
Multivariate meta-analysis:
modelling the heterogeneity

 
   Mixing apples and oranges: 
   dangerous or delicious?

Lidia R. Arends

Lidia R
. Arends M

u
ltivariate m

eta-analysis: m
odellin

g the heterogeneity

ISBN 90 90 20786 4

omslag Lidia Arends.indd   1 16-05-2006   08:41:52



 
 
 
 
 
 

MULTIVARIATE META-ANALYSIS: 

MODELLING THE HETEROGENEITY 
 
 
Mixing apples and oranges: dangerous or delicious? 

 

 

 

 

 

 

 

 

 

 

 

Lidia R. Arends 

 

 



Acknowledgements 

 
The publication of this thesis was financially supported by: 
The Department of Epidemiology & Biostatistics of the Erasmus MC, Erasmus 
University Rotterdam, GlaxoSmithKline, Serono Benelux BV, Boehringer Ingelheim BV, 
Pfizer BV and the Dutch Cochrane Centre. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cover design: Bureau Stijlzorg, Utrecht 
Layout:  EM Osseweijer, Etten-Leur 
Printed by:  Haveka BV, Alblasserdam 
 
ISBN 90-9020786-4 
 
© LR Arends, 2006 
No part of this book may be reproduced, stored in a retrieval system or transmitted in 
any form or by any means, without permission of the author, or, when appropriate, of 
the scientific journal in which parts of this book have been published. 



 

Multivariate Meta-analysis: 
Modelling the Heterogeneity 

Mixing apples and oranges: dangerous or delicious? 

 
 
 

Multivariate meta-analyse: het modelleren van de 
heterogeniteit 

Het mengen van appels en peren: gevaarlijk of heerlijk? 

 
 
 
 

Proefschrift 
 

ter verkrijging van de graad van doctor aan de 
Erasmus Universiteit Rotterdam 

op gezag van de rector magnificus 
 

Prof.dr. S.W.J. Lamberts 
 

en volgens besluit van het College voor Promoties. 
 
 

De openbare verdediging zal plaatsvinden op 
woensdag 28 juni 2006 om 15.45 uur 

 
door 

 
Lidia Roelfina Arends 

geboren te Eelde 



Promotiecommissie 

 
Promotor: Prof.dr. Th. Stijnen 
 
Overige leden: Prof.dr. M.G.M. Hunink 
 Prof.dr. J.C. van Houwelingen 
 Prof.dr. J.D.F. Habbema 
 
 



Contents 

 

 
Chapter 1 Introduction 9 

Chapter 2 Baseline risk as predictor of treatment benefit 17 

Chapter 3 Advanced methods in meta-analysis: multivariate approach 
and meta-regression 47 

Chapter 4 Combining multiple outcome measures in a meta-analysis: 
an application 93 

Chapter 5 Multivariate random-effects meta-analysis of ROC curves 119 

Chapter 6 Meta-analysis of summary survival curve data 157 

Chapter 7 Discussion 181 

 Summary 187 

 Samenvatting 193 

 Dankwoord 201 

 About the author 203 

 List of publications 205 

 
 
 
 



Manuscripts based on studies described in this thesis 

 
 
Chapter 2  

Arends LR, Hoes AW, Lubsen J, Grobbee DE, Stijnen T.  
Baseline risk as predictor of treatment benefit: three clinical meta-re-analyses. 
Statistics in Medicine 2000; 19(24): 3497-3518. 
 
 
Chapter 3 

van Houwelingen HC, Arends LR, Stijnen T. 
Advanced methods in meta-analysis: multivariate approach and meta-regression. 
Statistics in Medicine 2002; 21(4): 589-624.  
 
 
Chapter 4 

Arends LR, Voko Z, Stijnen T.  
Combining multiple outcome measures in a meta-analysis: an application. 
Statistics in Medicine 2003; 22(8): 1335-1353. 
 
 
Chapter 5 

Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MGM, 
Stijnen T. 
Multivariate random-effects meta-analysis of ROC curves. 
Medical Decision Making. Provisionally accepted. 
 
 
Chapter 6 

Arends LR, Hunink MGM, Stijnen T. 
Meta-analysis of summary survival curve data. 
To be submitted. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"Of course it mixes apples and oranges; in the study of fruit nothing else is sensible;  
comparing apples and oranges is the only endeavor worthy of true scientists; 

 comparing apples to apples is trivial."  
 

Gene V. Glass, 2000 





1 
 
 
 
 
 

Introduction 
 



 



Introduction 

11 

Year of Publication

200019951990198519801975

N
um

be
r o

f '
m

et
a-

an
al

ys
is

' p
ub

lic
at

io
ns

1200

1000

800

600

400

200

0

1 Introduction 
 
This thesis is about multivariate random effects meta-analysis and meta-regression. In 
this introduction these terms will be explained and an outline of the thesis will be 
given. 
 
1.1 What is meta-analysis? 

Meta-analysis may be broadly defined as the quantitative review and synthesis of the 
results of related but independent studies[1]. These studies usually originate from the 
published literature. For the purpose of critically evaluating a clinical hypothesis 
based on published clinical trials, meta-analysis is an efficient tool for summarizing 
the results in the literature in a quantitative way. In most of the cases it results in a 
combined estimate and a confidence interval[2]. Meta-analysis allows for an objective 
appraisal of the evidence, which may lead to resolution of uncertainty and 
disagreement. It can reduce the probability of false-negative results and thus prevent 
undue delays in the introduction of effective treatments into clinical practice. A priori 
hypotheses regarding treatment effects in subgroups of patients may be tested with 
meta-analysis[3] as well. It may also explore and sometimes explain the heterogeneity 
between study results, see the section on meta-regression below.  
Since the introduction in 1976[4] of the term 'meta-analysis', it has become an 
increasingly important technique in medical research. This is illustrated in Figure 1, 
where the number of studies found in Medline containing the keyword 'meta-
analysis' is plotted against the year of publication.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The meta-analysis trend 
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With the increasing popularity of meta-analysis, also the field of application of 
statistical meta-analysis methods is growing. In earlier days the main and often only 
interest was to statistically pool the results of independent but 'combinable' studies[5] 
to increase power, resulting in an overall estimate of one specific outcome measure 
and a confidence interval. For this situation most meta-analysts know how they can 
analyse the collected data. Nowadays we are often faced with meta-analysis of more 
complex medical data, and there are many practical situations where appropriate 
statistical meta-analytic methods are still lacking or underdeveloped. New statistical 
methods are needed to meta-analyse these complex data types. 
 
1.2 Fixed and random effects meta-analysis  

In every meta-analysis the point estimates of the effect size will differ between the 
different studies in the meta-analysis, at least to some degree. One cause of these 
differences is sampling error, which is present in every estimate. When observed 
effect sizes differ only due to sampling error, the true underlying study specific effects 
are called homogeneous. In this case the differences between the estimates are just 
random variation, and not due to systematic differences between studies. In other 
words, the true underlying effect size is exactly the same in each study. In that case, if 
every study would be infinitely large, all studies would yield an identical result. The 
case of homogeneity can be accommodated in meta-analysis by using a what is called 
the 'fixed effects model'[6]. In the early days of meta-analysis statistical modelling was 
always done under the assumption that the true effect measure was homogeneous 
across all studies, thus with a fixed effects model. 
However, often the variability in the effect size estimates exceeds that expected from 
sampling error alone, i.e. there is not just one and the same true effect for each study, 
but 'real' differences exist between studies. In this case we say that there is 
heterogeneity between the treatment effects in the different studies. In a famous paper 
DerSimonian and Laird (1986)[7] introduced a statistical model that allows 
heterogeneity in the true treatment effects. In that model the different true study 
specific effects are assumed to have a distribution. This distribution is characterized 
by two parameters, the mean and the standard deviation, and both have to be 
estimated from the data. The first is the parameter of main interest, and is interpreted 
as the average effect. The other parameter is called the between studies standard 
deviation and describes the heterogeneity between the true effects. This model is 
called the 'random effects model'. This model is tending to become the standard 
method for the simple case where the meta-analysis is focused on a single (univariate) 
effect measure, e.g. one treatment effect. See for instance the review article of 
Normand (2000)[1].  
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The fixed effects method to estimate a common treatment effect yields a narrower 
confidence interval than the random effects estimation of an average treatment effect 
when there is heterogeneity observed between the results of the different trials[8]. 
This explains why the fixed effects method is still often used. The simplistic 
assumption of a common treatment effect in all trials used in a fixed effects analysis 
ignores the potential between-trial component of variability and can lead to over 
dogmatic interpretation[9]. Since the trials in a meta-analysis are almost always 
clinically heterogeneous, it is to be anticipated that to some extent their quantitative 
results will be statistically heterogeneous[10]. Hence a random effects model appears 
more justified than a fixed effects model.  
 
1.3 Meta-regression: Is there an explanation for heterogeneity? 

In the previous section we discussed the term heterogeneity, i.e. the part of the 
variability in the outcome measure across studies not due to within study sampling 
variability. If there is much heterogeneity between the studies, one could question 
whether it is wise to combine the studies at all. However, heterogeneity can be 
regarded as an asset rather than a problem. It allows clinically and scientifically more 
useful approaches attempting to investigate how potential sources of heterogeneity 
impact on the overall treatment effect[10]. For example, the treatment effect could be 
higher in trials that included a lot of old males, whereas the treatment effect could be 
lower in studies with a lot of young female patients. The dependence of the treatment 
effect on one or more characteristics like mean age and sex of the trials in the meta-
analysis can be explored via meta-regression. In meta-regression the trial 
characteristics are put as covariates in a regression analysis with the estimated 
treatment effect of the trial as dependent variable. Ideally the covariates used in such 
analyses should be specified in advance to reduce the risk of post hoc conclusions 
prompted by inspecting the available data[8]. Otherwise there is a danger of false 
positive results. This is in particular the case when a fixed effects regression model is 
used. For example, consider the case of just two studies producing estimates with 
non-overlapping confidence intervals. Any covariate of which the value differs 
between the studies will be significantly related to the heterogeneity among the 
studies, and hence a potential explanation of it. It is clear, however, that the majority 
of such 'explanations' will be entirely spurious.[11]. As the number of studies 
increases, the risk of identifying spurious associations decreases as long as there is 
only a limited number of covariates.  
The statistical purpose of meta-regression is to see to what extent covariates can 
explain the between-trial component of the variance. In case all between-trial 
variation is explained by the covariates, the random effects meta-regression reduces 
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to a fixed effects regression model, in which al variability is explained as sampling 
variability. Using covariates to explain the differences in treatment effect across the 
trials could lead to a better scientific understanding of the data and more clinically 
useful conclusions on which to base decisions about medical interventions[8, 10]. 
 
1.4 Univariate versus multivariate models 

In a meta-analysis clinical interest does not always concern only one specific outcome 
measure. Sometimes the focus is on the combination of several outcome measures 
that are presented in the individual studies, for instance when there are more 
treatment groups or more outcome variables. When the summary data per study are 
multi-dimensional, the data analysis is unfortunately usually restricted to a number 
of separate univariate analyses, i.e. one analysis per outcome variable. However, such 
univariate analyses neglect the relationships between the multiple outcome measures. 
In a multivariate analysis all outcome measures are analysed jointly, therefore also 
revealing information about the correlations between the multiple outcome variables. 
 
1.5 Aim and outline of this thesis 

The aim of this thesis is to develop new statistical methods and improve existing ones 
for the analysis of meta-analysis data from medical studies. We will specifically focus 
on multivariate random effects meta-analysis approaches. 
As first topic the relationship between baseline risk (i.e. the risk in the control group) 
and treatment effect is investigated as a possible explanation of between-study 
heterogeneity in clinical trial meta-analysis. This is a very special case of meta-
regression. The standard approach is seriously flawed for several reasons and can 
lead to very misleading results[12]. In chapter 2 a Bayesian approach to the problem is 
proposed, based on a bivariate meta-analysis model. Different from other proposed 
methods, it uses the exact rather that an approximate likelihood. Besides it explicitly 
models the distribution of the underlying baseline risks, in contrast to the method of 
Thompson et al. (1997)[13].   
In chapter 3 advanced statistical methods for meta-analysis are reviewed such as 
bivariate meta-analysis[14] and meta-regression. It is shown that these methods fit 
into the framework of the general linear mixed model. Next to discussing the 
underlying theory, much attention is given to how these analyses can be carried out 
using the mixed model procedures of standard statistical packages.  
In chapter 4 a meta-analysis is considered to the effect of surgery compared to 
conservative treatment in patients with increased risk of stroke on stroke-free 
survival. This is the first published meta-analysis in which more than two outcome 
measures are simultaneously analyzed using the multivariate meta-analysis model. It 
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is shown that a multivariate analysis can reveal substantially more information than 
separate univariate analyses.  
In chapter 5 the statistical meta-analysis is considered of ROC curve data where each 
study contributes one pair of specificity and specificity. Until now, this type of data 
has been analyzed with rather ad hoc approaches. In this chapter it is shown that this 
type of data nicely fits into the bivariate meta-analysis framework. A random 
intercept model is fitted with approximate and exact likelihood. Moreover the model 
is extended with a random slope next to a random intercept. 
In chapter 6 a multivariate random effect model is proposed for the joint analysis of 
survival proportions reported at multiple times in different studies. The model can be 
seen as a generalization of the fixed effect model of Dear[15] and is illustrated with a 
simulated as well as with a clinical data example.  
The methods discussed in this thesis have their specific benefits and limitations. In 
chapter 7, the general discussion, these will be put in perspective. Furthermore, some 
directions are given for future research.  
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Abstract  
 
A relationship between baseline risk and treatment effect is increasingly investigated 
as a possible explanation of between-study heterogeneity in clinical trial meta-
analysis. An approach that is still often applied in the medical literature, is to plot the 
estimated treatment effects against the estimated measures of risk in the control 
groups (as a measure of baseline risk), and to compute the ordinary weighted least 
squares regression line. However, it has been pointed out by several authors that this 
approach can be seriously flawed. The main problem is that the observed treatment 
effect and baseline risk measures should be viewed as estimates rather than the true 
values. In recent years several methods have been proposed in the statistical literature 
to potentially deal with the measurement errors in the estimates. In this chapter we 
propose a vague priors Bayesian solution to the problem which can be carried out 
using the 'Bayesian inference Using Gibbs Sampling' (BUGS) implementation of 
Markov chain Monte Carlo numerical integration techniques. Different from other 
proposed methods, it uses the exact rather than an approximate likelihood, while it 
can handle many different treatment effect measures and baseline risk measures. The 
method differs from a recently proposed Bayesian method in that it explicitly models 
the distribution of the underlying baseline risks. We apply the method to three meta-
analyses published in the medical literature and compare the results with the 
outcomes of the other recently proposed methods. In particular we compare our 
approach to McIntosh’s method, for which we show how it can be carried out using 
standard statistical software. We conclude that our proposed method offers a very 
general and flexible solution to the problem, which can be carried out relatively easily 
with existing Bayesian analysis software. A confidence band for the underlying 
relationship between true effect measure and baseline risk and a confidence interval 
for the value of the baseline risk measure for which there is no treatment effect are 
easily obtained by-products of our approach. 
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1 Introduction 
 
Meta-analysis is an increasingly common type of analysis for combining the results 
from several clinical trials to obtain an overall assessment of treatment effectiveness of 
a certain medical intervention. A common criticism about meta-analyses is that they 
combine information from trials with very different patient characteristics and 
designs. These trial variations can result in much bigger differences in treatment 
outcome across the trials than one would expect on the basis of the sampling 
variability of the estimated treatment effects of the individual trials. Furthermore, the 
frequently used tests of homogeneity have little power, so when this test is not 
significant, there can still be heterogeneity that should not be ignored. An analysis 
which ignores the 'extra' heterogeneity in treatment outcome can be clinically 
misleading and scientifically naive[1-3]. Therefore, it is necessary to assess whether 
the heterogeneity in treatment effect can be explained by trial-level characteristics. For 
example, trials that included older (often higher-risk) patients could on average show 
a larger treatment effect than trials with younger patients. In clinical practice it can be 
important to know whether and how the expected treatment benefit varies according 
to certain patient characteristics, in order to assess the treatment effect in the 
clinician’s own, specific population of patients[1] and to specify more specific 
therapeutic recommendations[3]. 
In this chapter we consider meta-analyses of clinical trials having one experimental 
and a control group. The outcome of interest is the occurrence of some specified 
clinical event, for example death or a certain disease. We assume to have data 
available only on trial-level and not on individual patients. Thus it is impossible to 
individually relate age or sex of a patient to the treatment outcome of that individual 
patient. In fact, the best one can do in such a situation is to relate aggregated 
information on trial level (such as mean age or percentage males) with the estimated 
treatment effect across the trials.  
Brand and Kragt[1] were among the first who argued the importance of investigating 
the possible relationship between treatment effect and covariates. In particular they 
stimulated debate about the importance of considering the covariate 'baseline risk'. 
This baseline risk reflects the risk of the outcome event for a patient under the control 
condition and indicates the average risk of a patient in that trial if he or she was not 
treated. Heterogeneity in baseline risk among the trials is likely to reflect differences 
in patient characteristics like age, medical history and comorbidity of the patient 
populations included in the several trials and might therefore result in different 
treatment effects among the trials[4]. In other words, the baseline risk of the study 
population may markedly modify the absolute effect of the intervention in a given 
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trial. In some recent meta-analyses this relation between treatment effect and baseline 
risk was even one of the central issues, with the aim to define which patients would 
benefit most and which least from the medical intervention[5-12].  
As a graphical illustration of the relationship between treatment effect and baseline 
risk, one usually plots the estimated treatment effects against the observed percentage 
of events in the corresponding control groups. A straightforward, but problematic, 
way of assessing the possible relationship is to compute the ordinary weighted least 
squares (WLS) regression line. In the medical literature, this method is still mostly 
applied. However, this conventional method has potential pitfalls and has been 
seriously criticised[4, 13-18]. The main problem is that the observed baseline risk and 
the observed treatment effect in a trial are estimated from a finite sample, and 
therefore are estimates rather than true values[4]. Consequently, one should account 
for the measurement errors in these variables. If not, regression to the mean[13] and 
attenuation due to measurement errors[19] could seriously bias the slope of the 
regression line of treatment effect versus baseline risk. For an overview of the 
approaches followed in practice and the associated statistical problems, the reader is 
referred to Sharp et al.[16].  
In the recent statistical literature methods are proposed that account for the above 
mentioned problems[4, 17, 18]. McIntosh[4] assumed a bivariate normal distribution 
for the underlying true treatment effect and the true baseline risk measure, together 
with an approximate normal measurement errors model. The model was fitted with 
standard likelihood or Bayesian methods. Van Houwelingen et al.[20] assumed the 
same model, but did not mention that the method could be directly used to estimate 
the relationship between true treatment effect and true baseline risk. Walter[18] 
assumed a linear functional relationship between true treatment effect and true 
baseline risk (i.e. a model without residual variation) and an approximate normal 
measurement errors model. Standard likelihood methods were used to fit the model. 
In this chapter we propose a hierarchical Bayesian modelling approach. Our method 
differs from McIntosh’s method in that it uses an exact measurement errors model. In 
addition we also generalise the assumed bivariate normal distribution for the true 
treatment effect and true baseline risk to a mixture of two bivariate normal 
distributions. We fit our models following a vague priors Bayesian approach using 
the BUGS[21] implementation of Gibbs sampling. Our approach is in the spirit of that 
of Thompson et al.[17]. The difference with their method is that we explicitly model 
the distribution of the true baseline risk measures.  
In this chapter we will re-analyse three meta-analyses published in the medical 
literature, and compare our method with some of the other recently proposed 
methods and the WLS approach. In section 2 we introduce the three meta-analysis 
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examples and indicate the problems of the conventional WLS method. In section 3 our 
modelling approach is presented and differences with other recently proposed 
methods for this problem are described. In section 4 the method of estimation is 
specified and in section 5 the results of the proposed methods are given and 
compared with the WLS approach and with the methods of McIntosh[4] and 
Thompson et al.[17]. Finally, we conclude with a discussion in section 6. Appendix 1 
contains the BUGS code needed to perform the analyses with our modelling 
approach, and Appendix 2 contains a SAS program to do some of the analyses using 
approximate likelihood. 
 
 

2 Examples 
 
In this section we introduce three motivating examples of meta-analyses from the 
medical literature, in which the possible relationship between treatment effect and 
baseline risk was a central issue. The problems with the standard statistical analysis 
are briefly pointed out. In section 5 the results of the re-analyses of these three studies 
are given. 
 
2.1 Meta-analysis example 1: Effect of tocolysis therapy on pre-term birth 

Brand and Kragt[1] were among the first authors who argued that presenting one 
pooled odds ratio as 'the' treatment effect in a meta-analysis can be misleading if the 
odds ratio depends on the baseline risk. They reported on a meta-analysis of 14 
placebo-controlled trials[22] evaluating the effect of tocolysis with β-mimetics to delay 
pre-term deliveries in high risk mothers. The treatment effect was measured as the 
(log) odds ratio of pre-term birth in the treatment group relative to the control group. 
The data are shown in Table 1. The research question was whether the treatment 
effect depends on the proportion of pre-term births in the control group. The 
proportion of events in the control group served as the measure of baseline risk, 
indicating the 
risk of an average patient in a trial if no treatment was applied. Large differences 
among the trials in this respect may reflect for instance different selection criteria 
between them and hence a constant odds ratio over trials is not to be expected. After 
ordering the trials according to increasing proportion of pre-term deliveries in the 
control group, the trend in the odds ratio was striking (Table 1). 
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Table 1. Number of deaths, total number of persons and corresponding risks of pre-term 
births in the treatment and control group of the randomised trials in the meta-analysis of 
Brand & Kragt[1] (ordered to increasing baseline risk). 
 

Source Treatment group  Control group Odds Ratio

 preterm births 
/ number of 

women 

risk of pre-
term birth 

 preterm births 
/ number of 

women 

risk of pre-
term birth 

(baseline risk) 

 

Mariona  0 /4 0%  0 /5 10% 1.00 
Howard et al.  2 /15 13%  2 /18 11% 1.22 
Larsen et al. 11 /131 8%  6 /45 13% 0.57 
Hobel  2 /16 13%  3 /15 20% 0.58 
Calder et al.  4 /37 11%  9 /39 23% 0.43 
Scommegna  1 /15 7%  5 /17 29% 0.24 
Larsen et al.  5 /49 10%  16 /50 32% 0.27 
Christensen et al.  0 /14 0%  6 /16 38% 0.10 
Leveno et al. 15 /54 28%  25 /52 48% 0.42 
Wesselius et al.  6 /33 18%  15 /30 50% 0.24 
Cotton et al.  6 /19 32%  11 /19 58% 0.35 
Barden  0 /12 0%  8 /13 62% 0.07 
Ingemarsson  0 /15 0%  10 /15 67% 0.06 
Spellacy et al.  6 /14 43%  11 /15 73% 0.30 

 
Overall Odds ratio      0.30 

 
 
Figure 1 shows the plot of the observed log odds ratio against the observed 
proportion of pre-term deliveries in the placebo group. The slope of the ordinary 
weighted least squares (WLS) regression line turned out to be statistically 
significantly negative (p=0.03), suggesting a better treatment effect with increasing 
baseline risk. 
Several problems may arise with this approach. The main problem, pointed out by 
Senn[13], is that in the regression the dependent variable 'treatment effect' includes 
the independent variable 'baseline risk', which causes a functional relationship 
between the dependent and the independent variable. 
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Figure 1. Original WLS regression analysis as published in the meta-analysis of Brand & 
Kragt[1] 
 
 
A positive error in the observed baseline risk is associated with a negative error in the 
estimated log odds ratio, leading to a negative bias in the estimated slope or a 
spurious negative correlation. A thorough discussion of the problems associated with 
the WLS approach is given by Sharp et al.[16]. They discuss the statistical pitfalls of 
this approach at the hand of the following three types of graphs currently 
encountered in the medical literature. 
A. Plot of the treatment effect against the proportion of events in the control group. 
B.  Plot of the treatment effect  against the average proportion of events in the control 

and treatment group. 
C.  Plot the proportion of events in the treated group against the proportion of events 

in the control group (see example 2). 
In all cases the WLS approach leads to misleading conclusions. As explained above, 
WLS in graph type A leads to bias due to regression to the mean. The type B graph is 
sometimes used to avoid this problem. However, as explained by Sharp et al.[16], 
WLS in type B graphs is only valid under the assumption of no variation in true 
treatment effects, a strange assumption in this context. Apart from that, the 
interpretation of type B graphs is problematic. For all graph types, since the 
proportion of events in the control group is measured with error, the WLS method 
suffers from bias towards zero in the slope of the regression line. Even if the 
dependent and independent variable were not functionally related, the estimated 
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slope could be biased towards zero by the fact that the dependent variable is 
measured with error. A minor problem in all graphs is that the weights used in the 
WLS approach only reflect sampling error, and do not account for residual 
heterogeneity between trials with the same baseline risk. In general the biases 
associated with the WLS approach will be particular acute in meta-analyses which 
include some small trials or in which the true variability in underlying risks across 
trials is small. 
 
2.2 Meta-analysis example 2: Drug treatment in mild-to-moderate hypertension 

In 1995 Hoes et al.[6, 23] published a meta-analysis of clinical trials in which drug 
treatment was compared to placebo or no treatment with respect to (cardiovascular) 
mortality in middle-aged patients with mild-to-moderate hypertension. Twelve trials, 
which showed considerable variation in the risk of mortality in the control groups, 
were included in the meta-analysis. Unlike to the previous meta-analysis, the data are 
presented as the number of events and the (partially estimated) total number of 
person-years per group instead of the number of events and the sample size. The data 
are given in Table 2. 
The research question in this meta-analysis was whether drug treatment prevents 
death in mild-to-moderate hypertensive patients and whether the size of the 
treatment effect depends on the event rate in the control group (baseline rate). To 
avoid the functional relationship between the variables at the dependent and 
independent variable, as was the case in the previous meta-analysis, a 'l’Abbé plot' 
was presented. In this l'Abbé plot[24], shown in Figure 2, the observed mortality rate 
per 1000 person-years in the treatment groups is plotted against the observed 
mortality rate per 1000 person-years in the control groups. The dotted line of identity 
corresponds with no treatment effect. For trials below this line the observed death 
rate in the treatment group is lower than in the control group, suggesting a beneficial 
effect of drug treatment. On the other hand, for trials falling above this line, drug 
treatment seems to unfavourably influence mortality. 
To study the relationship between the mortality rates in the treatment versus control 
group, the WLS regression line was determined, represented by the solid line in 
Figure 2. The WLS regression line has a slope statistically significantly smaller than 
one and intersects the no-effect line for a positive value of the baseline mortality rate. 
In the sequel the baseline risk corresponding with no effect is called the break-even 
point. Its estimate in this meta-analysis is about 6 per 1000 person-years. The authors 
conclude that drug treatment may reduce mortality when treatment is initiated in 
those beyond this break-even point. At a lower mortality rate than about 6 per 1000 
person years, treatment has no influence or may even increase mortality. 
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Table 2. Number of deaths, total number of person years and corresponding incidence rates 
of all-cause mortality in the treatment and control group of the randomised trials in mild-to-
moderate hypertension in the meta-analysis of Hoes et al.[6]. 
 

Source Treatment group  Control group 

 deaths / #person- 
years 

mortality rate 
/1000prsy 

 deaths / #person- 
years 

mortality rate 
/1000prsy 

(baseline rate)

VA 10 /      595.2 16.8    21 /     640.2 32.8 

VA-NHBLI 2 /      762.0 2.6    0 /     756.0 0.0 

HDFP 54 /    5635.0 9.6  70 /   5600.0 12.5 

HDFP 47 /    5135.0 9.2  63 /   4960.0 12.7 

HDFP 53 /    3760.0 14.1  62 /   4210.0 14.7 

Oslo 10 /    2233.0 4.5  9 /   2084.5 4.3 

ANBPS 25 /    7056.1 3.6  35 /   6824.0 5.1 

MRFIT 47 /    8099.0 5.8  31 /   8267.0 3.7 

MRFIT 43 /    5810.0 7.4  39 /   5922.0 6.6 

MRFIT 25 /    5397.0 4.6  45 /   5173.0 8.7 

MRC men 157 /  22162.7 7.1  182 / 22172.5 8.2 

MRC women 92 / 20885.0 4.4  72 / 20645.0 3.5 

 
 
Since in the l'Abbé-plot the dependent and independent variable are not functionally 
related, the WLS analysis in this example does not suffer from the main problem 
raised to the WLS analysis in the previous example. Nevertheless the conclusions of 
this meta-analysis were heavily criticised with respect to the statistical method used. 
In an accompanying commentary Egger and Davey Smith[14] argued that it was a 
misleading analysis. The problem raised was that the slope of the regression line is 
biased towards zero when the incidence rates in the control groups are measured 
with error. This is the well known phenomenon of attenuation of the regression line 
due to measurement error, sometimes called regression dilution bias[25]. 
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Figure 2. Original WLS regression analysis as published in the meta-analysis of Hoes et al.[6] 
 
 
2.3 Meta-analysis example 3: Cholesterol lowering and mortality 

The objective in our third meta-analysis example, published in 1993 by Davey Smith 
et al.[7], was to investigate the level of risk of death from coronary heart disease 
(CHD) above which cholesterol lowering treatment produces net benefits. This meta-
analysis comprised 33 trials. Data are given in Table 3. 
In  Figure 3 the observed log odds ratio for total mortality is plotted against the 
observed rate of coronary heart disease (CHD). The zero level horizontal line 
corresponds with no treatment effect. The WLS regression analysis carried out by the 
authors shows a significant trend of increasing treatment benefit with increasing 
baseline CHD mortality risk (p<0.001). The authors concluded that currently 
evaluated cholesterol lowering drugs seem to produce total mortality benefits in only 
a small proportion of patients having a very high risk of death from CHD, namely 
those patients with a baseline risk larger than the break-even point, i.e. the 
intersection of the regression line with the zero level no effect line. 
In this analysis, like in our first example, the dependent and independent variable are 
functionally related, causing a negative bias in the slope of the regression line. The 
authors were aware of this problem and, in order to circumvent it, they also 
performed an analysis with the observed total CHD mortality in treatment and 
control group together as independent variable. 
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Table 3. Number of deaths, total number of person years and corresponding incidence rates 
of all-cause mortality in the treatment and control group of the randomised trials in the meta-
analysis of Davey Smith et al.[7]. 
 

Source Treatment group  Control group 

 # deaths # person-
years 

mortality 
rate / 1000 

prsy 

number of 
cases

# person-
years 

mortality rate / 
1000 prsy

(baseline rate) 
Singh  28 / 380 73.68 51 / 350 145.71 
Marmorston 70 / 1250 111.11 38 / 640 118.75 
Stamler 37 / 690 53.62 40 / 500 80.00 
McCaughan 2 / 90 22.22 3 / 30 100.00 
Harrold 0 / 30 .00 3 / 30 100.00 
Stockholm 61 / 1240 49.19 82 / 1180 69.49 
Oslo Diet 41 / 930 44.09 55 / 890 61.80 
Low Fat 20 / 340 58.82 24 / 350 68.57 
DART 111 / 1930 57.51 113 / 1920 58.85 
VA drug 81 / 1240 65.32 27 / 410 65.85 
Newcastle 31 / 1140 27.19 51 / 1140 44.74 
Oliver 17 / 210 80.95 12 / 220 54.55 
Acheson 23 / 210 109.52 20 / 230 86.96 
STARS 0 / 90 .00 4 / 170 23.53 
CDP 1450 / 38620 37.55 723 / 19420 37.23 
Dayton 174 / 1350 128.89 178 / 1330 133.83 
Soya Bean 28 / 890 31.46 31 / 860 36.05 
Scottish 42 / 1970 21.32 48 / 2060 23.30 
Sahni 4 / 150 26.67 5 / 150 33.33 
Upjohn 37 / 2150 17.21 48 / 2100 22.86 
Sydney 39 / 1010 38.61 28 / 1120 25.00 
Rose 8 / 100 80.00 1 / 50 20.00 

NHLIB 5 / 340 14.71 7 / 340 20.59 
Minnesota 269 / 4410 61.00 248 / 4390 56.49 
POSCH 49 / 3850 12.73 62 / 3740 16.58 
CLAS 0 / 190 .00 1 / 190 5.26 
Frick '93 19 / 1510 12.58 12 / 1560 7.69 
LCCPPT 68 / 13850 4.91 71 / 13800 5.14 
Frick '87 46 / 10140 4.54 43 / 10040 4.28 
EXCEL 33 / 5910 5.58 3 / 1500 2.00 
WHO 236 / 27630 8.54 181 / 27590 6.56 
SCOR 0 / 100 .00 1 / 100 10.00 
Gross 1 / 20 50.00 2 / 30 66.67 
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Figure 3. Original WLS regression analysis as published in the meta-analysis of Davey Smith 
et al.[7] 
 
 
Since the results did not substantially change, they concluded that in this case the bias 
was negligible. Although taking total observed risk as independent variable repairs 
the problem of induced correlation, it cannot be regarded as a general solution since it 
leads to a regression analysis that is difficult to interpret[16]. Moreover, still the 
problem remains that the independent variable is measured with error[17]. 
 
 

3 Models 
 
In this chapter we propose to model the data in a hierarchical way that explicitly 
makes a distinction between the regression model for the true effect measure on the 
true baseline risk measure, and the measurement error model. We denote the true 
underlying baseline risk measure of the ith trial by ξi . This is for instance the true log 
odds of the event in the control group, as in example 1, or the true log event rate in 
the control group, as in example 2. The true measure to be related with ξi  is denoted 
by ηi . This ηi  could be a treatment effect measure, for example the true log odds ratio 
as in example 1, or a measure for the risk in the treatment group, for instance the true 
log event rate in the treated group, as in example 2. The estimates of ξi  and ηi  are 
denoted by ξ̂i  and η̂i .  
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The data are modelled following a hierarchical modelling approach, distinguishing 
the following three model components. 
 
1. Underlying regression model 

Model for the regression of the true treatment effect measure (or risk measure in 
the treated group) ηi on the true baseline measureξi : 
η α βξ ε= + +i i i with   ε τ≅ 2N(0, )i   (1) 
The residual variance τ2 describes the heterogeneity in true treatment effects (or 
true risks under treatment) in populations with the same true baseline risk. 

 
2. Baseline risks model  

Model for the distribution of the true baseline risk measures ξi : 
ξi ≅ G for some parametric model G 
 

3. Measurement errors model 
Model for the 'measurement errors': 
( ξ̂i ,η̂i ) given (ξi ,ηi ) ≅ F for some parametric model F 

 
Notice that the first two components, called by McIntosh[4] the 'structural model', 
determine the joint distribution of ξi  and ηi . McIntosh[4], Thompson et al.[17], and 
implicitly van Houwelingen et al.[20] assume the same underlying risk model as 
above. Walter[18] also assumes a linear relation between ξi  and ηi  as in our 
underlying regression model, but in his model the between trial variability τ2 is set to 
zero. This means that it is assumed that there is no residual heterogeneity in 
treatment effects, or that all heterogeneity in treatment effect is explained by 
differences in baseline risk. See also the comment of Bernsen et al.[26]. 
 
A typical assumption for the distribution of the true baseline risks in component 2 of 
the model is a normal distribution: 
 

ξξ ξ σ≅ 2N( , )i  (2) 

This was the assumption made by McIntosh[4] and van Houwelingen et al.[20]. 
However, this seems to be a rather strong assumption[16] and there is no clear 
rationale for it. For instance, one could easily imagine that the distribution of the 
baseline risks would be bimodal, a mixture of low and high risk populations. 
Therefore, as a more flexible model for the true baseline risks, we will also consider in 
this chapter a mixture of two normal distributions with the same variance: 
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ξ ξξ ξ σ ξ σ≅ + −2 2
1 1 1 2N( , ) (1 )N( , )i p p  (3) 

This model can describe a very broad class of distributions: unimodal as well as 
bimodal, symmetric as well as very skewed[27].  
Thompson et al.[17] did not explicitly specify a parametric model for G. They 
specified independent vague mean normal prior distributions for theξi 's, which 
means that G is assumed to be N(ξ, σ2) for some specified value ξ, e.g. ξ=0, and some 
large specified value of σ2, e.g. σ2=100. In a recent letter to the editor van Houwelingen 
en Senn[28] show that this method does not remove the bias that is present in the 
WLS approach. The intuitive argument is as follows. The slope of the regression line 
is equal to covar(ξi ,ηi )/var(ξi ). The WLS method is biased because the denominator 
is overestimated, since, due to sampling variability, the ξ̂i ’s are more variable than the 
trueξi ’s. Therefore, to estimate the variance of the trueξi ’s, the estimates of them 
should be shrunk to the mean. However this is not accomplished by assuming that 
the ξi ’s are drawn from a normal distribution with a very large variance. On the 
contrary, it can lead to an estimate of var(ξi ) is larger than the WLS estimate, and 
consequently to a larger bias in the slope. 
 
The third model component models the within trial sampling variability in the 
estimates of  ξi  and ηi . McIntosh[4] and van Houwelingen et al.[20] assumed the 
following approximate normal model for the measurement errors: 
 

ξξ
ηη

⎛ ⎞ ⎛ ⎞
≅ Σ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

ˆ
ˆN( , )

ˆ
ii

ii

 (4) 

where Σ̂  is the estimated covariance matrix of ξ̂i  and η̂i . The method is approximate 
in the sense that Σ̂  is assumed to be known, i.e. no allowance is made for the fact that 
it is estimated. In this chapter we will use the exact distribution of ( ξ̂i ,η̂i ) given 
(ξi ,ηi ). In the case that the simple normal model (2) is assumed for the distributions 
of the true baseline risks, we will also fit the model with the above approximate 
measurement error model and compare the results. In the remainder of this section 
we describe in detail the models used in our three examples. 
 
3.1 Model for example 1 

The numbers of pre-term deliveries in the placebo and active treatment group of the 
ith trial are denoted by Xi and Yi. The corresponding sample sizes are mi and ni. Let ξi  
and ηi  stand for the true placebo log odds and the true log odds ratio, respectively. 
The model for the relation between the true log odds ratio and the logit of the true 
baseline risk is given by (1). For the distribution of the logit of the true baseline risks 
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we will consider the simple normal model (2) and the mixture of two normal 
distributions (3). 
 
