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Abstract

In this paper we reconsider the analysis of the effect of education on income
by Angrist and Krueger (1991). In order to account for possible endogeneity of
the education spell, these authors use quarter of birth to form valid instruments.
Angrist and Krueger apply a classical method, two-stage least-squares (2SLS), and
consider results for data sets on individuals from all states of the US. In this paper
the research by Angrist and Krueger is extended both in a methodological and an
empirical way. Classical as well as Bayesian methods are used. Bayesian results
under the Jeffreys prior are emphasized, as these results are valid in finite samples
and because in the instrumental variables (IV) regression model the Jeffreys prior
is in a certain sense, truly, non-informative. Further, it is considered how results
vary between subsets of the data corresponding to regions of the US. Finally, some
assumptions of Angrist and Krueger are investigated and it is examined if one could
still obtain usable results if some assumptions are dropped. Our main findings are:
(1) The Angrist-Krueger results on returns to education for the USA are almost
completely determined by data from a few Southern states; (2) The conclusion of
Bound, Jaeger and Baker (1995), that the instruments of Angrist and Krueger give
hardly any usable information concerning the causal effect of education on wages,
is too strong. A model of Angrist and Krueger (or a slightly modified version) can
give usable information on the causal effect of education on income in the Southern
region of the US; (3) The instruments for education that are based on quarter of
birth are stronger for people with at most 8 or at least 14 years of education than
for people with 9-13 years of education. This suggests that quarter of birth does not
only affect the number of completed years of schooling for those who leave school as
soon as the law allows for it, as these persons usually have completed 9-13 years of
education. Therefore, if one intends to increase the understanding of the working of
the quarter-of-birth instruments, it is a better idea to focus on differences between
states in school entry requirements and/or compulsory schooling laws for children
of age 5-7 than to concentrate on the differences in compulsory schooling laws for
students of age 16-18.
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1 Introduction

Measuring the effect of education on income, the (monetary) returns to education, is a

matter of great importance for several decision processes. For example, the results of such

analysis are relevant for government agencies responsible for compulsory schooling laws,

for school districts considering changes in school entrance policies and also for parents

deciding when to enroll their children to school. However, a problem is that intellectual

capabilities, which are usually not observed, not only influence education but also directly

affect income. Therefore, a simple regression of income on the number of years of education

may lead to incorrect conclusions. For example, smarter students find school less difficult

and may choose to obtain more schooling to signal their high ability. So, even if extra

years of education have no effect on income, people with higher education will on average

have higher incomes because of their higher abilities. Therefore, one may expect that an

ordinary regression of income on the years of education leads to an upward bias, i.e. an

overestimated effect of education on income.1 Another problem is the measurement error

in reported education. First, usually only the completed number of years of education

is reported. Second, people may misreport their education spell.2 If the measurement

error would be the only problem, one would expect that a simple regression of income on

education would result in a downward bias, i.e. an underestimated effect of education on

income, as the part of the variation in education that is merely due to measurement error

does not lead to variation in income.

A method for solving these problems is the use of instrumental variables that must

be correlated with education but uncorrelated with latent capabilities (and measurement

errors). However, it is hard to find variables that are correlated with education but

uncorrelated with intellectual capabilities. Angrist and Krueger (1991) use American data

and suggest using quarter of birth to form instrumental variables. These instruments

exploit that students born in different quarters have different average education. This

results since most school districts require students to have turned age six by a certain date,

a so-called ‘birthday cutoff’ which is typically near the end of the year, in the year they

enter school, whereas compulsory schooling laws compel students to remain at school until

their sixteenth, seventeenth or eighteenth birthday. This asymmetry between school-entry

requirements and compulsory schooling laws compels students born in certain months to

attend school longer than students born in other months: students born earlier in the year

enter school at an older age and reach the legal dropout age after less education. Hence,

for students who leave school as soon as the schooling laws allow for it, those born in the

1The intellectual capabilities of the persons in the sample may not be the only reason for an over-
estimated effect of education on income. The (often unobserved) intellectual capabilities, income and
education level of their parents may also cause an upward bias, as these characteristics of their parents
may also influence their education level and have a direct effect on their income; for example, it may be
the case that children of more intelligent and higher educated parents on average learn more at home.

2Siegel and Hodge (1968) find that the correlation between individuals’ education reported in two
surveys is only 0.933.
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first quarter have on average attended school for three quarters less than those born in

the fourth quarter.

The strength of these instruments clearly depends on the fraction of students that

immediately leave school when it is permitted. This is, however, only a small part of the

total population of students since most students do not immediately leave school when

it is allowed and some leave school before they attain the legal dropout age. Angrist

and Krueger (1991) mention several factors that influence the size of the latter group.

Compulsory schooling laws allow certain officers to take children into custody and/or

punish a child’s parents if a child does not attend school; and child labor laws restrict or

prohibit children of compulsory school age from participating in the work force, the main

alternative to attending school. There are, however, exemptions to compulsory schooling

laws: students are exempt from compulsory school attendance if they have a high school

degree; and in many states there are exemptions for children suffering from physical or

mental disabilities, or if they live far from school.

Alongside that the quarter of birth only affects the years of education for a small frac-

tion of the student population, its influence is also limited since it only implies a maximum

difference of one year over the different quarters which is small compared to the overall

variation in the education spell. Quarter of birth is therefore expected to be a weak in-

strument. Bound, Jaeger and Baker (1995), for example, show that randomly generated

instruments, designed to match the data of Angrist and Krueger (1991), yield results re-

markably similar to those based on the actual instruments. Staiger and Stock (1997) also

show that inference on the returns to education is strongly affected by the weakness of the

quarter of birth instruments. Hence, although the quarter of birth seems a plausible source

for constructing instruments, we should be careful with interpreting the results because of

the weakness of the instruments.

Angrist and Krueger (1991) only apply a classical method, two-stage least-squares (2SLS),

and consider only results for the whole data set of all states of the US. In this paper

the research by Angrist and Krueger (1991) is extended. Results are examined for both

classical and Bayesian methods. Bayesian results under the Jeffreys prior are emphasized,

as these results are valid in finite samples and because in the instrumental variables (IV)

regression model the Jeffreys prior is - unlike the flat prior of Drèze (1976) - truly non-

informative; see e.g. Kleibergen and Zivot (2003). Furthermore, it is considered how

results vary between subsets of the data corresponding to regions of the US. It is shown

that results of Angrist and Krueger (1991) on returns to education for the USA are almost

completely determined by data from a few Southern states. Finally, some assumptions

made by Angrist and Krueger (1991) are investigated and it is examined if one could still

obtain usable results if some assumptions are dropped. It is shown that the instruments

for education that are based on quarter of birth are stronger for people with at most 8 or

at least 14 years of education than for people with 9-13 years of education. This suggests
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that quarter of birth does not only affect the number of completed years of schooling for

those who leave school as soon as the law allows for it, which is suggested by Angrist and

Krueger (1991), as these persons are (mostly) contained in the group with 9-13 years of

education. Therefore, if one intends to increase the understanding of the working of the

quarter-of-birth instruments, it is a better idea to focus on differences between states in

school entry requirements and/or compulsory schooling laws for children of age 5-7 than

to concentrate on the differences in compulsory schooling laws for students of age 16-18,

as is done by Angrist and Krueger (1991). Furthermore, it is shown that the conclusion

of Bound, Jaeger and Baker (1995), that the models of Angrist and Krueger (1991) give

hardly any usable information concerning the causal effect of education on wages, is too

strong. A model of Angrist and Krueger (1991) (or a slightly modified version) can give

usable information on the causal effect of education on income in the Southern region of

the US.

The paper is organized as follows. In section 2 the particular model and data that we

use are described. In sections 3 and 4 classical and Bayesian results are given, respec-

tively, both for the whole data set and for subsamples corresponding to regions of the US.

In sections 2 - 4 it is assumed that the assumptions made Angrist and Krueger (1991)

are satisfied by the data. In section 5 some assumptions made by Angrist and Krueger

(1991) are investigated, and it is examined if one could still obtain usable results if some

assumptions are dropped. Section 6 gives conclusions.

2 Model and data

Angrist and Krueger (1991) use data sets concerning men born in the USA in the years

1920-1929, 1930-1939 or 1940-1949, and consider several model specifications. We use a

subset of the data used by Angrist and Krueger (1991): a data set on income, years of

education and state/quarter/year of birth consisting of 329,509 men born in the USA in

the years 1930-1939.3 We use the following model:

ỹi = x̃iβ +
∑9

j=1 Dy
j,i δy

j +
∑S−1

t=1 Ds
t,i δs

t + π1 + ε̃i i = 1, . . . , T (1)

x̃i =
∑9

j=1 Dy
j,iγ

y
j +

∑S−1
t=1 Ds

t,iγ
s
t + π2

+
∑S

t=1

∑4
h=2 Ds

t,iD
q
h,i πsq

th +
∑9

j=1

∑4
h=2 Dy

j,iD
q
h,i πyq

jh + ṽi

(2)

where ỹi is the logarithm of the weekly wage of person i in 1979, x̃i is the number of

completed years of education by person i, and the parameter of interest is the return on

education β. The dummy variables Ds
t,i, Dy

j,i, Dq
h,i are equal to 1 if individual i was born

in state t, year 1929+j, quarter h, and equal to 0 otherwise, respectively. S is the number

of states of birth, i.e. S = 51 (including the District of Columbia) if we use all states.

