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GENERAL INTRODUCTION 

This thesis deals with the immune inflammatory aspects of obesity, the metabolic 
syndrome (MetS), insulin resistance and type 2 diabetes (T2D) in the Andean region, more 
precisely in Quito, Ecuador. To understand the research questions a short introduction in the 
immune system is presented first; followed by a brief description of the pathophysiological 
and immune aspects of obesity, insulin resistance, the MetS and T2D. 

THE IMMUNE SYSTEM

The immune system in general
The immune system is composed of cells, tissues and molecules aimed at responding 

to disturbances of the homeostatic condition, either from external or internal origin. Thus, 
the immune system has various beneficial functions such as defense against pathogens 
and tumors via an inflammatory reaction, followed by the resolution of inflammation  and 
tissue repair. In contrast to these beneficial functions, abnormally directed and excessive 
inflammatory immune responses are the cause of allergies and auto-inflammatory and 
autoimmune diseases, such as atopic diseases, autoimmune thyroid disease, type 1 
diabetes (T1D), Sjögren’s disease, rheumatoid arthritis, Celiac Disease and Crohn’s disease.

Innate immune system
The innate immune system is the first line of defense against tissue damage, and 

pathogens in particular and provides a fast response with a limited specificity. The key 
players are: 1) barriers, such us tears, saliva and skin; 2) defense cells, which comprise 
neutrophils, cells of the Mononuclear Phagocyte System (MPS) (monocytes and 
macrophages), natural killer and mast cells; and 3) proteins (complement, cytokines and 
chemokines). If the innate system fails to resolve the attack and subsequent infection with 
and/or invasion by microbes, the adaptive immune system will get triggered by the cells 
of the innate immune system. This process of triggering is considered as the inter phase 
between the innate and adaptive immune response (see Fig.1). 

The interphase between the innate and adaptive immune response 
The cells responsible for the activation of the adaptive immune response and thus the 

key players of the interphase are the various antigen presenting cells (APCs). Accessory 
macrophages are an example of these APCs, but the most specialized APCs are the 
dendritic cells (DC), which can be considered as part of the MPS and in many instances are 
derived from monocytes. 
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DC pick up antigen at distant sites where the pathogens have invaded, or otherwise 
damage has occurred, travel through the lymphatics to the lymph node (as so-called veiled 
cells) where they present the collected antigens to lymphoid cells of the adaptive immune 
system. With the presence of MCH class II molecules and various costimulatory molecules 
on their cell surface, DC are well equipped to stimulate the naïve cells of the adaptive 
immune system, present in the lymph nodes. These latter cells will subsequently proliferate 
and be activated to play their role in the combat against the invading pathogens.

Adaptive immune system
The adaptive immune response is highly antigen specific, provides a memory and is 

typically activated a few days later than the innate system. The cellular contributors are the 
T cells and the B cells. B cells, which transform into plasma cells upon final maturation, are 
responsible for the production of antibodies. Antibodies neutralize extra cellular bacteria, 
viruses and toxins, activate complement and facilitate pathogen phagocytosis. T cells 
are responsible for so-called T cell cell-mediated immunity. T cells form a heterogeneous 
group of cells comprising effector cells, regulatory cells and memory cells which are 

Figure 1. Key elements of the Immune system. See further text.
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typically divided into CD4+ and CD8+ T cells. The effector CD8+ T cells are cytotoxic and 
important in killing other body cells infected with virus, intra-cellular bacteria or cells 
which are otherwise damaged or dysfunctional.  The effector CD4+ T cells are important in 
providing help to other immune cells and are therefore called T helper cells (Th). A naïve T 
cell (a cell which has not encountered antigen yet presented by an APC) can differentiate 
into at least three Th subtypes, namely Th1, Th2 and Th17 cells, upon stimulation by an 
APC. Th1 cells are capable of activating macrophages via Interferon γ (INF-γ), and are in this 
way essential in the elimination of intracellular pathogens. Th2 cells are activated by IL-4 
and IL-2 cytokines and play a central role in the transformation of B cells into plasma cells 
for the production of antibodies, activation of eosinophils and alternative activation of M2 
macrophages (see later). The third member of Th cells, the Th17 differentiates from naïve 
Th cells upon activation by TGF-β, IL-6 and IL-23. Recent studies show that Th17 cells that 
have been activated mainly by TGFβ and IL-6 are prone to maintain barrier tissue integrity 
and are crucial in host defense against extra-cellular pathogens (e.g. bacteria and fungi) 
[1-3]; whereas IL-23 activated TH17 cells induce chronic tissue inflammation and play an 
important role in mediating autoimmune pathologies [4-7]. 

Next to these effector T helper cells, there are also CD4+ T cells with regulatory 
functions as the immune system needs to be tightly regulated; it is well equipped to  
damage the host lethally if control is lost over the immune system. The best known CD4+ 
T regulatory cell population is the natural T regulatory cell population, which is formed by 
CD4+CD25high T cells. Naturally occurring CD4+CD25high Treg cells are defined by the 
constitutive high expression of the receptor of IL-2 (CD25 is the IL-2 receptor α chain; IL-2 is 
indeed required for triggering their suppressive function) and the key transcription factor 
FOXP3 that is required for their development, maintenance and function [8-10]. In addition 
to CD25 and FOXP3 expression these Tregs are characterized by high surface expression 
of CTLA-4. A feature of CD4+CD25+FOXP3+ T cells is their striking lack of proliferation 
following TCR engagement, leading to the characterization of this population as naturally 
“anergic” [11-13]. Natural T reg cells are spontaneously formed in the thymus from where 
they are exported and recirculate through secondary lymphoid tissues as ‘central’ T reg 
cells. Activation signals involving T cell receptor (TCR) ligation, CD28 co-stimulation and/
or interleukin 2 (IL-2) induce the upregulation of expression of interferon regulatory factor 
4 (IRF4), which orchestrates their differentiation into ‘effector’ T reg cells. Further effector T 
reg cell differentiation involves BTB and CNC homologue 2 (BACH2) downregulation and B 
lymphocyte-induced maturation protein 1 (BLIMP1) upregulation [13].

Other known regulatory CD4+ T cell are the induced T regulator cells, e.g. Tr1 cells 
(defined by high production of the anti-inflammatory cytokine IL-10) and the Th3 cells 
(defined by a high production of the anti-inflammatory cytokine TGF-β) [9, 14-17] (see Fig. 
1). These cells are not spontaneously formed in the thymus, but are induced from naïve 
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CD4+ T cells in the periphery [13]. Typically, these regulatory populations do not express 
FOXP3 and in contrast to natural Treg cells, induced Treg cells often have a restricted 
specificity for particular cell types, tumors or foreign antigens [17]. Therefore, induced T reg 
cells may be important to keep immune reactions to infectious agents under control [17].

Interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interleukin-35 (IL-35) 
have been described to play an essential role in Treg function [11, 13, 18, 19]. However, 
the expressions of these cytokines depend on the Treg subset and are tissue-specific.  
IL-10 can directly suppress T cell proliferation, decrease the expression of MHC-II, decrease 
costimulatory molecules on DCs, and regulate the function of mast cells and eosinophils 
[9, 19-21]. TGF-β is also an important factor secreted by Treg cells, which has been show to 
mediate the regulatory functions of auto reactive T cells. [13, 19, 22-24]. TGF-β knockout 
mice develop an early fatal multiorgan inflammation and T-cell hyper activation [23].  
Recent studies have indicated that  the cytokine IL-35, composed of the IL-12 α-chain and 
IL-27 β-chain, is an important factor for Treg function acting as an effector cytokine and 
also regulating Treg homeostasis [19, 25-27].  

Not only these soluble factors have an important role in the regulatory capacity of 
Tregs, but also specific cell-surface molecules appear to be responsible for the suppressive 
effects. Thus, expression of CTLA-4 on Tregs keeps them in their hyporesponsive state 
and is crucial for maintaining their suppressive function [13, 19, 28, 29]. The CD4-related 
protein LAG-3 has been implied to contribute to Treg suppressive function via direct Treg-
Teff interactions and modulating APC function [30, 31]. Finally, reports show that the Ig-like 
type I transmembrane protein CD83 expressed on the surface of Tregs can also directly 
contributes to contact dependent suppression [32, 33].

Monocytes, macrophages in detail
This thesis focusses in particular on monocytes in patients with T2D and therefore we 

discuss this group of cells in some more detail. Monocytes belong to the “Mononuclear 
Phagocyte System (MPS)”. The MPS includes the promonocytes and their precursors 
in the bone marrow, the monocytes and dendritic cells in the peripheral blood, and 
the macrophages in the tissues [34, 35]. This group of hematopoietic cells has diverse 
characteristics and origins. Many of these cells originate in the bone marrow and migrate 
as monocytes through the blood to peripheral tissues. The main descendants of circulating 
monocytes, the macrophages and DC, occur in virtually all organs. Local myeloid precursors 
for macrophages and DC are also present in various organs.  Each organ contains multiple 
different macrophage and DC subpopulations characterized by the expression of their 
specific cell surface and intracellular molecules. The best-known function ascribed to 
macrophages is clearance of pathogens and dead cells by phagocytosis and digestion. The 
best-known function of DC is their role in the primary activation of the adaptive immune 
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responses. Both DC and macrophages are capable of up and down regulating immune 
responses. An important characteristic of these cells is the expression of innate antigen 
receptors, such as toll-like receptors (TLRs) that can bind to both pathogen-associated 
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs)[36], 
which can be found on microbes and damaged body cells.  In such ‘danger’ situations, 
when the cells of the MPS are triggered via such receptors, the cells of the MPS become 
pro-inflammatory, and then guide an effective T cell response to eliminate the danger-
evoking signal. In the normal “steady state” situation without any danger the MPS cells stay 
in their “innate steady state”, which is tolerogenic, with other words the DC are active, take 
up primarily auto-antigens and do interact with T cells, primarily the natural T regulatory 
cells, to serve tolerance induction and maintenance. 

Monocytes are part of the MPS and thus part of the innate immune system and constitute 
2-10% of all leukocytes in the peripheral blood [36, 37]. Morphologically, they have an 
amoeboid shape, clear cytoplasm, a large horseshoe-shaped nucleus, a well-developed 
Golgi complex and various intracytoplasmic lysosomes. Typically, human monocytes 
express cell surface markers such as CD14 and, dependent on the subset, CD16 [36, 38]. 
In response to chemotactic signals, monocytes can move relatively quickly (approx. 8–12 
hours) to sites of infection in tissues and divide/differentiate into macrophages and DC to 
elicit an adaptive immune response [36, 37]. 

Macrophages were first identified by Elie Metchnikoff in 1883. These cells are considered 
the key players of the innate immune system [34]. Nowadays, they are recognized as 
important pathophysiologic agents in wide-spread disease processes associated with 
aging (cancer) and chronic inflammation (e.g. the MetS, T2D, and atherosclerosis)[39, 40]. 
Macrophages have two main characteristics that are diversity and plasticity. Depending 
of the triggering factor macrophages can polarize and skew towards two polar (M1 or 
M2) phenotypes. The M1 and M2 phenotype are in fact caricatures, and in-between forms 
exist as well as  polarities in other directions , which are characterized by the production 
of specific growth factors, and play a role in vascular repair [41-43] or neuronal growth 
[44-46].  Also M1 and M2 macrophages can be converted into each other in their specific 
microenvironments [47, 48]. M1 macrophages (also called classically activated macrophages, 
typified by those that have been stimulated with a TLR-ligand such as LPS and IFN-γ) are 
pro-inflammatory and have a central role in host defense against pathogens and promoting 
inflammation, while M2 macrophages (also called alternatively activated macrophages) 
are associated with responses to anti-inflammatory reactions, tissue repair and remodeling 
[40, 47-50]. M1 phenotype macrophages express numerous pro-inflammatory mediators 
including TNF-α, IL-1, IL-6, reactive nitrogen and oxygen intermediates, which have a 
strong microbicidal and tumoricidal activity, while M2 macrophages express molecules 
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including resistin-like-α (Fizz1), Arginase1, chitinase 3-like 3 (Ym1), IL-10 and Mrc1 (CD206), 
which are involved in immunoregulatory functions [47, 48, 51] (see Fig.2). 

IFN-γ, which is mainly produced by Th1 cells and natural killer (NK) cells, is the main 
cytokine associated with M1 polarization. IFN-γ induces gene expression of cytokine 
receptors (CSF2RB, IL15 receptor alpha, IL2RA, and IL6R), cell activation markers (CD36, 
CD38, CD69, and CD97), and cell adhesion molecules (ICAM1, integrin alpha L, ITGA4, 
ITGbeta-7, mucin 1, and SIAT1) [51-53]. IFN-γ knockout (KO) mice show impaired production 
of antimicrobial products, and these mice are susceptible to bacterial infections [52, 54, 55]. 
On the other hand, IL-4 which is mainly produced by Th2 cells, eosinophils, basophils, and 
macrophages is the main cytokine associated with M2 polarization [52, 56]. IL-4 activates 
several transcription factors such as JAK1,  JAK3, c-Myc and IRF4, Krüppel-like factor 4 , and 
the signaling modulators CISH and SOCS1 [52, 53, 57, 58]. IL-4 KO mice have defects in the 
immune response against some viral infections and nematodes [52].

Figure 2. The prototypical M1 and M2 macrophages.
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 The vascular repair function of monocytes 
Classically it is thought that monocytes/macrophages only play a vascular destructive 

role in the process of atherosclerosis (as M1-polarized cells). However specific monocyte/
macrophage populations have the potential to repair the blood vessel wall upon injury 
[59]. In general endothelial repair is mediated by proliferation and differentiation of local 
endothelial cells stimulated via the production of growth factors and cytokines that aid in 
the repair process. In this process, also circulating pro-angiogenic cells (PACs) are critical 
[60-62]. PACs are recruited from the bone marrow and are a heterogeneous cell population 
expressing endothelial characteristics when stimulated [59]. Nowadays it is recognized that 
different cell populations derived from the bone marrow are involved in neovascularization 
and re-endothelialization [59, 63-65]. PACs are closely linked to monocytes/macrophages, 
and can be derived from the fraction of circulating CD14 + cells [60, 61, 63] . In situations 
of vascular injury, the CD14 + cells may develop an anti-inflammatory phenotype and 
become pro-angiogenic cells [60, 64].

ROLE OF IMMUNITY IN OBESITY AND INSULIN RESISTANCE 

Fat as a chronically inflamed tissue in obesity 
Adipose tissue is an active metabolic and endocrine organ. Loss of immune regulation 

in this tissue is the major factor contributing to the development/progression of insulin 
resistance and T2D [66]. Chronic mild Inflammation of adipose tissue, in particular visceral 
adipose tissue, causes production of proinflammatory cytokines/chemokines which are 
capable of inactivating the insulin receptor via induction of serine phosphorylation; this 
has as result the blockade of insulin receptor signaling in multiple cell types, including 
muscle and liver cells. 

There is accumulating evidence to suggest that both innate and adaptive immune 
cells are skewed towards a proinflammatory set point in visceral adipose tissue of obese 
subjects  [67-72]. The consequent adipose tissue dysfunction is manifest not only for the 
secretion of cytokines (e.g. of TNF, IL-6, IL-1β, PAI1) and chemokines (CCL2, CCL4, CCL20, 
CXCL14), but also for the secretion of proinflammatory adipokines (e.g. leptin) [67, 73-75].  
This chronic proinflammatory secretion pattern in adipose tissue induces a systemically 
low grade of inflammation which perpetuates the positive feedback loop of inflammation 
[71]. 

It is unknown which are the trigger factors that activate the immune cells in adipose 
tissue. A combination of different endogenous and exogenous danger signals can be 
the initiators. It is well described that saturated fatty acids (e.g. palmitic acid), specific 
cytokines (e.g. TNF) and also pathogen-associated molecular patterns (PAMPs) (e.g. LPS)
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can directly activate the NLRP3 inflammasome, inducing the activation of inflammatory 
cells in adipose tissue and the secretion of IL-1β and other inflammatory cytokines [76-78]. 
Also, some reports show that fatty acids can activate TLR4 and TLR2 in macrophages and 
adipocytes [79, 80].

Interestingly, there is evidence that suggest that a high-fat and high-carbohydrate diet 
by itself could result in chronic innate immune-driven inflammation. Wang et al, showed 
that the intestinal epithelial cell barrier of animals on a high fat diet (HFD) could be 
disrupted, consequently gut antigens and gut microbial PAMPs, like LPS, can circulate and 
stimulate inflammatory activation of innate and adaptive immune cells in visceral adipose 
tissue (VAT) [81].

Role of the innate immune system in obesity and insulin resistance 
In lean individuals in and surrounding the adipose tissue there is a predominance 

of alternatively activated (M2-like) macrophages which have anti-inflammatory (IL-10 
secretion) and repair functions. In the initiation of obesity there is a progressive 
accumulation of classically activated (M1) macrophages which have pro-inflammatory 
functions [52, 53]. In chronic obesity, the infiltration of M1 macrophages into obese adipose 
tissue is important, forming “crown-like structures” [82, 83].  These M1 macrophages 
release inflammatory cytokines and chemokines such as IL-1β, IL-6, TNFα and CCL2 [52, 72, 
84, 85]. Notably, under these conditions adipocytes increase not only in number but also 
in size, this stimulates them to secrete inflammatory products inducing a further positive 
feedback loop of inflammation. Importantly, Patsouris et al show that the ablation of 
CD11c-positive cells, which is expressed by classically activated macrophages, normalizes 
insulin sensitivity in obese insulin resistant animals [86].  It is known that the chemokine 
CCL2 plays a prominent role in macrophage infiltration. In accordance, systemic deletion of 
CCL2 prevents inflammatory macrophage accumulation in adipose tissue and diminishes 
insulin resistance [85, 87, 88].

As previously mentioned in normal conditions adipose tissue is infiltrated and 
surrounded by M2 macrophages. The cytokines that stimulate the differentiation of these 
macrophages are IL-4 and IL-13 [56, 57] . Notably, 90% of IL-4–expressing cells in adipose 
tissue are eosinophils suggesting that these cells have an important role in fat immune 
regulation under normal, lean conditions [89, 90].

Additionally, other cells of the innate system such as mast cells are importantly increased 
in visceral adipose tissue, these cells can also promote and regulate inflammation [91, 92]. 
On the other hand, the invariant NKT (iNKT) cells are importantly reduced [90, 93, 94]. 
Lynch et al reported that HFD mice lacking iNKT cells show increased insulin resistance and 
weight gain [93]. Furthermore, evidence shows that neutrophils infiltrate adipose tissue 
as early as 3 days after the initiation of a HFD in animal models and neutrophil elastase 



19

General Introduction

  A

  2

  3

  4

  5

  6

  1

  7

production can contribute to inflammation [90, 95, 96]. Importantly, mice deficient in 
neutrophil elastase are protected against HFD-induced obesity and insulin resistance. 
Increased activity of neutrophil elastase has also been described in the serum of obese 
human subjects [97] (see Fig. 3).

In sum, a plethora of innate immune cells and innate immune cell products regulate 
the inflammatory state of adipose tissue and consequently the insulin resistance state.

Role of the adaptive immune system in obesity and insulin resistance
Recent evidence shows that the adaptive immune system also plays an important 

role in obesity, insulin resistance and T2D [72, 90, 98] . It is thought that T cells infiltrate 
adipose tissue before macrophage accumulation [74, 99]. Infiltrating cytotoxic T-cells are 
capable of secreting IFN-γ promoting an overactive Th1 cell response and the recruitment 
and activation of M1 macrophages increasing adipose tissue inflammation [74, 98, 100]. 
Additionally, infiltrating CD8+ T cells can also produce elevated levels of chemokines such 
as CCL5 and CXCL1 which  are contributing factors to the recruitment of macrophages into 
adipose tissue [90, 101, 102] . 

Bertola et al, showed CD11chigh F4/80low dendritic cell infiltration of adipose tissue in 
obese mice and these cells were capable of inducing the differentiation of proinflammatory 
Th17 cells from naïve T cells [103].

Not only T cells, but also B cells contribute to obesity-associated inflammation in 
adipose tissue [90, 98-100]. This has been shown in mice rendered B cell-deficient via 
genetic means or Ab treatment. Also the transfer of IgG2c from HFD mice can induce 
insulin resistance in recipient mice [100]. 

Importantly, the suppressive function of immune cells is affected in obesity as well [90, 
104]. The function and number of T regulatory cells are altered in adipose tissue of obese 
mice [93, 105-107]. 

Depletion of Tregs in animal models induced insulin resistance [90, 106]. Tregs from 
obese HFD mice have reduced expression of IL-10 [90, 108] . Also, follicular B cells have 
reduced IL-10 production [99] (see Fig.3).

However it must be noted that in a recent study of our group morbidly obese subjects 
had a selective increase in peripheral circulating blood CD4+ naive, memory, natural 
CD4+CD25+FoxP3+ Treg and Th2 T cells, whereas CD8+ T cells were normal [109]. CD4+ and 
CD8+ T-cell proliferation was increased, whereas the TCRB repertoire was not significantly 
altered. Plasma levels of cytokines CCL5 and IL-7 were elevated. Total CD4+ T-cell numbers 
correlated positively with fasting insulin levels. We thus found the peripheral blood T-cell 
compartment of morbidly obese subjects characterized by increased homeostatic T-cell 
proliferation to which the cytokines IL-7 and CCL5, among others, probably contributed. 
This homeostatic T-cell proliferation was associated with increased CD4+ T cells numbers, 
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with a skewing toward a T regulatory and Th2-dominated phenotype, suggesting a more 
anti-inflammatory T cell set point of morbidly obese subjects in the peripheral blood [109].

Without a doubt, obesity induces several alterations in the innate and adaptive immune 
system characterized by a combination of local hyper activation of immune cells, as well as 
a gain or loss of immune regulation (M2 macrophages, Tregs, and B cells) in different tissue 
compartments.

Figure 3. Immunity in Obesity and Insulin Resistance.
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TYPE 2 DIABETES 

Disease in general
T2D comprises a group of metabolic disorders characterized by a disturbance in glucose 

homeostasis, resulting in increased blood glucose levels, due to a low responsiveness 
of target tissues (skeletal muscle, adipose tissues, liver etc.) to insulin and insufficient 
insulin production/secretion by pancreatic β cells. T2D is therefore characterized by three 
pathophysiological abnormalities: 1) peripheral insulin resistance, that is the inability of 
the target tissues (mainly skeletal muscle, liver and adipose tissues) to respond to raised 
blood concentrations of insulin; 2) impaired insulin secretion, that is the incapacity of the 
β cells to compensate this resistance (which is effective in the phases before the overt 
hyperglycemia) and, finally, 3) excessive hepatic glucose production [110]. No single 
etiologic factor has been defined as the cause of T2DM, although important risk factors 
include age, ethnicity, and family history together with obesity. 

The prevalence of the Metabolic Syndrome (MetS) and T2D is increasing exponentially 
worldwide  reaching almost epidemic proportions. The MetS is defined as  having central 
obesity (defined as waist circumference with ethnicity-specific values) plus any two of 
the following four factors: raised triglycerides ≥ 150 mg/dL (1.7 mmol/L); reduced HDL 
cholesterol < 40 mg/dL (1.03 mmol/L) in males and  < 50 mg/dL (1.29 mmol/L) in females; 
raised blood pressure systolic BP ≥ 130 or diastolic BP ≥ 85 mm Hg; raised fasting plasma 
glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L) [111]. The International Diabetes Federation 
reported that worldwide currently 371 million people have diabetes, with a prevalence 
of 8.3%. In 2014, 4.8 million people died from this cause. Despite all efforts about 187 
million people are estimated to be unaware of their diabetic condition. With this trend, 
it is estimated that in 2030, 552 million people will be affected [112, 113]. The developing 
countries are most vulnerable; four out of five people with diabetes live in low-income 
countries.  Currently, in South and Central America 26 million people suffer from this 
disease, however 45.5% of cases have not yet been diagnosed. Projections indicate that by 
2025 the disease will rise to 40 million individuals [112, 114, 115].

Also dyslipidemia plays an important role. This dyslipidemia in diabetes is characterized 
by high levels of (oxidized) low-density lipoprotein (Ox–LDL) and low high-density 
lipoprotein (HDL) levels; while increased circulating fatty acids may interfere with the 
signaling cascade of insulin through a mechanism called lipotoxicity [116-118]. Macro 
vascular problems (vascular coronary disease, peripheral vascular disease and brain vascular 
disease) as well as microvascular damage (retinopathy, neuropathy and nephropathy) often 
affect these dyslipidemia patients. In particular the ability of monocytes/macrophages to 
differentiate into pro-angiogenic cells (PACs), which are crucial support cells in repair of 
vascular destructive alterations, is importantly impaired in T2D.  Ultimately, this leads to 
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increased vascular damage, a characteristic problem in long-standing and poorly regulated 
diabetes [60, 64, 119, 120].

T2D in Ecuador
Similar to what is happening worldwide, diabetes has become a public health problem 

in Ecuador. Already in 2007 the Ecuadorian Institute of Statistics and Census (INEC) reported 
that diabetes mellitus was the first cause of death [121].  In 2013, 563,840 cases of diabetes 
were reported causing 5,492 deaths in that year [112].

Several environmental and genetic factors contribute to the development of diabetes. 
It is recognized that T2D has a strong genetic component. In fact there is a concordance of 
95% in homozygous twins [122]. A number of genetic variants associated with T2D have 
been described across different populations although a diverse picture emerges from 
different studies.  For instance,  one of the most robust associations between common 
genetic variation and type 2 diabetes risk, reported in European and Asian populations, 
involves intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene, encoding 
the CDK5 regulatory subunit associated protein 1-like 1, a methylthiotransferase with 
so far unknown role in T2D [123]. Contrary, Locke et al did not find this association in a 
white UK cohort [124]. Interestingly, another genome-wide association study for T2D 
has highlighted multiple genes implicated in adipo-cytokine signaling pathways (mostly 
adiponectin, leptin and TNF-α signaling) and cell cycle regulation [125]. 

Next to genetic determinants, social factors seem to be inducing factors for the 
development of this disease in developing countries. One of the factors contributing to the 
development of diabetes is the rapid urbanization. In recent years an increased number of 
people have migrated from the countryside to the cities. Presently about 66% of Ecuador’s 
total population is urban. A recent study in a national sample of Ecuador, reported an overall 
prevalence of DM2 of 2.7% in the population of 10-50 years. However, the prevalence in 
Quito is one of the highest (4.8%), followed by the urbanized areas of the coast (3.8%). 
The lowest prevalence was found in the rural Sierra and Amazonian areas (about 1%). The 
prevalence increased with age and is particularly high in the older population, averaging 
10% in groups of 50-59 years [91].  Overall, the prevalence of diabetes in urban areas ranges 
between 7 and 8%, while in rural areas it is only 1 to 2% [112, 113]. 

The recent longevity in Ecuador also contributes to increased numbers of diabetic cases. 
In most Latin American countries the annual growth rate of the population over 60 years is 
approximately 3 to 4% compared with 1 to 2% in previous years [112]. Also certain ethnic 
groups such as the American Hispano have a high propensity to develop insulin resistance 
and diabetes. [113, 126, 127]. Mao et al, showed significant differences in gene expression 
and signaling pathways of blood leukocytes of diabetic patients of African American origin 
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as compared to Caucasian diabetic patients [128]. Ecuador is in this respect particularly 
vulnerable being a multi-ethnic country.

The shift from traditional eating habits of the indigenous population of low-calorie diets, 
especially derived from plants, to diets high in carbohydrates and animal fat (Western diet) 
seems to be a crucial factor in the development of metabolic disorders in the population, 
mainly characterized by altered lipid profiles and increased body weight [129, 130]. This 
hyper-caloric excess has caused an increase in the prevalence of overweight and obesity 
in the Ecuadorian population. In 2005, the World Health Organization (WHO) reported that 
40% of men and 50% of women in Ecuador were overweight (body mass index greater 
than 25) and 6% of men and 16% of women were obese (BMI greater than 30)[131]. Obesity 
is the dominant factor for the development of diabetes. Specifically abdominal obesity (> 
80 cm in women and> 90 cm in men) is considered as a reliable predictor of MetS and T2D 
[113, 132-135].

MONOCYTE DYSFUNCTION IN METS AND T2D

There is evidence that monocytes are affected at the molecular level in MetS and 
T2D. Cellular changes due to different environmental conditions are tightly regulated by 
cellular sensors and signaling processes that modulate monocyte function [36, 66]. Several 
reports show that TLR-2 and TLR-4 expression is increased in monocytes of patients with 
the MetS and T2D [136-138]. Interestingly, Miller et al. described that Ox-LDL can trigger 
TLR-4 signaling [139]. The increased activity of TLR4 induces the activation of downstream 
transcription factor nuclear factor-κB (NF-kB) and the secretion of inflammatory molecules 
(e.g. IL-1β, IL-6, IL-8)[138, 140, 141]. In fact the importance of TLR4 in the MetS and T2D has 
been demonstrated in animal models [142]. Jialal et al, showed that genetic deletion of 
TLR2 and TLR4 in mice remarkably diminishes inflammation, and insulin resistance [143]. 

