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Abstract

Impaired homing and delayed recovery upon hematopoietic stem cell transplantation
(HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a
major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing
at an early stage and allows early interventions to improve engraftment and outcome after
transplantation. In this study, we show sufficient intracellular labeling of UCB-derived
CD34* cells, with "°F-containing PLGA nanoparticles which were detectable with both flow
cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34* cells
maintain their capacity to proliferate and differentiate, which is pivotal for successful engraft-
ment after transplantation in vivo. These results set the stage for in vivo tracking experi-
ments, through which the homing efficiency of transplanted cells can be studied.

Introduction

Cell transplantation is an important therapeutic strategy for various malignant and non-malig-
nant diseases. Migration of transplanted cells to their designated organs (‘homing’) is pivotal
for treatment success. Information about transplanted cell localization can be of great value in
the evaluation and development of stem cell-based therapies[1]. This information follows from
magnetic resonance imaging (MRI) data, when cells of interest are labeled so that they can be
discriminated from surrounding tissue. The stable nature of MRI cell labels facilitates longitu-
dinal measurements, respecting the dynamic process of stem cell homing. Multiple studies
have shown effective magnetic labeling and subsequent in vivo imaging in a variety of medical
fields, including cardiovascular disease[2], neurodegenerative disease[3], neurological trauma
[4], diabetes[5] and others. Using fluorine (*°F) as a label has the advantage that '°F [6] has no
detectable background in vivo[7]. Therefore, detection of '°F in cell labels is highly specific.
Labeling cells with 'F is mostly done using perfluorocarbons (PFCs), because PFCs are
high in fluorine content[8]. Because of their insolubility in both lipophilic and hydrophilic
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solvents, PFCs need to be incorporated in emulsion droplets, nanoparticles or micelles before
they can be used for cell labeling. Another reported '°F labeling strategy is to fluorinate sugars
or peptides[9-11] but then the '°F content of the label is low compared to the °F content of
PFCs.

Transplantation of hematopoietic stem and progenitor cells from umbilical cord blood
(UCB) is an example of the need for information about homing. UCB is an important alterna-
tive stem cell source for patients lacking a sibling or matched unrelated stem cell donor,
because of its rapid availability and less stringent matching criteria[12]. However, adult
patients who receive a UCB transplantation have a delayed neutrophil and platelet recovery
time and a higher incidence of graft failure as compared to patients who receive CD34" cells
from adult donors [13, 14]. During the delayed recovery period, patients are at high risk for
severe complications such as infections and bleeding, resulting in a high mortality rate. Several
factors may contribute to the delayed hematopoietic recovery following UCB transplantation.
Besides the relative higher immaturity of UCB-derived CD34" cells as compared to adult bone
marrow-derived CD34" cells[15], delayed recovery may also be due to the relatively low num-
ber of CD34" cells in UCB grafts[12, 16]. In addition, it is known that CD34" cells derived
from UCB do not home as efficiently to the bone marrow as their adult-donor-derived coun-
terparts, due to a lack of binding of UCB-HSC to the P- and E-selectin adhesion molecules
expressed by the recipients bone marrow endothelial cells[17]. Tracking stem cell homing after
transplantation, as a means to study engraftment kinetics, will be helpful to detect impaired
homing at an early stage after transplantation, allowing interventions to improve engraftment
and outcome after transplantation.

In this preclinical study, the aim is to label umbilical cord blood (UCB)-derived CD34" cells
with fluorine (19F)—containing nanoparticles while maintaining cell viability and functionality.
This will set the stage for further in vivo studies in order to track the homing of CD34" cells
upon hematopoietic stem cell transplantation.

Material and Methods
Synthesis and characterization of "°F-PLGA nanoparticles

Nanoparticles were produced as described [18]. Subsequently, the nanoparticles were resus-
pended in PBS (Invitrogen, the Netherlands) and stored at 4°C until use. The final concentra-
tion of '’F-PLGA nanoparticles was 76 mg/ml, as measured from a lyophilized sample.