We however also consider four subsamples for which we divide the US into four regions

3The source of the data is the 1980 Census, 5 percent Public Use Sample.
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Table 1: US Census Bureau Regions

Census number of number of
region observations states states (including D.C.)

1. Northeast 84484 9 Connecticut, Maine, Massachusetts, New Hampshire,
New Jersey, New York, Pennsylvania, Rhode Island,
Vermont.

2. Midwest 102267 12 Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota,
Missouri, Nebraska, North Dakota, Ohio,
South Dakota, Wisconsin.

3. South 114391 17 Alabama, Arkansas, Delaware, D.C., Florida, Georgia,
Kentucky, Louisiana, Maryland, Mississippi,
North Carolina, Oklahoma, South Carolina, Tennessee,
Texas, Virginia, West Virginia.

4. West 28367 13 Alaska, Arizona, California, Colorado, Hawaii, Idaho,
Montana, Nevada, New Mexico, Oregon, Utah,
Washington, Wyoming.

USA 329509 51

that are also used by the US Census Bureau, the source of the data. The states and

numbers of observations in each region are given by Table 1. The coefficients π1 and π2

are the constant terms; ε̃i and ṽi are disturbances that are assumed to be jointly normal

distributed and independent across individuals.

The state and year dummies Ds
t,i and Dy

j,i are included in both equations since state

and year of birth both influence the education spell and income. The year dummies in the

wage equation (1) incorporate the effect of age (measured in years) on income.

The exogenous variables that are excluded from the wage equation (1) are the interac-

tions of state and quarter of birth dummies, and interactions of year and quarter of birth

dummies. The interacted state and quarter of birth dummies reflect that the influence

of the quarter of birth on education may differ between states which results since com-

pulsory education laws differ between states. The legal dropout age varies between 16,

17 and 18 years and in some states students have to finish the school term. The rules

concerning exemptions from the compulsory school attendance vary as well across states.

The average number of years of education that students desire also differs between states

(see Tables 2 and 3, which show that on average men born in the Southern region in

the period 1930-1939 have less education than men born in the other regions); the more

years of education that students on average want to attend, the smaller the fraction of

students that leave school as soon as the law allows it, and the smaller the coefficients

at the interacted state and quarter of birth dummies. Note that πsq
th is interpreted as the

effect of the h-th (h = 2, 3, 4) quarter on education in state s in 1939, i.e. the difference

in the years of education between men born in the h-th quarter and the first quarter in

1939 (on average).
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The interacted year and quarter of birth dummies reflect that the influence of the

quarter of birth on education may change over time. For example, the average number

of years of education that students desire may change over time. In fact the average

number of years of education has increased from 1930 to 1939, see Table 4.4 Note that πyq
jh

(j = 1, . . . , 9;h = 2, 3, 4) is interpreted as the difference in the effect of the h-th (h = 2, 3, 4)

quarter on education between the year 1929 + j and 1939, i.e. the difference between the

differences in years of education between men born in the h-th quarter and the first quarter

between the year 1929 + j and 1939 (on average).

Model (1)-(2) reads in matrix notation:

ỹ = WΠ1 + X̃β + ε̃ (3)

X̃ = WΠ2 + Z̃Π + Ṽ (4)

where ỹ = (ỹ1, . . . , ỹT )′, X̃ = (x̃1, . . . , x̃T )′, ε̃ = (ε̃1, . . . , ε̃T )′, Ṽ = (ṽ1, . . . , ṽT )′; W is the

T × (S + 9) matrix of year and state of birth dummies and a constant term with rows

Wi = (Dy
1i, . . . , D

y
9i, D

s
1i, . . . , D

s
S−1,i, 1), Z̃ is the T×3(S+9) matrix with rows Zi containing

the state-and-quarter of birth and year-and-quarter of birth interactions Ds
tiD

q
hi, Dy

jiD
q
hi

(t = 1, . . . , S; h = 2, 3, 4; j = 1, . . . , 9). The parameter vectors are the (S + 9)× 1 vectors

Π1 = (δy
1 , . . . , δ

y
9 , δ

s
1, . . . , δ

s
S−1, π1)

′, Π2 = (γy
1 , . . . , γ

y
9 , γ

s
1, . . . , γ

s
S−1, π2)

′ and the 3(S + 9)× 1

vector Π containing the coefficients πsq
th, πyq

jh (t = 1, . . . , S; h = 2, 3, 4; j = 1, . . . , 9).

We respecify (3)-(4) as:

y = Xβ + ε (5)

X = ZΠ + V (6)

where y, X, Z (and the error terms ε, V ) contain the residuals of ỹ, X̃, Z̃ (and ε̃, Ṽ ) after

regression on W ; that is, the observations are ‘corrected’ for differences in mean across

years and states.5 The restricted reduced form corresponding to the structural form (5)-(6)

is given by:

y = ZΠβ + u (7)

X = ZΠ + V (8)

4Angrist and Krueger (1991) conclude that as average income in 1979 is approximately equal across
birth years 1930-1939, age has no or little influence on income for men between 40 and 49 years old.
However, as the average education has increased over years of birth 1930-1939, age may very well have a
positive effect that is (on average) compensated by the lower level of education. Note that this does not
immediately imply that the variable age should be included in the model, as the year dummies already
incorporate the effect of age (measured in years).

5In classical inference the Frisch-Waugh-Lovell theorem implies the equivalence of the results from
(3)-(4) and (5)-(6). In Bayesian inference this results since specifying a flat prior for Π1 and Π2 and
integrating out Π1 and Π2 in the model (3)-(4) yields the same posterior as considering the model (5)-(6)
(upto some factor that is neglectable if the number of observations T is much larger than S + 9, the
dimension of Wi, as is the case throughout this chapter).

6



Table 2: Summary statistics of education and wage per region

Census number of education∗ log weekly wage
region observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.

1. Northeast 84484 13.27 3.12 9.4% 14.2% 5.96 0.65
2. Midwest 102267 13.06 2.99 10.0% 14.6% 5.97 0.66
3. South 114391 11.93 3.52 22.0% 28.0% 5.77 0.71
4. West 28367 13.63 3.01 6.5% 10.1% 6.00 0.65

USA 329509 12.77 3.28 13.7% 18.7% 5.90 0.68
∗In most states people born in 1930-1939 were obliged to enter school at age 5 or 6
and allowed to leave school at age 16 having completed 9 or 10 years of education.

where u ≡ V β + ε. The error terms in the structural form and the restricted reduced form

have covariance matrix Σ and Ω, i.e. (εi, vi)
′ ∼ N(0, Σ) and (ui, vi)

′ ∼ N(0, Ω), with

Σ =

(
σ11 Σ12

Σ21 Σ22

)
,

Ω =

(
ω11 Ω12

Ω21 Ω22

)
=

(
1 β′

0 I

)
Σ

(
1 0

β I

)
=

(
σ11 + 2Σ21β + β′Σ22β β′Σ22 + Σ12

Σ22β + Σ21 Σ22

)
.

Section 3 shows results for two classical methods, two-stage least squares (2SLS) and

limited information maximum likelihood (LIML). In section 4 the results are given for

Bayesian methods, using either a flat or Jeffreys prior.
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Table 3: Summary statistics of education and wage per state of birth

number of education log weekly wage
state observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.
Alabama 8536 11.71 3.46 23.1 29.5 5.72 0.76
Alaska 78 13.47 3.12 7.7 15.4 6.09 0.83
Arizona 1066 13.11 3.27 11.5 16.0 5.96 0.62
Arkansas 5794 11.85 3.41 21.4 27.8 5.77 0.70
California 11078 13.87 2.93 4.6 7.8 6.04 0.65
Colorado 2818 13.32 3.11 9.1 12.8 5.95 0.65
Connecticut 3844 13.31 3.08 9.7 14.3 5.96 0.63
Delaware 598 12.30 2.94 15.7 21.2 5.85 0.61
D.C. 1237 13.83 3.12 6.4 10.6 6.01 0.65
Florida 3913 12.68 3.35 14.4 19.9 5.78 0.69
Georgia 8411 11.50 3.51 24.8 31.4 5.68 0.72
Hawaii 246 13.23 3.06 10.2 14.2 5.97 0.69
Idaho 1599 13.54 3.02 7.5 11.1 5.95 0.64
Illinois 18375 13.35 3.00 8.0 12.6 6.03 0.65
Indiana 8918 12.77 2.87 10.8 16.0 5.94 0.63
Iowa 6699 13.14 2.96 9.3 12.5 5.91 0.70
Kansas 4807 13.44 2.96 7.7 10.5 5.91 0.67
Kentucky 8933 11.27 3.55 30.7 36.8 5.80 0.70
Louisiana 5975 12.07 3.61 20.0 25.6 5.84 0.71
Maine 2424 12.35 3.10 17.0 22.0 5.75 0.64
Maryland 4139 12.44 3.27 16.7 23.4 5.88 0.67
Massachusetts 9955 13.47 3.16 8.9 13.1 5.95 0.64
Michigan 14077 13.00 2.89 9.4 14.9 6.03 0.62
Minnesota 7170 13.19 3.03 10.0 13.5 5.97 0.67
Mississippi 5864 11.49 3.73 25.9 32.6 5.68 0.75
Missouri 9274 12.69 3.18 14.8 19.6 5.90 0.69
Montana 1407 13.38 3.01 8.0 12.2 5.91 0.70
Nebraska 3488 13.34 2.96 7.5 11.1 5.92 0.70
Nevada 308 13.48 2.95 8.1 11.0 5.99 0.73
New Hampshire 1200 12.59 3.15 16.6 21.0 5.80 0.64
New Jersey 8964 13.43 3.11 8.3 13.1 6.00 0.66
New Mexico 1325 12.59 3.41 15.1 19.9 5.85 0.61
New York 29015 13.70 3.16 7.1 11.4 6.01 0.66
North Carolina 10798 11.70 3.43 24.0 30.5 5.66 0.71
North Dakota 2028 12.94 3.28 15.4 19.5 5.93 0.70
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Table 5.3 (continued)
number of education log weekly wage

state observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.
Ohio 17070 12.95 2.95 10.1 15.4 5.97 0.63
Oklahoma 6950 13.00 3.11 11.4 15.9 5.90 0.66
Oregon 2127 13.65 2.86 5.2 8.9 5.99 0.62
Pennsylvania 26385 12.84 2.97 10.8 16.3 5.93 0.62
Rhode Island 1698 12.91 3.21 15.1 20.8 5.85 0.67
South Carolina 5245 11.30 3.58 27.3 34.6 5.61 0.75
South Dakota 1754 13.18 3.23 12.8 15.3 5.90 0.67
Tennessee 8335 11.54 3.51 27.0 32.8 5.75 0.71
Texas 15932 12.67 3.62 15.5 20.1 5.87 0.70
Utah 1999 13.94 3.04 5.5 9.7 6.01 0.61
Vermont 999 12.40 3.18 18.2 22.4 5.73 0.67
Virginia 7319 11.47 3.62 27.3 34.0 5.73 0.71
Washington 3610 13.66 2.90 5.4 8.7 6.04 0.64
West Virginia 6412 11.81 3.16 22.5 28.9 5.85 0.64
Wisconsin 8607 12.96 2.94 10.2 14.5 5.93 0.66
Wyoming 706 13.60 3.02 6.9 10.9 5.99 0.68

Table 4: Summary statistics of education and wage per year of birth

number of education log weekly wage
year observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.
1930 33602 12.46 3.44 17.2 22.6 5.90 0.69
1931 30583 12.59 3.38 15.8 20.8 5.91 0.69
1932 32211 12.63 3.40 15.9 21.1 5.90 0.69
1933 30751 12.69 3.35 14.9 20.1 5.90 0.68
1934 31916 12.72 3.32 14.4 19.7 5.90 0.69
1935 32773 12.78 3.26 13.7 18.6 5.89 0.69
1936 32676 12.84 3.20 12.6 17.6 5.90 0.67
1937 33969 12.90 3.17 11.7 16.5 5.90 0.66
1938 35223 12.99 3.15 11.1 15.8 5.90 0.67
1939 35805 13.03 3.13 10.6 15.5 5.90 0.66
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3 Classical approaches

In this section we first briefly summarize two well-known classical single equation estima-

tors for β, two-stage least squares (2SLS) and limited information maximum likelihood

(LIML); for extensive discussions of classical single equation procedures the reader is

referred to Hausman (1983) or Phillips (1983). After that the results are discussed of

applying the 2SLS and LIML methods to the Angrist-Krueger IV model for data of the

US and the four Census regions.

In the two-stage least squares method, due to Theil (1953) and Basmann (1957), an

estimator of β is obtained by the following two steps. First, an estimate of Π in (6) is

obtained by OLS: Π̂OLS = (Z ′Z)−1Z ′X. Second, an estimate of β is obtained by OLS of

y on ZΠ in (7) with Π replaced by Π̂OLS: β̂2SLS = (X ′Z (Z ′Z)−1Z ′X)−1X ′Z (Z ′Z)−1Z ′y.

The 2SLS estimator β̂2SLS is a consistent estimator of β that is asymptotically normal

distributed with covariance matrix (1/T )σ11(Π
′ΣZΠ)−1, where ΣZ = plimT→∞(1/T )Z ′Z,

under the conditions that β is identified and instruments are not too weak. Staiger and

Stock (1997) explore a case of weak instruments, defined as Π = C/
√

T where C is fixed

(so that Π′Z ′ZΠ converges to a constant as the sample size T grows), where β̂2SLS is

asymptotically biased. In finite samples β̂2SLS is less biased than βOLS, the OLS estimator

of β in (5). The tails (and bias) of the finite sample distribution of β̂2SLS depend on

the degree of overidentification, the number of instruments excluded from the structural

equation minus the dimension of β; the moments of the finite sample distribution exist up

to/including this degree of overidentification.

In the method of limited information maximum likelihood, due to Anderson and Rubin

(1949) and Hood and Koopmans (1953), the estimator for β is the value of β for which

the likelihood function of (5)-(6), concentrated with respect to Π and Σ, takes its max-

imum. It is computed by computing the smallest root λ of the determinantal equation

|λ(Y X)′(Y X) − (Y X)′Z(Z ′Z)−1Z ′(Y X)| = 0 and the corresponding eigenvector, af-

ter which multiplying this eigenvector with minus the inverse of its first element yields

(−1, β̂LIML)′. Staiger and Stock (1997) show that in their case of weak instruments β̂LIML

is an inconsistent estimator of β. However, in finite samples β̂LIML is (approximately)

median unbiased if instruments are not too weak. Staiger and Stock (1997) show several

cases in which the LIML estimator is approximately median unbiased whereas the 2SLS

estimator suffers from huge biases, which makes Staiger and Stock (1997) conclude that

estimator bias is less of a problem for LIML than for 2SLS, so that they suggest using

LIML rather than 2SLS point estimates. The tails of the finite sample distribution of

β̂LIML are Cauchy-type (no matter the degree of overidentification), so that β̂LIML has no

finite moments.

Angrist and Krueger (1991) report the 2SLS estimate of β in the model (5)-(6): β̂2SLS =

0.0928 with an asymptotic standard error of 0.0093 (column (2) of Table VII). Next to
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that they report the OLS estimate of β in (5): 0.0673 (with standard error of 0.0003;

column (1) of Table VII).

Table 5 shows the results of 2SLS and OLS for the Census regions. This suggests

that the 2SLS estimate for the US is almost completely determined by the region South:

the difference between the 2SLS estimates for the US and the South is small, and the

asymptotic standard error for the South is not much larger than that for the US. An

explanation for this result is that the average education level for men born in 1930-1939

is lower in the region South than in the other regions, see Table 2. The influence of

compulsory schooling laws is therefore larger for the South, as more students desire to

leave school as soon as it is allowed. Therefore the influence of quarter of birth is larger

in the Southern region, so that the instruments are strongest in the South.

One problem that the 2SLS estimator may suffer from is that it is biased in the case

of weak instruments; this is illustrated by the last column of Table 5, which shows the

mean of 10,000 2SLS estimators for 10,000 data sets simulated from (5)-(6) with parameter

values chosen as β = β̂2SLS, Π = Π̂OLS and Σ the covariance matrix of the residuals. The

five means are all biased in the direction of the corresponding OLS estimator where the

relative bias, the difference between the mean of the 2SLS estimates and the true β in the

simulations divided by the difference between the OLS estimate and the true β, is smaller

for the US and the Southern region than for the other three regions. In fact it is smaller

for the South than for the US, which reflects that the addition of superfluous (or very

weak) instruments results in a 2SLS estimator with smaller variance but larger bias.

Table 6 shows LIML estimates for the four Census regions, and quantiles of the esti-

mated finite sample distribution, where maximum likelihood estimates substituted for β,

Π and Σ in the finite sample density of β̂LIML for the case of one explanatory endogenous

variable that is given by Kleibergen (2000) and Kleibergen and Zivot (2003). Again the

results are dominated by the Southern region: the difference between the LIML estimates

for the US and the South is small, and the 95% and 50% density intervals for the South

are not much larger than those for the US. Since LIML is known to focus on the strongest

available instruments, this confirms that the instruments are much stronger in the South

than in the other regions. Also notice that the median of the finite sample distribution

of the LIML estimator is approximately equal to the ‘true value’, the ML estimate, which

reflects that the LIML estimator is approximately median unbiased. So, Tables 5 and

6 illustrate that the LIML estimator is a better point estimator than the 2SLS estima-

tor, although in this case the 2SLS estimator is also ‘smart enough’ to indicate that the

strongest instruments stem from the region South.

