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Railway systems experience disruptions on a daily basis. We test the use of Dynamic Network 
Analysis as a methodological tool in order to investigate the communication patterns during the 
dynamic process of disruption management. The tool was applied to a simulated case of a catenary 
failure in the Dutch railway system. DNA provides a systematic overview of the communication 
patterns and tasks associated with the disruption management process. Key actors were identified 
and the overall structure of the network analyzed. The dynamic component to our network analysis 
revealed that information is being shared within disconnected parts of the network during the first 
few minutes, without those parts having a direct link to the source of the information. These findings 
show that employing only static analysis of networks obscures the real dynamics of information 
sharing during railway disruptions and potential coordination problems. DNA therefore can be an 
important method and tool to reveal issues that need to be resolved.  
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1. Introduction 
The Dutch railway network is the busiest of Europe in terms of passenger kilometers per kilometer of 
railway track (Ramaekers, de Wit, & Pouwels, 2009). It is also technically complex, due to the high 
number of switches, double tracks and associated signaling (ProRail, 2011). This makes the Dutch 
railway system highly vulnerable to disruptions, i.e. an event or a series of events that leads to 
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substantial deviations from planned operations (Nielsen, 2011). Yet, the overall performance of the 
railway system in terms of punctuality has been good in the previous years (Ministerie van 
Infrastructuur en Milieu, 2014). However, as the winter seasons often demonstrate: when things go 
wrong they tend to go wrong on a large scale, leading to loss of control and long recovery phases.  
These major disruptions lead to dissatisfaction among travelers, extra expenses, and revenue losses. 
In response, train operating companies (TOC’S), infrastructure provider ProRail, and the Dutch 
government have sought ways to improve operational performance. As the possibilities to expand 
the infrastructure capacity are limited, due to financial and environmental constraints, most of these 
resources have been aimed at reducing the system’s vulnerability, i.e. increasing its robustness to 
absorb shocks and to improve its capacity to recover from disruptions. Simplification of the 
infrastructure (unbundling of nodes, reducing the number of switches), time table and logistics is 
considered to contribute to the robustness of the system (Ministerie van Infrastructuur en Milieu, 
2011). One major vulnerability is the coordination between the different parties involved in 
managing disruptions (Ministerie van Infrastructuur en Milieu, 2011). This process has become so 
complex that that it is considered unsuitable to anticipate and recover from disturbances (ibid.). A 
possible solution would be to reduce the number of actors involved and to introduce stricter 
procedures in an attempt to bring down the diversity in possible behavioral responses (Sutcliffe & 
Vogus, 2003). While this may help in coping with most of the common disruptions, research shows 
that optimization of existing systems has a limited impact, there is a trade-off between optimization 
and brittleness in the face of novel events and uncertainties (cf. Csete & Doyle, 2002; Hoffman & 
Woods, 2011; Woods & Branlat, 2011).  
We understand the railway system as being a complex socio-technical system (cf. Comfort, 2005; 
Walker, Stanton, Salmon, & Jenkins, 2008) that consists of several social subsystems, each with 
particular goals, perceptions, tasks and resources. These geographically separated subsystems have 
to coordinate their activities during a disruption in order to return to the original operational plan as 
quickly as possible (Bharosa, Lee, & Janssen, 2010). Coordination relies on effective communication 
in such complex systems (Faraj & Xiao, 2006; Gittell, 2011; Ren, Kiesler, & Fussell, 2008). While most 
policies and research focus on reducing this complexity, fewer (empirical) studies have focused on 
understanding and harnessing the complexity of disruption management. A comprehensive 
overview of who does what during a disruption and of how information is being shared between 
actors in the Dutch railway system is therefore still missing.  

In this article we want to propose and demonstrate a method with which such a comprehensive 
understanding of the complex communication patterns during disruption management can be 
mapped and analyzed. Visualizing and analyzing network structures can reveal properties of the 
operation of the railway system that might not be obvious from standards operating procedures 
(Houghton et al., 2006). Naturally, that requires collecting, structuring and analyzing a considerable 
amount of data. We propose Dynamic Network Analysis (DNA) as a promising method and tool for 
such an endeavor because it allows capturing the irregular flows of information during a disruption, 
in contrast to the more static tools of traditional social network analysis. However, to our knowledge 
DNA (or even SNA) hasn’t been applied to studies on railway disruptions. These considerations lead 
to us to the following research question: how can DNA help to investigate coordination between the 
geographically distributed teams involved in the management of a railway disruption? We will use 
an example of a failing catenary to demonstrate the various aspects of DNA.  

We will first discuss the properties that make disruption management so complex and the need for 
DNA (section 2). Next, DNA will be presented (section 3), followed by the research methodology 
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(section 4).  A short overview of how disruptions are managed in the Dutch railway system is 
provided in section 5. The results of applying DNA to the catenary failure are presented in section 6, 
followed by a discussion (section 7), and the conclusions (section 8).  

