility spillovers in China’s crude oil, corn and 

fuel ethanol markets” by Wu and Li (2013), “The influence of biofuels, economic and financial 

factors on daily returns of commodity futures prices” by Algieri (2014), and “Dynamic spillovers 

among major energy and cereal commodity prices” by Mensi, Hammoudeh, Nguyen and Yoon 

(2014). 

 

The appraisal of the empirical literature in this section does not consider the empirical findings as 

these are already given in Saucedo, Brümmer and Jaghdani (2015), albeit not critically from either 

a mathematical or statistical perspective. This paper is concerned with the statistical testing of 

volatility spillover effects, and will concentrate on the regularity conditions, statistical properties, 

hypothesis testing and statistical significance, as appropriate.  

 

In addition to the energy commodities, agricultural commodities, countries, multivariate 

conditional volatility models, sample periods, and data frequencies that were discussed in Saucedo, 

Brümmer and Jaghdani (2015), the paper also considers in Tables 1A, 1B and 1C, the journals in 

which the papers were published, the energy and agricultural prices (namely spot or futures prices), 

data sources, software packages used in estimation and testing, the univariate conditional volatility 

models used in estimation as a first step in estimating their multivariate counterparts, the types of 

spillover effects considered (namely full volatility, full covolatility and partial covolatility 

spillovers), the analytical and statistical properties of the conditional volatility models, the 

purported hypothesis tests, the purported statistical significance of the tests, and an overall 

assessment of each of the published papers. 

 

The 11 papers were published in some of the leading energy, agricultural and natural resource 

economics, and futures market journals, namely Energy Economics (3 papers), European Review 

of Agricultural Economics (2 papers), Energy Policy (2 papers), and one paper in each of the 

Journal of Agricultural and Resource Economics, Energy Journal, Energies, and Journal of Futures 

Markets.  
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Also given in Table 1A are the countries for which the energy and agricultural products data are 

obtained, predominantly the USA for ethanol, fuel ethanol, crude oil, light crude oil, heating oil, 

biodiesel, gasoline, and heating oil. Other countries or regions considered include France for 

ethanol, crude oil and biodiesel, the European Union for oil, heating oil and gasoline, China for 

crude oil and fuel ethanol, international countries for crude oil and ethanol, and Brazil for crude 

oil and ethanol. The agricultural commodities include corn, rapeseed, soybeans, soybean oil, sugar 

and wheat for the USA and France, barley, corn, sorghum and wheat for the USA and European 

Union, sugar for the USA, Brazil and other international countries, and corn for the USA and 

China.  

 

Table 1A also shows that the most frequently used data on prices were for spot (or cash) prices (5 

papers), futures prices (3 papers), and one paper each for both spot and futures prices, both spot 

prices and index, and nominal prices. The sample periods ranged from 1989, 1990, 1992, 1997, 

2000, 2003, 2005 and 2006 through to 2007, 2008, 2009, 2010. 2011, 2012 and 2013. for weekly 

data (7 papers), daily data (3 papers, and one paper that used monthly data for ethanol and corn 

(see also Table 1B)).  

 

Table 1B also shows that the primary data sources included Bloomberg, EIA (energy, oil, crude 

oil, gasoline), IGC (cereal), CBOT (ethanol, corn, corn futures), FAO (corn), National Bureau of 

Statistics of China, Nebraska Government (ethanol), NASS (corn), CME (corn, ethanol, gasoline, 

light crude oil), NYMEX (gasoline, WTI, crude oil), CEPEA (ethanol, sugar), Center for 

Advanced Studies on Applied Economics (ethanol, sugar), USDA (corn cash), Ethanol and 

Biodiesel News (ethanol), and USDA (corn soybean). 

 

The same table shows that only one paper, namely Serra, Zilberman and Gil (2011), stated the 

statistical, econometric or financial econometric software package, specifically, WinRATS version 

6.30, that was used in estimation, whether for univariate or multivariate conditional volatility 

models. Consequently, there was no discussion of convergence of any algorithms that were used 

to estimate the models. This is a disappointing finding as it can be quite difficult to reproduce 

empirical results, especially for multivariate conditional volatility models, when the software 
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package is not stated explicitly. Moreover, the “curse of dimensionality” cannot be determined 

when there is no discussion of the convergence of the algorithms, despite the fact it is well known 

that convergence is problematic when more than three financial assets are used to estimate the full 

BEKK model. 