The results for the four Census regions suggest that a further division of the data

set into states (or groups of states) may be interesting. We first take a closer look at

the first stage regression, the OLS results in model (5). Table 7 shows the estimated

coefficients π̂sq
th at the interactions of state and quarter of birth, which are interpreted as

the effect of the quarter of birth (as compared with the first quarter) in the year 1939. It
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shows t-values larger than 3 for Arkansas, Kentucky and Tennessee (and t-values larger

than 2 for Alabama, Arizona, California, Colorado, Georgia, Illinois, Louisiana, Maryland,

Massachusetss, Mississippi. North Carolina, North Dakota, Texas, Virginia). The effect of

quarter of birth on education should be on average smaller than 0.75, which is not satisfied

by the estimated coefficients of Alaska, Hawaii and Nevada; this is obviously caused by the

small numbers of observations for these states. Table 8 shows the estimated coefficients π̂yq
jh

at the interactions of year and quarter of birth. This shows that the influence of quarter of

birth is clearly strongest for men born in 1930. One explanation is that men born in 1930

have on average less education than men born in 1931-1939, so that compulsory schooling

laws are more important for this group. Another, more specific, reason could be that these

men attain age 16 in 1946, right after World War II when there is arguably a lot of work

for young men.

Another way to look at the strength of the quarter of birth instruments for each

state is to consider the p-value of the multiple F-test in the first stage regression when

considering only data of one state. These F-statistics (and corresponding p-values) are

given by Table 9, which also shows the estimated concentration parameter Π′Z ′ZΠ/σ2
22

(with σ2
22 = var(vi); see Basmann(1963)), where Π̂OLS and the variance of the residuals in

the first stage regression are substituted for Π and σ2
22.

Table 9 shows that three states in the Census region South, Arkansas, Kentucky and

Tennessee, have the largest concentration parameter, and the smallest p-values in the

multiple F-test (p < 0.001). For Kansas the p-value in the multiple F-test is smaller than

0.01. We have p < 0.1 for Arizona and three Southern states, Georgia, South Carolina

and Texas.

The results of the multiple F-test in the first stage regression for data of one state

are graphically illustrated by Figure 1. The three states with p-value smaller than 0.001,

Arkansas, Kentucky and Tennessee, are neighboring states in the region South.

Kentucky has the highest concentration parameter (and smallest p-value at the F-test);

it is no coincidence that for men born in 1930-1939 those born in Kentucky have the lowest

education on average, so that the influence of compulsory schooling laws is relatively large

in Kentucky. Arkansas and Tennessee also have relatively low average education levels.

However, Virginia and Mississippi have lower average education levels; for Tennessee the

states of Alabama and West Virginia also have lower average education. This suggests

that the average amount of education desired by people is not the only factor influencing

the strength of the quarter of birth instruments: there are also other factors playing a

role, which may include the power of government agencies enforcing schooling laws and

the exemptions from these schooling laws that vary between states.

Tables 5 and 6 show the results of 2SLS and LIML for data of men born in Kentucky,

Arkansas or Tennessee. Notice that the uncertainty in the LIML estimator, reflected by

the 95% and 50% density intervals of the (estimated) finite sample distribution, increases

by a relatively small amount, as compared with the US. The width of the 95% and 50%

density intervals are only 1.93 and 1.92 times larger than for the US while the whole data

12



Table 5: OLS and 2SLS estimates for β in (5)-(6) for data of US and Census regions

OLS 2SLS 2SLS (10000 simulations)
Region β̂OLS (st.error) β̂2SLS asympt. std.error mean β̂2SLS relative bias
USA 0.0673 (0.0003) 0.0928 (0.0093) 0.0858 0.275

1 Northeast 0.0738 (0.0007) 0.0707 (0.0234) 0.0721 0.452
2 Midwest 0.0621 (0.0007) 0.0796 (0.0224) 0.0724 0.411
3 South 0.0691 (0.0006) 0.0931 (0.0120) 0.0874 0.238
4 West 0.0559 (0.0012) 0.0506 (0.0206) 0.0530 0.453

Kentucky, 0.0653 (0.0013) 0.0970 (0.0168)
Arkansas &
Tennessee

Table 6: LIML estimates for β in (5)-(6) for data of US and Census regions

Quantile finite sample dist. β̂LIML

Region β̂LIML median 2.5% 97.5% 25% 75%
USA 0.1064 0.106 0.0877 0.1256 0.0999 0.1129

1 Northeast 0.0650 0.065 0.0163 0.1124 0.0487 0.0810
2 Midwest 0.1298 0.128 0.0836 0.1825 0.1135 0.1468
3 South 0.1071 0.107 0.0828 0.1324 0.0986 0.1156
4 West 0.0449 0.045 0.0014 0.0874 0.0302 0.0593

Kentucky, 0.1046 0.104 0.0694 0.1420 0.0922 0.1170
Arkansas &
Tennessee

set of the US has over 14 times as many observations (329509 vs. 23062). Further, these

95% and 50% density intervals are tighter for the data set of Kentucky, Arkansas and

Tennessee than for the region Northeast, Midwest or West. This stresses the importance

of the observations on men born in the states of Arkansas, Kentucky and Tennessee for

the inference on return on education.

13



Table 7: Estimated coefficients π̂sq
th at interactions of state and quarter of birth in first

stage regression

State Second quarter Third quarter Fourth quarter
coefficient (t-value) coefficient (t-value) coefficient (t-value)

Alabama 0.0087 (0.0799) 0.2339 (2.1891) 0.2591 (2.4017)
Alaska 2.0370 (1.9631) 1.6165 (1.4696) -0.0412 (-0.0342)
Arizona 0.6195 (2.2070) -0.1240 (-0.4569) -0.2899 (-1.0466)
Arkansas -0.2182 (-1.6787) 0.0271 (0.2175) 0.4230 (3.3300)
California 0.2272 (2.3296) 0.1102 (1.1609) 0.1029 (1.0606)
Colorado 0.2718 (1.5384) 0.3377 (1.9393) 0.3958 (2.2194)
Connecticut 0.2548 (1.6819) 0.0123 (0.0807) 0.0875 (0.5661)
Delaware 0.4562 (1.2199) 0.5355 (1.4456) 0.0847 (0.2232)
D.C. -0.4522 (-1.7005) -0.4764 (-1.8166) -0.4318 (-1.6783)
Florida 0.2481 (1.6166) 0.1023 (0.6891) 0.2073 (1.4024)
Georgia -0.2805 (-2.5634) -0.0438 (-0.4112) 0.0417 (0.3827)
Hawaii -0.0748 (-0.1191) 1.4881 (2.6138) 0.7564 (1.3884)
Idaho 0.1301 (0.5699) -0.0874 (-0.3848) 0.1135 (0.4925)
Illinois 0.0294 (0.3604) -0.1606 (-2.0227) 0.0464 (0.5712)
Indiana -0.0111 (-0.1038) -0.0385 (-0.3720) 0.0140 (0.1315)
Iowa -0.0846 (-0.7066) -0.1300 (-1.1160) 0.0574 (0.4814)
Kansas 0.2322 (1.6350) 0.2251 (1.6784) 0.1554 (1.1369)
Kentucky 0.0492 (0.4631) 0.2550 (2.4374) 0.5142 (4.8730)
Louisiana 0.0434 (0.3328) 0.1172 (0.9531) 0.2686 (2.1695)
Maine -0.0241 (-0.1276) 0.1437 (0.7740) 0.0746 (0.3942)
Maryland 0.3283 (2.2095) 0.3100 (2.1400) 0.2962 (2.0239)
Massachusetts 0.0894 (0.8809) 0.0678 (0.6789) 0.2404 (2.3322)
Michigan 0.1278 (1.4397) 0.0133 (0.1521) 0.1005 (1.1230)
Minnesota -0.2100 (-1.8148) -0.2733 (-2.3791) -0.1192 (-1.0244)
Mississippi 0.0230 (0.1813) 0.1199 (0.9743) 0.3059 (2.4262)
Missouri -0.1274 (-1.2029) -0.0186 (-0.1827) -0.0304 (-0.2922)
Montana -0.0333 (-0.1376) 0.0058 (0.0234) 0.3234 (1.3071)
Nebraska -0.1431 (-0.8979) -0.2160 (-1.3662) -0.1432 (-0.8997)
Nevada -0.1005 (-0.1757) -0.0600 (-0.1113) 0.7544 (1.3369)
New Hampshire -0.1475 (-0.5482) -0.0027 (-0.0104) 0.1464 (0.5420)
New Jersey 0.0372 (0.3524) -0.0448 (-0.4308) 0.1848 (1.7262)
New Mexico 0.1925 (0.7601) 0.0274 (0.1052) 0.4056 (1.6175)
New York 0.0571 (0.8143) -0.0631 (-0.9140) -0.0776 (-1.1021)
North Carolina -0.0857 (-0.8653) 0.0385 (0.3969) 0.2136 (2.1662)
North Dakota -0.4979 (-2.4204) -0.3019 (-1.4854) -0.1407 (-0.6779)
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Table 5.7 (continued)
State Second quarter Third quarter Fourth quarter