Analysis of the '°F -PLGA nanoparticles using dynamic light scattering (Zetasizer Nano
Series, Malvern Instruments, Worcestershire, UK) showed a mean particle diameter + SD
(n=4) 0of 290 nm + 56 nm. The mean polydispersity index + SD was 0.17 + 0.04, indicating
particles were fairly homogenous in diameter.

Umbilical cord blood processing and cell selection

Umbilical cord blood was collected in several hospitals using Stemcare™/CB collect blood bag
system (Fresenius Kabi Norge AS) containing citrate phosphate dextrose (CPD) as an anticoag-
ulant. The Medical Ethical Committee of the Erasmus University Medical Centre approved col-
lection of the cord blood (MEC-2009-410) and written informed consent from the mother was
obtained prior to donation. Within 48 hours after collection, mononuclear cells were isolated
using ficoll (Lymphoprep™, Fresenius Kabi Norge AS). CD34™ cells were isolated with positive
immunomagnetic selection using Magnetic Activated Cell Sorting (MACS) technology accord-
ing instructions of the manufacturer (Miltenyi Biotech GmBH, Bergisch Gladbach, Germany).
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Labeling CD34" cells with '°F -PLGA nanoparticles

Cells were resuspended at 200,000 cells/ml in serum-free Glycostem Basal Growth Medium
(GBGM™, Glycostem Therapeutics, ‘s Hertogenbosch, The Netherlands) supplemented with
thrombopoietin (TPO), stem cell factor (SCF) and Flt3 ligand (Flt3L) (Cellgenix, Freiburg,
Germany) at 50 ng/ml each. Labeling of cells was performed at concentrations ranging from 5
to 40 pl/ml of '°F -PLGA nanoparticles. Standard concentration was 20 pl/ml. After addition
of the label, cells were incubated in the dark at 37°C and 5.0% CO, for 4 or 20 hours. Control
cells were mock-labeled, i.e. treated identically until the end of the incubation time, but without
the addition of nanoparticles. After incubation, cells were processed as required for further
analysis.

Flow cytometry

Labeling efficiency and median labeling intensity were determined using flow cytometry. Cells
were stained with anti-CD45-APC-H?7, anti-CD34-PE-Cy7 (both from BD Biosciences, San
Jose, CA, USA) and diamidinophenylindole (DAPI) (Sigma-Aldrich, St Louis, MO, USA).
Only viable (DAPI") CD45"CD34" cells were included in the analysis. The maximal fluores-
cence intensity of mock-labeled control cells in the FITC-channel was set as threshold for con-
sidering a cell labeled. Flow cytometric analysis was performed using a BD FACSCanto™ (BD
Biosciences, San Jose, CA, USA) and data was analyzed using FlowJo software (Tree Star Inc,
Ashland, OR, USA).

To assess ' ’F-PLGA labeling intensity in cells that divided 0-3 times, cells were labeled with
5uM CellTrace Violet (Molecular Probes, Eugene, Oregon, USA) upon '’F-PLGA labeling and
subsequently cultured for 4 days in our culture medium as described above.

Confocal microscopy

Cells were labeled at a '°F -PLGA nanoparticle concentration of 20 ul/ml with an incubation
time of 4 hours. Labeled-cells were separated from free '°F -PLGA particles using ficoll separa-
tion. Washed labeled or mock-labeled control cells were transferred to microscopy slides by
centrifugation. Subsequently, slides were air dried and mounted in Prolong™ Gold Antifade
Reagent with DAPI (Molecular Probes, Eugene, Oregon, USA). Cells were imaged using a
Leica SP5 CLSM equipped with Ar-He/Ne lasers (Leica Microsystems, Wetzlar, Germany) and
a Zeiss 63x Plan-Apochromat oil immersion objective (Carl Zeiss, Oberkochen, Germany). A
405 nm laser was used for DAPI excitation (with a 413-476 nm acousto-optical beam splitter
(AOBS)), and a 488 nm laser was used for FITC excitation (with a 503-596 nm AOBS).