The exact measurement model is implicitly given by assuming that Xi and Yi have a 
binomial distribution: 
 

Xi ≅ Binomial(mi, 
ξ
ξ+

exp( )
1 exp( )

i

i

) 

Yi ≅ Binomial(ni, 
ξ η
ξ ξ η− +

exp( )
1 exp( )

i i

i i i

) 

 
The approximate measurement model is:  
 

1 1 1 1
ˆ

N( , )
1 1 1 1 1 1ˆ

i i i i i i ii

ii

i i i i i i i i i

x m x x m x

x m x x m x y n y

ξξ
ηη

⎡ ⎤+ − −⎢ ⎥⎛ ⎞ − −⎛ ⎞ ⎢ ⎥≅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ − − + + +⎢ ⎥− − −⎣ ⎦

 

 
where ξ̂i = log(Xi/(mi- Xi)) and η̂i = log(Yi/(ni- Yi))-log(Xi/(mi- Xi)) are the estimates of 
the true placebo log odds ξi  and the true odds ratioηi . Notice that the left upper 
corner of the covariance matrix is the square of the usual standard error of a log odds 
of a proportion and the right lower corner is Woolf’s squared standard error for a log 
odds ratio (½ is added to all denominators when one of them is zero). The covariance 
was computed using the usual approximate methods. 
 
3.2 Model for example 2 

The numbers of events in the placebo and treated group of the ith trial are denoted by 
Xi and Yi, respectively. The corresponding numbers of person years are mi and ni. Let 
ξi and ηi  stand for the true log event rate under placebo and treatment, respectively.  
The model for the relation between the true log event rates is given by (1). For the 
distribution of the true log baseline rates we will consider the simple normal model 
(2) and the mixture of two normal distributions (3). 
 
The exact measurement model is implicitly given by: 
 

Xi ≅ Poisson(mi·exp(ξi ))  

Yi ≅ Poisson(ni·exp(ηi ))  
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Since the standard error of an estimated log event rate is equal to the inverse of the 
square root of the number of observed events, the approximate measurement model 
is:  
 

1 0ˆ
N( , )

1ˆ 0

i ii

ii

i

x

y

ξξ
ηη

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟≅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟
⎝ ⎠

 

 
3.3 Model for example 3 

In the original analysis of Davey Smith et al.[7] the dependent variable in the 
regression was the log odds ratio for total mortality. Since the mean lengths of follow-
up varied substantially among studies, we prefer the log of the event rate ratio, where 
the observed event rates in both groups are estimated as the number of events 
divided by the number of person years of follow-up. As independent variable we use 
the CHD mortality event rate under the control treatment.  
The numbers of death from coronary heart disease in the placebo and active treatment 
group of the ith trial are denoted by Xi and Yi. The corresponding numbers of person 
years are mi and ni. Let ξi  and ηi  stand for the true placebo log events rate and the 
true log rate ratio, respectively. The model for the relation between the true log rate 
ratio and the baseline log event rate is again given by (1). For the distribution of the 
true baseline log event rate we will consider the simple normal model (2) and the 
mixture of two normal distributions (3). 
 
The exact measurement model is implicitly given by: 
Xi ≅ Poisson(mi·exp(ξi ))  
Yi ≅ Poisson(ni·exp(ηi +ξi ))  
 
The approximate measurement model is:  

 

ξξ
ηη

⎡ ⎤−⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎢ ⎥≅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ − +⎢ ⎥⎣ ⎦

1 1
ˆ

N( , )
1 1 1ˆ

i i ii

ii

i i i

x x

x x y

 

 
 



Baseline risk as predictor of treatment benefit 

33 

4 Method of estimation 
 
When an exact measurement model is assumed, the model is difficult to fit using 
standard likelihood methods. Certainly no standard software can be used. Following 
Thompson et al.[17], we therefore adopted a Bayesian approach, using the BUGS 
implementation of Markov Chain Monte Carlo (MCMC) numerical techniques (Gibbs 
sampling)[21]. It turns out that it is relatively simple to carry out a fully Bayesian 
analysis with this BUGS program. A fully Bayesian analysis places prior distributions 
on all unknown parameters in the model. We used priors that are non-informative 
over the region supported by the likelihood. The BUGS code needed for the three 
examples above is given and annotated in Appendix 1. In a Bayesian analysis using 
MCMC methods it is relatively straightforward to get the posterior distribution of 
derived parameters. We used this to obtain confidence bands for the regression line 
and the break-even point (i.e. the baseline risk corresponding with no treatment 
effect). See Appendix 1 for how this was done using BUGS. Note that the confidence 
and prediction bands are evaluated at only ten points, which will usually be sufficient 
to draw smooth bands in a figure. Of course, more points might be chosen if 
considered desirable. 
McIntosh[4] and van Houwelingen et al.[20] assumed the approximate measurement 
model together with the simple normal model for the baseline risk measure. In that 
case, straightforward (approximate) likelihood methods can be applied. McIntosh[4] 
and van Houwelingen et al.[20] both describe EM based algorithms, which 
unfortunately cannot be carried out using standard procedures from standard 
statistical packages. However, in Appendix 2 we show that it is relatively simple to fit 
this model using standard General Linear Mixed Model programs, provided the 
program has the option to keep certain covariance parameters fixed. We used the 
procedure Proc Mixed of SAS[29]. The code that is needed is given and explained in 
Appendix 2. Proc Mixed does not give a direct estimate of the slope and intercept of 
the regression line, but these are easily computed from the estimated covariance 
matrix of ( , )ξ η  given in the output. The slope is estimated as ξ η ξˆˆcovar( , ) /var( ) . The 
corresponding standard error is computed using the estimated covariance matrix of 
the estimated covariance matrix of ( , )ξ η  together with the delta method. The 
intercept and its standard error are computed analogously. 
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5 Results 
 
On each of the three meta-analyses examples introduced in section 2 we applied five 
statistical models to examine the relationship between treatment effect and baseline 
risk. The results for each of the models are presented in Table 4. The first model (I) is 
the conventional WLS regression approach. Secondly, the results for the full Bayesian 
model (II) with the fixed, flat normal prior distribution on the baseline risks are given 
(method of Thompson et al.[17]). Subsequently, the results of our first Bayesian model 
(III), with a normal distribution for the baseline risks (2), are presented. Next, the 
results of our second model (IV) are given, with a mixture of two normal distributions 
as distribution for the baseline risks (3). Finally, the results of the approximate 
likelihood method of McIntosh[4] or van Houwelingen et al.[20] (model V) are 
presented with the aim to compare the results of the approximate likelihood method 
with our  Bayesian approach using an exact measurement error model. 
In the first example the log odds ratio is regressed on the baseline log odds. Note that 
the slope of the WLS line we have calculated differs from the one presented by Brand 
and Kragt[1], because we use the log odds of the baseline risk instead of the baseline 
risk itself. The same applies to the second and third examples, where we have log-
transformed the rates in both the treatment and control groups. In the second 
example we relate the log mortality rate in the treatment group to the log mortality 
rate in the control group, like in the l'Abbé-plot in the meta-analysis of Hoes et al.[6]. 
So, in this second example, the slope of the regression line is tested against one (e.g. 
slope of the no-effect line) instead of zero. Finally, in third example we relate the 
effect size, measured as the log rate ratio, to the log of the death rate (per 1000 person 
years) in the control group. 
The most important results here concern the slope of the regression line of effect size 
on baseline risk with its standard error and its confidence interval. In all three 
examples the slope of the WLS regression line is significantly negative, but we know 
that these slopes are  biased. In all three examples this bias is not removed by model 
II, the Bayesian method with the flat prior distribution on the true baseline risks. The 
estimated slopes are even slightly more biased than the WLS estimates. This is 
reflected by the fact that the estimated standard deviations of the true baseline risks 
for this model are larger than the standard deviations of the observed baseline risks 
that are implicitly used in the WLS approach. In the first example, the standard 
deviation of the baseline risks increase from 1.05 in the WLS approach to 1.08 in the 
Bayesian model with the flat prior on the true baseline risks. In the second example 
the standard deviation increases from 0.84 to 1.13 and in the third example the 
standard deviation of the baseline risks increases from 1.11 to 1.22. As expected, the 
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estimated slopes of the other three methods are shrunk towards zero (for example 1 
and 3) or towards 1 (example 2) compared to the WLS approach. Particularly in the 
Brand & Kragt example the amount of shrinkage is large due to some small trials with 
relatively large within study variance compared to the between study variance 
(standard deviation of the observed baseline risks is 1.05, compared to 0.70 for the 
true baseline risks), resulting in a non-significant slope for all three methods. The 
shrinkage of the slope is very modest in the Hoes example (standard deviation of the 
observed baseline risks is 0.84 compared to 0.71 for the true baseline risks), due to the 
fact that the within trial variance of the baseline risks is relatively small compared to 
variation between trials, and the estimated slope remains statistically significant for 
all three methods. In the Davey Smith example, the shrinkage causes a reduction in 
the slope of about 25% for all three methods, and the slope is no longer statistically 
significant. 
The difference between modelling the baseline risk distribution with one normal 
distribution (model III) or a mixture of two normal distributions (model IV) turns out 
to be negligible in all three examples. The estimated regression lines of the 
approximate likelihood approach (model V) turn out to agree very well with the two 
Bayesian models III and IV. The standard errors of the slope of the approximate 
likelihood approach are somewhat smaller, probably reflecting the fact that this 
method does not account for the uncertainty in the standard errors of the estimates of 
treatment effects and baseline risks.  
For the three Bayesian methods the estimated break-even points for the Hoes example 
are presented in Table 5. Since the posterior distributions were rather skewed, the 
break-even points are estimated by the median of their posterior distribution. Note 
that the break-even point in model II (fixed flat prior) is very similar to the 6 / 1000 
pryrs calculated by Hoes et al. with a WLS regression analysis. However, again the 
results of model II are biased because of the bias of the corresponding estimated 
regression line. This point estimate becomes little lower when estimated by model III 
and IV, suggesting a somewhat larger group of patients for which treatment has a 
beneficial effect. Only minor differences exist between the estimates of the break-even 
points and the corresponding confidence intervals of models III and IV. Notice that 
the 95% confidence interval for models III and IV are somewhat larger than for model 
II, indicating a larger range of baseline risks for which treatment effect is uncertain. In 
this example of Hoes et al.[6], the 95% confidence interval stays strictly positive when 
analysed with model III and IV, implying that estimated break-even point is 
significantly positive. This suggests that there indeed exists a baseline event rate 
below which treatment may have harmful effects. As an illustration of model III, we 
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plotted in Figure 4 the estimated regression line together with its 95% Bayesian 
confidence band and the break-even point for the meta-analysis of Hoes et al.[6]. 
 
 
Table 5. Point of intersection (break-even point) of the no-effect line with the regression line 
where the log event rate in the treatment group is plotted against the log event rate in the 
control group (baseline risk).  
 

Meta-
analysis 

Model Median 
log 

break-
even 

point ξ 

95% interval 
log break- 

even 
point ξ 

Median  
baseline-risk 

or rate 

95% interval 
baseline-risk 

or rate 

Hoes 
et al. 

Model for 
baseline log 
rate: 

    

12 trials II Fixed, flat 1.80     ( 1.15 to 2.17) 6.05 / 1000 prys (3.16 to 8.76 / 1000 prys)
 III Normal 1.73 ( 0.41 to 2.25) 5.64 / 1000 prys (1.51 to 9.49 / 1000 prys)
 IV Mixture 

two 
normals 

1.71 ( 0.12 to 2.29) 5.53 / 1000 prys (1.13 to 9.87 / 1000 prys)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Meta-analysis Hoes et al.[6] with the Bugs (true) regression line (model III with 
normal distribution on baseline risks) and the 95% Bayesian confidence interval around the 
regression line. 
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6 Discussion 
 
In this chapter we have proposed a hierarchical Bayesian modelling approach to 
investigate the relation between treatment effect and baseline risk in clinical trial 
meta-analyses. The three meta-analysis examples show that the results can differ 
substantially from the standard weighted linear regression approach. Our method can 
be considered as an generalisation of the method proposed by Thompson et al.[17]. In 
agreement with the theoretical argument of van Houwelingen and Senn[28] our 
results show that more extended modelling of the distribution of the baseline risks is 
preferable.  
Our results were very comparable to the results of McIntosh’s method, although this 
method gave somewhat smaller standard errors, probably due to the fact that no 
allowance is made for the uncertainty in the trial specific standard errors. An 
advantage of the method of McIntosh is that it can be carried out in at least one 
widely available standard statistical package, although for the standard errors of 
slope and intercept of the regression line some extra programming is needed. 
The method we propose in this chapter has several advantages. It can be carried out 
using the freely available Bayesian statistical package BUGS[21], which enables very 
flexible modelling. An exact measurement error model can be specified. Sensitivity 
analyses on the assumptions of the model are easily performed. For instance, to 
investigate whether a normal distribution for the baseline risks is a plausible 
assumption, we also fitted a model that assumed a mixture of two normal 
distributions. Many other distributional assumptions could be tried as well. Other 
model assumptions could be varied too. For instance, instead of the normal 
distribution for the residuals around the regression line, a t-distribution could be 
specified. Or, instead of a linear relation, a quadratic relationship could be assumed. 
Another advantage of our method is that for derived parameters almost automatically 
confidence intervals are obtained, such as a confidence interval for the break-even 
point or a confidence band for the underlying relationship between the true effect 
measure and baseline risk. Also a prediction interval, giving the range in which the 
treatment effects probably will lie for a new trial in a population with a given baseline 
risk, can be obtained.  Additionally, the model can easily be expanded with more 
covariables. Also the grouped random effect models for analysis, as suggested by 
Larose & Day[30] to distinguish between distinct kinds of studies can be naturally 
implemented in our approach, as long as one has enough trials of reasonable size. 
As a final remark, we do not fully agree with the point of view of van Houwelingen 
and Senn[28] that there is only limited direct relevance of our analyses to the decision 
making process for individual patients and their doctors. Of course, patients as well 



Baseline risk as predictor of treatment benefit 

 

39 

as doctors need to know which measurable personal features are beforehand related 
to the success of treatment to make better decisions, instead of calculating the baseline 
risk of the patients in a certain clinical practice in retrospect as we did in this chapter. 
However, in our opinion there is still a place for the kind of analyses considered in 
this chapter. First, even without knowing the exact or approximate baseline risk of a 
specific patient, it is useful for a doctor to know whether the treatment works better as 
the risk of a patient is higher. If there is such a relationship, the doctor can pay 
attention to general or specific risk factors like age to advise treatment or not. When 
no relationship whatsoever between treatment effect and baseline risk can be 
demonstrated, the doctor can base his treatment advice on other reasons, not taking 
risk factors into account. However, note that when the relative risk is constant over 
baseline risk, the absolute risk-reduction can still be larger at increasing baseline risk. 
This implies that lower numbers to treat are needed to save one person or in other 
words, that the same effect could be achieved at lower costs. Therefore, in that case 
the doctor could still decide to treat only the high risk patients because of cost-
effectiveness arguments, although the relative risk is independent of baseline risk. 
Second, again even without knowing the baseline risk of a specific patient, it can be 
important for a doctor to know whether there are patients who have a baseline risk 
below some break-even point for whom treatment has no influence or may even have 
a harmful effect. When the estimated break-even point according to our model(s) 
appears to be at an extremely low risk of which we know that actually all people fall 
above this point, doctors need not be afraid for harmful effects for the patient. At the 
same time, for a treatment with a very high break-even point, doctors need to be 
careful in prescribing treatment, especially when the endpoint is a serious one. In the 
last case the following strategy, suggested by Sharp et al.[16] and by Thompson et 
al.[17], should certainly be considered. They suggest a two-step approach: 1. 
executing an analysis like the one presented in this chapter of the relationship 
between treatment effect and baseline risk based on trial-level data and 2. developing 
a prognostic model based on a large pool individual follow-up data to combine 
several prognostic variables to predict the 'baseline' risk. With these two steps, one 
can approximately predict risk and hence treatment benefit for an individual patient.  
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Appendix 1 
 
The BUGS code <- means 'is equal to' and ~ means 'is distributed as'. From the model 
specification BUGS constructs the necessary full conditional distributions and carries 
out Gibbs sampling. For the examples presented here a 'burn-in' of 5.000 iterations 
was followed by further 15.000 iterations during which the generated parameter 
values were monitored and summary statistics as the median and 95% credible 
interval of the complete samples were obtained. Note that BUGS parameterises the 
normal distribution (dnorm) in terms of the precision rather than the variance. 
 
BUGS code (EXAMPLE 1 and 3): 
 
# Step 1: Underlying regression model: 
for(i in 1:13 ){mean.eta[i] <- alpha + (beta+1)*(ksi[i]-mean(ksi[]));} 
for(i in 1:13 ){eta[i] ~ dnorm(mean.eta[i],tau);} 

  # with the vague priors: 
tau ~ dgamma(0.001,0.001); 
beta ~ dnorm(0.0,1.0E-6); 
alpha ~ dnorm(0.0,1.0E-6); 

 
# Step 2: Baseline risks model:  
# Model 1 (vague prior): for( i in 1 : 13 ) {ksi[i] ~ dnorm(0.0,0.001);} 
 
# Model 2 (normal empirical Bayes prior):  
for( i in 1 : 13 ) {ksi[i] ~ dnorm(mean.ksi,tau.ksi);}  

   # with the vague priors:  
mean.ksi ~ dnorm(0, 0.001) and  tau.ksi ~ dgamma(0.001,0.001); 

 
# Model 3 (mixed empirical Bayes prior): 
for( i in 1 : 13 ) {  ksi[i] ~ dnorm(mean.ksi[T[i]],tau.ksi);} 
for( i in 1 : 13 ) {  T[i] ~ dcat(P[]) } 

    # with vague priors: 
tau.ksi  ~ dgamma(0.001,0.001); 
mean.ksi[1] ~ dnorm(0,1.0E-6); 
mean.ksi[2] <- mean.ksi[1] + theta; 
theta ~ dnorm(0,1.0E-6)I(0,); 
P[]~ddirch(alfa[]); alfa[1]<-1; alfa[2]<-1; 

 
# Step 3: Measurement errors model: 
for( i in 1 : 13 ) {y[i] ~ dbin(lambda[i],n[i]);} 
for( i in 1 : 13 ) {x[i] ~ dbin(mu[i],m[i]);} 
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  # and transforming the risks into logit(risks) for control and treatment group: 
for( i in 1 : 13 ) {logit(mu[i]) <- ksi[i];} 
for( i in 1 : 13 ) {logit(lambda[i]) <- eta[i];} 

 
# Easy to calculate the value of the intercept of the non-centred regression line and the value # 
of the baseline risk measure for which there is no treatment effect (eqpoint): 
alpha.real <- alpha-(beta+1)* mean(ksi[]); 
eqpoint <- (alpha.real)/(-beta); 

 
To calculate a confidence and a prediction band for the expected treatment effect given a true 
baseline risk: 
for (i in 1:10) {m.eta[i] <- alpha + (beta+1)*(i*0.5-mean(ksi[]));} 
for (i in 1:10) {new[i] ~ dnorm(m.eta[i] , tau);} 

 
BUGS code (EXAMPLE 2): 
 
Underlying regression model: 
for( i in 1 : 12 ) {mean.eta[i] <- alpha + beta * (ksi[i]-mean(ksi[]));} 
for( i in 1 : 12 ) {eta[i] ~ dnorm(mean.eta[i],tau);} 

   with the vague priors: 
tau ~ dgamma(0.001,0.001); 
beta ~ dnorm(0.0,1.0E-6); 
alpha ~ dnorm(0.0,1.0E-6); 

 
Baseline risks model, model 1 (vague prior): 
for( i in 1 : 12 ) {ksi[i] ~ dnorm(0.0,0.001);} 

 
Baseline risks model, model 2 (normal empirical Bayes prior): 
for( i in 1 : 12 ) {ksi[i] ~ dnorm(mean.ksi,tau.ksi);} 

   with the vague priors: 
for( i in 1 : 12 ) {ksi[i] ~ dnorm(0.0,0.00001); } 
tau.ksi ~ dgamma(0.001,0.001); 

 
Baseline risks model, model 3 (mixed empirical Bayes prior): 
for( i in 1 : 12 ) {  ksi[i] ~ dnorm(mean.ksi[T[i]],tau.ksi);} 
for( i in 1 : 12 ) {  T[i] ~ dcat(P[]) } 

   with vague priors: 
tau.ksi  ~ dgamma(0.001,0.001); 
mean.ksi[1] ~ dnorm(0,1.0E-6); 
mean.ksi[2] <- mean.ksi[1] + theta; 
theta ~ dnorm(0,1.0E-6) I(0,); 
P[] ~ ddirch(alfa[]); 
alfa[1] <- 1; 
alfa[2] <- 1; 



Chapter 2 

42 

 

Measurement errors model: 
for( i in 1 : 12 )  {y[i] ~ dpois(lambda[i]);} 
for( i in 1 : 12 )  {x[i] ~ dpois(mu[i]); } 

   and transforming the risks into log(rates) for control and treatment group: 
for( i in 1 : 12 ) {log(mu[i]) <- log(n[i]) + ksi[i];} 
for( i in 1 : 12 ) {log(lambda[i]) <- log(m[i]) + eta[i];} 

 
Easy to calculate the value of the intercept of the non-centred regression line and the value of 
the baseline risk measure for which there is no treatment effect: 
alpha.real<-alpha-beta*mean(ksi[]); 
eqpoint <- alpha.real/(1-beta); 

  
And to calculate a confidence and a prediction band for the expected treatment effect given a 
true baseline risk: 
for (i in 1:10) {m.eta[i] <- alpha + beta*(i*0.5-mean(ksi[]));} 
for (i in 1:10) {new[i] ~ dnorm(m.eta[i] , tau);} 
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Appendix 2 
 
Below the SAS Proc Mixed code as used for example 2 is given. The data set 'hoes' 
contains a data record for each treatment arm for all trials. The variables are: 
trial = trial number, same within one trial (in this example 1 to 12), 
grp =  successive number of treatment arm, different between control and 

experimental group within one trial and between trials (here: 1 to 24), 
logodds = estimated log odds per trial-arm, 
exp = 1 for experimental group, 0 for control group, 
con = 1 for control group, 0 for experimental group 
 
The SAS commands are: 
proc mixed method=ml cl data=hoes; * Call procedure. 
  class trial grp; * Specifies study and 

successive number of 
treatment-arm as 
classification var. 

  model logor= exp con / noint s cl; * Model with indication 
variables 'exp' and 'con' as 
explanatory variables for 
logodds. Print solution 's'. 

  random exp con / subject=trial type=un s;  * Trial is specified as 
random effect; 

 Covariance matrix is 
unstructured; Print 
empirical Bayes estimates 
's'. 

  repeated / group=grp; * Each study-arm in each 
trial has its own within 
study error variance  

  parms / parmsdata=covvars eqcons=4 to 27; * Starting values of 
covariance  

 parameters: the two between 
study variances, its 
covariance and the 26 within 
study error variances; 

 Considering the last 26 
values known and constant. 

run; 
 
The SAS-datafile 'covvars' has one variable, of which the first three values are the 
starting values for  
a. the between study variance of the log odds in the experimental group,  
b. the covariance between the true log odds in control and experimental group,  
c. the between study variance of the log odds of the control group.  
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The next 24 values are the estimated variances of the log odds within alternately the 

experimental and the control groups, computed as ( +
−

1 1
i i iy n y

) and ( +
−

1 1
i i ix m x

), 

respectively, where xi and yi are the number of events in the control respectively the 
active treatment group of the ith trial with corresponding sample sizes mi and ni. The 
subcommand 'eqcons=4 to 27' means that these 24 variances are kept fixed, i.e. treated 
as known. 
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Abstract  
 
This tutorial on advanced statistical methods for meta-analysis can be seen as a sequel 
to the recent Tutorial in Biostatistics on meta-analysis by Normand[1], which focussed 
on elementary methods. Within the framework of the general linear mixed model 
using approximate likelihood, we discuss methods to analyse univariate as well as 
bivariate treatment effects in meta-analyses as well as meta-regression methods. 
Several extensions of the models are discussed, like exact likelihood, non-normal 
mixtures and multiple endpoints. We end with a discussion about the use of Bayesian 
methods in meta-analysis. All methods are illustrated by a meta-analysis concerning 
the efficacy of BCG vaccine against tuberculosis. All analyses that use approximate 
likelihood can be carried out by standard software. We demonstrate how the models 
can be fitted using SAS Proc Mixed. 



Advanced methods in meta-analysis: multivariate approach and meta-regression 

49 

1 Introduction 
 
In this chapter we review advanced statistical methods for meta-analysis as used in 
bivariate meta-analysis[2] (i.e. two outcomes per study are modelled simultaneously) 
and meta-regression[3]. It can be seen as a sequel to the recent Tutorial in Biostatistics 
on meta-analysis by Normand[1]. Meta-analysis is put in the context of mixed models 
using (approximate) likelihood methods to estimate all relevant parameters. In the 
medical literature meta-analysis is usually applied to the results of clinical trials, but 
the application of the theory presented in this chapter is not limited to clinical trials 
only. It is the aim of this chapter not only to discuss the underlying theory but also to 
give practical guidelines how to carry out these analyses. 
As leading example we use the meta-analysis data set of Colditz et al.[4]. This data set 
is also discussed in Berkey et al.[3]. Wherever feasible, it is specified how the analysis 
can be performed by using the SAS procedure Proc Mixed. The chapter is organised 
as follows. In section 2 we review the concept of approximate likelihood that was 
introduced in the meta-analysis setting by DerSimonian & Laird[5]. In section 3 we 
review the meta-analysis of one-dimensional treatment effect parameters. In section 4 
we discuss the bivariate approach[2] and its link with the concept of underlying risk 
as source of heterogeneity[6-10]. In section 5 we discuss meta-regression within the 
mixed model setting. Covariates considered are aggregate measures on the study 
level. We do not go into meta-analysis with patient-specific covariates. In principle 
that is not different from analysing a multi-centre study[11]. In section 6 several 
extensions are discussed: exact likelihood's based on conditioning, non-normal 
mixtures, multiple endpoints, other outcome measures and other software. This is 
additional material that can be skipped at first reading. Section 7 is concerned with 
the use of Bayesian methods in meta-analysis. We argue that Bayesian methods can 
be useful if they are applied at the right level of the hierarchical model. The chapter is 
concluded in section 8. 
 
 

2 Approximate Likelihood 
 
The basic situation in meta-analysis is that we are dealing with n studies in which a 
parameter of interest iϑ  (i=1,..., n) is estimated. In a meta-analysis of clinical trials the 
parameter of interest is some measure of the difference in efficacy between the two 
treatment arms. The most popular choice is the log odds ratio, but this could also be 
the risk- or rate-difference or the risk- or rate-ratio for dichotomous outcome or 
similar measures for continuous outcomes or survival data. All studies report an 



Chapter 3 

50 

estimate îϑ  of the true iϑ  and the standard error is  of the estimate. If the studies only 
report the estimate and the p-value or a confidence interval, we can derive the 
standard error from the p-value or the confidence interval. In the sections 3 to 5, 
which give the main statistical tools, we act as if îϑ  has a normal distribution with 
unknown mean iϑ  and known standard deviation is , that is  
 

2ˆ N( )ϑ ϑi i i~ ,s  (1) 

Moreover, since the estimates are derived from different data sets, the îϑ  are 
conditionally independent given iϑ . This approximate likelihood approach goes back 
to the seminal paper by DerSimonian & Laird[5]. However, it should be stressed that 
it is not the normality of the frequency distribution of îϑ  that is employed in our 
analysis. Since our whole approach is likelihood based, we only use that the 
likelihood of the unknown parameter in each study looks like the likelihood of (1). So, 
if we denote the log-likelihood of the i-th study by )(i ϑ , the real approximation is  
 

2 21 ˆ( ) ( )
2

ϑ ϑ ϑ= − − +i i i i/s c  (2) 

where ic  is some constant that does not depend on the unknown parameter.  
If in each study the unknown parameter is estimated by Maximum Likelihood, 
approximation (2) is just the second order Taylor expansion of the (profile) log-
likelihood around the MLE îϑ . The approximation (2) is usually quite good, even if 
the estimator îϑ  is discrete. Since most studies indeed use the Maximum Likelihood 
method to estimate the unknown parameter, we are confident that (2) can be used as 
an approximation. In section 6 we will discuss some refinements of this 
approximation. In manipulating the likelihood's we can safely act as if we assume that 
(1) is valid and use, for example, known results for mixtures of normal distributions. 
However, we want to stress that actually we only use assumption (2). 
The approach of Yusuf et al.[12], popular in fixed effect meta-analysis, and of 
Whitehead and Whitehead[13] are based on a Taylor expansion of the log-likelihood 
around the value 0ϑ = . This is valid if the effects in each study are relatively small. It 
gives an approximation in the line of (2) with different estimators and standard errors 
but a similar quadratic expression in the unknown parameter. 
As we already noted, the most popular outcome measure in meta-analysis is the log 
odds ratio. Its estimated standard error is equal to ∞ if one of the frequencies in the 
2×2 table is equal to zero. That is usually repaired by adding ½ to all cell frequencies. 
We will discuss more appropriate ways of handling this problem in section 6.  
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3 Analysing one-dimensional treatment effects 
 
The analysis under 'homogeneity' makes the assumption that the unknown parameter 
is exactly the same in all studies, that is 1 2 ... nϑ ϑ ϑ ϑ= = = = . The log-likelihood for ϑ  
is given by  
 

2 2 21 ˆ( ) ( ) [( ) ln( ) ln(2 )]
2

ϑ ϑ ϑ ϑ π= = − − + +∑ ∑i i i i
i i

/s s  (3) 

Maximisation is straight-forward and results in the well-known estimator of the 
common effect 
 

2 2ˆ ˆ[ ]/ [ 1 ]ϑ ϑ= ∑ ∑hom i i i
i i

/s /s  

with standard error 
 

2ˆ 1 1ϑ = ∑hom i
i

se( ) / /s  

Confidence intervals for ϑ  can be based on normal distributions, since the 2
is  

terms are assumed to be known. Assuming the 2
is terms to be known instead of to be 

estimated has little impact on the results[14]. This is the basis for the traditional meta-
analysis. 
The assumption of homogeneity is questionable even if it is hard to disprove for small 
meta-analyses[15]. That is, heterogeneity might be present and should be part of the 
analysis even if the test for heterogeneity is not significant. Heterogeneity is found in 
many meta-analyses and is likely to be present since the individual studies are never 
identical with respect to study populations and other factors that can cause 
differences between studies.  
 
The popular model for the analysis under 'heterogeneity' is the normal mixture 
model, introduced by DerSimonian and Laird[5], that considers the iϑ  to be an 
independent random sample from a normal population  
 

2Nϑ ϑ σi ~ ( , )  

Normality of this mixture is a true assumption and not a simplifying approximation. 
We will further discuss it in section 6. The resulting marginal distribution of iϑ  is 
easily obtained as )s,N(~ˆ 2

i
2

i +σϑϑ  with corresponding log-likelihood 
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22 2 2 2 21 ˆ( , ) [( ) /( ) ln( ) ln(2 )]
2 i i i

i
s sϑ σ ϑ ϑ σ σ π= − − + + + +∑  (4) 

Notice that (3) and (4) are identical if 02 =σ .  
This log-likelihood is the basis for inference about both parameters ϑ  and 2σ . 
Maximum Likelihood estimates can be obtained by different algorithms. In the 
example below, it is shown how the estimates can be obtained by using the SAS 
procedure Proc Mixed. If 2σ  were known, the ML estimate for ϑ  would be 

 
2 2 2 2ˆ ˆ[ ( /( )]/[ [1/( )]het i i i

i i
s sϑ ϑ σ σ= + +∑ ∑  

with standard error 
 

 2 2ˆ( ) 1/ 1/( )het i
i

se sϑ σ= +∑  

The latter can also be used if 2σ  is estimated and the estimated value is plugged in, as 
is done in the standard DerSimonian and Laird approach. 
The construction of confidence intervals for both parameters is more complicated 
than in the case of a simple sample from a normal distribution. Simple 2χ - and t-
distributions with df=n-1 are not appropriate. In this chapter all models are fitted 
using SAS Proc Mixed, which gives Satterthwaite approximation based confidence 
intervals. Another possibility is to base confidence intervals on the likelihood ratio 
test, using profile log-likelihood's. That is, the confidence interval consists of all 
parameter values that are not rejected by the likelihood ratio test. Such confidence 
intervals often have amazingly accurate coverage probabilities[16, 17]. Brockwell and 
Gordon[18] compared the commonly used DerSimonian and Laird method[5] with 
the profile likelihood method. Particularly when the number of studies is modest, the 
DerSimonian and Laird method had coverage probabilities considerably below 0.95 
and the profile likelihood method  achieved the best coverage probabilities. 
The profile log-likelihood's are defined by 
 

2

2
1( ) max ( , )p

σ
ϑ ϑ σ=  and 2 2

2 ( ) max ( , )p
ϑ

σ ϑ σ=  

Based on the usual 2
]1[χ -approximation for 1 1

ˆ2( ( ) ( ))p pϑ ϑ−  the 95%- confidence 

interval for ϑ  is obtained as all ϑ 's satisfying 1 1
ˆ( ) ( ) 1.92p pϑ ϑ> −  (1.92 is the 95% 

centile of the 2
]1[χ  distribution 3.84 divided by 2) and similarly for 2σ . Unlike the 

usual confidence interval based on Wald's method, this confidence interval for ϑ  
implicitly accounts for the fact that 2σ  is estimated. 
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Testing for heterogeneity is equivalent to testing 0:H 2
0 =σ against 0:H 2

1 >σ . The 

likelihood ratio test statistic is 2
2 2ˆ2( ( ) (0))T p pσ= − . Since 02 =σ  is on the 

boundary of the parameter space, T does not have a 2
[1]χ -distribution, but its 

distribution is a mixture with probabilities ½ of the degenerate distribution in zero 

and the 2
[1]χ -distribution[19]. That means that the p-value of the naive LR-test has to 

be halved. 

Once the mixed model has been fitted, the following information is available at the 
overall level: 
� ϑ̂  and its confidence interval, showing the existence or absence of an overall effect 
� 2σ̂  and its confidence interval (and the test for heterogeneity), showing the 

variation between studies 
� approximate 95% prediction interval for the true parameterϑ̂new  of a new unrelated 

study: σϑ ˆ96.1ˆ ± . (Approximate in the sense that it ignores the error in the 
estimation of ϑ  and σ )  

� an estimate of the probability of a positive result of a new study: 
ˆ ˆ( 0) ( / )newP ϑ ϑ σ> = Φ   

(where Φ is the standard normal cumulative distribution function) 
 
And at the individual level: 
� posterior confidence intervals for the true iϑ 's of the studies in the meta-analysis 

based on the posterior distribution 2ˆ ˆ ˆ ˆ| ~ N( ( ), )i i i i i iB B sϑ ϑ ϑ ϑ ϑ+ −  with 
2 2 2ˆ ˆ/( )i iB sσ σ= + . The posterior means or so-called empirical Bayes estimates give 

a more realistic view on the results of, especially, the small studies. See the meta-
analysis tutorial of Normand[1] for more on this subject. 

 
Example 

To illustrate above methods we make use of the meta-analysis data given by Colditz 
et al.[4]. Berkey et al.[3] also used this dataset to illustrate their random-effects 
regression approach to meta-analysis. The meta-analysis concerns 13 trials on the 
efficacy of BCG vaccine against tuberculosis. In each trial a vaccinated group is 
compared with a non-vaccinated control group. The data consist of the sample size in 
each group and the number of cases of tuberculosis. Furthermore some covariates are 
available that might explain the heterogeneity among studies: geographic latitude of 
the place where the study was done, year of publication and method of treatment 
allocation (random, alternate, or systematic). The data are presented in Table 1.  
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Table 1. Example: Data from clinical trials on efficacy of BCG vaccine in the prevention of 
tuberculosis[3, 4]. 
 

 Vaccinated Not vaccinated ln(OR) Latitude Year Allocation 

Trial Disease No 
disease 

Disease No 
disease

   

1 4 119 11 128 -0.93869 44 48 Random 
2 6 300 29 274 -1.66619 55 49 Random 
3 3 228 11 209 -1.38629 42 60 Random 
4 62 13,536 248 12,619 -1.45644 52 77 Random 
5 33 5,036 47 5,761 -0.21914 13 73 Alternate 
6 180 1,361 372 1,079 -0.95812 44 53 Alternate 
7 8 2,537 10 619 -1.63378 19 73 Random 
8 505 87,886 499 87,892 0.01202 13 80 Random 
9 29 7,470 45 7,232 -0.47175 27* 68 Random 

10 17 1,699 65 1,600 -1.40121 42 61 Syst. Alloc. 
11 186 50,448 141 27,197 -0.34085 18 74 Syst. Alloc. 
12 5 2,493 3 2,338 0.44663 33 69 Syst. Alloc. 
13 27 16,886 29 17,825 -0.01734 33 76 Syst. Alloc. 

 

* This was actually a negative number, we used the absolute value in the analysis 
 
We stored the data into a SAS-file called 'BCG_data.sd2' (see Data step in SAS 
commands below). The treatment effect measure we have chosen is the log odds ratio, 
but the analysis could be carried out in the same way for any other treatment effect 
measure. 
 
Fixed effects model 
The analysis under the assumption of homogeneity is easily performed by hand. Only 
for the sake of continuity and uniformity we also show how the analysis can be 
carried out using SAS software.  
The ML-estimate of the log odds ratio for trial i is: 
 

A, A, A,

B, B, B,

/( )
ln log

/( )
i i i

i
i i i

Y n Y
OR

Y n Y
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 

 
where YA,i and YB,i are the number of disease cases in the vaccinated (A) and non-
vaccinated group (B) in trial i, and nA,i and nB,i the sample sizes. The corresponding 
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within-trial variance, computed from the inverse of the matrix of second derivatives 
of the log-likelihood, is: 

A, A, A, B, B, B,

1 1 1 1var(ln )i
i i i i i i

OR
Y n Y Y n Y

= + + +
− −

, which is also known as Woolf's 

formula. 
These within-trial variances were stored in the same SAS data-file as above, called 
'BCG_data.sd2'. In the analysis, these variances are assumed to be known and fixed. 