2. The complexity of managing railway disruptions  

There is a growing interest among theorist in conditions that influence organizations to reliably 
manage large and complex technical systems (cf. Hollnagel, Paries, David, & Wreathall, 2011; La 
Porte, 1994; Leveson, Dulac, Marais, & Carroll, 2009; Perrow, 1999; Rochlin, La Porte, & Roberts, 
1987; Weick, Sutcliffe, & Obstfeld, 2008). A breakdown of the services that such systems provide can 
cause very serious problems to the economy and society (De Bruijne & Van Eeten, 2007). 
Consequently, protecting these systems against failures, or making sure that they can be rapidly 
restored, has become an important objective (Little, 2003). Paradoxically, while there is a growing 
demand for high-reliable services, we have witnessed the dismantling of the organizations operating 
these systems (Schulman, Roe, Eeten, & Bruijne, 2004). Under the influence of restructuring policies, 
the provision of reliable services has shifted from a primarily intra-organizational task to an inter-
organizational challenge (De Bruijne & Van Eeten, 2007).  

These now multi-layered networked systems, such as the one this paper focuses on, have to deal 
with dispersed authority, information asymmetry and consist of organizations with diverging goals 
and specialized tasks, which may be mutually conflicting (Branlat & Woods, 2010; De Bruijne, 2006; 
Ren et al., 2008; Woods & Branlat, 2010). Providing reliable services therefore requires multiple 
groups, who are separated by organizational and geographical boundaries, to align their goals and 
activities. However, as De Bruijne (2006) notes, a thorough understanding of how networks of 
organizations operate and coordinate their actions to reliably operate complex technological systems 
is still lacking.  

The volatility and complexity of the networked system means that operators will increasingly have 
to deal with unexpected conditions. In these cases they can’t always rely on predefined protocols or 
contingency plans. Schulman et al. (2004) & De Bruijne & Van Eeten (2007) point to the increasing 
importance of flexible response capabilities to maintain reliable services in complex networked 
systems. This means that operations move from long-term planning to real-time operations, with a 
central role for dispatchers and operators, who need to make constant adjustments to the planned 
operations.  

Adaptation in networked systems however has it challenges. Each disruption is somehow unique 
and how it propagates is difficult to predict (Törnquist, 2007). A disruption is a developing situation 
where the knowledge of the state of the system only gradually becomes available (Nielsen, 2011). 
This means that adaptation is done under pressure in a dynamic environment, which affects the 
solution options available (Kohl, Larsen, Larsen, Ross, & Tiourine, 2007; Nielsen, 2011). There is 
therefore a considerable tension between fast decision-making and gathering the right information to 
make an informed decision. Decision-making therefore takes place under conditions of uncertainty, 
stress and imperfect information, which is also spread among the different organizations (Grabowski 
& Roberts, 1997). 

Besides, there is the complication of subsystems being simultaneously autonomous and 
interdependent (Grabowski & Roberts, 1999). Subsystems operate independently of other 
subsystems. However, they do this in the context of networks of interdependencies with other 
subsystems and cross-scale interactions, which will have implications at the system level (Branlat & 
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Woods, 2010). The thirteen traffic control centers of ProRail are a prime example of this. As each 
control center has its own bounded geographical area for which it is responsible, traffic controllers 
will make decisions based on local information. However, most trains cross several control areas, so 
decisions made by one traffic controller will impact train traffic in another area. Each individual 
action may affect the ability of others to manage the system reliably (De Bruijne, 2006).  

In addition, given the many subsystems and the complex relations between these interacting  
subsystems (Perrow, 1984; 1999), local failures can easily cascade and reinforce through the system, 
e.g. local problems in one control area can be amplified unintentionally by the traffic controller in the 
next area, thereby creating a cascade of failures and corrective measures (Nederlandse Spoorwegen, 
ProRail, & Ministerie van Infrastructuur  en Milieu, 2012). This explains the non-linear effect where 
two or more small disturbances can lead to a system breakdown, such as often occur during winter 
seasons, when initial disturbances are aggravated because the complex interactions and ambiguous 
couplings reinforce the non-linear relationship between local actions and the systemic whole 
(Leveson et al., 2009).  

The uncertainty, time pressure and the interdependence of activities during a disruption increases 
the need for coordination and thus the exchange of up-to-date information between the different 
actors in order to return to normal operation as soon as possible (Faraj & Xiao, 2006; Ren et al., 2008). 
However, sharing information in complex and dynamic situations has proven to be difficult (cf. 
Bharosa et al., 2010; Faraj & Xiao, 2006). These difficulties are reinforced by the poor communications 
endemic to those across organizational boundaries and between distributed teams (Pidgeon & 
O'Leary, 2000). Distributed teams are known for having difficulties in sharing information evenly, 
accurately, and when needed (Hinds & McGrath, 2006). 

It is necessary to understand how actors connect and share information during a disruption. As Ren 
et al. (2008) mention, most research focuses on the processes from the point of view of one focal actor 
or a collocated group to understand information exchange. Only a few studies have taken the whole 
network as their unit of analysis (cf. Hossain & Kuti, 2010; Provan, Fish, & Sydow, 2007; Provan & 
Kenis, 2008). Following Hinds & McGrath (2006) and Hosain & Kuti (2010), we believe that the whole 
network needs to be studied in order to gain insights into how the communication structure affects 
its capacity to coordinate. We will introduce Dynamic Network Analysis as a method to that allows 
such an analysis of the network. Not only does it enhance our understanding of the communication 
patterns and interdependencies of the network, but it also shows its dynamics during the process of 
disruption management.    