 

The last three columns of Table 1B provide some useful insights regarding the types of univariate 

and multivariate conditional volatility models that are estimated, as well as the alternative volatility 

spillovers that can be considered. The full BEKK model is estimated in 7 papers, both the full 

BEKK and scalar DCC models are estimated in 2 papers, and the diagonal BEKK model and scalar 

DCC model are estimated separately in one paper each. As discussed in sub-section 2.3, the full 

BEKK models incorporates full volatility, full covolatility and partial co-volatility spillovers, 

while the diagonal BELL and scalar DCC models allow only partial co-volatility spillovers.  Valid 

statistical testing of such spillovers effects is discussed in Table 1C below.  

 

As univariate models are necessary to obtain the standardized residuals for subsequent multivariate 

estimation and testing, each of the papers uses at least one, indeed usually only one, univariate 

conditional volatility model to initiate the estimation process. Of the 11 published papers, 7 use 

only the GARCH model (including one semi-parametric GARCH model), 2 use the threshold 

GARCH model (also commonly known as GJR), one paper uses only EGARCH, and one uses 

both the GARCH and EGARCH models. 

 

The analytical and statistical properties of the QMLE of the univariate and multivariate conditional 

volatility models are analysed in Table 1C. Somewhat surprisingly and disappointingly, all 11 

papers ignore any discussion of the analytical properties of the multivariate conditional volatility 

models, and 9 of the papers also ignore the analytical properties of the univariate conditional 

volatility models as a precursor to estimating the multivariate models. Gardebroek and Hernandez 

(2014) report that α+β < 1, without explanation, but do not seem to appreciate that this is a 

sufficient but not necessary condition for the unconditional variance to be finite, and for the QMLE 

to be consistent. Wu and Li (2013) discuss the conditions for asymmetry and leverage for the 

EGARCH model, but do so incorrectly by concentrating on the first condition, albeit incorrectly, 
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namely 0  rather than 0 , and ignoring the second condition altogether, namely  

  . 

 

The papers purportedly test the hypotheses relating to volatility and covolatility spillovers without 

recognizing that such tests are invalid except for the diagonal and scalar BEKK models, and not 

valid whatsoever for the scalar DCC models. Only one paper fails to provide any evidence of any 

purported hypothesis tests or diagnostic checks. The diagnostic checks include the standard Ljung-

Box Q test for the absence of serial correlation in the residuals of the conditional mean equation 

(in 2 papers), normality tests of the returns shocks (in 4 papers), both unit root tests and 

cointegration tests (in 6 papers), tests of causality (in 3 papers), and a test for long memory (in one 

paper).  

 

As can be seen from Table 1C, all 11 papers reported on the purported statistical significance of 

the estimated parameters, despite the fact that there is no proof that the statistical properties hold 

for diagnostic checks and statistical significance of estimated presence in the absence of 

asymptotic results for the multivariate conditional volatility models. These diagnostic checks are 

generally invalid in the presence of estimating volatility and covolatility spillovers, except under 

the null hypothesis that such spillovers do not exist, which would seem to destroy the primary 

purpose of the analysis. 

 

As 7 of the 11 papers used weekly data and one paper used monthly data, with the remaining 3 

papers having used daily data, it is surprising that there were no tests conducted for seasonal unit 

roots or the possibility of seasonal cointegration. Having said that, there is no statistical proof that 

such diagnostic checks would be valid in the absence of any asymptotic theory underlying the full 

BEKK and scalar DCC models. 

 

The last column in Table 1C makes it clear that the overall assessment of the empirical literature 

in estimating and testing for volatility and covolatility spillovers between the energy and 

agricultural markets is one of disappointment. In short, the theoretical and empirical analyses in 

every paper are questionable.  
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The only tests that are valid asymptotically are for the scalar and diagonal BEKK models. The 

diagonal BEKK model was estimated only in the paper by Algieri (2014), but without explanation 

or any statement to the effect of statistical validity. It can reasonably be presumed that the diagonal 

BEKK model was estimated to overcome the “curse of dimensionality” that would otherwise have 

been faced in trying to obtain convergence in estimating the full BEKK model. This raises serious 

questions and reservations about the unstated convergence in estimating the full BEKK model in 

9 of the 11 published papers in the literature on volatility spillovers between energy and 

agricultural markets. 