Colony forming unit (CFU) assays

Washed labeled or mock-labeled cells were resuspended in methylcellulose containing medium
(Methocult GF H84434, Stemcell Techonologies, Vancouver, BC, Canada) and seeded in tripli-
cate at 500 cells per 35 mm dish. Dishes were incubated for 14 days in a humidified tray at
37°C and 5.0% CO2, after which two trained non-blinded observers enumerated the colonies.
We accepted an interobserver variation of 10%. Three types of colonies were distinguished:
burst forming unit-erythroid (BFU-E), colony forming unit-granulocyte/monocyte (CFU-GM)
and colony forming unit-granulocyte/erythrocyte/monocyte/megakaryocyte (CFU-GEMM).

Magnetic resonance spectroscopy

Cells were labeled at a concentration of 20 ul/ml for 20 hours and subsequently fixed in 4%
formaldehyde solution for at least 15 minutes at room temperature, washed in PBS, and
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resuspended in agar solution (0.3%). An MR 901 Discovery 7T magnet (Agilent Technologies,
Santa Clara, CA, USA) with a preclinical front-end (GE Healthcare, Little Chalfont, UK) was
used for MRS acquisition. The system is equipped with a gradient set with a maximum gradient
strength of 300 mT m-1, a rise-time of 600 T m-1 s-1 and an inner diameter of 310 mm. For
transmission and reception, an in-house-built dual tuned "H/'’F single channel surface coil
with a diameter of 2 cm was used. The '°F MRS spectrum was recorded using a EchoSCI
sequence (TR/TE = 1250/15 ms, NEX = 128, FOV = 6 cm, slice thickness = 2,5 cm).

MRS processing was performed in SAGE 7.6.2 (GE Healthcare, Little Chalfont, UK) on the
MR 901 Discovery system. For processing of the data, time domain signals were apodized with a
17.6 Hz line broadening function, after which the signal was zerofilled to 4096 points. Subse-
quently the time domain signal was Fourier transformed and the resulting spectrum was properly
phased to show an absorption mode resonance line. For signal intensity the maximum intensity
of the resonance line was determined, and noise was estimated from the standard deviation of
the signal intensity of the baseline. '°F in the sample was quantified by reference to a standard
curve, which was obtained by measuring a dilution series of PFCE with known '°F content.

Statistics

Unpaired two-tailed t-tests were performed to test the difference in median labeling intensity
between different incubation times and to test the difference in number of colonies between
labeled and mock-labeled CD34" cells for both incubation times in CFU experiments. Differ-
ences were considered to be statistically significant if p < 0.05. Statistical tests were performed
in Excel (Microsoft Corporation, Redmond, WA, USA).

Results
CD34" cells are efficiently labeled with '°F -PLGA nanoparticles

Cells were labeled with 5, 10, 20 and 40 pl/ml '’F -PLGA nanoparticles for 4 or 20 hours respec-
tively, in order to address whether CD34" cells could be labeled using '°F -PLGA nanoparticles
and which labeling time and concentration would be most optimal. In all conditions tested, incu-
bation of CD34" cells with '°F -PLGA nanoparticles resulted in labeling of nearly all cells. The
lowest percentage of labeled cells (94.5%) was observed following incubation with a '°F -PLGA
nanoparticle concentration of 5 pl/ml for 4 hours; all other conditions resulted in > 99% labeled
cells (Table 1). However, the median fluorescence intensity of labeled cells varied across labeling
conditions (Table 1, Fig 1A). Higher '°F -PLGA nanoparticle concentrations were associated
with higher median fluorescence intensity of viable CD45"CD34" cells. At each labeling concen-
tration, a longer incubation time was associated with higher median fluorescence intensity of
CD34" cells (Fig 1B). However, the increase in median fluorescence caused by longer incubation
time consistently decreased with increasing labeling concentration. An incubation time of 20
hours led to a statistically significantly higher median labeling intensity than 4 hours of labeling
at 20 pl/ml (Fig 1C, p<0.05). In summary, we can discriminate labeled CD34" cells from mock-
labeled control cells using FACS in each of the conditions tested, with the labeling intensity
increasing with longer incubation time and higher labeling concentration. We chose a labeling
time of 20 hours with a concentration of 20 pl/ml for further experiments.