3. Dynamic network analysis 

Dynamic Network Analysis or DNA, is rooted in Social Network Analysis or SNA. SNA was 
developed to highlight and analyze formal and informal relationships. It helps to collect and analyze 
data from multiple interacting individuals or organizations (Provan, Veazie, Staten, & Teufel‐Shone, 
2005). SNA focuses on relationships between actors instead of the attributes of individuals. As such, 
it emphasizes the importance of relationships for the exchange of resources like information 
(Wasserman & Faust, 1994). It is these patterns of relationships (linkages) between actors (nodes) that 
affect the kind of information that is being exchanged, between whom and to what extent 
(Haythornthwaite, 1996). The patterns of information flows through time and space can then be 
quantitatively analyzed (McCulloh & Carley, 2008). To this aim, several metrics have been developed 
for both the node level and the network level (Kim, Choi, Yan, & Dooley, 2011). Using these metrics 
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it possible to quantitatively assess how the general network structure and the positioning of each 
organization within the network influence the information that is conveyed through the network 
(Provan et al., 2007).  

Traditionally, SNA work is a strongly quantitative method focused on small, bounded networks, 
with a focus on one type of relation and a single type of node (Carley, 2005). DNA varies from SNA 
in that it can handle large dynamic, multi-mode, multi-link networks with varying levels of 
uncertainty (Carley, 2003). Multi-mode means that the socio-technical systems being analyzed can 
consist of a plurality of node types, such as people, organizations, resources and tasks. Any two 
nodes can have various types of connections; DNA is therefore well-suited to analyze the multi-link 
relations of socio-technical system (Carley, Diesner, Reminga, & Tsvetovat, 2007).  Such systems can 
be represented by these many different networks, e.g. a social network (actor by actor) or a task 
network (actor by task). The collection of these networks is referred to as a meta-matrix (Tsvetovat & 
Carley, 2004). The added value of a ‘network of networks’ approach has also been acknowledged by 
others (cf. Salmon, Stanton, Jenkins, & Walker, 2011).  

The meta-matrix framework represents the network of relations connecting node entities (see table 1). 
It is used to analyze the properties of the socio-technical system and its interactive complexity.  

Table 1. The meta-matrix framework 
 
 People Task 
People  Social network 

Who talks to whom? 
Assignment network 
Who is assigned to which 
task? 

Task  Dependencies 
Which tasks are related to 
which? 

Source: Carley and Remminga, 2004 (edited by authors) 
 
Another important attribute of DNA is that it is able to deal with longitudinal data series. As the 
previous sections have shown, disruption management is a dynamic process. Here, networks are not 
static but continuously changing through interactions among its nodes (Knoke & Yang, 2008). What 
is needed is an understanding of how information flows are structured and how these structures 
change over time (Wolbers, Groenewegen, Mollee, & Bím, 2013). This makes traditional SNA less 
suitable to model communication during disruption management as it only provides one static 
snapshot (Effken et al., 2011). We can add time stamps to the data and groups these to create time 
slices (Wolbers et al., 2013). Time slices show the frequencies of information exchange in the network 
as it develops over time. The flow of information can then be analyzed by comparing these time 
slices.  

4. Data collection and structuring 
 

Gathering complete network data for inter-organizational networks is challenging (Hossain & Kuti, 
2010). Obtaining real-time data on the response network to a disruption requires several 
knowledgeable researchers, to be at different locations in the network at the right moment. 
Disruptions also occur unpredictably, so gathering real-time data can be quite time consuming and 
costly. ProRail has therefore utilized value stream mapping to determine what happens from the 
moment a train driver notices a damaged catenary, until a contingency plan is implemented. With 
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the help of a complete team of representatives involved in the process a map was created, using pen 
and paper, showing every step as it happens in reality. The process was broken down in to specific 
tasks and the flows of information were included in the map4. Creating the value stream map took 
several days for which a safe environment was created, so participants would feel free to provide as 
much detail as possible.  ProRail gave us the permission to use the data from this value stream map 
for our DNA.   

The data was converted into an edge list. Each row in an edge list represents a single tie in the 
network, and it is possible to attach variables (such as the time of occurrence) to the ties. Every edge 
represents an actor x actor (who shares information with whom?), actor x task (who does what task?) 
or task x task (how are tasks related?) tie. Since the actor x actor ties represent the flow of 
information between actors, the edges are directed and valued, meaning that the information flows 
in a certain direction and that there might be multiple interactions between two actors. We have 
chosen to focus our analysis on the actors who check and implement the contingency plan. 
Consequently, the tasks related to the repair of the catenary and those on providing travel 
information aren’t included. The edge list was then imported into ORA5. ORA generated series of 
reports that contain multiple metrics, both on a node- and whole network level (Carley et al., 2007; 
Carley & Pfeffer, 2012). 