Other cellular pathways in monocytes importantly interact with inflammatory 
signaling cascades, thus contributing to T2D pathogenesis. For instance, the interleukin-1 
receptor-associated kinase-3 (IRAK3) is a negative regulator of TLR2/NF-κB-mediated 
inflammation. Interestingly, adiponectin level seems to directly regulate IRAK3 expression 
directly. In the MetS and T2D the secretion of adiponectin is importantly reduced, as well 
as the expression of IRAK 3, leading to a stimulation of  which favor the inflammation 
process[144]. In addition, abnormalities in CD40-CD40L interactions in monocytes of MetS 
patients have been described [145-147]. As a result, the monocytes become excessively 
activated secreting proinflammatory cytokines (IL-1, IL-6), matrix metalloproteinases 
(MMPs), cyclooxygenase-2 (COX-2) and tissue factor [148, 149].
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Furthermore, in MetS and T2D the expression of Fc gamma receptors (CD32 and CD64) 
and chemokine receptor CCR5 are elevated [36, 150-152]. In parallel to CCR5 expression, its 
ligands CCL11/eotaxin-1 and CCL4/MIP-1β are also overexpressed [75]. Contrary, significant 
down-regulation of Peroxisome Proliferator Activator Receptor (PPAR) α and PPARδ have 
been shown [75]. This probably contributes to a pro-inflammatory profile of monocytes in 
MetS and T2D as signaling via these nuclear receptors is important for the induction and 
maintenance of an anti-inflammatory M2 phenotype of monocytes/macrophages [153, 
154]

Finally, in monocytes of MetS and T2D patients endoplasmic reticulum (ER) stress is well 
described, and may be induced by elevated glucose levels and dyslipidemic conditions 
[155-157] . ER stress is characterized by the increased secretion of various oxidative 
biomarkers such as ox-LDL, nitrotyrosine and superoxide anion [70, 158-162]. 

Important for the studies in this thesis is that we previously reported a higher 
inflammatory gene expression profile in monocytes of diabetic patients, also in patients 
with T2D [163]. We studied patterns of inflammatory gene expression in CD14+ monocytes 
of patients with type 1 diabetes (juvenile onset and adult onset), latent autoimmune 
diabetes of the adult (LADA), type 2 diabetic patients and non-diabetic control subjects 
using quantitative PCR. We tested 25 selected genes: 12 genes detected in a pre-study 
via whole-genome expression analyses plus an additional 13 genes identified as part of a 
monocyte inflammatory signature previously reported in auto-inflammatory conditions. 
We identified two distinct monocyte gene expression clusters in diabetes. The first cluster 
comprised 12 pro-inflammatory cytokine/compound genes (IL-1B, IL-6, TNF, TNFAIP3, PGS2, 
CCL20, PTX3, PDE4B, DUSP2, ATF3, CXCL2 and BCL2A1); the second cluster comprised 12 
chemotaxis, adhesion, motility, and metabolism genes (CCL2, CCL7, MAPK6, NAB2, CD9, 
STX1A, EMP-1, CDC42, PTPN7, DHRS3, FABP5, HSPA1A). Different gene expression profiles 
of these two gene clusters typified the circulating monocytes of LADA patients, T1D and 
T2D patients. [163].  We use the gene profiles as described by Padmos et al in our studies 
described in Chapter 3 and 5.

MICRORNAS IN GENERAL

MicroRNAs represent a class of small non-coding RNAs and have been identified as 
important regulators of translation and stability of messenger RNA (mRNA) [164, 165]. 
MicroRNAs negatively regulate gene expression at post-transcriptional level by mediating 
translational repression (through an imperfect pairing to the target mRNA, directs RISC to 
bind the 3‟ ‘ untranslated regions (3‟‘ UTRs) of the targets) or degradation of the mRNA 
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targets [166]. The microRNAs have been highly conserved during evolution, strengthening 
the notion that they playing a key role in gene regulation. So far, around almost 2000 
mature microRNAs have been identified in human (1881 miRNAs at the time of writing 
reported in miRBase version 21); they can modulate the expression of at least one third 
of all encoded mRNAs [167, 168]. The micro-RNA’s mature form is a single stranded RNA, 
19-22 nucleotides long, derived from a primary transcript, whose which maturation steps 
take place in part in the nucleus and in part in the cytoplasm (see Fig 4) [166, 168].

Transcription of a microRNA gene is mediated by RNA polymerase II or III, which 
produce a primary transcript, called primary microRNA [165]. PrimiRNAs are long primary 
transcripts that contain a local stem-loop structure. This stem-loop structure is cleaved in 
the nucleus by the RNase III Drosha to release the precursor of microRNA (pre-miRNA). The 
Drosha product pre-miRNA needs to be exported to the cytoplasm. Export of pre -miRNA 
is mediated by exportin-5 (Exp5) [169, 170]. Once in the cytoplasm, pre-miRNAs are 
processed into 22-nt microRNA duplexes by the cytoplasmic RNase III Dicer. The cleavage 
products [22-nt 5p- and 3p-microRNA/miRNA star (miRNA/miRNA*) duplexes] are thought 
to be quickly unwound by heli-case (Argonaute protein), and a single mature strand, 
preferentially the most thermodynamically stable, can be asymmetrically incorporated 
into the RNA-induced silencing complex (RISC) where it can then act by translational 

Figure 4. MicroRNA biogenesis and function. 

Adapted from Urbich, et al, Cardiovascular Research (2008)
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repression (by a cleavage-incompetent RISC) or mRNA degradation (by a cleavage-
competent, Slicer-containing RISC). The counterpart of the mature miRNA from the duplex 
that is generally regarded as a passenger strand, previously indicated as ‘star’ strand, called 
miR-NA* (miRNA “star”), whose regulatory capacity has not been systematically examined, 
is usually degraded (see Fig. 4)  [164-166, 168, 171]. 

MicroRNA alteration of peripheral blood mononuclear cells (PBMC) and monocytes in T2D 
MicroRNAs have been associated with the development of various diseases, including 

diabetes [172-176] playing for instance important roles in the normal differentiation 
and maturation of hematopoietic cells [177]. Various inflammatory triggers appear to 
induce the selective expression of microRNAs in monocytes/macrophages, which in turn 
functionally affect the expression of proteins involved in the inflammatory cascade [178-
181].  The dysregulation of microRNAs has been implicated in MetS and diabetes, although 
there is a relative paucity of literature on PBMC/ monocyte miRNA alterations in type 2 
diabetes. Here we present the available literature (summarized in Table 1).

MiR-146a and miR-155 expression levels have been found to be significantly decreased 
in the PBMC of patients with T2D as compared to control subjects [182, 183]. Expression 
values correlated negatively to parameters of metabolic control (Hb1Ac, glucose) and signs 
of inflammation (NFκB mRNA levels in PBMC and circulatory levels of pro-inflammatory 
cytokines) [182, 183]. Tome-Carneiro et al, carried out a study of anti-inflammatory 
supplementation in a group of male T2D patients. They found downregulation of miR-21, 
miR-181b, miR-663 and miR-30c2 in PBMCs. MiR-155 and miR-34a were slightly upregulated 
after treatment, but did not reach statistical significance. Mocharla et al, described that 
miR-126 was the most differentially expressed miRNA in CD34+ hematopoietic progenitor 
cells as compared to CD34- PBMC subsets [184]. Finally, Collares et al studied the microRNA 
expression profile of PBMC from type 1 (T1D), type 2 (T2D), and gestational diabetes (GDM) 
patients using a microarray platform. They reported that nine miRNAs (miR-126, miR-1307, 
miR-142-3p, miR-142-5p, miR-144, miR-199a-5p, miR-27a, miR-29b, and miR-342-3p) were 
shared among T1D, T2D and GDM, and additional specific microRNAs were identified in 
T2D patients (miR-140-3p, miR-199a-3p, miR-222, miR-30e and miR-451) [185].
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Table 1.  MicroRNA dysregulation of peripheral blood mononuclear cells (PBMC) in T2D. 

microRNAs Cell type Reference

Up-regulated Down-regulated

 miR-146a PBMCs Balasubramanyam M, Aravind S et al: 
Impaired miR-146a expression links 
subclinical inflammation and insulin 
resistance in Type 2 diabetes. 
Molecular and cellular biochemistry 
2011, 351(1-2):197-205.

 miR-155,  miR-146a PBMCs Corral-Fernandez NE, Salga-
do-Bustamante M,et al: Dysregulated 
miR-155 expression in peripheral blood 
mononuclear cells from patients with 
type 2 diabetes. 
Experimental and clinical endocrinolo-
gy & diabetes: official journal, German 
Society of Endocrinology [and] German 
Diabetes Association 2013, 121(6):347-
353.

miR-34a,                             
miR-155 (NS)

miR-21, miR-181b, miR-
663 and miR-30c2

PBMCs Tome-Carneiro J, Larrosa M, et al: One-
year supplementation with a grape 
extract containing resveratrol modu-
lates inflammatory-related microRNAs 
and cytokines expression in peripheral 
blood mononuclear cells of type 2 di-
abetes and hypertensive patients with 
coronary artery disease. 
Pharmacological research: the official 
journal of the Italian Pharmacological 
Society 2013, 72:69-82.

miR-126 CD34+ 
cells

Mocharla P, Briand S, et al: Angi-
omiR-126 expression and secretion 
from circulating CD34 (+) and CD14 (+) 
PBMCs: role for proangiogenic effects 
and alterations in type 2 diabetics. 
Blood 2013, 121(1):226-236.

miR-126, miR-1307, miR-142-3p, miR-
142-5p, miR-144, miR-199a-5p, miR-27a, 
miR-29b, and miR-342-3p, miR-140-3p, 

miR-199a-3p,miR-222,miR-30e and miR-
451

PBMC Collares CV, Evangelista AF, et al: Identi-
fying common and specific microRNAs 
expressed in peripheral blood mononu-
clear cell of type 1, type 2, and gesta-
tional diabetes mellitus patients. 
BMC research notes 2013, 6:491.
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MicroRNA alterations in the circulation (serum/plasma) of patients with T2D  
Serum/plasma circulating microRNA expression patterns have been suggested to have 

a predictive value as potential biomarkers in a variety of diseases including diabetes [186, 
187]. It has been demonstrated that some microRNAs can exist in serum stably, suggesting 
a potential utility of microRNAs as clinical biomarker that are minimally invasive, life-style 
independent and informative [188].

The literature about dysregulation of microRNAs in serum of T2D is increasing daily 
(summarized in Table 2). For instance, Wang et al, determined 14 circulating microRNAs 
in Swedes and Iraqis with and without T2D. The levels of miR-24 and miR-29b were 
significantly different between T2D patients and controls [189]. Another report has shown 
that miR-20b, miR-21, miR-24, miR-15a, miR-126, miR-191, miR-197, miR-223, miR-320, 
and miR-486 are downregulated in plasma of T2D, whereas miR-28-3p was upregulated.  
Importantly, reduced miR-15a, miR-29b, miR-126, miR-223, and elevated miR-28-3p levels 
preceded the manifestation of disease [190].  Prabu et al, performed global serum miRNA 
profiling of ‘Asian Indian’ people. They showed that 4 microRNAs (miR-128, miR-130b-3p, 
miR-374a-5p and miR-423-5p) were differentially expressed in T2DM patients compared to 
controls. Interestingly, miR-128 had never been described in previous studies/populations 
and appeared to be a ‘new lead’ in the Indian population [191].  Using qPCR Kong et al, 
report elevated levels of serum miR-9, miR-29a, miR-30d, miR-34a, miR-124a, miR-146a and 
miR-375 in the serum of newly diagnosed T2D patients  [192]. Higuchi et al. performed 
Illumina sequencing of microRNAs in T2D serum. MiR-101, miR-375, and miR-802, were 
significantly increased in T2D patients. Interestingly, levels of HbA1c and HDL-C were 
identified as significant determinants [193]. Recently Wu et al, using q-PCR profiled miRNAs 
from serum of obese, T2D and healthy controls. MiR-593 was significantly lower in T2D 
patients when compared to controls. MiR-17 and miR-152 were also significantly lower but 
when compared to obese subjects. Contrary, miR-138 was significantly upregulated [194].

In sum, there is a large list of circulating candidate microRNAs that might be useful 
as clinical biomarkers of T2D. However, a clear picture or a lead microRNA has not been 
discovered. Moreover most of the microRNAs have not yet been validated in sufficiently 
powered and longitudinal studies for specificity for T2D [186].  In addition, ethnicity and 
other confounding factors, such as age, gender, obesity, dyslipidemia, smoking, use of 
contraceptives and other drugs capable of influencing the inflammatory state and vascular 
disease probably influence the profile of circulating microRNAs and need to be taken into 
consideration. Needless to say that lot of work still needs to be done. Studies reported in 
this thesis belong to the first steps in addressing these issues.
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AIMS

The overall aim of this thesis is to establish a putative dysregulation of microRNAs in 
monocytes and serum, and to correlate the dysregulated microRNA expression to inflam-
matory markers in monocytes and serum. The unravelling of a dysregulation of microRNAs 
and inflammatory markers in monocytes and serum is the basis to understand better the 
molecular pathogenic processes playing a role in T2D. Moreover, the dysregulated micro- 
RNAs and inflammatory compounds could serve as biomarkers of T2D. 

We firstly identified a microRNA signature capable of distinguishing patients with T2D 
from individuals not suffering from T2D. In the first part of Chapter 3 we describe that, in 
a study on the monocytes of 34 European and Ecuadorian patients and of 25 non-diabetic 
controls, we were able to identify 142 significantly differentially expressed microRNAs, 
15 having the strongest power to discriminate T2D patients from controls. Indeed, this 
approach showed that subject clusters could be identified with a first cluster containing 
24 T2D cases and only 2 non-diabetic controls, and a second mixed cluster comprising 12 
cases and 23 non-diabetic controls (sensitivity 66%, specificity 90%). Thus, using microRNA 
expression in monocytes, we found that a partial separation could be made between T2D 
cases and non-diabetic controls. These monocyte prediction signature microRNAs, how-
ever, appeared less useful to validate as microRNAs that can be clinically used as discrim-
inating parameters between T2D patients and controls using qPCR as an independent 
technique, since the expression fold changes observed for these microRNAs were gener-
ally too low to allow reliable confirmation within the technical limitations of qPCR.

We thereafter decided to use the microRNAs as biomarkers to test the biological func-
tion and inflammatory state of the circulating monocytes in patients with T2D, since there 
is a paucity of studies focusing on the inflammatory state of these circulating cells in T2D. 
Therefore, we chose to select from the differentially expressed microRNAs those with the 
highest fold changes (FC) between cases and controls with FC of >1.4 or <0.6.  Another cri-
terion for selection was that TaqMan probes and primers needed to be available. From the 
142 differentially expressed microRNAs found in Exiqon, 5 microRNAs fulfilled the selec-
tion criteria: miR-138; miR-34c-5p; miR-410; miR-574-3p and miR-576-3p. Additionally, 
we tested microRNAs-146a and -155 in TaqMan analyses, since these microRNAs are well-
known regulators of inflammation, and have been identified in T2D PBMC by others . 

In the second part of Chapter 3 we describe the outcomes of these TaqMan studies 
and the correlation in expression between the tested microRNAs and genes previously 
found abnormally expressed in monocytes of T2D patients. We tested for 24 selected genes 
forming two mutually correlating gene clusters. The first cluster comprised 12 pro-inflam-
matory cytokine/compound genes (IL-1B, IL-6, TNF, TNFAIP3, PGS2, CCL20, PTX3, PDE4B, 
DUSP2, ATF3, CXCL2 and BCL2A1); the second cluster comprised 12 chemotaxis, adhesion, 
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motility, and metabolism genes (CCL2, CCL7, MAPK6, NAB2, CD9, STX1A, EMP-1, CDC42, 
PTPN7, DHRS3, FABP5, HSPA1A). Different gene expression profiles of these two gene 
clusters typified the circulating monocytes of LADA patients, T1D and T2D patients.  We 
used the monocytes of a series of 64 Ecuadorian patients and 44 non-diabetic Ecuadorian 
controls. We found the microRNA and gene expression profile of the monocytes to indicate 
an anti-inflammatory and motile/adhesive potential of the cells and we hypothesized that 
the monocytes in the T2D patients might be pro-angiogenic cells.

Since HGF is a well-known T2D related molecule and since HGF is used as a marker for 
pro-angiogenic cells we also tested HGF in the monocytes of the series of 64 Ecuadorian 
patients and 44 non-diabetic Ecuadorian controls and related the expression of HGF to the 
other genes and the microRNAs in the monocytes. These experiments are described in the 
first part of Chapter 3. HGF was indeed over expressed in the monocytes and primarily 
related to the cluster 2 genes

We also tested microRNAs-146a and -155 and the above described “monocyte microR-
NAs”, i.e. miR-138; miR-34c-5p; miR-410; miR-574-3p and miR-576-3p, in the serum of the 
Ecuadorian patients and the non-diabetic Ecuadorian controls. We compared data to the 
serum level of a commercially available series of 12 pro-inflammatory and growth factors 
(TNFα, IL-1β, IL-6, NGF, HGF, PAI, Resistin, CCL2, Adiponectin, Leptin, IL-8, and CCL4), to see 
if the microRNAs had an expression pattern similar to these inflammatory/immune acti-
vation compounds. We also compared the serum level of the microRNAs and the inflam-
matory/immune activation compounds to the expression levels found in the circulating 
monocytes of T2D patients, to see if there are indications for the idea that the circulating 
monocytes are the source of the compounds in serum.

Outcomes of the experiments  are described in the second part of Chapter 4 and in 
Chapter 5.
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ABSTRACT

There is increasing evidence that inflammatory macrophages in adipose 
tissue are involved in insulin resistance of type 2 diabetes (T2D). Due to 
a relative paucity of data on circulating monocytes in T2D, it is unclear 
whether the inflammatory changes of adipose tissue macrophages are 
reflected in these easily accessible cells. 

Objective. To study the expression pattern of microRNAs and mRNAs 
related to inflammation in T2D monocytes. 

Design. A microRNA finding study on monocytes of T2D patients 
and controls using array profiling was followed by a quantitative Real 
Time PCR (qPCR) study on monocytes of an Ecuadorian validation cohort 
testing the top over/under-expressed microRNAs. In addition, monocytes 
of the validation cohort were tested for 24 inflammation-related mRNAs 
and 2 microRNAs previously found deregulated in (auto)-inflammatory 
monocytes.  

Results. In the finding study, 142 significantly differentially expressed 
microRNAs were identified, 15 having the strongest power to discriminate 
T2D patients from controls (sensitivity 66%, specificity 90%). However, 
differences in expression of these microRNAs between patients and controls 
were small. On the basis of >1.4 or<0.6-fold change expression 5 microRNAs 
were selected for further validation. One microRNA (miR-34c-5p) was 
validated as significantly over-expressed in T2D monocytes. In addition, we 
found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7) in the validation 
cohort. These mRNAs are important for cell morphology, adhesion, shape 
change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3) 
were only over-expressed in monocytes of patients with normal serum 
lipids. Remarkably, in dyslipidemia, there was a reduction in the expression 
of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2). 

Conclusions. The expression profile of microRNAs/mRNAs in 
monocytes of T2D patients indicates an altered adhesion, differentiation, 
and shape change potential. Monocyte inflammatory activation 
was only found in patients with normal serum lipids. Abnormal lipid 
values coincided with a reduced monocyte inflammatory state.  
 
Key words. Type 2 diabetes, monocytes, miR-34c-5p, inflammation, 
dyslipidemia
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INTRODUCTION

There is increasing evidence that monocytes, macrophages and related cells are closely 
involved in the pathogenesis of the metabolic syndrome (MetS) and type 2 diabetes (T2D). 
Importantly, in obesity the number of macrophages increases from 10-15% to 50-60% of 
total cells in adipose tissue [1,2]   The increased secretion of leptin and decreased secretion 
of adiponectin, by metabolically stressed adipocytes in obesity, results amongst others 
in the accumulation of macrophages in adipose tissue [3,4]  The increase in macrophage 
number is accompanied by a hyper activation of the cells and leads to a pro-inflammatory 
state of the macrophages (so-called M1 type or classically activated macrophages). M1 
type macrophages in adipose tissue secrete pro-inflammatory cytokines (TNF-α, IL-1β, 
IL-6, CCL-4) and chemokines (CCL2), which spill over in the circulation causing a chronic 
low-grade inflammation [1,3,5-8]  The pro-inflammatory cytokines and chemokines play 
an important causative role in the insulin resistance of T2D [1,9]  

Monocytes are bone marrow-derived and considered to be important circulating 
precursors for the macrophages in adipose tissue [10-12]. There is however a relative 
paucity in reports on the state of activation of circulating monocytes in patients with 
the MetS [13,14]  and T2D [15] . In general this state of activation is thought to be pro-
inflammatory and  increases in pattern recognition receptors (TLRs, NOD-like receptors), 
oxidative stress and the machinery for the production of pro-inflammatory cytokines have 
been described [16,17]. The combination of dyslipidemia and chronic hyperglycemia is 
thought to play a role in this inflammatory activation of the circulating monocytes in MetS 
and T2D [18,19] . The view has been expressed that further studies on monocyte biology 
are needed to define the pathogenic role of monocytes/macrophages in MetS and T2D, 
given that this circulating population is easily accessible and that further clarification of 
the inflammatory pathophysiology of T2D is needed [20]. 

Previously, our group carried out such studies on monocyte biology in Latent Onset 
Diabetes of the Adult (LADA), T2D and Type 1 diabetes (T1D) and reported that diabetic 
patients exhibit abnormal monocyte gene expression profiles when monocytes were tested 
for 24 inflammation-related genes (these genes had been detected in earlier carried out 
gene profiling studies [21]).  Two mutually correlating sets of genes (clusters) were found 
abnormally expressed in the monocytes. A first set (cluster 1) consisted of 12 inflammatory 
cytokine/compound genes (IL-1B, IL-6, TNF, TNFAIP3, PGS2, CCL20, PTX3, PDE4B, DUSP2, 
ATF3, CXCL2 and BCL2A1), while a second set (cluster 2) consisted of 12 genes mainly 
involved in cell motility, chemotaxis, adhesion, differentiation and metabolism (CCL2, 
CCL7, MAPK6, NAB2, CD9, STX1A, EMP-1, CDC42, PTPN7, DHRS3, FABP5, HSPA1A). Both 
gene clusters were up-regulated in monocytes of LADA and T2D patients; in juvenile T1D 
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patients only cluster 2 genes were up regulated [21]. Up-regulations of cluster 1 and 2 
genes have also been found in the monocytes of other (auto)-inflammatory conditions, 
such as autoimmune thyroiditis [22] and major mood disorders [23].

Gene expression is partly regulated by a newly discovered level of control, the microRNA 
system. There is extensive literature indicating that two microRNAs, i.e. miR-146a and miR-
155, are key regulators of inflammatory processes [24-32]. An altered expression of these 
microRNAs has been described in monocytes/macrophages during inflammatory and 
autoimmune conditions [33-37].  Dysregulation of these microRNAs in peripheral blood 
mononuclear cells (PBMC) has also been implicated in diabetes [38-40], i.e. miR-146a and 
miR-155 expression levels were found to be significantly decreased in the PBMCs of patients 
with T2D compared to control subjects. Moreover, expression values correlated negatively 
with parameters of metabolic control (Hb1Ac, glucose) and signs of inflammation (NFκB 
mRNA levels in PBMC, circulatory levels of pro-inflammatory cytokines) [39]. 

Here we firstly report on a search for abnormally expressed microRNAs in purified 
monocytes of a cohort of 34 German/Ecuadorian T2D patients using Exiqon array profiling. 
We tested the found 142 significantly differently expressed microRNAs for discriminating 
power between patients and non-diabetic controls. Thereafter we selected from the 
142 microRNAs 5 microRNAs which were the highest over- or under-expressed with 
fold changes >1.4x or <0.6x as compared to the non-diabetic controls. We took these 5 
microRNAs (miR-138; miR-34c-5p; miR-410; miR-574-3p and miR-576-3p) plus miR-146a 
and miR-155 for further TaqMan qPCR monocyte studies in a validation cohort of 64 
Ecuadorian T2D patients and 44 non-diabetic Ecuadorian controls. In the monocytes of 
this validation cohort we also tested via qPCR the expression level of the 12 cluster 1 and 
12 cluster 2 genes of the earlier reported monocyte inflammatory signature. We finally 
correlated the expression levels of the tested microRNAs and genes in the validation study 
to each other (cluster analysis) and to clinical variables, such as age, gender, Hb1Ac and 
dyslipidemia and studied their discriminative power in distinguishing between patients 
and controls.

 

MATERIALS AND METHODS

Subjects for microRNA expression profiling (finding) cohort
Thirty-four subjects diagnosed with type 2 diabetes (T2D), according to the criteria of 

The Expert Committee on the diagnosis and classification of Diabetes Mellitus [41], were 
recruited in the German Diabetes Center, Düsseldorf, Germany (Dr Nanette Schloot, n = 
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10) and from three medical centers in Quito, Ecuador (Eugenio Espejo Hospital, Club de 
Leones Sur, and Fundación de la Psoriasis; n = 24 subjects) in 2009. A total of 25 healthy 
controls (n =9 from Germany and n =16 from Ecuador) with similar ethnic and social 
background, neither suffering from T2D, nor from other medical disorders (including acute 
infection), were recruited as well. Studies were performed with approval of the local ethical 
committees and after informed consent. 

Subjects for the qPCR validation studies
The validation was performed using a new cohort of 64 subjects diagnosed with type 

2 diabetes (T2D), according to the criteria of The Expert Committee on the diagnosis and 
classification of Diabetes Mellitus [41]. Patients were recruited in 4 medical centers of 
Quito, Ecuador (Eugenio Espejo Hospital, Club de Leones Sur, Fundación Oftalmológica 
del Valle and Fundación de la Psoriasis) from 2009 until 2012.  For demographic and clinical 
details see Table 1. At the same time, 44 healthy controls with similar ethnical and social 
background, neither suffering from T2D nor other important medical disorders (including 
acute infection) served as controls. Controls had to be over 30 years of age (considering the 
age dependency of T2D). For practical reasons, not in all instances all cases and controls 
could be tested in the qPCR studies. Exact numbers of tested individuals are indicated. 

In all cohorts, patients and healthy controls with other immune disorders, other serious 
medical illnesses, recent infections (last 2 weeks), obvious vascular complications such 
as diabetic foot and ulcers, fever, pregnancy/postpartum and LADA patients (patients 
positive for GAD-65 Abs) were excluded. None of the patients used statins. The Medical 
Ethical Review Committee of the Ecuadorian Corporation of Biotechnology Quito, Ecuador 
and the Ethic Committee of the Central University of Quito approved the study. Written 
informed consent was obtained of all subjects participating in the study. The Ecuadorian 
Ministry of Health (MSP) gave the permit to export and process the samples in Erasmus 
MC, Rotterdam, The Netherlands. 

Blood collection and preparation
Blood (drawn in the morning) was collected in tubes containing sodium-heparin for 

immune cell preparation. From the heparinized blood, peripheral blood mononuclear cell 
(PBMC) suspensions were prepared in the afternoon by low-density gradient centrifugation, 
as previously described in detail [42]  within 8 h to avoid activation of the monocytes. 
PBMCs were frozen in 10%-dimethylsulfoxide and stored in liquid nitrogen. This enabled 
us to test patient and control immune cells in the same series of experiments later.
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Table 1. Demographic details and clinical characteristics of the validation cohort of Ecuadorian T2D 
patients and controls. 