 

 

4. Concluding Remarks 

 

The primary purpose of the paper was to specify, estimate and test for volatility and covolatility 

spillovers between the energy and agricultural markets. The paper showed that in the energy 

literature, the returns, volatility and volatility spillovers among alternative energy commodities 

have been analysed using a variety of univariate and multivariate conditional volatility models, the 

leading energy and agricultural economics journals in which the papers were published, estimation 

techniques, data sets, time frequencies, energy and agricultural prices, data sources, software 

packages used in estimation and testing, the univariate conditional volatility models used in 

estimation as a first step in estimating their multivariate counterparts, the types of volatility 

spillover effects that are considered (namely full volatility, full covolatility and partial covolatility 

spillovers), the analytical (regularity) conditions, statistical properties of the conditional volatility 

models, the purported hypothesis tests, the purported statistical significance of the tests, and an 

overall assessment of each of the published papers.  

 

A similar comment applies to the separate theoretical and empirical analysis of a wide range of 

agricultural commodities and markets.  

 

Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which 

can be derived from a range of agricultural products, it is not surprising that there is a topical and 
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developing literature on the volatility and covolatility spillovers between the energy and 

agricultural markets.  

 

Modelling and testing spillovers between these two markets has typically been based on estimating 

multivariate conditional volatility models. A serious technical deficiency is that the Quasi-

Maximum Likelihood Estimates (QMLE) of the two most popular multivariate conditional 

volatility models, namely the BEKK and DCC models, typically have no asymptotic properties, 

except by assumption or under appropriate parametric assumptions, so that no valid statistical test 

of volatility spillovers is possible.  

 

The paper evaluated the theory and practice in testing for volatility spillovers between energy and 

agricultural markets using the multivariate BEKK and DCC models, and provided 

recommendations as to how such volatility and covolatility spillovers might be tested using valid 

statistical techniques. Three new definitions of volatility and covolatility spillovers were given, 

and the different models used in empirical applications were evaluated in terms of the new 

definitions and other criteria. 

 

In an area as important as examining volatility and covolatility spillovers between the energy and 

agricultural markets, greater care and attention needs to be placed on the mathematical and 

statistical properties of the estimated univariate and especially multivariate conditional volatility 

models. 
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Table 1A  
 

Summary of Literature on Volatility Between Energy and Agricultural Markets  
using BEKK and DCC 

 

Author(s) Journals Countries 
Energy 
commodities

Agricultural 
commodities 

Sample 
periods Prices  

Algieri (2014) 
Energy 
Policy 

USA,  
France 

Ethanol, 
crude oil, 
biodiesel 

Corn, 
rapeseed, 
soybeans, 
soybean oil, 
sugar,  
wheat 2005-2013 Futures 

Du and 
McPhail 
(2012) 

Energy 
Journal USA 

Ethanol, 
gasoline, 
light crude 
oil Corn 

2005.3.25-
2011.3.25 Futures 

Gardebroek 
and 
Hemandez 
(2013) 

Energy 
Economics  USA 

Crude oil, 
ethanol Corn 1997-2011 Spot 

Mensi, 
Hammoudeh, 
Nguyen and 
Yoon (2014) 

Energy 
Economics  

USA,  
EU 

Oil,  
gasoline, 
heating oil 

Barley,  
corn, 
sorghum, 
wheat 2000-2013 Spot 

Serra (2011) 
Energy 
Economics  

International, 
Brazil 

Crude oil, 
ethanol Sugar 

2000.7-
2009.11 Spot 

Serra and Gil 
(2013) 

European 
Review of 
Agricultural 
Economics USA Ethanol Corn 

1990.1-
2010.12 Nominal 

Serra, 
Zilberman  
and Gil (2011) 

European 
Review of 
Agricultural 
Economics 

USA,  
Brazil 

Crude oil, 
ethanol Sugar 

2000.7-
2008.2 Spot 

Trujillo-
Barrera , 
Mallory and 
Garcia (2012) 

Journal of 
Agricultural 
and 
Resource 
Economics USA 

Crude oil, 
ethanol Corn 2006-2011 Futures 
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Wu, Guan and  
Myers (2011) 

Journal of 
Futures 
Markets USA Crude oil  Corn 1992-2009 

Spot, 
futures 

Wu and Li 
(2013) 

Energy 
Policy China 

Crude oil, 
fuel ethanol Corn 2003-2012 

Spot, 
index 

Zhang, Lohr, 
Escalante and 
Wetzstein 
(2009) Energies USA 

Ethanol, 
gasoline,  
oil 

Corn,  
soybean 

1989.3-
2007.12 Spot 
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Table 1B  
 

Summary of Literature on Volatility Between Energy and Agricultural Markets  
using BEKK and DCC 

 

