Getijde aanvraag / verzendadres

Ref:

Heiman F.L. Wertheim
Medical Microbiology
L348
Erasmus MC
Dr Molewaterplein 40
3015 GD Rotterdam

Tel: 0104633510
Fax:
E-mail: h.wertheim@erasmusmc.nl
Budget: 2230

Aanvraag kopie / Boek te leen

ISSN p/e: 0011-9059 / 1365-4632
Titel: Int J Dermatol
Jaar: 2000
Volume: 39
Aflvering: 12

Auteur: Okano M, Noguchi S, Tabata K, Matsumoto Y,
Artikel: Topical gentian violet for cutaneous infection and nas
Pagina's: 942-4
PMID: 11168669
Opmerking:

Subject: Normal electronic delivery
Date: Tue, 5 Jul 2005 12:17:19
From: h.wertheim@erasmusmc.nl

Nota adres (indien anders dan verzendadres)
Heiman F.L. Wertheim Erasmus MC
Medical Microbiology
Dr Molewaterplein 40
3015 GD Rotterdam

Akte: Levering via NIWI
Clinical trial

Topical gentian violet for cutaneous infection and nasal carriage with MRSA

Masaki Okano, MD, Sanai Noguchi, MD, Koshi Tabata, MD, and Yasutaka Matsumoto, MD

This study describes a potential effect of topical gentian violet on cutaneous infection and nasal carriage with methicillin-resistant Staphylococcus aureus (MRSA). 0.5% gentian violet was used in 28 cases of skin lesions once a day, while a 0.3% solution was applied on the nasal vestibules of nine cases twice a day. The period for eradication in the 28 skin cases was 9.1 ± 6.0 days. It was 15.3 ± 9.0 days for the nine nasal lesions. The minimal inhibitory concentration (MIC) of gentian violet against MRSA from the four isolated strains was $0.0225 \pm 0.0096 \mu g/mL$. No adverse reactions occurred throughout the study. It is suggested that gentian violet may be potentially effective against MRSA.

We prospectively studied 37 randomized cases of cutaneous infection or nasal carriage with methicillin-resistant Staphylococcus aureus (MRSA) (16 boys and men and 21 girls and women; ages varied from 0 to 97 years; mean, 35.3 \pm 33.1 years) in order to evaluate the clinical and bacteriologic effectiveness of topical gentian violet.

Materials and methods

Gentian violet (Shizu Selyaku Ltd, Osaka, Japan) was prepared as an aqueous solution. Gentian violet solution was used at a concentration of 0.5% once a day in 28 cases of skin lesions, while a 0.3% solution was applied by scrubbing on the anterior nares twice a day in nine cases of nasal lesions. No other topical or systemic antimicrobial was allowed during the study.

Clinical specimens were collected using swabs from skin or nasal lesions before and after gentian violet treatment, until MRSA was not isolated at all. MRSA was incubated on an MRSA screening agar (Becton Dickinson and Company, MD, USA), and was detected by the method of the National Committee for Clinical Laboratory Standards (NCCLS). The criterion for inclusion was one positive culture. The definition of disinfection depended on both clinical healing and eradication of MRSA for cutaneous infection. Only eradication was necessary for nasal carriage.

The minimal inhibitory concentration (MIC) was determined using the broth microdilution methods recommended by the NCCLS. Briefly, the microorganisms from four MRSA strains were grown finally at 100,000 colony forming units (cfu)/mL in Mueller-Hinton II broth medium (Becton Dickinson and Company, MD, USA) to which gentian violet was added to a final concentration of 50 to 0.001 $\mu g/mL$. The MIC was defined as the lowest concentration that inhibited growth completely. The MICs were recorded after 24 h of incubation at 35°C.

Data were expressed as the mean \pm SD. Significance was estimated with Student’s t-test.

Results

Table 1 summarizes the clinical and bacteriologic effectiveness of topical gentian violet on MRSA. Underlying diseases of nasal MRSA carriers included pulmonary tumor, Ménière’s disease, cerebral infarction, allergic
Table 1 Clinical and bacteriologic effectiveness of topical gentian violet on MRSA

<table>
<thead>
<tr>
<th>Disease</th>
<th>Number</th>
<th>Age Mean ± SD (Range)</th>
<th>Days for eradication Mean ± SD (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious erosion</td>
<td>12</td>
<td>38.2 ± 31.7</td>
<td>5.9 ± 3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-83</td>
<td>2-14</td>
</tr>
<tr>
<td>Impetigo</td>
<td>8</td>
<td>14.5 ± 24.8</td>
<td>6.8 ± 3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-71</td>
<td>4-15</td>
</tr>
<tr>
<td>Umbilical infection</td>
<td>2</td>
<td>0.0 ± 0.0</td>
<td>11.5 ± 6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-0</td>
<td>7-18</td>
</tr>
<tr>
<td>Infectious ulcer</td>
<td>3</td>
<td>78.0 ± 17.6</td>
<td>16.3 ± 11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58-91</td>
<td>6-28</td>
</tr>
<tr>
<td>Decubitus ulcer</td>
<td>1</td>
<td>76.0 ± 0.0</td>
<td>12.0 ± 0.0</td>
</tr>
<tr>
<td>Angular chelitis</td>
<td>1</td>
<td>71.0 ± 0.0</td>
<td>16.0 ± 0.0</td>
</tr>
<tr>
<td>Paronychia</td>
<td>1</td>
<td>4.0 ± 0.0</td>
<td>19.0 ± 0.0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>28</td>
<td>34.3 ± 34.1</td>
<td>9.1 ± 2.6</td>
</tr>
<tr>
<td>Nasal carriage</td>
<td>0</td>
<td>0-81</td>
<td>2-28</td>
</tr>
<tr>
<td></td>
<td>36.8 ± 31.4</td>
<td></td>
<td>15.3 ± 9.0</td>
</tr>
<tr>
<td></td>
<td>1-87</td>
<td></td>
<td>4-28</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>35.3 ± 33.1</td>
<td>10.6 ± 7.2</td>
</tr>
</tbody>
</table>

rhinitis, atopic dermatitis, prurigo, herpes simplex, and impetigo.