 
# THE DATA STEP; 
data BCG_data; 
input TRIAL VD VWD NVD NVWD LATITUDE YEAR ALLOC; 
LN_OR=log((VD/VWD)/(NVD/NVWD)); 
EST=1/VD+1/VWD+1/NVD+1/NVWD; 
datalines; 
1    4       119        11       128         44         48         1 
2    6       300        29       274         55         49         1 
3    3       228        11       209         42         60         1 
4   62     13536       248     12619         52         77         1 
5   33      5036        47      5761         13         73         2 
6  180      1361       372      1079         44         53         2 
7    8      2537        10       619         19         73         1 
8  505     87886       499     87892         13         80         1 
9   29      7470        45      7232         27         68         1 
10  17      1699        65      1600         42         61         3 
11 186     50448       141     27197         18         74         3 
12   5      2493         3      2338         33         69         3 
13  27     16886        29     17825         33         76         3 
; 
proc print;run; 

 
Running these SAS commands gives the following output: 
 
OBS TRIAL VD   VWD   NVD   NVWD LATITUDE   YEAR  ALLOC    LN_OR      EST 
 
 1    1    4    119   11    128     44      48     1    -0.93869    0.35712 
 2    2    6    300   29    274     55      49     1    -1.66619    0.20813 
 3    3    3    228   11    209     42      60     1    -1.38629    0.43341 
 4    4   62  13536  248  12619     52      77     1    -1.45644    0.02031 
 5    5   33   5036   47   5761     13      73     2    -0.21914    0.05195 
 6    6   80   1361  372   1079     44      53     2    -0.95812    0.00991 
 7    7    8   2537   10    619     19      73     1    -1.63378    0.22701 
 8    8  505  87886  499  87892     13      80     1     0.01202    0.00401 
 9    9   29   7470   45   7232     27      68     1    -0.47175    0.05698 
10   10   17   1699   65   1600     42      61     3    -1.40121    0.07542 
11   11  186  50448  141  27197     18      74     3    -0.34085    0.01253 
12   12    5   2493    3   2338     33      69     3     0.44663    0.53416 
13   13   27  16886   29  17825     33      76     3    -0.01734    0.07164 

 
The list of variables matches that in Table 1 (VD = Vaccinated and Diseased, VWD = 
Vaccinated and Without Disease, NVD = Not Vaccinated and Diseased, NVWD = Not 
Vaccinated and Without Disease. The variable ln_or contains the estimated log odds 
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ratio of each trial and the variable est contains its variance per trial. In the Proc Mixed 
commands below, SAS assumes that the within trial variances are stored in a variable 
with the name 'est'. 
 
# THE FIXED EFFECTS MODEL;  
Proc mixed method=ml 
data=BCG_data; 

#call SAS procedure; 

class trial; #specifies 'trial' as classification 
variable; 

model ln_or=/ s ; #an intercept only model; print the 
solution s; 

repeated /group=trial; #each trial has its own within-trial 
variance; 

parms / parmsdata=BCG_data #the parmsdata-option reads in the 
variable EST (indicating the within-
trial variances) from the dataset 
BCG_data.sd2; 

eqcons=1 to 13; #the within trial variances are 
considered to be known and must be kept 
constant; 

run;  

 
Running this analysis gives the following output: 

 
                             The MIXED Procedure 
(...) 
                          Solution for Fixed Effects 
 
Effect     Estimate    Std Error   DF       t  Pr >|t|  Alpha   Lower   Upper 
INTERCEPT -0.43627138  0.04227521  12  -10.32  0.0001   0.05   -0.5284 -0.3442 
   
 

The estimate of the common log odds ratio is equal to -0.436 with standard 
error = 0.042 leading to a 95% Wald based confidence interval of the log odds ratio 
from -0.519 to -0.353. (Although it seems overly precise, we will present results to 
three decimals, since these are used in further calculations and to facilitate 
comparisons between results of different models.) This corresponds to an estimate of 
0.647 with a 95% confidence interval from 0.595 to 0.703 for the odds ratio itself. So we 
can conclude that vaccination is beneficial. 
The confidence intervals and p-values provided by SAS Proc Mixed are based on the 
t-distribution rather than on the standard normal distribution, as is done in the 
standard likelihood approach. The number of degrees of freedom of the t-distribution 
is determined by Proc Mixed according to some algorithm. One can choose between 
several algorithms, but one can also specify in the model statement the number of 
degrees of freedom to be used for each covariable, except for the intercept. To get the 
standard Wald confidence interval and p-value for the intercept, the number of 
degrees of freedom used for the intercept should be specified to be ∞, which can be 
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accomplished by making a new intercept covariate equal to 1 and subsequently 
specifying 'no intercept' ('noint'). The SAS statement to be used is then:  
 
model ln_or=int / s cl noint ddf=1000;  
(the variable 'int' is a self-made intercept variable equal to 1). 
 
Simple random effects model, maximum likelihood 
The analysis under heterogeneity can be carried out by executing the following SAS 
statements. Unlike the previous model where we read in the within-trial variances 
from the datafile, we now specify the within trial variances explicitly in the 'parms'-
statement. This has to be done because we want to define a grid of values for the first 
covariance parameter, i.e. the between trial variance, to get the profile likelihood 
function for the between trial variance to get its likelihood ratio based 95% confidence 
interval. Of course, one could also give only one starting value and read the data from 
a SAS-datafile like we did before. 
 
# THE RANDOM EFFECTS MODEL (MAXIMUM LIKELIHOOD); 
Proc mixed cl method=ml data=BCG_data; #call of procedure; 'cl' asks 

for confidence intervals of 
covariance parameters; 

class trial; #trial is classification 
variable; 

model ln_or= / s cl; #an intercept only model. print 
fixed effect solution 's' and 
its confidence limits 'cl'; 

random int/ subject=trial s; #trial is specified as random 
effect; 's' asks for the 
empirical Bayes estimates; 

repeated /group=trial; #each trial has its own within 
trial variance; 

parms (0.01 to 2.00 by 0.01)(0.35712) 
(0.20813)(0.43341)(0.02031)(0.05195) 
(0.00991)(0.22701)(0.00401)(0.05698) 
(0.07542)(0.01253)(0.53416)(0.07164) 
/eqcons=2 to 14; 

#defines grid of values for 
between trial variance (from 
0.01 to 1.00), followed by the 
13 within trial variances which 
are assumed to be known and must 
be kept fixed; 

make 'Parms' out=Parmsml; #in the dataset 'Parms' the 
maximum log likelihood for each 
value of the grid specified for 
the between trial variance is 
stored, in order to read off the 
profile likelihood based 95% CI 
for the between trial variance; 

run;  
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Running this program gives the following output: 
 
                             The MIXED Procedure 
 
(...) 
                     Covariance Parameter Estimates (MLE) 
 
    Cov Parm    Subject  Group         Estimate  Alpha     Lower     Upper 
    INTERCEPT   TRIAL                0.30245716   0.05    0.1350    1.1810 
 
(...) 
 
                          Solution for Fixed Effects 
 
Effect     Estimate    Std Error   DF       t  Pr >|t|  Alpha   Lower   Upper 
INTERCEPT -0.74197023  0.17795376  12   -4.17   0.0013  0.05   -1.1297 -0.3542 
 
 

The ML-estimate of the mean log odds ratio is -0.742 with standard error 0.178. The 
standard Wald based 95% confidence interval is -1.091 to -0.393. (SAS Proc Mixed 
gives a slightly wider confidence interval based on a t-distribution with df=12). This 
corresponds to an estimated odds ratio of 0.476 with a 95% confidence interval from 
0.336 to 0.675.  
The ML-estimate of the between trial variance σ 2 is equal to 0.302. For each value of 
the grid specified in the 'Parms'-statement for the between trial variance (in the 
example the grid runs from 0.01 to 2.00 with steps of 0.01), the maximum log 
likelihood value is stored as variable 'LL' in the SAS-file 'Parmsml.sd2'. Plotting the 
maximum log likelihood values against the grid of between trial variances gives the 
profile likelihood plot for the between trial variance presented in Figure 1. From this 
plot or a listing of the data set 'Parmsml.sd2' one can read off the profile likelihood 
based 95% confidence interval for the between trial variance σ 2 . This is done by 
looking for the two values of the between trial variance with a corresponding log 
likelihood of 1.92 lower than the maximum log likelihood. The 95% profile likelihood 
based confidence interval for σ 2

 is (0.12, 0.89). (SAS Proc Mixed gives a Satterthwaite 
approximation based 95% confidence interval running from 0.135 to 1.180.) 
Notice that by comparing the maximum log likelihood of this model with the 
previous fixed effects model, one gets the likelihood ratio test for homogeneity (the p-
value has to be halved, because 02 =σ  is on the boundary of the parameter space). 
A profile likelihood based confidence interval for the mean treatment effect ϑ can be 
made by trial and error by defining the variable y=ln_or-c as dependent variable for 
various values of c and specifying a model without intercept (add 'noint' after the 
slash in the model statement). Then look for the two values of c that decrease the 
maximum log-likelihood by 1.92. The profile log-likelihood plot for ϑ is given in 
Figure 2.  
The 95% confidence interval for the log odds ratio ϑ  is (-1.13, -0.37), slightly wider 



Advanced methods in meta-analysis: multivariate approach and meta-regression 

59 

Profile log-likelihood for variance

Between-study variance

21.8.6.4.2.1.08.06.04

P
ro

fil
e 

lo
g-

lik
el

ih
oo

d

-12

-14

-16

-18

-20

-22

-24

-26

 than the simple Wald approximation given above. This corresponds with a 95% 
confidence interval for the odds ratio of 0.323 to 0.691. 
 
Remark: In Proc Mixed one can also choose the restricted maximum likelihood 
(REML) estimate (specify method=reml instead of method=ml). Then the resulting 
estimate for the between trial variance σ 2  is identical to the iterated DerSimonian-
Laird estimator[5]. However, in this case the profile likelihood function should not be 
used to make a confidence interval for the log odds ratio ϑ. The reason is that 
differences between maximised REML likelihoods cannot be used to test hypotheses 
concerning fixed parameters in a general linear mixed model [20]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The 95% confidence interval of the between-trial variance σ 2

 based on the profile 
likelihood function: (0.12 , 0.89). 
 
 
The observed and corresponding empirical Bayes estimated log odds ratios with their 
95% standard Wald respectively the 95% posterior confidence intervals per trial are 
presented in Figure 3. This figure shows the shrinkage of the empirical Bayes 
estimates towards the estimated mean log odds ratio and their corresponding smaller 
posterior confidence intervals . 
The overall confidence interval of the mean true treatment effect and the overall 
prediction interval of the true treatment effect are given at the bottom of the figure. 
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Figure 2. The 95% confidence interval of the treatment effect (log odds ratio) θ based on the 
profile likelihood function: (-1.13, -0.37). 
 
 
The 95% prediction interval indicates the interval in which 95% of the true treatment 
effects of new trials are expected to fall. It is calculated as the ML-estimate plus and 
minus 1.96 times the estimated between trial standard deviation s and is here equal to 
(-1.820 to 0.336). The estimated probability for a new trial having a positive true 
treatment effect is Φ(0.742/0.302) = 0.993. 
 
 

4 Bivariate approach 
 
In the previous section the parameter of interest was one-dimensional. In many 
situations it can be bivariate or even multivariate, for instance when there are more 
treatment groups or more outcome variables. In this section we discuss the case of a 
two-dimensional parameter of interest. We introduce the bivariate approach with 
special reference to the situation where one is interested in 'control rate regression', 
i.e. relating the treatment effect size to the risk of events in the control group. 
However, the approach applies generally.  
Many studies show considerable variation in what is called the baseline risk. The 
baseline risk indicates the risk for patients under the control condition, which is the 
average risk of the patients in that trial when the patients were treated with the 
control treatment. 
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Figure 3. Forrest plot with the estimated log odds ratios of tuberculosis with their 95% 
confidence intervals in the trials included in the meta-analysis. The dashed horizontal lines 
indicate the standard Wald confidence intervals. The solid horizontal lines indicate the 
posterior or so-called empirical Bayes confidence intervals. The vertical line indicates the ML-
estimate of the common (true) log odds ratio. Below the figure the 95% confidence interval for 
the mean log odds ratio and the 95% prediction interval for the true log odds ratio are 
presented. 
 
 
One might wonder if there is a relation between treatment effect and baseline risk. 
Considering only the differences between the study arms may hide a lot information. 
Therefore, we think it is wise to consider the pair of outcomes of the two treatments. 
This is nicely done in the l’Abbé-plot[21], that gives a bivariate representation of the 
data by plotting the log odds in arm A versus the log odds in arm B. We show the plot 
in Figure 4 for the data of our example with A the vaccinated arm and B the not-
vaccinated arm. The size of each circle represents the inverse of the variance of the log 
odds ratio in that trial. Points below the line of identity correspond to trials with an 
observed positive effect of vaccination. 
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Figure 4. L'Abbé-plot of observed log(odds) of the not-vaccinated trial arm versus the 
vaccinated trial arm. The size of the circle is an indication for the inverse of the variance of the 
log odds ratio in that trial. Below the x=y line, the log odds in the vaccinated are lower than 
the log odds in the not-vaccinated arm, indicating that the vaccination works. On or above the 
x=y line, vaccination doesn't work beneficially. 
 
 
The graph shows some effect of vaccination especially at the higher incidence rates. 
A simple (approximate) bivariate model for any observed pair of arm specific 
outcome measures A, B,ˆ ˆ( , )i i iω ω ω=  with standard errors A, B,( , )i is s in trial i is: 
 

2
A,A, A,

2
B,B, B,

ˆ 0
~ N( , )ˆ 0

ii i

ii i

s
s

ωω
ωω

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
      ( i =1,...,n) 

where A, B,( , )i i iω ω ω= is the pair of true arm specific outcome measures for trial i. The 
conditional independence of Aω̂ and Bω̂  given the true Aω and Bω is a consequence of 
the randomised parallel study design and the fact that Aω and Bω  are arm specific. In 
general, for instance in a cross-over study, or when Aω and Bω  are treatment effects 
on two different outcome variables, the estimates might be correlated.  
The mixed model approach assumes the pair A, B,( , )i iω ω  to follow a bivariate normal 
distribution, where, analogous to the univariate random effects model of section 3, the 
true outcome measures for both arms in the trials are normally distributed around 
some common mean treatment-arm outcome measure with a between-trial covariance 
matrix Σ : 
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A, A AA AB

B, B AB BB
~ N( , ) withi

i

ω ω
ω ω

Σ Σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Σ Σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟Σ Σ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

ΣAA and ΣBB describe the variability among trials in true risk under the vaccination and 
control condition, respectively. ΣAB is the covariance between the true risk in 
vaccination and control group.  
The resulting marginal model is 

AA,

BB,

ˆ
~ N( , )ˆ

i
i

i

C
ωω
ωω

⎛ ⎞ ⎛ ⎞
Σ +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

with iC  the diagonal matrix with the 2
is  's. 

Maximum likelihood estimation for this model can be quite easily carried out by a 
self-made program based on the EM algorithm as the described in reference 2, but 
more practically convenient is to use appropriate mixed model software from 
statistical packages, such as the SAS procedure Proc Mixed.  
Once the model is fitted, the following derived quantities are of interest: 
� The mean difference A B( )ω ω− and its standard error 

A B A B(var( ) var( ) 2 cov( , ))ω ω ω ω+ − ⋅  

� The population variance of the difference A B AA BB ABvar( ) 2ω ω− = Σ +Σ − ⋅Σ . 
� The shape of the bivariate relation between the (true) Aω  and Bω . That can be 

described by ellipses of equal density or by the regression lines of Aω  on Bω  and of 
the Bω on Aω . These lines can be obtained from classical bivariate normal theory. 
For example, the regression line of Aω  on Bω  has slope AB BB/β = Σ Σ  and residual 
variance Σ −Σ Σ2 /AA AB BB . The regression of the difference A B( )ω ω− on either Aω  or 

Bω  can be derived similarly. At the end of this section we come back to the 
usefulness of these regression lines. 

The standard errors of the regression slopes can be calculated from the covariance 
matrix of the estimated covariance parameters by the delta-method or by Fieller’s 
method[22]. 
 
Example (continued): bivariate random effects model 

As an example we carry out a bivariate meta-analysis with ωA and ωB the log odds of 
tuberculosis in the vaccinated and the not-vaccinated control arm, respectively. To 
execute a bivariate analysis in the SAS procedure Proc Mixed, we have to change the 
structure of the data set. Each treatment arm of a trial becomes a row in the data set, 
resulting in twice as many rows as in the original data set. The dependent variable is 
now the estimated log odds in a treatment arm instead of the log odds ratio. The new 
data set is called BCGdata2.sd2 and the observed log odds is called lno. The 
standard error of the observed log odds, estimated by taking the square root of minus 
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the inverse of the second derivative of the log likelihood, is equal to +
−

1 1
x n x

, 

where n is the sample size of a treatment arm and x is the number of tuberculosis 
cases in a treatment arm. These standard errors are stored in the SAS data set 
covvars2.sd2. 

The bivariate random effects analysis can be carried out by running the SAS 
commands given below. In the data step, the new dataset BCGdata2.sd2 is made out of 
the dataset BCGdata.sd2, and the covariates are defined on trial arm level. The 
variable exp is 1 for the vaccinated (experimental) arms and 0 for the not-vaccinated 
(control) arms. The variable con is defined analogously with experimental and 
control conversed. The variable arm identifies the 26 unique treatment arms from the 
13 studies, (here from 1 to 26); latcon, latexp, yearcon and yearexp are covariates to 
be used later. For numerical reasons we centralised the four variables latcon, latexp, 

yearcon and yearexp by subtracting the mean. 
 
# The data step (bivariate analysis) 
data bcgdata2;set bcg_data; 
treat=1; lno=log(vd/vwd); var=1/vd+1/vwd; n=vd+vwd; output; 
treat=0; lno=log(nvd/nvwd); var=1/nvd+1/nvwd; n=nvd+nvwd; output; 
keep trial lno var n treat latitude--alloc; 
run; 
data bcgdata2;set bcgdata2; 
arm=_n_; exp=(treat=1); con=(treat=0); 
latcon=(treat=0)*(latitude-33); latexp=(treat=1)*(latitude-33); 
yearcon=(treat=0)*(year-66); yearexp=(treat=1)*(year-66); 
proc print noobs;run; 
 

Running these SAS commands gives the following output: 
 

      L   

      A                                                              Y     Y 

      T                                                  L     L     E     E 

 T    I        A   T                                     A     A     A     A 

 R    T    Y   L   R                                     T     T     R     R 

 I    U    E   L   E      L         V       A   E   C    C     E     C     E 

 A    D    A   O   A      N         A       R   X   O    O     X     O     X 

 L    E    R   C   T      O         R       M   P   N    N     P     N     P 

 

 1   44   48   1   1  -3.39283   0.25840    1   1   0    0    11     0   -18 

 1   44   48   1   0  -2.45413   0.09872    2   0   1   11     0   -18     0 

 2   55   49   1   1  -3.91202   0.17000    3   1   0    0    22     0   -17 

 2   55   49   1   0  -2.24583   0.03813    4   0   1   22     0   -17     0 

 3   42   60   1   1  -4.33073   0.33772    5   1   0    0     9     0    -6 

 3   42   60   1   0  -2.94444   0.09569    6   0   1    9     0    -6     0 

 4   52   77   1   1  -5.38597   0.01620    7   1   0    0    19     0    11 
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 4   52   77   1   0  -3.92953   0.00411    8   0   1   19     0    11     0 

 5   13   73   2   1  -5.02786   0.03050    9   1   0    0   -20     0     7 

 5   13   73   2   0  -4.80872   0.02145   10   0   1  -20     0     7     0 

 6   44   53   2   1  -2.02302   0.00629   11   1   0    0    11     0   -13 

 6   44   53   2   0  -1.06490   0.00361   12   0   1   11     0   -13     0 

 7   19   73   1   1  -5.75930   0.12539   13   1   0    0   -14     0     7 

 7   19   73   1   0  -4.12552   0.10162   14   0   1  -14     0     7     0 

 8   13   80   1   1  -5.15924   0.00199   15   1   0    0   -20     0    14 

 8   13   80   1   0  -5.17126   0.00202   16   0   1  -20     0    14     0 

 9   27   68   1   1  -5.55135   0.03462   17   1   0    0    -6     0     2 

 9   27   68   1   0  -5.07961   0.02236   18   0   1   -6     0     2     0 

10   42   61   3   1  -4.60458   0.05941   19   1   0    0     9     0    -5 

10   42   61   3   0  -3.20337   0.01601   20   0   1    9     0    -5     0 

11   18   74   3   1  -5.60295   0.00540   21   1   0    0   -15     0     8 

11   18   74   3   0  -5.26210   0.00713   22   0   1  -15     0     8     0 

12   33   69   3   1  -6.21180   0.20040   23   1   0    0     0     0     3 

12   33   69   3   0  -6.65844   0.33376   24   0   1    0     0     3     0 

13   33   76   3   1  -6.43840   0.03710   25   1   0    0     0     0    10 

13   33   76   3   0  -6.42106   0.03454   26   0   1    0     0    10     0 

 

# The procedure step (bivariate random effects analysis) 
Proc mixed cl method=ml 
data=BCGdata2 asycov; 

#call procedure; 'asycov' asks for 
asymptotic covariance matrix of 
covariance parameters 

class trial arm; #trial and arm are classification 
variables; 

model lno= exp con / noint s cl covb 
ddf=1000, 1000; 

#model with indicator variables 'exp' 
and 'con' as explanatory variables 
for log odds; confidence intervals 
and p-values for coefficients of 
'exp' and 'con' should be based on 
standard normal distribution (i.e. t-
distribution with df = ∞).'covb' 
asks for covariance matrix of fixed 
effects parameters. 

random exp con/ subject=trial 
type=un s; 

#experimental and control treatment 
are random effects, possibly 
correlated within a trial, and 
independent between trials; 
covariance matrix (Σ) is 
unstructured; print empirical Bayes 
estimates 's'; 

repeated /group=arm; #each study-arm in each trial has its 
own within study-arm variance (matrix 
Ci); within study estimation errors 
are independent (default); 

estimate 'difference' exp 1 con -
1/cl df=1000; 

#the 'estimate' command produces 
estimates of linear combinations of 
the fixed parameters with standard 
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error computed from the covariance 
matrix of the estimates. Here we ask 
for the estimate of mean log odds 
ratio; 

parms /parmsdata=covvars2 eqcons=4 
to 29; 

#data file covvars2.sd2 contains the 
variable 'est' with starting values 
for the three covariance parameters 
of the random effects together with 
the 26 within study-arm variances. 
The latter are assumed to be known 
and should be kept fixed; 

run;  
 

Running this program gives the following output: 
 

                             The MIXED Procedure 

(...) 

                     Covariance Parameter Estimates (MLE) 

 

      Cov Parm  Subject  Group       Estimate  Alpha     Lower     Upper 

      UN(1,1)   TRIAL              1.43137384   0.05    0.7369    3.8894 

      UN(2,1)   TRIAL              1.75732532   0.05    0.3378    3.1768 

      UN(2,2)   TRIAL              2.40732608   0.05    1.2486    6.4330 

(...) 

                          Solution for Fixed Effects 

 

Effect     Estimate    Std Error   DF      t  Pr > |t|  Alpha    Lower    Upper 

 EXP     -4.83374538   0.33961722 1000 -14.23   0.0001  0.05  -5.5002   -4.1673 

 CON     -4.09597366   0.43469692 1000  -9.42   0.0001  0.05  -4.9490   -3.2430 

 

                     Covariance Matrix for Fixed Effects 

 

                   Effect   Row          COL1          COL2 

                   EXP        1    0.11533985    0.13599767 

                   CON        2    0.13599767    0.18896142 

 

(...) 

                          ESTIMATE Statement Results 

 

Parameter   Estimate    Std Error   DF   t   Pr > |t|   Alpha  Lower     Upper 

difference -0.73777172  0.17973848 1000 -4.10 0.0001    0.05  -1.0905   -0.3851 

 
The fixed parameter estimates A Bˆ ˆ ˆ( , )ω ω ω=  = ( -4.834 , -4.096) represent the estimated 

mean log odds in the vaccinated and non-vaccinated group, respectively. The 

between trial estimated variance of the log odds is Σ̂AA = 1.431 in the vaccinated 

groups and BBΣ̂ = 2.407 in the not-vaccinated groups. The between trial covariance is 
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estimated to be ABΣ̂ = 1.757. So, the estimated correlation between the true vaccinated 

and true control log odds is AB AA BB
ˆ ˆ ˆ/( )Σ Σ ⋅ Σ = 0.947 . The estimated covariance 

matrix for the ML-estimates Bω̂  and Aω̂  is 

A A B

B A B

ˆ ˆ ˆ 0.115 0.136var( ) cov( , )
ˆ ˆ ˆ 0.136 0.189cov( , ) var( )
ω ω ω

ω ω ω
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. The estimated mean vaccination effect, 

measured as the log odds ratio, is equal to A Bˆ ˆ( )ω ω− = (-4.834-(-4.096)) = -0.738. The 

standard error of the mean vaccination effect is equal to 

A B A Bˆ ˆ ˆ ˆvar( ) var( ) 2 cov( , )ω ω ω ω+ − ⋅ = + − ⋅(0.115 0.189 2 0.136)  =0.180, almost 

identical to the result of the univariate mixed model. This corresponds to an estimated 

odds ratio of exp(-0.738)=0.478 with a 95% confidence interval equal to (0.336; 0.680), 

again strongly suggesting an average beneficial vaccination effect. The slope of the 

regression line to predict the log odds in the vaccinated group from the log odds in 

the not-vaccinated group is equal to AB AB BB
ˆ ˆ/β = Σ Σ  = (1.757/2.407) = 0.730. The slope 

of the reverse relationship is equal to BA AB AA
ˆ ˆ/β = Σ Σ  = (1.757/1.431) = 1.228.  

The variance of the treatment effect, measured as the log odds ratio, calculated from 

Σ̂  is (1.431+2.407-2⋅1.757)=0.324, which is only slightly different from what we found 

earlier in the univariate random effects analysis. The conditional variance of the true 

log odds , and therefore also of the log odds ratio, in the vaccinated group given the 

true log odds in the not-vaccinated group is 2
AA AB BB( / )Σ −Σ Σ  = (1.431-1.7572/2.407) = 

0.149, which is interpreted as the variance between treatment effects among trials 

with the same baseline risk. So baseline risk, measured as the true log odds in the not-

vaccinated group, explains (0.324-0.149)/ 0.324 = 54% of the heterogeneity in 

vaccination effect between the trials.  

The 95% coverage region of the estimated bivariate distribution can be plotted in the 

so-called l'Abbé-plot[21] in Figure 5. 

Figure 5 nicely shows that the vaccination effect depends on the baseline risk (log 
odds in not-vaccinated group) and that the heterogeneity in the difference between 
the log odds in the vaccinated versus the not-vaccinated treatment arms is for a large 
part explained by the regression coefficient being substantially smaller than 1. It also 
shows the shrinkage of the empirical Bayes estimates towards the main axis of the 
ellipse. 
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Figure 5. The 95% coverage region for the pairs of true log odds under vaccination and non- 
vaccination. The diagonal line is the line of equality between the two log odds.  
Observed data from the trials are indicated with o, the empirical Bayes estimates are 
indicated with Δ. The common mean is indicated with the z central in the plot. The ellipse is 
obtained from a line plot based on the equation  ω ω−− Σ − =1ˆˆ ˆ( ) ( )' 5.99x x  
 
 
In this example we specified the model in Proc Mixed as a model with two random 
intercepts, in which the fixed parameters correspond to ωA and ωB . An alternative 
would be to specify the model as a random-intercept-random-slope model, in which 
the fixed parameters correspond to ωB and the mean treatment effect ωA - ωB. Then the 
SAS commands should be modified as follows: 
model lno=treat/s cl covb ddf=1000; 

random int treat/subject=trial type=un s; 

Here int refers to a random trial specific intercept. 
 
4.1 Relation between effect and baseline risk 

The relation between treatment effect and baseline risk has been very much discussed 
in the literature[6-9, 23-30]. There are two issues that complicate the matter: 
1. The relation between 'observed difference A-B' and 'observed baseline risk B' is 

prone to spurious correlation, since the measurement error in the latter is 
negatively correlated with measurement error in the first. It would be better to 
study B versus A or B-A versus (A+B)/2.  
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2. Even in the regression of 'observed risk in group A' on 'observed baseline risk in 
group B', which is not hampered by correlated measurement errors, the estimated 
slope is attenuated due to measurement error in the observed baseline risk[31].  

See for an extensive discussion of these problems the article of Sharp et al.[32]. 
In dealing with measurement error there are two approaches[31, 33] 
1. The 'functional equation' approach: true regressors as nuisance parameters. 
2. The 'structural equation' approach: true regressors as random quantities with an 

unknown distribution. 
The usual likelihood theory is not guaranteed to work for the functional equation 
approach because of the large number of nuisance parameters. The estimators may be 
inconsistent or have the wrong standard errors. The bivariate mixed model approach 
to meta-analysis used in this chapter is in the spirit of  the structural approach. The 
likelihood method does work for the structural equation approach, so in this respect 
our approach is safe. Of course, the question of robustness of the results against 
misspecification of the mixing distribution is raised. However, Verbeke and 
Lesaffre[34] have shown that in the general linear mixed model the fixed effect 
parameters as well as the covariance parameters are still consistently estimated when 
the distribution of the random effects is misspecified, so long the covariance structure 
is correct. So our approach yields (asymptotically) unbiased estimates of slope and 
intercept of the regression line even if the normal distribution assumption is not 
fulfilled, although the standard errors might be wrong. Verbeke and Lesaffre[34] give 
a general method for robust estimation of the standard errors. 
The mix of many fixed and a few random effects as proposed by Thompson et al.[8] 
and the models of Walter[9] and Cook and Walter[29] are more in the spirit of the 
functional approach. These methods are meant to impose no conditions on the 
distribution of the true baseline risks. The method of Walter[9] was criticised by 
Bernsen et al.[35]. Sharp and Thompson[30] use other arguments to show that 
Walter's method is seriously flawed. In a letter to the editor by Van Houwelingen & 
Senn[36] following the article of Thompson et al.[8] Van Houwelingen and Senn[36] 
argue that putting Bayesian priors on all nuisance parameters as done by Thompson 
et al. does not help solving the inconsistency problem. This view is also supported in 
the chapter on Bayesian methods in  the book of Carroll et al.[31]. It would be 
interesting to apply the ideas of Carroll et al.[31] in the setting of meta-analysis, but 
that is beyond the scope of this chapter. Arends et al.[10] compare, in a number of 
examples, the approach of Thompson et al.[8] with the method presented here and  
the results were in line with the remarks of Van Houwelingen and Senn[36]. Sharp 
and Thompson[30], comparing the different approaches in a number of examples, 
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remark that whether or not assuming a distribution for the true baseline risks remains 
a debatable issue. 
Arends et al.[10] also compared the approximate likelihood method as presented here 
with an exact likelihood approach where the parameters are estimated in a Bayesian 
manner with vague priors and found no relevant differences. 
 
 

5 Meta-regression 
 
In case of substantial heterogeneity between the studies, it is the statistician’s duty to 
explore possible causes of the heterogeneity[15, 37-39]. In the context of meta-analysis 
that can be done by covariates on the study level that could 'explain' the differences 
between the studies. The term meta-regression to describe such analysis goes back to 
papers by Bashore et al.[40], Jones[41], Greenland[42] and Berlin and Antman[37]. We 
consider only analyses at the aggregated meta-analytic level. Aggregated information 
(mean age, percentage males) can describe the differences between studies. We will 
not go into covariates on the individual level. If such information exists, the data 
should be analysed on the individual patient level by hierarchical models. That is 
possible and a sensible thing to do, but beyond the scope of this chapter. We will also 
not consider covariates on the study arm level. That can be relevant in non-balanced 
observational studies. Such covariates could both correct the treatment-effect itself in 
case of confounding as well as explain existing heterogeneity between studies. 
Although the methods presented in this chapter might be applied straightforwardly, 
we will restrict attention to balanced studies in which no systematic difference 
between the study arms is expected. 
Since the number of studies in a meta-analysis is usually quite small, there is a great 
danger of overfitting. The rule of thumb of one explanatory variable for each 5 (10) 
'cases' leaves only room for a few explanatory variables in a meta-regression. In the 
example we have three covariates available: latitude, year of study and method of 
treatment allocation. Details are given in Table 1. 
In the previous section we have seen that heterogeneity between studies can be partly 
explained by differences in baseline risk. So, it is also important to investigate 
whether covariates on the study level are associated with the baseline risk. That asks 
for a truly multivariate regression with a two-dimensional outcome, but we will start 
with the simpler regression for the one-dimensional treatment effect difference 
measure. 
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5.1 Regression for difference measure 

Let iX  stand for the (row-)vector of covariates of study i including the constant term. 
Meta-regression relates the true difference iϑ  to the 'predictor' βiX . This relation 
cannot be expected to be perfect; there might be some residual heterogeneity that 
could be modelled by a normal distribution once again, that is 2~ N( , )i iXϑ β σ . 
Taking into account the imprecision of the observed difference measure îϑ  we get the 
marginal approximate model 

2 2ˆ ~ N( , )i i iX sϑ β σ + .  
This model could be fitted by iteratively re-weighted least squares, where a new 
estimate of 2σ  is used in each iteration step or by full maximum likelihood with 
appropriate software. In the sequel we will describe how the model can be fitted by 
SAS.  
 
Example (continued) 

A graphical presentation of the data is given in Figure 6. Latitude and year of 
publication both seem to be associated with the log odds ratio, while latitude and year 
are also correlated. Furthermore, at first sight, the three forms of allocation seem to 
have little different average treatment effects. 
 
Regression on latitude 
The regression analysis for the log odds ratio on latitude can be carried out by 
running the following mixed model in SAS: 
 
Proc mixed cl method=ml 
data=BCG_data; 

#call procedure; 

class trial; #trial is classification variable; 
model ln_or= latitude / s cl 
covb; 

#latitude is only predictor variable; 

random int/ subject=trial s; #random trial effect; 
repeated /group=trial; #each trial has its own within study 

variances; 
parms /parmsdata=covvars3 
eqcons=2 to 14; 

#data set covvars3 contains a starting 
value for between study variance and 
13 within study variances which should 
be kept fixed; 

run;  
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Figure 6. Graphical relationships between the variables with a weighted least squares 
regression line. The size of the circle corresponds to the inverse variance of the log odds ratio 
in that trial. 
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 Running this program gives the following output: 
 
                         The MIXED Procedure 
 

(...)              Covariance Parameter Estimates (MLE) 

    Cov Parm    Subject  Group         Estimate  Alpha     Lower     Upper 

    INTERCEPT   TRIAL                0.00399452   0.05    0.0004  1.616E29 

 

(...)                   Solution for Fixed Effects 

 

Effect       Estimate    Std Error   DF    t     Pr > |t| Alpha  Lower  Upper 

INTERCEPT    0.37108745  0.10596655  11    3.50  0.0050   0.05   0.1379 0.6043 

LATITUDE    -0.03272329  0.00337134   0   -9.71       .   0.05        .      . 

 

                   Covariance Matrix for Fixed Effects 

 

               Effect      Row          COL1          COL2 

               INTERCEPT     1    0.01122891   -0.00031190 

               LATITUDE      2   -0.00031190    0.00001137 

 
The residual between study variance in this analysis turns out to be 0.004, which is 
dramatically smaller than the between study variance of 0.302 in the random effect 
model above without the covariate latitude in the model. So latitude explains 98.7% of 
the between trials variance in treatment effects differences. The regression coefficients 
for the intercept and for latitude are 0.371 (standard error = 0.106) and -0.033 
(standard error=0.003), respectively. The estimated correlation between these 
estimated regression coefficients is –0.873. 
Just for comparison we give the results of an ordinary weighted linear regression. The 
weights are equal to the inverse squared standard error of the log odds ratio, instead 
of the correct weights equal to the inverse squared standard error of the log odds ratio 
plus σ 2ˆ . The intercept was 0.395 (se = 0.124) and the slope -0.033 (se = 0.004). The 
results are only slightly different, which is explained by the very small residual 
between study variance. 
 
Regression on year 
Running the same model as above with only changing latitude into year, the residual 
between study variance becomes 0.209. So year of publication explains 30.8% of the 
between trials variance in treatment effects differences, much less than the variance 
explained by the covariate latitude. The regression coefficients for the intercept and 
for year are -2.800 (standard error = 1.031) and 0.030 (standard error = 0.015), 
respectively. The estimated correlation between these estimated regression 
coefficients is -0.989.  
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Again, just for comparison, we also give the results of the ordinary weighted linear 
regression. The intercept was –2.842 (se = 0.876) and the slope 0.033 (se = 0.012). Like 
in the previous example, the differences are relatively small. 
 
Regression on allocation 
Running the model with allocation as only (categorical) covariate (in the SAS 
commands, specify: class trial alloc;), gives a residual between study variance 
equal to 0.281. This means that only 7% of the between trial variance in the treatment 
effect differences is explained by the different forms of allocation. The treatment 
effects (log odds ratio) do not differ significantly between the trials with random, 
alternate and systematic allocation  
(p= 0.396). 
 
Regression on latitude and year 
When both covariates latitude and year are put into the model the residual between 
studies variance becomes only 0.002, corresponding with an explained variance of 
99.3%, only slightly more than by latitude alone. The regression coefficients for the 
intercept, latitude and year are respectively 0.494 (standard error = 0.529), -0.034 
(standard error = 0.004) and -0.001 (standard error = 0.006).  
We conclude that latitude gives the best explanation of the differences in vaccination 
effect between the trials, since it already explains 98% of the variation. Since the 
residual variance is so small, the regression equation in this example could have been 
obtained by ordinary weighted linear regression under the assumption of 
homogeneity.  
In the original medical report[4] on this meta-analysis the authors mentioned the 
strong relationship between treatment effect and latitude as well. They speculated 
that the biological explanation might be the presence of nontuberculous myobacteria 
in the population, which is associated with geographical latitude. 
 