T2D NDC T2D vs. NDC

Group size n 64 44

Age mean (range) 61 (37-85) 53 (32-87) 0.00**

BMI mean (range) % 29.5 (22-49) Normal 16.1%   28.7  (23-42) Normal 18.2% 0.405

Overweight 40.3% Overweight 45.5%

Obese 43.5% Obese 36.4%

Gender

Female n (%) 40 (62.5%) 31 (70.5%) NA

Male n (%) 24 (37.5%) 13 (29.5%) NA

Glucose state

Fasting Glucose mg/dL 146 (69 - 397) Normal 45.3% 88 (60.9- 180.5) Normal 88.6% 0.00**

mean (range) % High 54.7% High 11.4%

HbA1C 7.0 (3.2 - 12.5) Normal 35.7% 5.6 (3.9 - 6.9) Normal 81.8% 0.00**

mean (range) % High 62.5% High 18.25%

Lipid Profile

Cholesterol mg/dL 237 (143- 465) Normal 37.5% 237 (131-328) Normal 31.8% 0.99

mean (range) % High 62.5% High 68.2%

TG mean mg/dL 205 (76 - 628) Normal 60.9%    194 (85 -547) Normal 63.6% 0.56

mean (range) % High 39.1% High 36.4%

HDL mean  mg/dL 43 (17 -85) Normal 57.8% 43 (27- 87) Normal 54.5% 0.81

 mean (range) % Low 42.2% Low 45.5%

LDL mg/dL 158 (77- 395) Normal 56.3% 158 (78 - 266) Normal 50% 0.95

mean (range) % High 43.8% High 50%

Hepatic Profile

ASAT mean mg/dL 33.3 (6.0 - 78) Normal 70.8% 41.3 (19 -95) Normal 48.7% 0.01*

mean (range) % High 29.2% High 51.3%

ALAT mean  mg/dL 38.8 (7.0 -131) Normal 64.6% 44.7 (10- 135) Normal 47.4% 0.252

 mean (range) % High 35.4% High 52.6%

Medication

Oral Anti-diabetics 70% 0%

Insulin treatment 30% 0%

Statins (%) 0% 0%

Values in bold denote a significant difference between two groups.
*p0.01, **p0.001

Table 1 shows sample sizes, distributions of age, gender, comorbidities, HbA1c/hyperglycemia, BMI, hepatic profile, lipid profile, 
and medication use of the patient and control groups. 
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Isolation of monocytes
CD14-positive (CD14+) monocytes were isolated from thawed PBMCs by a magnetic 

cell sorting system (MACS; Miltenyi Biotec, Auburn, California). The purity of monocytes 
was >95% (determined by morphological screening after Trypan Blue staining and flow 
cytometric analysis). As previously reported; the positive vs. negative selection of immune 
cells did not influence gene expression profiles [43]. 

MicroRNA microarray hybridization
Total RNA was extracted from purified monocytes using a mirVana miRNA isolation 

kit (Ambion) according to the manufacturer’s protocols. RNA was labeled using a ULS 
RNA labeling kit (KreatechDiagnostics, Amsterdam). To that end, 1.5 µg of total RNA was 
incubated with Cy3-ULS for 30 min at 85°C and purified to remove unbound Cy3-ULS. 
Labeled RNA was hybridized on miRCURY LNA microRNA arrays (probe set 10.0; Exiqon, 
Vedbaek, Denmark) at 60°C for 16h using a Tecan 4800 hybridization station. Slides were 
washed and immediately scanned using a Tecan LSRe loaded microarray laser scanner. 

microRNA RT qPCR assays
Total RNA was isolated from purified monocytes using the mirVana miRNA Isolation 

Kit (Ambion) as described by the manufacturer’s manual. Purity and integrity of the RNA 
were assessed on the Agilent 2100 bioanalyzer with the RNA 6000 Nano LabChip reagent 
set (Agilent Technologies, Santa Clara, CA, USA) and the RNA was then stored at −80 °C. 
Subsequently, specific stem-looped reverse transcription primers were used to obtain 
cDNA for mature microRNAs. The RNA was reverse transcribed using the TaqMan MicroRNA 
Reverse Transcription Kit from Applied Biosystems, The Netherlands (ABI). PCR was 
performed using pre-designed TaqMan microRNA assays and TaqMan Universal Master 
Mix, NoAmpEraseUNG, with an ABI 7900 HT real-time PCR machine. The PCR conditions 
were 2 min at 50°C, 10 min at 95°C, followed by 40 cycles of 15s at 95°C, and 1 min at 60°C. 

mRNA expression analysis in monocytes via TaqMan Array Cards
One µg of RNA was reverse-transcribed using the High Capacity cDNA kit (Applied 

Biosystems, Foster City, CA, USA). qPCR was performed using custom TaqMan Arrays, 
format 48 (Applied Biosystems), according to the manufacturer’s protocol and validated 
against the single RT-qPCR method. Per fill port, 400 ng of cDNA (converted from total 
RNA) was loaded. PCR amplification was performed using an Applied Biosystems Prism 
7900HT sequence detection system with TaqMan Array block. Thermal cycler conditions 
were 2 min at 50°C, 10 min at 94.5°C, and then 30s at 97°C, and 1 min at 59.7°C for 40 
cycles. Relative to the housekeeping gene ABL1, the expressions of ATF3, BCL2A1, CCL20, 
CCL2, CCL4, CD9, CDC42, CXCL2, DHRS3, DUSP2, EMP1, FABP5, HSPA1A/HSPA1B, IL-1B, IL-6, 
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MAPK6, NAB2, PDE4B, PTGS2, PTPN7, PTX3, STX1A, TNF, and TNFAIP3 were determined and 
values were calculated using the comparative threshold cycle (Ct) method. ABL was chosen 
as a reference gene because it was previously shown that ABL was the most consistently 
expressed reference gene in hematopoietic cells [44] . The quantitative value obtained 
from qPCR is a cycle threshold (Ct). The fold change values between different groups were 
determined from normalized Ct values (Ct gene – Ct housekeeping gene), by the ΔΔCt 
method.

Data analysis microRNA microarray
Microarray data extraction and normalization was carried out as described previously 

[45]. We analyzed 711 microRNAs using Empirical Bayesian method for assessing differential 
expression (R package limma) to detect microRNAs differentially expressed between 
cases and controls. For outlier detection, we used Grubb’s test for individual microRNA 
(threshold for significance 0.05). Outliers were replaced by a median expression value. The 
Benjamin-Hochberg method (5% false discovery rate) was applied to correct for multiple 
testing. Target genes of the identified microRNAs were predicted using miRecords (http://
www.mirecords.bioled.org). Functional annotation of the predicted genes was performed 
using Ingenuity Pathway Analysis (Ingenuity Systems).

Data analysis RT qPCR
The SDS software (ABI) was used to collect the data and the RQ Manager Program (ABI) 

was used to assign, check, and standardize Ct values. Data Assist software (ABI) was used 
to normalize the data to ABL for mRNA expression and RNU44 for microRNA expression. 
For threshold cycles below 40, the corresponding microRNA was considered detected, 
higher cycle numbers were not included in calculations. The results were quantified using 
the ΔΔCt method (2−ΔΔCt, User Bulletin 2, ABI). Statistical analysis was performed using 
the SPSS (IBM, Inc.) package for Windows. Data were tested for normal distribution using 
the Kolmogorov-Smirnov test. The Grubbs’ test for outlier detection was applied (http://
graphpad.com/support/faqid/1598/). Depending on the distribution pattern and the total 
number of subjects, parametric (normal distribution, independent t test) or nonparametric 
group comparison (Mann-Whitney U test) were applied. Correlations were determined by 
Spearman’s correlation coefficient. Levels of significance were set at p ≤ 0.05 (two tailed). 
A dendrogram visualizing associations was constructed in SPSS using hierarchical cluster 
analysis of the genes and microRNA expression using the between-groups linkage method. 
Graphs were designed with Illustrator CS6 for Windows.  

 



59

Monocyte microRNA and mRNA

  A

  2

  3

  4

  5

  6

  1

  7

RESULTS

Exploratory search for T2D-related monocyte micro-RNAs using Exiqon arrays.
To investigate T2D-related monocyte microRNA profiles, we profiled the monocytes of 

34 T2D patients (age: 22-77 years, mean 55 years) and of 25 non-diabetic controls (age: 
31-71 years, mean 49 years) of the finding cohort. After correction for multiple testing 
(Benjamin-Hochberg method), we detected 142 microRNA differentially expressed in 
T2D patients compared to controls. From the 142 microRNAs, 49 microRNAs (35%) were 
down-regulated and 93 microRNAs (65%) were up-regulated. The list is available in the 
supporting information files of this article (S1 Table). Using Ingenuity pathway analysis 
with inclusion of only literature-confirmed targets of the identified microRNAs, we found 
that SOCS4 and SOCS6 genes ranked highest as potential targets of these differentially 
expressed microRNAs in monocytes, suggesting that especially inflammatory networks 
were regulated by these microRNAs.

Additionally, computational class prediction analysis was performed with the 142 
significantly different expressed microRNAs using the LASSO model of penalized prediction. 
This showed that 15 microRNAs indicated an optimal prediction signature (underlined 
in S1 Table). Using the data on expression of these microRNAs as determined in array, 
we clustered patients and controls of the finding cohort by unsupervised hierarchical 
clustering (S1 Fig). Indeed, this approach showed that subject clusters can be identified 
with a first cluster containing 24 T2D cases and only 2 healthy controls, and a second 
mixed cluster comprising 12 cases and 23 healthy controls (sensitivity 66%, specificity 
90%). Thus, using microRNAs, we found that a partial separation can be made between 
T2D cases and controls. These prediction signature microRNAs, however, appeared less 
useful to validate as microRNAs that can be used as discriminating parameters between 
T2D patients and controls in a separate cohort using qPCR as an independent technique, 
since the expression fold changes observed for these microRNAs were generally too low 
to allow reliable confirmation within the technical limitations of qPCR. Therefore, we chose 
to select from the differentially expressed microRNAs those with the highest fold changes 
(FC) between cases and controls with FC of >1.4 or <0.6.  Another criterion for selection 
was that TaqMan probes and primers needed to be available. 

Validation studies of 5 selected T2D-related monocyte microRNAs using qPCR
From the 142 differentially expressed microRNAs found in Exiqon, 5 microRNAs 

fulfilled the selection criteria: miR-138; miR-34c-5p; miR-410; miR-574-3p and miR-
576-3p. Additionally, we tested microRNAs-146a and -155 in TaqMan analyses, since these 
microRNAs are well-known regulators of inflammation, and have been identified in T2D 
PBMC by others [38,39].
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The table of Fig. 1 shows (apart from other data) the expression level of the 5 microRNAs 
in the monocytes of the Ecuadorian validation cohort of type 2 diabetic patients and non-
diabetic controls (in total 48 patients and 34 controls could be used). Of the microRNAs, 
miR-155 was not or hardly detected in the monocytes using TaqMan qPCR array techniques, 
and therefore data are not given. The table of Fig. 1 shows that of the tested microRNAs, 
MiR-34c-5p and miR-576-3p were significantly higher expressed in the monocytes of the 
type 2 diabetic patients as compared to the monocytes of the non-diabetic controls. 

Figure 1. Hierarchical cluster analysis of the tested genes and microRNAs of the monocytes of Ecuadorian 
type 2 diabetic patients and controls in the validation cohort. On the left, the fold change values between the 
T2D group and the non-diabetic controls were determined from normalized Ct values (Ct gene/Ct reference gene 
ABL) by the ΔΔCt method (2−ΔΔCt, User Bulletin 2; Applied Biosystems, Foster City, CA). Data were standardized 
to the non-diabetic control subjects. The fold change of each gene in the non-diabetic control subjects is 
therefore 1. Differences between groups were tested using t tests for independent samples. This table shows 
that 2 microRNAs (MiR-34c-5p and miR-576-3p) were significantly higher expressed in the monocytes of the T2D 
patients compared to non-diabetic controls.  Also, 4 genes (of the 24 tested) were significantly different expressed 
(PTGS2 lower, and CD9, DHRS3 and PTPN7 significantly higher).
The heatmap and dendrogram present the result of the hierarchical clustering of the genes. Three major clusters 
were found: Cluster A contains inflammatory compounds and includes miR-410 and miR-576-3p. Cluster B con-
tains inflammatory compounds and factors involved with migration/differentiation/metabolism; Cluster C only 
consists of migration/metabolic factors. MiR-138, miR-574-3p, miR-146a and miR-34c-5p formed a sub-cluster 
within cluster C and strongly clustered together. 
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Since our patients and controls of the validation cohort differed on average 8 years in 
age, we took special notice of correlations of molecular parameters with age. MiR-576-3p 
correlated significantly and positively with age (r=.257; p=.02), whereas miR-34c-5p did 
not (r=.041; p=.713). It is important to note that correction for age resulted in loss of 
significance in the association of T2D with the expression of miR-576-3p. We therefore 
consider higher expression of this microRNA as related to age rather than to disease. 
We thereafter performed a correlation analysis between the level of miR-34c-5p and 
dyslipidemia, hyperglycemia and liver function. This analysis showed that the expression 
level of miR-34c-5p was not determined by these factors but was only associated with T2D. 

Target prediction of miR-34c-5p
Since the expression of miR-34c-5p was significantly up-regulated in T2D monocytes, 

we asked if there were in silico indications linking miR-34c-5p expression to the regulation 
of inflammation. We used miRecords as a resource for microRNA-target interactions as 
this web-based tool integrates predicted microRNA targets produced by 11 established 
microRNA target prediction programs (DIANA-microT, MicroInspector, miRanda, MirTarget2, 
miTarget, NBmiRTar, PicTar, PITA, RNA22, RNAhybrid and TargetScan/TargetScanS, available 
at http://www.mirecords.bioled.org).

Minimum target gene prediction coverage of three algorithms was used to perform 
prediction analysis for miR-34c-5p, which resulted in 4291 hits. 

Ingenuity pathway analysis (Ingenuity Systems) was used for mapping of the predicted 
target genes to biological functions. Interestingly, the top molecular and cellular function 
of the miR-34c-5p predicted target genes was “cell morphology” (S1 Text); while the second 
top-associated network was “cell morphology/cellular assembly and organization/cellular 
development”. In the top canonical pathways, the STAT3 pathway was third in line . 

Among the potential targets of miR-34c-5p, some of the diabetes-related signature 
genes identified earlier [21]  were found, i.e. PTGS2, PDE4B and EMP1 were predicted as 
targets of miR-34c-5p in three to five algorithms. Interestingly, all our predicted targets 
derived from the same 6 (miRanda, Mir Target2, PicTar, PITA, RNAhybrid and Target Scan) of 
the 11 algorithms integrated by miRecords.  

TaqMan qPCR analysis for the expression of the 24 signature mRNAs in the monocytes of the 
Ecuadorian validation cohort

We carried out a qPCR analysis for the expression of the 24 cluster 1 and 2 mRNAs using 
the monocytes of the validation cohort of the Ecuadorian T2D patients and controls. The 
levels of the gene data are expressed in the table of Fig 1 (which also shows the cluster 
analysis of the genes and the tested microRNAs, see for explanation underneath). The table 
shows that of the 24 genes tested, 4 genes were significantly differentially expressed in the 
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monocytes of the T2D patients as compared to the monocytes of the non-diabetic controls 
(in total material of 43 patients and 33 controls was available). 

PTGS2 was significantly lower expressed in the T2D monocytes, while CD9, DHRS3 
and PTPN7 were significantly higher expressed in the monocytes of the T2D patients as 
compared to the non-diabetic controls.

Since our patients and controls of the validation cohort differed on average 8 years in 
age, we again took special notice of correlations of the expression of these genes with age. 
There were no age- or gender-dependencies of these 4 abnormally expressed genes. We 
also performed correlation analyses with hyperglycemia, dyslipidemia, and liver function, 
but did not find statistically significant correlations. 

Interdependence of microRNA and mRNA expression in T2D monocytes
To study the mutually inter-dependent state of mRNAs and microRNAs in expression, 

we also performed a cluster analysis on the qPCR data of both the mRNAs and microRNAs. 
The dendrogram of this analysis is also given in Fig 1. Three main clusters of mutually 
correlating genes and microRNAs could be identified; we arbitrarily called these clusters 
A, B and C. 

Cluster A consisted predominantly of genes originally found in Padmos et al. [21] on 
diabetic monocytes to belong to the cluster of inflammatory genes (previously called 
“cluster 1”  in Padmos et al, 23). These genes are well-known inflammatory compound genes, 
such as genes for the pro-inflammatory cytokines IL1B, IL6 and TNF, the inflammatory 
compound PTGS2/COX2, inflammatory chemokines (CCL20, CCL2, CCL4) and transcription 
factors and regulators of inflammatory pathways such as PDE4B, DUSP2 and ATF3 (Fig. 1). 
Also miR-410 and the age-related miR-576-3p appeared to be part of this inflammatory 
cluster. 

Cluster B also consisted of genes earlier found in the cluster of inflammatory genes 
(“cluster 1”), such as CXCL2, PTX3 and BCL2A1. However, this cluster also contained 
genes originally found by Padmos et al. to belong to the cluster of adhesion/motility/
differentiation/metabolic factors (“cluster 2”) [21], such as CDC42, STX1A, NAB2, EMP1 and 
PTPN7. 

A third cluster C consisted exclusively of genes found earlier in the cluster of adhesion/
motility/differentiation/metabolic factors of Padmos et al (“cluster 2”), such as CD9, DHRS3, 
FABP5, MAPK6 and HSPA1. Interestingly, miR-138, miR-34c-5p, miR-146a and miR-574-3p 
formed a sub-cluster within cluster C and strongly clustered together. 
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Clustering of the diabetic patients and non-diabetic controls of the validation cohort using 
microRNA and mRNA expression

Using the data on expression of the mRNAs and microRNAs of the validation study, we 
also clustered diabetics and non-diabetics by unsupervised hierarchical clustering (Fig 2) 
(in 22 patients and 19 controls both mRNA and microRNA studies had been performed). 
This approach showed that two main subject clusters were identified with a first cluster 
(cluster X) containing 5 diabetics and 7 non-diabetic subjects, and a second cluster (cluster 
Y) comprising 17 diabetics and 12 non-diabetics, showing that a clinically useful distinction 
between diabetes and non-diabetes could not be made using the selected mRNAs and 
microRNAs.

However, it also emerged from the data that the subject clustering made a distinction 
on the basis of dyslipidemia, particularly in the diabetic group (see Table 2): The diabetics 
in the cluster X had virtually normal levels of cholesterol, LDL and triglycerides, while the 
diabetics of cluster Y had significantly higher levels of cholesterol, LDL and triglycerides. 
With regard to monocyte gene expression cluster X of diabetics with normal lipid values had 
pro-inflammatory monocytes, with up-regulation of many cluster A genes, which reached 
significance for TNFAIP3 (HSPA1 of gene cluster C was down-regulated). Remarkably, the 
second cluster of diabetics (Y) with high lipid values had reduced expression of most 
of these pro-inflammatory genes, reaching significance for DUSP2, ATF3 and PTGS2. 
MicroRNAs were not significantly differentially expressed in the groups (except for perhaps 
miR-138, which tended to be lower in the diabetics with normal lipids).

In the non-diabetic subjects, this type of clustering also made a distinction in cluster X 
subjects with a high expression of gene cluster A inflammatory genes and cluster Y subjects 
with a reduced expression of these genes. Although the latter non-diabetic subject group 
also had higher cholesterol and LDL levels these did not reach statistical significance. 

 

DISCUSSION

In this study, we found 15 discriminating microRNAs in a screening study on the purified 
monocytes of T2D patients, a distinction could be made between T2D patients and non-
diabetic controls with a sensitivity of 66% and specificity 90%. Although the specificity is 
acceptable, sensitivity is relatively low. Moreover, the 15 discriminating microRNAs were 
only marginally lower and higher expressed. We therefore chose to continue our search 
and to validate only discriminating microRNAs with a significant fold change of 1,4 or 0,6 
versus non-diabetics in a qPCR study using the monocytes of a new series of Ecuadorian 
patients, of whom we had detailed clinical information.
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Figure 2. Dendrogram and heatmap of hierarchical clustering of T2D patients and non-diabetic controls of 
the validation cohort using microRNA and mRNA expression as determined by qPCR. Figure 2. Dendrogram 
and heatmap of hierarchical clustering of T2D patients and non-diabetic controls of the validation cohort using 
microRNA and mRNA expression as determined by qPCR. This figure shows that two main subject clusters (X 
and Y) could be identified. Cluster X contained 5 diabetics and 7 non-diabetic subjects, and cluster Y comprised 
17 diabetics and 12 non-diabetics. This approach did not distinguish between T2D patients and non-diabetic 
controls.
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Of the selected 5 microRNAs only miR-34c-5p was validated as significantly higher 
expressed in the circulating monocytes of the validation cohort of T2D patients, also 
taking confounding factors as age, gender, BMI, liver function and dyslipidemia into 
consideration. 

With regard to previous literature on the validated expression of microRNAs in 
peripheral blood leukocytes in T2D, there are 5 relevant reports [38,39,46-48] . In none 
of these reports purified monocytes have been tested. In total 9 microRNAs were found 
abnormally expressed in these reports and interestingly miR-34a, which has virtually 
the same sequence and targets as miR-34c-5p, was found to be down-regulated in T2D 
patients upon resveratrol treatment [47]. 

In Ingenuity analysis the top molecular and cellular function of miR-34c-5p predicted 
target genes was “cell morphology”. With regard to the literature on the role of miR-34c-5p 
in cell biology there are only few reports. The scarce literature shows a role of this microRNA 
in diverse cellular processes, such as inflammatory responses [49]; growth, apoptosis [50] 
[51],  invasiveness of tumor cells [40], and cell morphological processes involved in the 
differentiation and the morphogenesis of neuronal cell projections [52]. 

Interestingly, a recent report shows that miR-34c-5p has a function in altering the 
expression of c-Met, the receptor for HGF, also known as scatter factor [53]. HGF is amongst 
others an angiogenic factor and plays a role in endothelial migration, proliferation and 
neovascularization. Also, we recently carried out a preliminary study in which we profiled 
T2D monocytes for microRNA expression in relation to their capacity to form pro-angiogenic 
cells. Pro-angiogenic cells are also known as myeloid endothelial progenitor cells and play 
a role in vascular repair [54]. When we compared the group of high pro-angiogenic cell 
formers with those with a low potential for pro-angiogenic cell formation, miR-34c appeared 
to be the most discriminating microRNA, being raised 10 times in the high pro-angiogenic 
cell formers (data to be published). With regard to the literature on pro-angiogenic cells 
others have found microRNAs miR-126, miR-130, miR-21, miR-27) to be lower expressed 
in pro-angiogenic cells of T2D patients [55]. Collectively our in silico targeting data, the 
literature data and our preliminary data on pro-angiogenic cells supports a view that the 
raised expression of miR-34c-5p in T2D monocytes might represent a molecular sign for a 
raised potential of the T2D monocytes for cell morphological changes and differentiation 
to vascular support cells to compensate increased endothelial damage in T2D. 

This concept is also supported by the mRNA expression in the monocytes of the 
Ecuadorian validation cohort: We found a significant up-regulation of CD9, DHRS3 and 
PTPN7. These genes were earlier described as up-regulated in monocytes of T2D, LADA and 
T1D patients by Padmos et al and Beyan et al.[21,56]. CD9 is a tetraspanin and an important 
regulator of integrin activity and plays a role in the immunological synapse as well as in 
endothelial adhesion and transmigration [57,58]. DHRS3 is an enzyme involved in vitamin 



Chapter 3

66

Table 2. Distinction of non-diabetic controls and T2D patients on the basis of dyslipidemia. 

Genes/ miRNA T2D Cl-X T2D Cl-Y NDC Cl-X NDC Cl-Y

  Mean 

 (FC)

 p value      

vs N-T2D

  Mean  

(FC)

 p value      

vs N-T2D

p value                            

CLX vs CLY

  Mean  (FC)   Mean  (FC) p value                            

CLX vs CLY

CL
U

ST
ER

 A

CCL4 3.76 0.19 0.85 0.44 0.12 2.96 0.36 0.11

IL6 4.49 0.11 0.87 0.37 0.09 2.13 0.63 0.04

TNF 2.47 0.21 0.93 0.45 0.15 1.75 0.81 0.21

IL1B 1.74 0.28 0.60 0.07 0.02 2.58 0.42 0.01

CCL2 3.08 0.17 0.64 0.13 0.10 1.64 0.92 0.43

CCL20 1.69 0.19 0.80 0.62 0.04 2.42 0.24 0.05

TNFAIP3 2.06 0.05 1.05 0.88 0.05 1.71 0.73 0.10

PDE4B 1.33 0.28 0.90 0.72 0.21 1.52 0.67 0.02

miR410 1.59 0.66 1.79 0.30 0.88 0.99 1.03 0.96

DUSP2 1.21 0.79 0.56 0.03 0.06 2.07 0.56 0.00

PTGS2 0.82 0.41 0.50 0.05 0.28 2.09 0.61 0.08

ATF3 1.50 0.33 0.66 0.04 0.03 1.68 0.85 0.14

miR576-3p 1.29 0.42 1.03 0.81 0.46 0.75 1.14 0.04

CL
U

ST
ER

 B

CDC42 1.44 0.13 0.96 0.80 0.10 1.14 0.92 0.53

PTX3 1.84 0.15 1.08 0.13 0.03 1.62 0.82 0.12

CXCL2 3.55 0.19 0.71 0.17 0.13 2.38 0.55 0.06

STX1A 2.98 0.34 0.89 0.62 0.31 1.66 0.81 0.12

NAB2 1.32 0.70 0.74 0.25 0.26 1.83 0.68 0.19

EMP1 1.64 0.52 1.12 0.92 0.53 1.23 0.99 0.63

BCL2A1 1.07 0.87 0.72 0.28 0.13 1.64 0.83 0.42

PTPN7 1.84 0.08 1.08 0.77 0.12 1.44 0.74 0.07

CL
U

ST
ER

 C

miR138 0.58 0.06 1.04 0.87 0.07 0.97 1.10 0.62

miR574-3p 0.72 0.16 0.87 0.19 0.40 0.77 1.14 0.05

miR146a 1.10 0.56 1.00 0.89 0.64 0.79 1.10 0.09

miR34c5p 1.28 0.08 1.16 0.19 0.39 0.91 1.07 0.17

MAPK6 0.58 0.07 1.03 0.93 0.07 1.08 0.96 0.70

HSPA1aHSPA1b 0.49 0.04 0.99 0.99 0.04 0.91 1.04 0.42

DHRS3 1.11 0.23 1.31 0.11 0.55 0.72 0.88 0.37

CD9 1.32 0.54 1.93 0.13 0.37 0.67 1.22 0.24

Cholesterol 202  235  0.04 231 258 0.23

LDL 119  177  0.03 151 179 0.22

Triglycerides 151  238  0.03 220 182 0.55
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A (retinoid) metabolism and vitamin A is an important growth and differentiation factor 
for immune cells and their precursors [59-61]. PTPN7 (or HePTP) is a tyrosine phosphatase 
regulating the activity of p38 and ERK playing an important role in the differentiation of 
monocytes to progeny cells including macrophages, dendritic cells and pro-angiogenic 
cells. Moreover, CD9 and DHRS3 clustered in cluster analysis with the expression of miR-
34c-5p in monocytes, underscoring a putative role of all these molecules in processes 
of cell differentiation and cell morphogenesis. Taking these data together, we therefore 
assume that our observation on up-regulated CD9 and DHRS3 and PTPN7 expression in 
T2D monocytes can (next to the over-expression of miR-34c-5p) be taken as a sign that the 
circulating monocytes in T2D patients have an altered potential for adhesion, migration 
and differentiation into progeny, such as macrophages, dendritic cells and vascular 
support cells. 

This study does not support the view that monocytes are in general pro-inflammatory 
activated in T2D patients: The circulating monocytes of the T2D patients of the validation 
cohort failed to show a significant up-regulation of typical pro-inflammatory genes (such 
as IL-1B, IL-6, TNF, CCL4 and CCL20) as compared to monocytes of non-diabetic controls 
with a similar ethnic background, considering the T2D patient population in total. Some 
important pro-inflammatory genes were even down-regulated (DUSP2, ATF3) and down-
regulation reached significance for PTGS2. Also miR-146a, which is a classical microRNA 
dampening inflammatory responses and earlier found as down-regulated in monocytes 
and macrophages of patients with (auto-)inflammatory conditions [38], was not reduced 
in the monocytes of our T2D Ecuadorian cases as compared to the non-diabetic controls 
(it was also not identified in the finding cohort). Our current data thus refute the earlier 
expressed views in literature [15], and by us [21], that circulating monocytes of T2D patients 
are in general characterized by a pro-inflammatory state. 

However when we divided the Ecuadorian T2D and non-diabetic subjects on the basis 
of a subject cluster analysis using the expression data of the 24 mRNAs and 6 microRNAs, 
we identified two sets of subjects.