Given the properties of disruption management in the Netherlands, we are interested in the centrality 
of actors. Centrality is fundamental to node-level metrics and reflects the relative importance of 
individual nodes (Kim et al., 2011). It is used to capture the flow of information in a network and 
estimate potential levels of coordination (Hossain, Wu, & Chung, 2006). Freeman (1979) identified 
three distinct facets of network centrality: degree, betweenness and closeness, with each of these 
measures having different implications for coordination. The three measures are conceptually 
operationalized in in table 2.  

Degree centrality allows us to measure the activity in communication of every node. Nodes that 
process and distribute a high amount of information feature a high in- and out-degree centrality. By 
combining the degree centrality of nodes with the actor by task relationships, we can get an 
indication on the workload of every node. Betweenness centrality shows which nodes will most 
likely have to pass along information for information to traverse disparate parts of the network. 
These nodes can become weak points in the process when they (unknowingly) distort information or 
are no longer able to process it. Finally, with closeness centrality we can assess whether the nodes 
that distribute the most information can actually do this within the least amount of time, given their 
position in the network.          
Network level metrics are used in order to define the overall structure of the network. For these 
measures we turn to the work of Stanton et al. (2012) & Walker (2009), who showed that the 
following network-level metrics can be used to define a network of organizations: network density 
(distribution of information), diameter (patterns of interaction), and centralization (allocation of 
decision rights). Table 3 shows the conceptual definition of these three measures. Density measures  

4 ProRail initiated the so-called ‘Lean Transformatie’ program as a concerted effort to improve its operational 
performance and (as a result) to improve its customer relations. The mapping of a catenary failure was part of this 
program and aimed to identify the number and quality of interactions following when staff develops a solution to 
such a failure. A better understanding of these interactions should then be used to implement a Kaizen-like way of 
working.  
5 ORA is a dynamic meta-network assessment and analysis tool developed by CASOS at Carnegie Mellon University, 
Pittsburg (PA). This user-friendly software tool allows researchers to visualize and analyze networks over time.     
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Table 2. Node-level metrics and their conceptual definition 
 
Node-level metrics Measurement Conceptual definition 
Degree centrality Measures the number of direct ties a given 

node has. The larger the number of direct ties 
an actor has the higher its degree centrality. In 
directed networks (networks that show the 
direction of information flowing), a distinction 
can be made between in-degree (information 
flowing to a node) and out-degree centrality 
(information flowing from the node).  
 

The more central an actor is, the more 
potential it has for activity in 
communication (Mullen et al., 1991).   

Betweenness 
centrality 

Measures the extent to which a particular node 
lies in between the other nodes of the network 

The more central an actor is, the more 
control or capacity it has to interrupt 
information flowing through the 
network. Betweenness reveals 
bottlenecks and structural weak points 
in information flows (Hossain & Kuti, 
2010), but also influential nodes that can 
coordinate group processes (Mullen et 
al., 1991; Hossain et al., 2006) 
    

Closeness centrality Measures the sum of distances from one node 
to all others, so closeness refers to the extent a 
node is close to all other nodes in the network. 

The more central an actor is the more 
independence the actor has and the 
easier it can distribute messages in a 
minimal amount of time (Mullen, 
Johnson, & Salas, 1991).  
 

  
Table 3. Network-level metrics and their conceptual definition  
 
Network-level metrics Measurement Conceptual definition 
Network density Measures the actual number of ties as a 

ratio to the maximum number of ties 
possible, ranging from 0 (no nodes are 
connected) to 1 (every node is 
connected to every other node).  

Density measures how well connected a 
network is. This gives information about the 
rate of flow of information among nodes 
(Chung & Hossain, 2009). The denser a 
network is, the broader the dissemination of 
information will be possible, since there are 
more direct pathways between sender and 
receiver (Stanton et al., 2012).   
 

Network diameter Measures the largest number of nodes 
that have to be traversed when 
traveling from one node to another. 

The higher the diameter of the network the 
more actors there are on the lines of 
communication (Stanton et al., 2012). 
Networks with a high diameter will need 
more steps to distribute information.  
 

Network centralization Measures the extent to which the 
overall connectedness is organized 
around particular nodes in a network. 

Network centralization and network density 
are complementary. Whereas density is 
concerned with the cohesiveness of the 
network, centralization reflects distribution of 
power or control across the network (Kim et 
al., 2011). Highly centralized networks have a 
few influential nodes, while in decentralized 
networks power is more distributed.  

 
 



EJTIR 15(4), 2015, pp.442-464  449 
Schipper, Gerrits and Koppenjan 
A dynamic network analysis of the information flows during the management of a railway disruption 
 
how fragmented (or sparse) the network is, i.e. what the influence is of the indirect communication 
on the distribution of information through the network. The diameter of the network measures the 
maximum number of steps needed to travel from one node to another. Information will need to  
traverse a lot of actors in fragmented networks. Centralization calculates whether the network is 
centralized or decentralized.         

5. Disruption management in the Dutch railway system 

It is essential to first give a brief overview of the nature of disruption management in the Dutch 
railway system in order to understand its complexity before discussing the analysis. Until the mid-
1990s, Dutch Railways used to manage the railway traffic. This unit was then split-off from the 
commercial passenger services into ProRail, as per EU-regulations. ProRail controls and monitors all 
the train movements and its traffic controllers assign paths to all TOC’s. During disruptions, these 
traffic controllers have to manage the overtaking, re-routing, short turning, or canceling of trains 
(Jespersen-Groth et al., 2009).  