Goodness-of-fit of the model obtained above can be checked as in the weighted least 
squares approach by individual standardisation of the residuals 

ϑ β σ− +2 2ˆ ˆ( ) /i i iX s and using standard goodness-of-fit checks. 

In interpreting the results of meta-regression analysis, it should be kept in mind that 
this is all completely observational. Clinical judgement is essential for correct 
understanding of what is going on. Baseline risk may be an important confounder 
and we will study its effect below.  
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5.2 Bivariate regression 

The basis of the model is the relation between the pair A, B,( , )i iω ω , for example (true 
log odds in vaccinated group, true log odds in control group), and the covariate 
vector iX . Since the covariate has influence on both components we have a truly 
multivariate regression problem in the classical sense, that can be modelled as 

A,

B,
~ N( , )i

i
i

BX
ω
ω
⎛ ⎞

Σ⎜ ⎟
⎝ ⎠

 

Here, the matrix B is a matrix of regression coefficients: the first row for the A-
component and the second row for the B-component. Taking into account the errors 
in the estimates we get the (approximate) model  

A,

B,

ˆ
~ N( , )ˆ

i
i i

i
BX C

ω
ω
⎛ ⎞

Σ +⎜ ⎟
⎝ ⎠

 

Fitting this model to the data can again be done by a self made program using the 
EM-algorithm or by programs as SAS Proc Mixed. The hardest part is the 
interpretation of the model. We will discuss the interpretation for the example. 
So far we have shown for our leading example the univariate fixed effects model, the 
univariate random effect without covariates, the bivariate random effects model 
without covariates and eventually the univariate random effects model with 
covariates. We end this paragraph with a bivariate random effects model with 
covariates. 
 
Example (continued): bivariate meta-analysis with covariates 

To carry out the bivariate regression analyses in SAS Proc Mixed we need again the 
data set BCGdata2.sd2 which was organised on treatment arm level. In this example 
we take latitude as covariate. The model can be fitted using the SAS code given 
below, where the variables exp, con and arm have the same meaning as in the bivariate 
analysis above without covariates. The variable latcon is for the not-vaccinated 
(control) groups equal to the latitude value of the trial and zero for the vaccinated 
(experimental) groups. The variable latexp, is defined analogously with vaccinated 
and non-vaccinated reversed.  
 
Proc mixed cl method=ml data=BCGdata2; #call procedure; 
class trial arm; #trial and treatment arm are 

defined as classification 
variables; 

model lno= con exp latcon latexp/noint 
s cl ddf=1000,1000,1000,1000; 

#model with indicator 
variables 'exp' and 'con' 
together with latitude as 
explanatory variable for log 
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odds in both treatment groups; 
random con exp / subject=trial 
type=fa0(2) s ; 

#control arm and experimental 
trial arm are specified as 
random effects; covariance 
matrix is unstructured, 
parameterized as factor 
analytic; 

repeated /group=arm; #each study-arm in each trial 
has its own within study-arm 
error variance; 

parms /parmsdata=covvars4 eqcons=4 to 
29; 

#in the data file covvars4 
three starting values are 
given for the between study 
covariance matrix, together 
with the 26 within study-arm 
variances. The latter are  
assumed to be known and kept 
fixed; 

estimate 'difference slopes' latexp 1 
latcon -1  
/cl df=1000;  

# estimate of the difference 
in slope between the 
vaccinated and not-vaccinated 
groups; 

run;  
 

Remark: In the program above we specified type=fa0(2)instead of type=un for Σ. If 
one chooses the latter, the covariance matrix is parameterized as 
α α
α α
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2

2 3
  

and unfortunately the program does not converge if the estimated correlation is (very 
near to) 1, as is the case here. If one chooses the former, the covariance matrix is 
parameterized as 

α α α
α α α α
⎡ ⎤
⎢ ⎥+⎣ ⎦

2
11 11 12

2 2
11 12 12 22

  

and the program converges even if the estimated correlation is 1, i.e. if α22=0.  

 
Running the program gives the following output: 
 
                          The MIXED Procedure 
(...)               Covariance Parameter Estimates (MLE) 

      Cov Parm  Subject  Group       Estimate  Alpha     Lower     Upper 

      FA(1,1)   TRIAL              1.08715174   0.05    0.7582    1.6896 

      FA(2,1)   TRIAL              1.10733154   0.05    0.6681    1.5466 

      FA(2,2)   TRIAL             -0.00000000      .         .         . 

 

(...) 
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                         Solution for Fixed Effects 
 

Effect   Estimate   Std Error     DF       t  Pr > |t|  Alpha   Lower    Upper 

CON     -4.11736845  0.30605608  1000  -13.45   0.0001  0.05   -4.7180  -3.5168 

EXP     -4.82570990  0.31287126  1000  -15.42   0.0001  0.05   -5.4397  -4.2118 

LATCON   0.07246261  0.02192060  1000    3.31   0.0010  0.05    0.0294   0.1155 

LATEXP   0.03913388  0.02239960  1000    1.75   0.0809  0.05   -0.0048   0.0831 

 

                         ESTIMATE Statement Results 
 

Parameter    Estimate    Std Error   DF      t  Pr > |t|  Alpha  Lower   Upper 

difference 

slopes      -0.03332874  0.00284902 1000 -11.70  0.0001   0.05  -0.0389 -0.0277 
 

In Figure 7 the relationship between latitude and the log odds of tuberculosis is 
presented for the vaccinated treatment arms A as well as for the non-vaccinated 
treatment arms B. For the not-vaccinated trial arms the regression line is log(odds)= 
-0.4117 + 0.072⋅ (latitude - 33) = -6.509 + 0.072⋅ latitude (standard errors of intercept 
and slope are 0.794 and 0.022, respectively). Notice that latitude was centralised at 
latitude=33 (see page 64). For the vaccinated trial arms the regression line is log(odds) 
= -0.483⋅ (latitude - 33) = -6.117 + 0.039⋅ latitude (standard errors of intercept and slope 
are 0.809 and 0.022, respectively). We see that latitude has a strong effect, especially 
on the log odds of the non-vaccinated study group. 
The between study covariance matrix Σ̂  is equal to the nearly singular matrix  
 

⎥
⎦

⎤
⎢
⎣

⎡
2262.12038.1
2038.11819.1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Log odds versus latitude for control group A and experimental group B  
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The estimated regression line of the treatment difference measure on latitude is: 
log odds ratioA vs B = 0.392 - 0.033⋅latitude, with standard errors 0.093 and 0.003 for 
intercept and slope, respectively. This regression line is almost identical to the one 
resulting from the univariate analysis in the previous example. The estimated residual 
between study variance is only 0.0003, meaning that latitude explains almost all 
heterogeneity in the treatment effects. 
The regression line of the difference measure on both latitude and baseline risk is: 
log odds ratioA vs B = 0.512 - 0.039⋅ latitude+ 0.019⋅ log oddsB. 
The standard errors can be calculated by the delta method. We see that the regression 
coefficient of the baseline log odds is quite small compared to the analysis without 
any covariates. 
The results of this bivariate regression and the results of the simple bivariate model 
without covariates of section 4 are summarised in Table 2. By explaining variation in 
treatment effects by latitude, hardly any residual variation is left. Although this is all 
observational, we come to the tentative conclusion that the effect of vaccination 
depends on latitude rather than on baseline risk. 

 
 
Table 2. Residual variance of treatment effect in different meta-regression models. 
 

Explanatory variables in the model Residual variance of treatment effect 

No covariates 0.324 

Baseline 0.149 

Latitude 0.0003 

Baseline + Latitude 0.0001 

 
 
 

6 Extensions: exact likelihoods, non-normal mixtures, 
multiple endpoints 
 
The approximate likelihood solutions may be suspected if the sample sizes per study 
are relative small. There are different approaches to repair this and to make the 
likelihoods less approximate. We will first discuss the bivariate analysis where things 
are relatively easy and then the analysis of difference measures. 
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6.1 More precise analysis of bivariate data  

Here, the outcome measures per study arm are direct Maximum Likelihood Estimates 
of the relevant parameter. The estimated standard error is derived from the second 
derivative of the log-likelihood evaluated at the ML-estimate. Our approach is an 
approximation for fitting a generalised linear mixed model (GLMM) by the maximum 
likelihood method. The latter is hard to carry out. A popular approximation is by 
means of the second order Laplace approximation or the equivalent PQL-method[43], 
that is based on an iterative scheme where the second derivative is evaluated at the 
posterior mode. This can easily be mimicked in the SAS procedure Proc Mixed by 
iteratively replacing the estimated standard error computed from the empirical Bayes 
estimate as yielded by the software. For the analysis of log odds’s as in the example, 
one should realise that the variance of log odds is derived from the second derivative 
of the log-likelihood evaluated at the ML-estimate of p, and is given by ))p1(np/(1 − . 
In the first iteration, p is estimated by the fraction of events in the study arm. In the 
next iteration p is replaced by the value derived from the empirical Bayes estimate for 
log odds. This is not very hard to do and easy to implement in a SAS macro that 
iteratively uses Proc Mixed (see the example below, the macro version is available 
from the authors). 
This will help for intermediate sample sizes and moderate random effect variances. 
There are however situations thinkable (small samples, large random effect variances) 
in which the second order approximations do not work[44] and one has to be very 
careful in computing and maximising the likelihood's. Fortunately, that is much more 
of a problem for random effects at the individual level than at the aggregated level we 
have here. 
 
Example (continued) 

After running the bivariate random effects model discussed in section 4, the empirical 
Bayes estimates can be saved by adding the statement:  
make 'Predicted' out=Pred;  
in the Proc Mixed command and adding a 'p' after the slash in the model statement. In 
this way the empirical Bayes estimates for log odds are stored as variable _PRED_ in 
the new SAS data-file Pred.sd2. The within-trial variances in the next iteration of the 
SAS procedure Proc Mixed are derived from these empirical Bayes estimates in the 
way we described above. The three starting values needed for the between trial 
variance matrix are stored as variable est in the SAS -file covvars5.sd2. 
So, after running the bivariate random effects model once and saving the empirical 
Bayes estimates for log odds, one can run the two data steps described below to 
compute the new estimates for the within-trial variances, use these within-trial 
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variances in the next bivariate mixed model, save the new empirical Bayes estimates 
and repeat the whole loop. This iterative process should be continued until the 
parameter estimates converge. 
 
# Data step to combine empirical Bayes estimates and original datafile 
from section 4 and to calculate the new within-trial variances; 
data Pred1; 
merge BCGdata2 Pred; 
pi=exp(_PRED_)/(1+exp(_PRED_)); 
est=1/(n*pi*(1-pi)); 
run; 
 
# Data step to create the total datafile that is needed in the Parms-
statement (between- and within-trial variances); 
data Pred2; 
set covvars5 Pred1; 
run; 
 
# Procedure step to run the bivariate random effects model with new 
within-trial variances, based on the empirical Bayes estimates. 
proc mixed cl method=ml data=BCGdata2 asycov; 
class trial arm; 
model lno= exp con / p noint s cl covb ddf=1000, 1000; 
random exp con/ subject=trial type=un s; 
repeated /group=arm subject=arm; 
estimate 'difference' exp 1 con -1 / cl df=1000; 
parms / parmsdata=Pred2 eqcons=4 to 29; 
run; 

 
Running the data steps and the mixed model iteratively until convergence is reached,  
gives the following output: 
 
                           The MIXED Procedure 
(...) 

                    Covariance Parameter Estimates (MLE) 

       Cov Parm  Subject  Group     Estimate  Alpha     Lower     Upper 

       UN(1,1)   TRIAL            1.43655989   0.05    0.7392    3.9084 

       UN(2,1)   TRIAL            1.76956270   0.05    0.3395    3.1996 

       UN(2,2)   TRIAL            2.43849037   0.05    1.2663    6.4991 

 

                          Solution for Fixed Effects 

 

Effect   Estimate    Std Error   DF      t    Pr > |t|  Alpha   Lower    Upper 

 

EXP     -4.84981269  0.34001654  1000  -14.26  0.0001   0.05   -5.5170  -4.1826 

CON     -4.10942999  0.43736103  1000   -9.40  0.0001   0.05   -4.9677  -3.2512 
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                    Covariance Matrix for Fixed Effects 

 

                  Effect   Row          COL1          COL2 

                  EXP        1    0.11561125    0.13690215 

                  CON        2    0.13690215    0.19128467 

 

                          ESTIMATE Statement Results 

 

Parameter   Estimate    Std Error   DF     t  Pr > |t|  Alpha   Lower    Upper 

difference -0.74038270  0.18191102  1000 -4.07  0.0001  0.05   -1.0974  -0.3834 

 
The mean outcome measures (log odds) for arms A and B are, respectively, -4.850 
(standard error = 0.340) and -4.109 (standard error = 0.437). The between trial variance 
of the log odds in the vaccinated treatment arm A is AA

ˆ 1.437Σ =  and BB
ˆ 2.438Σ =  in 

the not-vaccinated arm B. The estimate of the between trial covariance is equal to 

AB
ˆ 1.770Σ = . The estimated mean vaccination effect in terms of the log odds ratio is 

-0.740 (standard error = 0.182). In this example, convergence was already reached after 
one or two iterations. The final estimates are very similar to the original bivariate 
random effects analysis we have discussed in section 4, where the mean outcome 
measures Aω̂  and Bω̂  were respectively -4.834 (s.e.=0.340) and -4.096 (s.e.= 0.434) . Of 
course, when the number of patients in the trials were smaller, the benefit and 
necessity of this method would be more substantial.  
Another possibility if the approximate likelihood solutions are suspected is to use the 
exact likelihood, based on the binomial distribution of the number of events per 
treatment arm, and to estimate the parameters following a Bayesian approach with 
vague priors in combination with Markov Chain Monte Carlo (MCMC) methods[45]. 
Arends et al.[10] give examples of this approach. In their examples the difference with 
the approximate likelihood estimates turned out to be very small.  

 
6.2 More precise analysis of difference measures 

The analysis of difference measures, i.e. one summary measure per trial characterising 
the difference in efficacy between treatments, is a bit more complicated because the 
baseline value is considered to be a nuisance parameter. Having this nuisance 
parameter can be avoided and a lot of 'exactness' in the analysis can be gained by 
suitable conditioning on ancillary statistics. In the case of binary outcomes one can 
condition on the marginals of the 2×2-tables and end up with the non-central 
hypergeometric distribution that only depends on the log odds ratio. Details are given 
in Van Houwelingen et al.[2]. 
However, the hypergeometric distribution is far from easy to handle and it does not 
seem very attractive to try to incorporate covariates in such an analysis as well. The 
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bivariate analysis is much easier to carry out at the price of the assumption that the 
baseline parameter follows a normal distribution. However, that assumption can be 
relaxed as well and brings us to the next extension: the non-normal mixture. 
 
6.3 Non-Normal Mixtures 

The assumption of a normal distribution for the random effects might not be realistic. 
Technically speaking it is not very hard to replace the normal mixture by a fully non-
parametric mixture. As is shown by Laird[46] the Nonparametric Maximum 
Likelihood Estimator of the mixing distribution is always a discrete mixture and can 
easily be estimated by means of the EM algorithm[47]. An alternative is to use the 
software C.A.MAN of Böhning et al.[48]. However, just fitting a completely 
nonparametric mixture is no good way of checking the plausibility of the normal 
mixture. The nonparametric estimates are always very discrete even if the true 
mixture is normal. A better way is to see whether a mixture of two normals (with the 
same variance) fits better than a single normal. This model can describe a very broad 
class of distributions: unimodal as well as bimodal, symmetric as well as very skewed 
[19]. Another way is to estimate the skewness of the mixture somehow and mistrust 
the normality if the skewness is too big. It should be realised however, that estimating 
mixtures is a kind of ill-posed problem and reliable estimates are hard to obtain[49]. 
To give an impression we fitted a nonparametric mixture with the homemade 
program based on the EM algorithm described in Van Houwelingen et al.[2] to the log 
odds ratio of our example using approximate likelihoods. 
Result: atom probability 
 -1.4577  0.3552 
 -0.9678 0.1505 
 -0.3296 0.2980 
 0.0023 0.1963 
corresponding mean:  -0.761    
corresponding variance:  0.349 
The first two moments agree quite well with the normal mixture. It is very hard to tell 
whether this 4-point mixture gives any evidence against normality of the mixture. 
The bivariate normal mixture of section 4 is even harder to check. Non-parametric 
mixtures are hard to fit in two dimensions. An interesting question is whether the 
estimated regression slopes are robust against non-normality. Arends et al.[10] 
modelled the baseline distribution with a mixture of two normal distributions and 
found in all their examples a negligible difference with modelling the baseline 
parameter with one normal distribution, indicating that the method is robust 
indeed[10]. However, this was only based on three examples and we do not exclude 
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the possibility that in some other data examples the regression slopes might be more 
different.  
 
6.4 Multiple outcomes 

In a recent paper Berkey et al.[50] discuss a meta-analysis with multiple outcomes. A 
similar model is used in the context of meta-analysis of surrogate markers by Daniels 
and Hughes[51] and discussed by Gail et al.[52]. In the simplest case of treatment 
difference measures for several outcomes, the situation is very similar to the bivariate 
analysis of sections 4 and 5. The model  

A,

B,
~ N( , )i

i
i

BX
ω
ω
⎛ ⎞

Σ⎜ ⎟
⎝ ⎠

 could be used, where Aω  stands for the (difference) measure on 

outcome A and Bω  for the measure on outcome B. It could easily be generalised to 

more measures C, D, etc. The main difference is that the estimated effects are now 
obtained in the same sample and, therefore, will be correlated. An estimate of this 
correlation is needed to perform the analysis. The only thing that changes in 

comparison with section 5 is that the matrix iC  in A,

B,

ˆ
~ N( , )ˆ

i
i i

i

BX C
ω
ω
⎛ ⎞

Σ +⎜ ⎟
⎝ ⎠

 is not 

diagonal anymore but allows within-trial covariation. 
This approach can easily be adapted to the situation where there more than two 
outcome variables or more treatment groups. 

 
Example Berkey et al.[50] 

Berkey et al.[50] illustrate several fixed and random (multivariate) meta-regression 
models using a meta-analysis from Antczak-Bouckoms et al.[53]. This meta-analysis 
concerns five randomised controlled trials, where a surgical procedure is compared 
with a non-surgical procedure. Per patient two outcomes are assessed: (pre- and post-
treatment change in) probing depth (PD) and (pre- and post-treatment change in) 
attachment level (AL). Since the efficacy of the surgical procedure may improve over 
time, a potential factor that may influence the trial results is the year of 
publication[50]. The two treatment effect measures are defined as: 
ωPD = mean PD under surgical treatment - mean PD under non-surgical treatment  
ωAL = mean AL under surgical treatment - mean AL under non-surgical treatment 
The data are given in Table 3. 
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Table 3. Data from the meta-analysis of Antczak-Bouckoms et al.[53] 
 

 
trial 

publication 
year 

     

1 1983 0.47 -0.32 0.0075 0.0077 0.0030 
2 1982 0.20 -0.60 0.0057 0.0008 0.0009 
3 1979 0.40 -0.12 0.0021 0.0014 0.0007 
4 1987 0.26 -0.31 0.0029 0.0015 0.0009 
5 1988 0.56 -0.39 0.0148 0.0304 0.0072 

 
As an example we fit the model with year of publication as explanatory variable. 
Berkey et al.[50] fitted this model using a self written program in SAS Proc IML. We 
show how it can be done with SAS Proc Mixed. The data setup is the same as in the 
earlier discussed bivariate models with two data rows per trial, one for each outcome 
measure. Also the Proc Mixed program is completely analogous. The only difference 
is that in the data set containing the elements of the Ci’s now the covariance between 
the two outcomes per trial must be specified as well. The SAS code is: 
 
proc mixed cl method=ml 
data=berkey; 

# call procedure; 

class trial type; # trial and outcome type (PD or AL) 
are classification variables; 

model outcome=  pd al pdyear 
alyear/noint s cl; 
 

# model with indicator variables 'pd' 
and 'al' together with publication 
year as explanatory variable; 

random pd al / subject=trial 
type=un s ; 

# specification of among-trial 
covariance matrix for both outcomes; 

repeated type /subject=trial 
group=trial type=un; 

# specification of (non-diagonal) 
within-trial covariance matrix; 

parms /parmsdata=covvars6 eqcons=4 
to 18; 

# covvars6 contains: 3 starting 
values for the two between trial 
variances and covariance, 10 within 
trial variances (5 per outcome 
measure) and 5 covariances. The last 
15 parameters are assumed to be known 
and must be kept fixed. 

run;  
 

Part of the SAS Proc Mixed output is given on the next page. 
  

PD,ˆ iω AL,ˆ iω PD,ˆvar( )iω AL,ˆvar( )iω PD, AL,ˆ ˆcovar( , )i iω ω
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                       The MIXED Procedure 
(...) 
               Covariance Parameter Estimates (MLE) 
 
      Cov Parm  Subject  Group      Estimate    Alpha    Lower     Upper 
 
      UN(1,1)   TRIAL               0.00804054   0.05    0.0018    2.0771 
      UN(2,1)   TRIAL               0.00934132   0.05   -0.0113    0.0300 
      UN(2,2)   TRIAL               0.02501344   0.05    0.0092    0.1857 
 
(...)      
                 Solution for Fixed Effects 
 
Effect   Estimate    Std Error    DF   t   Pr > |t| Alpha  Lower   Upper 
PD       0.34867848  0.05229098    3  6.67  0.0069  0.05   0.1823  0.5151 
AL      -0.34379097  0.07912671    3 -4.34  0.0225  0.05  -0.5956 -0.0920 
PDYEAR   0.00097466  0.01543690    0  0.06       .  0.05        .       . 
ALYEAR  -0.01082781  0.02432860    0 -0.45       .  0.05        .       . 

 
The estimated model is: 
ωPD =  0.34887 + 0.00097*(year-1984) 
ωAL = -0.34595  - 0.01082*(year-1984) 
The standard errors of the slopes are 0.0154 and 0.0243 for PD and AL, respectively. 
The estimated among-trial covariance matrix is: 

⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠

0.008 0.009ˆ
0.009 0.025

 

The results are identical to those of Berkey et al.[50] with the random-effects multiple 
outcomes that were estimated with the method called by Berkey the Multivariate 
Maximum Likelihood (MML) method.  

 
6.5 Other outcome measures 

Our presentation concentrates on dichotomous outcomes. Much of it carries over to 
other effect measures that are measured on a different scale. For instance, our 
methods apply if the outcome variable is continuous and an estimate of the average 
outcome and its standard error is available in both treatment arms. However, in some 
cases only a relative effect is available, such as the standardized effect measure 
(difference in outcome/ standard deviation of the measurements in the control group) 
which is popular in psychological studies. In that case only the one-dimensional 
analysis applies. A special case is survival analysis. The log hazard ratio in the Cox 
model cannot be written as the difference of two effect measures. However, some 
measure of baseline risk, e.g. one-year survival rate in the control arm, might be 
defined and the bivariate outcome analysis described above can be used to explore 
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the relation between treatment effect and baseline risk. A complicating factor is that 
the two measures are not independent any more. However, if an estimate of the 
correlation between the two measures is available, the method can be applied.  
 
6.6 Other software 

Although we illustrated all our examples with the SAS procedure Proc Mixed, most if 
not all analyses could be carried out by other (general) statistical packages as well. A 
nice review of available software for meta-analysis is recently written by Sutton[54]. 
Any package like SPSS, SAS, S-Plus and Stata that can perform a weighted linear 
regression and suffices to perform a standard fixed-effect meta-analysis or a fixed 
effects meta-regression. 
For fitting random effects models with approximate likelihood, a program for the 
General Linear Mixed Model (GLMM) is needed, which is available in many 
statistical packages. However not all GLMM programs are appropriate. One essential 
requirement of the program is that one can fix the within trial variance in the model at 
arbitrary values per trial.  
In S-Plus the function lme is used to fit linear mixed effects models and all the 
analyses carried out with Proc Mixed of SAS in our examples can also be carried out 
with lme from S-Plus. The parms-statement used by SAS to fix the within trial 
variances corresponds with 'varFixed' in S-plus[55].  
Several Stata macros have been written which implement some of the discussed 
methods[56, 57]. The Stata program meta of Sharp and Sterne[56] performs a standard 
fixed and random effects meta-analysis without covariates. The Stata command 
metareg of Sharp[57] extends this to univariate meta-regression. We are not aware of 
Stata programs that are capable to fit  bivariate meta-regression models, but of course 
one can do an univariate meta-regression on the log odds ratios  instead of  a bivariate 
meta-regression on the log odds of the two treatment arms. However, such an 
analysis does not give any information about the relationship between the (true) log 
odds of the two arms. 
Mlwin or MLn appears to be one of the most flexible method to fit mixed-effect 
regression models[54]. Although we do not have experience with this package, we 
guess that most if not all of the discussed models can be fitted in it.  
Finally, in the free available Bayesian analysis software package BUGS, one can also 
execute all approximate likelihood analyses that were presented in this chapter. If 
vague prior distributions are used, the results are very similar. With BUGS it is also 
possible to fit the models using the exact likelihood, based on the binomial 
distribution of the number of events in a treatment arm. The reader is referred to 
Arends et al.[10] for examples and the needed BUGS syntax. 
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7 Bayesian statistics in meta-analysis 
 
As we mentioned in section 4, putting uninformative Bayesian priors on all individual 
nuisance parameters as done in Thompson et al.[8], Daniels and Hughes[51], Smith, 
Spiegelhalter and Thomas[58] and Sharp and Thompson[30] can lead to inconsistent 
results as the number of nuisance parameters grows with the number of studies[36]. 
This observation does not imply that we oppose Bayesian methods. First of all, there 
is a lot of Bayesian flavour to random effects meta-analysis. The mixing distribution 
can serve as a prior distribution in the analysis of the results of a new trial. However, 
the prior is estimated from the data and not obtained by educated subjective guesses, 
that is why random effects meta-analysis can be seen as an example of the empirical 
Bayes approach. For each study, the posterior distribution given the observed value 
can be used to obtain empirical Bayes corrections.  
In this chapter we describe estimating the mixing distribution by maximum 
likelihood. The maximum likelihood method has two drawbacks. First, in complex 
problems maximising the likelihood might become far from easy and quite time-
consuming. Second, the construction of confidence intervals with the correct coverage 
probabilities can become problematic. We proposed the profile likelihood approach in 
the simple setting of section 3. For more complex problems, the profile likelihood gets 
very hard to implement. 
When the maximum likelihood approach gets out of control (very long computing 
times, non-convergence of the maximisation procedure), it can be very profitable to 
switch to a Bayesian approach with vague priors on the parameters of the model in 
combination with Markov Chain Monte Carlo (MCMC) methods[45] that circumvent 
integration by replacing it by simulation. If one wants to use the MCMC technique in 
this context, the prior should be set on all parameters of the hierarchical model. Such 
a model could be described as a Bayesian hierarchical or Bayesian empirical Bayes 
model. For examples of this approach, see Arends et al.[10]. The difference with the 
approach of Thompson et al. [8, 30] is then that they assume that the true baseline log 
odds are a random sample of a fully specified flat normal distribution (e.g. N(0,10)), 
while we assume that the true log odds are sampled from a N(θ, σ) distribution with θ 
and σ parameters to be estimated, putting vague priors on them. So Thompson et al.'s 
model is a special case of our model. We prefer the parameters of the baseline risks 
distribution to be determined by the data. 
For the examples discussed in this chapter, maximum likelihood was quite 
convenient in estimating the parameters of the model and getting a rough impression 
of their precision. It sufficed for the global analysis described here. If the model is 
used to predict outcomes of new studies, as in the surrogate marker setting of Daniels 
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and Hughes[51], nominal coverage of the prediction intervals becomes important and 
approximate methods can be misleading. MCMC can be very convenient, because the 
prediction problem can easily be embedded in the MCMC computations. An 
alternative is bootstrapping as described in Gail et al.[52]. 
 
 

8 Conclusions 
 
We have shown that the general linear mixed model using an approximate likelihood 
approach is a very useful and convenient framework to model meta-analysis data. It 
can be used for the simple meta-analysis up to complicated meta-analyses involving 
multivariate treatment effect measures and explanatory variables. Extension to 
multiple outcome variables and multiple treatment arms is very straightforward. 
Software in widely available statistical packages can be used. 
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Abstract 
 
In meta-analysis of clinical trials published in the medical literature it is customary to 
restrict oneself to standard univariate fixed or random effects models. If multiple 
endpoints are present, each endpoint is analysed separately. A few articles are written 
in the statistical literature on multivariate methods for multiple outcome measures. 
However, these methods were not easy to apply in practice, because self-written 
programs had to be used, and the examples were only two-dimensional. In this 
chapter we consider a meta-analysis on the effect on stroke-free survival of surgery 
compared to conservative treatment in patients with increased risk of stroke. Three 
summary measures per trial are available: short-term post-operative 
morbidity/mortality in the surgical group, long-term event rate in the surgical group 
and the event rate in the conservative group. We analyse the three outcomes jointly 
with a general linear MIXED model, compare the results with the standard univariate 
approaches and discuss the many advantages of multivariate modelling. It turns out 
that the general linear MIXED model is a very convenient framework for multivariate 
meta-analysis. All analyses could be carried out in standard general linear MIXED 
model software.  
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1 Introduction 
 
Meta-analysis of clinical trials aims to combine estimates of treatment effect across 
related studies. Usually no individual patient data are available and use is made of 
summary data extracted from published literature and reports. The data per trial are 
summarised by one or more outcome measure estimates along with their standard 
errors. In practice mostly the data are reduced to one outcome measure per study, for 
instance the treatment effect estimated by means of an odds ratio. The data are then 
analysed by standard methods, using either a (univariate) fixed effect or, as preferred 
by most statisticians, a (univariate) random effects model[1]. If the summary data are 
multi-dimensional, then the data analysis is usually restricted to a number of separate 
univariate analyses. Raudenbush et al.[2] showed how to analyse two or more 
outcome measures jointly in a fixed effects multivariate linear model. Dear[3] used 
essentially the same method for combining survival curves in a meta-analysis, where 
each curve was characterised by estimated survival probabilities at two or more 
follow-up times. Van Houwelingen et al.[4] were the first to consider multivariate 
random effects meta-analysis. They introduced a bivariate linear random effects 
model for the joint analysis of one estimated outcome measure per treatment group. 
Essentially the same model was used by McIntosh[5] and Arends et al.[6] in the 
context of investigating the underlying risk as a source of heterogeneity in treatment 
effects across trials. Berkey et al.[7] introduced the general linear MIXED model as a 
general random effects regression method for meta-analysis of multiple outcomes. In 
a recent tutorial on advanced methods in meta-analysis[8], we adopted the general 
linear MIXED model as a general framework for multivariate meta-analysis and meta-
regression. In fact this approach can be considered as a direct generalisation of the 
standard (univariate) DerSimonian-Laird[1] model to higher dimensions. To apply 
the model the estimated vector of outcome measures along with the corresponding 
estimated covariance matrix per trial is needed. The parameters are estimated with 
(restricted) maximum likelihood, acting as if the within trial covariance matrices are 
known. In this chapter we follow this approach in a meta-analysis about the effect on 
stroke-free survival of surgery versus conservative treatment in patients with high 
risk for stroke. Different from van Houwelingen et al.[8] and Berkey et al.[7], who had 
two outcome measures, we have three outcome measures: the event rate in the 
conservative treatment group, and the short-term and long-term event rate in the 
surgery group. The complication is that, because of the peri-operative mortality, the 
short-term stroke-free survival in the surgery group is lower than in the conservative 
group, while stroke-free survival on the long-term is in favour of the surgical 
treatment because of a lower event rate once the operation is survived. We use a 
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trivariate random effects model for the analysis of the data, and compare the results 
with univariate analyses. We show that the multivariate analysis is potentially much 
more informative than univariate analyses and can be carried out relatively easy in 
practice in standard software. Almost all models were fitted using Proc MIXED of 
SAS[9], while a few exact analyses were done with Proc NLMIXED. In this chapter we 
focus on the application. More theoretical details and background can be found in the 
recent tutorial on advanced methods in meta-analysis[8].  
In section 2 we describe the data. In section 3 the models are introduced and the 
advantages of multivariate modelling are discussed. In section 4 we give the results, 
and the chapter ends with a discussion in section 5. 
 
 

2 Data 
 
In this chapter we analyse data from a meta-analysis of Vokó et al.[10] about the effect 
of carotid endarterectomy on all-cause mortality and stroke-free survival based on the 
aggregated data from 19 randomised trials. The vascular surgical procedure called 
carotid endarterectomy aims to remove the atherosclerotic plaque of the internal 
carotid artery and to restore the lumen of the vessel. To prevent cerebral infarction or 
death at people with increased levels of stenosis, one frequently performs a carotid 
endarterectomy[11, 12]. Although the operation mortality and morbidity is not 
negligible, the hope is that patients on average are better off because of lower event 
rates once the operation is survived. Several clinical trials comparing carotid 
endarterectomy plus best medical care with medical treatment alone have been done 
or are under way. Part of the studies that are published by now, are combined in the 
meta-analysis of Vokó et al.[10]. 
All selected trials were randomised clinical trials in which the indication of carotid 
endarterectomy was stroke prevention rather than treatment of acute stroke and in 
which the methodology was judged appropriate (no excessive loss to follow-up, 
symmetrical outcome assessment, analysed by treatment assignment from the 
moment of randomisation onwards). For further details about the selection of the 
trials we refer to Vokó et al.[10]. Together the 19 randomised clinical trials comprise in 
total 8991 patients being at increased risk of stroke, 4780 allocated to surgery and 4211 
to conservative treatment. In this chapter we only look at stroke-free survival, so the 
event of interest is defined as stroke or death. 
The basic data available for the 19 trials (i=1, ..., 19) were: 
1. Number of patients in the surgical group (ki) and number of events in the first 

month after operation (xi) .  
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2. Number of events (yi) and person years of follow-up (ni) in the surgical group 
from 1 month post operation onwards. 

3. Number of events (zi) and person years of follow-up (mi) in the conservative 
treatment group .  

 
An implicit assumption was that the hazard rate is constant in the surgical group after 
the first month, and in the conservative group during the whole follow-up. This 
assumption could be somewhat relaxed, by splitting the time period in more periods 
and assuming a piecewise constant hazard rate. Of course, this results in more 
parameters to be estimated, i.e. one for each time interval, but the methods of this 
chapter remain applicable. In our case there were no data on events and person years 
on sub time intervals available.  
The true event probability in the first month (called 'post-surgical risk' in the sequel) 
in the surgical group of trial i is denoted by πi, estimated by the observed event 
probability π =ˆ /i i ix k . The true event rate after one month (called 'surgical long-term 
event rate' in the sequel) in the surgical group is denoted by  λi. It is estimated by 
λ =ˆ /i i iy n . The true event rate (again called 'conservative  long-term event rate' in the 
sequel) in the conservative treatment group is denoted by μi, estimated by μ =ˆ /i i iz m . 
The data are given in Table 1. 
Main questions were to compare the event-free survival of the two treatments 
depending on the length of the follow-up period and to investigate how the difference 
is modified by the level of underlying risk in the population. Secondary questions 
concerned the mean post-operative risk and the heterogeneity in it between trials, the 
difference between treatments in long-term event rate, and again how these are 
affected by the underlying risk. 
 
 

3 Methods 
 
3.1 Parameter transformations 

As usual we transform the parameters such that the transformed parameters range 
from minus to plus infinity. This is more natural when random effects are employed. 
Moreover, the transformed parameters have better statistical properties if Wald type 
confidence intervals and tests are used. 
The post-surgical risk parameter πi is transformed to the log odds scale: ωi = ln(πi/(1-
πi)). The estimated log odds is denoted by ω̂i . Its variance is estimated by 

ω = +
−

1 1ˆvar( )i
i i ix k x

 (1) 
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Table 1. Data of the 19 clinical trials  
 
Trial Surgical group 

 First month After one month 

Conservative group 

 Events 
 

xi 

Patients 
 

ki 

Risk 
 

π̂ i  

Events 
 

yi 

Person 
years 

ni 

Event 
rate 

λ̂i  

Events 
 

zi 

Person 
years 

mi 

Event 
rate  

μ̂i  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

19 
7 
5 
5 
3 

14 
18 
22 
22 
21 
12 

5 
45 
28 
19 

7 
0 
9 

22 

169 
20 
91 
78 

162 
200  
190  
350 
232 
231 
251 
113 
678 
430 
328 
206 
15 

211 
825 

.112 

.350 

.055 

.064 

.019 

.070 

.095 

.063 

.095 

.091 

.048 

.044 

.066 

.066 

.058 

.034 

.033 

.043 

.027 

26
5
5

23
57
64
47

104
60
68
86
38

163
92
28
49

3
41

106 

564.56
28.55
79.01

446.71
920.04

1141.92
1103.46
2005.75
1322.38
1316.46
1446.63

650.83
3065.42
1974.13

526.23
529.50
41.37

513.16
2004.36

.046 

.175 

.063 

.051 

.062 

.056 

.043 

.052 

.045 

.052 

.059 

.058 

.053 

.047 

.053 

.093 

.073 

.080 

.053 

38
7
9

16
39
46
32
86
48
69
71
35

209
156
80
57

1
59

146 

507.06 
50.60 
96.33 

366.17 
686.63 
829.85 
720.13 

1403.83 
790.53 
985.82 
900.71 
348.37 

3120.17 
1889.95 

489.87 
526.50 
44.33 

597.87 
2076.45 

.075 

.138 

.093 

.044 

.057 

.055 

.044 

.061 

.061 

.070 

.079 

.100 

.067 

.083 

.163 

.108 

.023 

.099 
070 

 
 
(One trial, number 17, had zero events. As is usually done we added ½ , so x17 = 0.5.) 
The long term event rates for the surgical and conservative treatment, respectively, 
are logarithmically transformed: 

βi = ln(λi), estimated by β λ=ˆ ˆln( )i i with estimated variance β =ˆvar( ) 1/i iy  (2) 

αi = ln(μi), estimated by α μ=ˆ ˆln( )i i with estimated variance α =ˆvar( ) 1/i iz  (3) 

The variances follow under the assumption of an exponential survival time 
distribution or constant hazard rate. The estimated transformed outcome measures 
are given in Table 2. 
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Table 2. Transformed data of the 19 trials 
 

Surgical group Trial 

First month After one month 

Conservative group 

 Log odds 
post surgical 

risk  

ω̂i  

 
 
 

ω̂var( )i  

log long-term
event rate 

 

β̂i  

 
 
 

β̂var( )i  

log long-term 
event rate 

 

α̂ i  

 
 
 

α̂var( )i  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

-2.066 
-0.619 
-2.845 
-2.681 
-3.970 
-2.587 
-2.257 
-2.702 
-2.256 
-2.303 
-2.992 
-3.073 
-2.644 
-2.664 
-2.789 
-3.347 
-3.367 
-3.111 
-3.597 

0.059 
 0.220 
 0.212 
 0.214 
 0.340 
 0.077 
0.061 
0.490 
0.050 
0.052 
0.088 
0.209 
0.024 
0.038 
0.056 
0.148 
2.069 
0.116 
0.047 

 -3.078 
-1.742 
-2.760 
-2.966 
-2.781 
-2.882 
-3.156 
-2.959 
-3.093 
-2.963 
-2.823 
-2.841 
-2.934 
-3.066 
-2.934 
-2.380 
-2.624 
-2.527 
-2.940 

0.038 
0.200 
0.200 
0.043 
0.018 
0.016 
0.021 
0.010 
0.017 
0.015 
0.012 
0.026 
0.006 
0.011 
0.036 
0.020 
0.333 
0.024 
0.009 

-2.591 
-1.978 
-2.371 
-3.130 
-2.868 
-2.893 
-3.114 
-2.793 
-2.802 
-2.659 
-2.541 
-2.298 
-2.703 
-2.494 
-1.812 
-2.223 
-3.792 
-2.316 
-2.655 

0.026 
0.143 
0.111 
0.063 
0.026 
0.022 
0.031 
0.012 
0.021 
0.014 
0.014 
0.029 
0.005 
0.006 
0.013 
0.018 
1.000 
0.017 
0.007 

 
 
3.2 Univariate analyses 

 
Surgical risk 

To describe the post surgical risk among studies we adopt the standard (univariate) 
random effects model of DerSimonian and Laird[1].  