Table 2 shows that the T2D patients in the cluster X had virtually normal levels of cholesterol, LDL and triglycerides. The T2D patients 
of cluster Y had significantly higher levels of cholesterol, LDL and triglycerides. The monocyte gene expression of cluster X (T2D with 
normal lipid values) had up-regulation of many pro-inflammatory genes (cluster A), which reached significance for TNFAIP3. The 
monocyte gene expression of cluster Y (T2D with high lipid values) had reduced expression of most of the pro-inflammatory genes 
(cluster A), reaching significance for DUSP2, ATF3 and PTGS2. MicroRNAs were not significantly differentially expressed in the groups. 
In the HC subjects, this type of clustering also made a distinction in cluster X (HC with high expression of inflammatory genes) and 
cluster Y (HC with reduced expression of inflammatory genes). Although the HC group also had higher cholesterol and LDL levels 
these did not reach statistical significance.



Chapter 3

68

The diabetics in the first set were characterized by virtually normal serum lipid values. 
These patients did have a raised monocyte expression of pro-inflammatory cluster A genes, 
reaching significance for TNFAIP (A20), an important TNF-induced inflammatory gene. 

The patients of the second set of subjects were characterized by raised cholesterol, 
LDL and triglycerides and a down-regulation of pro-inflammatory monocyte genes, 
reaching significance for DUSP2, ATF3 and PTGS2 (COX2). DUSP2 and ATF3 are important 
transcription regulators of inflammatory compounds, while PTGS2 is a well-known enzyme 
of the prostaglandin pathway. 

The patient cluster data thus suggest that pro-inflammatory monocytes do circulate in 
T2D patients provided there is a normal serum lipid state. In case of dyslipidemia circulating 
monocytes have a significantly reduced expression of typical pro-inflammatory genes.

With regard to dyslipidemia being associated with reduced expression of pro-
inflammatory genes, it is important to note that our Ecuadorian general population control 
group was atypical in also having many signs of dyslipidemia: Hypercholesterolemia was 
present in 68% and a raised LDL in 40% (BMIs were over 25 in 83% of the population). 
Considering the excessively high prevalence of dyslipidemia  (and obesity) in the Quito 
general population control group, it is important to note that a recent healthcare report of 
the Ecuadorian government corroborates this high prevalence of dyslipidemia and obesity 
in urban Ecuadorian populations [62]. One can therefore ask the question whether, contrary 
to expectation, also in the Quito controls the high serum lipids might be associated with a 
down regulation of the inflammatory genes in circulating monocytes. 

Our subject cluster analysis on the validation cohort delivered indeed two groups of 
non-diabetic Quito controls differing in pro-inflammatory state of monocytes; the non-
diabetics of subject cluster Y had anti-inflammatory monocytes with various significantly 
down-regulated cluster A genes. Although their lipid values were higher, they did not reach 
statistical significance. To further investigate the concept of dyslipidemia being associated 
with an anti-inflammatory state of circulating monocytes, we thereafter compared in 
preliminary studies the monocytes of the Quito general population control group with 
those of a Dutch general population control group, which had been collected and analyzed 
at the same time as the Ecuadorian controls. The Dutch general population controls had 
normal lipid values (hypercholesterolemia none, raised LDL 14%), contrasting to the much 
higher values found in the Ecuadorian general population controls. We used for monocyte 
gene expression the same type of TLDA qPCR cards. When we compared outcomes of 
both groups (see S2 Table), we indeed found that the monocytes of the Ecuadorian non-
diabetic general population controls with the high rate of abnormal serum lipids had 
significantly reduced expression levels of many of the classical inflammatory cluster A 
and B genes as compared to the Dutch general population controls. Cluster C genes were 
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largely unaltered in the monocytes of the group of dyslipidemia Ecuadorian non-diabetic 
general population controls. These data therefore strengthen the view that dyslipidemia 
is associated with a dampened inflammatory state of circulating monocytes. However a 
word of caution is here also in place; the usage of aspirin and NSAIDs is high in the general  
population of Ecuador [63,64], and drug effects may therefore also have played a role in the 
difference in monocyte inflammatory state between the Dutch and Ecuadorian controls.

It is further of interest to note that the found raised microRNA miR-34c-5p may have 
played a mechanistic role in the phenomenon of down regulated inflammatory gene 
expression in monocytes. In silico we found the inflammatory genes PTGS2 and PDE4B as 
direct targets of miR-34c-5p, and although functional studies are required to formally test 
such target interactions, these in silico data suggest that miR-34c-5p might be instrumental 
in the down regulation of the inflammatory state of the monocytes.

Remains the question how our abnormal monocyte gene expression relates to the 
genetic back ground of T2D subjects. Interestingly, genome-wide association studies 
for  T2D have highlighted multiple genes implicated in adipo-cytokine pathways and 
cell cycle regulation [65,66]. Many of the genes of our monocyte gene cluster A are part 
of the adipo-cytokine network, further highlighting the etiological relevance of these 
pathways. However, it is unlikely that any genetic variation would be explaining the here 
observed gene expression differences in monocytes. All of the known common genetic 
variants for T2D have too small effect sizes that they would not discriminate between 
case/control status in this study [66]. Complex gene-environment (such as obesity and 
dyslipidemia) interactions most likely play a role in the here described aberrant monocyte 
gene expression. It must also be noted in this report on Ecuadorian patients that, although 
the T2D related GWAS polymorphisms have largely been detected in populations of white 
European ancestry, many are also prevalent in other ethnic groups [67].

LIMITATIONS

In retrospect our diabetic and non-diabetic control groups between the finding and 
validation studies differ considerably with regard to parameters that do influence the 
microRNA and mRNA profiles, such as lipid values (and use of statins that influence lipid 
values) and perhaps ethnicity (finding cohort comprised Germans and Ecuadorians, 
validation cohort only Ecuadorians). On the other hand our studies using these groups 
have unveiled here a hitherto unknown effect of abnormal lipids on circulating monocytes 
rendering them most likely better cells for vascular repair. In ongoing studies we make 
use of Dutch diabetic and non-diabetic subject to investigate whether this negative 
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association between lipid profile and monocyte inflammatory state can be confirmed in 
Caucasian diabetic populations (next reports).

Furthermore we used for the microRNA studies TaqMan qPCR assays for validation, 
after having used Exiqon arrays in the finding study. In a limited series we were able to 
also validate some of the microRNAs with Exiqon qPCR and it turned out that sensitivities 
for detection differed in some instances between the two methods for validation (Exiqon 
versus TaqMan qPCR), e.g. miR-155 was not detectable in the monocytes via TaqMan qPCR, 
while it was readily detected via Exiqon array and qPCR. On the other hand, miR-410 was 
better detectable by TaqMan qPCR. Therefore follow up studies should preferably include 
more extensive comparisons between the two detection methods to select for robust 
discriminating microRNAs.

CONCLUSION

Using microRNA and mRNA profiling and validation we found an over-expression of 
miR-34c-5p and of a set of three genes (CD9, DHRS3 and PTPN7) in the monocytes of 
Ecuadorian T2D patients suggesting an altered adhesion, differentiation potential and 
shape change potential of the circulating monocytes. We assume that this increased 
potential might be instrumental in vascular repair. With regard to inflammatory genes 
we only found a pro-inflammatory state of monocytes in T2D patients with normal serum 
lipids (who formed a minority within the diabetic group). Dyslipidemia coincided with a 
reduced expression of pro-inflammatory genes in circulating monocytes, which might be 
instrumental in strengthening the potential of monocytes for vascular repair. 
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SUPPORTING INFORMATION

S1. Text.  Ingenuity pathway analysis. Ingenuity systems was used to map the major 
pathways and processes in which miR-34c-5p is involved. The top molecular and cellular 
function of the miRNA predicted target genes was “cell morphology”; while the second 
top-associated network was “cell morphology/cellular assembly and organization/cellular 
development”. We used miRecords as a resource for microRNA-target interactions.  
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Suppl. Figure 2

Figure S1. Dendrogram and heatmap of hierarchical clustering of T2D patients and non-diabetic controls 
of the finding cohort using microRNAs. This figure shows that partial separation can be made between T2D 
patients and healthy controls on the basis of the 15 microRNAs identified as optimal prediction signature. Two 
main subject clusters were identified. The first cluster contain 24 T2D patients (yellow) and only 2 healthy controls 
(blue), and the second mixed cluster contains 12 patients (yellow) and 23 healthy controls (blue). 
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Table S1. Differentially expressed monocyte microRNAs of T2D patients compared to non-diabetic 
controls of the finding cohort. This table shows the 142 microRNAs that were found to be differentially 
expressed in T2D patients compared to controls. 35% of the miRNAs were down-regulated and 65% were up-
regulated.

Up-regulated microRNAs

 miRNA p-value  miRNA p-value  miRNA p-value

1 hsa-let-7a-2* 0.004 32 hsa-miR-296-3p 0.046 63 hsa-miR-523 0.043

2 hsa-let-7e 0.016 33 hsa-miR-297 0.012 64 hsa-miR-541 0.002

3 hsa-miR-10a* 0.004 34 hsa-miR-298 0.014 65 hsa-miR-548b-5p 0.029

4 hsa-miR-122 0.010 35 hsa-miR-30b* 0.000 66 hsa-miR-550 0.012

5 hsa-miR-125a-3p 0.006 36 hsa-miR-30c-1* 0.006 67 hsa-miR-574-3p 0.029

6 hsa-miR-125a-5p 0.033 37 hsa-miR-32* 0.006 68 hsa-miR-574-5p 0.004

7 hsa-miR-125b-2* 0.004 38 hsa-miR-325 0.003 69 hsa-miR-576-3p 0.034

8 hsa-miR-1296 0.000 39 hsa-miR-328 0.041 70 hsa-miR-585 0.002

9 hsa-miR-130b 0.017 40 hsa-miR-329 0.023 71 hsa-miR-595 0.026

10 hsa-miR-135a* 0.033 41 hsa-miR-331-3p 0.017 72 hsa-miR-596 0.000

11 hsa-miR-138 0.007 42 hsa-miR-335 0.043 73 hsa-miR-601 0.043

12 hsa-miR-139-3p 0.004 43 hsa-miR-338-5p 0.006 74 hsa-miR-603 0.024

13 hsa-miR-143* 0.010 44 hsa-miR-34c-5p 0.002 75 hsa-miR-610 0.021

14 hsa-miR-184 0.015 45 hsa-miR-370 0.033 76 hsa-miR-617 0.022

15 hsa-miR-185 0.007 46 hsa-miR-371-3p 0.000 77 hsa-miR-625 0.005

16 hsa-miR-185* 0.002 47 hsa-miR-376a* 0.021 78 hsa-miR-629 0.009

17 hsa-miR-187* 0.004 48 hsa-miR-423-5p 0.024 79 hsa-miR-638 0.021

18 hsa-miR-1908 0.035 49 hsa-miR-432* 0.000 80 hsa-miR-642 0.012

19 hsa-miR-193a-5p 0.021 50 hsa-miR-433 0.036 81 hsa-miR-647 0.030

20 hsa-miR-193b* 0.004 51 hsa-miR-449a 0.002 82 hsa-miR-658 0.000

21 hsa-miR-194* 0.002 52 hsa-miR-483-5p 0.000 83 hsa-miR-659 0.003

22 hsa-miR-195 0.025 53 hsa-miR-488 0.021 84 hsa-miR-675 0.029

23 hsa-miR-198 0.002 54 hsa-miR-492 0.021 85 hsa-miR-760 0.035

24 hsa-miR-200b* 0.004 55 hsa-miR-497 0.008 86 hsa-miR-765 0.002

25 hsa-miR-202 0.022 56 hsa-miR-498 0.002 87 hsa-miR-877 0.002

26 hsa-miR-210 0.003 57 hsa-miR-501-3p 0.017 88 hsa-miR-885-3p 0.027

27 hsa-miR-215 0.017 58 hsa-miR-505* 0.012 89 hsa-miR-888* 0.032

28 hsa-miR-219-2-3p 0.044 59 hsa-miR-515-3p 0.012 90 hsa-miR-92b* 0.036

29 hsa-miR-22* 0.047 60 hsa-miR-516b 0.018 91 hsa-miR-936 0.000

30 hsa-miR-24-1* 0.046 61 hsa-miR-518c* 0.000 92 hsa-miR-96* 0.033

31 hsa-miR-25* 0.012 62 hsa-miR-519d 0.002 93 hsa-miR-99b* 0.001
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Down-regulated microRNAs

 miRNA p-value  miRNA p-value  miRNA p-value

1 hsa-let-7a 0.002 18 hsa-miR-302b* 0.018 34 hsa-miR-548c-3p 0.010

2 hsa-let-7c* 0.018 19 hsa-miR-302c* 0.043 35 hsa-miR-556-3p 0.019

3 hsa-let-7g 0.017 20 hsa-miR-30a 0.047 36 hsa-miR-586 0.002

4 hsa-miR-144* 0.032 21 hsa-miR-31* 0.013 37 hsa-miR-607 0.032

5 hsa-miR-148b 0.019 22 hsa-miR-326 0.012 38 hsa-miR-616* 0.049

6 hsa-miR-150 0.008 23 hsa-miR-374a 0.021 39 hsa-miR-625* 0.004

7 hsa-miR-154 0.029 24 hsa-miR-410 0.042 40 hsa-miR-628-3p 0.012

8 hsa-miR-191 0.006 25 hsa-miR-424 0.042 41 hsa-miR-649 0.040

9 hsa-miR-19a 0.035 26 hsa-miR-450b-5p 0.019 42 hsa-miR-651 0.029

10 hsa-miR-19a* 0.009 27 hsa-miR-486-5p 0.018 43 hsa-miR-652 0.000

11 hsa-miR-20b 0.008 28 hsa-miR-491-3p 0.009 44 hsa-miR-656 0.003

12 hsa-miR-216b 0.007 29 hsa-miR-494 0.010 45 hsa-miR-662 0.045

13 hsa-miR-223 0.000 30 hsa-miR-509-3-5p 0.001 46 hsa-miR-720 0.002

14 hsa-miR-223* 0.033 31 hsa-miR-520f 0.035 47 hsa-miR-9* 0.018

15 hsa-miR-26a 0.007 32 hsa-miR-532-5p 0.049 48 hsa-miR-921 0.023

16 hsa-miR-26b 0.046 33 hsa-miR-548a-3p 0.009 49 hsa-miR-943 0.002

17 hsa-miR-301b 0.023
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Table S2. Monocyte gene expression of the Ecuadorian non-diabetic general population controls 
vs the Dutch general population controls. Values represent the means and standard deviations of 
normalized Ct values (Ct gene/Ct reference gene ABL) by the ΔΔCt. Genes are given in the order of the 
cluster diagram given in this paper. The table shows significantly reduced expression levels of many of the 
classical inflammatory cluster A and B genes in the Ecuadorian non-diabetic controls compared to the Dutch 
controls. Cluster C genes were largely unaltered in the monocytes of the Ecuadorian group. Of note, these 
analyses were performed in the same time period to exclude technical variability.

Gene

Ecuadorian Dutch p-Value

NDC NDC

Mean SD Mean SD  

CL
U

ST
ER

 A

IL6 0.01 0.6 0.30 0.7 **

TNF 2.14 2.5 2.65 2.6 ns

IL1B 9.25 85.8 70.95 107.1 ***

CCL2 0.40 0.8 0.71 1.1 *

CCL20 0.05 1 0.49 1.1 **

TNFAIP3 1.91 5.3 5.78 6.3 ***

PDE4B 3.13 6.4 7.81 8 ***

DUSP2 1.49 2.1 2.50 2.2 **

PTGS2 3.22 3 2.57 2.2 ns

ATF3 1.62 1.6 2.66 1.6 **

CL
U

ST
ER

 B

CDC42 1.12 0.7 1.13 1.4 ns

PTX3 0.52 1.8 1.50 2 **

CXCL2 0.72 7.6 5.55 8.5 ***

STX1A 0.01 0.1 0.04 0.1 **

NAB2 0.29 0.5 0.41 0.5 ns

EMP1 0.49 1.1 1.04 1.3 **

BCL2A1 18.85 21 25.68 67.2 ns

PTPN7 0.18 0.1 0.17 0.1 ns

CL
U

ST
ER

 C

FABP5 16.41 37.5 19.51 117.2 ns

MAPK6 5.69 10.4 7.80 37.1 ns

HSPA1A;HSPA1B 19.65 22.5 16.45 52.3 ns

DHRS3 0.06 0 0.07 0 ns

CD9 2.78 2.9 2.10 2.7 ns

Note. Statistical significance: *p< .05;**p< .01; ***p< .001
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ABSTRACT

Background. There is increasing evidence that chronic inflammation 
is an important determinant in insulin resistance and in the pathogenesis 
of type 2 diabetes (T2D). MicroRNAs constitute a newly discovered system 
of cell regulation and in particular two microRNAs (miR-146a and miR-155) 
have been described as regulators and biomarkers of inflammation. 

Aim. To determine a putative association between the levels of miR-146a 
and miR-155 in serum of T2D patients, clinical parameters and serological 
indicators of inflammation.  

Methods. We performed quantitative Real Time PCR (qPCR) of 
microRNAs from serum (56 Ecuadorian T2D ambulatory patients and 
40 non-diabetic controls). In addition, we evaluated T2D-related serum 
cytokines, chemokines and growth factors using a commercially available 
multi-analyte cytometric bead array system. We correlated outcomes to 
clinical parameters, including BMI, HbA1c and lipid state. 

Results.  - The Ecuadorian non-diabetic controls appeared as 
overweight (BMI >25: patients 85%, controls 82.5%) and 
as dyslipidemic (hypercholesterolemia: patients 60.7%, 
controls 67.5%) as the patients. 

 -  The serum levels of miR-146a were significantly reduced in 
T2D patients as compared to these non-diabetic, but obese/
dyslipidemic control group (mean patients 0.61, mean 
controls set at 1; p= 0.042), those of miR-155 were normal. 

 -  The serum levels of both microRNAs correlated to each 
other (r=0.478; p<0.001) and to leptin levels. The microRNAs 
did not correlate to BMI, glycemia and dyslipidemia. 

 -  From the tested cytokines, chemokines and growth 
factors, we found IL-8 and HGF significantly raised in T2D 
patients versus non-diabetic controls (p= 0.011 and 0.023 
respectively). 

Conclusions. This study shows decreased serum anti-inflammatory 
miR-146a, increased pro-inflammatory IL-8 and increased HGF (a vascular/
insular repair factor) as discriminating markers of failure of glucose control 
occurring on the background of obesity and dyslipidemia. 

Key words. Inflammation, T2D, miR-146a, miR-155, IL-8, HGF.
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INTRODUCTION

It is well accepted that obesity and type 2 diabetes can be viewed as inflammatory 
disorders. Early, in the 1990s Hotamisligi et al. showed that TNF-α was present in obese 
individuals and animals in proportional levels to insulin resistance and they proposed a 
pathogenic role of inflammatory molecules, such as TNF-α, in the development of insulin 
resistance and diabetes [1]. To support this idea it was later shown that TNF-α was indeed 
capable to induce insulin resistance in lean animals [1-3] and that various pro-inflammatory 
cytokines trigger intracellular pathways such as Nuclear Factor for Kappa light chain in 
B-cells (NF- κB), IκB kinase-β (IKKβ) and Jun kinase (JNK) which are capable to inhibit the 
insulin signaling pathway [4-8].

Macrophages in adipose tissue as well as the adipocytes themselves are the prime 
source of the raised pro-inflammatory cytokines and adipokines, leading to a chronic 
pro-inflammatory state in obese subjects. In conjunction with these cellular responses 
in so-called “chronically inflamed” adipose tissue, a disturbed lipid metabolism is capable 
of inducing such a chronic pro-inflammatory state. High levels of Ox-LDL and low levels 
of HDL correlate to inflammatory activation and insulin resistance through a mechanism 
called lipotoxicity [4, 9-11].  Moreover, free fatty acids enhance the secretion of TNF-α, 
IL-6 and PAI-1, which stimulate macrophages to secrete more inflammatory cytokines 
and chemokines aggravating the feed-forward loop of inflammation [2, 11, 12]. All in all, 
there is a vast literature on increased levels of pro-inflammatory cytokines in the metabolic 
syndrome (MetS) and type 2 diabetes (T2D), and excellent reviews exist on this topic 
[13-17]. 

MicroRNAs represent a newly discovered level of cell regulation, functioning by 
inhibiting protein translation, and microRNAs have been suggested to be useful biomarkers 
in various pathological conditions, including diabetes [18, 19]. A substantial literature 
indicates that two microRNAs, i.e. miR-146a and miR-155, are key regulators of (auto)-
inflammatory processes [20-31]. Dysregulation of these microRNAs in peripheral blood 
mononuclear cells (PBMC) has been implicated in diabetes [20, 32]. MiR-146a and miR-155 
expression levels have been found to be significantly decreased in the PBMCs of patients 
with T2D as compared to control subjects and expression values correlated negatively to 
parameters of metabolic control (Hb1Ac, glucose) and signs of inflammation (NFκB mRNA 
levels in PBMC, circulatory levels of pro-inflammatory cytokines). MicroRNAs are, however, 
also detectable in serum and there are indications that microRNAs are very stable in this 
milieu [33-36], although they might be less stable in other milieus, such as the brain [37]. 
Measured in serum, they can serve as biomarkers and there is a study that has determined 
the level of miR-146a in the serum of T2D patients as one of the microRNAs of a set of 7 
microRNAs considered to act as key regulators of the expression, production, secretion 
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or effectiveness of insulin [38]. This study found raised levels of these 7 microRNAs when 
evaluated in relatively small groups (n= 19 each) of newly diagnosed T2D patients as 
compared to pre-diabetic individuals and T2D-susceptible individuals [38]. 

In the current study we determined the levels of miR-146a and miR-155a in the serum 
of 56 Ecuadorian T2D patients and of 40 non-diabetic controls and associated the levels of 
these microRNAs to parameters of glucose control, dyslipidemia, obesity and the serum 
level of 12 T2D-related inflammatory mediators (TNFα, IL-1β, IL-6, NFG, HGF, PAI, Resistin, 
CCL2, Adiponectin, Leptin, IL-8, and CCL4) using a commercially available multi-analyte 
cytometric bead array system, especially developed for type 2 diabetes (Milliplex® Map, 
U.S.A.).

  

MATERIALS AND METHODS

Patients
A total of 56 patients positively diagnosed with type 2 diabetes, according to the 

criteria of The Expert Committee on the diagnosis and clasification of Diabetes Mellitus 
[39],  were recruited in 4 medical centers of Quito-Ecuador (Eugenio Espejo Hospital, Club 
de Leones Sur, Fundación Oftalmológica del Valle and Fundación de la Psoriasis) from 2009 
til 2012.  Patients with immune disorders, serious medical illness, recent infections (last 2 
weeks), obvious vascular complications, fever, pregnancy/postpartum, use of statins and 
LADA patients (positive GAD-65 Abs) were excluded. Forty non-diabetic controls taken 
from the same ethnic and societal background, not suffering from important medical 
disorders (including acute infection) served as controls. They were included at the same 
time as the patients and had to be over 30 years of age and preferably of the same gender 
as the patients. The Medical Ethical Review Committee of the Ecuadorian Corporation of 
Biotechnology Quito, Ecuador approved the study. Written informed consent was obtained 
from the patients and controls in the study. The Ethic Committee of the Central University 
also validated the ethical approval of the study. The Ecuadorian Ministry of Health (MSP) 
gave the respective permit to export and process the samples in Erasmus MC, Rotterdam, 
The Netherlands. 

Serum cytokines and lipid profile
In the morning fasting venous peripheral blood (10 mL) was collected in a clotting 

tube and processed within 4 hours. Serum was frozen and stored at minus 800C for 
approximately 24 months before testing. The levels of TNFα, IL-1β, IL-6, NGF, HGF, PAI, 
Resistin, CCL2 (MCP-1), Adiponectin, Leptin, IL-8, and MIP1β (CCL4) were measured by flow 
cytometry (BD LSR II Biosciences, California, and EE.UU.) using a commercially available 
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multi-analyte cytometric bead array system (Milliplex® Map, U.S.A.). The data were 
analyzed using a 5-parameter logistic method for calculating analyte concentrations in 
samples (MAGPIX® with xPONENT software, Luminex, Austin, USA). Undetectable serum 
analyte levels were considered as 0 pg/ml and included in the statistical analysis. The lipid 
profile was performed according to standard lab procedures in Quito-Ecuador (AMCOR 
laboratory) and assays were validated in Erasmus MC. 

MicroRNA quantitative real-time PCR (qPCR)
Total RNA was isolated from serum using the Qiagen miRNeasy kit (Qiagen, Hilden, 

Germany). In order to correct for variations in RNA isolation derived, we spiked-in a non-
human (C. elegans) synthetic miRNA cel-miR-39 miRNA Mimic (MSY000010) into the sample 
before nucleic acid isolation. Subsequently, specific stem-looped reverse transcription 
primers were used to obtain cDNA for mature microRNAs. The RNA was reverse transcribed 
using the TaqMan® MicroRNA Reverse Transcription Kit from Applied Biosystems, The 
Netherlands (ABI). PCR was performed using pre-designed TaqMan® microRNA assays 
and TaqMan® Universal Master Mix, NoAmpErase®UNG, with an ABI 7900 HT real-time PCR 
machine. The PCR conditions were 2 min at 50°C, 10 min at 95°C, followed by 40 cycles 
of 15 s at 95°C, and finally 1 min at 60°C.  The spiked-in syn-cel-miR-39 goes through the 
entire RNA isolation process and serves as endogenous control for data normalization. 

TaqMan assay data processing
SDS software (ABI) was used to collect the data and the RQ Manager Program (ABI) was 

used to assign, check and standardize CT values. Data Assist software was used to normalize 
the data to the syn-cel-miR-39. For threshold cycles below 40, the corresponding microRNA 
was considered detected, higher cycle numbers were not included in the calculations. The 
results were represented using the ddCT method (2 –ddCT, User Bulletin, ABI).

Data analysis
Statistical analysis was performed using SPSS 20 (IBM, Inc.) package for Windows. Data 

were tested for normal distribution using the Kolmogorov-Smirnov test. The Grubbs’ test for 
outlier detection was applied (http://graphpad.com/support/faqid/1598/). Depending on 
the distribution pattern and the total number of subjects, parametric (normal distribution, 
independent t test) or nonparametric group comparison (Mann-Whitney U test) were 
applied. Correlations were determined by Spearman correlation. Level of significance 
were set at p= 0.05 (two tailed). A dendrogram visualizing associations was constructed in 
SPSS using hierarchical cluster analysis of the serum cytokines using the between-groups 
linkage method. Hierarchical regression analysis was used to test if means of miR-146a, 
IL-8 and HGF were significantly different between Non diabetic controls and T2D patients, 



Chapter 4 

96

when controlling for BMI and lipids. Graphs were designed with GraphPad Prism 5.04 
(GraphPad Software, Inc.) for Windows.  

 

RESULTS

Patient and control characteristics
 Table 1 shows the number of patients and non-diabetic controls used for this study 

and their ages, gender, HbA1c/hyperglycemia, BMI, lipid profile and medication. As 
expected, the T2D patients had a significantly higher fasting glucose and HbA1c level as 
the non-diabetic controls. 70% of the patients used oral anti-diabetic treatment and 30% 
used insulin. Of the patients 61% had a history of cardiovascular disease, while 48% had a 
family history (1st, 2nd degree) of diabetes (values were 29% and 29% respectively for the 
non-diabetic control group).

With regard to the non-diabetic control group, we selected the controls by asking 
hospital staff (60%) and accompanying care takers (40%) to volunteer to donate blood 
at the same time as the patients were investigated. Controls needed to be over 30 years 
of age, while we tried to match as much as possible for gender. Table 1 show that we did 
not completely succeed in matching for age, since our controls were on average 8 years 
younger than the T2D patients. Gender distribution was not significantly different with a 
slight over representation of women in the control group.

We found the collected non-diabetic controls to be as overweight as the patients with 
a normal BMI in only 17.5% of the 40 non-diabetic controls as compared to 14.8% of the 
56 T2D patients. There were no differences in BMI between non-diabetic hospital staff and 
non-diabetic care-takers. The T2D patients and non-diabetic controls also appeared to 
have the same disturbed lipid profile; the non-diabetic controls had hypercholesterolemia 
in 67.5% of individuals, the T2D patients had a hypercholesterolemia in 60.7% of cases (for 
further details see Table 1). There were again no differences between non-diabetic hospital 
staff and non-diabetic care-takers with regard to dislipidemia.

MicroRNA’s, cytokines, chemokines and growth factors in serum
Table 2 gives the mean and standard error of the mean (SEM) of the fold change 

values of the two tested microRNAs (146a and 155 versus the reference syn-cel-miR-39) 
in the serum of the T2D patients as compared to the non-diabetic controls. The serum 
levels of miR-146a were significantly reduced in T2D patients as compared to the non-
diabetic controls (Figure 1), those of miR-155 were not. Nevertheless there existed a good 
correlation between the serum levels of both microRNAs (r=0.478; p<0.001). 
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Table 1.  Patients and Non-diabetic controls characteristics. Table 1 shows the number of patients and 
controls used in this study and their ages, gender, comorbidities, HbA1c/hyperglycemia, BMI, lipid profile and 
medication use.