coefficient (t-value) coefficient (t-value) coefficient (t-value)
Ohio -0.0847 (-1.0210) -0.0583 (-0.7150) 0.0232 (0.2794)
Oklahoma -0.0800 (-0.6610) 0.0400 (0.3501) 0.2066 (1.7793)
Oregon 0.0550 (0.2705) -0.0238 (-0.1208) 0.0233 (0.1145)
Pennsylvania -0.0288 (-0.3996) -0.0959 (-1.3526) 0.0174 (0.2408)
Rhode Island -0.3987 (-1.8053) 0.0585 (0.2624) 0.1230 (0.5475)
South Carolina -0.1087 (-0.8025) -0.0978 (-0.7348) 0.2983 (2.2239)
South Dakota 0.2971 (1.3435) 0.1932 (0.8849) 0.5111 (2.2999)
Tennessee -0.1076 (-0.9929) 0.0848 (0.7879) 0.4465 (4.0963)
Texas -0.0935 (-1.0690) 0.1063 (1.2806) 0.2505 (2.9811)
Utah -0.0264 (-0.1254) -0.2249 (-1.0941) -0.2249 (-1.0827)
Vermont 0.1709 (0.5889) 0.3196 (1.0907) 0.2557 (0.8531)
Virginia 0.0300 (0.2608) 0.1905 (1.6867) 0.2881 (2.4945)
Washington 0.1001 (0.6368) 0.0280 (0.1802) 0.0009 (0.0054)
West Virginia -0.0901 (-0.7396) -0.0093 (-0.0774) 0.2320 (1.9120)
Wisconsin 0.1516 (1.4148) -0.1032 (-0.9689) 0.0702 (0.6479)
Wyoming 0.0806 (0.2302) 0.1759 (0.5205) -0.1905 (-0.5308)

Table 8: Estimated coefficients π̂yq
jh at interactions of quarter and year of birth in first stage

regression (1939 = reference year)

State Second quarter Third quarter Fourth quarter
coefficient (t-value) coefficient (t-value) coefficient (t-value)

1930 0.1538 (2.2272) 0.1881 (2.7767) 0.2191 (3.1690)
1931 -0.0378 (-0.5337) 0.1470 (2.1176) -0.0472 (-0.6650)
1932 0.0804 (1.1494) 0.0977 (1.4301) 0.0962 (1.3841)
1933 -0.0677 (-0.9584) 0.0681 (0.9805) -0.0989 (-1.4070)
1934 0.0792 (1.1212) 0.0574 (0.8356) 0.0340 (0.4865)
1935 0.1162 (1.6620) 0.1856 (2.7248) 0.0170 (0.2433)
1936 0.0274 (0.3931) 0.1067 (1.5671) 0.0209 (0.3009)
1937 0.0120 (0.1729) 0.1372 (2.0335) 0.0472 (0.6843)
1938 0.0396 (0.5765) 0.0291 (0.4354) -0.0348 (-0.5096)

15



Table 9: Summary statistics of first-stage regression for data of individual states

concentration p-value
State parameter R2 F-stat. # obs. F-stat.
Alabama 18.68 0.0022 0.62 8536 0.9463
Arizona 45.64 0.0426 1.52 1066 0.0365
Arkansas 60.06 0.0103 2.00 5794 0.0009
California 35.93 0.0032 1.20 11078 0.2107
Colorado 31.68 0.0113 1.06 2818 0.3836
Connecticut 38.25 0.0100 1.27 3844 0.1448
Delaware 29.74 0.0506 0.99 598 0.4814
D.C. 27.64 0.0226 0.92 1237 0.5892
Florida 36.19 0.0093 1.21 3913 0.2031
Georgia 41.29 0.0049 1.38 8411 0.0827
Hawaii 27.70 0.1185 0.92 246 0.5853
Idaho 22.57 0.0143 0.75 1599 0.8309
Illinois 32.74 0.0018 1.09 18375 0.3341
Indiana 27.12 0.0030 0.90 8918 0.6169
Iowa 25.64 0.0038 0.85 6699 0.6931
Kansas 52.35 0.0109 1.75 4807 0.0072
Kentucky 68.54 0.0076 2.28 8933 0.0001
Louisiana 31.18 0.0052 1.04 5975 0.4071
Maine 24.15 0.0100 0.80 2424 0.7645
Maryland 34.10 0.0083 1.14 4139 0.2777
Massachusetts 36.02 0.0036 1.20 9955 0.2080
Michigan 23.78 0.0017 0.79 14077 0.7818
Minnesota 15.82 0.0022 0.53 7170 0.9841
Mississippi 30.43 0.0052 1.01 5864 0.4442
Missouri 28.46 0.0031 0.95 9274 0.5460
Montana 26.99 0.0194 0.90 1407 0.6233
Nebraska 30.94 0.0089 1.03 3488 0.4189
Nevada 25.42 0.0866 0.85 308 0.6988
New Hampshire 25.18 0.0212 0.84 1200 0.7147
New Jersey 31.73 0.0035 1.06 8964 0.3803
New Mexico 26.10 0.0199 0.87 1325 0.6690
New York 38.23 0.0013 1.27 29015 0.1440
North Carolina 40.10 0.0037 1.34 10798 0.1033
North Dakota 30.95 0.0153 1.03 2028 0.4191
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Table 5.9 (continued)
concentration p-value

State parameter R2 F-stat. # obs. F-stat.
Ohio 32.16 0.0019 1.07 17070 0.3601
Oklahoma 36.85 0.0053 1.23 6950 0.1822
Oregon 20.37 0.0097 0.68 2127 0.9054
Pennsylvania 27.70 0.0011 0.92 26385 0.5862
Rhode Island 33.96 0.0201 1.13 1698 0.2850
South Carolina 50.91 0.0097 1.70 5245 0.0102
South Dakota 38.39 0.0219 1.28 1754 0.1428
Tennessee 64.06 0.0077 2.14 8335 0.0003
Texas 50.01 0.0031 1.67 15932 0.0125
Utah 31.85 0.0160 1.06 1999 0.3761
Vermont 36.54 0.0367 1.22 999 0.1960
Virginia 28.61 0.0039 0.95 7319 0.5384
Washington 18.54 0.0052 0.62 3610 0.9487
West Virginia 34.36 0.0054 1.15 6412 0.2673
Wisconsin 27.27 0.0032 0.91 8607 0.6090
Wyoming 29.27 0.0421 0.98 706 0.5050

Figure 1: p-value of multiple F-test in first stage regression for data of individual states:

p-value < 0.001: dark grey, p-value < 0.01: grey, p-value < 0.1: light grey.

(AR = Arkansas, AZ = Arizona, GA = Georgia, KS = Kansas, KY = Kentucky, SC =

South Carolina, TN = Tennessee, TX = Texas)
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4 Bayesian approaches

In this section we first briefly discuss the posterior distributions under two commonly

used prior density kernels, the flat prior of Drèze (1976) and the Jeffreys prior. For an

extensive discussion of these Bayesian approaches (and their relations to the 2SLS and

LIML estimators) the reader is referred to Kleibergen and Zivot (2003). After that the

results are discussed of applying these Bayesian methods to the Angrist-Krueger IV model

for data of the US and the four Census regions.

Drèze (1976) specifies the following flat prior on the parameters of the structural form

(5)-(6):

p(β, Π, Σ) ∝ |Σ|−1/2 (k+m+2) (9)

where k is the number of instruments in Z and m is the number of explanatory endogenous

variables in X. The primary motivation of this flat prior is that it has an invariance

property in the sense that the prior on the structural form implies the same kind of prior

on the parameters of the restricted reduced form (which is proportional to |Σ|−1/2 (k+m+2)).

The marginal posterior of β resulting from the prior (9) is given by:

p(β|y, X, Z) ∝
(

(y −Xβ)′MZ(y −Xβ)

(y −Xβ)′(y −Xβ)

)T/2

(y −Xβ)′(y −Xβ)−k/2, (10)

where MZ ≡ I − Z(Z ′Z)−1Z ′. The tails of this posterior of β become thinner when

(possibly superfluous) instruments are added to the model, see e.g. Maddala (1976) and

Kleibergen and Zivot (2003). Further, the location of the posterior mode moves towards

the OLS estimator when superfluous instruments are added. Bayesian inference under the

flat prior of Drèze (1976) shares these properties with the small sample distribution of the

2SLS estimator which made Kleibergen and Zivot (2003) conclude that this approach has

more in common with 2SLS than with LIML.