There are several companies that offer passenger and cargo services. Dutch Railways (NSR) is by far 
the largest provider of passenger services and operates all main railway lines. During a disruption 
the TOC’s will have to guarantee that rolling stock is available and that crew schedules are adjusted. 
Infrastructure, rolling stock and train crew are highly interrelated in practice, which presents a 
complex puzzle that needs to be solved in a coordinated manner. Given the dominant position of 
Dutch Railways and the historical bond between ProRail and Dutch Railways, we will focus on how 
these two companies manage disruptions.   

Besides the organizational divide between ProRail and Dutch railways, there is also a divide between 
the national level, and the regional level (figure 1). ProRail has thirteen regional traffic control 
centers that are responsible for the railway traffic in specified geographical areas. Regional traffic 
controllers monitor the railway traffic in the designated areas and optimize traffic flows. In addition, 
train dispatchers are responsible for securing safe railway operations on the sections assigned to 
them. Train dispatchers control the train traffic through switches and signals. This is mostly an 
automated process. Similarly, Dutch Railways has five regional control centers where the railway 
traffic is monitored and where crew and rolling stock are managed. Coordinators have been assigned 
to important nodes (mostly large stations) to manage the shunting process and to inform employees 
on the platforms. Not only do these regional centers of ProRail and Dutch Railways monitor different 
geographical areas, but this is also done from different locations or rooms. This means that 
information on the availability of infrastructure and rolling stock & crew has to be shared by phone 
or data links. 

In 2010, ProRail and Dutch Railways established a joint Operational Control Centre Rail (OCCR). The 
OCCR is to serve as a boundary spanning platform that should encourage mutual communication, 
coordination and learning in order to reduce recovery time during disruptions. In the OCCR ProRail 
and Dutch Railways monitor the railway traffic on a national level and intervene when necessary. 
For instance, network traffic controllers can overrule decisions made by regional traffic controllers, if 
the decisions made by these regional traffic controllers are conflicting. As such, the management of 
disruptions is done by two different organizations and each organization has its subsystems that 
have different responsibilities both in terms of tasks and geographical areas. The OCCR is meant to 
overcome some of the organizational divides.  
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We will now have a closer look at the process of disruption management as designed by ProRail and 
Dutch Railways. In most cases, train drivers are the first who are confronted with a disruption. They 
will have to inform the train dispatcher about the situation, who will apply the necessary safety 
measures. The train dispatcher will then alarm other actors according to a decision tree. Next, the 
train dispatcher and the regional traffic controller (RTC) assess the impact of the disruption on the 
traffic and decide to what extent services can continue on the affected section. The RTC will then log 
the decision concerning the new distribution of the capacity (VDB), which is then checked by the 
network traffic controller (NTC) to see if the chosen distribution doesn’t conflict on a national level. 
The network operations controller (NOC) of Dutch Railways will then select a contingency plan 
(VSM). These are predefined plans for the most common disruptions. The NTC can adjust these 
contingency plans within the limitations set by the RTC in the VDB. Implementation of the VSM is 
done at the regional level, where it first has to be checked in terms of feasibility, e.g. whether train 
drivers are available to operate trains.  

Defining, checking and implementing a contingency plan during disruptions leads to considerable 
information flows through the system as is illustrated by Figure 1. It shows there is a vertical two-
way flow of information within both of the organizations (left column ProRail, right column Dutch 
Railways), as well as horizontal flows of information between the different subsystems of ProRail 
and Dutch Railways as indicated by the black arrows. Diagonal communication has been reduced to 
a minimum in order to avoid misunderstandings. So, each division of ProRail should only 
communicate with its counterpart of Dutch Railways in terms of geographical responsibility.    

 
Figure 1. Communication flows during a disruption between ProRail and Dutch Railways 

6. Using DNA to analyze and visualize a catenary failure 
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The network shown in figure 2 features all the actors (red round nodes) involved in the management 
of the disrupted catenary, i.e. the process leading up to the implementation of the contingency plan, 
and the tasks (blue triangular nodes) that these actors need to perform in this process (see appendix 
B for the full name of the abbreviations). The dotted lines indicate task by task relationships. A first 
observation concerns the large number of actors that are involved in the process, something that isn’t 
surprising given the situation in the Dutch railway system. Besides the actors mentioned in figure 1, 
there are numerous others that perform specific tasks (24 actors and 35 tasks), which results in a 
complex network of dependent actors and tasks. The graph also shows that there is an asymmetrical 
distribution of the tasks and communication activity among the nodes.      

 
Figure 2. Overview of the overall network of actors and tasks during the management of damaged catenary.  
 