Detection of "°F-PLGA labeled CD34* cells by magnetic resonance
spectroscopy

We recorded a '’F MRS spectrum of 2 agar gel phantoms containing 10° and 10* labeled
CD34" cells in 150 pl respectively. The respective signal to noise ratio (SNR) was 58,6 for the
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Table 1. Labeling efficiency of CD34" cells in relation to '°F -PLGA NP concentration and incubation time.

Labeling concentration (ul/ml) Percentage of cells labeled (%) Median fluorescence intensity
4 hours incubation 20 hours incubation 4 hours incubation 20 hours incubation
5 94.5 99.2 461 733
10 99.1 99.9 781 1169
20 99.7 99.9 1618 1879
40 99.7 99.9 2628 2709

PLGA: poly(lactic-co-glycolic acid); NP: nanoparticle

doi:10.1371/journal.pone.0138572.t001

sample containing 10 labeled CD34" cells and 5,3 for the sample containing 10* labeled
CD34" cells (Fig 2). Data acquisition took 65 minutes to recover sufficient SNR in the sample
containing 10* cells. 5,06x10" '°F spins were measured in the sample with 10° labeled CD34"
cells and 6,65x10"® '°F spins in the sample with 10* labeled CD34" cells.
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Fig 1. CD34* cells can be labeled efficiently with '°F -PLGA nanoparticles with the intensity increasing with longer incubation time and higher
labeling concentration. (A) Fluorescence histograms of cells labeled with 0 (red), 5 (turquoise), 10 (orange), 20 (green) and 40 (blue) pl/ml nanoparticles at
incubation times of 4 (left panel) or 20 (right panel) hours. Horizontal axes show the intensity of the FITC signal, representing the '°F -PLGA nanoparticles.
(B) Median fluorescence intensity per labeling concentration after 4 (circle) and 20 (square) hours of labeling. Figs 1A and 1B show a representative
experiment out of 2 experiments. (C) Median fluorescence intensity of cells labeled with 20 pl/ml '°F -PLGA nanopatrticles for 4 and 20 hours (n = 5). * =
p<0.05.

doi:10.1371/journal.pone.0138572.g001
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Fig 2. Detection of labeled CD34" cells by magnetic resonance spectroscopy and imaging. Left and right panel show the '°F MRS spectrum of 2 agar
gel phantoms containing 10° and 10* labeled CD34* cells in 150 pl respectively. Shown is the '°F resonance line, the horizontal axes shows the frequency
offset from the transmitter. Here the transmitter frequency has been set to the resonance frequency of the '°F in PFCE. Labeled cells were labeled with 20 ul/ml
9F -PLGA nanoparticles with an incubation time of 20 hours.

doi:10.1371/journal.pone.0138572.9002

Uptake of the label is an active process and results in intracellular
accumulation of the label

To discriminate between active uptake of the label and binding of the label to the membrane, we
performed labeling with 20 ul/ml '°F -PLGA nanoparticles at both 4°C and 37°C. We observed a
decrease in frequency of labeled cells from 99.9% at (37°C) to 28.2% (at 4°C). In addition, the
median fluorescence intensity decreased from 2061 after labeling at 37°C to 82.2 after labeling at
4°C (Table 2 and Fig 3A). This indicates that CD34" cells actively incorporate the '°F -PLGA
nanoparticles. To further investigate the intracellular accumulation of the label, we performed
confocal microscopy of '°F -PLGA-labeled CD34" cells. Fig 3B clearly shows FITC-positive '°F
-PLGA nanoparticles within the cytoplasm of the labeled CD34" cells. Mock-labeled control cells
showed no FITC-signal (image not shown). Combined, these data show active uptake of the label
by the CD34" cells, leading to intracellular accumulation of the label.