The Jeffreys prior, the square root of the determinant of the information matrix, is

given by:

p(β, Π, Σ) ∝ |Σ|−(m+1)|Π′Z ′ZΠ|1/2|Σ22.1|−1/2(k−m) (11)

with Σ22.1 ≡ Σ22 − Σ21σ
−1
11 Σ12 for the structural form (5)-(6) or equivalently by:

p(β, Π, Ω) ∝ |Ω|−(m+1)|Π′Z ′ZΠ|1/2|(β : Im)Ω−1(β : Im)′|1/2(k−m) (12)

for the corresponding restricted reduced form (7)-(8); see for example Appendix A of

Hoogerheide, Kleibergen and Van Dijk (2006) for a derivation of this Jeffreys prior. In the

case of m = 1 and for moderate values of T (T > 20), an accurate approximation of the

marginal posterior of β can be obtained by

p(β|Ω, y, X, Z) ∝ [(β − φ)2ω−1
11.2 + ω−1

22 ]−1

×
∞∑

j=0

Γ[(k + 2j + 1)/2]

j! Γ[(k + 2j)/2]

(
(β : 1)Ω−1Φ̂′Z ′ZΦ̂Ω−1(β : 1)′

2[(β − φ)2ω−1
11.2 + ω−1

22 ]

)j

(13)
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where Ω = (y : X)′(y : X)/T is substituted for Ω, and where φ ≡ ω21/ω22, ω11.2 ≡
ω11 − ω2

21/ω22, Φ̂ = (Z ′Z)−1Z ′(y : X), see Kleibergen and Zivot (2003). The primary mo-

tivation of the Jeffreys prior is its universal invariance property with respect to parameter

transformations. Kleibergen and Zivot (2003) show that Bayesian analysis using a Jeffreys

prior leads to, when there is only m = 1 explanatory endogenous variable, a functional

expression of the marginal posterior of β that is identical to the finite sample density

of the LIML estimator. Just like the finite sample distribution of the LIML estimator,

the posterior based on the Jeffreys prior retains Cauchy type tails when (possibly irrele-

vant) instruments are added, and the location of the mode is insensitive to the addition

of superfluous instruments.

Table 10 shows some summary statistics of the posterior distribution of β under the

flat or Jeffreys prior. Just like the results for the 2SLS and LIML estimators, the posterior

distribution of β for the US under the flat or Jeffreys prior is almost completely determined

by the region South; the difference between the means or medians for the US and the South

is small, and the posterior standard deviation and 95% and 50% posterior density intervals

for the South are not much larger than those for the US, whereas the posterior density

intervals are relatively large for the other regions.6 It is shown in Hoogerheide, Kleibergen

and Van Dijk (2006) that Bayesian analysis using the Jeffreys prior, similar to the LIML

estimator, focusses on the strongest available instruments. So, the posterior results under

the Jeffreys prior once more indicate that the quarter of birth instruments are strongest in

the South. Figure 2 shows the graphs of the posterior densities under the flat and Jeffreys

prior, respectively.

For all four approaches that have been considered in this chapter, the two classical

methods as well as the two Bayesian approaches, inference on the return to education for

the US is almost completely determined by the returns to education in the South. If the

effect of the return on education is different for the other regions, which can not a priori

be ruled out given the large economic differences between these regions, inference using

data of the US is not representative for the average returns on education across the US.

One should thus be careful when drawing such conclusions.

Notice that the results for the flat prior are remarkably similar to those for the 2SLS

estimator: for each region the posterior mean of β is close to the 2SLS estimator β̂2SLS

and the posterior standard deviation is close to the asymptotic standard error. This agrees

with the conclusions of Kleibergen and Zivot (2003) that Bayesian analysis using the flat

prior is closer to 2SLS than to LIML. Also note that the results for the Jeffreys prior

are similar to those for the LIML estimator: the posterior median of β is close to the

LIML estimator β̂LIML, and for US and the region South the difference in the 95% and

6These 95% and 50% posterior density intervals are not equal to 95% and 50% Highest Posterior
Density (HPD) regions, although the differences are small in these cases of unimodal, almost symmetric
distributions.
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Table 10: Posterior results under flat or Jeffreys prior for US and regions

Posterior β under flat prior Quantile posterior β under Jeffreys prior
Region mean st.dev. median 2.5% 97.5% 25% 75%
USA 0.092 0.009 0.106 0.083 0.129 0.098 0.114

1 Northeast 0.071 0.023 0.064 -0.024 0.150 0.037 0.092
2 Midwest 0.081 0.023 0.129 0.041 0.246 0.099 0.163
3 South 0.095 0.012 0.107 0.077 0.138 0.096 0.117
4 West 0.051 0.020 0.044 -0.018 0.105 0.024 0.065

Kentucky, 0.095 0.016 0.104 0.068 0.143 0.092 0.117
Arkansas &
Tennessee

50% intervals between the methods is close, although for the other three Census regions

the 95% and 50% posterior intervals under the Jeffreys prior are somewhat larger than

the corresponding intervals for the (estimated) finite sample distribution of the LIML

estimator.

We also consider the posterior of β under the flat and Jeffreys prior based on only the

observations on men born in the states of Arkansas, Kentucky and Tennessee. Table 10

shows summary statistics of these posteriors. Notice that the uncertainty in the posterior

under the Jeffreys prior, reflected by the 95% and 50% density intervals of the (estimated)

finite sample distribution, increases by a relatively small amount, as compared with the

US. The width of the 95% and 50% posterior density intervals are only 1.63 and 1.56

times larger than for the US while the whole data set of the US has over 14 times as many

observations (329509 vs. 23062). Further, these 95% and 50% posterior density intervals

are tighter for the data set of Kentucky, Arkansas and Tennessee than for the region

Northeast, Midwest or West. Figure 3 illustrates the relative strength of the quarter of

birth instruments in the states of Arkansas, Kentucky and Tennessee. If we divide the data

set of the US in three subsamples, Arkansas-Kentucky-Tennessee (23062 observations), the

other 14 states of region South (91329 observations) and the other three Census regions

(215118 observations), then the resulting posteriors of β under the Jeffreys prior are about

as tight for these three subsamples. These results again stress the importance of the states

of Arkansas, Kentucky and Tennessee for the inference on return on education: to a large

extent inference on education for the US is determined by the return on education for men

born in these three states.
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Figure 2: Marginal posterior of return on education β under flat prior (above) or Jeffreys

prior (below) for US (solid), Northeast (solid-plusses), Midwest (dashed), South (dash-

dot), West (solid with stars).
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Figure 3: Marginal posterior of return on education β under Jeffreys prior for US (solid),

region South (17 states, dash-dot), Kentucky-Tennessee-Arkansas (solid with plusses), rest

of region South (14 states, dashed), other three Census regions (34 states, solid with stars).

5 Investigation of some of the assumptions made by

Angrist and Krueger (1991)

Angrist and Krueger (1991) make the assumption that the only reason for the influence

of quarter of birth on education is the asymmetry between the school-entry requirements

and compulsory schooling laws: a child’s birthday determines whether the school district

allows the child to enter school at age 5 or age 6, whereas compulsory schooling laws

generally allow students to immediately leave school when they reach a certain age (mostly

16, sometimes 17 or 18). Reasoning in this way, the quarter of birth should only yield

valuable instruments for education for those individuals who have completed 9 - 13 years

of education, as all persons who have left school as soon as the law allowed for it should

be contained in this group.

We first inspect the empirical cumulative distribution function (CDF) of years of ed-

ucation for the four quarters of birth. If quarter of birth would only affect the education

spell for those who leave school as soon as the law allows for it, the CDF of education

should only differ for the range 9 ≤ education ≤ 13. Figure 4 shows the difference between

the empirical CDF of education between quarter 2/3/4 and quarter 1. This shows that

also for education ≤ 8 and for education ≥ 14 the CDF substantially differs between the

quarters of birth. Notice the negative values reflecting that men born in the first quarter

have completed less years of education on average (also conditional on education ≤ 8 or
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Figure 4: Empirical cumulative distribution function (CDF) of (completed years of) edu-

cation for men born in different quarters: difference between CDF for men born in second

quarter (circle)/ third quarter (plus)/ fourth quarter (star) and CDF for men born in first

quarter.

education ≥ 14).

In order to investigate the importance of the observations with education ≤ 8 or

education ≥ 14 for the results in the IV model we now divide the data set of the Southern

region (that determines the results for the US) into a subsample of men with 9 - 13 years

of education and subsamples of men with at most 8 years or at least 14 years of education.

Figure 5 shows the number of observations per years of education in the region South.

Table 11 shows the R2 and F-statistic of the multiple F-test in the first stage regression

for several subsamples of the region South based on education levels. Notice that the R2 is

even lower for 9 ≤ education ≤ 13 than for the groups with education ≤ 8 and education

≥ 14, suggesting quarter of birth instruments are even stronger for people with education

outside the interval 9 - 13 than inside this interval. If we look at the group with either

education ≤ 8 or education ≥ 14, which consists of a number of observations comparable

to the group with 9 ≤ education ≤ 13, then we see that the p-value at the multiple F-

statistic is also smaller for men with years of education outside the interval 9 - 13. This

suggests that the influence of compulsory schooling laws on students who want to leave

school as early as possible is certainly not the only factor causing the effect of quarter of

birth on (average) education spell.

This is further illustrated by the posterior of β under the Jeffreys prior in Figure 6.