Controls T2D
Controls 
vs. T2D 
p-value

Group size n 40 56  

Age mean (range) 54 (32-87) 62 (38-85) 0.002

Gender    

Female   n (%) 28 (70%) 34 (61%) NA

Male       n (%) 12 (30%) 22 (39%) NA

Comorbidities    

Cardiovascular diseases n (%) 29% 61% NA

Familiar antecedents of 
diabetes n (%)

29% 48% NA

BMI mean (range) % 29.3  (23-42) Normal  17,5% 29.2 (22-39) Normal  14,8% 0,86

Overweight  47,5% Overweight 46,4%  

 Obese   35%  Obese  38,8%  

Glucose state

Fasting Glucose mg/dL 
mean (range) %

86 (60.9- 180.5) Normal    95% 144 (69 - 397) Normal   51.8% 0.00**

High  5% High  48.2%

HbA1C mean (range) % 5.7 (3.9 - 6.7) Normal    95% 7.1 (4.8 - 12.5) Normal    35.7% 0.00**

 High  5%  High  64.3%

Lipid Profile  

Cholesterol mg/dL 
mean (range) %

235 (131-328) Normal     32.5% 233 (143- 436) Normal     39.3% 0,92

High  67.5% High 60.7%  

TG mean mg/dL 
mean (range) %

200 (92 -547) Normal     62.5% 197 (76 - 411) Normal 66.1% 0,88

High 37.5% High 33.9%  

HDL mean  mg/dL 
mean (range) %

41.5 (25- 65) Normal     45% 43 (18 -70) Normal     58.9% 0,71

Low  55% Low  41.1%  

LDL mg/dL 
mean (range) %

155 (78 - 266) Normal    57.5% 153 (77- 361) Normal     62.5% 0,92

 High  42.5%  High  37.5%  

Medication    

Oral Anti-diabetic treatment 0% 70%  

Insulin treatment 0% 30%  

Aspirin 21%  30%

Statins (%) 0%  0%

Values in bold denote a significant difference between two groups.
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Figure 2 shows the unsupervised cluster analysis of the levels of the microRNAs and 
the tested T2D-related cytokines, chemokines and growth factors in the serum of patients 
and non-diabetic controls. As can be seen from the diagram there was the expected strong 
clustering of both microRNAs, which also clustered to some extent with leptin. With regard 
to the other cytokines and chemokines, there existed a clustering of the pro-inflammatory 
mediators CCL4, IL-6, IL-1β and NGF, and between TNF-α, IL-8, HGF and resistin. To avoid 
inter-assay variation, serum levels were expressed in fold changes compared to controls 
for each mediator. 

Table 2 gives the relative levels of the tested cytokines, chemokines and other mediators 
in the serum of the T2D patients and non-diabetic controls in the order of the cluster 
analysis. From the factors determined, only the levels of IL-8 and HGF appeared to be 
significantly different between T2D patients and the non-diabetic controls. Both IL-8 and 
HGF levels were higher in the serum of the T2D patients as compared to the non-diabetic 
controls. Resistin was also higher in the serum of the patients, but only approached the 
level of significance (p=0.09). All in all, the picture emerges of particularly the cluster of 
HGF, TNF-α, Resistin and IL-8 to be raised in the serum of the diabetic patients versus the 
non-diabetic controls.

Figure 1. Expression level of serum miR-146a in Ecuadorian Non-diabetic controls and T2D patients. Figure 
1 shows mean and standard deviation of the fold change values of miR-146a (reference microRNA sync-cel-
mir-39) in the serum of the T2D patients as compared to Non-diabetic controls. Differences between groups were 
tested using independent T test. Levels of significance were set at p=0.05 (two-tailed).
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The correlations of the level of the microRNAs with the cytokines/chemokines/ growth factors 
and clinical variables.

We performed correlation analyses between the different parameters measured and 
only took correlations with a level of p <0.01 into consideration. 

Since our patients and non-diabetic controls differed 8 years in age we took special 
notice of correlations with age. The microRNAs did not correlate with age. Of the cytokines 
HGF, resistin and adiponectin correlated positively to age. It is important to note that 
correction for age did not change the association of HGF with disease (r= 0.258, p=0.008). 
Of the clinical variables HbA1c levels correlated to age. 

It is also of note that the levels of miR-146a and miR-155 correlated to each other, 
corroborating our findings in the cluster diagram. With regard to correlations of microRNAs 
with cytokines we found miR-146a to correlate significantly and positively to the serum PAI 
level (r=0.259; p= 0.01). There were no correlations of miR-146a and clinical variables. The 
serum miR-155 level correlated significant to the serum leptin level (r= 0.326, p=0.001) and 
IL-8 (r=0.268, p=0.008).

Serum IL-8 levels correlated to HbA1c levels (r= 0.301; p=0.003) and also positively to 
TNFα levels (r=0.288, p=0.004), which in turn correlated to HGF levels (r= 0.367; p=0.000), 
corroborating our findings in the cluster diagram (Figure 2). Positive correlations were also 
found between HGF and resistin levels and resistin and IL-6 levels, again corroborating the 
findings in the cluster diagram (Figure 2).

Expected significant correlations were between leptin and BMI and leptin and leptin 
and gender.

 

DISCUSSION

In this study we determined two inflammation-related microRNAs in the serum 
of Ecuadorian T2D patients. We observed a significantly reduced level of one of these 
microRNAs, i.e. of miR-146a, in the serum of T2D patients as compared to a non-diabetic 
control group. Reduced expression of miR-146a is classically considered a sign of a 
pro-inflammatory state. Boldin et al. described that miR-146a-null mice systematically 
overproduce pro-inflammatory cytokines (such as TNF-α IL-6 and IL-1β) in response to 
injection with a sub-lethal LPS dose. Tissue macrophages were the primary source of this 
enhanced pro-inflammatory cytokine production. This implicates miR-146a in attenuating 
macrophage inflammatory responses [40]. In agreement with these results, in vitro studies 
show that induction of miR-146a expression in monocyte/macrophage cell lines negatively 
regulates the inflammatory response [23, 41], while transfection with miR-146a inhibitors 
in both resting and LPS-stimulated macrophage-like cell lines had an opposite effect and 
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resulted in an up-regulation of these inflammation-related genes. Collectively these data 
show that miR-146a is a strong down regulator of the production of classical inflammatory 
compounds in macrophages. 

We also found the level of serum IL-8 significantly up regulated in the T2D patients as 
compared to the non-diabetic controls in agreement with previous findings of Herder et 
al [42]. IL-8 is considered a primary cytokine for M1 inflammatory macrophages. On the 
basis of these significant alterations in miR-146a and IL-8 levels we like to conclude that 
our study supports the concept of an activation of the inflammatory response system in 
T2D patients. The correlation of the IL-8 level with Hb1Ac supports the idea that chronic 
hyperglycemia plays at least a partial role in this activation.

A limitation of our study is that our non-diabetic control group was not matched for 
age to our diabetic patient group, and non-diabetic controls were on average 8 years 
younger than our patients; patients and non-diabetic controls did have similar readings 
for lipid profiles and BMI. In correlation analysis miR-146a levels and IL-8 levels appeared 
not to be dependent of age. When we performed hierarchical regression analysis for 
BMI and lipid profiles, it appeared that the disease state always was the determinant 

Figure 2. Dendrogram of unsupervised hierarchical cluster analysis of the tested serum levels of 
microRNAs, cytokines, chemokines and growth factors in T2D patients and Non-diabetic controls. The 
dendrogram shows the clustering of miR-146a and miR-155, and of the pro-inflammatory cytokines CCL4, IL-6, 
IL-1β and NGF and of TNF-α, IL-8, HGF and resistin.
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for abnormal miR-146a and IL-8 levels and that BMI and lipid profiles did virtually not 
determine these levels, except for IL-8 which was also determined by the cholesterol levels 
(see supplementary Table 1and 2). We are thus confident that indeed abnormal levels of 
miR-146a and IL-8 are determined by the T2D state in this study.

A reduced level of miR-155 has been described in the circulating leukocytes of T2D 
patients [32]. However we were not able to find a significant change of miR-155 in the 
serum of T2D patients as compared to our non-diabetic control group. We however did 
find a significant positive correlation between the serum levels of miR-155 and miR-146a 
and we found a clustered expression of both miR-146a and miR-155 with leptin in cluster 
analysis. Since leptin is primarily derived from adipose tissue, this might suggest that a 

Table 2.  Cytokines, chemokines and growth factors in Non-diabetic controls and T2D patients. Group 
size, mean and SEM in the order of the cluster analysis. To avoid inter-assay variation, serum levels (pg/ml) were 
expressed in fold change compared to non-diabetic controls, the average of the Controls in each assay was set 
to one. Differences between groups were tested using independent T test. Levels of significance were set at 
p=0.05 (two-tailed).

T2D
Controls vs. T2d

T test

N Mean (SEM) p-Value

NGF 56 1,24 0,36 0,707

IL1beta 56 0,79 0,18 0,686

IL6 56 1,38 0,21 0,131

CCL4 56 0,92 0,1 0,775

HGF 56 1,34 0,09 0.023*

TNFalpha 56 1,11 0,07 0,22

Resistin 56 1,19 0,08 0,097

IL8 56 2,19 0,36 0.011*

Adiponectin 56 1,25 0,14 0,222

CCL2 56 1,00 0,07 0,883

 miR146a 56 0,61 0,05 0.042*

miR155 56 0,93 0,07 0,844

Leptin 56 0,86 0,11 0,338

PAI1 56 1,17 0,23 0,565

Values in bold denote a significant difference between two groups.
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significant proportion of the circulating microRNAs miR-146a and miR-155 is produced by 
activated macrophages and adipocytes in adipose tissue.

Our T2D cases lacked a significant over-expression of several classical pro-inflammatory 
compounds in serum: similar levels of TNF-α, IL-1β and IL-6 were found in the serum of 
patients and non-diabetic controls. This contrasts to previous findings by others, such 
as Costantini et al., who observed increased levels of IL-1α, leptin, resistin and PAI-1 in 
T2D patients [43]. Our negative findings might be due to the fact that our non-diabetic 
controls appeared to have many signs of the metabolic syndrome: BMI values were over 
25 in 82.5% (average BMI 29.3), while hypercholesterolemia was present in 67.5% with 
raised LDL in 42.5% of non-diabetic controls. These values were similar to the ones found 
in the T2D cases. The Ecuadorian non-diabetic control group was composed of care-takers 
(40%, friends and family), and hospital staff (60%) from the Quito area. Considering this 
excessively high prevalence of obesity and dyslipidemia in the Quito non-diabetic control  
group, it is important to note that a recent healthcare report of the Ecuadorian government 
corroborates this high prevalence of obesity and dyslipidemia in urban Ecuadorian 
populations [44]. 

In a parallel study we have collected Dutch T2D patients and Dutch non-diabetic 
controls that were tested at the same time with the same multi-analyte system for 
cytokines and growth factors. The Dutch healthy controls had on average a BMI of 23.8 
and had normal lipid values (hypercholesterolemia none, raised LDL 14%). Interestingly 
our Ecuadorian “healthy” control group indeed had higher levels of CCL4 and IL-6 (see 
supplementary Table 4), suggesting that in particular obesity and dyslipidemia determine 
a higher level of these classical pro-inflammatory cytokines in serum, and not (only) the 
diabetes state and/or pathology per se. 

Reduced levels of miR-146a have previously been found in T2D patients, be it in 
circulating leukocytes [20] . However, our report contrasts with another report that showed 
elevated levels of miR-146a in the serum of newly diagnosed T2D patients [38]. These 
elevated levels were found in comparison to the serum levels of pre-diabetic individuals 
with a disturbed OGT and T2D-susceptible individuals (family), who only had a moderate 
overweight (average BMI of 26) and moderate hypercholesterolemia (average 5.6 mmol/l), 
as had the newly T2D cases in that study. We therefore assume that the distinct status 
of the control population with regard to obesity and/or severe dyslipidemia might have 
played a role in the differences. In addition, our T2D patients had longstanding diabetes, 
and the stage of disease may have played a role as well.
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Apart from the involvement of inflammatory miR-146a and IL-8, our study suggests 
an involvement of other molecular systems associated with the failure to control glucose 
homeostasis on the background of an already existing obesity and dyslipidemia. 

First, significantly higher serum levels of HGF were found in the T2D patients as 
compared to the non-diabetic controls. HGF levels correlated to age, but correction for 
age left the association with T2D intact (similar results were obtained with corrections for 
BMI and dyslipidemia, see supplementary Table 3). HGF was first described as a hepatocyte 
factor involved in liver regeneration after partial hepatectomy [45]. Recent evidence shows 
that the factor is also produced by monocytes and macrophages and that it is involved 
in various regeneration processes, including vascular repair and β cell growth [46-48]. 
HGF can thus be viewed as a key factor in insulin resistance-associated compensatory 
mechanisms at the level of the pancreatic islet by stimulating its regeneration and at 
the level of the vasculature by stimulating repair of hyperglycemia-damaged vessels by 
inducing proliferation of endothelial cells. In marked contrast, however, HGF has also been 
implicated with a pathogenic role in macrovascular disease as HGF levels in type 2 diabetes 
patients correlated positively with carotid intimal-media thickness and plaque score [49].

In addition to a higher level of HGF there was also an over-expression (non-significant, 
p=0.09) of resistin in the serum of the Ecuadorian T2D cases as compared to the non-
diabetic controls. Resistin was initially identified in adipocytes, but significant levels of 
resistin expression in humans are mainly found in immune cells, particularly monocytes 
[50, 51]. Resistin was first described as a factor contributing to the development of insulin 
resistance and diabetes in humans, but debate is still ongoing regarding its role in obesity, 
insulin sensitivity and the development of T2D. In addition also evidence for a pathogenic 
role of resistin in atherogenic vascular diseases is growing [52, 53].

In conclusion this study shows signs of chronic inflammation (decreased serum anti-
inflammatory miR-146a/increased IL-8) and signs of islet and vascular repair (increased 
HGF) in patients with a failure to control glucose homeostasis when compared to non-
diabetic controls with a similar prevalence of obesity and dyslipidemia. Our study also 
suggests that miR-146a can be considered as a serum biomarker of the inflammatory 
process linked to the failure of glucose control of the T2D state against a background of 
obesity and dyslipidemia. 
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SUPPORTING INFORMATION 

Table S1. Hierarchical Regression Model of miRNA-146a. Hierarchical regression analysis for BMI and lipid 
profiles shows that the disease state was the determinant for abnormal miR-146a.

 R R2 R2 B SE β t

   Change     

Model 1 0.213 .045 .000

Disease -.245 .118 -.212* -2.070

BMI -.003 .015 -.022 -.217

Model 2 0.211 .044 .001

Disease -.239 .117 -.208* -2.051

Cholesterol .000 .001 .031 .302

Model 3 0.214 .046 .003

Disease -.237 .117 -.206* -2.032

HDL -.003 .005 -.050 -.495

Model 4 0.21 .044 .001

Disease -.239 .117 -.208* -2.050

LDL .000 .001 .029 .285

Model 5 0.211 .044 .001

Disease -.240 .117 -.209* -2.061

Tryglicerids .000 .001 -.032 -.317

Note. Statistical significance: *p< .05;**p< .01; ***p< .001
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Table S2. Hierarchical Regression Model of IL-8. Hierarchical regression analysis for BMI and lipid profiles 
shows that the disease state and cholesterol levels were the determinant for abnormal IL-8.

 R R2 R2 B SE β t

   Change     

Model 1 0.272 .074 .000

Disease 1.207 .448 .272** 2.694

BMI .008 .056 .014 .143

Model 2 0.324 .105 .038

Disease 1.133 .434 .256** 2.614

Cholesterol -.008 .004 -.195* -1.983

Model 3 0.279 .078 .011

Disease 1.168 .440 .264** 2.652

HDL -.021 .020 -.104 -1.043

Model 4 0.299 .089 .022

Disease 1.135 .437 .257** 2.595

LDL -.006 .004 -.148 -1.498

Model 5 0.287 .083 .015

Disease 1.138 .439 .258** 2.592

Tryglicerds -.003 .003 -.123 -1.242

Note. Statistical significance: *p< .05;**p< .01; ***p< .001
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Table S3. Hierarchical Regression Model of HGF. Hierarchical regression analysis for BMI and lipid profiles 
shows that the disease state was the determinant for abnormal HGF.

 R R2 R2 B SE β t

   Change     

Model 1 0.244 .060 .003

Disease .351 .151 .236* 2.320

BMI -.011 .019 -.057 -.564

Model 2 0.232 .054 .000

Disease .342 .149 .231* 2.292

Cholesterol .000 .001 -.009 -.089

Model 3 0.232 .054 .000

Disease .341 .149 .230* 2.283

HDL .001 .007 .020 .199

Model 4 0.231 .054 .000

Disease .342 .149 .231* 2.294

LDL 1.704E-06 .001 .000 .001

Model 5 0.259 .067 .013

Disease .339 .148 .230* 2.292

Tryglicerids -.001 .001 -.116 -1.160

Note. Statistical significance: *p< .05;**p< .01; ***p< .001

Data S1. Raw data points of the tested serum levels of microRNAs, cytokines, chemokines 
and growth factors of T2D patients and Non-diabetic controls. The levels of TNFα, IL-1β, 
IL-6, NGF, HGF, PAI, Resistin, CCL2 (MCP-1), Adiponectin, Leptin, IL-8, and MIP1β (CCL4) 
were measured by flow cytometry (BD LSR II Biosciences, California, and EE.UU.) using a 
commercially available multi-analyte cytometric bead array system (Milliplex® Map, U.S.A.).

MicroRNA quantitative real-time PCR (qPCR) was performed using pre-designed 
TaqMan® microRNA, with an ABI 7900 HT real-time PCR machine. SDS software (ABI) was 
used to collect the data. 
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Table S4. Cytokines, chemokines and growth factors of Ecuadorian non-diabetic controls and Dutch 
healthy controls. Group size, median, inter-quartile range (IQR) and p-values obtained by Mann—Whitney 
U-test is represented. Serum levels (pg/ml) are shown in the order of the cluster analysis. In a parallel study we 
have collected Dutch healthy controls that were tested at the same time with the same multi-analyte system 
for cytokines and growth factors. Ecuadorian non-diabetic controls showed higher levels of the classical pro-
inflammatory cytokines (CCL4 and IL-6).

Controls Ecuador Controls Netherlands

    (Ecu Cont 
vs. 

Dut Cont)

 Mann Whitney T

N Median (IQR) N Median (IQR) p-Value             

NGF 24 1.00 1.00 15 4.46 2.07 0.000**

IL-1beta 12 1.00 0.75 15 1.07 0.89 0.755

IL-6 34 4.50 3.00 15 0.98 1.73 0.000**

CCL4 34 95 101 15 52 77 0.065

HGF 34 733 414 15 829 693 0.374

TNFalpha 33 4.00 2.00 15 4.36 3.23 0.553

Resistin 34 36025 16895 15 53602 24980 0.002*

IL-8 34 6.00 3.25 15 5.90 2.48 0.420

Adi-
ponectin

34 2325 1902 15 2855 1723 0.288

CCL2 34 304 177 15 232 149 0.083

Leptin 34 8599 8458 15 8834 10939 0.879

PAI-1 34 88898 31182 15 89170 39978 0.544

Values in bold denote a significant difference between two groups.
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ABSTRACT

Recently, we reported signs of inflammation (raised IL-8, reduced miR-
146a) and signs of vascular repair (raised HGF) in the serum of Ecuadorian 
patients with type 2 diabetes (T2D). In contrast, we found that the circulating 
monocytes lacked up-regulation of classical inflammatory genes (IL-1B, 
IL-6, and TNF) and there was even significant down-regulation of PTGS2. 
Notably, genes and a microRNA involved in adhesion, cell differentiation 
and morphology (CD9, DHRS3, PTPN7 and miR-34c-5p) were up-regulated 
in the T2D monocytes, suggesting a role of the anti-inflammatory cells in 
adhesion, vascular repair and invasion. 

Aim. To determine the gene expression of the vascular repair factor HGF 
in the circulating monocytes of patients with T2D and to investigate the 
relationship between HGF and the expression of the other previously tested 
monocyte genes and the contribution to the raised serum level of HGF. In 
addition, we tested the level of 6 microRNAs in the serum of the patients 
which were previously determined in the circulating monocytes.

Methods. A gene and microRNA expression study in the monocytes and 
serum of 64 Ecuadorian patients with T2D (37-85 years) and 44 non-diabetic 
controls (32-87 years).

Results. The gene expression of HGF was significantly raised in the 
monocytes of the patients with T2D and associated with the expression of 
genes involved in adhesion, cell differentiation and morphology. HGF gene 
expression did not correlate with the serum level of HGF. The monocyte 
expression of pro-inflammatory cytokine genes was also not associated 
with the serum levels of these cytokines. The level of miR-574-3p was 
significantly altered in the serum of the patients with T2D. The expression 
of miR-574-3p in serum clustered with the well-established inflammation 
regulating miR-146a. The level of the 6 tested microRNAs in serum did not 
correlate with their expression level in monocytes.

Conclusion. In T2D Ecuadorian patients, the microRNA and gene 
expression of important inflammatory factors and a vascular repair factor 
in T2D circulating monocytes differ from their expression in serum. While 
monocytes are set at an anti-inflammatory set point, the serum shows 
molecular signs of inflammation. Both compartments show molecular signs 
of vascular repair support, i.e. up-regulated HGF. 

Key words. Type 2 diabetes, monocytes, serum, HGF, miR-574-3p.
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INTRODUCTION

There is increasing evidence that monocytes, macrophages and related cells are closely 
involved in the pathogenesis of the metabolic syndrome (MetS) and type 2 diabetes (T2D). 
Importantly, in obesity the number of macrophages increases from 10-15% to 50-60% of 
total adipose tissue cells [1, 2]. The increase in macrophage number is accompanied by a 
hyper activation of the cells and leads to raised secretion of pro-inflammatory cytokines 
(TNF-α, IL-1β, IL-6, CCL-4, PAI-1) and chemokines (CCL2) causing a state of chronic low-
grade of inflammation [1, 3-7] and insulin resistance.

Important circulating precursors for the macrophages in the adipose tissue [8-10] 
are the blood-borne monocytes. There is a relative paucity on the state of inflammatory 
activation of circulating monocytes in patients with the MetS [11, 12] and T2D [13], but 
increases in pattern recognition receptors, oxidative stress and the machinery for the 
production of pro-inflammatory cytokines have all been described [14-16]. 

Contrary to this view, we recently reported that monocytes of a group of 64 Ecuadorian 
patients with T2D were earlier characterized by an anti-inflammatory set point than a 
pro-inflammatory set point when compared to monocytes of a group of 44 non-diabetic 
controls. We found a decrease in expression of a cluster of 11 mutually correlated core 
inflammatory cytokine/compound genes (ILB, IL-6, TNF, TNFAIP3, PGS2, CCL20, CCL2, CCL4, 
PDE4B, DUSP2 and ATF3; reaching significance for PTGS) in the monocytes of patients with 
T2D [17]. However, the study on the monocytes of the patients with T2D also showed 
that there was up-regulated gene expression for genes occurring in a cluster of mutually 
correlating genes, many of which involved in adhesion, migration, cell differentiation and 
cell morphological change [17]. A significant up-regulation as compared to non-diabetic 
controls was reached for the genes CD9, DHRS3 and PTPN7. Other important genes in this  
gene cluster were MAPK6, NAB2, STX1A, EMP-1, CDC42, DHRS3, FABP5, BCL2A1, PTX3 and 
CXCL2. We interpreted these data as indicating that circulating monocytes in our group of 
patients with T2D were activated, but not towards an inflammatory state, but to a state of 
enhanced adhesion, migration and further differentiation into descendent cell types, most 
likely into monocyte-derived pro-angiogenic cells, instrumental in vascular repair. This view 
was further supported by our observation that the expression of miR-146a, a well-known 
inflammation down-regulating microRNA, was not changed in the T2D monocytes, while 
a microRNA targeting genes involved in processes of cell morphology and shape change, 
i.e. miR-34c-5p, was up-regulated as compared to the group of non-diabetic controls [17].   

In the serum of the patients with T2D in whom we performed the monocyte studies, 
we found clear signs of inflammation [18]. Although there were no increases in the levels 
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of classical cytokines, such as of IL-1β, IL-6 and TNF-α, there was an increase in the level 
of serum IL-8, and also the level of miR-146a was significantly down regulated. HGF was 
increased in the serum of the cases with T2D too [18]. Since HGF is an important vascular 
repair factor [19-22] and an anti-inflammatory agent [23, 24], and monocyte-derived 
angiogenic cells are characterized by the expression of HGF [25], we hypothesized that 
there was an enhanced monocyte-linked endothelial repair mechanism going on in our 
patients with T2D. 

In the present study, we therefore tested the hypothesis that HGF is increased in the 
circulating anti-inflammatory monocytes of patients with T2D and we determined the 
gene expression level of HGF (and the HGF-R, cMET) in the monocytes of our patients 
with T2D and investigated whether HGF belonged to the cluster of typical inflammatory 
compound genes or to the clusters of typical adhesion, migration and differentiation 
genes. In addition, we compared the monocyte gene expression levels of HGF to the serum 
HGF levels to investigate whether the circulating monocytes could be the main producers 
of this vascular repair factor in serum. 

In addition, we measured the serum level of miR-34c-5p, the microRNA up regulated 
in the monocytes of patients with T2D and playing a role in cell shape processes, to see 
whether this microRNA was also raised in the serum of the patients. Finally, we determined 
the serum level of the other 5 microRNAs (miR-122, miR-138, miR-410, miR-574-3p and 
miR-92), which we had previously reported in a finding study as abnormally expressed in 
the monocytes of patients with T2D [17].  

PATIENTS, MATERIALS AND METHODS

2.1. Subjects
A total of 64 subjects diagnosed with diabetes type 2, according to the criteria of The 

Expert Committee on the diagnosis and classification of Diabetes Mellitus [26]. Patients 
were recruited in 4 medical centers of Quito, Ecuador (Eugenio Espejo Hospital, Club de 
Leones Sur, Fundación Oftalmológica del Valle and Fundación de la Psoriasis) from 2009 
until 2012.  For demographic and clinical details see Table I. At the same time, 44 healthy 
controls with similar ethnical and social background, neither suffering from T2D nor other 
important medical disorders (including acute infection) served as controls. Controls had 
to be over 30 years of age (considering the age dependency of T2D) and preferably of the 
same gender as the patients.

Patients and controls with other immune disorders, other serious medical illnesses, 
recent infections (last 2 weeks), obvious vascular complications such as diabetic foot and 
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ulcers, fever, pregnancy/postpartum, use of statins and LADA patients (patients positive 
for GAD-65 Abs) were excluded. The Medical Ethical Review Committee of the Ecuadorian 
Corporation of Biotechnology Quito, Ecuador and the Ethic Committee of the Central 
University of Quito approved the study. Written informed consent was obtained of all 
subjects participating in the study. The Ecuadorian Ministry of Health (MSP) gave the 
permit to export and process the samples in Erasmus MC, Rotterdam, and The Netherlands. 

2.2. Blood collection and preparation
In the morning fasting venous blood was collected. Ten mL were collected in a clotting 

tube and processed within 4 hours. Serum was frozen and stored at minus 80°C for 
approximately 24 months before testing. Thirty mL were collected in tubes containing 
sodium-heparin for immune cell preparation. From the heparinized blood, peripheral 
blood mononuclear cell (PBMC) suspensions were prepared in the afternoon by low-
density gradient centrifugation, as previously described in detail [27]  within 8 hours to 
avoid activation of the monocytes. PBMCs were frozen in 10% dimethylsulfoxide and 
stored in liquid nitrogen. This enabled us to test patient and control serum and immune 
cells in the same series of experiments later.

2.3. Isolation of monocytes
CD14-positive (CD14+) monocytes were isolated from frozen PBMCs by a magnetic 

cell sorting system (MACS; Miltenyi Biotec, Auburn, California). The purity of monocytes 
was >95% (determined by morphological screening after Trypan Blue staining and flow 
cytometric analysis). As previously reported; the positive versus negative selection of 
immune cells did not influence gene expression profiles [28]. 