ˆ ˆN( ,var( ))i i iω ω ω≅  (4) 
2N( , )i ωω ω σ≅  

We will refer to the two submodels as the measurement error model and the 
structural model, respectively. Here ωi is the true logit(post-surgical risk) for trial i. 
The ωi’s may vary over trials, and are assumed to follow a normal distribution with 
mean ω and standard deviation σω, the latter characterising the heterogeneity among 
trials. The ωi’s are not observed, but estimated byω̂i , which are assumed to have a 
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normal distribution with mean ωi and variance given by (1). The normality 
assumption forω̂i is usually justified by large enough sample sizes. In fact, it is only 
assumed that the likelihood of ω̂i is well approximated by a normal distribution 
likelihood, which is a somewhat weaker assumption. The normality assumption for 
the true ωi’s, although standard, is more crucial, but for a larger number of trials the 
inference on ω and σω  is robust against misspecification of this distribution[13, 14]. 
The parameters ω and ωσ

2  are estimated by standard maximum likelihood or 
restricted maximum likelihood methods[14], doing as if the study specific variances 
are known.  
The model can be fitted using any standard linear MIXED model program provided 
that it is possible to fix the residual variances at user specified values. We used the 
procedure Proc MIXED of the SAS package[9]. 
In the recent advanced meta-analysis tutorial[8] exact approaches were discussed that 
can be fitted in very special and relatively simple cases. Where feasible we will do 
that, in order to compare the results with the approximate approach. When in model 
(4) the approximate measurement error model is replaced by the exact one we get: 

exp( )Bin( , )
1 exp( )

i
i i

i

x k ω
ω

≅
+

 (5) 

2N( , )i ωω ω σ≅  

This is a logistic-normal random effects model which could be fitted for instance with 
EGRET[15] or MIXOR[16, 17]. We fitted the model using Proc NLMIXED of  SAS[9]. 
(Since xi is allowed to be zero in this model, we changed x17=0.5 back to x17=0.) 
 
Long term risks 

To compare the long term risks between the treatments we look at the difference δi = 
αi -βi and assume again the standard random effects model[1]: 

2

ˆ ˆ ˆ ˆˆN( ,var( )) with var( ) var( ) var( )
N( , )

i i i i i i

i δ

δ δ δ δ α β

δ δ σ

≅ = +

≅
 (6) 

The estimated variances are computed with formula (2) and (3). The parameters δ and 

δσ
2  are estimated by maximum likelihood, assuming the study specific variances to be 

known. 
In this case it is also possible to fit the exact measurement error model. Exploiting the 
fact that the conditional distribution of zi given zi+yi is binomial with parameters zi+yi 
and  
μimi /( μimi + λini), respectively, the model can be written as: 

exp(log( / ) )Bin( , )
1 exp(log( / ) )

i i i
i i i

i i i

m nz z y
m n

δ
δ

+
≅ +

+ +
  (7) 
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2N( , )i δδ δ σ≅ ,  

This is a logistic-normal random effects model with log( / )i im n as offset variable. 
Again we fitted this model with Proc NLMIXED. 
 
Cumulative survival ratio 

To compare event free survival probabilities between the treatments over a fixed 
follow-up interval (0, t) we look at the ratio of the cumulative t-year survival 
probabilities: 

(1 )exp( ' )CSR ( )
exp( )

i i
i

i

tt
t

π λ
μ

− −
=

−
    

where t’ = t-1/12 and i the number of the trial. The choice of t is arbitrary, but in the 
original meta-analysis of Vokó et al.[10] focus was on t = 3 years since most of the 
trials had a mean follow-up duration of about 3 years.  
For the analysis it is natural to work with the logarithmically transformed parameter: 

ρ ω β α= − + − +( ) log(1 exp( )) 'exp( ) exp( )i i i it t t   

The ρi’s are estimated by plugging in the estimates of ωi, αi, and βi, while the variances 
are estimated using the delta-method by:  

ρ π ω λ β μ α= + +2 2 2 2 2ˆ ˆˆ ˆ ˆˆ ˆvar( ) var( ) ' var( ) var( )i i i i i i it t  (8) 

Again we adopt the standard random effects model for the log(cumulative t-years 
survival ratio): 

2

ˆ ˆ( ) N( ( ),var( ( )))
( ) N( ( ), ( ))

i i i

i

t t t
t t tρ

ρ ρ ρ

ρ ρ σ

≅

≅
 (9) 

For fixed value of t, the parameters ρ(t) and σρ2(t) are again estimated by maximum 
likelihood, assuming the study specific variances (8) to be known. 
 
3.3 Multivariate analyses 

In this subsection we introduce a multivariate model in which all three outcome 
measures are analysed simultaneously. The model is a direct generalisation of the 
above univariate random effects models. Again we work with the transformed 
parameters. Given the true trial specific outcome measures we assume that the 
estimates follow a multivariate normal distribution.  

ˆ ˆvar( ) 0 0
ˆ ˆN  , 0 var( ) 0
ˆ ˆ0 0 var( )

i ii

i i i

i i i

ω ωω
β β β
α α α

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟≅ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (10.1) 
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In general the covariances might be non-zero, but in our application the correlations 
are zero because the likelihood factorises in three parts each involving only one 
parameter.  
For the true outcome measures we assume a multivariate distribution as well. 

N  ,
i

i

i

ωω ωβ ωα

ωβ ββ αβ

ωα αβ αα

ω ω σ σ σ
β β σ σ σ
α α σ σ σ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟≅ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (10.2) 

Marginally this model assumes just a standard DerSimonian-Laird model for each 
outcome measure. The parameters can be estimated by standard likelihood, doing as 
if the variances of the trial specific outcome measures are known. We again used SAS 
Proc MIXED to fit the model. 
The multivariate modelling has several advantages. First, instead of doing a number 
of univariate analyses each tailored to one specific question, the multivariate 
approach gives a complete and concise description of all data at one stroke. Once the 
model is fitted, it immediately gives the estimated mean post-surgical risk, the long-
term risks under both treatments and the between trial variances of these parameters. 
Inference on derived parameters can readily be carried out. For instance, the estimate 
of the difference in log(long-term risk) can easily be computed, and the associated P-
value and confidence interval follow directly from the covariance matrix of the 
estimates. In the univariate approach, a separate analysis had to be done for 
estimating the log(cumulative survival ratio) over (0,t) for each value of t that was of 
interest. The multivariate approach yields an estimate and confidence interval for the 
typical log(cumulative survival ratio) over (0,t) as a relatively simple function of t. 
Second, the multivariate approach yields the estimated correlations between the 
outcome measures. This can lead to more insight. For instance it might be interesting 
to know whether high post-surgical risks are associated with higher or rather with 
lower long-term risks, either under the conservative or under the surgical treatment. 
One would probably want to adjust the latter association for the long term risk under 
the conservative treatment, then one looks at the partial correlation between ωi and αi 
given βi. The third advantage that we mention is related to the previous point. Often 
one is interested in whether a measure of treatment benefit is modified by some 
measure of baseline risk. For instance, is the difference in log(long term risk)'s 
between treatments associated with larger baseline risks as measured by the long 
term risk under the conservative treatment? Or, is the log(cumulative survival ratio) 
over (0,t) modified by the baseline risks as measured by the long term risk under the 
conservative treatment? For this type of questions the univariate analyses of the 
previous section fall short and multivariate modelling is necessary. We elaborate on 
this in section 4.2. The fourth advantage of the multivariate approach that we mention 
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is that it is capable to deal adequately with incomplete trials, that is when one or two 
outcome measures are missing, and therefore makes more efficient use of the data. If 
the missing outcomes are missing at random but not completely at random, the 
multivariate approach might also be more valid than the univariate analyses that 
necessarily leave out the incomplete trials. In our application the event of interest was 
defined stroke or death. Most trial reports, but not all, also give the outcome event 
death alone. Probably both outcomes will be highly correlated. Therefore, if one is 
interested in the effect of treatment on the endpoint death, it would be advantageous 
to carry out a multivariate analysis with both the outcome death and outcome stroke 
or death. One can also think of a situation where one has a surrogate endpoint for all 
trials, and a smaller number of trials reporting both the 'true' endpoint as well as the 
surrogate. Then one is specifically interested in the trial-level correlation between 
both endpoints[18, 19]. 
 
 

4 Results 
 
4.1 Univariate analyses 

The univariate models (4), (6) and (9) were fitted using Proc MIXED of SAS[9]. Since 
this is not completely trivial, we refer the reader to the recent tutorial on advanced 
meta-analysis methods[8] for explanation on how to do that.  
The estimated mean log odds of a post-surgical event was ω̂  = -2.681, with standard 
error 0.133. So on the original scale the estimated mean post-surgical risk is 0.064 with 
approximate 95% confidence interval (0.050, 0.082). The estimated between trials 
variance on the log odds scale was estimated as 0.224, giving an approximate 95% 
coverage interval of the true post-surgical risks of ( 0.026, 0.148). This indicates quite a 
large between trial variation in post-surgical risks. The likelihood ratio test on H0: σω2 
= 0 was borderline statistically significant (P = 0.08). Proc MIXED also gives a 
Satterthwaite approximation based 95% confidence interval for the between trials 
variance, (0.097, 0.950). 
The exact measurement error model fitted by SAS Proc NLMIXED gives an estimated 
mean log odds of a post-surgical event ω̂ =-2.739, with standard error 0.130. This 
corresponds on  the original scale to an estimated mean post-surgical risk of 0.065 
with a 95% confidence interval (0.049, 0.085). The estimated between trials variance on 
the log odds scale was 0.211, resulting in an 95% coverage interval of the true post-
surgical risks of (0.026, 0.159). All of these estimates are quite similar to the 
approximate likelihood estimates.  
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The estimate of the mean difference in log(long-term event rate)'s was δ̂ = 0.277 with 
standard error 0.061, so on average the long-term event rate of the surgical treatment 
was highly significantly better than of the conservative treatment. The estimated 
hazard ratio is 1.32 with approximate 95% confidence interval (1.17, 1.49). The 
estimated between trials variance in true log(long-term event rate difference)'s is 
0.0268 (95% confidence interval (0.0078, 0.6425)), significantly different from zero at 
the 5% level (P = 0.04). The approximate 95% coverage interval of the true long-term 
event rate ratios is (0.96, 1.82), again indicating quite a large between trials variation. 
The exact measurement error model fitted by SAS Proc NLMIXED gives an estimated 
mean difference in log(long term event rate)'s equal to δ̂ =0.278, with standard error 
0.064. The estimated hazard ratio is 1.32 with 95% confidence interval (1.15, 1.51). This 
is very similar to the approximate likelihood estimates. The estimated between trials 
variance in the true log(long term event rate difference)'s is 0.032, significantly 
different from zero (P = 0.02, likelihood ratio test). The 95% coverage interval of the 
true long-term event rate ratios is (0.93, 1.58). This is all very similar to the results 
based on the approximate likelihood. 
Model (9) was fitted for a number of different values of t. The results for some 
selected values of t are given in Table 3.  
 
 
Table 3. Results of the univariate random effects model for the cumulative t-years survival 
probability ratio for some selected values of t. 
 

t (years)   

 1  3  8 

Estimated mean log CSR ρ̂( )t  -0.0379 -0.00756 0.0747 

Standard error of ρ̂( )t  0.00844 0.0155 0.0356 

P-value for H0: ρ(t)=0 <0.0001 0.63 0.036 

Between trials variance ρσ
2ˆ ( )t  0.000744 0.00232 0.0111 

LR test p-value for H0: σρ2 = 0 0.0002 0.008 0.026 

Estimated cumulative survival ratio CSR(t) 0.963 0.9925 1.078 

95% confidence interval for CSR(t) 0.947, 0.979 0.963, 1.023 1.005, 1.155 

 
In the previous analysis it was seen that the long-term event rate was better for the 
surgical treatment. However, for relative short follow-up times, the event free 
cumulative survival probability is in favour of the conservative treatment because of 
the post surgical risk. For example, from Table 3 it is seen that for one year follow-up 
duration survival is very significantly worse for the surgical treatment. For longer 
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follow-up duration the balance is in favour of the surgical treatment. From Table 3 it 
is seen that for t = 3 years follow-up the estimated event free survival probability is 
about equal for both treatments. From about t = 8 years cumulative survival for the 
surgical treatment is significantly better than for the conservative treatment. In Figure 
1 the estimated cumulative survival ratio and its 95% confidence interval is given as a 
function of t. Moreover the approximate 95% coverage interval is given, i.e. the 
interval in which the true cumulative survival probability ratio of a new trial will lie 
with about 95% probability. It is seen that the estimated length of follow-up for which 
the two treatments are equivalent is 3.5 years with a 95% confidence interval running 
from 2.0 to 7.4 years. These values were determined by using a fine grid of values of t 
and running the analysis for each value of t.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Estimated mean cumulative survival probability ratio, based on univariate analyses 
for different lengths of follow-up (bold curve). The inner two curves give the 95% confidence 
interval, and the outer curves approximate 95% coverage intervals. 
 
 
4.2 Multivariate analysis 

The multivariate model could be fitted using SAS Proc MIXED as well. The main 
results of the multivariate meta-analysis are given in Table 4.  
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Table 4.  Some results of the trivariate model (10.1) and (10.2).  
 
 Outcome measure 

 
 
Estimate 

Logit of post-
surgical risk (ω) 

Log long-term event 
rate of surgical 
treatment (β) 

Log long-term event 
rate of conservative 
treatment (α) 

Mean -2.707 -2.891 -2.573 
Standard error 0.1337 0.0440 0.0777 
Between trials variance 0.2299 0.0167 0.0852 

 
 
The full estimated covariance matrix of the estimated mean outcome measures is: 

ˆ 0.017888 0.002154 0.0005938
ˆcov ar 0.002154 0.001939 0.001925
ˆ 0.0005938 0.001925 0.006036

ω

β
α

⎛ ⎞ − −⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

 (11) 

The estimated covariance matrix of the random effects is: 
0.2299 0.03666 0.01144

cov ar 0.03666 0.01675 0.03220
0.01144 0.03220 0.08519

i

i

i

ω
β
α

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (12) 

This covariance matrix turned out to be positive semi-definite. The estimated 
correlation matrix of the random effects is: 

1 0.59 0.08
corr 0.59 1 0.85

0.08 0.85 1

i

i

i

ω
β
α

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

SAS Proc MIXED also gives the estimated covariance matrix of the estimates of the 
random effects parameters (not shown). 
Notice that for the logit of the post-surgical risk the result is almost identical to the 
above given univariate analysis. This is also true for the other two outcomes 
(univariate results not shown). 
A number of questions could be answered using the results of the multivariate 
analysis. Let us start with comparing the two long-term event rates. The estimated 
mean difference in log(long-term event rate)'s is 0.318 with standard error 

+ − ⋅ =0.001939 0.006036 2 0.001925 0.064 , not much different from the univariate 
analysis. The associated between trials variance is estimated as 0.01675+0.08519 –
2⋅0.0322 = 0.0375, slightly larger than from the univariate analysis. 
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We now look at the t-years cumulative survival ratio. In the univariate approach we 
had to repeat the analysis for each value of t of interest. An advantage of the 
multivariate model is that the estimated t-years cumulative survival ratio can be 
given as a simple function of t:  

0.021ˆCSR( ) exp( 0.06 0.021 ) 0.94e tt t ⋅= − + =  
Note that the interpretation of this is a little bit different from the CSR(t) from the 
univariate analysis. In the univariate approach the mean log(CSR(t)) was estimated. 
After exponentiating it can be interpreted as the estimated CSR(t) for a trial with 
average log(CSR(t)), or as the estimated median CSR(t). Now we have estimated the 
CSR(t) for the 'typical' clinical trial having average post-surgical log odds and average 
log(long-term risk) under both treatments. Of course, based on the multivariate 
analysis it would be possible to compute the analogue of the univariate parameter 
estimate, by integrating the estimated log(CSR(t)) over the estimated trivariate normal 
distribution of the random effects, but that is not very simple and there is no need to 
that since the present parameter estimate is perfectly interpretable. The value of t for 
which the cumulative survival probability over (0,t) is equal for both treatments is 
estimated as 2.88, somewhat smaller than found in the univariate analyses.  
The estimated variance of its logarithm is computed from the analogue of (8) and the 
covariance matrix (11), and is a simple quadratic function of t: 
 
Var(ln(CSR(t))) = (0.712 - 0.0893 t + 0.248 t2) /104 
 
The approximate 95% confidence interval for CRS(t) is thus given by: 

± − + 20.94 exp(0.021 1.96 (0.712 0.0893 0.248 ) / 100)t t t           (13) 

The confidence interval for the value of t for which the event free survival probability 
is equal for both treatments is conveniently computed by converting (13) and turns 
out to be (1.83, 5.50). As an illustration we give in Figure 2 the estimated CSR(t) and 
its corresponding 95% confidence interval.  
An advantage of the above multivariate analysis is that the correlations between the 
different outcome measures are estimated. Notice that it would not be adequate to 
look at the simple correlations between the observed outcome measure estimates, 
since we are interested in the correlations between the underlying true trial specific 
outcomes. Moreover, the observed outcome measures have different precisions 
between trials and the errors might in general be correlated too (although this was not 
the case in our application), so that within and between trial correlation would be 
mixed up. 
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Figure 2. Estimated cumulative survival probability ratio, based on the multivariate analysis as 
a function of length of follow-up. The dotted curves give the 95% confidence band. 
 
 
An interesting finding in our example is that there was almost no correlation between 
the post-surgical risk and the long-term event rate under conservative treatment. This 
is an indication that the post-operative risk is not higher in high risk populations, in 
contrast to what was expected beforehand. Another finding is that there is a 
moderately high negative correlation of –0.59 between the post-surgical risk and the 
long-term risk under the surgical treatment. This is an indication that the most 
vulnerable patients tend to have an event in the first month after surgery leading to a 
selected group of patients with good long-term prognosis, a kind of 'survival of the 
fittest' phenomenon. Probably one would want to adjust this correlation for the event 
rate in the conservative treatment. The partial correlation turns out to be equal to –1, 
which is an even stronger indication of this selection phenomenon that the patients 
with a post operative event are probably the ones that otherwise would have had an 
event later on.  
Above it appeared that there is quite some variation among trials in treatment effect 
measures such as the difference in log(long-term events rate)'s and the t-years 
cumulative survival probability ratios. 

0 2 4 6 8 10

follow-up (years)

0.8

1.0

1.2

1.4
cu

m
ul

at
iv

e 
su

rv
iv

al
 p

ro
ba

bi
lit

y 
ra

tio



Combining multiple outcome measures in a meta-analysis: an application 

109 

One possibility of exploring this heterogeneity would be to make use of trial level 
covariates. The above multivariate model is straightforwardly extended with 
covariates, which might be different for different outcomes. In the application of this 
chapter there were no covariates available. In the absence of covariates, although not 
only then, it is quite common to consider whether there is any association between 
patients' underlying risk of the event in question and the treatment effect measure. 
The underlying risk is a convenient and clinically relevant trial-level measure which 
can be interpreted as a summary of a number of unmeasured patient characteristics. 
In our application the log(long-term event rate) αi is the straightforward choice for the 
baseline risk measure. Simply regressing the estimated treatment on the observed 
baseline risk measure would be a mistake for several reasons (see for instance 
Sharp[20]), and a more sophisticated approach is needed. A number of articles has 
been written on how to estimate the relation between treatment effects and 
underlying risk in meta-analyses[5, 6, 21-25]. The approach of this chapter is in the 
spirit of Arends et al.[6] and McIntosh [5], and is easily carried out using the results of 
the multivariate analysis. 
As a first example, suppose that one is interested in whether the long-term treatment 
effect is different between low and high risk populations, or, in other words, whether 
the long-term treatment effect depends on the long term event rate in the conservative 
treatment group. Then it is natural to look at the regression line of  δi = αi - βi on αi , 
which is given by: 
 

αβ

αα

σ
δ δ α α

σ
= + − −(1 )( )i i  

 
All ingredients that we need are available from the multivariate results above. The 
estimated regression line is δi = 1.918 + 0.622 αi. The estimated standard error of the 
slope is 0.2924, computed with the delta method using the covariance matrix of the 
estimated covariance matrix (not shown). We conclude that the slope differs 
significantly from zero, so the long term event risk ratio declines with increasing 
baseline event rate in favour of the surgical treatment. This is illustrated in Figure 3. A 
confidence band for the regression line might be computed with the delta-method, 
using the estimated covariance matrices of the fixed effects and covariance 
parameters. The residual standard deviation is 0.069 and the percentage explained 
variance is quite high, 87.5%. The fit of the regression line to the observed long-term 
event ratios appears to be quite good, except maybe for the very small trial number 17 
at the right hand side below. 
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Figure 3. Observed long-term event rate ratios (conservative relative to surgical treatment) 
plotted against observed long-term event rate in the conservative treatment group and 
estimated regression line of true long-term event rate ratio on true conservative long-term 
event rate. Area of circles is proportional to the number of long-term events. 
 
 
Another relationship of interest is between the t-years cumulative survival ratio and 
the underlying risk. Therefore we look at the conditional distribution of (ωi, βi) given 
αi, which is bivariate normal with mean 

ωα

αα

βα

αα

σω α α
σ
σ

β α α
σ

⎛ ⎞+ −⎜ ⎟
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟
⎝ ⎠

( )

( )

i

i

 

The typical log(CRS(t)) therefore is 

βαωα

αα αα

σσρ α ω α α β α α α
σ σ

⎛ ⎞ ⎛ ⎞
= − + + − − − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1( ; ) ln 1 exp( ( )) ( )exp ( ) exp( )
12i i i it t t

 

Using the results of the multivariate analysis this is estimated by: 

( ) ( )ρ α α α α= − + − − − − − + +
1ˆ ( ; ) ln 1 exp( 3.053 0.134 ) ( )exp 1.918 0.378 exp( )

12i i i i it t t
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Given αi the estimated break-even value of t, that is the value of t for which the 
survival probability over (0, t) is equal for both treatments, is given by 

βαωα

αα αα

βα

αα

σσω α α β α α
σ σ

σ
α β α α

σ

−

⎛ ⎞ ⎛ ⎞
+ + − − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=
⎛ ⎞

− + −⎜ ⎟
⎝ ⎠

ln 1 exp( ( )) exp ( ) / 12

exp( ) exp ( )

i i

break even

i i

t  

This is estimated by 
( ) ( )

( )
α α

α α−

+ − − − − +
=

− − +
ln 1 exp( 3.053 0.134 ) exp 1.919 0.378 / 12ˆ

exp( ) exp 1.919 0.378
i i

break even
i i

t  

The estimated break-even point is positive as long as the long-term event rate for the 
surgical treatment is lower than the predicted long-term event rate for the 
conservative treatment. As an illustration we plotted in Figure 4 the observed and 
predicted break-even point t against the observed event rate in the conservative 
treatment, for the trials with positive observed and predicted break-even times. 
Confidence intervals might be computed with the delta-method, using the estimated 
covariance matrices of the fixed effects and covariance parameters. The fit of the 
observed break-even times to the predicted break-even times appears to be quit good. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Observed and predicted break-even time against long-term event rate for the 
conservative treatment. Area of circles is proportional to the total number of events in a trial. 
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In Figure 5 the estimated CSR(t) is given as a function of the true conservative long-
term event rate μi =exp(αi) for selected values of t. From the picture it can be seen for 
instance that in a population with baseline incidence over about 8 events per 100 
person-years the typical 3-years survival probability under surgical treatment is better 
than under conservative treatment. Again confidence intervals for ρ(t;αi) can be 
constructed via the delta-method. Notice that the predicted 3-years survival 
probability ratio curve fits the observed 3-years survival probability ratios very well, 
except for one outlier, the very small trial number 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Estimated cumulative survival ratio probability ratio (surgical relative to  
conservative treatment) for different follow-up periods (0,t) (t in years). The points are the 
observed 3-years cumulative survival probability ratios plotted against the observed long-
term event rate in the conservative treatment group.  
 
 

5 Discussion 
 

To our knowledge this is the first example of a multivariate random effects meta-
analysis combining more than two outcomes. The model that we used is quite 
generally applicable. In our application we had no covariates available that could 
explain heterogeneity between trials. If they are available, they can be used without 
any further difficulties. In our example, the different outcome measures were 
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independent within trials. Also this is no limitation of the method and the presence of 
correlations can easily be accommodated. For a bivariate meta-analysis example 
where this is done we refer to van Houwelingen et al.[8] We demonstrated the 
advantages of the multivariate analysis upon the univariate analyses. One 
multivariate analysis yielded much more information than a number of separate 
univariate analyses. The multivariate analysis revealed the relations between the 
different outcomes, gave simple expressions for estimation of derived treatment effect 
parameters such as for instance the cumulative survival probability ratio as a function 
of follow-up duration. Furthermore, the results of the multivariate modelling enabled 
us to easily estimate the relation of different treatment effect parameters and the 
underlying risk. We did not have missing outcome measures in our example, but our 
method allows them. In other applications this can increase efficiency compared with 
the analysis restricted to only the trials with a complete set of outcome measures. This 
also makes the model very useful in modelling the relationship between surrogate 
and true endpoints in a meta-analysis with a mix of trials, some of them reporting 
both the surrogate and the true outcome and the others only the surrogate outcomes.  
Fortunately, the multivariate model can easily be fitted in standard general linear 
MIXED model programs, although not every program will have the appropriate 
options. We used SAS Proc MIXED, but we guess that other packages such as S-Plus 
or MLWin might also be used, although we do not have extensive experience with 
these programs. The essential requirement is that the residual variances can be fixed 
at arbitrary values per individual trial[8].  
We fitted the multivariate model using straightforward likelihood, but approximate 
because we acted as if the residual variances were estimated without error. In a few 
special univariate cases an exact likelihood was possible as well. In those cases the 
results turned out to be very similar. At present, an exact likelihood approach is not 
feasible in the multivariate case. An alternative approach would be to fit the model 
using Bayesian methods. This can for instance be done in the free available Bayesian 
analysis package BUGS[26]. One advantage is that the exact likelihood can be used by 
specifying the distribution for the outcome measure, in our example a binomial 
distribution for the number of post-operative events and a Poisson distribution for the 
events on long-term in both treatment groups. Another advantage is that, since BUGS 
uses MCMC methods to sample from the posterior distribution of all parameters, the 
inference based on the results of the fitted model can be easily build in. In section 4.2 
we computed by hand derived results such as the cumulative survival probability 
ratio and the break-even point, and their regression with the underlying risk. The 
estimates were quite easily computed, but the standard errors and confidence 
intervals using the delta-method are more cumbersome, especially for the regression 
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relationships. In BUGS this kind of derived inference including the (Bayesian) 
confidence intervals can be done very conveniently in the program. Some results of 
the BUGS analysis are presented in Table 5. 
 
 
Table 5.  Some results of the trivariate model fitted by BUGS.  
 
 Outcome measure 

 
 
Estimate 

Logit of post-
surgical risk (ω) 

Log long-term event 
rate of surgical 
treatment (β) 

Log long-term event 
rate of conservative 
treatment (α) 

Mean -2.760 -2.907 -2.604 

Standard error 0.1322 0.0464 0.0805 

Between trials 
covariance matrix of 
the random effects 

0.2226 0.0356 0.0266
covar 0.0356 0.0175 0.0224

0.0266 0.0224 0.0974

i

i

i

ω
β
α

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

 
 
The results are very similar to those of the approximate likelihood approach (Table 3).  
As a further illustration we reproduce the analogues of Figures 2 to 5 now with the 
Bayesian approach, see Figure 6. In Figure 6 the dotted lines represent the 
approximate likelihood estimate, while the solid lines represent the results of the 
BUGS analysis. Again the results are very comparable. Of course, a practical 
disadvantage of this approach is that fitting this kind of models in a program like 
BUGS can be quite time consuming, and therefore the approach presented in this 
chapter is much more practical. 
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Figure 6. Analogues of Figures 2 to 5, with approximate likelihood as well as the Bayesian 
approach. The dotted lines represent the approximate likelihood estimates, the solid lines 
represent the results of the BUGS analysis. 
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Abstract 
 
Meta-analysis of ROC-curve data is often done with fixed effects models, which suffer 
many shortcomings. Despite some random effects models have been published to 
execute a meta-analysis of ROC-curve data, these models are not often used in 
practice. More straightforward modelling techniques for multivariate random effects 
meta-analysis of ROC-curve data are needed, which can be fitted with standard 
software. 
In this chapter sensitivities and specificities are analysed simultaneously using a 
bivariate random effects model. Summary ROC curves can be obtained through 
different characterisations of the estimated bivariate normal distribution. Under an 
extra assumption the model could be seen as random effects model for individual 
study curves. The authors fit random intercept models with approximate and with 
exact likelihood. Finally they extend the models to a random intercept and slope 
model. 
The authors brought the statistical meta-analysis of ROC curve data back into a 
framework of relatively standard multivariate meta-analysis with random effects. The 
random intercept model that they propose solves the shortcomings of current fixed 
effects methods and is very easily fitted in practice using standard statistical software. 
The syntax in the software package SAS (Proc NLMIXED) that is used throughout this 
chapter is given in the appendix. With this syntax the bivariate random effects model 
is easily accessible to meta-analysists. 
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1 Introduction 
 
For a thorough assessment of the effectiveness of a specific treatment, it is common to 
execute a meta-analysis of randomised clinical trials reported in the literature. The 
same is done for the assessment of the characteristics of a diagnostic test to 
distinguish patients having a certain disease from patients not having that disease. 
Meta-analyses to assess the reliability, accuracy and impact of diagnostic tests are 
essential to guide optimal test selection and the appropriate interpretation of test 
results[1]. However, the designs of test accuracy evaluations differ from the designs 
of studies that evaluate the effectiveness of treatments, which means that different 
criteria are needed when assessing study quality and potential for bias. Additionally, 
often each evaluation of diagnostic tests reports a pair of related summary statistics 
(for example sensitivity and specificity) rather than a single statistic, requiring 
alternative statistical methods for pooling study results[1]. Receiver Operating 
Characteristic (ROC) curves are used in studies of diagnostic accuracy to depict the 
pattern of sensitivities and specificities observed when the performance of the test is 
evaluated at several different diagnostic thresholds.  
In the last one and a half decade a number of statistical articles on meta-analysis of 
diagnostic test accuracy have been written[2-11]. The methods to be used depend on 
the type of data that is available from the different studies. Some of the references[6, 
8] discuss methods for the situation where all the individual patient data of the 
studies are available. Some articles discuss the situation where each study provides 
an estimate of the area under the ROC curve and how to combine them[12]. Other 
references discuss the situation where per study only one estimated pair of sensitivity 
and specificity (corresponding to one or more different diagnostic thresholds) is 
available. In this chapter we focus on this last situation, which is by far the most 
common in practice. The aim of the meta-analysis is to estimate the overall ROC curve 
of the (continuous) diagnostic marker. 
If for each study only one estimated pair of sensitivity and specificity is available, the 
simplest approach to combine evidence about binary valued diagnostic tests is to take 
the average of estimates of sensitivity and specificity across studies[4,13]. However, 
this approach only makes sense when all tests use the same scoring rule or the same 
threshold value. This is very unlikely and difficult to check, because most studies do 
not explicitly report scoring rules or threshold values, but instead report only 
summary statistics[4]. Other approaches reduce the problem to calculating just one 
outcome measure like the area under the curve statistic (AUC)[12] or the diagnostic 
odds ratio (DOR)[14] and combine these using standard meta-analysis techniques.  
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Probably the most well known and most commonly used method in practice is the 
Summary ROC (SROC) method proposed by Littenberg and Moses[2] and Moses et 
al.[3]. They plotted the difference versus the sum of the logit(true positive rate) and 
logit(false positive rate) from each study. Then they fitted three types of regression 
lines (robust, unweighted and weighted) to these points. Finally they transformed the 
line to ROC space.  
Despite the fact that the SROC method is predominantly used in practice, it has a 
number of serious shortcomings. The aim of this chapter is to present an approach 
that extends the SROC method, addresses its drawbacks and is still easily carried out 
in practice using familiar statistical packages like SAS. The method follows the 
general multivariate approach as described in van Houwelingen et al.[15] and Arends 
et al.[16,17]. 
In section 2 we introduce two data sets that will be used as examples. In section 3 we 
give an overview of the SROC method and discuss its shortcomings. In section 4 we 
shortly discuss other methods proposed in the literature. In section 5 the new 
approach is presented. In section 6 the methods are applied on the two example data 
sets and the results are presented. We used the SAS procedures Proc Mixed and Proc 
NLMixed for the analyses. The syntax that was used is given in the appendix. Finally 
we end with a discussion in Section 7.  
 
 

2 Data examples 
 
To illustrate the methods discussed in this chapter, we apply them to two meta-
analysis data sets, one relatively small (29 studies) data set and one large data set (149 
studies). 

 
2.1 Example 1: FNAC of the Breast[18]  

Giard and Hermans[18] present 29 studies evaluating the accuracy of fine-needle 
aspiration cytologic examination (FNAC) of the breast to assess presence or absence 
of breast cancer. FNAC provides a non-operative way of obtaining cells for 
establishment of the nature of a breast lump and therefore plays a pivotal role in the 
preoperative diagnostic process[18-21]. The sensitivity and specificity of FNAC were 
determined for each study. Sensitivity was defined as the probability of a malignant 
or suspect test result in patients with cancer. Specificity was defined as the probability 
of absence of abnormal cells in the non-patients[18]. Table 1 shows the frequencies of 
the FNAC outcomes given the final diagnosis of benign or malignant breast disease.  
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Table 1. Example 1: data from clinical studies on patients with a breast mass who underwent 
a fine-needle aspiration cytological examination (FNAC). Patients are cross-classified 
according to their final diagnosis (benign or malignant breast disease) and their FNAC result. 
 

 FNAC results for patients with 
benign disease  

 FNAC results for patients with 
malignant disease 

 
Study 

False Pos 
(Y0) 

True Neg Total 
(n0) 

 True Pos 
(Y1) 

False Neg Total 
(n1) 

1 70 939 1009  979 89 1068 
2 3 163 166  51 22 73 
3 55 894 949  1569 152 1721 
4 25 259 284  35 15 50 
5 4 121 125  59 12 71 
6 18 216 234  56 4 60 
7 602 3117 3719  329 39 368 
8 10 213 223  125 17 142 
9 88 499 587  211 63 274 

10 0 31 31  49 1 50 
11 26 643 669  336 178 514 
12 147 746 893  210 42 252 
13 5 25 30  16 3 19 
14 16 356 372  258 53 311 
15 9 107 116  56 18 74 
16 16 112 128  162 28 190 
17 6 112 118  116 13 129 
18 99 145 244  65 12 77 
19 5 78 83  94 10 104 
20 0 70 70  26 4 30 
21 28 136 164  1318 249 1567 
22 55 539 594  569 120 689 
23 1 287 288  46 16 62 
24 13 76 89  64 6 70 
25 1 104 105  39 4 43 
26 16 426 442  132 20 152 
27 17 161 178  470 22 492 
28 25 200 225  28 4 32 
29 43 22 65  42 3 45 

 
The true positive rate TPR, or sensitivity, is estimated for a study by Y1/n1, and the 
false positive rate FPR, which is 1 minus the specificity, by Y0/n0. See Figure 1a for a 
plot of the estimated TPRs against the estimated FPRs and Figure 1c for the estimated 
TPRs and FPRs on the logit scale. 
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Figure 1. Observed sensitivity against (1-specificity) of data reported across 29 studies that 
were originally meta-analysed by Giard and Hermans[18] (left side of picture) and across 149 
studies that were originally meta-analysed by Heijenbrok-Kal et al.[22] (right side of picture) 
on the original scale and on logit transformed scale. 
 