'F_PLGA labeling does not affect the relative proportion of committed
hematopoietic progenitors and cell viability

To test the ability of the labeled cells to proliferate and differentiate, colony forming unit
(CFU) assays were performed. '°F -PLGA labeled and mock-labeled CD34" cells were plated

Table 2. Effect of incubation temperature on uptake of '°F -PLGA NPs by CD34" cells.

Incubation temperature Percentage of cells labeled (%) Median fluorescence intensity
37°C 99.9% 2061
4°C 28.2% 82.2

PLGA: poly(lactic-co-glycolic acid); NPs: nanoparticles

doi:10.1371/journal.pone.0138572.1002
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Fig 3. Uptake of the label is an active process and results in intracellular accumulation of the label. (A) Fluorescence histogram for mock-labeled
control cells (red) and cells labeled 20 hours at 37°C (turquoise) or 4°C (orange). Horizontal axes show the intensity of the FITC signal, representing the '°F
-PLGA nanoparticles. (B) Differential Interference Contrast image (left) and fluorescent image (right) of CD34 cells labeled with '°F -PLGA nanoparticles,
showing the blue DAPI-signal (nucleus of the cell) and the green FITC-signal (*°F -PLGA nanoparticles).

doi:10.1371/journal.pone.0138572.9003
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on the basis of baseline cell counts (counted prior to labeling) and after 14 days of culture,
three different colony types were scored by 2 trained observers. Relevant to the interpretation
of CFU results are the total number of colonies and the relative distribution of colony types,
indicating the relative proportion of distinct committed hematopoietic progenitors, compared
between labeled and mock-labeled conditions. With an incubation time of 4 hours, the average
total number of colonies and the relative distribution of the colony subtypes are similar among
the labeled and control conditions (Fig 4A, p = 0.96 for the total number of colonies and
p=0.31,p=0.53 and p = 0.83 for the frequency of BFU-E, CFU-GM and CFU-GEMM respec-
tively). With an incubation time of 20 hours, the total number of colonies in the labeled condi-
tion is lower than in the mock-labeled control (90.6 versus 79.7 colonies per 500 CD34" cells in

B

Percentage life cells

Control Labeled
t=20 Y

]
Input 4hours 20hours

Fig 4. Labeling with '°F-PLGA does not affect the relative proportion of committed hematopoietic progenitors and cell viability. (A) Total number of
colonies per 500 CD34* cells for BFU-E (red), CFU-GM (white) and CFU-GEMM (gray). (B) Percentage of life cells at input (white), and after 4 (green) and 20
(black) hours of labeling with 20 pl/ml *°F-PLGA (n = 5).

doi:10.1371/journal.pone.0138572.9004
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control and labeled cells respectively, p = 0.04), although no significant decrease is observed in
any of the colony types. Irrespective of this small decrease in total colony number after 20
hours of labeling, these results show that both after 4 and 20 hours of labeling, cells are still
capable of proliferation and differentiation and the relative proportions of committed hemato-
poietic progenitors are similar.

To study whether '*F-PLGA labeling affects cell viability, flow cytometric analysis was per-
formed using diamidinophenylindole (DAPI). The percentage life CD34" cells prior to labeling
and after labeling with '°F -PLGA for 4 and 20 hours were similar (Fig 4B), indicating no toxic
effect of the internalization of the '°F -PLGA nanoparticles.