2.4. Real time quantitative PCR (qRT PCR) for monocytes
2.4.1. mRNA expression in monocytes via TaqMan Array Cards

For the previous report we had determined the expression of 24 mRNAs in the 
monocytes of the T2D cases and the non-diabetic controls. RNA had been isolated from 
monocytes using RNeasy columns (Qiagen, Hilden, Germany), and both this method 
and quantitative RT-PCR has been described in detail elsewhere [30]. One µg of RNA was 
reverse-transcribed using the High Capacity cDNA kit (Applied Biosystems, Foster City, CA, 
USA). qPCR was performed using custom TaqMan Arrays, format 48 (Applied Biosystems), 
according to the manufacturer’s protocol and validated against the single RT-qPCR method. 
Per fill port, 400 ng of cDNA (converted from total RNA) was loaded. PCR amplification was 
performed using an Applied Biosystems Prism 7900HT sequence detection system with 
TaqMan Array block. Thermal cycler conditions were 2 min at 50°C, 10 min at 94.5°C, and 
then 30s at 97°C, and 1 min at 59.7°C for 40 cycles. Relative to the housekeeping gene 
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ABL1, the expressions of ATF3, BCL2A1, CCL20, CCL2, CCL7, CD9, CDC42, CXCL2, DHRS3, 
DUSP2, EMP1, FABP5, HSPA1A/HSPA1B,  IL-1B, IL-6, MAPK6, NAB2, PDE4B, PTGS2, PTPN7, 
PTX3, STX1A, TNF, and TNFAIP3 were determined and values were calculated using the 
comparative threshold cycle (CT) method. ABL was chosen as a reference gene because 
it was previously shown that ABL was the most consistently expressed reference gene in 
hematopoietic cells [29]. The quantitative value obtained from q-PCR is a cycle threshold 
(Ct). The fold change values between different groups were determined from normalized 
Ct values (Ct gene – Ct housekeeping gene), by the ΔΔCt method.

2.4.2. Individual mRNA qRT–PCR assays for HGF, HGF-R, resistin. 
For the current report we additionally determined the gene expression for HGF, the 

HGF-R (cMET), and resistin using the same cDNA used in the previous experiments (we 
measured resistin because resistin had also been found raised in the serum of the T2D 
cases, though just nor reaching significance, p=0.07) [18]. To obtain cDNA for q-PCR, 1 µg 
RNA was reversed-transcribed using the cDNA high-capacity cDNA Reverse Transcription 
kit (Applied Biosystems, USA).TaqMan probes and consensus primers for HGF, HGF-R and 
resistin were provided by Applied Biosystems. PCR amplification of the housekeeping gene 
ABL was performed for each sample to allow normalization between the samples. The 
quantitative value obtained from q-PCR is a cycle threshold (CT). The fold change values 
between different groups were determined from the normalized CT values (CT gene − CT 
housekeeping gene).

 2.4.3. Individual microRNA qRT–PCR assays
Total RNA was isolated from purified monocytes using RNeasy columns (Qiagen, 

Hilden, Germany) as described by the manufacturer’s manual. Purity and integrity of the 
RNA were assessed on the Agilent 2100 bioanalyzer with the RNA 6000 Nano LabChip® 
reagent set (Agilent Technologies, Santa Clara, CA, USA) and the RNA was then stored at 
−80°C. Subsequently, specific stem-looped reverse transcription primers were used to 
obtain cDNA for mature microRNAs. The RNA was reverse transcribed using the TaqMan® 
MicroRNA Reverse Transcription Kit from Applied Biosystems, The Netherlands (ABI). PCR 
was performed using pre-designed TaqMan® microRNA assays and TaqMan® Universal 
Master Mix, NoAmpErase®UNG, with an ABI 7900 HT real-time PCR machine. The PCR 
conditions were 2 min at 50°C, 10 min at 95°C, followed by 40 cycles of 15 s at 95°C, and 
finally 1 min at 60°C. 

2.5. Serum cytokines
The levels of TNFα, IL-1β, IL-6, NGF, HGF, PAI, Resistin, CCL2 (MCP-1), Adiponectin, Leptin, 

IL-8, and MIP1β (CCL4) were measured by flow cytometry (BD LSR II Biosciences, California, 
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and EE.UU.) using a commercially available multi-analyte cytometric bead array system 
(Milliplex® Map, U.S.A.). The data were analyzed using a 5-parameter logistic method for 
calculating analyte concentrations in samples (MAGPIX® with xPONENT software, Luminex, 
Austin, USA). Undetectable serum analyte levels were considered as 0 pg/ml and included 
in the statistical analysis. Lipid and hepatic profile was performed according to standard 
lab procedures in Quito-Ecuador (AMCOR laboratory) and validated in Erasmus MC. 

2.6 Serum microRNA quantitative real-time PCR (qPCR)
Total RNA was isolated from serum using the Qiagen miRNeasy kit (Qiagen, Hilden, 

Germany). In order to correct for variations in RNA isolation derived, we spiked-in a non-
human (C. elegans) synthetic miRNA cel-miR-39 miRNA Mimic (MSY000010) into the sample 
before nucleic acid isolation. Subsequently, specific stem-looped reverse transcription 
primers were used to obtain cDNA for mature microRNAs. The RNA was reverse transcribed 
using the TaqMan® MicroRNA Reverse Transcription Kit from Applied Biosystems, The 
Netherlands (ABI). PCR was performed using pre-designed TaqMan® microRNA assays 
and TaqMan® Universal Master Mix, NoAmpErase®UNG, with an ABI 7900 HT real-time PCR 
machine. The PCR conditions were 2 min at 50°C, 10 min at 95°C, followed by 40 cycles 
of 15 s at 95°C, and finally 1 min at 60°C.  The spiked-in syn-cel-miR-39 goes through the 
entire RNA isolation process and serves as endogenous control for data normalization. 

2.7. Data analysis
The SDS software (ABI) was used to collect the data and the RQ Manager Program (ABI) 

was used to assign, check, and standardize CT values. The Data Assist software (ABI) was 
used to normalize the data (ABL for mRNA expression, RNU44 for microRNA expression 
of cells and synCell-39 for serum microRNA expression). For threshold cycles below 40, 
the corresponding miRNA and mRNA were considered detected, higher cycle numbers 
were not included in calculations. The results were quantified using the ΔΔCT method 
(2−ΔΔCT, User Bulletin 2, ABI). Statistical analysis was performed using the SPSS (IBM, Inc.) 
package for Windows. Data were tested for normal distribution using the Kolmogorov-
Smirnov test. The Grubbs’ test for outlier detection was applied (http://graphpad.com/
support/faqid/1598/). Depending on the distribution pattern and the total number of 
subjects, parametric (normal distribution, independent t test) or nonparametric group 
comparison (Mann-Whitney U test) were applied. Correlations were determined by 
Spearman’s correlation coefficient. Levels of significance were set at p ≤ 0.05 (two tailed). 
A dendrogram visualizing associations was constructed in SPSS using hierarchical cluster 
analysis of the serum cytokines, genes and microRNA expression using the between-
groups linkage method. Graphs were designed with Illustrator CS6 for Windows.  
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RESULTS

HGF is over expressed in monocytes of patients with T2D
The HGF expression levels were significantly higher in the monocytes of the patients 

with T2D as compared to the non-diabetic controls (Fold Change (T2D vs non-diabetic 
controls) 1.17 ± SEM 0.62 p=0.03 n=59 Table 2A). The expression levels of the HGF-R (cMET, 
FC 1.34 ± 0.36 p=0.40, n=22) and of resistin (FC 0.47 ± 0.07, p=0,24, n=59) were not different 
between the groups (Table 2A). 

Figure 1 shows the heat map and cluster diagram for HGF and resistin with the 
previously determined genes and the previously determined microRNAs. As can be seen 
HGF and resistin co-clustered positively with each other and with many genes of the 
cluster of adhesion/differentiation and shape change genes. Since HGF was significantly 
over expressed in the T2D monocytes, we focused on this compound. The association of 
HGF was significant at the p<0.001 level with DHRS3 (r=.498, p=0.004 n=32), CD9 (r=.490, 
p=0.004, n=32), BCL2A1 (r= .503, p=0.003, n=32), Resistin ( r=.532, p=0.002, n=32), HSPA1 
(r=.525, p=0.002, n=32 ), but existed also at a lower level for MAPK6 (r=.385, p=0.03, n=32) 
and STX1A (r=.419, p=0.024, n=32) . It is worthy to note that of these genes HGF, DHRS3 
and CD9 were all three significantly higher expressed in the monocytes of cases with T2D 
as compared to the non-diabetic controls (see [17]). 

It is also worthy to note that HGF expression did significantly negatively correlate 
with the expression of many genes of the inflammatory cluster in the monocytes (such as 
CCL4, IL-6, TNF, IL1-β, ATF3, CXCL2 and CCL20), reaching significance for TNFAIP3(r=-.350, 
p=0.05 n=32), supporting the concept that HGF is an anti-inflammatory agent. With regard 
to clinical parameters HGF expression in monocytes did positively correlate with the BMI 
(r=.327, p=0.011, n=59).

As reported previously, HGF was significantly raised in the serum of the patients 
with T2D as compared to the non-diabetic controls. Interestingly serum HGF correlated 
with monocyte DHRS3 gene expression (r=.326, p=0.008, n=64), but not with monocyte 
HGF gene expression (r=.189, p=0.152, n=59). Neither was there a positive or negative 
correlation for resistin expression in the monocytes and in the serum (data not shown), 
nor for any of the pro-inflammatory compounds, such as IL-1B, TNF, IL-6 and CCL2 (data 
not shown). This makes it unlikely that monocytes are the prime source of HGF, resistin or 
pro-inflammatory compounds in serum. 
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Mir-34c-5p is unaltered, but miR-574-3p is significantly reduced in the serum of patients with 
T2D

For the previous report on cytokines in T2D serum [18], we had determined the 
expression of various cytokines, growth factors, miR-146a and miR-155 in the serum of the 
cases with T2D and the non-diabetic controls. We found IL-8, HGF and resistin (the latter at 
a significance level of p=0.07) raised in the serum of the patients with T2D in comparison 
to the non-diabetic controls, while miR-146a was down-regulated (see also introduction).

For the current report, we determined the microRNAs miR-34c-5p, miR-122, miR-138, 
miR-410, miR-574-3p and miR-92 in the serum of the patients with T2D and the non-diabetic 
controls, since we had also measured these microRNAs in the monocytes of the patients in 
the previously reported study on gene and microRNA expression in the monocytes. In that 

Figure 1. Hierarchical cluster analysis of the tested genes and microRNAs of the monocytes of type 
2 diabetic patients and controls.  The figure 1 show the heat map and cluster diagram for HGF and resistin 
with the previously determined genes and the previously determined microRNAs. HGF and resistin co-clustered 
positively with each other and with many genes of the cluster of adhesion/differentiation and shape change 
genes. 
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study, we reported that miR-34c-5p was significantly up-regulated in the monocytes of the 
patients with T2D (see also introduction).

Table 2B shows that in the current study the serum level of miR-34c-5p was not 
changed in the patients with T2D as compared to the non-diabetic controls. However, 
the serum level of microRNA miR-574-3p, was significantly reduced in the T2D serum as 
compared to the non-diabetic controls. Controlling for age, gender, BMI and dyslipidemia 
via hierarchical clustering showed that these factors did not contribute to the association 
of miR-574-3p with disease. 

Figure 2 shows the heat map and cluster diagram of the measured microRNAs and 
cytokines/growth factors. Since miR-574-3p was found significantly reduced in the serum 
of the patients with T2D, we focused in particular on this microRNA. It is clear from Figure 
2 that there is a strong clustering and association of miR-574-3p with miR-146a (r=0.744, 
p<0.001, n=88) and miR-410 (r=0.324, p=0.03, n=80), all microRNAs being decreased in the 
serum of the patients with T2D. The association of miR-574-3p with the other microRNAs 
and cytokines/growth factors in serum was not very strong, although there was an 
association with the serum CCL2 level (r=0.337, p=0.001, n=89). 

It is also important to note that correlations between the serum levels of the tested 
microRNAs and the expression levels of the same microRNAs in monocytes were not 
present (data not shown). 

Target prediction for miR-574-3p.
Since the expression of miR-574-3p was significantly down-regulated in the serum of 

patients with T2D, we asked if there were in silico indications linking miR-574-3p expression 
to processes of inflammation or cell adhesion/differentiation/shape change. We used 
miRecords as a resource for miRNA-target interactions integrating predicted miRNA 
targets produced by 11 established miRNA target prediction programs (DIANA-microT, 
MicroInspector, miRanda, MirTarget2, miTarget, NBmiRTar, PicTar, PITA, RNA22, RNAhybrid 
and TargetScan/TargetScanS, available at http://www.mirecords.bioled.org).

A minimal target gene prediction coverage of three algorithms was used to perform 
prediction analysis for miR-574-3p. Filtering to a minimum coverage of three algorithms 
resulted in 934 hits. Ingenuity pathway analysis (Ingenuity® Systems) was used for mapping 
of the predicted target genes to biological functions.

Interestingly, the top molecular and cellular function of the miR-574-3p predicted target 
genes was “cell morphology” and “cellular assembly and organization”, while inflammation 
did not turn up in any of the predicted pathways (see supplementary data 1 Ingenuity 
analysis). 
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DISCUSSION

 This study showed that the gene expression of the vascular repair factor HGF was 
significantly raised in the monocytes of patients with T2D as compared to non-diabetic 
controls. HGF belonged to the cluster of adhesion, differentiation and shape change genes 
previously described as up-regulated in the T2D monocytes and correlated significantly 
to the expression of many genes in that cluster. The association of HGF with these 
differentiation, adhesion and shape change genes is in accordance with a view that the 
T2D monocytes are differentiating into the elongated vascular support pro-angiogenic 
cells (CACs) [25], HGF is a marker of such cells and suggests that the monocytes in our 
Ecuadorian patients with T2D are instrumental in repairing the vessel walls damaged by 
T2D related processes.  

The up regulation of HGF in the T2D monocytes might have been instrumental too in 
the reported anti-inflammatory state of the monocytes which we reported at an earlier 

Figure 2. Hierarchical cluster analysis of the tested cytokines and microRNAs of the serum of type 2 
diabetic patients and controls. Figure 2 shows that there is a strong clustering association of miR-574-3p with 
miR-146a and miR-410. The association of miR-574-3p with other microRNAs in serum was not strong. The unique 
association of miR-574-3p with cytokines/growth factors was with the serum CCL2 level. 
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occassion (see [17] ). Indeed there is ample literature on the anti-inflammatory effects of 
HGF. It has been shown that monocytes treated with HGF produce high levels of IL-10, a 
potent immune suppressing cytokine. Mechanistically, HGF modulated IL-10 production in 
monocytes through the ERK1/2 pathway [23]. With regard to dendritic cells (DC), Molnarfi, 
et al. reported that DC differentiated in the presence of HGF adopt a pro-tolerogenic 
phenotype with increased ability to generate regulatory T cells [24], while  with regard 
to endothelial cells Jeong-Ki Min, et al. showed that HGF suppresses Vascular Endothelial 
Growth Factor (VEGF)–induced inflammation by inhibiting the Nuclear Factor Kappa 
B (NFκB) pathway [30].  In support of this anti-inflammatory action of HGF, we found a 
negative correlation of intra-monocyte HGF expression with the cluster of inflammatory 
genes, reaching statistical significance for TNFAIP3 (A20, a molecule induced by TNFα 
signaling, [31]) expression.

We reported previously that HGF was raised in the serum of the Ecuadorian patients 
with T2D; however, we did not find a correlation of the serum HGF with the expression 
of the HGF gene in the monocytes. This suggests that the circulating HGF is not primarily 
produced by the circulating monocytes, but originates from other sources. This notion also 
applies to the other tested cytokines and growth factors in the serum of the patients with 
T2D, for which we could also not find a correlation with intra-monocyte gene expression. 
Within the serum, the level of HGF correlated with the levels of TNF-α, IL-8 and resistin. 
Since it is generally thought that these pro-inflammatory compounds and insulin-
resistance inducing substances originate from the adipose tissue and the liver [2, 4, 32, 33], 
we assume that also HGF in the serum of the patients with T2D primarily stems from these 
sources. There is ample literature on the production of HGF by adipose tissue and the liver 
[32, 34-37].

Although HGF might originate from sources other than the circulating monocytes, it 
is nevertheless possible that HGF in the serum could have affected the function of the 
circulating monocytes in patients with T2D, since the current study shows that monocytes 
of patients with T2D do express the HGF receptor, though not differently from monocytes 
of the non-diabetic controls. Interestingly, the level of HGF in serum did not correlate with 
a reduced inflammatory gene expression in the monocytes, as we found for the intra-
monocyte expressed HGF. This suggests that the monocyte-endogenously-produced HGF 
is more important in the down-regulation of the inflammatory state of the monocytes in 
the patients with T2D than the serum-borne HGF. The level of circulating HGF did correlate 
positively to the DHRS3 expression in the monocytes, suggesting that serum-borne HGF 
might influence the proliferation and differentiation potential of circulating monocytes to 
pro-angiogenic cells in patients with T2D. 
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Furthermore, we found that the level of miR-574-3p was reduced in the serum of 
patients with T2D, similar to miR-146a, of which we reported a down-regulation in the 
serum of the patients with T2D at an earlier occasion [18]. In the cluster analysis and in 
correlation studies there was a strong association between the serum level of miR-574-3p 
and miR-146a, miR-410 and miR-155. This suggests an association of serum miR-574-3p 
(and also serum miR-410) with inflammatory processes, since miR-146a and miR-155 are 
important inflammation-regulating microRNAs [38-41] . This notion is further supported 
by a positive correlation between the serum level of miR-574-3p and the level of CCL2 in 
serum.

However, when we studied in silico the putative targets of miR-574-3p, ingenuity 
analysis of the putative targets did not indicate inflammation as an important pathway, 
whereas cell morphology and cellular assembly and organization were clearly present. The 
literature on miR-574-3p is in accord with this notion and shows functions of miR-574-3p 
mainly in the regulation of tumor cell pathology: MiR-574-3p is anti-proliferative, anti-
invasive and anti-migratory in gastric and prostate cancer cells [42-44]. In these studies it 
was found that cullin-1 might be a target of miR-574-3p, and interestingly cullin-1 regulates 
inflammation via NFκB, thus giving an opening to a relationship with inflammation in 
connection with cellular assembly and organization[44]. 

Our findings suggest a high pro-angiogenic potential of the circulating monocytes 
and the serum of Ecuadorian patients with T2D. It is important to note that Yang reported 
that down-regulation of miR-574-3p in pro-angiogenic cells appeared to be a marker of 
senescence; senescent pro-angiogenic cells have lost their proliferative capacity and are 
inflammatory (oxidative radicals) changed [45]. Hence, this might indicate that miR-574-3p 
is involved in the regulation of the anti-inflammatory and pro-angiogenic state of the 
circulating monocytes of patients with T2D.

Perhaps the most striking observation in the present study is the absence of correlation 
between the serum and intracellular monocyte levels of cytokines, growth factors 
and microRNAs. This suggests that the dynamics of the inflammation-related changes 
in the monocyte intracellular compartment differ substantially from the dynamics of 
inflammation-related changes in the serum compartment of patients with T2D. Collectively 
the data of the previous studies and the current study show that both the monocyte 
intracellular compartment and the serum compartment of our patients with T2D have 
undergone inflammation-related changes. However, the monocyte compartment shows 
in general a reduction in gene expression of typical pro-inflammatory genes, while genes 
and microRNAs involved in cell adhesion, cell differentiation, growth and vascular repair, 
such as HGF and miR-34c-5p, are up-regulated. The serum compartment, in contrast to 
the monocyte compartment, does show signs of high pro-inflammatory activity, e.g. high 
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levels of IL-8 and reduced levels of anti-inflammatory miR-146a and altered levels of miR-
574-3p. The serum compartment also shows signs of higher activity of vascular repair and 
cellular growth induction, yet parameters do not correlate with the monocyte parameters 
of higher pro-angiogenic cell activity. Most likely different T2D related pathophysiological 
forces drive the activation and de-activation set points of the circulating monocyte and 
the serum compartment.
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SUPPLEMENTARY DATA S1.

Ingenuity pathway analysis (Ingenuity® Systems) was used to map the major pathways 
and processes in which miR-574-3p is involved. The top molecular and cellular function 
of the miRNA predicted target genes was “cell morphology”; while the second top-
associated network was “cell morphology” and “cellular assembly and organization”. We 
used miRecords as a resource for microRNA-target interactions.  
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Monocytes versus serum
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General Conclusions
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GENERAL CONCLUSIONS 

Regarding our aim to identify a microRNA signature capable of distinguishing patients 
with T2D from individuals not suffering from T2D:

Using the expression of 15 microRNAs in monocytes in a finding study employing 
Exiqon array, a partial separation could be made between T2D and the non-diabetic 
state with a sensitivity of 66% and a specificity of 90%. However, this signature was not 
useful to validate as a microRNA signature of monocytes that can be used clinically as a 
discriminating parameter via qPCR, since the expression fold changes observed in Exiqon 
array were generally too low to allow reliable confirmation within the technical limitations 
of qPCR.

We thereafter used the microRNAs as biomarkers to test the biological function and 
inflammatory state of the circulating monocytes in patients with T2D, since there is a 
paucity of studies focusing on the inflammatory state of these circulating cells in T2D. 
Therefore, we selected from the differentially expressed microRNAs those with the highest 
fold changes (FC) between cases and controls with FC of >1.4 or <0.6.  Another criterion 
for selection was that TaqMan probes and primers needed to be available. From the 142 
differentially expressed microRNAs found in Exiqon, 5 microRNAs fulfilled the selection 
criteria: miR-138; miR-34c-5p; miR-410; miR-574-3p and miR-576-3p. Additionally, we tested 
microRNAs-146a and -155 in TaqMan analyses, since these microRNAs are well-known 
regulators of inflammation, and have been identified in T2D PBMC by others [38, 39]. We 
also correlated the microRNA expression and the expression of a set of genes previously 
found abnormally expressed in the monocytes of T2D patients. We tested for 25 selected 
genes forming two mutually correlating gene clusters. The first cluster comprised 12 pro-
inflammatory cytokine/compound genes (IL-1B, IL-6, TNF, TNFAIP3, PGS2, CCL20, PTX3, 
PDE4B, DUSP2, ATF3, CXCL2 and BCL2A1); the second cluster comprised 12 chemotaxis, 
adhesion, motility, and metabolism genes (CCL2, CCL7, MAPK6, NAB2, CD9, STX1A, EMP-1, 
CDC42, PTPN7, DHRS3, FABP5, HSPA1A). In addition we also tested for HGF, being a marker 
of pro-angiogenic cells. We used the monocytes of a series of 64 Ecuadorian patients and 
44 non-diabetic Ecuadorian controls as a validation cohort. 

Monocytes
With regard to the circulating of the patients with T2D we found that
1. Patients had circulating monocytes showing an over-expression of a microRNA (i.e. 

miR-34c-5p) and a group of immune activation genes (CD9, DHRS3 and PTPN7, in this 
thesis called cluster C genes) involved in the adhesion of the cells, the shape change of 
the cells and the differentiation into mature cells. Since we found the vasculo-protective 



Chapter 6

144

cytokine HGF also over-expressed in these monocytes, we assume that these monocytes 
are instrumental in adhesion to the vessel wall and supporting angiogenesis (so-called 
monocyte-derived pro-angiogenic cells) (see Figure 1).

2. The monocytes of patients with high blood lipid values were characterized by an under-
expression of a set of typical inflammatory genes (DUSP2,PTGS2 and ATF3). This is in 
contradiction to the general idea, and findings in previous studies, where monocytes in 
T2D patients are pro-inflammatory (see Figure 1).

3. Also in nondiabetic controls of the Quito area, which had more dyslipidemia than the 
non-diabetic controls of the Rotterdam area, the monocytes were characterized by 
this anti-inflammatory set point in comparison to the Rotterdam non-diabetic general 
population controls (see Table 1).

4. We did find pro-inflammatory monocytes (i.e. an over-expression of the set of typical 
inflammatory A and B genes) in patients with T2D and normal serum lipid values, which 
constituted a minority of the Ecuadorian patients (23%) (see Figure 1).

In summary, in our Ecuadorian T2D we found monocytes that show an increased 
expression of pro-angiogenic HGF and an anti-inflammatory, but adhesive/motile gene 
expression profile. MiR-34c-5p might be a biomarker of this monocyte process, other selected 
and tested microRNAs gave less clear results.

Figure 1. Hypothetical scheme for the pathogenesis of the immune abnormalities in monocytes of T2D as 
found in this body of work on Ecuadorian subjects. 
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Table 1.  Monocyte gene expression of Ecuadorian and Dutch general population controls. The Quito 
controls have a higher prevalence of obesity and dyslipidemia, yet monocytes are less inflammatory (significantly 
lower expression of cluster A and B genes), but have higher production of the endothelial repair factor HGF.

Genes
HC Quito HC Rdam p- value

FC to ABL FC to ABL Qto vs Rdam

CLUSTER A CXCL2 0,72 5,55 0,00

 STX1A 0,01 0,04 0,00

 NAB2 0,29 0,41 0,11

 EMP1 0,49 1,04 0,00

 CDC42 1,12 1,13 0,97

 PTX3 0,52 1,50 0,00

 BCL2A1 18,85 25,68 0,45

 PTPN7 0,18 0,17 0,42

CLUSTER B IL6 0,01 0,30 0,00

 TNF 2,14 2,65 0,29

 IL1B 9,25 70,95 0,00

 CCL2 0,40 0,71 0,04

 CCL20 0,05 0,49 0,00

 TNFAIP3 1,91 5,78 0,00

 PDE4B 3,13 7,81 0,00

 DUSP2 1,49 2,50 0,01

 PTGS2 3,22 2,57 0,36

 ATF3 1,62 2,66 0,00

CLUSTER C FABP5 16,41 19,51 0,85

 MAPK6 5,69 7,80 0,67

 HSPA1 19,65 16,45 0,70

 DHRS3 0,06 0,07 0,52

 CD9 2,78 2,10 0,22

 HGF* 0,95 0,55 0,00

 Resistin* 3,55 0,64 0,08
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We assume the following hypothetical mode of events:
1.  In T2D patients in Quito and most likely due to a highly prevalent dyslipidemic state 

and vascular damage, the monocytes adopt a set point with a higher production of 
HGF and a gene expression profile suspicious for a capability to change shape and to 
differentiate further (most likely into pro-angiogenic cells). 

3. These T2D monocytes show over- expression of miR-34c-5p, CD9, DHRS3 and PTPN7.
2.  These monocytes are characterized by a reduced expression of inflammatory markers 

(ATF3, DUSP2, and PTGS2), unless there is nomolipidemia. Then the monocytes are 
pro-inflammatory.

Serum
We also tested microRNAs-146a and -155 and the above described microRNAs in the 

serum of the Ecuadorian patients and the non-diabetic Ecuadorian controls. We compared 
data to the level of a series of 12 pro-inflammatory and growth factors (TNFα, IL-1β, IL-6, 
NGF, HGF, PAI, Resistin, CCL2, Adiponectin, Leptin, IL-8, and CCL4), known to be differentially 
expressed in patients with T2D. 
With regard to the serum of patients with T2D and the non-diabetic controls we  
found that
1. The levels of microRNAs and cytokines/growth factors in serum differed considerably 

from the expression of their respective microRNAs and genes in circulating monocytes. 
We therefore conclude that both compartments (serum and circulating monocytes) 
have their own dynamics. Most likely different (T2D-related pathophysiological) forces 
drive the activation and de-activation set points of the serum and circulating monocyte 
compartment. 

2. In the serum of the Ecuadorian patients with T2D there were (only limited) signs of 
inflammation as compared to the non-diabetic Ecuadorian controls, namely a decrease 
of miR-146a and an increase of IL-8, while there were no statistically significant increases 
in classical inflammatory cytokines. There were clear signs of vascular repair, i.e. an 
increase of HGF. 

3. The microRNA 574-3p was significantly down regulated in the serum of the T2D patients 
and correlated in expression to the down regulated miR-146a.

4. There was a high prevalence of obesity and dyslipidemia in the Ecuadorian non-diabetic 
general population control group (BMI > 25 in 82.5% average 29.3) [1]. These Ecuadorian 
non-diabetic controls had raised levels of various pro-inflammatory cytokines in their 
serum (IL-6 and CCL4) as compared to Dutch non-diabetic general population controls 
who appeared to have a low prevalence of obesity (BMI > 25 in 40% average 23, 8) and 
dyslipidemia [1].
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Figure 2. Hypothetical scheme for the pathogenesis of the immune abnormalities in serum of T2D as 
found in this body of work on Ecuadorian subjects.
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Figure 2 depicts the following hypothetical mode of events;
1.  Visceral obesity and a fatty liver lead to the production of inflammatory cytokines (in 

the reports of this thesis increases in CCL2, CCL4 and IL-6, and a reduction in serum 
resistin), which are systemically detectable in the serum of these individuals (immune 
signs of the MetS). 