 
The estimated TPRs and FPRs vary considerably across studies. Also, the proportions 
of patients with benign or malignant disease according to the final diagnosis differed 
substantially. At the time of publication (1992), no reasonable methods to summarize 
diagnostic test data across several studies were available. In this chapter we will use 
the data to fit the standard fixed effects SROC model as well as the proposed random 
effects models. 
 
2.2 Example 2: Imaging tests for coronary artery disease[22]  

Heijenbrok-Kal[22] searched PubMed from January 1990 through May 2003 for meta-
analytic studies on the diagnostic performance of imaging tests for coronary artery 
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disease. In all meta-analyses included in this paper, angiography is the reference 
standard and the source numbers of true and false positives and true and false 
negatives are reported. Duplicate source studies are excluded. Heijenbrok-Kal[22] 
combined data from seven meta-analyses with a total of 246 patient series including 
24,761 patients who underwent eight different imaging technologies for coronary 
artery disease. Coronary tests showed little difference in diagnostic performance.  
For the illustration of our approach we choose from all seven selected meta-analyses 
only the 149 source studies in which the performance of an exercise or stress echo was 
investigated. These 149 studies include 13,303 patients. In Figure 1b a plot is given of 
the estimated TPRs against the estimated FPRs and Figure 1d represents the 
estimated TPRs and FPRs on the logit scale. 
 
 

3 The standard SROC method 
 
The starting point of a meta-analysis of ROC curve data is a number of studies 
providing information on a continuous diagnostic marker or variable M. In the 
different studies possibly different thresholds for M are used to obtain a dichotomous 
diagnostic test. The data provided by each study are the number of patients with a 
positive test result (y1), the total number of patients (n1) in the group with the disease, 
the number of patients with a positive test result (y0) and the total number of patients 
(n0) in the group without the disease. The aim is to estimate the overall ROC curve of 
the diagnostic marker M based on the available data from the different studies. The 
standard method used in practice is the SROC method of Littenberg and Moses[2], 
which proceeds as follows. The underlying model assumes that there exists a 
transformation of the continuous diagnostic variable M such that the transformed 
test, X, follows a logistic distribution both in the population without the disease and 
in the population with the disease. In other words, it is assumed that the 
transformation that makes the distribution of M logistic in the non-diseased (which 
always exists) makes the distribution simultaneously logistic for those with the 
disease. We assume that large values of X correspond with the diseased population. 
When small values of X correspond with the diseased population we take –X. The 
cumulative distribution of X in the healthy and the diseased is given by 

Pr( |healthy)X x< = 1

x

x
e

e+ and Pr( |disease)X x< = 1

x

x
e

e

α β

α β

− +

− ++  (1) 

for some values of  α ≥ 0 and β > 0. The difference between the mean value in the 
population with the disease and without the disease is α/β, and the ratio between the 
standard deviation of the diseased and the healthy population is 1/β. Thus 0<β<1 
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corresponds with a higher variance in the population with the disease and β>1 with a 
smaller variance. Figure 2 gives a graphical illustration with the interpretation of α 
and β, where clearly 0<β<1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Graphical illustration with interpretation of α and β  
 
 
If λ denotes the threshold X-value for the test being declared positive, then according 
to (1) the probability of a false positive result is 1- eλ/(1+eλ) and hence the logit(FPR)=- 
λ. Similarly we have logit(TPR)=α-βλ. In the following we will use the notation: 
 

ξ λ
η α βλ
= = −
= = −

logit( )
logit( )

FPR
TPR

 

This implies the linear relationship 
η α βξ= +  (2) 

Following Rutter and Gatsonis[9], α can be called the accuracy parameter and β the 
scale or asymmetry parameter. If β =1, the resulting ROC curve is symmetric (with 
respect to the minus 45° diagonal), otherwise it is asymmetric. 
In the SROC approach of Littenberg & Moses the relation (2) is written as 
 

η ξ α β η ξ− = + +' '( )  
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with α’= 2α/(β+1) (with α≥’0) and β’=(β-1)/(β+1) (with –1<β’<1). If D and S are the 
estimated values of η-ξ and η+ξ from a study (to avoid division by zero, 0.5 is added 
to all numbers in the 2x2 table of a study), then approximately 

α β= +' 'D S  (3) 

and the values of α’ and β’ are estimated by a simple weighted or unweighted linear 
regression. The weights are chosen proportional to the inverse variance of D. D is 
interpreted as the log odds ratio of a positive test result for diseased individuals 
relative to healthy individuals, and is often called the diagnostic odds ratio. Its 
estimated variance is  

+ − + + − ++ + +
0 0 0 1 1 1

1 1 1 1
0.5 0.5 0.5 0.5y n y y n y  (4) 

The summary ROC curve is obtained by back transforming the estimate of (3) to the 
ROC space. A value of β’ ≠0 indicates that the curve is asymmetric.  
The advantage of the SROC method, which explains its popularity, is that it is very 
simple to understand and can be carried out in any statistical package. Despite this 
important advantage of simplicity, a number of critical comments can be made. 
First of all, the SROC method is a fixed effects method, i.e. it assumes that the values 
of α and β do not vary across studies. Thus variation is due only to the threshold 
effect and within-study sampling variability. However, in many practical cases it is 
clear or likely that there is between study variation. Study characteristics such as 
technical aspects of the diagnostic test, patient selection, study settings, experience of 
readers etc. are among the potential contributors to between-studies variation in the 
estimates of diagnostic performance[9]. Modern meta-analytical methods take 
possible variation across studies into account by introducing random effects[15,23-26]. 
If there is between-studies variation, a fixed effects model can give biased estimates 
and typically underestimates standard errors.  
Second, the independent variable S in the regression equation (3) is measured with 
measurement error which should be taken into account. As a result, regression to the 
mean[27] and attenuation due to measurement errors[28] could seriously bias the 
slope of the regression line[15]. Thus not taking into account the measurement error 
in S lead to bias in β’ (in general towards zero) and α’ and therefore also in β (in 
general towards one) and α[26].  
Third, D and S are correlated within a study, positively or negatively depending on 
the study. In the standard fixed effects SROC model this correlation is ignored. 
Although probably the correlation mostly is small in practice, it is not obvious what 
the consequence of ignoring it is. 
Fourth, it is reasonable that the different studies should be somehow weighed in the 
analysis, in particular if the studies vary substantially in size. If there is more than 
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only within study sampling variation, weighting by the inverse within study 
variances as is done in the weighted SROC approach will not be optimal.  
Finally, to avoid undefined log odds, log odds ratios and their variances, quite 
arbitrarily 0.5 is added to the numbers in the fourfold tables of the trials. As Moses et 
al.[3] showed, the effect of this adjustment can be surprisingly large. Adding 0.5 to all 
cells tends to push an estimated ROC curve away from the desirable northwest corner 
of ROC space. The standard SROC method has to do this because it does not use the 
true binomial distribution of the number of positive test results within a group. It 
would be preferable to get rid of this artificial and arbitrary correction. 
In section 5 we present a method that does not have the disadvantages of the SROC 
method and can still be carried out easily in standard statistical packages. But first we 
discuss in section 4 some other methods proposed in the literature. 
 
 

4 Other methods proposed in the literature 
 
Kardaun and Kardaun[29] also assume model (1) and exploit the linear relationship ηi 
= α+βξi where i = 1, …, k denotes the number of the study. Using straightforward 
approximate likelihood methods all k+2 parameters (including the ξi’s) are estimated. 
The estimation method is called approximate likelihood, since, instead of the exact 
likelihood based on the true distribution of the estimated ξ ( ξ̂ ) and η (or η̂ ), an 
approximate likelihood based on the familiar normal approximations 

0 0 0
ˆ N( , 1/ 1/( ))y n yξ ξ≅ + −  and 1 1 1ˆ N( , 1/ 1/( ))y n yη η≅ + −  is used. The drawbacks 

of the method of Kardaun and Kardaun[29] are, first, that the number of estimated 
parameters is proportional to the number of trials, hence standard likelihood theory 
does not apply. For instance, consistency of the estimates when the number of studies 
tends to infinity is not guaranteed. Second, their computer-intensive method based on 
profile likelihood is not very practical. Also the first and last drawbacks mentioned in 
the previous section for the SROC method still apply.   
Recently Rutter and Gatsonis[9] proposed a hierarchical Bayesian regression 
approach, that does not have the drawbacks mentioned in the previous section for the 
SROC method. They assumed the following model. Let πi0 be the true FPR in the non-
diseased and πi1 be the true TPR in the diseased populations. Then Y0 ~ Binomial(n0, 
πi0) and Y1 ~ Binomial(n1, πi1). Defining ξi = logit(πi0) and ηi = logit(πi1), the following 
relationship is assumed to hold between ξi and ηi:  

β

β

ξ θ α

η θ α
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−

= +

= +
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where X0 and X1 are chosen to be –1/2 and +1/2 respectively. This implies the linear 
relationship 

β βη α ξ− −= +/ 2
i i ie e  (6) 

For equation (6), α is called the accuracy parameter, because it measures the 
difference between TPR and FPR, and β is called the scale parameter. With this 
parameterisation, if β ≠0 the ROC curve is asymmetric.  
The between study variation is modelled by assuming that αi and θi are independent 
and normally distributed: 

2

2

0
N ,

0
i

i

α

θ

αα σ
θ σθ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 (7) 

To compute a summary ROC curve, Rutter and Gatsonis[9] plug in the estimates for 
α  and β into the linear relation (6) and transform it into the ROC space. 
The method allows for between-study variation by modelling the accuracy parameter 
α with a random effect. A minor drawback of the method is it does not allow between 
studies variation in the scale parameter β. Rutter and Gatsonis[9] remark that 
allowing the scale parameter β to vary across studies would make some model 
parameters unidentifiable. A more serious and practical disadvantage is that Rutter 
and Gatsonis[9] compute the estimates in a Bayesian way using Markov Chain Monte 
Carlo (MCMC) simulation with the BUGS software, which is rather complicated. 
MCMC estimation requires programming, simulation, evaluation of convergence and 
model adequacy, and synthesis of simulation results. Implementation of MCMC 
simulation entails non-trivial analysis tasks including evaluation of convergence and 
the adequacy of prior distributions, and these tasks require statistical expertise. As the 
authors mention, this is a high price that has to be paid for the advantages of the 
hierarchical SROC model. Furthermore, Rutter and Gatsonis[9] use a relatively 
complicated parameterisation, which can make it difficult for the meta-analyst to fully 
understand what he is doing. Macaskill[30] shows how the model of Rutter and 
Gatsonis can be fitted in a non-Bayesian way using the SAS NLMixed program for 
generalised linear mixed models. This makes the model of Rutter and Gatsonis model 
much more practical. 
Recently a straightforward random effects extension of the method of Littenberg and 
Moses[2] has been used in some medical applications[31-33], with results obtained 
from the STATA program Metareg[34]. This method is as follows. Let ξi and ηi again 
denote the true logit(TPR) and logit(FPR) for study i. Let Di = ηi - ξi be the true log 
odds ratio and Si = ηi + ξi. The corresponding estimates are given by ξ̂i , η̂i , ˆ

iD and ˆ
iS , 

respectively.  
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Then the model is: 
α β= + ˆˆ

i i iD S  

with 
0 0 0 1 1 1

1 1 1 1
0.5 0.5 0.5 0.5

ˆ N( , )i i y n y y n yD D + − + + − ++ + +   and 2N( , )i αα α σ  (8) 

In this model, all studies have a common slope β, but the intercepts vary randomly 
between studies according to a normal distribution. The overall ROC line is 
η α βξ= + , where the individual study lines vary randomly around this line with 
between studies standard deviation σα. This is the standard random effects meta-
regression model and there are many programs available for fitting this model. 
Measurement error of ˆ

iD  is correctly accounted for, the measurement error in ˆ
iS  is 

still neglected. Another drawback for sparse data sets is that it is not simply possible 
to use the underlying binomial distributions for ˆ

iD  and ˆ
iS  instead of the normal 

approximations. 
The aim of this chapter is to present a practical method that addresses the drawbacks 
of the SROC method mentioned in the previous section, allows between study 
variation both in accuracy and scale parameter, and is easy to carry out in practice. 
The method follows the general multivariate approach as described in van 
Houwelingen et al.[15,35] and Arends et al.[36]. It can be implemented using standard 
statistical packages. 
 
 

5 Alternative approach 
 
In numerous medical articles sensitivities or specificities are meta-analysed separately 
by the standard random effects model of DerSimonian and Laird[23]. The method we 
propose is a direct extension of this approach. We analyse sensitivities and 
specificities simultaneously using a two-dimensional random effects model. We will 
show that the model implies a linear relationship between η and ξ, and can be seen as 
an extension of the SROC method of Littenberg and Moses[2]. We show that under an 
extra assumption the model can be interpreted as a random intercept model 
analogous to (8) that describes individual study lines as parallel lines around an 
overall mean line. In section 5.1 we introduce our model. In section 5.2 we discuss 
several types of summary ROC curves. In section 5.3 we discuss the relation with the 
approach of Rutter and Gatsonis[9]. In section 5.4 we take a closer look at the 
interpretation of our model in terms of individual study ROC curves. In the last 
subsection the model is generalised to allow a random slope (or scale parameter) β as 
well. Throughout we follow a two-level hierarchical modelling approach, explicitly 
modelling the within and between studies variability.  
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5.1 The bivariate model 

The standard way of meta-analysing false positive rates of a diagnostic test in the 
medical literature is the DerSimonian and Laird[23] random effects model: 

2N( , )i ξξ ξ σ  with  
0 0 0

1 1ˆ N ,i i x n x
ξ ξ

⎛ ⎞
≅ +⎜ ⎟−⎝ ⎠

 

Here ξ̂i and ξi are the observed and true logit(FPR)of study i, respectively. Note the 
well-known formula for the standard error of an estimated log odds. The parameterξ  
describes the overall mean logit false positive rate and ξσ

2 describes the between 
studies variance in true logit false positive rates. Similarly, true positive rates are 
analysed using the model:    

2N( , )i ηη η σ  with 
1 1 1

1 1ˆ N ,i i x n x
η η

⎛ ⎞
≅ +⎜ ⎟−⎝ ⎠

 

The straightforward generalisation is to assume a bivariate normal model for the pair 
(ξi, ηi): 

 
2

2N ,i

i

ξ ξη

ξη η

ξ σ σξ
η σ ση

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
≅ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (9) 

Note that this model implies the standard univariate random effects meta-analysis 
model for the ξi and ηi separately, but now allows that ξi and ηi are correlated. 
This model fits in the framework of bivariate meta-analysis as originally introduced 
by van Houwelingen et al.[35]. Later on McIntosh[37] and Arends et al.[16] used this 
model to investigate the relationship between baseline risk and size of treatment 
effect in clinical trials meta-analysis. In van Houwelingen et al.[15], bivariate meta-
analysis was generalized to multivariate meta-analysis and it was shown how 
standard General Linear Mixed Model programs can be used to fit these models. An 
example of a tri-variate meta-analysis is given by Arends et al.[17].  
The most simple characterisation of the overall accuracy of  the diagnostic test would 
be to take the estimated ξ and η and transform them to the ROC space. A more 
accurate description would be to characterise the bivariate normal distribution by a 
line and transform that line to the ROC space. Note that the bivariate normal 
distribution implies a linear association between ξi and ηi. However, as will be 
discussed in the next section, different lines might be employed, leading to different 
summary ROC curves. For example, the regression line of ηi on ξi could be used. 
Standard normal distribution theory tells that the regression line of ηi on ξi has 
intercept α and slope β given by  

2 2- and     ξη ξη

ξ ξ

σ σ
α η ξ β

σ σ
= =  (10) 
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The residual variance of the regression, given by ξη
η ξ η

ξ

σ
σ σ

σ
= −

2
2 2
| 2 , describes the 

variation in the true sensitivities between studies that have the same specificity. In 
section 5.2 we discuss some alternative summary ROC curves.  
Similarly as in the above univariate models for meta-analysing specificities and 
sensitivities  separately we model the within study sampling variability using the fact 
that the estimated logit transformed FPR, ξ̂i , and TPR, η̂i , are independent and 
approximately normally distributed: 

0 0 0 1 1 1

1 1 1 1ˆ ˆN ,     and   N ,i i i ix n x x n x
ξ ξ η η

⎛ ⎞ ⎛ ⎞
≅ + ≅ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

 (11) 

If one or more of the denominators are close to zero, 0.5 should be added to the 
denominators, as in (4). The equations (9) and (11) together specify a general linear 
mixed model (GLMM), and the parameters can be estimated by (restricted) maximum 
likelihood using a GLMM program. Subsequently the intercept α and the slope β of a 
summary line can be calculated, using for instance (10) or one of the formulas given in 
the next subsection if another type of summary ROC curve is preferred. Standard 
errors of α and β can be calculated with the delta method. Many statistical packages 
provide a GLMM program. We used Proc Mixed from the SAS package. The syntax is 
given in the appendix. Proc Mixed does not give estimates and standard errors of user 
defined derived parameters, thus we had to calculate the estimates of α and β by 
hand, though the calculations are very simple. SAS users can avoid these hand 
calculations, since the model can also be fitted in Proc NLMixed. This program 
provides estimates and standard errors of user defined derived parameters. The 
syntax needed for Proc NLMixed is given in the appendix. Another possibility in Proc 
NLMixed is to reparameterise the model in such a way that one immediately gets the 
estimates and standard errors for the parameters of interest.  
We call the GLMM approach the approximate likelihood approach, because an 
approximate (normal) model denoted by equation (11) is used for the within study 
sampling variability. The practical advantage is that the model remains a GLMM, for 
which much software is available. The approximate likelihood approach works well 
for larger data sets[15]. As a rule of thumb, the requirement 'all denominators in 
equation (11) larger than or equal to 5’ might be adopted, though this is probably too 
severe.  
In section 5.4 we will show that the above model, under an extra assumption, can be 
seen as a random effects model, describing the lines of individual studies as random 
varying lines parallel to an overall summary line. Thus the first drawback, that it is a 
fixed effects model, of the SROC method as mentioned in section 3 no longer applies. 
Also the model does not suffer from the second, third and fourth drawbacks. The 
problem of measurement error (the second drawback) is avoided by assuming a 
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distribution for ξi. In general there are two ways of dealing with measurement error, 
the structural and the functional approach[15]. Our approach is in the spirit of the 
structural approach, similar to Arends et al.[16,17] and van Houwelingen et al.[15], 
which has the important advantage that the parameters can be estimated by 
straightforward likelihood methods. 
The third drawback does not apply, because ξ̂i  and η̂i  are independent within 
studies. Even if we would formulate the model in terms of D and S, as is done in the 
standard SROC method, then there would be no problem since the correlation can be 
easily modelled in the GLMM.  
The fourth drawback does not apply since the likelihood method implicitly uses the 
'correct' weighting based on within- as well as between-study variation. The fifth 
drawback still applies, since we assumed an approximate within study model. If we 
want to address this drawback as well, the true distribution of ξ̂i = Y0i / n0,i and η̂i = Y1i 
/ n1,i should be used. Given the true FPRi = (1+exp(-ξi))-1 and TPRi = (1+exp(-ηi))-1 of 
study i, the observed test positive numbers Y0i in the healthy group and Y1i in the 
diseased group follow binomial distributions: 
 

Y0i ≅ Binomial(n0,i,FPRi) ;  Y1i ≅ Binomial(n1,i,TPRi) (12) 

 
The equations (9) and (12) together now specify a Generalised Linear Mixed Model. 
This model has the advantage that the fifth drawback no longer applies, but a 
practical disadvantage is that software for Generalised Linear Mixed Models is not 
available in many packages. We again used Proc NLMixed of SAS. A syntax example 
is given in the appendix. We call this the exact likelihood approach, since the 
likelihood is based on the exact (i.e. binomial) within-study distribution of the data.  
 
5.2 Choice of summary ROC curve 

Above we have seen that a summary ROC curve can be obtained through a 
characterisation of the estimated bivariate normal distribution given by (9). One 
possibility is to take the regression line of ηi on ξi, as we did above. However, there 
are other possibilities as well. For example, we could take the regression line of ξi on 
ηi. We now discuss this and other possible choices.  
 
1. The regression line of ηi on ξi  

ξη

ξ

σ
η η ξ ξ

σ
= + −2 ( )  (13) 
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This summary line estimates the mean logit transformed sensitivity given a specific 
value for the logit transformed 1-specificity. When transformed to the ROC space, the 
summary ROC curve estimates the median TPR given a specific value for the FPR. 
 
2. The regression line of ξi on ηi  

η

ξη

σ
η η ξ ξ

σ
= + −

2

( )  (14) 

This summary line characterises the mean logit transformed 1-specificity given a 
specific value for the logit transformed sensitivity. When transformed to the ROC 
space, the summary ROC curve characterises the median FPR given a specific value 
for the TPR. 
 
3. The regression line of Di on Si 
Let Di = ηi - ξi and Si = ηi + ξi, as in the classical SROC method. From (9) it follows that 
the covariance of D and S is equal to η ξσ σ−2 2  and the variance of S is equal to 

η ξ ξησ σ σ+ +2 2 2 . The regression line therefore is 

η ξ
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The popularity of this summary line is possibly explained by the fact that it has an 
appealing interpretation. Given S, which can be interpreted as a proxy for the 
positivity criterion of the diagnostic test, this regression line estimates D, which can 
be interpreted as the diagnostic log odds ratio.  
In terms of η and ξ the regression line is 

η ξη

ξ ξη

σ σ
η η ξ ξ

σ σ
+

= + −
+

2

2 ( )  (15) 

This method is a kind of compromise between the vertical way of looking in the first 
method (median TPR given a specific value for the FPR) and the horizontal way of 
looking in the second method (median FPR given a specific value for the TPR). When 
back transformed to the ROC space, the summary ROC curve characterises the 
median when one looks along a line with constant η+ξ (a minus 45˚ degrees line). 
 
4. The Rutter and Gatsonis[9] summary ROC curve 
Their method leads to the summary line (see section 5.3) 

η

ξ

σ
η η ξ ξ

σ
= + −( )  (16) 
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This line can be interpreted as a sort of compromise between the regression of ηi on ξi 
and that of ξi on ηi, since the slope is equal to the geometric mean of the slopes of the 
two regression lines. 
 
5. The major axis method 
The last possibility we mention is to characterise the bivariate normal distribution 
between ξ and η by the major axis that runs through the extreme points of the ellipses 
which are defined by the (1-α)100% coverage intervals of the estimated bivariate 
distribution. This results in the summary line 

( )η ξ η ξ ξη

ξη

σ σ σ σ σ
η η ξ ξ

σ

− + − +
= + −

22 2 2 2 24
( )

2
 (17) 

In fact, taking this line is analogous to summarising  a two dimensional distribution 
by it first principal component. 
The summary ROC curves of methods 3-5 are symmetric in ξ and η; that is, if the 
labelling of diseased and non-diseased is interchanged, the summary ROC curve does 
not change. For all of the mentioned summary lines, standard errors for the slope, 
intercept and for η at a given value for ξ can be calculated using the delta method. 
Confidence intervals for the slope and intercept, and a confidence band for the 
summary line, are calculated using standard methods. A confidence band for the 
summary ROC curve is obtained by transforming the confidence band of the 
summary line. No extra programming or hand calculations are needed if a program 
like SAS Proc NLMixed is used that allows user defined derived parameters. 
 
5.3 Relationship with model of Rutter and Gatsonis 

From (5) and (7) it follows that the model of Rutter  & Gatsonis can be written as 
0 0 0 1
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This specifies a bivariate normal distribution for (ξi, ηi), just as we do in (9). Note that 
the number of parameters is the same, too. Thus the two models are essentially the 
same, only the parameterisation is different. Rutter and Gatsonis[9] choose X0 = -½ 
and X1 = ½ and do not discuss other choices. One can check that their labelling also 
lead to ση /σξ as the slope given by (16). All other choices such that X0 = -X1 also lead to 

η ξσ σ/ . Alternative choices for X0 and X1 lead to other summary lines. For instance, 
the choice X0 = 0 and X1 = 1 leads to the η on ξ regression line given by (13). The choice 
X0 = 1 and X1 = 0 leads to the ξ on η regression given by (14). One can show that it is 
not possible to specify X0 and X1 such that it leads to the D on S regression line (15).  
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We conclude that our bivariate model is in principle identical to that of Rutter and 
Gatsonis[9]. A minor difference is the different parameterisation. Another minor 
difference is that the slope in the Rutter and Gatsonis model is e-β, and this it is 
restricted to be positive. We do not restrict the slope in our model, although in 
practice negative slope estimates will typically not occur. An important practical 
difference is that Rutter and Gatsonis follow a laborious Bayesian estimation 
approach, while our method can be carried out conveniently using standard statistical 
packages. Furthermore, we think our method is more straightforward and easier to 
understand, since it simply assumes a standard random effects model for the 
sensitivities and specificities simultaneously. In section 5.5 we extend the model with 
an extra random effect for the slope. 
 
5.4 The bivariate model as a random intercept model 

The bivariate model as introduced in section 5.1 did not assume anything about study 
specific curves. The method simply lead to an estimated underlying bivariate 
distribution of the true sensitivities and specificities. This distribution could then be 
characterised by a summary ROC curve, and different choices for it were available. 
The summary ROC curve that is chosen does not necessarily correspond with the true 
curves of the studies. The true study specific curves might have a substantially 
different slope, or there might be no study specific curves at all. The latter could be 
the case when the diagnostic test cannot be thought of as a continuous test. However, 
even in this case the analysis makes sense, since the method does not explicitly model 
study specific ROC curves and does not assume the existence of study specific curves. 
In this subsection we show that under an extra assumption the bivariate model can 
also be interpreted as a model that describes the distribution of the individual study 
ROC curves. 

Suppose that in the (η, ξ) space  the study specific ROC curves are straight lines with 
a common slope β. The lines of the different studies then only differ in level, 
characterised by the intercept αi for study i: 
η = αi + β ξ 
We assume that the αi’s are normally distributed with mean α  and variance σα2. The 
observations consist of an estimate ( ξ̂i ,η̂i ) of one pair (ξi, ηi) per study. To be able to 
estimate the parameters, we have to assume a model that describes how these pairs 
arise across studies. For instance we could assume that ξi values are drawn from a 
normal distribution with meanξ and variance σξ2, independent of αi. This means that 
the individual investigators in selecting their ξi value are not lead by the level of their 
line. We could also assume another known non-zero covariance between ξi and αi. 
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However, it is not possible to estimate this covariance, since otherwise the model 
would be overparametrised. Notice that the model assumptions lead to a bivariate 
normal distribution for (ξi, ηi). In fact, we have the model introduced in section 5.1 
back, only with a different parameterisation. It is easy to check that β = σξη/ σξ2, thus 
the average line leading to the summary ROC curve is the η on ξ regression line. We 
see that we now can interpret the model as a random intercept regression model with 
average line η = α +βξ and random varying parallel study specific lines η = αi + βξ. 
The variation between the study specific ROC curves is characterised by σα2. 
However, we should realise that this interpretation rests on the assumption that the 
point on the study specific line for which we observe an estimate, is chosen 
independently from the level αi. It is an untestable assumption and might be 
questionable. 
Another possible assumption would be that the y-coordinate of the point (ξi, ηi) for 
which we observe an estimate has a normal distribution with mean η  and variance 
ση2, independent from αi. This again leads to the bivariate normal model for (ξi, ηi) 
with yet another parameterisation. It is easy to check that in this case β = ση2/σξη, thus 
the average line leading to the corresponding summary ROC curve is the ξ on η 
regression line. Again we can interpret the model as a random intercept regression 
model, but now with another value of the slope. Of course this interpretation rests on 
the untestable assumption of independence of αi and ηi, and whether that is a 
reasonable assumption might be questionable.  
Another assumption that could be adopted, in the spirit of the Littenberg & Moses 
method[2], is that the sum of the x- and y-coordinate of the point (ξi, ηi), Si = ξi+ηi , has 
a normal distribution with mean s and variance σs2, independent from αi. Again this 
induces a bivariate normal model for (ξi, ηi) with yet another parameterisation. One 
can check that in this case β =  (ση2 + σξη) / (σξ2 + σξη), the slope of the regression line of 
D on S. Now the model can also be interpreted as a random intercept model Di = α’i + 
β’Si in the (S,D) space. This interpretation rests on the assumption that the individual 
investigators selected their value Si independent of the level of their individual line, 
an assumption that might be questionable. 
In general, we could make the assumption that for some reasonably chosen numbers 
a and b, the value of aξi+bηi is normally distributed independent of αi. This always 
leads to a bivariate normal model for (ξi, ηi) and a β which can be expressed in the 
(co)variance parameters σξ2, ση2 en σξη. Suppose we take a=1 and b=0, then we get the 
first one of the above mentioned cases, where the summary ROC line is identical to 
the η on ξ regression line. If we take a=0 and b=1, then we are in the case where the 
summary ROC line is the ξ on η regression line. If we take a=b=1, then this leads to 
the S on D summary ROC line. 
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To see how the approach of Rutter and Gatsonis[9] fits in, we rewrite their model 
denoted by equation (5) as: 

βθ βξ η
α βξ η

= +
= − +

2 i i i

i i i

 

where we have replaced exp(-β) by β, and αiexp(-β/2) by αi. The study specific ROC 
lines are then expressed as η = αi + β ξ. Rutter and Gatsonis[9] assume that θi is 
independent from αi. It follows they assume that aξi+bηi with a = β and b = 1 is 
independent from αi. One can easily check that in this case β = ση/σξ, the value already 
mentioned in subsection 5.3. In the (α, θ) space, the study specific lines have slope 
zero, therefore the independence assumption may not be unreasonable. However, the 
assumption remains untestable. Rutter and Gatsonis argue: 'The  assumed conditional 
independence of θi and αi reflects assumptions implicit in ROC analysis. In the 
context of ROC analysis, positivity threshold and accuracy are independent test 
characteristics that together impose correlation between a test’s sensitivity and 
specificity.' We are not able to fully understand this argument, particularly not 
because in their article this argument precedes the choice of the labels for X0 and X1 
(see our equation (5)). In section 5.3 we have seen that different choices of the 
labelling can lead to different β’s. This seems to contradict their argument, because 
the argument cannot be true independent of the labelling. 
We conclude from this subsection that the bivariate model can be interpreted as a 
random intercept regression model, describing the distribution of the individual ROC 
curves and the variation between them. However, this interpretation always rests on 
an intestable assumption about independence of the level of the study specific line 
from a certain specified linear combination of the x- and y-coordinate of the point on 
the ROC curve for which the estimate is provided. Once one believes the assumption 
being reasonable, the interpretation is allowed.        
 
5.5 Random intercept and slope model  

Each of the random intercept models mentioned in section 5.4 can be extended with 
an extra random effect that allows the slopes of the individual study lines to vary as 
well. Analogously to what we did in section 5.4, again we have to assume that for 
some reasonably chosen numbers a and b, the value of aξi+bηi is normally distributed, 
independent of the study specific line, i.e. independent of αi and βi.  
Suppose we take the a=1 and b=0, the choice that is associated with the η on ξ 
regression line. The model is: 
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with N  (18)  

Analogous to the bivariate model above, this model could be termed a tri-variate 
model, since there are three random effects involved. Note that, even with the 
approximate measurement error model (12), the model is no longer a GLMM, but a 
Generalised Linear Mixed Model. Therefore it does not have a practical advantage 
anymore to use the approximate measurement error model. The exact within study 
measurement error model now assumes that, given (ξi, αi, βi), the true and false 
positive numbers Yij (with j=0/1 for non-diseased/diseased) are independent 
Binomial(πij, nij) distributed with  

π ξ
π α β ξ

=
= +1

log ( )
log ( )

io i

i i i i

it
it

 (19) 

The summary ROC curve is obtained by transforming the estimate of η α βξ= +  back 
into the ROC space.  
If one prefers the specification a=0 and b=1, corresponding to the ξ on η regression 
line as summary ROC curve, extension of the random intercept normal model is done 
analogously, by interchanging the role of ηi and ξi.  
If one is willing to assume that ξi+ηi is independent from the study specific regression 
line, which corresponds to the D on S regression summary ROC curve, the extended 
model can be formulated as 
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The within study measurement error model assumes that, given (Si, αi, βi), Yij (j=0,1) 
are independent Binomial(πij, nij) distributed with  

π α β
π α β

= + +
= − + −1

log ( ) ( (1 ) ) / 2
log ( ) ( (1 ) ) / 2

io i i i
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Also the Rutter&Gatsonis model can be extended with a random slope as follows. 
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The within study measurement error model assumes that, given (θi, αi, βi), Yij (j=0,1) 
are independent Binomial(πij, nij) distributed with  
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All models in this section can be fitted with SAS Proc NLMixed. As an example we 
give the syntax of fitting the summary ROC curve based on the D on S regression in 
the appendix.  
It might be surprising that it is possible to fit the model with random slopes, while 
there is only one point per study available. However, one should realise that under 
this model (ξi, ηi) is not longer bivariately normal, but has another non-normal 
bivariate distribution. It is the deviation from the normal distribution that makes the 
parameters identifiable. See van Montfort et al.[38] for a comparable problem.   
For the random intercept model discussed in the previous subsection, the model for 
(ξi, ηi) and therefore for the observations ( ξ̂i ,η̂i ) was the same, irrespective of the 
values of a and b. In the present random intercept and random slope models, the 
models become really different for different values of a and b. In practice, one might 
try different choices, and select the model that fits the data best.  
For the bivariate model or random intercept model, except for the models with the η 
on ξ and ξ on η regression lines, were invariant with respect to changing of the 
disease and non-disease label. Unfortunately, this nice property is lost in the random 
intercept/random slope model.    
 
 

6 Results  
 
6.1 Random intercept model 

 
Example 1: FNAC of the Breast[18]  

We fitted the random intercept model as described in section 5.1 on the data of the 29 
studies of the meta-analysis of Giard et al.[18]. The estimates of the means and 
variances of ηi and ξi resulting from the approximate and exact likelihood approach 
are presented in the upper part of Table 2. Based on these estimates, the results for the 
five different choices of the summary ROC curve (section 5.2) are presented in the 
lower part of Table 2.  
In Figure 3 the different ROC curves are depicted, in the logit-logit space as well as in 
the ROC space. Also the 95% coverage regions are given. These regions are based on 
the fitted bivariate distribution and estimate the area that contains approximately 95% 
of the true pairs of (logit(FPR), logit(TPR)) and (FPR, TPR) respectively.  
From Table 2 and the Figure 3 it is clear that the results of the exact and approximate 
approach are similar in this data example. The exact approach results in a somewhat 
more favourable average sensitivity and specificity. 
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Table 2. First data example: FNAC of the breast[18]. In the upper part estimates are given of 
the random intercept model (section 5.1), using approximate as well as exact likelihood. In the 
lower part the parameter estimates are given for the five different choices of the summary 
ROC curves discussed in section 5.2. 
 

Parameter Approximate likelihood Exact likelihood 
 Estimate (se) Estimate (se) 

mean logit(TPR)    (η ) 1.774 (0.114) 1.839 (0.119) 

mean logit(FPR)    (ξ ) -2.384 (0.201) -2.547 (0.225) 

var(logit(TPR))      ( ησ
2 ) 0.286 (0.093) 0.316 (0.104) 

var(logit(FPR))      ( ξσ
2 ) 0.990 (0.313) 1.297 (0.411) 

cov(logit(TPR),logit(FPR)) ( ηξσ ) 0.146 (0.132)  0.141 (0.155) 

 

Type of summary ROC Approximate likelihood  Exact likelihood 
 α (se) β (se)  α (se) β (se) 

1. η on ξ 2.126 (0.32) 0.148 (0.13) 2.115 (0.32) 0.108 (0.12) 
2. ξ on η  6.431 (3.95) 1.954 (1.65) 7.560 (6.13) 2.246 (2.39) 
3. D on S 2.680 (0.37) 0.380 (0.15) 2.647 (0.37) 0.318 (0.14) 
4. Rutter & Gatsonis 3.054 (0.31) 0.537 (0.12) 3.096 (0.32) 0.494 (0.11) 
5. Major axis 2.249 (0.42) 0.199 (0.17) 2.196 (0.41) 0.141 (0.15) 

 
 
This was to be expected beforehand for two reasons. First, as mentioned in section 3, 
adding 0.5 to the numbers in the fourfold table, as is done in the approximate 
approach, results in estimated mean sensitivity and specificity that are biased 
downwards, pushing the ROC curve away from the left upper corner. Second, as 
shown by Chang et al.[39], even if it is not needed to add 0.5, the estimates of the 
mean sensitivity and specificity are still somewhat biased towards 0.5. This is due to 
the fact that the approximate approach does not account for the correlation between 
the logit(TPR) and its variance, and between the logit(FPR) and its variance. 
From Table 2 and Figure 3 it is clear that the difference among the different types of 
the summary ROC curve is substantial, especially for the first two choices 'η on ξ' and 
'ξ on η'. As one can see on the basis of the formulas for the slopes given in section 5.2, 
the first two types ('η on ξ' and 'ξ on η') give a kind of lower and upper bound for the 
estimated summary ROC curves, and types 3 to 5 lie between these two curves. In 
fact, the slopes of choices 3 to 5 could be considered different kinds of 'weighted 
averages' of the slopes of methods 1 and 2.  
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Figure 3. SROC curves for the five different choices of the summary ROC curve, as a graphical 
illustration of Table 2. The curves are presented in logit-logit space (Figure 3a) as well as in the 
ROC space (Figure 3b). Also the 95% coverage regions are given as an ellipse in Figure 3a and 
a 'triangle' in Figure 3b. The solid lines present the results of the approximate likelihood, the 
grey dashed lines present the results of the exact likelihood. In Figure 3c the  SROC curves of 
the random intercept and slope model (solid lines) versus the fixed Littenberg & Moses model 
(grey dashed lines) are given together with their confidence intervals. 
 