9F-PLGA labeled cells remain detectable over time and upon cell
division, although label intensity decreases

To assess the stability of the label in non-dividing cells and loss of label intensity upon cell divi-
sion, we labeled '°F -PLGA-labeled CD34" cells with the cell division tracker CellTrace and
evaluated the fluorescence intensity upon 4 days of culture. At day 0, all cells showed a high
intensity of both the CellTrace label and the '°F -PLGA label (Fig 5A). After 4 days of culture,
cells had divided 0, 1, 2 or 3 times respectively (Fig 5B). We observed a decrease in fluorescence
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Fig 5. '9F-PLGA labeled cells remain detectable over time and upon cell division, although label intensity decreases. Fluorescence histograms for
CellTrace and '°F -PLGA-labeled CD34" cells (A) Population shown is labeled cells at day 0. Horizontal axes show the intensity of the CellTrace Violet signal
(left panel) and of the FITC signal, representing the '°F -PLGA nanoparticles (right panel). (B) Population shown is labeled cells after 4 days of culture. The
horizontal axes show the intensity of the CellTrace Violet signal, indicating the number of cell divisions. (C) Populations shown are labeled cells after 4 days
of culture who had undergone 0, 1, 2 or 3 cell division respectively (depicted in the panels from left to right). Horizontal axes show the intensity of the FITC
signal, representing the '°F -PLGA nanoparticles.

doi:10.1371/journal.pone.0138572.g005
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intensity in cells that had not divided, compared to the day 0 population (Fig 5C, left panel),
indicating some leakage of the label in time. However, labeled cells were still easily detectable
using flow cytometry. In addition, upon every cell division we observed a halving of the fluores-
cence intensity, indicating an equal distribution of the '’F -PLGA nanoparticles over both
daughter cells upon cell division. Despite the decrease in label intensity, labeled cells were still
detectable by flow cytometry upon 3 cell divisions (Fig 5C, right panel).

Discussion

This study shows the feasibility of labeling CD34" cells with '°F-containing PLGA nanoparti-
cles. In addition, labeled CD34" cells maintain viable and retain their capacity to proliferate
and differentiate, which is pivotal for successful engraftment after transplantation in vivo. In
the future, this technique can be used to monitor homing evaluating efficacy of hematopoietic
stem cells transplantation and the information obtained may have implications to further
improve treatment outcome.