2.  This inflammatory state leads to insulin resistance and the risk to develop T2D (in case 
the insulin resistance worsens and/or the production of insulin starts to lack behind the 
needs).

The developed T2D state (hyperinsulinemia as well as hyperglycemia) is characterized 
by a stronger expression of inflammatory cytokines in the serum: In addition to the 
aforementioned cytokines, now also an increase in IL-8, a switch from lower to higher 
resistin levels plus a decrease in miR-146a and miR-574-3p (both correlating to each other) 
were found.

In summary, the serum microRNAs and cytokines/growth factors follow different 
dynamics as compared to their genes and counterparts in circulating monocytes. In 
contrast to the circulating monocytes the serum of Ecuadorian T2D patients showed a 
mild pro-inflammatory profile as compared to Ecuadorian non-diabetic controls (with a 
decreased miR-146a). The Ecuadorian non-diabetic controls on their turn showed a mild 
pro-inflammatory profile as compared to non-diabetic Dutch general population controls 
(who are less obese and less dyslipidemic). 
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7.1 DISCUSSION

Comparison of the data collected in the Ecuadorian cohorts to preliminary findings in Dutch 
patients with T2D

At the same time as we collected serum and PBMC from the Ecuadorian patients 
with T2D and their respective non-diabetic controls, we collected in Rotterdam serum 
and PBMC from patients with T2D (n=28, mean age 47.7 years) and their respective 
non-diabetic controls (n=22, mean age 59.9 years). At more or less the same time we 
performed the same assays using the same laboratory conditions on the two sets of 
samples. Since we counterintuitively found a relatively low inflammatory serum state 
in Ecuadorian T2D patients and anti-inflammatory circulating monocytes (the literature 
poses the opposite, see introduction and general conclusion section), we have carried out 
a preliminary evaluation of the Dutch serum and circulating monocytes for comparison to 
the Ecuadorian data. We aimed to see whether we would find a similar low inflammatory 
state of the serum and an anti-inflammatory state of the monocytes in Dutch T2D patients. 
The data are given underneath.

Serum Cytokines 
Table 1 shows that the Dutch patients with T2D were found to have a clearly stronger 

pro-inflammatory serum profile as compared to the Ecuadorian patients with T2D and 
high levels of the classical pro-inflammatory cytokines (IL-1β, IL-6, TNFα, IL-8 and CCL4) 
were detected, reaching statistical significance for TNFα in comparison to Ecuadorian T2D 
cases, and for all the cytokines in comparison to Dutch non-diabetic controls. 

However most striking were the differences in the adipokines. We observed that pro-
inflammatory leptin levels were almost three times higher in the Dutch patients with T2D, 
while anti-inflammatory adiponectin levels were two times higher in Ecuadorian T2D 
patients. Since adipose tissue plays a prominent role in the production of these adipokines, 
it is worthy to note that the BMI did differ between the Dutch and Ecuadorian patients 
with T2D, but only slightly (31.4 versus 28.4, p=0.01). Interestingly, Ecuadorian healthy 
controls were generally overweight, in contrast to the Dutch controls, but did not show 
altered adipokine levels compared to Dutch controls. Resistin levels, which are generally 
associated with obesity, were even lower in Ecuadorian controls.

Additionally, other known cytokines such as PAI-1 and resistin were also significantly 
lower in Ecuadorian T2D patients compared to Rotterdam T2D patients (see Table 1). HGF 
was higher in the Rotterdam T2D cases.
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In summary, with regard to serum cytokines and adipokines Ecuadorian patients with 
T2D clearly show a lower inflammatory profile as compared to Dutch patients with T2D. 
The latter show the pro-inflammatory picture known from the literature.

Monocyte gene expression
We also analyzed the expression of the set of immune activation genes tested on 

the monocytes of the Ecuadorian T2D subjects on the monocytes of the Dutch T2D 
subjects.  Data are given in Table 2, which shows that the gene expression of inflammatory 
compounds that belong to cluster A and B such as CXCL2, PTX3, IL-6, IL1β, CCL2, and 
CCL20 were found to be significantly overexpressed in Dutch T2D subjects as compared 
to Ecuadorian T2D subjects (and also to Dutch non-diabetic controls, data not shown). In 
contrast, in Ecuadorian T2D patients there was an overexpression in monocytes of cluster 
C genes (the genes with an adhesion, motility, and cell differentiation function), which 
reached statistical significance for CD9, DHRS3 and HGF.  

Resistin was also over expressed in the monocytes of Dutch patients with T2D, as was a 
different microRNA, i.e. miR-410 (data not shown), as compared to what was found in the 
Ecuadorian cases of T2D (i.e. miR-34c-5p).

In summary, the monocytes of Dutch patients with T2D are clearly set at a high 
inflammatory set point (as is known from the literature, see introduction), while those of 
Ecuadorian patients with T2D are characterized by an overexpression of genes involved in 
adhesion, motility, cell differentiation and vascular repair, but not inflammation.

Figure 1 gives a cartoon of the alterations in the Rotterdam cases with T2D in the same 
lay-out as the cartoon given in Chapter 6 on the Ecuadorian cases with T2D to make easier 
comparison possible.

The differences found between the Ecuadorian and Dutch T2D cases also brings us to 
the question which factors (e.g. genetic, environmental) could be responsible for:
1. The decreased inflammatory state of the serum and the monocyte compartment of 

Ecuadorian patients with T2D?
2. The increased expression of HGF and genes/microRNAs involved in the adhesion, 

motility and shape change of the monocytes of Ecuadorian patients with T2D? 
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Table 2. Monocytes gene expression of Ecuadorian and Dutch T2D patients. Monocytes gene expression of 
Ecuadorian and Dutch T2D patients. Fold change and P-values are given. P-values in bold denote a significant 
difference between the diabetic group and the healthy control group of the respective area. The red figures 
represent a statistically higher significant FC values versus the respective HC control groups at the 0.05 level (the 
actual values of the HC are not shown in this figure), the orange values represent FC values versus the respective 
HC control groups at the 0.10 level; the green value represents statistically lower values at the 0.05 level.  

Genes
T2D Quito T2D Rotterdam

FC P-Value FC p-Value

CLUSTER A CXCL2 1,19 0,53 2,07 0,05

 STX1A 1,49 0,12 1,59 0,19

 NAB2 1,04 0,85 0,43 0,40

 EMP1 1,21 0,18 1,48 0,21

 CDC42 1,11 0,42 1,14 0,60

 PTX3 0,92 0,56 2,19 0,04

 PTPN7 1,42 0,03 1,09 0,65

CLUSTER B IL6 1,30 0,39 19,49 0,01

 TNF 1,08 0,70 0,75 0,13

 IL1B 0,70 0,18 1,99 0,08

 CCL2 0,96 0,89 4,91 0,01

 CCL20 1,07 0,85 2,56 0,07

 TNFAIP3 1,11 0,54 0,88 0,50

 PDE4B 0,96 0,83 0,90 0,67

 DUSP2 0,75 0,15 0,76 0,17

 PTGS2 0,60 0,05 1,27 0,51

CLUSTER C FABP5 0,86 0,48 1,08 0,64

 MAPK6 0,87 0,35 1,68 0,13

 HSPA1 0,91 0,46 1,08 0,50

 DHRS3 1,39 0,03 0,91 0,54

 CD9 1,72 0,04 0,65 0,37

 HGF 1,17 0,03 1,02 0,89

 Resistin 0,47 0,24 2,13 0,03
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Putative factors responsible for the reduced inflammatory state of the serum and monocyte 
compartment of Ecuadorian patients with T2D as compared to Dutch patients with T2D

Ethnic Differences in Leptin levels
It is well accepted that chronic obesity stimulates the production of the adipocyte-

derived hormone leptin [1]. Leptin has direct effect on T cells, stimulating IFN-γ production, 
thereby promoting Th1 cell differentiation and accumulation of these cells in adipose 
tissue. IFN-γ also increases the MHC class II expression on adipocytes increasing in this 
way direct T cell stimulation [2]. Thus leptin is considered an important inflammatory 
compound. Notably, leptin-deficient (ob/ob) and leptin receptor–deficient (db/db) mice 
become obese, but the characteristic inflammation associated with obesity is absent [3]. 
Adiponectin, another adipokine, counteracts the effects of leptin. Adiponectin promotes 
M2 macrophage polarization [4], inhibits T cell activation [5] and modulate NK cell function 
[6]. Thus, in obesity a combination of increased leptin and reduced adiponectin production 
by adipocytes is well described [7-9]. 

Relevant to our question is that Bribiescas et al reported ethnic population differences 
in mean leptin levels in healthy men. They studied Ache Amerindians of Paraguay 
compared to US runners. Although Ache exhibited higher adiposity (fat %, Ache 17.9 

Figure 1. Serum and monocyte alterations of Dutch T2D patients.
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± 1.8 SD; US runners 9.7 ± 3.2, p < 0.0001), leptin levels were nonetheless significantly 
higher in the runners (Ache 1.13 ng/ml ± 0.38 SD; runners 2.19 ± 1.15; p < 0.007)[10]. These 
results showed that there is an important ethnic variation in leptin levels independent 
of adiposity.  Our data are similar in that our tested T2D populations were almost similar 
in BMI (Quito, 31.4, Rotterdam, 28.4), yet leptin levels were considerably higher in the 
Rotterdam group. Further support for an ethnic ground for difference in leptin levels comes 
from the studies of Mente et al [11], who investigated the ethnic differences in adiponectin 
and leptin concentration and their relationship with insulin resistance. Serum leptin was 
significantly higher in South Asians and Aboriginal people than in Europeans and Chinese.  
Adiponectin concentrations were significantly higher in Europeans and Aboriginal people 
than in South Asians and Chinese. This study clearly shows an important ethnic variation 
in the secretion level of leptin and adiponectin. Delgadillo et al studied the nutritional 
status and circulating leptin levels in the Amerindian Tepehuán compared with Mestizo 
populations of Durango City, Mexico. Both normal and overweigh Amerindian Tepehuán 
subjects showed lower leptin concentrations than the comparable Mestizo subjects [12].  

In sum there is certainly ground for the idea that Amerindians have lower leptin 
production irrespective of obesity. It is tempting to speculate that genetic differences in the 
Ob gene that encodes leptin as well as in its receptor are the cause of this ethnic variation. 
For example among Taiwanese aboriginal populations, greater incidences of obesity were 
associated with the G- 2548A polymorphism in the promoter region of the leptin gene and 
the Gln223Arg (Q223R) polymorphism of the leptin receptor gene [13]. Similar findings are 
evident among Brazilian populations [14]. Variations in the proopiomelanocortin (POMC) 
gene have also been associated with variations in leptin levels [15]. Unfortunately, studies 
that investigate leptin and adiponectin profiles in relation to leptin, adiponectin or POMC 
gene polymorphisms in Ecuadorian populations have not been carried out. 

Micronutrient Deficiencies in Ecuadorian patients  
The micronutrient status may be another factor that contributes the observed 

differences between Ecuadorian and Rotterdam T2D patients. In Ecuadorian populations 
the nutritional deficiency for iron, vitamin A, vitamin D  and zinc is well described [16-20]. 

Iron deficiency is described in around 38% of Andean populations [21]. A recent 
Ecuadorian survey reported 14,7% iron deficiency in women aged from 12 to 49 years old.  
In addition 25,7% of children under 5 years old had this deficiency [22].  Iron deficiency has 
detrimental effects on the immune system.  Ekiz et al [23], reported that iron deficiency 
affects the cytokine activity (e.g. IL-6), diminishes the phagocytic activity, the oxidative 
burst activity of neutrophils and monocytes and the levels of immunoglobulins. In sum 
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iron deficiency can alter various mechanisms of innate and humoral immune defense 
resulting in an increased incidence and duration of infections. 

Early in 1986 low vitamin A levels were reported in serum of 14.1% of 1600 preschool 
children of Ecuador [24]. In 1993, Rodriguez et al reported marginal vitamin A deficiency 
in around 17.6% of Ecuadorian children from 12 to 59 months [25]. This trend does not 
change over the time, recently a national Ecuadorian survey reported vitamin A deficiency  
in 17.1% of Ecuadorian children under 5 years [22]. Vitamin A deficiency is associated with 
an increased incidence of respiratory infections and intestinal diseases in children [17].  
Vitamin A seems to be important in maintaining the homeostasis of both humoral and 
cellular immunity in the mucosa.  In this way, vitamin A-deficient rats showed important 
alterations in mucosal dendritic cells, increased IL-12 production as well as TLR2 and MyD88 
and decreased production of IFN-γ and IgA in intestinal mucosa [26].  Importantly, Garcia 
et al [27] reported that obese individuals have lower vitamin A levels as compared to lean 
controls. It seems that vitamin A has important effect in the chronic inflammatory effect 
in obese people since vitamin A deficiency increases a T-helper type 1 (Th1) response, 
elevates levels of pro-inflammatory cytokines, increases the expression of leptin, resistin 
and promotes adipogenesis. It is therefore unlikely that vitamin A deficiency plays an 
important role in the in general reduced inflammatory response in the obese Ecuadorian 
subjects.

In the Ecuadorian population zinc deficiency is described in approximately 43% of the 
elderly population [28]. In Ecuadorian women (12- 49 years old) the zinc deficiency is around 
56,2% [22].  Zinc is an essential micronutrient required for neurological development and 
adequate immune function. Zn is a constructive component of many important enzymes 
and proteins. Nowadays there is a better understanding of the relationship between zinc 
deficiency and inflammation. For example, in the monocyte THP-1 cell line, zinc deficiency 
increased expression of several markers of inflammation such as ICAM-1, MHC class II, CD86 
and an increased expression of cytokines such as IL-1β and IL-6 in response to LPS [29]. 

Hirano et al, showed that intracellular zinc participates in signaling events in immune 
cells. A decrease in intracellular free zinc induced surface expression of MHC class II 
molecules, which can activate CD4+ T cells [30-32].  Furthermore, intracellular zinc is 
capable of suppressing nuclear factor kappa B (NF-kB) and consequently the secretion of 
TNF-α, IL-1β, and other inflammatory cytokines [32, 33]. Additionally, zinc induces A-20 
(TNFAIP3, one of our cluster 1 inflammatory genes, see chapter 3), which inhibits NF-kB 
signaling, resulting in a down regulation of the mRNAs for inflammatory cytokines [34, 35]. 
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The association of Zn deficiency with the metabolic syndrome, T2D and diabetic 
complications is also well described [36]. Zn is a requirement for insulin storage and 
secretion; it has a direct or indirect antioxidant action, and an insulin-like action [36, 37].

However, Zn deficiency is associated with impaired Th-1 dependent adaptive immune 
response as evidenced by low IL-2 and IFNγ production by peripheral mononuclear 
cultured cells of zinc deficient older subjects [28]. Furthermore, cutaneous Delayed Type 
Hypersensitivity (DTH) to recall antigens is low in these older subjects [28]. The complex 
role of zinc in inflammation is discussed by Sempertegui in his thesis (ISBN 978-94-91811-
08-1). Essentially, this role would depend on the duration and severity of deficiency which 
in turns is related to dietary income, uptake at intestinal level, transcellular transport of 
Zn ions, interaction with other micronutrients, and concurrent acute or chronic infections.

Therefore, there are not enough evidences to conclude on the association between 
chronic zinc deficiency with the decreased inflammatory state of serum and monocytes 
of the Ecuadorian subjects studied in this thesis. Nevertheless formal studies should be 
carried out on the relationship.

Chronic helminth infection in Ecuadorian patients
Currently, it is considered that diseases such as allergies and autoimmune diseases can 

be the consequence of an altered and diminished exposure to commensal microbes (the 
hygiene hypothesis) [38-41]. Several studies in human and animals indicate that helminth 
infection is associated with reduced allergic reactivity and enhanced suppressive activity 
of natural regulatory T cells production and IL-10 [39, 42-45]. In addition, helminths 
can stimulate the production of regulatory B cells [46, 47], natural killer T cells [48] and 
alternatively activated macrophages [49, 50], which all contribute to immune suppression.

In Ecuador the prevalence of helminth infection in the general population is not known 
in detail. However, Peplow examined in 1982 a total of 1568 people from 12 different 
regions of Ecuador. Remarkably, 96% of the samples were positive for parasites! On 
average 2.3 species per person were found [51]. In 2001 another study revealed that 90% 
of the children studied were positive for at least one pathogenic intestinal parasite; 51% 
had helminthic infection [52].  In 1985 the Ecuadorian Ministry of Health implemented an 
anti-parasite program (Pepin program) for massive parasite treatment. Recently, González 
et al reported in a study of 167 people with ages ranging from 5 to 82 years a helminth 
prevalence of  48.5% in rural areas, and 28.7% in an urban area [53]. Although strongly 
decreased compared to earlier years, these figures are still considerably higher than in 
Western Europe. 

Based on the observation of a decreased frequency of autoimmune, allergic and 
inflammatory diseases in under-developed countries; helminth-related therapies are 
currently being studied as a promising treatment for these pathologies in developed 
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countries [54-56]. Specifically, chronic helminth infections might protect against insulin 
resistance by restricting the effective caloric intake by the host and indirectly via a Th2 
polarization of the immune system [57]. Notably, Hays et al reported that aboriginal adults 
from Australia with previous S. stercoralis infection were 61% less prone to have T2D [58].  
Additionally, a Dutch group is conducting a cluster-randomized placebo-controlled trial in 
Indonesian subjects which aims to determine whether helminth infections are associated 
with a better body insulin sensitivity and metabolic homeostasis [57].

Given the average age of patients and controls, is it such that the Ecuadorian subjects 
used in the studies presented in this thesis, had a high prevalence of past or present parasitic 
infection with a skewed Th2 system and M2-like macrophages? Or with other words: Is the 
decreased monocyte inflammatory profile observed in the Ecuadorian cohorts caused by 
chronic or past (childhood) exposure to helminthic parasites, which left an (epigenetic) 
imprint in MPS cells for M2 like reactions?

Andean High Altitude and Immune System
Chronic high altitude is without doubt one of the factors to be considered since the 

Ecuadorian subjects described in this thesis live at 2880 meters above sea level. It has 
been described that chronic high altitude exposure is able to induce immune suppression 
altering the number and function of immune cells [59-61]. The sympathico-adrenal axis 
plays a role in the immune adaptation occurring in high altitude areas [62].  Goel et al. 
reported that people living at high altitudes had significantly higher total leukocyte counts 
as compared to people living in lower areas. Importantly, monocytes appear to be the 
most vulnerable hematopoietic cell altered by high altitude. Lymphocytes in this study 
did not show a statistically significant difference [59]. Other studies show that chronic high 
altitude exposure activates innate immune responses and suppresses Th1 lymphocyte-
mediated immunity [61, 63, 64].  However, decreased in vitro monocyte activation despite 
increases in the number of monocyte have also been reported, together with decreased 
activity of natural killer cells [59]. Needless to say that also further study on the effect of 
high altitude on the abnormal immune function in T2D as described in the introduction of 
this thesis is needed.

Putative factors responsible for the increased expression of HGF and genes/microRNAs 
involved in the adhesion, motility and shape change of the monocytes of Ecuadorian patients 
with T2D as compared to Dutch patients with T2D.

An important other difference between the Rotterdam and Quito cases with T2D 
is that the Rotterdam cases were treated with statins while the Quito cases were not. 
Therefore serum lipid values probably differ considerable between the Quito cases 
and the Rotterdam cases, the Quito cases mean cholesterol =237, triglycerides=205, 
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HDL=43 and LDL=158, while the Rotterdam cases probably had almost normal values 
(formal evaluation of the lipid values need to be carried out in the coming months for 
publication of the Rotterdam data). Chapter 3 shows that particularly in situations of 
high serum lipids the monocytes of the Quito T2D patients adopt a profile with relatively 
high expression of genes and microRNAs involved in shape change of the cell, but with a 
reduced inflammatory gene expression profile. A similar profile (high shape change gene 
expression, high HGF expression and reduced inflammatory gene expression) occurs in 
the Quito patients (high lipid values) as compared to the Rotterdam patients (normal lipid 
values). We therefore assume that high serum lipid values contrary to general belief, at 
least at the Ecuadorian genetic background, induce anti-inflammatory monocytes with a 
gene pattern compatible with well-functioning pro-angiogenic cells (PACs or CACs). Such 
PACs could be instrumental in the endothelial repair of vessel walls, damaged by the high 
serum lipids. However functional experiments on monocyte-derived PACs are needed to 
prove this assumption.

The development and well-functioning of PACs is highly sensitive to peripheral 
conditions. In situations of chronic low-grade inflammation, as induced by metabolic 
stress such as hyperglycemia, the availability and functionality of PACs has been described 
as  significantly decreased [65, 66].  Many studies on MetS and T2D in human subjects 
and animals models show that monocytes/macrophages increase their pro-inflammatory 
characteristics under these circumstances and that the development of PACs is hampered 
under such circumstances[66]. 

Using experimentally induced diabetes (streptozotocin) in C57BL/6 and FVB mice [67], 
a 40% reduction of PACs and a 50% increase in the production of classical macrophages 
from bone marrow was observed in comparison to control mice. Since the conditions of 
culture of cells from the bone marrow of diabetic mice and control mice were identical, the 
findings indicate that an impaired glucose tolerance in vivo caused these alterations in the 
development of myeloid progenitors by promoting the development of pro-inflammatory 
macrophages at the expense of decreased PAC formation. In this study it was also reported 
that PACs and macrophages were derived from the same precursor fraction. 

Another study showed that the number of PACs that was generated from precursors of 
peripheral blood in patients with diabetes, correlated inversely with the levels of HbA1c, 
reflecting the degree of hyperglycemia [67]. 

Taken together, all these findings have led to the classical concept that the MPS system 
in MetS and T2D is developmentally skewed towards catabolic tissue-destructive M1-like 
macrophages away from anabolic reparative M2-like monocyte-derived PACs. 

Interestingly, in the Ecuadorian T2D patient cohort, we observed that such skewing 
towards catabolic M1 like macrophages away from anabolic M2 like monocyte-derived 
PACs indeed occurs in association with hyperglycemia, yet does not occur in situations of 
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hyperlipidemia. In contrast skewing towards M2 like monocyte-derived PACs away from 
catabolic M1 like macrophages occurred in the latter situations. 

In some preliminary experiments we have tested PAC formation from monocytes in a 
series of Dutch T2D patients and non-diabetic controls and found that the generation of 
PACs was earlier related to gender (females > males), age (young > old) and BMI (lean > 
obese) than to disease. Further studies are obviously needed.

Figure 2. Skewing of myeloid development under inflammatory conditions: a hypothetical concept. 
The concept depicts the idea that due to inflammatory cytokines or other inflammatory mediators the 
normal steady state development of myeloid precursors into anabolic cells (vascular repair cells, M2 cells, 
tolerogenic dendrititc cells) skews to catabolic M1 macrophages or dendritic cells capable of producing 
inflammatory Th1 and Th17 T cells.
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7.2 LIMITATIONS OF OUR STUDIES

Patients and controls
In retrospect, we can see that a strong limitation of our series on Ecuadorian and Dutch/

German T2D patients is their heterogeneous ethnic and environmental background. At 
the start of our studies we did not make any ethnic separation for the Exiqon microRNA 
expression arrays on monocyte material. Post hoc we did analyze these groups separately, 
but unfortunately studies became underpowered. It is also clear that we should have 
stratified for other determinants than hyperglycemia as a marker for T2D. Other conditions 
of the MetS, such as serum lipid state and body weight, play an equally important role 
for the inflammatory state of serum and monocytes. Also age and gender, smoking, 
oral contraceptive use and other drug use have been found by us and others in flanking 
studies as confounders of the inflammatory state. Needless to say that future studies need 
large numbers of subjects and should carefully control for all these determinants. In the 
series of Ecuadorian subjects studied for this thesis, our non-diabetic control group was 
not matched for age to our diabetic patient group, and non-diabetic controls were on 
average 8 years younger than our patients. In addition, the non-diabetic control group 
has a high prevalence of obesity and dyslipidemia.  We have in our analysis controlled for 
these confounders, but an a priori matching should have been better on large numbers of 
patients and non-diabetic general population controls.

Laboratory techniques and analysis
To determine the microRNA profiles in monocytes we used the Exiqon array system, 

which allowed us to find a considerable number of significantly different microRNAs 
between controls and T2D patients when combining the Ecuadorian and Dutch/German 
patient cohorts. To validate the microRNAs with greatest expression differences in these 
finding cohorts we used TaqMan qPCR on RNA isolated from monocytes from a distinct 
Ecuadorian T2D patient population. Only a single microRNA, miR-34c-5p, showed 
significantly different expression between patients and controls. At least part of the 
inability to reproduce most results obtained in the finding cohort might be ascribed to 
the profound technical differences between the Exiqon array technique and TaqMan 
qPCR. Both techniques have strengths and weaknesses regarding the ability to identify 
selectively particular microRNAs (e.g. monocyte microRNA-155 is more difficult to detect 
in qPCR than in Exiqon array). In hindsight, using the same technique for finding and 
validation studies would have been preferable and might have revealed more microRNAs, 
since technical variation would have been eliminated. On the other hand our approach 
probably identifies very robust biomarker microRNAs.
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7.3 FUTURE STUDIES

Our studies described in this thesis and in the literature support the view that T2D is a 
not a clear separate and distinct pathological entity, but rather a phase in a continuum  of 
processes partly marked by dynamic changes in pro-inflammatory and anti-inflammatory 
states of the MPS and other immune cells, such as the T cells. In flanking research on another 
(auto-)inflammatory conditions, such as mood disorders (which show a higher incidence 
of T2D) members of our team have found dynamic changes in the pro-inflammatory and 
anti-inflammatory state of circulating monocytes depending on inheritance, age and 
activity and duration of the mood disorder [68, 69]. With regard to T cells our department 
at ErasmusMC described that the peripheral blood T-cell compartment of diabetes-free 
“relatively healthy” morbidly obese subjects is characterized by an increased homeostatic 
proliferation of both CD4+ and CD8+T cells [70]. This increased homeostatic proliferation 
was associated with an increase in peripheral blood CD4+ T cell numbers, with a skewing 
toward a Treg- and Th2- dominated phenotype, suggesting an anti-inflammatory set point 
of the peripheral blood CD4+ T-cell compartment. On the basis of literature data which 
show a pro-inflammatory set point of the T cell system in atherosclerotic plaques and T2D, 
we speculated that changes away from the T regulatory and Th2-dominated phenotype 
toward a more pro-inflammatory Th1- or Th17-dominated set point may prove an 
important indicator, or even mediator, for the development of atherosclerosis or diabetes 
in diabetes-free “relatively healthy” morbidly obese subjects. Longitudinal studies in obese 
subjects will be important to address these issues further.

Indeed further detailed research is necessary to unravel pro-inflammatory and anti-
inflammatory states of different immune compartments (adipose tissue, circulating 
monocytes, serum/plasma, vessel walls and pancreatic islets) in the different phases of 
obesity/dyslipidemia developing into insulin resistance/diabetes and atherosclerosis. 
Also attention should be paid to the ethnic back ground of the studied subjects, as well as 
various environmental factors (high altitude, micronutrient state) and comorbidities (such 
as chronic helminthic infections, and probably the microbiome in general).

Only when we have unraveled the pathogenic influence of these factors and states, 
we will be able to detect biomarkers, such as microRNAs, for these states and transitions 
between these states.

At present we have embarked on a large study in the Quito population (two cohorts of 
the general population of two socio-economic backgrounds) to clarify some of the issues. 
The following research issues should be addressed to make further progress: 
1. Determining the prevalence of obesity, dyslipidemia, hyperglycemia and another 

inflammatory condition (major depression) in these populations and to determine 
their relationship with nutritional state and chronic parasite infection. 
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2. Confirming the anti-inflammatory monocyte and serum profile in the T2D patients 
of these cohorts, paying in particular attention to leptin and HGF levels and their 
expression in circulating monocytes. 

3. Studying possible environmental (e.g. parasite, micronutrients, altitude) and genetic 
(e.g. leptin polymorphism) factors that are related to altered leptin levels and pro-
inflammatory and anti-inflammatory gene expression profiles in subjects of the 
cohorts. 