The posterior under the Jeffreys prior is tighter for observations with education outside

the interval 9-13 than inside this interval. In fact, this posterior is even tighter than for the
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Table 11: First stage regressions for subsamples of the region South: R2, F-statistic of

multiple F-test and corresponding p-value

R2 F-statistic obs. p-value

region South 0.0023 3.3333 114391 0.0000
education ≤ 8 0.0045 1.1034 19214 0.2495
9 ≤ education ≤ 13 0.0019 1.5519 63637 0.0013
education ≥ 14 0.0029 1.1790 31540 0.1339
education ≤ 8 or 0.0043 2.8060 50754 0.0000
education ≥ 14

region South or the US; intuitively speaking, this is possible since not only one’s knowledge

on β is updated by the extra observations, but also on Π (which occurs as the product Πβ

in the restricted reduced form of the model) and Ω. That the posterior is much tighter for

the group with less than 9 or more than 13 years of education and that the posterior for

all observations of the South is much closer to this posterior than to the posterior for data

on men with 9 ≤ education ≤ 13, suggests that instruments are truly (much) stronger

for men with education ≤ 8 and education ≥ 14. For completeness, Figure 7 shows the

posterior under the flat prior, which shows approximately the same shapes. These results

suggest that quarter of birth does not only affect years of schooling for those who leave

school as soon as it is allowed.

A possible explanation is that the probability that a student leaves school during a

quarter depends not only on the number of quarters of schooling that the student has

already had, but also (positively) on age (measured in quarters of years): children born in

the first quarter enter school at a later age (measured in quarters), so that in each cohort

the students born in the first quarter are the oldest. Reasoning in this way, the influence

of quarter of birth on age at school entry is enough to cause exogenous variation in years

of education, even without requiring laws keeping (a certain percentage of) students at

school until they reach a certain age. In other words, quarter of birth influences the age

at school entry, so that it causes an exogenous variation in education level as long as stu-

dents with different ages (with age measured in quarters of years) have a different ‘hazard

rate’ of quitting school after a certain amount of education. So, the results suggesting

that the influence of quarter of birth on education is certainly not restricted to men who

have completed 9-13 years of education does not imply that the model is useless. It only

suggests that the strength of the quarter of birth instruments is not so much caused by

the asymmetry between school entry requirements and compulsory schooling laws keeping

students at school until they reach a certain age; the value of the quarter of birth instru-

ments seems to stem to a larger extent from the school entry requirements in combination

with the dependence of the ‘hazard rate’ of leaving school on age (measured in quarters).
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Figure 5: Histogram of the number of completed years of education in US Census region
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Figure 6: Marginal posterior of return on education β under Jeffreys prior for US (solid),

South (17 states,dash-dot), South for education ≤ 8 or education ≥ 14 (solid-plusses),

South for 9 ≤ education ≤ 13 (dashed).
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Figure 7: Marginal posterior of return on education β under flat prior for US (solid),

South (17 states,dash-dot), South for education ≤ 8 or education ≥ 14 (solid-plusses),

South for 9 ≤ education ≤ 13 (dashed).

Bound, Jaeger and Baker (1995) criticize the assumptions of Angrist and Krueger

(1991). They draw attention to two problems associated with the use of the 2SLS estimator

in the case of weak instruments. First, the use of weak instruments may lead to large

inconsistencies in the 2SLS estimator even if there is only a weak relationship between

the instruments and the error in the structural equation.7 Second, in finite samples, the

2SLS estimator is biased in the same direction as the OLS estimator, where the bias of

the 2SLS estimator approaches that of the OLS estimator as the R2 between instruments

and explanatory endogenous variable approaches 0.

We first consider the problem of the finite-sample bias. Bound, Jaeger and Baker (1995)

show that the 2SLS estimators of Angrist and Krueger (1991) may suffer from substantial

finite-sample bias even with the large sample size, because the correlation between quarter

of birth and years of education is only small. The simulations in table 5.5 confirm this;

the 2SLS estimators for the US and the Census regions seem to have biases between 0.2

and 0.5 times the bias of the OLS estimator. However, the LIML estimator seems to be

approximately median unbiased in these cases, suggesting that the problem of the finite-

sample bias caused by the weakness of the instruments could be solved by using LIML

instead of 2SLS in order to obtain a point estimate of β.

7Bound, Jaeger and Baker (1995) consider the case of weak instruments in the sense of instruments
explaining little of the variation in the endogenous explanatory variable(s); this differs from the weak
instrument defined as Π = C/

√
T where C is fixed (so that Π′Z ′ZΠ converges to a constant as the sample

size T grows) considered by Staiger and Stock (1997).
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We now consider the problem of large inconsistencies even if there is only a weak

relationship between the instruments and the error in the structural equation. Bound,

Jaeger and Baker (1995) argue that a weak correlation between quarter of birth and wage

(independent of the effect of quarter of birth on education) exists and that this correla-

tion is large enough to have substantial effects on the estimates of Angrist and Krueger

(1991). Bound, Jaeger and Baker (1995) mention several publications containing evidence

suggesting that quarter of birth directly influences wages for four reasons: there is some

evidence that (1) quarter of birth influences a student’s performance at school, for example

performance in reading, writing and arithmetic; (2) quarter of birth affects the probability

that an individual will suffer from certain mental or physical diseases/disabilities such

as schizophrenia, multiple sclerosis, manic depression and dyslexia; (3) there are regional

patterns in birth seasonality; (4) children born in families with high incomes are are less

likely to be born in winter months. Therefore, Bound, Jaeger and Baker (1995) conclude

that it is questionable whether the assumption of no direct effect of quarter of birth on

income is justified.

At points (2) it should be noted that men with no income in 1979 are excluded from

the data set of Angrist and Krueger (1991), so that some of the men suffering from the

mentioned diseases/disabilities may be excluded from the data set. At point (3) it should

be noticed that part of the regional patterns in birth seasonality are ‘filtered’ by the state

dummies that are included in the wage equation. However, these two factors obviously

do not take away the doubt on the assumption of no direct effect of quarter of birth on

income.

This doubt and the finite-sample bias of the 2SLS estimator made Bound, Jaeger and

Baker (1995) conclude that ‘the “natural experiment” afforded by the interaction between

compulsory school attendance laws and quarter of birth does not give much usable infor-

mation concerning the causal effect of education on earnings’.

Bound, Jaeger and Baker (1995) even report that differences in family income at time

of birth (point (4)) would seem to account for virtually all of the association between

quarter of birth and wages, which results from the following reasoning. It is argued that

the difference in mean log per capita income between those born in the first quarter and

the others is at least -0.0238, as this difference of -0.0238 is observed for men born in more

recent years and the seasonal variation in fertility has declined since the 1930s (in which

the men of our data set are born). Further, Solon (1992) and Zimmerman (1992) both

found an intergenerational correlation in long-run income of at least 0.4, so that men born

in the first quarter are expected to earn about 0.95% more than those born during the rest

of the year. Bound, Jaeger and Baker (1995) report that for men born during the 1930s,

those born in the first quarter earn 1.1% lower wages on average, hardly more than the

0.95% resulting from differences in family income at birth.

We now take a closer look at this result that differences in family income at birth

between those born in the first quarter and those born during rest of the year would seem

to explain all of the effect of quarter of birth on income. First, for men born in the region
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South (who determine the results for the US of both the classical and Bayesian methods

used in this chapter) the difference between those born in first quarter and the rest is

higher: 1.65% (measured as difference in mean log income). For men born in Arkansas,

Kentucky, Tennessee (who have a substantial influence on the results within the region

South) this difference is even 1.99%. Of course, the difference in family income at birth

and/or the intergenerational correlation may also be larger for these regions; this is a topic

for research.

Second, the phenomenon that those born in rich families are less likely to be born in

winter months can be modelled by including a dummy variable indicating whether a person

is born in the first quarter in the wage equation of the model (and dropping one of the

interactions of state and quarter dummies from the set of instruments). We consider this

model for observations on men born in Arkansas, Kentucky or Tennessee.8 In the second

stage regression of 2SLS the first quarter dummy has an insignificant (and even positive)

estimated coefficient of 0.0028 (with standard error 0.0111). The results of 2SLS and

LIML are given by Tables 12 and 13, where the quantiles of the finite-sample distribution

of the LIML estimator are estimated by substituting the ML estimates into the formula

for this finite-sample density in Kleibergen (2000) and Kleibergen and Zivot (2003). Table

14 gives the results of Bayesian inference under the flat and Jeffreys prior. For the Jeffreys

prior Figure 8 shows the marginal posterior of β. This shows that the uncertainty in the

classical estimators and the posteriors under a flat or Jeffreys prior does not increase much

by including a first quarter dummy in the wage equation. In other words, a rather tight

posterior for β is obtained using quarter-of-birth information, even if we drop assumption

of no influence of first quarter on income.