Table 4 shows the centrality measures applied to the nodes in the network. The nodes with an 
asterisk have a higher than normal value, meaning the value is more than one standard deviation 
above the mean. Since this is a directed graph we calculated both the indegree (number of ties 
directed to the node) and outdegree (the number of outgoing ties of a node). The links have been 
inverted (1/w) when measuring betweenness and closeness centrality to take into account the valued 
data. This was necessary because ORA treats line weight as distance while we treat it as the number 
of interaction between nodes. Tie strength therefore indicates a possibility of information to pass 
along. By inverting the links we can keep the interpretation of line weights as similarity information.  

The train dispatcher has the highest centrality score for all measures, except for that of indegree 
centrality, followed by the regional traffic controller. The train dispatcher (total degree score 20) is 
the actor that communicates most frequently with other actors. The large number of outgoing ties of 
the train dispatcher illustrates its central role in distributing the information in the network. The high 
closeness centrality score supports this role, as the central position of the train dispatcher makes it 
possible to distribute the information within the least amount of time. The high betweenness 
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centrality score of the train dispatcher shows that the train dispatcher acts as a hub in transmitting 
information between disparate parts of the network. These findings confirm the specialized role of 
the train dispatcher in disruption management as he or she is solely responsible for safe railway 
operations.       

 
Table 4. The most central nodes based on degree, closeness and betweenness centrality measures 
 
 Total degree 

centrality 
Indegree 
centrality 

Outdegree 
centrality 

Closeness 
centrality 

Betweenness 
centrality 

1 Train Dispatcher 
(20)* 

LRI  
(8)* 

Train Dispatcher  
(12)* 

Train Dispatcher 
(0,236)* 

Train Dispatcher 
(0,259)* 

2 RTC  
(15)* 

Train 
Dispatcher (8)* 

RTC 
 (9)* 

RTC  
(0.241)* 

RTC  
(0,156)* 

3 LRI   
(12)* 

RTC  
(6)* 

Node Operations 
Control  (7)* 

ROC Monitor 
(0,211)* 

ROC Monitor 
(0,116)* 

4 Node Operations 
Control  
(11)* 

SMC  
(5)* 

ROC Monitor  
(7)* 

Node Operations 
Control  
(0,206)* 

NOC  
(0,079) 

5 ROC Monitor  
(11)* 

NTC  
(4) 

NOC  
(5) 

SMC  
(0,204)* 

Node Operations 
Control (0,079) 

 
Table 5 shows the scores for the whole network measures. Density assesses the interdependency of 
actors. The diagram shows that there is no diagonal communication between the actors, exactly as 
was designed in order to avoid miscommunication. This also influences the rate of flow of 
information, as in more sparse networks there will be less communication linkages. Because there are 
often no direct ties between nodes, multiple steps are necessary for information to flow through the 
network. The network is indeed sparse (density 0.08) indicating that the actual number of ties are a 
low percentage of the potential maximum number of ties. The diameter score of 13 shows that there 
are many nodes on the line of communication between the two most separated nodes, given the 
theoretically maximum diameter of 23 (number of nodes minus 1).   

The centrality scores indicate how tight the network is organized around the most central node, the 
train dispatcher. The degree centralization scores are relatively low so there isn’t a particular node 
dominant in the network, i.e. the network is loosely coupled with information distribution (out-
degree) being more dominated by a few nodes than information receiving (in-degree). The 
betweenness centralization is a bit higher, but there isn’t a dominant node that controls the flow of 
information. Closeness has the highest centralization score. Still the overall accessibility of 
information is moderately low.   

 
Table 5. The results of the network-level metrics 
 
Network-level metrics Results 
Network density 0,08 
Network diameter  13 
Centralization, Indegree 0,078 
Centralization, Outdegree 0,139 
Centralization, Betweenness 0,242 
Centralization, Closeness 0,373 
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We have visualized and described the whole network and the role of specific nodes within. 
However, the importance of a node in a network cannot be determined without reference to the 
dynamic patterns of communication during the different phases of the disruption management 
process (Borgatti, 2005; Wolbers et al., 2013), as described in section 3. Therefore we have created six 
time slices to see how the network develops over time and how the position of nodes changes (see 
appendix for the visualization of each time slice).  

The first time slice shows the train driver alarming the train dispatcher about the damaged catenary. 
The train dispatcher subsequently applies the safety measures. At this initial stage, it is crucial that 
the train dispatcher collects accurate and detailed information about the situation from the train 
driver because other actors will use this information for their decisions and actions. It is therefore 
remarkable to see three isolated networks during time slice 1. It highlights actors acting without 
having a direct link to the train dispatcher (their official source of information). This is the result of 
the collocation of the RTC, the travel informant (RI) and the train dispatcher, which makes it possible 
for them to overhear the phone call of the train dispatcher with the train driver. So without having 
the full details on the situation, the RI and the RTC already start making preparations. After the 
official notification by the train dispatcher, information is quickly exchanged throughout the 
network in order to determine the consequences of the damaged catenary and to work towards the 
contingency plan (time slices 2 to 4). The network becomes fragmented again, when the plan for the 
disruption has been defined and checked and actors focus on their own specific task in the 
implementation phase. Apparently, this can be done in isolation from the other actors (time slices 5 
and 6).  