Author(s) 
Data 
frequency 

Data 
sources 

Software 
packages 
used 

Multivariate 
Models 

Univariate 
models Spillovers 

Algieri 
(2014) Daily Bloomberg Unstated 

Diagonal 
BEKK 

GARCH, 
EGARCH 

Partial 
covolatility 

Du and 
McPhail 
(2012) Daily  

CME (corn, 
ethanol, 
gasoline, 
light crude 
oil), 
NYMEX 
(gasoline) Unstated Scalar DCC GARCH 

Partial 
covolatility 

Gardebroek 
and 
Hemandez 
(2013) Weekly  

EIA (oil),     
CBOT            
(ethanol), 
FAO (corn) Unstated 

Full BEKK, 
scalar DCC GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Mensi, 
Hammoudeh, 
Nguyen and 
Yoon (2014) Daily 

EIA 
(energy), 
IGC 
(cereal) Unstated 

Full BEKK, 
scalar DCC GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Serra (2011) Weekly 

CEPEA 
(ethanol, 
sugar), EIA  
(crude oil) Unstated Full BEKK 

Semi-
parametric 
GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Serra and Gil 
(2013) Monthly 

Nebraska 
Government 
(ethanol), 
NASS 
(corn) Unstated Full BEKK GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 
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Serra, 
Zilberman  
and Gil 
(2011) Weekly 

Center for 
Advanced 
Studies on 
Applied 
Economics 
(ethanol, 
sugar), EIA 
(crude oil) 

WinRATS 
(v. 6.30) Full BEKK GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Trujillo-
Barrera , 
Mallory and 
Garcia 
(2012) Weekly 

NYMEX 
(WTI), 
CBOT 
(ethanol, 
corn) Unstated Full BEKK 

Threshold 
GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Wu, Guan 
and  Myers 
(2011) Weekly 

USDA 
(corn cash), 
CBOT 
(corn 
futures), 
NYMEX 
(crude oil) Unstated Full BEKK 

Threshold 
GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Wu and Li 
(2013) Weekly  

National 
Bureau of 
Statistics of 
China Unstated Full BEKK EGARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 

Zhang, Lohr, 
Escalante and 
Wetzstein 
(2009) Weekly 

Ethanol & 
Biodiesel 
News 
(ethanol), 
EIA 
(gasoline, 
oil,), USDA 
(corn, 
soybean) Unstated Full BEKK GARCH 

Full 
volatility,    
Full 
covolatility, 
Partial 
covolatility 
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Table 1C  
 

Summary of Literature on Volatility Between Energy and Agricultural Markets
using BEKK and DCC 

 

Author(s) 

Analytical 
properties 
of models 

Statistical 
properties  
of models 

Purported 
hypothesis 
testing 

Purported 
significance  
of estimates 

Overall 
Assessment 

Algieri (2014) 
Not 
addressed  

Not 
addressed 

Ljung-Box Q, 
normality,  
long memory Yes  Questionable 

Du and 
McPhail 
(2012) 

Not 
addressed  

Not 
addressed 

Unit root, 
cointegration Yes  Questionable 

Gardebroek 
and Hemandez 
(2013) 

α+β < 1  
for GARCH 

Not 
addressed 

Ljung-Box Q, 
unit root Yes  Questionable 

Mensi, 
Hammoudeh, 
Nguyen and 
Yoon (2014) 

Not 
addressed  

Not 
addressed 

Normality,  
unit root, 
causality Yes  Questionable 

Serra (2011) 
Not 
addressed  

Not 
addressed 

Unit root, 
cointegration Yes  Questionable 

Serra and Gil 
(2013) 

Not 
addressed  

Not 
addressed None Yes  Questionable 

Serra, 
Zilberman  
and Gil (2011) 

Not 
addressed  

Not 
addressed 

Unit root, 
cointegration Yes  Questionable 

Trujillo-
Barrera , 
Mallory and 
Garcia (2012) 

Not 
addressed  

Not 
addressed 

Unit root, 
cointegration Yes  Questionable 

Wu, Guan and  
Myers (2011) 

Not 
addressed  

Not 
addressed 

Normality,  
unit root, 
cointegration Yes  Questionable 
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Wu and Li 
(2013) 

Incorrect 
discussion 
of leverage 
effect for 
EGARCH 

Not 
addressed 

Normality,  
unit root, 
causality Yes  Questionable 

Zhang, Lohr, 
Escalante and 
Wetzstein 
(2009) 

Not 
addressed  

Not 
addressed 

Unit root, 
cointegration, 
causality Yes  Questionable 

 

 