We can also go somewhat further in the sense of including three quarter-of-birth dum-

mies in the wage equation, so that not only a difference between the first quarter and

quarters 2-4 is allowed, but differences are permitted between all four quarters. Tables

12, 13 and 14, and Figure 8 also show the results for this model. The inclusion of two

more dummies clearly increases the uncertainty in the estimators and posteriors for β as

the instruments are weaker in this case. Intuitively, this can be explained as follows: in

this adapted model the strength of the instruments depends on the variation between the

effects of quarters of birth across states (and years) instead of the size of these effects. For

example, if the effect of quarter 2-4 versus quarter 1 is substantial but (approximately)

the same for all states, then the instruments Z (residuals in the regression of Z̃ on W )

will be (almost) superfluous in this adapted model, while the instruments may be rather

8There are two reasons for confining ourselves to data of Arkansas, Kentucky and Tennessee, the three
states for which the quarter-of-birth instruments are strongest, in this case. First, the addition of extra
variables in the wage equation substantially increases problems of multicollinearity, which are smaller
when considering less states and hence less state-of-birth dummies and interacted state-and-quarter-of-
birth dummies. Second, the assumption that if a direct effect of quarter of birth on wages exists, that this
effect is constant across states, seems to be more realistic for a region of three neighboring states than for
other (sub)samples.
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Figure 8: Marginal posterior of return on education β under Jeffreys prior for data of

Kentucky, Arkansas and Tennessee: original model (solid), model with first quarter dummy

in wage equation (dash-dot), model with three quarter dummies in wage equation (dashed).

strong in the original model.

Including quarter-of-birth dummies in the wage equation may result in (much) wider

posterior intervals. Next to that, if a direct effect of quarter of birth on income exists,

this may not be constant across states/years; in that case more terms should be added to

the wage equation. So, an important question remains if such terms should be included

in the wage equation and if so, how these should be specified. We leave this as a topic for

further research.

Still, it should at least be noted that if there exists a direct effect of quarter of birth

on income, it is not likely that the factors causing this effect differ between states/years

in the same way as compulsory schooling laws and the degree to which these are enforced.

So, even if there exists a direct effect of quarter of birth on income which varies across

states/years, the difference between these effects and the effect of compulsory schooling

laws may be exploited, so that the model may still give usable information on the causal

effect of education on income.

Notice that since we can use the (approximately median unbiased) LIML estimator in-

stead of the (biased) 2SLS estimator, and since we may still obtain a rather tight posterior

for β if we allow for a direct effect of birth during the first quarter on income, it seems that

the conclusion of Bound, Jaeger and Baker (1995) that the interaction between compul-

sory school attendance laws and quarter of birth does not give much usable information

concerning the causal effect of education on earnings may have been too strong.

Finally, Bound, Jaeger and Baker (1995) note that random instruments yield results
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Table 12: 2SLS estimates for β for data of Kentucky, Arkansas and Tennessee

2SLS
Model β̂2SLS asympt. std.error
original model 0.0970 (0.0168)
+ dummy for first quarter of birth in wage equation 0.0986 (0.0182)
+ 3 dummies for quarters of birth in wage equation 0.0928 (0.0274)

Table 13: LIML estimates for β for data of Kentucky, Arkansas and Tennessee

Quantile finite sample dist. β̂LIML

Model β̂LIML median 2.5% 97.5% 25% 75%
original model 0.105 0.104 0.069 0.142 0.092 0.117
+ 1st quarter dummy 0.109 0.108 0.070 0.149 0.095 0.121
+ 3 quarter dummies 0.121 0.121 0.065 0.187 0.101 0.141

Table 14: Posterior results under flat or Jeffreys prior for data of Kentucky, Arkansas

and Tennessee

Posterior β under flat prior Quantile posterior β under Jeffreys prior
Model mean st.dev. median 2.5% 97.5% 25% 75%
original model 0.095 0.016 0.104 0.068 0.143 0.092 0.117
+ 1st quarter dummy 0.097 0.018 0.108 0.068 0.152 0.094 0.122
+ 3 quarter dummies 0.090 0.026 0.121 0.043 0.220 0.094 0.150

30



similar to those for real data for four model specifications. For each specification the

(mean) asymptotic standard error (over 500 simulations) of the 2SLS estimator for β is

only somewhat larger for random data than for real data: 2.3, 1.3, 1.7 and 1.4 times larger.

For our specification the asymptotic standard error of the 2SLS estimator for β is also only

1.5 times larger for random instruments than for real instruments (for the whole data set of

the US). However, the 95% posterior interval under the Jeffreys prior is 3.0 times wider for

random instruments than for real instruments, so the use of the Jeffreys prior shows a clear

difference between results for random and real data. This reflects the relative insensitivity

of Bayesian analysis under the Jeffreys prior to the addition of irrelevant instruments as

compared to the flat prior (and the 2SLS estimator), as mentioned by Kleibergen and

Zivot (2003).
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6 Conclusions

We have shown results of two classical methods, the two-stage least squares (2SLS) and

limited information maximum likelihood (LIML) estimators, and two Bayesian approaches,

using the flat prior of Drèze (1976) and the Jeffreys prior, for an IV regression model of

Angrist and Krueger (1991) for the return on education. It is shown that for these four

methods the results for the US crucially depend on the results for the Census region South.

A possible explanation for this is that the average education spell for men born in 1930-

1939 is lower in the South, implying a larger influence of compulsory schooling laws as

these do not concern education above a certain number of years, and hence a stronger

effect of quarter of birth on education. A further division shows that results for the South

substantially depend on three states: Kentucky, Tennessee and Arkansas. This suggests

that the average level of education is not the only factor influencing the strength of the

instruments, as men born in Alabama, Mississippi, Virginia and West Virginia have on

average completed less years of education than those born in Tennessee: there are also

other factors playing a role, which may include the power of government agencies enforcing

schooling laws and the exemptions from these schooling laws, which vary across states.

If the effect of the return on education differs between the four Census regions, which

may not a priori be ruled out given the large economic differences between these regions,

inference using data of the US is not representative for the average returns on education

across the US. Therefore one should be careful when drawing such conclusions.

We have further shown that quarter of birth is a stronger instrument for education

for people with at most 8 or at least 14 years of education than for people with 9-13

years of education, which suggests that quarter of birth does not only affect the number

of completed years of schooling for those who leave school as soon as it is allowed, as these

are (mostly) contained in the group with 9-13 years of education. This suggests that the

strength of the quarter of birth instruments is not so much caused by the asymmetry be-

tween school entry requirements and compulsory schooling laws keeping students at school

until they reach a certain age; the value of the quarter of birth instruments seems to stem

to a larger extent from the school entry requirements in combination with the dependence

of the ‘hazard rate’ of leaving school on age (measured in quarters). Therefore, if one

intends to increase the understanding of the working of the quarter-of-birth instruments,

it is probably a better idea to pay more attention to school entry requirements and/or

compulsory schooling laws for children of age 5-7 than to concentrate on the differences

between compulsory schooling laws for students of age 16-18.

Finally, Bound, Jaeger and Baker (1995) have concluded that the interaction between

compulsory school attendance laws and quarter of birth does not give much usable infor-

mation concerning the causal effect of education on wages for two main reasons. First,

the weakness of the instruments may lead to large inconsistencies in the 2SLS estimator

even if there is only a weak relationship between the instruments and the error in the

structural equation; Bound, Jaeger and Baker (1995) mention evidence casting doubt on
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the assumption that no such correlation is present. Moreover, Bound, Jaeger and Baker

(1995) even report that differences in family income at time of birth would seem to account

for virtually all of the association between quarter of birth and wages: they argue that

the difference in income between those born in the first quarter and those born during

the rest of the year can almost completely be explained by differences in family income at

time of birth and an intergenerational correlation. Second, the 2SLS estimates reported

by Angrist and Krueger (1991) may suffer from substantial finite sample biases because

of the weakness of the instruments (despite the large sample size). However, we can use a

Bayesian approach under the Jeffreys prior or the LIML estimator, which is approximately

median unbiased in this case, instead of the 2SLS estimator. Furthermore, we may still

obtain a rather tight posterior for β if we allow for a direct effect of birth during the first

quarter on income. It should be noted that including quarter-of-birth dummies in the

wage equation may result in (much) wider posterior intervals, and that if a direct effect

of quarter of birth on income exists, this may not be constant across states/years; in that

case more terms should be added to the wage equation. So, an important question remains

whether the inclusion of such terms in the wage equation is necessary and if so, how these

should be specified. This is left as a topic for further research. Still, it should at least be

noted that if there exists a direct effect of quarter of birth on income, it is not likely that

the factors causing this effect differ between states/years in the same way as compulsory

schooling laws and the degree to which these are enforced. So, even if there exists a direct

effect of quarter of birth on income which varies across states/years, the difference be-

tween these effects and the effect of compulsory schooling laws may be exploited, so that

the resulting model may still give usable information on the causal effect of education on

income in (regions of) the US.

So, it seems that the conclusion of Bound, Jaeger and Baker (1995), that the interaction

between compulsory school attendance laws and quarter of birth does not give much usable

information concerning the causal effect of education on earnings, may have been too

strong, as the model of Angrist and Krueger (1991) (or a slightly modified version) may

give usable information on the causal effect of education on income in (regions of) the US.

We end this chapter mentioning two topics for further research. First, an obvious

question is whether the results reported in this chapter can also be found for other model

specifications considered by Angrist and Krueger (1991). Second, an interesting idea is

to apply the approaches used in this chapter under the assumption that the disturbances

obey a different distribution than the normal, and thus investigate whether the results in

this chapter are robust with respect to this distributional assumption.
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