Table 6 shows the most central actor for each time slice in terms of degree-centrality and 
betweenness-centrality. Closeness centrality isn’t calculated as in most time slices the networks are 
disconnected, rendering closeness centrality problematic to calculate (Borgatti, Everett, & Johnson, 
2013). There is a high correlation between both measures, but both show that the most central actor 
varies considerably in each time slice. This confirms the decentralized and fragmented nature of the 
network. The various (disconnected) sub-networks act rather autonomously in managing the 
disruption, without there being a central core (Wolbers et al., 2013).   

Table 6. Most central actors per time slice 
 
Time Nodes 

(Actors) 
Nodes 
(Tasks) 

Ties  
(Actor x Actor) 

Total degree centraltity Betweenness centrality 

T1 12 5 10 Train Dispatcher Train Dispatcher 
T2 17 3 17 NOC NOC/NTC 
T3 13 9 16 RTC/ Train Dispatcher RTC/ Train Dispatcher 
T4 15 9 14 Node Operations Control Node Operations Control 
T5 12 7 5 RTC, SMC, Stoco RTC 
T6 6 7 2 SMC SMC 

7. Discussion 

Three centrality measures (degree, betweenness and closeness) were used to assess the role of the 
actors in the disruption management process. For all measures, except indegree, the train dispatcher 
and RTC were the highest in centrality. This shows their importance in the processing and 
distribution of information. However, this important role is simultaneously a potential weak point in 
the flow of information. Given their hub functions, it is crucial that the train dispatcher and the RTC 
provide others with timely and accurate information. However sharing the right information can be 
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difficult when confronted with an information-overload under high workload. Especially the train 
dispatcher can become a bottleneck instead of an efficient hub because the train dispatcher also has 
the most tasks assigned to him or her (10) besides being the most active communicating node. 

The first priority of a train dispatcher during the first minutes of a disruption is to take all necessary 
safety measures and, secondly, to provide the other actors with detailed information about the 
situation. During a severe disruption the workload of a train dispatcher influences its capacities to 
share information. In such situations they are often no longer able to rely on the automated traffic 
control system and thus have to solve the situation manually. It then becomes very challenging to 
perform an efficient control of the traffic (Kauppi, Wikström, Sandblad, & Andersson, 2006). The 
high workload in terms of manual control and oral communication makes it difficult to keep the 
other actors up-to-date on the situation in order to create a shared understanding, in particular in a 
dynamic situation that requires constant adjustments. As Comfort et al. (2004) explain, when the 
information requirements for coordination increases, the cognitive capacity of human decision-
makers to process the expanding amounts of information decreases. Under high workloads, actors 
are confronted with an information-overload in which it is difficult to determine what should be 
shared. Consequently actors limit themselves to their formal tasks and important but non-formalized 
information is no longer properly communicated (Bharosa et al., 2010; Steenhuisen, 2009; Sutcliffe & 
Vogus, 2003). With components stretched to their performance limits, the system’s overall control of 
the situation can collapse abruptly (Branlat & Woods, 2010; Woods & Branlat, 2011). 

Another interesting finding, related to the previous one, is the low centrality scores for the actors in 
the OCCR (NTC and NOC). Closeness centrality can also be seen as indicating the independence of 
nodes. Nodes with a high closeness centrality can act autonomously and navigate freely across the 
network to access information in a timely manner (Kim et al., 2011). As a centralized monitoring 
center we would expect the OCCR to be within close reach of the other actors in the network. The 
low closeness centrality scores (NTC, 0.170; NOC, 0.161) show that this isn’t the case, which means 
that the OCCR is heavily dependent on the information it receives from the regional control and 
operating centers. The actors in the OCCR often need to actively collect the information from the 
regional centers. This can turn the OCCR in a bottleneck in the decision-making process when 
considerable exchanges of information are required and channels for this exchange are difficult to 
maintain (Branlat & Woods, 2010). An often heard complaint is that the OCCR makes decisions 
based on outdated information of local situations. The low centrality scores of the NTC and NOC in 
this particular case might however also have to do with the nature of this (small-scale) disruption. 

In addition, we calculated the density, diameter and centralization in order to define the overall 
network structure. The low density score and high diameter of the network show that it is relatively 
loosely coupled. As there are often no direct ties between nodes, information will have to pass along 
many actors before reaching the intended recipient and actors will therefore have limited access to 
information. Given the large amount of nodes on the line of communication there is a high chance 
that information gets distorted, as errors typically accumulate in retellings. In addition the network 
might prove less efficient than a dense communication structure, as information might not reach 
actors in time. It is however difficult to decide upon the right amount of integration of a network, as 
more ties between nodes will also lead to a higher complexity and thus higher coordination needs 
(Carroll & Burton, 2000). For instance, Hinds & McGrath (2006), found that dense communication 
between distributed teams was associated with more coordination problems, while hierarchy of 
communication led to smoother coordination.  