Disinfection of MRSA with this bactericide required a period from 2 to 28 days (mean, 10.6 ± 7.2 days) for all cases. The time to eradication in the 28 skin cases ranged from 2 to 28 days (mean, 9.1 ± 6.0 days). The time to eradication varied from 4 to 28 days (mean, 15.3 ± 9.0 days) for the nine nasal cases.

No adverse reactions occurred, except for purple color staining of the skin throughout the study.

The MICs of gentian violet against MRSA from the four isolated strains were 0.01, 0.02, 0.03, and 0.03 μg/mL, respectively (mean, 0.0225 ± 0.0056 μg/mL).

Discussion

The development and spread of multiple antimicrobial-resistant Staphylococcus aureus have gained worldwide attention over the years. Vancomycin is currently the antimicrobial of choice for systemic infection induced by MRSA. Resistance to vancomycin would be extremely worrying. Haley et al.4 reported that povidone-iodine was the most rapidly bactericidal agent in vitro against MRSA of the commonly used antisepsics, such as hexachlorophene, chlorhexidine gluconate, p-chloro-m-xyleneol, and povidone-iodine. Povidone-iodine is, however, rapidly neutralized in the presence of organic materials such as blood or sputum. In fact, its clinical effect is often disappointing on exudatively exorciative or ulcerative skin lesions infected with MRSA.

Recent laboratory data have suggested that gentian violet may be efficient against MRSA. In addition, eradication of MRSA from decubitus ulcers with gentian violet has been reported. According to previous data, the MIC of gentian violet against MRSA from four strains was between 1.6 and 6.3 μg/mL (mean, 3.2 ± 2.2 μg/mL), whereas that of povidone-iodine was 5000 μg/mL. The minimal bactericidal concentration (MBC) of gentian violet against MRSA from the same strains was between 25 and 200 μg/mL (mean, 13 ± 85.1 μg/mL), and the MBC was not influenced even when the culture medium contained 25% human whole serum, while that of povidone-iodine against MRSA was 10,000 μg/mL.

In the present study, topical gentian violet achieved disinfection of MRSA in a period ranging from 2 to 28 days (mean, 10.6 ± 7.2 days) for all cases. Nasal disinfection tended to require a longer period (mean, 15.3 ± 9.0 days) than the eradication of MRSA in cutaneous lesions (mean, 9.1 ± 6.0 days). We did not undertake a follow-up study to ensure that long-term eradication had been achieved. The in vitro susceptibility test of gentian violet against MRSA disclosed a mean MIC value of 0.0225 μg/mL, which was approximately 140-fold of that presented by Saji. The considerable difference between the two MIC values was assumed to be due to a disparity in the bacterial density of the final dilutions for culture.

The use of gentian violet in the treatment of superficial skin infections was suggested as early as 1954 by Churchman.7 Gentian violet is a triphenylmethane rosaniline dye, and is bacteriostatic and bactericidal to Gram-positive bacteria, including streptococci and staphylococci, and to many fungi.8-11 Hypersensitivity to gentian violet has been rarely reported.12 The susceptibility of Gram-positive bacteria to the rosaniline dyes is presumably associated with the characteristics of the cell that underlie the differential Gram stain. Furthermore, we assume that the clinical potency of this antiseptic is related to its properties as a dye, which enable it to permeate and stain the tissue, and consequently to maintain an antimicrobial action there for a longer time.

The clinical virtue of this antiseptic against MRSA has seldom been referred to. The present investigation has confirmed the clinical efficacy of topical gentian violet against MRSA, reported by Saji et al.4 in several kinds of skin lesions infected with MRSA, and clarified that the dye is possibly effective in nasal MRSA carriage. This is, to our knowledge, the first report in the English literature of a trial use of this disinfectant against nasal carriage of MRSA.

The prevalence of MRSA is a social problem. Nosocomial infections caused by this bacterium result in significant morbidity and cost to hospitalized patients.
Gentian violet is inexpensive and the techniques for its application are simple. It is suggested that, in spite of its conspicuous color, topical gentian violet may be useful and potentially effective against MRSA. Further comparative studies are needed.

References

No. Shake the Bottle.

THE MIXTURE.
One teaspoonful of this mixture to be taken three times a day.

M.

CLAUD MANFULL,
(Member National Association of Medical Herbalists),
HERBAL PRACTITIONER (by exam.),
THURGARTON STREET AND TRENT ROAD,
SHEFFIELD, NOTTINGHAM.

CONSULTATION HOURS:
8:30 a.m. to 10:30 a.m.; 2 p.m. to 4:30 p.m.
6 p.m. to 8 p.m.
Thursday, 10 a.m. to 1 p.m. only.

From the collection of Lawrence Charles Parish, MD, Philadelphia, Pennsylvania.