Several conditions must be met in order to consider cell labeling and subsequent MR detec-
tion as feasible. Firstly, MR detection of the labeled cells should be feasible in vivo. MR-based
imaging has advantages regarding its high spatial resolution, the absence of ionizing radiation
and the ability to provide anatomical information[1]. However, as compared to nuclear imag-
ing of isotopes, MRI may be a less sensitive technique, with a higher detection limit in a reason-
able measurement time. Higher MR detection sensitivity may provide more detailed
information about the distribution of the labeled cells after transplantation. Since MRS has a
higher sensitivity than MRI, we decided to first perform MRS experiments in order to create a
starting point from which our MRS results can serve for increasing signal and cell detection
sensitivity. This may be achieved by optimizing the '°F content of the nanoparticles, increasing
the cellular uptake of the label and refining MR hardware and acquisition[19]. A second pre-
requisite involves preservation of viability and functionality of the cells during the labeling pro-
cess. We observed comparable percentage of life cells and total colony numbers after an
incubation period of 4 and 20 hours compared to control samples. In addition, all different
types of colonies were formed by the labeled cells, in similar frequencies as by non-labeled
cells. Thirdly, stable cell-label association is pivotal for successful MR detection of labeled cells.
The stability of the cell-label association is partly determined by the localization of the label.
Both surface labels and intracellular labels may be applied, but intracellular labels may be pre-
ferred due to a lower risk of detachment. Our data indicates that cellular label uptake is an
active, energy-dependent process, resulting in a stable intracellular localization of the label.
This finding is consistent with the results of previous studies, which identified endocytosis as
the cellular mechanism responsible for uptake of PLGA NPs in other cell types[20-22]. Future
research should address the question whether such intracellular labels are useful to investigate
homing of transplanted CD34" cells in the first 24 hours after transplantation. We observed
decrease in label intensity over time and dilution of the signal upon cell division. This dilution
of the signal may have consequences in imaging sensitivity, provided the 19F concentration
per imaging voxel is reduced by migration of cells out of the area of interest. However, when
cells do not migrate upon division dilution through cell division would not affect detection sen-
sitivity since for 19F MRI/MRS the total amount of 19F in a voxel determines detection sensi-
tivity and not how it is spread within a voxel. This was already shown in previous studies using
gadolinium-DTPA containing liposomes to label mesenchymal stem cells. Guenoun et al.
showed a stable amount of label in all cells over time, even though the amount per cell
decreased as a result of mitosis[23]. In our studies, the voxel dimensions were dictated by the
area of interest and a similar approach could be followed for clinical applications. Lastly, in
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order to develop this technique further also for clinical applications, it is crucial that the label is
biocompatible. All components of our nanoparticles are biocompatible and are already used in
other applications in humans. PLGA polymer is approved by the FDA and European Medicine
Agency for use in humans as a drug delivery system[24, 25]. Because of their susceptibility to
hydrolysis and subsequent clearance by the Krebs cycle[26], PLGA polymers have very mini-
mal systemic toxicity[27]. PFC emulsion droplets are cleared by macrophages of the reticuloen-
dothelial system and eliminated from the body by exhalation[28]. Possible adverse effects are
caused by stimulation of the macrophages and are dose-dependent. Therefore, they may not
apply to cell tracking studies using low doses of PFC[8]. Finally, PVA is used as an emulsifier
in the production of PFCE-PLGA nanoparticles. Some PVA remains despite extensive washing
of the nanoparticles[29]. PVA is biocompatible and applied in humans through oral adminis-
tration[30] or implantation[31].

Helfer et al. [32]labeled CD34" cells from adult bone marrow using a '9F label in emulsion
droplets. Similar to our results, they found an increase in labeling intensity and frequency of
labeled cells with increasing labeling concentration. However, we found no evidence of a detri-
mental effect of labeling on viability or functionality after 4 hours of labeling, whereas Helfer
et al. found a slight decrease in viability. Both studies measured comparable '°F payloads. In
addition, Partlow et al. showed internalization of '°F label in emulsion droplets in UCB mono-
nuclear cells that were grown towards endothelial cells[6], which are different from the CD34"
cells we used in our study. The cells remained functional in vivo as well. We preferred to incor-
porate °F in PLGA nanoparticles, because these are more stable than emulsion droplets, easier
to store and the association with fluorescent dyes is more stable.

In a recent study, Ahrens et al. efficiently labeled human dendritic cells with a clinical grade
PFC agent without changes in viability or phenotype. In this phase 1 study, patients suffering
from stage IV colorectal cancer subsequently received intradermal administration of 1x10° or
1x10” labeled dendritic cells and underwent a MRI scan at 2 and 24 hours after administration.
In the patients that received 1x10° dendritic cells, no °F signal was observed. However, 1x107
administered dendritic cells could be detected by MRI at both the 2 and 24 hour time point,
although the number of dendritic cells decreased to approximately half of the original values at
24 hours, due to either cell efflux, cell migration or cell death[33]. Although dendritic cells are
different from CD34" cells as used in our experiments and the required number of injected
cells is high, these results are very promising first steps in in vivo tracking of labeled human
cells.

In conclusion, CD34" cells can be labeled efficiently with PFCE-PLGA NPs without affect-
ing cell functionality or viability. Labeled cells can be detected using MRS on a 7T MRI scanner.
These results set the stage for in vivo tracking experiments, through which homing efficiency of
transplanted cells can be studied.
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