 
 



EJTIR 15(4), 2015, pp.442-464  455 
Schipper, Gerrits and Koppenjan 
A dynamic network analysis of the information flows during the management of a railway disruption 
 
Finally, the time slices revealed that information is being shared within disconnected parts of the 
network during the first few minutes, without those parts having a direct link to the source of the 
information. We know from our observations that operators frequently make decisions based on 
experience. They anticipate that a situation will unfold itself according to earlier experiences and 
already start to manage the disruption without having full knowledge on the situation. This ties in 
with the tension between fast-decision making and gathering the complete information to make an 
informed decision mentioned before. Inevitably, decisions based on incomplete information could 
also lead to ineffective or counterproductive solutions (Quaglietta, Corman, & Goverde, 2013).    

8. Conclusions 

We set out to test the utility of Dynamic Network Analysis (DNA) as a network tool in order to 
investigate the communication patterns during the management of a disruption in the Dutch railway 
system and how this structure might influence coordination. The Dutch railway system is a 
networked system in which several organizations and teams, separated by geographic and 
organizational boundaries, manage disruptions. It is therefore important to understand how these 
actors connect and share information during a disruption. DNA makes it possible to capture the 
irregular flows of information during a disruption. The tool was applied to a simulated case of a 
catenary failure to visualize and analyze the network of interdependent actors and tasks over time.  

Our research question was: how can DNA help to investigate coordination between the 
geographically distributed teams involved in the management of a railway disruption? DNA as a 
method seems to perform well in describing and structuring the complex information flows during 
disruption management. Even the first, still static, overview of the overall network has given a 
systematic overview of the communication patterns and tasks during the development of a solution 
for the catenary failure. Key actors could be defined using the centrality values and the overall 
structure was described using network-level measures. This revealed the central roles of the train 
dispatcher and regional traffic controller, and the decentralized structure of the network along with 
the long lines of communication. 

The dynamic nature of disruption management is captured through the time slices. The network 
changes shape over time and to understand this change requires such time slices. The analysis 
showed that there is a considerable variation in the centrality of actors per time slice. For instance, 
the train dispatcher is mostly active communicating in the first minutes of the disruption (T1 and 
T3). The time slices also showed the emergent character of the network. In the first time slices the 
network quickly becomes highly connected as information on the disruption is shared between the 
different teams, but the network quickly becomes more fragmented as actors return to their own 
specific task. Time slices revealed that information is being shared within disconnected parts of the 
network during the first few minutes, without those parts having a direct link to the source of the 
information. These dynamics don’t appear in the static image of the network with which we started. 
However, it forms an essential link between the different parts of the network. This aspect confirms 
Wolbers et al. (2013) finding that employing only static analysis of networks obscures the real 
dynamics of communication and potential coordination problems. DNA therefore makes it possible 
to discover issues that can be resolved (cf. Hossain & Kuti, 2010).   

For the sake of a fair evaluation, we should also point to a limitation of DNA such as we encountered 
during the case analysis. While DNA allowed us to structure the information flows, we were unable 
to say anything about the content of the information that flows through the ties, or how actors 
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respond to this information because it would be difficult to incorporate this in analysis and it would 
require an enormous amount of data. DNA reduces the ties between actors to being either present or 
absent, which in our case means information is flowing between actors or not. It is possible to classify 
the ties between actors by adding an attribute, i.e. information quality, but this mainly makes a 
contribution in terms of visualization and not for the analysis. For a comprehensive analysis of such 
disruptions, it would be necessary to combine a DNA with a qualitative analysis (Crossley, 2010).  

Naturally, there are limitations on the data we used for this analysis and how the data was collected. 
The process mapping was focused on the first phase, directly after the catenary failure, and not on 
the return to the normal state after the disruption. We therefore cannot relate the findings from the 
network analysis to the performance of the network in terms of coordination outcomes. Secondly, 
process mapping might not give an exact representation of how actors behave during real-time 
operations, although it can be observed that actors have indicated that they deviate from procedures. 
Process mapping however makes it possible to create a detailed representation of the process and the 
information flows, which is supported by the whole team of representatives. Finally, the chosen case 
shows quite some resemblance with the standard operating procedures. Although many actors are 
involved, the case is relatively low in complexity. As such, solving it requires a great of deal of 
routine tasks. It can be expected that non-standardized disruptions force actors to deviate from their 
routines and procedures, which will most likely result in different network structures and 
information flows.  

Given these considerations, we recommend applying DNA to larger and more complex disruptions 
and to combine DNA with qualitative data such as records of telephone conversations, when 
attempting to understand how and with what results actors in the railway network coordinate their 
activities to get the system back to a normal state. Of course, DNA could be used in other networked 
infrastructures to make operations visible and to identify coordination issues.    
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Appendix A. Visualization of the disruption management process over time 
Time slice 1. 

 
 
Time slice 2. 
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Time slice 3. 

 
 
Time slice 4. 
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Time slice 5. 

 
 
Time slice 6. 
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Appendix B. List of abbreviations used for actors in network 
 
Abbreviation Full name or function 
NTC Network Traffic Control 
NOC Network Operations Control 
RTC Regional Traffic Control 
ROC Regional Operations Control 
AL Incident Manager 
SMC Department of ProRail which monitors the power of the catenaries 
Stoco Disruption coordinator 
PLP Platform supervisor 
PCL Process Leader 
RET Mcn Shunter 
LRI Network travel informant 
RI Regional travel informant 
NSRI Informant for train crew 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