4. Studying the same parameters in cohorts of different ethnic backgrounds, such as 
cohorts sampled in the Netherlands.  
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ABBREVIATIONS

Abs  Antibodies
A20  Tumor necrosis factor a-induced protein (TNFAIP) 3
ABL1  Abelson murine leukemia viral oncogene homolog 1
ATF3  Cyclic AMP-dependent transcription factor ATF-3
BCL2A1  Bcl-2-related protein A1
CACs  Circulating pro-angiogenic cells
CCL2  Chemokine (C-C motif ) ligand 2. Monocyte chemotactic protein 1 (MCP1)
CCL20  Chemokine (C-C motif ) ligand 20
CCL4  Chemokine (C-C motif ) ligand 4
CCL7  Chemokine (C-C motif ) ligand 7
CD9  Cell division 9
CDC42  Cell division control protein 42 homolog
cDNA  Complementary Deoxyribonucleic acid
cMET  Hepatocyte Growth Factor receptor
Ct  Cycle threshold
CXCL2  Chemokine (C-X-C motif ) ligand 2
DC  Dendritic cell
DHRS3  Short-chain dehydrogenase/reductase 3
DUSP2  Dual specificity protein phosphatase 2
EGF  Epidermal growth factor
EMP1  Epithelial membrane protein 1
FABP5  Fatty acid-binding protein, epidermal
GAD-65  Glutamic acid decarboxylase 65
HGF  Hepatocyte growth factor
HGF-R  Hepatocyte growth factor receptor
HSPA1A  Heat shock 70 kDa protein 1A
HSPA1B  Heat shock 70kDa protein 1B
IL-10  Interleukin 10  
IL-6  Interleukin 6
ILB  Interleukin 1 beta
LADA  Latent Autoimmune Diabetes in Adults
MAPK6  Mitogen-activated protein kinase 6
MCP-1  Monocyte chemotactic protein 1 (CCL2)
MetS  Metabolic Syndrome
MIP1β  Macrophage inflammatory protein 1 beta (CCL4)
miR-122  MicroRNA-122
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miR-138  MicroRNA-138
miR-146a MicroRNA-146a
miR-410  MicroRNA-410
miR-574-3p MicroRNA-574-3p
miR-92  MicroRNA-92
mRNA  Messenger Ribonucleic acid 
NAB2  NGFI-A-binding protein 2
NFκB  Nuclear factor kappa-light-chain-enhancer of activated B cells
PBMC  Peripheral blood mononuclear cells
PCR  Polymerase chain reaction
PDE4B  cAMP-specific 3’,5’-cyclic phosphodiesterase 4B
PDFG  Platelet-derived growth factor
PGS2  Prostaglandin synthase-2
PTGS2  Prostaglandin-endoperoxide synthase 2
PTPN7  Protein tyrosine phosphatase non-receptor type 7
PTX3  Pentraxin-related protein 3
qPCR  Quantitative polymerase chain reaction
RNA  Ribonucleic acid
RT-PCR  Real-time polymerase chain reaction
STX1A  Syntaxin-1A
TNF  Tumor necrosis factors
TNFAIP3  Tumor necrosis factor, alpha-induced protein 3
TGFβ  Transforming growth factor β
T2D  Type 2 diabetes
VEGF  Vascular endothelial growth factor
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ENGLISH SUMMARY

The immune system is composed of a complex group of molecules, cells and tissues 
with various beneficial functions such as defense against pathogens and tumors via 
an inflammatory reaction and tissue repair. However, excessive inflammatory immune 
responses are the cause of allergies, auto-inflammation and autoimmune diseases. 

In this thesis we focus in particular on a special group of cells of the immune system, 
namely the mononuclear phagocytes, and more specifically on the monocytes of patients 
with type 2 diabetes (T2D). Human monocytes constitute 2-10% of all leukocytes in the 
peripheral blood; typically they express the cell surface marker CD14. The monocytes 
are the precursors of macrophages which are recognized as important pathophysiologic 
agents in chronic inflammatory processes such as obesity, which can lead to the Metabolic 
Syndrome (MetS) and T2D.  Depending on the triggering factor macrophages can skew 
towards two polar phenotypes (M1 or M2 macrophages). The M1 macrophages (also 
called classically activated macrophages) express numerous pro-inflammatory mediators 
including TNF-α, IL-1, IL-6, reactive nitrogen and oxygen intermediates, which have a strong 
microbicidal and tumoricidal activity, while M2 macrophages (also called alternatively 
activated macrophages) express molecules and growth factors associated with anti-
inflammatory reactions, tissue repair and remodeling.

A pathologic increase of visceral adipose tissue causes activation of local innate and 
adaptive immune cells which skew towards a production of pro-inflammatory cytokines/
chemokines. These cytokines/chemokines spill over in the circulation and are capable of 
inactivating the insulin receptor in multiple cell types, including muscle and liver cells. 
This causes insulin resistance and T2D. The adipose tissue dysfunction is manifest not only 
for the secretion of cytokines (e.g. of TNF, IL-6, IL-1β, PAI1) and chemokines (CCL2, CCL4, 
CCL20, CXCL14), but also for the secretion of proinflammatory adipokines (e.g. leptin). This 
chronic proinflammatory secretion pattern in adipose tissue can be seen as a systemically 
low grade of inflammation which perpetuates the positive feedback loop of inflammation.

Similar to what is happening worldwide, the prevalence of obesity, the MetS and T2D 
is increasing exponentially in Ecuador. The social factors seem to be the most important 
inducing factors for the development of this disease. The prevalence of disease increases 
with age and is particularly high in the older population, averaging 10% in groups of 50-59 
years. Overall, the prevalence of diabetes in urban areas ranges between 7 and 8%, while 
in rural areas it is only 1 to 2%.
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MicroRNAs are important regulators of translation and stability of messenger RNA 
(mRNA). They negatively regulate gene expression at post-transcriptional level by 
mediating translational repression or degradation of the mRNA targets. The microRNAs 
have been highly conserved during evolution; around almost 2000 mature microRNAs 
have been identified in the human. The dysregulation of the microRNA network has 
been implicated in the development of MetS and diabetes. Various inflammatory triggers 
appear to induce the selective expression of microRNAs in monocytes/macrophages, 
which in turn functionally affect the expression of proteins involved in the inflammatory 
cascade. Additionally, circulating microRNA expression patterns have been suggested to 
have a predictive value as potential biomarkers in diabetes. 

The aim of the studies described in this thesis is firstly to establish a putative dysregulated 
pattern of microRNAs in monocytes of T2D patients which is able to distinguish patients 
from non-diabetic controls (biomarker study), and secondly to correlate the dysregulated 
microRNA expression to inflammatory markers in monocytes and serum to understand 
better the molecular pathogenic processes playing a role in T2D. 

In the first part of Chapter 3 we describe that, in an Exiqon array study on the 
monocytes of 34 T2D patients recruited in the German Diabetes Center, Düsseldorf, 
Germany (n=10) and from three medical centers in Quito, Ecuador (n=24) in 2009;  and a 
total of 25 healthy controls (n =9 from Germany and n =16 from Ecuador), we were able 
to identify 142 significantly differentially expressed microRNAs, 15 having the strongest 
power to discriminate T2D patients from controls. However, using this approach only 
partial separation could be made between T2D cases and non-diabetic controls (sensitivity 
66%, specificity 90%).  We thereafter continued to use the microRNAs as markers to test the 
inflammatory function and state of the circulating monocytes in patients with T2D, since 
there is a paucity of studies focusing on the inflammatory state of these circulating cells in 
T2D. Therefore, we chose to select from the differentially expressed microRNAs those with 
the highest fold changes (FC) between cases and controls with FC of >1.4 or <0.6 to have 
solid microRNA markers for testing in TaqMan analyses. Another criterion for selection was 
that TaqMan probes and primers were available. The microRNAs that fulfilled the selection 
criteria were miR-138; miR-34c-5p; miR-410; miR-574-3p and miR-576-3p. Additionally, 
we tested microRNAs-146a and -155, since these microRNAs are well known regulators 
of inflammation, and have been identified in T2D PBMC by others before.  In the TaqMan 
studies on a new “validation” cohort of 64 T2D patients (mea age=61 years; BMI= 29.5; 
hypercholesterolemia= 63% and a raised LDL in 44%) recruited from four medical centers 
in Quito, Ecuador from 2009 till 2012 and a total of 44 healthy controls (mean age=53 years; 
BMI=28.7; hypercholesterolemia=68% and raised LDL in 50%); one microRNA (miR-34c-5p) 
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was validated as significantly over expressed in the T2D monocytes. This microRNA is 
known to have a function in altering the expression of c-Met, the receptor for HGF. In 
addition, this microRNA participates in diverse cellular processes, such as inflammatory 
responses; growth, apoptosis and invasiveness of tumor cells. Mir-34c-5p correlated to the 
expression of miR-138, miR-146a and miR-574-3p, although these latter microRNAs were 
not significantly differently expressed.

Furthermore, we tested for 25 selected genes in the T2D monocytes, these 24 selected 
genes form two mutually correlating gene clusters. The first cluster comprises 12 pro-
inflammatory cytokine/compound genes (IL-1B, IL-6, TNF, TNFAIP3, PGS2, CCL20, PTX3, 
PDE4B, DUSP2, ATF3, CXCL2 and BCL2A1); the second cluster comprises 12 chemotaxis, 
adhesion, motility, and metabolism genes (CCL2, CCL7, MAPK6, NAB2, CD9, STX1A, EMP-1, 
CDC42, PTPN7, DHRS3, FABP5, HSPA1A). We found over expression of 3 mRNAs of the 
second cluster (CD9, DHRS3 and PTPN7) in the validation cohort of the 64 Ecuadorian 
patients and 44 area controls. Mir-34c-5p correlated to FABP5, MAPK6, HSPA1, DHRS3 and 
CD9.  Since the abnormally expressed mRNAs and microRNA-34c-5p are important for cell 
morphology, adhesion, shape change, and cell differentiation, we assume that the T2D 
monocytes of the Ecuadorian patients are involved in such processes. We hypothesize that 
the monocytes in the T2D patients might be pro-angiogenic cells.

In general there did not exist an over expression of classical inflammatory genes 
in the monocytes of the Ecuadorian T2D patients. Classical inflammatory genes (e.g. 
TNFAIP3) were only over-expressed in monocytes of patients with normal serum lipid 
values. Remarkably, in dyslipidemia, there was a significant reduction in the expression of 
inflammatory genes (e.g. ATF3, DUSP2 and PTGS2). Therefore we assume that in Ecuadorian 
patients with dyslipidemia the circulating monocytes are pro-angiogenic cells with an 
anti-inflammatory profile. 

Since HGF is a well-known T2D related molecule with angiogenic and islet repair 
properties and since HGF is used as a marker for pro-angiogenic cells, we also tested HGF 
in the monocytes of the validation series of the 64 Ecuadorian patients and the 44 non-
diabetic Ecuadorian controls and related the expression of HGF to the other genes and the 
microRNAs in the monocytes. These experiments are described in the first part of Chapter 
4. HGF was indeed over expressed in the monocytes and primarily related to the cluster 2 
genes. 

We also tested the above referred “monocyte” microRNAs in the serum of the validation 
cohort of the Ecuadorian patients and the non-diabetic controls (Chapter 4 and 5). We 
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compared data to the serum level of a commercially available series of 12 T2D related 
compounds of inflammatory or growth factor character (TNFα, IL-1β, IL-6, NGF, HGF, PAI, 
Resistin, CCL2, Adiponectin, Leptin, IL-8, and CCL4). This study showed a decreased serum 
level of the anti-inflammatory microRNA 146a, an increased level of pro-inflammatory IL-8 
and an increased HGF level as discriminating markers between Ecuadorian T2D patients 
and their non-diabetic  controls. Since the non-diabetic controls had the same high 
frequency of obesity and dyslipidemia these serum markers can be seen as discriminating 
markers of the process of failure of glucose control occurring on the background of obesity 
and dyslipidemia.

In Chapter 5, we also compared the serum level of the microRNAs and the inflammatory/
immune activation compounds to the expression levels found of the same compounds in 
the circulating monocytes of T2D patients, to see if there are indications for the idea that 
the circulating monocytes are the source of the compounds in serum. 

Although HGF expression was significantly raised in the serum and the monocytes of 
the T2D patients (see before),gene expression in the monocytes did not correlate with 
the serum level of HGF. Neither did the expression of pro-inflammatory cytokine genes in 
monocytes to the serum levels of these cytokines, nor the level of the 6 tested microRNAs 

We concluded that in T2D Ecuadorian patients, the microRNA and gene expression of 
important inflammatory and repair genes in T2D circulating monocytes differ from their 
expression in serum. 

In conclusion the monocyte compartment of Ecuadorian T2D patients shows in 
general a reduction in gene expression of typical pro-inflammatory genes (predominantly 
in dyslipidemia), while genes and microRNAs involved in cell adhesion, cell differentiation, 
growth and vascular repair, such as HGF and miR-34c-5p, are up regulated. The serum 
compartment, in contrast to the monocyte compartment, does show signs of pro-
inflammatory activity, e.g. high levels of IL-8 and reduced levels of anti-inflammatory miR-
146a and altered levels of miR-574-3p. Moreover the serum compartment has higher levels 
of HGF.

Collectively the findings in the studies for this thesis in addition suggest that the 
dynamics of the diabetes-related changes in the monocyte intracellular compartment 
differ substantially from the dynamics of the diabetes-related changes in the serum 
compartment of patients with T2D.  Most likely different T2D related pathophysiological 
forces drive the activation and de-activation set points of the circulating monocyte and 
the serum compartment.
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In the general conclusion section we compare the findings collected in the Ecuadorian 
cohort to preliminary findings in Dutch patients from the Rotterdam area with T2D (n=28) 
and their respective non-diabetic controls (n=22).  We aimed to see whether we would 
find a similar low inflammatory state of the serum and an anti-inflammatory state of the 
monocytes in Dutch T2D patients. 

The serum cytokine tests showed that the Dutch patients with T2D have high levels 
of the classical pro-inflammatory cytokines (IL-1β, IL-6, TNFα, IL-8 and CCL4) as compared 
to the Ecuadorian patients with T2D. Importantly, we observed that pro-inflammatory 
leptin levels were almost three times higher in the Dutch patients with T2D, while anti-
inflammatory adiponectin levels were two times higher in Ecuadorian T2D patients.

We also analyzed the expression of the set of immune genes in the monocytes of the 
Dutch T2D subjects. The gene expression of inflammatory compounds that belong to the 
inflammatory clusters A and B such as CXCL2, PTX3, IL-6, IL1β, CCL2, and CCL20 were found 
to be significantly over expressed in Dutch T2D subjects.  In contrast, in Ecuadorian T2D 
patients there was an over expression in monocytes of cluster C genes (the genes with an 
adhesion, motility, and cell differentiation function), which reached statistical significance 
for CD9, DHRS3 and HGF (see before). Resistin was also over expressed in the monocytes 
of Dutch patients with T2D, as was a different microRNA, i.e. miR-410, as compared to what 
was found in the Ecuadorian cases of T2D (i.e. miR-34c-5p).

In the discussion section we mainly discuss which factors could be responsible for the 
differences between the Ecuadorian and Dutch individuals and patients, i.e. the reduced 
inflammatory state of the serum and monocyte compartment of Ecuadorian patients 
with T2D as compared to Dutch patients with T2D. Several factors could be in theory 
responsible, we discuss ethnic differences in leptin levels, micronutrient deficiencies in 
Ecuadorian patients (vitamin A, iron, and zinc), chronic helminth infection in Ecuadorian 
subjects (the hygiene hypothesis), and the effect of Andean high altitude on the immune 
system as possible causes of the differences found between Rotterdam and Quito subjects. 
A role for medication is also possible since many patients in Rotterdam are on statins, while 
those in Quito are not.
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El sistema inmune está compuesto por un complejo grupo de moléculas, células y 
tejidos con diversas funciones beneficiosas tales como la defensa contra patógenos y 
tumores a través de reacciones inflamatorias y reparación de tejidos. Sin embargo, las 
respuestas inmunes inflamatorias excesivas son la causa de alergias,  auto-inflamación  y 
enfermedades-autoinmunes. 

En esta tesis nos centramos sobre todo en un grupo especial de células del sistema 
inmune; los fagocitos mononucleares, y más específicamente en los monocitos de 
pacientes con diabetes mellitus tipo 2 (DM2). Los monocitos humanos constituyen el 
2-10% de todos los leucocitos en la sangre periférica; normalmente expresan el marcador 
de superficie celular CD14. Los monocitos son los precursores de los macrófagos quienes  
son reconocidos como agentes fisiopatológicos en los procesos inflamatorios crónicos 
tales como la obesidad, el síndrome metabólico (SM) y DM2. Dependiendo del estímulo, 
los macrófagos pueden diferenciase en dos fenotipos distintos (macrófagos M1 y M2). 
Los macrófagos M1 (también llamados macrófagos clásicamente activados) expresan 
numerosos mediadores pro-inflamatorios como TNF-α, IL-1, IL-6, especies reactivas del 
nitrógeno y del oxígeno. Estas substancias poseen una fuerte actividad microbicida y 
tumoricida. Por el contrario, los macrófagos M2 (también llamados macrófagos activados 
alternativamente) expresan moléculas y factores de crecimiento asociados con reacciones 
anti-inflamatorias, de reparación de tejidos y de remodelación.

Un incremento patológico de tejido adiposo, especialmente el tejido visceral provoca 
la activación de células inmunitarias innatas y adaptativas locales que inducen la 
producción de  quimiocinas y citoquinas pro-inflamatorias. Estas quimiocinas/citocinas se  
vierten en la circulación y son capaces de inactivar los receptores de insulina en múltiples 
tipos de células, incluyendo las células musculares y hepáticas. Como consecuencia 
se induce una resistencia a la insulina e inevitablemente DM2. La disfunción del tejido 
adiposo se manifiesta no sólo para la secreción de citoquinas (ej. TNF-α, IL-6, IL-1β, PAI 1) y 
quimiocinas (CCL2, CCL4, CCL20, CXCL14), sino también por la secreción de adipoquinas 
proinflamatorias (ej. leptina). Este patrón de secreción proinflamatorio en el tejido adiposo 
se perpetúa crónicamente, provocando una retroalimentación positiva de inflamación.

La prevalencia de obesidad, SM y DM2 está aumentando de manera exponencial en 
Ecuador al igual que en todo el mundo. Los factores sociales parecen ser los factores 
inductores más importantes para el desarrollo de esta enfermedad. La prevalencia de la 
enfermedad aumenta con la edad y es particularmente alta en la población más vieja, 
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alcanzando una prevalencia del 10% en los grupos de 50-59 años. En las zonas urbanas la 
prevalencia oscila entre el 7 y el 8%, mientras que en las zonas rurales es sólo de 1 a 2%.

Los microARNs son importantes reguladores de la traducción y estabilidad del ARN 
mensajero (ARNm). Estas moléculas regulan negativamente la expresión génica a nivel 
post-transcripcional reprimiendo la traducción o degradando el ARNm. Los microARNs 
han sido altamente conservados durante la evolución, actualmente casi 2.000 microARNs 
maduros se han identificado en el ser humano. La desregulación de los  microARNs ha 
sido implicada en el desarrollo de SM y DM2. Varios factores inflamatorios parecen inducir 
la expresión selectiva de microARNs en monocitos/ macrófagos, que a su vez afectan 
funcionalmente la expresión de varias proteínas implicadas en la cascada inflamatoria. 
Además, se han sugerido que los patrones de expresión de microARNs circulantes en 
suero/ plasma podría tener un valor predictivo como biomarcadores de diabetes.

El primer objetivo de los estudios descritos en esta tesis fue establecer un patrón de 
microARNs en monocitos de pacientes con DM2 que sea capaz de distinguir a los pacientes 
de los controles no diabéticos (estudio de biomarcadores); en segundo lugar nuestro 
objetivo fue correlacionar la expresión alterada de microARNs, genes y moléculas pro-
inflamatorias de los monocitos y del suero de los pacientes entre sí, y con las características 
clínicas para entender mejor los procesos patogénicos de esta enfermedad. 

En la primera parte del capítulo 3 se describe un estudio de microarray (Exiqon) en 
monocitos de 34 pacientes con DM2 reclutados en el Centro de Diabetes en  Alemania, 
Düsseldorf (n = 10) y en tres centros médicos en Quito, Ecuador (n = 24) en el año 
2009.  En este estudio, identificamos 142 microARNs significativamente expresados; de 
los cuales 15 fueron capaces de discriminar entre pacientes y controles. Sin embargo, 
utilizando este método sólo pudimos hacer una separación parcial entre casos y controles 
(sensibilidad 66% y especificidad 90%). A partir de entonces continuamos utilizando los 
microARNs como bio-marcadores para determinar la función y el estado inflamatorio 
de los monocitos circulantes en pacientes diabéticos. Optamos por seleccionar los 
microARNs  con diferencias más significativas (Fold Change de> 1,4 o <0,6). Los microARNs 
que cumplieron con este criterio de selección fueron miR-138; miR-34c-5p; miR-410; 
miR-574-3p y miR-576-3p. Adicionalmente, determinamos la expresión del miR-146a y 
miR-155, ya que estos microARNs son conocidos reguladores de inflamación, y han sido 
identificados en células mononucleares periféricas de pacientes diabéticos. Utilizando 
PCR en tiempo real (TaqMan) en un nuevo grupo de “validación”;  64 pacientes con DM2 
(edad media=61;  IMC=29,5; hipercolesterolemia=63% y LDL elevada 44%) y 44 controles 
sanos (edad media=53; IMC=28,7; hipercolesterolemia = 68%  y LDL elevada 50%) fueron 
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reclutados en cuatro centros médicos en Quito, Ecuador desde 2009 hasta 2012. El 
microARN-34c-5p fue validado como significativamente sobreexpresado en los monocitos 
de pacientes con DM2. Una de las funciones de este microARN es regular la expresión 
de c-Met, el receptor del factor de crecimiento hepático (HGF). Además, este microARN 
participa en diversos procesos celulares, tales como crecimiento, apoptosis e invasión de 
células tumorales.  Adicionalmente, en estos estudios determinamos la expresión de 24 
genes en los monocitos de pacientes con DM2. Seleccionamos un primer grupo de 13  
genes que codifican para la expresión de citoquinas y moléculas pro-inflamatorias (IL-
1β, IL-6, TNF-α, TNFAIP3, PTGS2, CCL20, PTX3, PDE4B, DUSP2, ATF3, CXCL2 y BCL2A1); y 
un segundo grupo que comprende 12 genes con funciones de quimiotaxis, adhesión y 
motilidad (CCL2, CCL7, MAPK6, NAB2, CD9, STX1A, EMP-1, CDC42, PTPN7, DHRS3, FABP5, 
HSPA1A). Observamos la sobreexpresión de 3 ARNm (CD9, DHRS3 y PTPN7) pertenecientes 
al segundo grupo. Dado que los ARNm anormalmente expresados y el microARN-
34c-5p cumplen importantes funciones en el cambio de morfología celular, adhesión y 
diferenciación celular; suponemos que los monocitos de los pacientes ecuatorianos con 
DM2 están involucrados en tales procesos. Creemos que los monocitos de estos pacientes 
podrían ser células pro-angiogénicas.

En general en los monocitos de los pacientes diabéticos ecuatorianos no encontramos 
una sobreexpresión de genes inflamatorios clásicos. Uno de los genes inflamatorios clásicos 
(ej. TNFAIP3) sólo fue  expresado en los monocitos de pacientes con valores normales 
de lípidos. Sorprendentemente, en casos de dislipidemia, encontramos una reducción 
significativa de la expresión de genes inflamatorios (ej. ATF3, DUSP2 y PTGS2). Por lo tanto 
suponemos que los monocitos circulantes de pacientes ecuatorianos con dislipidemia son 
capaces de diferenciarse en células pro-angiogénicas con un perfil anti-inflamatorio.

El factor de crecimiento hepático (HGF) es una molécula que también ha sido 
relacionada con DM2. Esta molécula tiene propiedades angiogénicas y se la utiliza como 
un marcador de células pro-angiogénicas. Debido a los hallazgos antes descritos, también 
determinamos la expresión de HGF en los monocitos de los pacientes diabéticos (capítulo 
3). Encontramos una importante sobreexpresión de HGF en los monocitos que correlacionó 
con el segundo grupo de genes. 

Adicionalmente, en nuestros estudios también determinamos los niveles séricos de 12 
compuestos relacionados con DM2 comercialmente disponibles (TNFα, IL-1β, IL-6, NGF, 
HGF, PAI, resistin, CCL2, adiponectin, leptin, IL- 8 y CCL4) y la expresión de los microARNs 
antes mencionados en el suero de los pacientes ecuatorianos del grupo de validación 
(Capítulo 4 y 5). En este estudio observamos una disminución del nivel sérico del microARN 
anti-inflamatorio 146a; un incremento del nivel de la citoquina  pro-inflamatoria IL-8 
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y un incremento sérico del factor de crecimiento HGF.  Notablemente, debido a que los 
controles no diabéticos tuvieron un índice de obesidad y dislipidemia comparable con los 
pacientes, estas  moléculas séricas pueden servir como marcadores discriminantes de la 
falta de control de la glucosa en pacientes diabéticos. 

En el capítulo 5, describimos un estudio en el cual comparamos los niveles séricos 
de los microARNs y los compuestos de activación/inflamatoria inmune con los niveles 
de expresión de microARNs y genes en monocitos circulantes de los pacientes con DM2. 
El objetivo de este estudio fue comprobar si los monocitos circulantes son la fuente de 
secreción de esas moléculas que son vertidas en el suero. Encontramos la expresión 
de HGF significativamente elevado en el suero y en los monocitos de los pacientes. Sin 
embargo no hubo una correlación positiva de expresión entre estos dos compartimentos.  
Tampoco encontramos correlación entre los niveles de citoquinas pro-inflamatorias y los 6 
microARNs del suero y los monocitos.  Los monocitos de pacientes ecuatorianos con DM2 
mostraron en general una reducción de la expresión de los genes pro-inflamatorios típicos, 
mientras que los genes y microARN implicados en adhesión celular, diferenciación celular, 
crecimiento y reparación vascular (ej. HGF y miR-34c-5p) estuvieron sobre expresados.  En 
el suero de estos pacientes, en contraste, encontramos signos de actividad pro-inflamatoria 
(ej. incremento de IL-8 y disminución de miR-146a). Estos hallazgos sugieren que la 
dinámica de los cambios relacionados con la inflamación en el compartimento intracelular 
(monocitos) y el suero tiene su propia dinámica. Al parecer diferentes mecanismos  
fisiopatológicos inducen la activación o desactivación de los procesos inflamatorios.

En la sección de discusión presentamos y comparamos los datos de los pacientes 
ecuatorianos con algunos hallazgos preliminares de pacientes holandeses con DM2 (n = 
28) y sus respectivos controles no diabéticos (n = 22). El objetivo de esta comparación fue 
comprobar si también existía una disminución del estado inflamatorio en los monocitos 
y en el suero de los pacientes holandeses. Observamos, que en el suero de los pacientes 
diabéticos holandeses hubo una alta expresión de las citoquinas pro-inflamatorias clásicas 
(IL-1β, IL-6, TNFα, IL-8 y CCL4) en comparación con los pacientes ecuatorianos. Además 
es importante destacar que los niveles de leptina (molécula proinflamatoria) fueron casi 
tres veces mayor en los pacientes holandeses; por el contrario, los niveles de adiponectin 
(molécula antiinflamatoria) fueron dos veces más altos en los pacientes diabéticos 
ecuatorianos. 

También analizamos la expresión de los genes seleccionados en los monocitos de los 
pacientes holandeses.  Encontramos que la expresión de los compuestos inflamatorios 
que pertenecen al grupo A y B tales como CXCL2, PTX3, IL-6, IL1β, CCL2, y CCL20 estuvieron 
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significativamente sobreexpresado  en pacientes holandeses. Por el contrario, en pacientes 
ecuatorianos hubo una sobreexpresión de los genes del grupo C (genes de adhesión, 
motilidad y diferenciación celular), que fueron estadísticamente significativos para CD9, 
DHRS3 y HGF. En los monocitos de los pacientes holandeses además encontramos una 
elevada expresión de resistin así como el microARN-410, los cuales difirieron en los 
pacientes ecuatorianos. 

Al fin de esta sección exploramos las posibles causas de las diferencias encontradas 
en los pacientes ecuatorianos en comparación con pacientes holandeses; hacemos 
referencia a las diferencias étnicas en los niveles de secreción de leptina, la deficiencia de 
micronutrientes en pacientes ecuatorianos (vitamina A, hierro y zinc), la infección crónica 
por helmintos en pacientes ecuatorianos (hipótesis de la higiene), y la afectación del 
Sistema Inmune en poblaciones que viven en grandes  alturas (Andes).  El efecto de la 
medicación también pudo haber causado las diferencias encontradas ya que todos los 
pacientes holandeses estuvieron tratados con estatinas, y los pacientes ecuatorianos no.  
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