 
In this example the curves for approaches 3, 4 and 5 lie closer to the regression of η on 
ξ, but in general that is not the case. Results depend on the variances of ξi and ηi, and 
the covariance between them. The more similar the variances of ξi and ηi are, the more 
similar will be the results of approaches 3-5.  
For all summary ROC curves given in Figure 3a and 3b a confidence band can be 
calculated. As an example, we have drawn in Figure 3c the 'D on S’ summary ROC 
curve together with its confidence band. From all 5 types of summary ROC curves, 
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this 'D on S' summary ROC curve should be most comparable to the standard 
summary ROC curve from the Littenberg&Moses[2] (L&M) approach, which also 
estimates the regression of D on S. To compare the two, we have also drawn the L&M 
summary curve and its confidence band in Figure 3c. The L&M summary ROC curve 
has a slope that is considerably steeper than our 'D on S' curve, leading to larger 
estimated sensitivities if the specificity is small, and smaller estimated sensitivities if 
the specificity is large. This is not a general pattern, as will be seen from the second 
data example. Furthermore, it is seen that the L&M approach grossly underestimates 
the variability in the data, leading to a much too narrow confidence band. This is due 
to the fact that the L&M approach is based on a fixed effects model, which 
erroneously assumes that there is no between studies variability. 
 
Second example: Imaging tests for coronary artery disease[22]  

We fitted the random intercept model (section 5.1) on the data of the 149 studies 
included in the meta-analysis of Heijenbrok-Kal et al.[22]. The estimates of the means 
and variances of ηi and ξi based on the approximate and exact likelihood approach are 
presented in the first part of Table 3. Based on these estimates, the results for the five 
different choices of the summery ROC curve (section 5.2) are presented in the lower 
part of Table 3.  
In Figure 4a and b the different summary ROC curves are given for the exact and the 
approximate approach, in the logit-logit space as well as in the original ROC space.  
Also in this example the results of the approximate and exact likelihood approach are 
similar. In the approximate likelihood approach the variances of ξ and η are almost 
equal, which results in very little differences among the methods 3 to 5. For the exact 
likelihood approach the difference between the two variances is somewhat larger, 
leading to somewhat larger differences between the types 3 to 5. Notice that in Figure 
4 considerably more than 5 percent of the studies fall outside the 95% coverage 
region. However, this is expected since the coverage ellipse describes the variation 
between the true pairs of sensitivity and specificity, while the points in the plot 
represent the estimates (observed) pairs of sensitivity and specificity. The observed 
points, of course, should show more variation due to within study sampling 
variability. In Figure 4c we compare again our 'D on S' summary ROC with the 
standard L&M one. In contrast to the previous example, now the slope of the L&M 
ROC is smaller than that of our 'D on S' curve. Again it is clear that L&M method 
leads to smaller standard errors. 
As a by-product of fitting random effects model most programs provide the empirical 
Bayes[40,41] estimates of the study specific random effects. These can be easily used 
to calculate the estimates of the study specific ROC curves. 
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Table 3. Second data example: Imaging tests for coronary artery disease[22]. In the upper part 
estimates are given of the random intercept model (section 5.1), using approximate as well as 
exact likelihood. In the lower part the parameter estimates are given for the five different 
choices of the summary ROC curves discussed in section 5.2. 
 

Parameter Approximate likelihood Exact likelihood 
 Estimate (se) Estimate (se) 
mean logit(TPR)    (η ) 1.257 (0.057)  1.339 (0.061) 

mean logit(FPR)    (ξ ) -1.560 (0.071) -1.851 (0.085) 

var(logit(TPR))      ( ησ
2 ) 0.333 (0.057) 0.406 (0.066) 

var(logit(FPR))      ( ξσ
2 ) 0.337 (0.074) 0.585 (0.117) 

cov(logit(TPR,logit(FPR)) ( ηξσ ) 0.182 (0.049)  0.272 (0.065) 

 

Type of summary ROC Approximate likelihood  Exact likelihood 
 α (se) β (se)  α (se) β (se) 

1. η on ξ 2.098 (0.21) 0.540 (0.13) 2.199 (0.18) 0.465 (0.10) 
2. ξ on η  4.106 (0.69) 1.827 (0.45) 4.102 (0.58) 1.493 (0.31) 
3. D on S 2.802 (0.26) 0.991 (0.17) 2.802 (0.23) 0.791 (0.12) 
4. Rutter & Gatsonis 2.805 (0.21) 0.993 (0.13) 2.880 (0.19) 0.833 (0.10) 
5. Major axis 2.796 (0.37) 0.987 (0.24) 2.677 (0.28) 0.723 (0.15) 

 
 
Empirical Bayes estimates are in a certain sense the optimal estimates of the study 
specific curves that take into account the estimated distribution of curves, see for 
instance Carlin & Louis[40]. As an example we give in Figure 5a the estimated curves 
of 17 studies of our example.        
 
6.2 Random intercept and slope model  

As discussed in section 5.4 the random intercept model can be extended with an extra 
random effect for the slope. We could fit the extended model for all 5 different choices 
of the summary ROC curve. As an example we will only show the results for the 'D 
on S' regression line in the second data example. This choice is motivated by the fact 
that it is more or less natural to regress the log odds ratio of a positive test result for 
diseased individuals relative to healthy individuals (D, sometimes called the 
diagnostic log odds ratio) on a kind of threshold value of the test (S). 
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Figure 4. Second data-example of Heijenbrok-Kal et al. ROC curves for the five different 
choices of the summary ROC curve, as a graphical illustration of Table 3. The curves are 
presented in logit-logit space (Figure 4a) as well as in the ROC space (Figure 4b). Also the 95% 
coverage regions are given as an ellipse in Figure 3a and a 'triangle' in Figure 4b. The solid 
lines present the results of the approximate likelihood, the grey dashed lines present the 
results of the exact likelihood. In Figure 4c the SROC curves of our random intercept and 
slope model (solid lines) versus the fixed Littenberg & Moses model (grey dashed lines) are 
given together with their confidence intervals.  
 
 
Moreover the 'D on S' regression line lies in between the other choices of the summary 
ROC curves and is never an extreme choice.  
The results for the model denoted by equation (20) are given in Table 4. Note that 
both σSα and σSβ are assumed to be zero. 
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Figure 5a

Figure 5b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The Summary ROC curve (black solid line in the middle of the pictures) together 
with 17 study-specific ROC curves of the data-example of Heijenbrok-Kal are presented after 
fitting the exact random intercept model (Figure 5a) and the exact random intercept and slope 
model (Figure 5b).  
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Table 4. Results for the model denoted by equation (20) of the 'D on S' regression with 
random intercept and slope estimated with exact likelihood. 
 

Parameter  Estimate (se) 

mean threshold (S )  -0.5012 (0.121) 

mean intercept (α )  3.1378 (0.087) 

mean slope (β )  -0.0953 (0.087) 

var(threshold) (σ 2
S )  1.52 (0.25) 

var(intercept) ( ασ
2 )   0.30 (0.13) 

var(slope) ( βσ
2 )  0.10 (0.08) 

cov(int, slope) ( αβσ )  0.09 (0.06) 

 
 
From Table 4 we can derive the following equation: D = 3.1378 - 0.0953·S, which is 
equivalent to η = 2.865 + 0.826·ξ. This regression line is almost equal to the 'D on S' 
type of summary ROC curve in Table 3, which is equal to η = 2.802 + 0.791·ξ. 
We can assess with the likelihood ratio test whether the extra random effect gives a 
significant improvement of the model. In this example the result is: χ2 (df=2) = 3.8, 
p=0.15. Hence the extra random effect gives no significant improvement of the model 
and could be left out, resulting in study-specific ROC-curves which will all have the 
same slope.  
In the extended model we have two random effects per study, αi and βi. As a by-
product SAS Proc NLMixed gives the estimates of them and we can calculate the 
study specific ROC curves. Since the asymmetry parameters β can differ now between 
studies, the study specific ROC curves can cross. This is in contrast with the random 
intercept model where that is not possible (see Figure 5a). This is illustrated in 
Figure 5. 
 
 

7 Discussion  
 
Meta-analysis of diagnostic tests requires statistical techniques that analyse pairs of 
related summary statistics (e.g. sensitivity and specificity) rather than a single 
statistic. In the literature numerous meta-analyses are published in which one is 
interested in meta-analysing only sensitivities or only specificities. For these 
situations the standard method of analysis is the DerSimonian-Laird univariate 
random effects model. The method we propose in this chapter is a direct extension of 
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that approach. We analyse sensitivities and specificities simultaneously using a two-
dimensional random effects model. This model implies a linear relationship between 
the (logit transformed) sensitivity and specificity, which can be transformed into ROC 
space to obtain a summary ROC curve. We show that there are different choices for 
characterizing the estimated bivariate normal distribution by a regression line (i.e. the 
summary ROC curve). Advantages of this approach are, first, that it puts meta-
analysis of ROC curve data within the framework of mainstream meta-analysis 
methods. Second, no assumptions about individual study curves have to be made. 
Third, the method does not require an underlying continuous diagnostic test, and 
hence it can also be applied to intrinsically dichotomous tests.  
However, in section 5.4 we have shown that the bivariate model can also be 
interpreted as a model that describes the distribution of the individual study ROC 
curves and the variation between them. Under an extra independence assumption 
concerning how the reported points on the individual study specific ROC curves are 
selected, the model also provides individual study specific ROC curves. Nevertheless, 
this assumption remains untestable. The interpretation of the individual ROC curves 
rests on this assumption and interpretation is allowed once one believes the 
assumption is reasonable.  
When using a random intercept model, we assume that the study specific ROC curves 
are parallel lines around the summary ROC curve. In this chapter we have shown that 
it is possible to relax this assumption. It might be surprising, but we show that it is 
also possible to fit a random slope next to a random intercept, even when there is only 
one point per study available. When we fit this random intercept and slope model, 
the study specific ROC curves of course still lie around the summary ROC curve, but 
are not necessary parallel to it anymore.  
Our modelling approach can also be seen as an extension of the fixed effects method 
of Littenberg and Moses[2]. Despite a number of shortcomings, discussed in section 3, 
the method of Littenberg and Moses[2] still seems to be the most popular method for 
meta-analysis of diagnostic accuracy data where pairs of sensitivity and specificity 
per study are available. This is probably due to the fact that the method is very easy to 
carry out in practice. Although the method of Rutter and Gatsonis[9] is an 
appropriate alternative of the Littenberg and Moses method without its shortcomings 
and has been available for half a decade, we found from a literature search that this 
method has rarely been used. This is probably due to the fact that it is considered to 
be a complicated and laborious method. The method could become more popular in 
the future, since it was recently pointed out how this method can be performed in a 
non-Bayesian way using standard statistical software[30]. In this chapter we have 
shown how the method of Rutter & Gatsonis relates to our bivariate model. 
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Depending on the kind of extra independence assumption one is willing to make, 
different models are obtained describing individual study ROC curves and leading to 
different summary ROC curves. The method of Rutter & Gatsonis is just one of them.   
In this chapter we are the first to put forward the issue of different types of summary 
ROC curves. We discussed 5 types of summary ROC curves, each of which has its 
own interpretation and properties. In the Littenberg and Moses approach, the choice 
is made explicitly as the regression of D on S. In the approach of Rutter & Gatsonis[9], 
the choice is implicitly made, and we pointed out that it is a kind of geometric mean 
between the regression line of logit(TPR) on logit(FPR) and the regression line of 
logit(FPR) on logit(TPR). Thus the two methods estimate different summary curves 
and the resulting curves are therefore in principle not the same.  
We fitted our models with standard software based on straightforward likelihood 
methods. In our examples this approach worked well, although sometimes some 
convergence problems were met. In our two clinical data examples these convergence 
problems were encountered by specifying better starting values. However, we can 
imagine that, especially for small meta-analyses, this could be more of a problem. An 
alternative is to fit the models in a Bayesian way. This can be done using the free 
available software program WinBugs. The advantage is that one is very free in 
modelling, relaxing some model assumptions for instance. Also in applications with a 
relatively small number of studies, the Bayesian method might perform better, since 
the standard likelihood is based on large sample theory. A disadvantage is that it is 
more time consuming, can suffer from convergence problems, and is less easily done 
by non-statisticians. 
In this chapter, using the framework of multivariate meta-analysis[15,35,42,43], we 
have shown how the analysis of ROC curve data can be performed within the 
framework of standard meta-analysis methods. The random intercept model that we 
proposed solves the shortcomings of the L&M method and is very easily fitted in 
practice using standard statistical software. The syntax is given in the appendix to 
make the model easily accessible to meta-analysists. It was surprising to discover that 
the model of Rutter & Gatsonis, apart from a different parameterisation, is 
theoretically equivalent to our bivariate meta-analysis method. The methods 
presented in this chapter are easily extended with covariates. If a GLMM program is 
used to estimate the random intercept model denoted by equation (9), both the mean 
logit(FPR) and mean logit(TPR) could be allowed to depend on covariates. If a 
Generalised Linear Mixed Model program such as SAS Proc NLMixed is used, there 
are many more possibilities, depending on how the model is parameterised. For 
instance, suppose one wishes to characterise the accuracy of the diagnostic test with 
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the 'D on S' regression line. Then it is possible to allow the intercept and/or the slope 
to depend on (possibly different sets of) covariates.  
The bivariate model we proposed in this chapter can be fitted using approximate or 
exact likelihood. Using approximate likelihood has the advantage that a GLMM 
program can be used, which is widely available. The exact likelihood method can 
only be used if one has an appropriate Generalised Linear Mixed Model program 
available. Unfortunately these programs are still rather scarce. Simulation studies are 
needed to compare the two approaches. 
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Appendix 
 
In this appendix we provide the SAS syntax needed to reproduce the results given in 
Table 2 and 4. First we describe the data format that is needed. We have two records 
per study, one for the diseased and one for the healthy group, as in the following 
table. 
 

study group n npos disease healthy y est 

. . . . . . . 0.20 

. . . . . . . 0.10 

. . . . . . . 0.20 

1 1 1009 70 0 1 -2.58974 0.01525 

1 2 1068 979 1 0 -2.58974 0.01219 

2 3 166 3 0 1 -3.84405 0.29183 

2 4 73 51 1 0 -3.84405 0.06386 

3 5 949 25 0 1 -2.77988 0.01914 

: : : : : : : : 

 

The meaning of the variables is: 
study  = number of the study 
group  = unique identifier for the diseased and healthy group 
n  = number per group 
npos  = number with positive diagnostic test 
disease  = 0 for healthy group, = 1 for diseased group 
healthy  = 1 for healthy group, = 0 for diseased group 
y  = ln(npos/(n-npos)) 
est  = 1/(npos+0.5) + 1/(n-npos+0.5) 
The first three lines have only a non-missing value for the variable est. These three 
values serve as starting values for the variance of ξi.  
 
The following syntax produces the approximate likelihood results given in the upper 
part of Table 2. 
proc mixed cl method=ml data=giardcol; 
class study d group; 
model y = disease healthy/noint s cl covb ddf=1000,1000; 
random disease healthy / subject=study type=un s; 
parms/parmsdata=giardcol eqcons=4 to 61; 
repeated/group=group; 
run; 
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The different summary ROC curves have to be calculated by hand based on the 
output of the program. The same results can also be obtained with SAS Proc 
NLMixed. The advantage is that the parameters of the summary ROC curves can be 
specified as derived parameters. The syntax is as follows. 
 
proc nlmixed data=giardcol; 
parms meaneta=1.8 meanksi=-2.4 vareta=0.3 varksi=1 covksieta=0.15 ; 
model y~normal(eta*disease+ksi*healthy,est); 
random ksi eta~normal([meanksi,meaneta],[varksi,covksieta,vareta]) 
subject=study; 
estimate 'eta on ksi: beta' covksieta/varksi; 
estimate 'eta on ksi: alpha' meaneta-covksieta/varksi*meanksi; 
estimate 'ksi on eta: beta' vareta/covksieta; 
estimate 'ksi on eta: alpha' meaneta-vareta/covksieta*meanksi; 
estimate 'D on S: beta' (vareta+covksieta)/(varksi+covksieta); 
estimate 'D on S: alpha' meaneta- (vareta+covksieta)/ 
(varksi+covksieta)*meanksi; 
estimate 'R&G: beta' (vareta**0.5)/(varksi**0.5); 
estimate 'R&G: alpha' meaneta-(vareta**0.5)/(varksi**0.5)*meanksi; 
estimate 'major axis: beta' (vareta-varksi+((vareta-varksi) 
**2+4*covksieta**2)**0.5)/(2*covksieta); 
estimate 'major axis: alpha' meaneta-(vareta-varksi+((vareta-
varksi)**2+4*covksieta**2)**0.5)/(2*covksieta)*meanksi; 
run; 

 
The following syntax reproduces the right half of Table 2. 
 
proc nlmixed data=giardcol; 
parms meaneta=1.8 meanksi=-2.4 vareta=0.3 varksi=1 covksieta=0.15 ; 
pi = 1/(1+exp(-(eta*disease+ksi*healthy))); 
model npos~binomial(n,pi); 
random ksi eta ~ normal([meanksi,meaneta],[varksi,covksieta,vareta]) 
subject=study; 
estimate 'eta on ksi: beta' covksieta/varksi; 
estimate 'eta on ksi: alpha' meaneta-covksieta/varksi*meanksi; 
estimate 'ksi on eta: beta' vareta/covksieta; 
estimate 'ksi on eta: alpha' meaneta-vareta/covksieta*meanksi; 
estimate 'D on S: beta' (vareta+covksieta)/(varksi+covksieta); 
estimate 'D on S: alpha' meaneta-(vareta+covksieta)/ 
(varksi+covksieta)*meanksi; 
estimate 'R&G: beta' (vareta**0.5)/(varksi**0.5); 
estimate 'R&G: alpha' meaneta-(vareta**0.5)/(varksi**0.5)*meanksi; 
estimate 'major axis: beta' (vareta-varksi+((vareta-varksi)**2 +  
                             4*covksieta**2)**0.5)/(2*covksieta); 
estimate 'major axis: alpha' meaneta-(vareta-varksi+((vareta-varksi)**2 +     
                             4*covksieta**2)**0.5)/(2*covksieta)*meanksi; 
run; 
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The following syntax produces the results of Table 4. 
 
proc nlmixed data=example2 df=1000; 
parms malpha=2.8 mbeta=-0.1 mS=-0.5 valpha=0.4 covalbet=0 vbeta=0 vS=0.5; 
  D=alpha+beta*S; 
  eta=exp(((S+D)/2)*disease + ((S-D)/2)*healthy);  
  pi=eta/(1+eta); 
model npos ~ binomial(n,pi); 
random alpha beta S ~ 
normal([malpha,mbeta,mS],[valpha,covab,vbeta,0,0,vS]) 
       subject=study; 
estimate 'alpha DS' (malpha)/(1-mbeta);  
estimate 'beta DS' (1+mbeta)/(1-mbeta);  
run; 
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Abstract 
 
The use of standard univariate fixed and random effects models in meta-analysis has 
become well known in the last twenty years. However these models are unsuitable for 
meta-analysis of clinical trials that present several survival estimates during a follow-
up period illustrated by survival curves. Therefore special methods are needed to 
combine the survival curve data from different trials in a meta-analysis. For this 
purpose only fixed effects models have been suggested in the literature. In this 
chapter a multivariate random effects model is proposed for joint analysis of survival 
proportions reported at multiple times in different studies, to be combined in a meta-
analysis. The model could be seen as a generalization of the fixed effects model of 
Dear, published in 1994. We illustrate the method by a simulated data example as 
well as a clinical data example of meta-analysis with aggregated survival curve data. 
All analyses can be done with standard general linear MIXED model software. 
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1 Introduction 
 
Since the introduction in 1976[1] of the term 'meta-analysis', i.e. the quantitative 
approach to summarize the outcomes of several studies, it has become an increasingly 
important technique in clinical research. The two main statistical approaches to meta-
analysis are the fixed effects model and the random effects model. Nowadays it is 
more or less common practice to analyse the data with the univariate random effects 
meta-analysis model as proposed by DerSimonian and Laird[2]. If one has more 
outcome parameters per study, usually each outcome is analysed separately. Despite 
of its many disadvantages also the fixed effects model is still used, thereby ignoring 
possible between-trial variation, leading to overestimation of the precision of the 
estimate and restricting the inference only to the trials included in the meta-
analysis[3, 4].  
With the increasing popularity of meta-analysis, also the field of application of meta-
analysis is growing. In earlier days the main interest was to statistically pool the 
results of independent but 'combinable' studies[5] regarding one specific outcome 
variable at a time. This is still common practice in most meta-analyses. In the last 
years a new trend is recognizable in meta-analyses. Clinical interest does not concern 
only one specific outcome measure but the combination of several outcome measures 
that are presented in the individual studies. Especially the relationships between 
these outcome measures could be of special interest. A famous example is the many 
research that is done on the subject of the relationship between treatment effect and 
baseline risk[4, 6-16]. Another example is a meta-analysis of clinical trials with a 
relevant clinical outcome, called the 'true' endpoint, as well as an early response 
variable, called the  'surrogate' endpoint. The goal of such a meta-analysis is to 
investigate the association between treatment effects on the surrogate and true 
endpoint [17-22]. A clinical application of combining (three) multiple endpoints in a 
meta-analysis of clinical trials in which the univariate and multivariate approaches 
are compared, has recently been published[23].  
Another important type of multiple endpoints arises when each study reports 
survival proportions at a series of time points. Naturally, within one study the 
reported survival proportions are correlated over time. This means that the data have 
a multivariate nature and the analysis becomes more complicated. This is the central 
issue of this chapter.  
In the literature several methods are proposed for meta-analysis of survival data. If 
the meta-analysis concerns a comparison between two treatment groups, the simplest 
approach would be to summarize the difference between the two treatment arms of 
each contributing trial by a single number like the (log) hazard ratio, along with its 
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standard error, and use standard methods of meta-analysis to combine them[24, 25]. 
Whitehead and Whitehead[26] discussed the meta-analysis of survival data, 
combining efficient score statistics for the hazard ratio of an assumed proportional 
hazards model. However, they expressed doubt over the chances of finding enough 
information about the required statistics such as the log-rank test statistics, or the 
hazard ratio estimates and their standard errors. Parmar et al.[27] presented a number 
of methods of extracting estimates of these statistics in a variety of situations. But 
even with these suggestions, it is not always possible to calculate the necessary 
quantities. A minor problem of this approach might be that it cannot use information 
from single-arm trials [24].  
The basic information that is reported on the survival in the two treatment groups is 
often just a series of survival proportions in a study for a number of time points like 
each year, or twice a year, but the choice of the follow-up times could easily be 
different across the studies. Therefore the data are mostly very unbalanced and 
difficult to analyse with standard methods. To tackle this problem, investigators often 
reduce the survival curve to one or some fixed points in time, e.g. the three-year 
survival rate. Then the data can be analysed with the standard univariate random or 
fixed effects model for each of the chosen time points separately [28]. If a trial does 
not report survival for a chosen time point, it can be left missing or an estimate can be 
imputed using inter- or extrapolation. Or, like in a recent article[29], follow-up data 
from years 2 to 3, 4 to 5, and 6 to 8 are combined and reported as three-, five- and 
eight-year end points, respectively. And for the subgroup of diabetic patients in this 
meta-analysis outcomes were reported 'where available' at 4 and 6.5 years. It is not 
clear what happens if these outcomes are not reported at these exact time points. 
Besides, the estimate of the 4-year end point could be based on completely other trials 
and patients than the estimate of the 6.5-year end point. In this approach, while the 
meta-analyst might be relieved to be able to use standard univariate statistical 
techniques, he completely neglects the information about the course of the survival 
rates over time.  
Obviously, this last approach is not the optimal solution and better methods have 
been proposed[24, 30-33]. In these methods data concerning entire survival curves are 
combined in a meta-analysis, instead of artificially reducing the data to just one single 
survival statistic or to a survival estimate on just one fixed point in time. In the 
overview article of Earle et al.[34], all five methods found in the literature to combine 
published survival curves were assessed. In this assessment the resulting summary 
survival curve of each method was compared with the 'golden standard': the curve 
calculated from the corresponding individual patient data (IPD). A brief description 
of each of the five methods is given in the appendix. In this overview Earle et al.[34] 
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made clear that the most recent methods to combine aggregated survival curve data 
were published in 1994 and that all the methods are fixed effects models. Although 
the method of Dear[24] was not significantly more accurate than the other models, it 
is one of the most recommended methods according to the review of Earle et al.[34].  
The model of Dear[24] is an extension of the method of Raudenbush et al.[35], who 
showed how to analyze effect sizes for two or more outcomes jointly in a fixed-effects 
generalized-least-squares (GLS) regression model that allows adjustment for study-
level covariates[36]. Dear[24] showed how to estimate the correlations among the 
serial survival proportions, allowing the survival proportions reported at multiple 
times by the trials to be analysed together in a fixed-effects model[36]. Berkey et 
al.[36] demonstrated that fixed-effect regression models for correlated outcomes may 
seriously underestimate the standard errors of regression coefficients when the 
regression model does not explain all the among-trial heterogeneity. Therefore Berkey 
et al.[36] proposed a random-effects approach for the regression meta-analysis of 
multiple correlated outcomes.  In the Tutorial of van Houwelingen et al.[4] is shown 
how this model can be fitted easily with standard software.  
In this chapter we propose a multivariate random effects model for joint analysis of 
survival proportions reported at multiple times in different studies. The method 
makes use of the complete and possibly unbalanced set of reported survival 
proportions in all studies, and no inter- or extrapolation to common chosen endpoints 
is needed. The model could be seen as a generalization of the fixed effects model of 
Dear[24] or as a combination of the models of Dear[24] and Berkey et al.[36] and is 
fitted with standard software as described in van Houwelingen et al.[4]. The method 
is applied on a simulated data example as well as on a clinical data example of meta-
analysis with aggregated survival curve data, which are described in Section 2. The 
clinical data example has also been used by Dear to illustrate his method. In Section 3 
the model of Dear[24] is presented, after which we propose our generalization of that 
model. In Section 4 the results of our model are discussed for the simulated data 
example, and the results of the clinical data example are compared to the results of 
Dear[24]. In Section 5 we conclude with a discussion.   
 
 

2 Data sets  
 
To illustrate our method, we use two datasets. The first one is a simulated dataset, 
because of the lack of raw, unbalanced, survival curve meta-analysis data sets in the 
literature. This data set is described in Section 2.1. The second data set is a real clinical 
data example and is described in Section 2.2. Since Dear used the same clinical data 
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set, we will compare the results of our method to the results of the method of Dear 
later on. 
 
2.1 Simulated dataset 

In real life the world of a meta-analyst can be quite complicated. A number of 
scientific papers relevant for the research question can be found, but in most of the 
cases the authors publish very different kinds of results. To get an example, we made 
a meta-analysis data set consisting of 10 trials, each containing a treatment arm and a 
control arm. In this example the first author presents survival rates after each half a 
year during three years. The second author only presents survival rates at whole 
years, that means after 1, 2 and 3 years. The third author publishes annually survival 
rates for each half a year, so after 0.5, 1.5 and 2.5 years. In the trial of the fourth author 
the survival rates are reported after one year and after three years, while the fifth 
author gives the survival rates after one and two years. The sixth author presents for 
the control group only the estimates at one and three years, but gave an extra survival 
estimate for the experimental group at two years. The seventh author presents the 
experimental group almost similar to the first author, i.e. every half year during 2.5 
years. However, for the control group this author gave the estimates only at 0.5 year 
and at 2.5 years. The eighth author just reported survival proportions for both 
treatment groups at 1 and 3 years, while the ninth author did a strange thing and 
reported the control group only at baseline (1 year) and the experimental group only 
after 3 years. Finally the tenth author gives for both groups simply one survival 
estimate after 2.7 years. Nobody else gave survival rates after 2.7 years. See Table 1 for 
the data. 
Unfortunately we could not find a published meta-analysis of survival time data in 
the literature with such a realistic but chaotic data structure. Many meta-analysts who 
are confronted with so many structural missing data in the dataset, will choose one, 
two or maybe three fixed time points and meta-analyse the survival rates at the 
different chosen time points separately from the survival rates at other time points. 
Also some meta-analysts might get confused and will not know what to do with the 
survival rates measured at half a years. In most of the cases they will ignore that 
information or they will inter- and extrapolate the measurements of e.g. trial 3 to get 
survival rates at 1, 2 and 3 years. And what to do with trial 10 with measurements at 
2.7 years? The most easy and logical choice would be to estimate the 2 or 3 years 
survival for that trial, but this would be pretty hard because there is only one survival 
measurement per treatment arm in that trial. Sometimes the meta-analyst will state 
that the 2.7 years survival rate is set to a time point of 3 years, but of course this kind 
of decision is very arbitrary. 
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Table 1. Data from the simulated data set: Survival (standard errors in parentheses) of trial i 
by treatment arm j and year k. 
 

        Time: k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5 k = 2.7 k = 3.0 

Trial i:        
1   control (j=1) 0.74 

(0.04) 
0.58 

(0.05) 
0.52 

(0.05) 
0.50 

(0.05) 
0.47 

(0.05) 
. 0.43 

(0.05) 
1   exp (j=2) 0.80 

(0.04) 
0.74 

(0.04) 
0.66 

(0.05) 
0.62 

(0.05) 
0.52 

(0.05) 
. 0.48 

(0.05) 
2   control  (j=1) . 0.50 

(0.05) 
. 0.25 

(0.04) 
. . 0.16 

(0.04) 
2   exp (j=2) . 0.67 

(0.05) 
. 0.45 

(0.05) 
. . 0.37 

(0.05) 
3   control (j=1) 0.77 

(0.04) 
. 0.52 

(0.05) 
. 0.29 

(0.05) 
. . 

3   exp (j=2) 0.80 
(0.04) 

. 0.53 
(0.05) 

. 0.40 
(0.05) 

. . 

4   control (j=1) . 0.51 
(0.05) 

. . . . 0.09 
(0.03) 

4   exp (j=2) . 0.68 
(0.05) 

. . . . 0.31 
(0.05) 

5   control (j=1) . 0.63 
(0.05) 

. 0.45 
(0.05) 

. . . 

5   exp (j=2) . 0.91 
(0.03) 

. 0.71 
(0.05) 

. . . 

6   control (j=1) . 0.57 
(0.05) 

. . . . 0.23 
(0.04) 

6   exp (j=2) . 0.78 
(0.04) 

. 0.52 
(0.05) 

. . 0.42 
(0.05) 

7   control (j=1) 0.78 
(0.04) 

. . . 0.12 
(0.03) 

.  

7   exp (j=2) 0.88 
(0.04) 

0.58 
(0.05) 

0.43 
(0.05) 

0.28 
(0.05) 

0.19 
(0.04) 

.  

8   control (j=1) . 0.69 
(0.05) 

. . . . 0.23 
(0.04) 

8   exp (j=2) . 0.78 
(0.04) 

. . . . 0.47 
(0.05) 

9   control (j=1) . 0.68 
(0.05) 

. . . . . 

9   exp (j=2) . . . . . . 0.42 
(0.05) 

10 control (j=1) . . . . . 0.19 
(0.04) 

. 

10 exp (j=2) . . . . . 0.47 
(0.05) 

. 
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The best way would be to analyse all available data simultaneously, irrespective of 
the multiple time points on which the survival rates are measured. The approach 
proposed in this chapter provides a framework in which the kind of data presented in 
Table 1 can be modelled.  
To simulate the data we assumed Weibull distributed survival times. The cumulative 

survival functions of the treatment groups in trial i were ( )αβ β− +0 1exp exp( ) i
i iZ t , 

with αi the shape parameter and exp(β0i+β1iZ) the scale parameter, where Z is the 
treatment indicator. For the three parameters we choose the following independent 
normal distributions: 

αi    ~  N(1.0 , 0.04) 
β0i  ~  N(-0.7 , 0.04) 
β1i  ~  N(-0.5 , 0.04) 
It follows that on the log minus log survival scale the relation with log time is linear: 
ln(-ln(S(t))) = β0 + β1 Z + α ln(t). We randomly drew 100 survival times per treatment 
group.  
To introduce censoring, we assumed a research project with a total study period of 
four years. The intake period of the project was two years, followed by a follow-up 
period of another two years. Thus the potential follow-up period per patient varied 
between two and four years. For each patient we randomly draw a censoring time 
from a uniform distribution on the interval from 2 to 4 years. When this censoring 
time was lower than the survival time of that patient, the patient was censored. In our 
data this resulted in 30% censored patients. Next, to get the survival estimates for the 
different time points together with their standard errors, we used Kaplan-Meier 
survival analysis.  
 
2.2 Clinical data example: Bone-marrow transplantation versus Chemotherapy 

A drawback of simulated data is that the data might not be realistic. To illustrate the 
proposed method with real life data, we use the meta-analysis data provided by Begg 
et al.[37]. The same data were used by Dear[24] to illustrate his method. In that meta-
analysis 14 studies were included in which alternative therapeutic approaches were 
followed to treat acute non-lymphocytic leukaemia in young adults. The authors 
studied the relative efficacy of bone-marrow transplantation (BMT) versus 
conventional chemotherapy for patients in first complete remission. In six studies, of 
which four randomised, the two treatment arms were directly compared to each 
other. Eight observational studies included patients on only one of the two 
treatments.  
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The data consist of the Kaplan-Meier probabilities of disease-free survival at a 
maximum of five 1-year intervals after start of treatment together with their standard 
errors. Individual patient data are not available. The complete dataset is shown in 
Table 2. Every line in Table 2 corresponds to one clinical trial, the first six studies 
include both treatment arms, two of the studies include only patients on BMT and six 
studies include only patients on chemotherapy. All studies give estimates for at least 
3 years after start of treatment. The raw survival curves corresponding to the data in 
Table 2 are illustrated in Figure 1. 

 
 
Table 2. Data from Begg et al. (1989): Percent disease-free survival (standard errors in 
parentheses) of trial i by treatment arm j and year k (1 to 5) 
 
 

BMT (j=1) Chemotherapy (j=2) Trial 
(i) k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

49 (12) 
55 (10) 
54 (10) 
70 (23) 
54 (4) 
54 (2) 
59 (8) 
61 (8) 

46 (12) 
50 (10) 
47 (13) 
70 (23) 
46 (5) 
43 (3) 
49 (9) 
53 (8) 

42 (12) 
36 (9) 
40 (13) 
70 (23) 
42 (6) 
40 (3) 
47 (9) 
53 (8) 

40 (12) 
 
40 (13) 
70 (23) 
 
39 (3) 
47 (9) 
53 (8) 

40 (12) 
 
 
 
 
 
47 (9) 
53 (8) 

54 (8) 
40 (8) 
54 (9) 
48 (17) 
40 (5) 
50 (4) 
 
 
60 (9) 
44 (5) 
50 (3) 
62 (3) 
50 (10) 
76 (7) 

25 (8) 
23 (7) 
42 (8) 
48 (17) 
21 (4) 
32 (4) 
 
 
48 (9) 
26 (4) 
33 (3) 
38 (3) 
24 (8) 
53 (8) 

23 (7) 
23 (7) 
28 (8) 
17 (13) 
16 (4) 
24 (4) 
 
 
32 (9) 
17 (5) 
26 (3) 
29 (3) 
16 (7) 
53 (8) 

23 (7) 
23 (7) 
28 (8) 
 
16 (4) 
18 (4) 
 
 
32 (9) 
16 (4) 
22 (3) 
24 (3) 
12 (6) 
50 (8) 

23 (7)
 
 
 
 
 
 
 
32 (9)
 
19 (3)
22 (3)
 
50 (8) 

 
 
Like many other authors with similar data [29, 38], Begg et al.[37] analysed the data 
separately for each year. As we already mentioned, this is the simplest way to carry 
out meta-analysis of survival data, because one can use standard univariate meta-
analysis methods[24, 25]. However, doing separate analyses for each point in time 
and thus carrying out many meta-analyses, is inefficient and could lead to 
inappropriate conclusions[27]. It can lead to loss of power, because in each analysis 
only a portion of the data is used. 
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Figure 1. Survival curves based on data from Begg et al. (1989). 
 
 
Next, it can give rise to a multiple testing problem and it could be difficult to interpret 
the results. Furthermore, this approach is only sensible if the times for which survival 
estimates are available are the same across studies. Finally, the results may be biased 
due to selective missing data, as might be the case for k=4 and 5 in our example.  
 
 

3 Methods 
 
The studies to be combined in the meta-analysis are indexed by i, in our clinical data 
example i = 1,...,14. In each study one or more treatments are considered. For each of 
the studies survival estimates are available for treatment j, where in our clinical data 
example j=1 for BMT and j=2 for chemotherapy. Some of the studies have survival 
estimates for both j=1 and j=2, and some of the studies –the observational ones– only 
have survival estimates for either j=1 or j=2. For each treatment arm at times tijk, where 
the index k counts the time points (at most 5 in the clinical data example), a survival 
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estimate is available together with its standard error. The true survival probability of 
the jth treatment in the ith trial on time point tijk is denoted by sijk. The estimate of sijk is 
denoted by ˆijks . The corresponding standard error is denoted by seijk. The estimated 

correlations between the survival estimates would preferably also be available, but 
unfortunately this will seldom be the case. In general, estimates of correlations 
between multiple outcome measures often come from some external source[39]. 
However, in the special case of estimated survival probabilities, the correlations can 
be estimated from the data, as is shown by Dear[24].  
As shown in the simulated data example, the pattern of the time points might be 
different across the trials and within the trials across the treatment groups, dependent 
on the choice of the authors of the time points for which to provide survival estimates 
and standard errors in their publications. So, although in our clinical data example the 
time points are fixed to years after start of treatment, this is not necessarily the case. 

 
3.1 The method of Dear 

As a stepping stone to the method we propose in this chapter, we briefly discuss the 
generalized least squares method as proposed by Dear in 1994[24]. In this approach a 
generalized linear regression model is used to relate the estimated survival 
proportions ˆijks to a design matrix X with both between- and within-study covariates 

such as time, study and treatment characteristics, including interaction terms. Dear 
treated all covariates as categorical represented by dummies in the model, but that is 
not necessary. The model is: 

β ε= +ˆi i is X  (1) 

where ˆis  is the column vector of ˆ 'ijks s  andε i a column vector of residuals with  

~ N(0, )i Vε  

The εi’s are assumed to be independent between studies and treatment arms. Since the 
errorsε ijk of serial observations in the same treatment arm within the same study are 

bound to be related, the off-diagonal elements of matrix V will not all be zero. V is 
block diagonal with blocks corresponding to the treatment groups within studies. The 

main diagonal is set equal to the reported squared standard errors 2
ijkse of the survival 

proportions (Table 2). To estimate the covariances within a treatment group, Dear[24] 
made use of the fact that the correlations of proportions between time points tijk and 
tijk' are given by 

'
'

'

(1- )
 corr( , ) =

(1- )
i j k i j k

i j k i j k
i j k i j k

s s
s s

s s
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This formula is derived by exploiting the fact that the estimated cumulative hazards 
over different intervals are independent. Based on these correlations, the covariances 
in matrix V are obtained by multiplying the correlation with the corresponding 
standard errors given in Table 2.  

'
' '

'

(1- )
ˆ ˆcov( ,  ) = 

(1- )
i j k i j k

i j k i j k i j k i j k
i j k i j k

s s
s s se se

s s
⋅ ⋅  (2) 

The seijk’s are considered fixed and known, while the sijk’s are to be estimated.  The β 
parameters are estimated in an iterative manner. Iterations start with substituting the 
observed survival proportions in (2). Then, given this covariance matrix V, the β’s are 
estimated with generalized least squares (GLS): β − − −= 1 1 1ˆ ( ' ) 'X V X X V s . With these 
β’s new estimates of the sijk’s are computed by (1) and substituted in (2). This results in 
a new matrix V, which subsequently is used to calculate new GLS β estimates. This is 
repeated until convergence, providing fully efficient maximum likelihood estimators 
for the β parameters.  
 
Compared with the other methods published in the literature (see Appendix), the 
model of Dear[24] is very generally applicable. With the model of Dear[24] one can do 
a joint analysis of survival proportions at multiple times, instead of analysing the 
survival probabilities separately for each time interval. Also, it is possible to combine 
studies with a different number of curves, as in our example where some comparative 
studies include two treatment arms and some observational studies have only one 
treatment arm in the study. Actually this only works under the assumption that the 
same treatment-specific profile of survival over time applied in all studies. When this 
assumption is doubtful, then study characteristics, such as patient population 
parameters, should be sought to account for the discrepancies. These characteristics 
can be represented in the model through study-level covariates[24]. And finally, with 
the model of Dear it is possible to fit and compare different regression models, which 
makes the model very flexible and informative.  
However, the model of Dear has one important shortcoming in that it is a fixed effects 
model. To allow for between study heterogeneity, Dear introduced a dummy variable 
for each study, indicating the common survival level of each study. A disadvantage of 
this is that it results in very many parameters in the model relative to the number of 
data points. Moreover the inference is restricted to the studies at hand instead of 'all 
similar trials'.  
 
There are also some disadvantages of the model, which are not true shortcomings of 
the model, but refer to the way in which this method is usually applied in practice. 
Dear presented his model in such a way that one needs a fixed pattern of time points 
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for which survival estimates are available, like every year in our example. Usually 
this kind of balanced data will not be provided in the publications of the studies and 
one needs to intra- and extrapolate to get estimates on exactly the same time points 
across the studies. Next, Dear used dummies for all covariates including time and 
study, which can result in an enormous amount of parameters to be estimated, 
especially when one also has to include also some interaction terms. And finally, Dear 
fitted a linear model on the survival probabilities, but of course the probabilities are 
restricted to the interval from 0 to 1. Therefore, a linear model could give non-sensible 
fitted values. However, time could also be modelled as a continuous covariate, 
enabling different time patterns between studies and reducing the number of 
parameters. Also, the method could be applied to transformed survival probabilities, 
e.g. with the logit or log(-log) transformation.  
 
3.2 Multivariate random effects model 

In this chapter we propose a multivariate random mixed effects model that relates the 
log-minus-log transformed survival estimates ln(-ln( ˆijks )) to both fixed and random 
covariates, like time or ln(time), treatment group etc. Any other transformation of the 
survival probabilities that maps the interval [0,1] into (-∞, ∞), for instance the logit 
transformation, might be chosen as well, but we prefer the ln(-ln) for reasons to be 
discussed later on. We assume the following model:  
 

β ε− = + +ˆln( ln( ))i i i i is X Z b  (3) 

with 
~ N(0 , )ib D , 

~ N(0 , )i iVε  

and 
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1

2

0
0

i
i

i

V
V

V
with 

−
=

−
' '

' ' '

(1 )
ˆ ˆ ˆ ˆln( ) (1 ) ln( )

ijk ijk ijk ijk
ij

ijk ijk ijk ijk ijk ijk

se s s se
V

s s s s s s
 (4)  

In equation (3), ˆis , Xi and ε i have the same meaning as earlier. β  is the parameter 
vector containing the fixed effects (time, treatment, etc.). Compared with Dear’s 
model, the model is extended with the random part Zibi. The vectors of random 
coefficients bi are assumed to be independent normally distributed with expectation 
zero and between studies covariance matrix D, independent from the εi’s. Zi is the 
design matrix for the random effects, typically containing intercept, time and possibly 
treatment effect. The residual components have expectation zero and covariance 
matrix Vi, which is in fact the within-trial covariance matrix. Since the residual 
components across time are correlated within a trial arm (or survival curve) but 
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independent between treatment arms, the covariance matrix Vi is a block diagonal 
matrix existing of blocks corresponding to the treatment arms. In our clinical example 
we get two matrices Vi1 (for the MBT survival curves) and Vi2 (for the Chemotherapy 
survival curves). The within study covariance matrix (4) is completely analogous to 
(2). Notice that the standard error of the log(-log) transformed observed survival 
probability is: 

− =ˆlog( log( ))
ˆ ˆln( )

ijk
ijk

ijk ijk

se
s

s s
 

It is assumed to be known. The correlation between two transformed survival 
estimates is equal to  

−
− − =

−
'

'
'

(1 )
ˆ ˆ(log( log ),log( log ))

(1 )
ijk ijk

ijk ijk
ijk ijk

s s
corr s s

s s
 

Analogous to Dear’s approach, this correlation is estimated from the data. 
 
The parameters in the model, the β’s and the between studies covariance matrix D, are 
estimated similar to Dear’s approach in an iterative fashion as follows. In the first 
step, an initial estimate of Vi is obtained by substituting the observed survival 
probabilities into (4). With this covariance matrix the mixed model is fitted and the 
new survival estimates are used to calculate the new correlations in (4) and so on. 
This can be done easily in a General Linear Mixed Model program provided that the 
residual variances can be fixed at arbitrary values per individual survival estimate[4]. 
Because of the iterative manner of model fitting, it would also be convenient if the 
fitted survival estimates could be saved in order to automatically update the 
correlations between them and thereby the covariance matrix Vi. These features are 
for instance available in the procedure MIXED of SAS and the function lme of S-Plus, 
but it might also be available in other statistical software. 
By applying a transformation to the observed survival probabilities, our model 
guarantees that fitted survival probabilities are between 0 and 1. However, as for 
Dear’s method, the fitted survival curves are not necessarily non-increasing. We think 
that in practice non-monotonically non-increasing fitted curves will be very rare and 
therefore will not be a serious problem. Also, if curves are extrapolated from the 
smallest tijk to t=0, the fitted survival at t=0 might be smaller than 1. 
As an illustration we apply this method to our two data examples and we compare 
the results of the clinical data example with the results given in the publication of 
Dear[24], who used the same dataset. 
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4 Results 
 
4.1 Results simulated dataset 

 
Using Proc MIXED of SAS, we fitted the following model on the data of Table 1. 

− ˆlog( log )ijks = β0 + β1 treatijk + β2 log(yearijk)+ b0+b1 treatijk+ b2 log(yearijk)+ εijk             (4) 
Here treat is a dummy variable for the treatment, 0=control and 1=experimental. We 
allow random effects for intercept and slope of log time and a random treatment 
effect. We assume a zero mean multivariate normal distribution for the random 
effects (b1,b2,b3) with a covariance matrix which is completely left free and has to be 
estimated. Choosing the log(-log) transformation for the survival proportions and 
log(year) instead of year itself as covariate, corresponds to a Weibull distribution 
assumption. The advantage is that the treatment effect β2 is expressed as a hazard 
ratio. Furthermore, survival curves start at level 1 at t=0. Of course, in practice the 
Weibull assumption might not be true, and other covariate specifications could be 
tried. Also another transformation of the survival probabilities than the log(-log), such 
as the logit of probit, might be entertained. The parameters are estimated by repeated 
calls of Proc MIXED, each time updating the correlations. The results are given in 
Table 3.  
 
 
Table 3. Results of fitting model (4) on the data of Table 1. 
 

regression coefficients estimate standard error 

intercept 
ln(year) 
treat 
 

-0.6143 
 0.9705 
-0.4970 

0.0698 
0.0697 
0.0858 

covariance parameters   
variance intercept 
covariance intercept* ln(year) 
variance ln(year) 
covariance intercept* treat 
covariance ln(year)*treat 
variance treat 

  0.0243 
 0.0090 

  0.0311 
 0.0098 

 -0.0144 
  0.0322 

 

 
 
The overall mean estimated survival curves of both treatment groups together with 
their confidence intervals are drawn in Figure 2.  
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Figure 2. Overall mean survival curves (plus confidence bands) of the treated group (black 
lines) and the control group (grey lines) estimated from the data in Table 1. 
 
 
All between study variances differed significantly from zero when tested with the 
likelihood ratio test. As a model check, it was investigated whether adding terms as 
ln(year)2 , interaction between ln(year) and treatment did improve the model, but no 
extension was statistically significant.  
As a by-product of the analysis, empirical Bayes estimates are provided for the study 
specific survival curves. These are illustrated in Figure 3.  
 
4.2 Results clinical data example 

In this section we present the results of the GLS-model of Dear[24] as well as our 
multivariate random effects model to see the differences and the similarities.  
Dear fitted a linear model to relate the estimated survival proportions to several 
dummy variables, indicating the treatment, year of follow-up and the study. The final 
model in the publication of Dear includes dummy variables for 'study', 'treatment', 
'follow-up year' and for the interaction of the dummies 'treatment by follow-up year', 
resulting in the following model: 

β β β β β
= =

= = = = =

= + + + +∑ ∑ ∑ ∑
2, 514 2 5

0
1 1 1 1, 1

ˆ ( * )
j k

ijk i i j j k k jk jk
i j k j k

s study treatment year treatment year  (5) 

with constraints β β β= = =∑ ∑ ∑0, 0, 0i j k to ensure estimability. The covariance matrix 

of ˆijks  is estimated using generalized least squares in an iterative way, as explained in Section 

3 of this chapter. 
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Figure 3. Estimated study specific (empirical Bayes) survival curve lines, together with the 
estimated mean survival curves per treatment (black = treated, grey = control). 
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 To compare this model to our multivariate random effects model, we started to 
include the same variables as Dear did, but in a continuous way. So, with estimated 
log-minus-log survival as dependent variable, treatment (0=BMT, 1=Chemotherapy), 
ln(year), and the interaction between ln(year) and treatment were included as 
covariates, along with a random intercept and regression coefficients for ln(year) and 
treatment. Adding ln(year)2 and the interaction between  ln(year)2 and treatment 
significantly improved the model. The random terms for ln(year) and treatment 
turned out to be non-significant and were dropped from the model. Thus we ended 
up with the following model  

β β β β β− = + + + + +2
0 1 2 3 4ˆlog( log( )) ln( ) * ln( ) ln( )ijks treat year treat year year  

β ε+ +2
5 0ln( ) * i ijkyear treat b   (6) 

The results are given in Table 4. 
 
 
Table 4. Parameter estimates of model (6) 
 

 beta (se) p-value var(b0i) 

intercept -0.61 (0.08) <0.0001 0.04 
treatment 0.12 (0.08) 0.11  
ln(year) 0.42 (0.07) <0.0001  
ln(year)2 -0.10 (0.04) 0.02  
treatment*lnyear 0.54 (0.09) <0.0001  
treatment*lnyear2 -0.14 (0.05) 0.01  

 
 
In Figure 4 the mean survival estimates per treatment are shown for models (5) and 
(6), together with their confidence intervals. 
The mean survival curves and confidence intervals are quite similar in both models. 
Notice however that the model of Dear included 23 β parameters in the model (to 
estimate 85 survival probabilities) versus only 7 (including only the variance of the 
intercept) in our model.  
The empirical Bayes study specific survival curves are depicted in Figure 5. The 
shrinkage phenomenon is nicely illustrated in this figure. E.g. trial 4 has a much 
higher observed survival curve for the BMT treatment compared to the other trials 
(see Figure 2 and Table 2). However, it is a very small trial with large standard errors 
(Table 2). So, the empirical Bayes estimate of the survival curve for this trial has 
strongly shrunk towards the average survival curve. 
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Figure 4. Mean survival estimates per treatment, with 95% confidence limits. The dotted lines 
represent Dear's model, the solid lines represent the multivariate random effects model. 
 
 
On the other hand, also trial 14 has an extremely high survival curve for 
Chemotherapy compared to the other trials. However, since trial 14 is a large trial 
with relatively small standard errors, the empirical Bayes estimate of this survival 
curve has somewhat shrunk towards the common mean, but is remains on a higher 
level than the other survival curves. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Trial specific survival curves of both treatment arms. The dashed line in the BMT 
plot represents the survival curve of trial 4. The dashed line in the Chemotherapy plot 
represents trial 14.  
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5 Discussion 
 
In 1994 Dear proposed a general linear model with the survival estimate as dependent 
variable, and follow-up time, treatment and study as categorical covariates. The 
parameters are estimated by weighted generalised least squares in an iterative way. 
The main drawback of the model is that it is a fixed effects model. In this chapter we 
generalized the GLS-method of Dear[24] to a multivariate random effects framework 
like for instance proposed by Berkey et al.[36]. The model can be fitted in standard 
programs like SAS Proc MIXED. The method can also be considered as a 
generalisation of the DerSimonian-Laird random effects model for univariate 
outcomes[2]. For a fixed time t, our model reduces to the DerSimonian-Laird model. 
The modelling approach is very flexible in that the data set does not need to be 
balanced. Different studies may provide different numbers of survival estimates at 
different times. This enables the meta-analyst to analyse all available data as provided 
in the publications, without need to inter- or extrapolate to fixed times. There is also a 
lot of freedom in the modelling process. For instance, other transformation than the 
log minus log might be chosen, the shape of the survival curves could be modelled 
using regression splines or fractional polynomials etc, while still standard programs 
can be used. Our preference in first instance is the log minus log transformation in 
combination with ln(time) as covariate, since than the covariate effects can be 
interpreted as hazard ratio’s as in a Cox regression model. 
Similar as for Dears method, a disadvantage of our approach is that the estimated 
curves are not forced to be survival curves. They are not necessarily non-increasing, 
and when extrapolated to 0, the curve does not necessarily start at 1. We do not think 
that this is a serious disadvantage in practice, but there is certainly a need for models 
in which the curves in a natural way are forced to be real survival curves. 
We fitted our models by iterated linear mixed model fits, updating the estimated 
correlations between survival estimates of the same curve. An open question is 
whether the empirical Bayes survival estimates or the estimates based on only the 
fixed part should be used. Also it might be possible to update the standard errors of 
the transformed survival estimates as well. In our examples these alternatives gave 
similar results. Simulation studies might be carried out to what the best method is. 
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Appendix 
 

Statistical method Description 

Iterative generalized least squares 
(IGLS)[24]  

A generalized linear regression model to 
relate survival proportions to between-trial 
and within-trial covariates. The correlation 
structure between successive survival 
proportions is derived iteratively from 
their fitted values. 

Meta-analysis of failure-time data 
(MFD)[30] 

Combination of failure-time data from 
various cohort studies, adjusting for 
differences in case-mix among studies by 
use of covariates. The model is based on 
the proportional-hazards model and the 
actuarial life-table approach. 

Nonlinear regression (NLR)[31] A survival curve in the form of an 
exponential decay function for nonlinear 
regression, with contributions of 
individual studies at each time point being 
the covariates. 

Log(Relative Risk) (LRR)[32] The survival function of each study is 
transformed using the log(-log)function 
which gives the log(relative risk), from 
which the average log(relative risk) curve 
is computed. The inverse transformation 
gives the summary survival curve. 

Weighted LRR (w-LRR)[33] This method does the same as the LRR-
model, but weights the log relative risks 
with their inverse variances. 
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Discussion 
 
Since meta-analysis became popular in medicine about 25 years ago, biostatisticians 
have been interested and involved in developing statistical meta-analytic methods. In 
the beginning attention was focused on methods for deriving a common effect across 
studies. Later on, the focus moved to quantifying and reporting the heterogeneity 
between studies. This shift in focus parallels the transition in popularity from fixed 
effects models to random effects models[1]. Nowadays the random effects model, that 
explicitly takes between studies heterogeneity into account, has become the standard 
method in practice, though fixed effect methods are still being applied as well. For the 
simple case where meta-analysis concerns a single, univariate effect measure[2] the 
statistical methods are well established now. However, it is not rare that several 
outcome measures are presented in the individual studies included in a meta-
analysis. In that case analyzing each outcome measure separately in a univariate 
manner is often sub-optimal, and analyzing all outcome measures jointly using 
multivariate methods is indicated. For many situations with multivariate outcome, 
appropriate meta-analytic methods are still lacking or underdeveloped. Van 
Houwelingen, Zwinderman and Stijnen[3] were the first to consider multivariate 
random effects meta-analysis. They introduced a bivariate linear random effects 
model for joint analysis of one estimated outcome measure per treatment group. 
Berkey[4] introduced the linear mixed model as a general random effects regression 
method for meta-analysis of multiple outcomes.   
This thesis aims to be a contribution to the field of multivariate meta-analysis 
research. We considered four specific situations with multivariate outcome: a) the 
relationship between treatment effect and baseline risk (chapter 2), b) multivariate 
endpoints in a clinical trial (chapter 4), c) ROC curve data (chapter 5) and d) survival 
curve data (chapter 6). The statistical models that we used turned out to be very 
special cases of the general linear mixed model. Therefore we discussed in chapter 3 
the general linear mixed model as a natural and convenient framework for meta-
analysis. In the last 10 years programs for fitting linear mixed models have been 
implemented in many statistical packages. We discovered that these programs, 
provided that certain options are built in, could also be used for fitting meta-analysis 
models that are special cases of a general linear mixed model. An important 
contribution of chapter 3 to the practice of meta-analysis is that it thoroughly points 
out how many existing meta-analysis methods can be carried out using Proc Mixed of 
SAS, one of the most important statistical packages. Thus far ad hoc programs had to 
be used.  
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Using a linear mixed model for meta-analysis has its limitations. First, the within 
study likelihood of the outcomes is approximated by a normal likelihood. In 
particular if for a dichotomous outcome variable the number of events is close to 0 or 
100 percent, this approximation might be bad, possibly introducing bias. To address 
this, a generalised linear mixed model might be used, in which the exact binomial 
likelihood is employed. However programs for the generalised linear mixed model 
are much more scarce and models are often difficult to fit in these programs. In the 
chapter on the relation of treatment effect and baseline risk we used the approximate 
normal as well as the exact binomial likelihood. The latter was carried out using the 
Bayesian analysis program BUGS. The results were quite similar. In chapter 6 on 
meta-analysis of ROC curve data we were able to fit the bivariate model with the 
exact binomial likelihood in Proc NLMIXED of SAS. In this case the difference 
between the results of the approximate and exact approach were not negligible. More 
research to this has to be done. At this moment we would advise to use the exact 
likelihood method whenever it is feasible. 
A second limitation of the linear mixed model is that it is likelihood based, and thus 
the inference is approximate. This might be worrying when the number of studies 
included in the meta-analysis is small. More research has to be done as to whether 
this is a serious limitation. If the number of studies is small it may be better to fit the 
models using a Bayesian approach, since the Bayesian method is not asymptotic, but 
this might bring its own problems. 
A third limitation of the general linear mixed model is that the random effects are 
assumed to have a multivariate normal distribution. How robust is the inference 
against violations of these assumptions? For instance, our bivariate approach in 
chapter 2 to investigating the relation between treatment effect baseline risk assumes 
that the underlying true baseline risks follow a normal distribution. This assumption 
has been criticised in the literature[5]. Thompson et al.[6], in their Bayesian approach, 
tried to avoid a distributional assumption for the underlying true baseline risks by 
putting independent flat priors on the true baseline risks. We criticized this method, 
but a simulation study comparing the relative merits of the two approaches is still 
lacking. Our approach is in the spirit of the 'structural' approach to measurement 
error[7]. As future research, a solution might be sought in the spirit of the 'functional' 
approach[7], the big advantage being that no distributional assumption for the true 
baseline risks is needed. Another direction of future research might be to try to 
estimate the underlying distribution of the baseline risks in a more non-parametric 
manner. The results of this research could also be useful for relaxing the assumptions 
in the bivariate model for ROC meta-analysis. A general remark is that in the 
Bayesian approach, for instance using WinBUGS, it relatively easy to relax the 
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assumption of a normal distribution of the random effects, by specifying other types 
of distributions such as t-distributions.   
Another limitation of the linear mixed model is that it is not always sufficiently 
tailored to the nature of the problem. In chapter 5 we applied the linear mixed model 
to survival curve data, where clinical trials each present several survival percentages 
during a follow-up period. The advantage of using the linear mixed model is that it 
can be used for very unbalanced data sets and is easy to use in practice. The 
disadvantage however is that it does not completely satisfactorily take the nature of 
the data into account. The fitted curves are not necessarily survival curves. The model 
does not force the curves to be monotonically decreasing, and curves might start at 
values smaller than 100%. In future research, more elegant models should be sought 
that are better tailored to the nature of the data.  
The methods for ROC curve meta-analysis presented in chapter 6 covered only the 
simplest situation, where one has one pair of sensitivity and specificity per study. 
Research on how to tackle more complicated situations, such as more points on the 
ROC curve per study or comparisons of different diagnostic tests with paired or 
unpaired data, has still to be done. 
Of course, an unavoidable limitation of our methods is that they are just as 
susceptible as any meta-analysis to dangers that threat the validity of the conclusions, 
such as publication bias. This bias can arise when the meta-analysis does not contain 
all studies that fulfilled the in- and exclusion criteria, i.e. some studies are missing 
because they were not published or not traced. It can easily happen that the missing 
studies are selectively missing, for instance due to studies with a non-significant 
result having less chance to be published[8,9]. In this situation, a meta-analysis of the 
published trials could identify a spurious beneficial treatment effect, which cannot be 
prevented by our proposed statistical methods. Also, as in any meta-analysis, the 
complicated methods presented in this thesis do not help if the individual are biased 
or flawed. Still the law of 'garbage in garbage out' applies. 
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Summary 
 
Meta-analysis may be broadly defined as the quantitative review and synthesis of the 
results of related but independent studies. For the simple case where meta-analysis 
concerns only one outcome measure in each study, the statistical methods are well 
established now. However, in many practical situations there are several outcome 
measures presented in the individual studies included in a meta-analysis. In that case 
analyzing each outcome measure separately in a univariate manner is often sub-
optimal, and analyzing all outcome measures jointly using multivariate methods is 
indicated. For many situations with multivariate outcome, appropriate meta-analytic 
methods are still lacking or underdeveloped. The work presented in this thesis aims 
at the development of statistical methods that are suited to analyse meta-analytic data 
with a multivariate nature in a right and optimal way. With our proposed methods 
one can answer more comprehensive research questions than with the standard 
univariate methods that are usually used in practice. Our explicit aim is that our 
suggested statistical methods are relatively easy to use for most researchers.  
 
Chapter 1 is a general introduction to the topic of this thesis. In this chapter some 
basic terms from the field of meta-analysis are explained and an outline of the thesis is 
given. 
The first situation of a meta-analysis with multivariate outcome in this thesis 
(Chapter 2) is the analysis of the relationship between treatment effect and baseline 
risk. A straightforward way of assessing this relationship is to compute the ordinary 
weighted least squares (WLS) regression line of the treatment effects estimated from 
the different trials on the estimated so called baseline risks observed in the control 
groups. This conventional method has potential pitfalls and has been seriously 
criticised. We propose another method based on a bivariate meta-analysis. Although 
we did most of the analyses using the BUGS implementation of Markov Chain Monte 
Carlo (MCMC) numerical integration techniques, we also show for one of the 
examples how it can be carried out with a general linear mixed model in SAS Proc 
Mixed. The advantage of using BUGS is that an exact measurement error model can 
be specified. On the other hand, in practice it is easier to use the procedure Proc 
Mixed of SAS. 
In Chapter 3 we discuss the general linear mixed model as a natural and convenient 
framework for meta-analysis. It is thoroughly pointed out how many existing meta-
analysis methods can be carried out using Proc Mixed of SAS, one of the most 
important statistical packages. Thus far ad hoc programs had to be used. We discuss 
several methods to analyse univariate as well as bivariate outcomes in meta-analysis 
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and meta-regression analysis. Several extensions of the models are presented, like 
exact likelihood, non-normal mixtures and multiple endpoints. All methods are 
illustrated by a clinical meta-analysis example for which the complete syntax needed 
for the software program SAS is given. 
In Chapter 4 we discuss a meta-analysis of the effect of surgery (endarterectomy) 
compared to conservative treatment on the short and long term risk of stroke in 
patients with increased risk of stroke. Three summary measures per trial are 
available, which we jointly meta-analyse with a general linear mixed model. As far as 
we know this is the first published example of a multivariate random effects meta-
analysis combining more than two outcomes simultaneously. We demonstrate the 
advantages of the multivariate analysis upon the univariate analyses where only one 
outcome measure at a time is measured. The multivariate approach reveals the 
relations between the different outcomes and gives simple expressions for estimation 
of derived treatment effect parameters such as the cumulative survival probability 
ratio as a function of follow-up duration. Besides, the results of the multivariate 
approach enable us also to estimate the relation of the different treatment effect 
parameters and the underlying risk. We fit the trivariate model in the standard 
general linear mixed model program of SAS using approximate likelihood. In a few 
special cases an exact likelihood approach is possible as well. For the multivariate 
case we fit the model using Bayesian methods to specify a binomial distribution for 
the number of post-operative events and a Poisson distribution for the events on long 
term in both treatment groups. The results of the approximate and exact likelihood 
approach are very similar.  
Another application of multivariate meta-analysis in this thesis (Chapter 5) is the 
meta-analysis of ROC curve data. We consider the situation where per study on pair 
of estimated sensitivity and specificity is available. Meta-analysis of ROC-curve data 
is usually done with fixed effects models. Despite some random effects models have 
been published to execute a meta-analysis of ROC-curve data, these models are not 
often used in practice. Therefore we propose a more straightforward modelling 
technique for multivariate random effects meta-analysis of ROC-curve data, which 
can be fitted with standard software. The sensitivities and specificities of the 
diagnostic studies were analysed simultaneously using a two-dimensional random 
effects model. We show that different choices could be made to characterise the 
estimated bivariate normal distribution by a regression line or a so-called summary 
ROC curve. Under an extra assumption the model also provides individual study 
specific ROC curves. When a random intercept model is used to get individual study 
specific ROC curves, all study specific curves are parallel around the summary ROC 
curve. We have shown that it is also possible to fit a random slope next to a random 
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intercept, even when there is only one point per study. With the random intercept 
and slope model, the study specific ROC curves are not necessary parallel to the 
summary ROC curve anymore. 
The general linear mixed model is also suited for meta-analysis of survival curve data 
(Chapter 6), where clinical trials each present several survival percentages and their 
standard errors during a follow-up period. In practice the follow-up times and the 
number of follow-up times are different among studies. To tackle this problem, 
investigators often reduce the survival curve to one or some fixed points in time, e.g. 
the five-years survival rate. Then the data can be analysed with the standard 
univariate random (or fixed) effects model for each of the chosen time points 
separately. However, doing separate analyses for each point in time and thus carrying 
out many meta-analyses, is inefficient and could lead to inappropriate conclusions. 
Better methods have been proposed, but all of them are fixed effects methods. One of 
the most recommended methods is the one of Dear. Dear proposed a general linear 
model with survival estimate as dependent variable and follow-up time, treatment 
and study as categorical covariates. The parameters are estimated by generalised 
weighted least squares (GLS). In this thesis we generalise the GLS-method of Dear 
towards a multivariate random effects model, which could be applied on data with an 
arbitrary number of survival estimates and spacing of times between them per curve, 
possibly different between studies. This enables the meta-analyst to analyse all 
available data as provided in the publications, without need to inter- or extrapolate to 
fixed times. The method fits in principle in the framework of the general linear mixed 
model. However, it  has to be adapted in this case, because the correlations between 
the different survival estimates of the same curve have to be estimated as well.  
Finally, in Chapter 7, the main findings of this thesis are considered. In addition we 
discuss some limitations and make recommendations for future research. 
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Samenvatting 
 
Meta-analyse kan worden gedefinieerd als een kwantitatieve samenvoeging van de 
resultaten van gerelateerde maar onderling onafhankelijke onderzoeken. Als een 
meta-analyse gericht is op slechts één uitkomstmaat, dan is tegenwoordig duidelijk 
welke statistische methoden men moet gebruiken. Er zijn echter veel praktische 
situaties waar in de individuele studies meerdere uitkomstmaten worden 
gepresenteerd. In dat geval is het univariaat  uitvoeren van een meta-analyse voor 
elke uitkomstmaat apart vaak niet optimaal. Het tegelijkertijd analyseren van alle 
uitkomstmaten met multivariate methoden is dan raadzaam.  
Voor veel situaties waarin een meta-analyse een multivariate uitkomst heeft, 
ontbreken nog geschikte meta-analytische methoden of zijn deze nog 
onderontwikkeld. Dit proefschrift heeft als doel statistische methoden te ontwikkelen 
die geschikt zijn om meta-analytische data met een multivariaat karakter op een 
optimale manier te analyseren. Met de door ons voorgestelde methoden kan men 
veelomvattendere onderzoeksvragen beantwoorden dan met de standaard univariate 
methoden die normaal worden gebruikt. Ons doel is dat de door ons voorgestelde 
methoden relatief gemakkelijk te gebruiken zijn voor de meeste onderzoekers.  
 
Hoofdstuk 1 geeft een inleiding over het onderwerp van dit proefschrift. In dit 
hoofdstuk worden bepaalde basistermen uit de meta-analyse uitgelegd en wordt een 
overzicht gegeven van het proefschrift.  
De eerste toepassing van een meta-analyse met een multivariate uitkomst in dit 
proefschrift (Hoofdstuk 2) is de analyse van de relatie tussen het behandelingseffect 
en het onderliggende risico van de patiënten in het onderzoek. Een eenvoudige 
manier om deze relatie te berekenen, is door het berekenen van een gewogen kleinste 
kwadraten regressielijn, waarbij de behandelingseffecten in de verschillende studies 
worden geschat op basis van de geschatte 'onderliggende risico's'. Deze 
onderliggende risico´s worden berekend in de controle groepen van die studies. Deze 
conventionele methode heeft verschillende manco's en er is dan ook veel kritiek op 
deze methode is geleverd.  
Wij stellen een andere methode voor, die gebaseerd is op een bivariate meta-analyse. 
De meeste analyses zijn met behulp van de BUGS implementatie van Markov Chain 
Monte Carlo (MCMC) numerieke integratie technieken gedaan. Voor één van de 
voorbeelden is daarnaast geïllustreerd hoe de methode kan worden uitgevoerd met 
een lineair gemengd model in SAS Proc Mixed. Het voordeel van BUGS is dat het 
exacte meetfouten model kan worden gespecificeerd. De procedure Proc Mixed van 
SAS is echter eenvoudiger in het gebruik. 
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In Hoofdstuk 3 bespreken we het lineaire gemengde model als een eenvoudig en 
geschikt raamwerk voor meta-analyse. Er wordt geïllustreerd dat veel bestaande 
meta-analyse methoden kunnen worden uitgevoerd met Proc Mixed van SAS, één 
van de belangrijkste statistische software pakketten. Tot nu toe moesten daarvoor ad 
hoc programma's worden gebruikt.  
Er komen verschillende methoden aan bod om univariate en bivariate uitkomsten in 
meta-analyse en meta-regressie analyse te analyseren. Verscheidene uitbreidingen 
van de modellen worden gepresenteerd, zoals exacte likelihood, gemengde 
verdelingen en meerdere eindpunten. Alle methoden worden geïllustreerd aan de 
hand van een meta-analyse voorbeeld ontleend aan de medische literatuur. Alle 
benodigde syntax voor het software programma SAS wordt volledig weergegeven. 
In Hoofdstuk 4 bespreken we een meta-analyse waar het effect van een operatie 
(carotis endarterectomie) wordt vergeleken met een medicinale behandeling. Gekeken 
wordt naar het korte en lange termijn effect van beide behandelingen op het krijgen 
van een beroerte bij patiënten die daar een verhoogd risico op hebben. Er zijn drie 
uitkomstmaten per studie beschikbaar, die we tegelijkertijd analyseren met een 
algemeen lineair gemengd model. Voor zover ons bekend, is dit het eerste 
gepubliceerde voorbeeld van een multivariate random effecten meta-analyse waarin 
meer dan twee uitkomsten samen worden geanalyseerd. We laten de voordelen zien 
van een multivariate analyse ten opzichte van univariate analyses waarin elke 
uitkomst apart wordt geanalyseerd. De multivariate benadering laat de relaties tussen 
de verschillende uitkomsten zien en geeft eenvoudige functies voor het schatten van 
afgeleide behandelingseffecten zoals de cumulatieve overlevingskans ratio als een 
functie van de tijd dat de patiënten na de behandeling in het onderzoek zijn gevolgd. 
Bovendien maken de resultaten van een multivariate benadering het mogelijk om ook 
de relatie te schatten tussen de verschillende behandelingseffectparameters en het 
onderliggende risico. We hebben bij het 'fitten' van het trivariate model in het 
standaard lineaire gemengd model programma van SAS gebruik gemaakt van 
benaderende ('approximate') likelihood. In een paar speciale gevallen is ook het 
gebruik van de exacte likelihood mogelijk. Voor de multivariate situatie hebben we 
het model gefit met Bayesiaanse methoden om de binomiale verdeling te specificeren 
van het aantal beroertes na de operatie en een Poisson verdeling te specificeren voor 
het aantal beroertes op de lange termijn in beide behandelingsgroepen. De resultaten 
van het gebruik van de benaderende ('approximate') en de exacte likelihood lijken erg 
op elkaar.  
Een andere toepassing van multivariate meta-analyse in dit proefschrift (Hoofdstuk 
5) is de meta-analyse van ROC curve data. We beschouwen de situatie waar per 
studie één paar geschatte sensitiviteit en specificiteit beschikbaar is. Meta-analyse van 
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ROC curve data wordt gewoonlijk gedaan met vaste effecten modellen. Ondanks dat 
er enkele random effect modellen zijn gepubliceerd om een meta-analyse van ROC 
curve data uit te voeren, worden deze modellen in de praktijk niet vaak toegepast, 
omdat deze nogal complex zijn. Wij stellen een eenvoudiger model voor multivariate 
random effecten meta-analyse van ROC-curve data voor dat kan worden uitgevoerd 
met standaard software. De sensitiviteiten en de specificiteiten van de diagnostische 
studies worden samen geanalyseerd met een tweedimensionaal random effecten 
model. We laten zien dat er verschillende keuzes kunnen worden gemaakt om de 
geschatte bivariate normale verdeling te karakteriseren door een regressielijn of een 
zogenaamde samengevatte ROC curve. Onder een extra aanname biedt het model 
bovendien individuele studie-specifieke ROC curves. Als een random intercept model 
wordt gebruikt om individuele studie-specifieke ROC curves te verkrijgen, dan zijn 
alle studie-specifieke curves parallel aan de samengevatte ROC curve. We laten zien 
dat het ook mogelijk is om een model te fitten met een random intercept èn een 
random helling, zelfs als er maar één punt op de ROC curve per studie gegeven is. 
Met een model met een random intercept en random helling zijn de studie-specifieke 
ROC curves niet meer noodzakelijkerwijs parallel aan de samengevatte ROC curve.  
Het algemene lineaire gemengde model is ook geschikt voor meta-analyse van 
overlevingsduur data (Hoofdstuk 6), waarbij elke klinische trial meerdere survival 
percentages presenteert met de bijbehorende standaardfouten gedurende een 
bepaalde periode nadat de behandeling is gestart. In de praktijk zijn de tijden waarop 
de gegevens zijn gemeten en het aantal metingen per studie zeer verschillend. Om dit 
probleem te omzeilen, reduceren onderzoekers vaak de overlevingscurve tot één of 
meerdere vaste tijdstippen, bijvoorbeeld de overleving na vijf jaar. In dat geval 
kunnen de data voor elk van de gekozen tijdstippen apart worden geanalyseerd met 
het standaard univariate random (of vaste) effecten model. Het uitvoeren van aparte 
analyses voor elk tijdstip en dus het uitvoeren van veel meta-analyses, is echter 
inefficiënt en kan leiden tot foute conclusies. Er zijn betere methoden voorgesteld, 
maar dat zijn allemaal vaste effecten modellen. Eén van de meest aanbevolen (vaste 
effecten) methoden is het model van Dear. Dear stelde een algemeen lineair model 
voor met de schattingen van de overlevingspercentages als afhankelijke variabele en 
met de follow-up tijd, behandeling en studie als categorische covariaten. De 
parameters worden geschat met GLS (generalised weighted least squares). In dit 
proefschrift hebben we de GLS-methode van Dear uitgebreid tot een multivariaat 
random effecten model, dat kan worden toegepast op data met een willekeurig aantal 
overlevingsschattingen en waarbij willekeurige tijdsintervallen tussen de schattingen 
bestaan, mogelijk verschillend tussen de studies. Dit maakt het voor degene die de 
meta-analyse doet mogelijk om alle beschikbare data te analyseren zoals ze worden 
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weergegeven in de publicaties, zonder de noodzaak van inter- of intrapolatie naar 
vaste tijdstippen. De methode past in het raamwerk van het algemene lineaire 
gemengde model. Het moet echter wel voor deze specifieke situatie worden 
aangepast, omdat de correlaties tussen de verschillende overlevingsschattingen ook 
moeten worden geschat.   
Tenslotte worden in Hoofdstuk 7 de belangrijkste bevindingen van dit proefschrift 
beschouwd. Bovendien bespreken we enkele beperkingen van de voorgestelde 
modellen en doen we aanbevelingen voor verder onderzoek. 
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