

INTERN

PDF

M505782

Medische Bibliotheek, Erasmus MC Rotterdam. Tel: 010-4087782

Gegevens aanvrager / verzendadres

Ref:

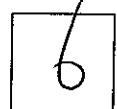
Heiman F.L. Wertheim
Medical Microbiology
L348
Erasmus MC
Dr Molewaterplein 40
3015 GD Rotterdam

Tel: 0104633510
Fax:
E-mail: h.wertheim@erasmusmc.nl
Budget: 2230

Aanvraag kopie / Boek te lenen

ISSN p/e: 0196-6553 / 0196-6553 MBSN:

Titel: Am J Infect Control
Jaar: 1988
Volume: 16
Aflevering: 4


Auteur: Roccaforte J S, Bittner M J, Stumpf C A, Preheim L
Artikel: Attempts to eradicate methicillin-resistant Staphyloco
Pagina's: 141-6
PMID: 3263821
Opmerking:

Subject: Normal electronic delivery
Date: Tue, 5 Jul 2005 11:49:59
From: h.wertheim@erasmusmc.nl

Nota adres (indien anders dan verzendadres)

Heiman F.L. Wertheim Erasmus MC
Medical Microbiology
Dr Molewaterplein 40
3015 GD Rotterdam

Aktie: Levering via NIWI

ARTICLES

Attempts to eradicate methicillin-resistant *Staphylococcus aureus* colonization with the use of trimethoprim-sulfamethoxazole, rifampin, and bacitracin

Jane S. Roccaforte, MD

Marvin J. Bittner, MD

Carol A. Stumpf, RN, BSN, CIC

Laurel C. Preheim, MD

Omaha, Nebraska

Retrospective review of 197 patients with methicillin-resistant *Staphylococcus aureus* (MRSA) identified 47 in whom a regimen for eradication of MRSA colonization could be evaluated. The patients were elderly (mean age, 67.7 years), with 53% transferred from another institution and 53% treated in an intensive care unit. A mean of 47.1 days of hospitalization with an average of 4.9 antibiotics preceded the first MRSA culture. The usual regimen (mean, 6.0 days) was oral trimethoprim-sulfamethoxazole, 160/800 mg twice daily, oral rifampin, 600 mg once daily, and bacitracin ointment three times a day. Eradication succeeded in 40 patients, 9 relapsed, and MRSA persisted in 7. Twenty-four of 25 nares sites were cleared but only 16 of 22 other sites. MRSA infection eventually developed in 36%. No adverse reactions to the eradication regimen were noted. Although this treatment for MRSA carriage was safe and effective, decreased efficacy outside the nares and relapse limited its value. (AM J INFECT CONTROL 1988;16:141-6)

From the Medical, Nursing, and Research Services, Veterans Administration Medical Center, and the Departments of Medical Microbiology and Medicine, Creighton University.

Supported by the Veterans Administration.

Presented at the Eighty-seventh Annual Meeting of the American Society for Microbiology, Atlanta, Ga., March 2, 1987.

Reprint requests: Marvin J. Bittner, MD, Medical Service, V.A. Medical Center, 8W, 4101 Woolworth, Omaha, NE 68105.

Methicillin-resistant *Staphylococcus aureus* (MRSA) was reported in Europe in 1961.¹ By the late 1960s MRSA constituted 30% to 50% of *S. aureus* isolates in some European hospitals.² Within 20 years, 55% to 81% of hospitals surveyed in the United States reported MRSA.³⁻⁵ Underscoring the importance of this organism is the inability to eradicate it in 85% of the hospitals where it has caused infection.^{6,7}

Vancomycin is the drug of choice for treating MRSA infections,⁸ but it will not predictably eradicate the carrier state.⁹ When used in attempts to eliminate colonization with MRSA, antiseptic baths, as well as local and systemic antibiotics, have produced varying results.^{4, 9-18} Some promising regimens carry the demanding requirements of thrice-daily bathing¹⁰ or the use of drugs not marketed in the United States.¹⁸

Although therapy with a combination of trimethoprim-sulfamethoxazole, rifampin, and bacitracin ointment (TS/R/B) frequently is used in attempts to eradicate colonization with MRSA,⁴ the three published studies in the United States of patient treatment are uncontrolled, with the largest series limited to 26 patients.^{12, 14, 15} Therefore a retrospective chart review of a larger group of patients was done to evaluate TS/R/B efficacy in the eradication of MRSA colonization. In addition, the patients who were successfully treated were compared with those in whom colonization persisted.

METHODS

In this study patients carrying MRSA were sought by review of the clinical microbiology laboratory records of the Veterans Administration Medical Center in Omaha. Hospital employees and hospitalized patients whose first positive MRSA cultures were obtained between August 1980 and March 1986 were identified. Of 197 MRSA patients found in this way, clinical records for 180 were available for review. Information sought in review of records included identifying information, age, admission and discharge dates, status at discharge, MRSA eradication therapy (drugs, dose, duration), use of other antimicrobial agents, presence of other illness, previous institutionalization, treatment in an intensive care unit, specialty service responsible for patient, results of cultures for MRSA, development of MRSA infection, and whether the patient remained alive. Sixty-nine patients whose cultures were positive for MRSA and who received at least 2 days of trimethoprim-sulfamethoxazole and rifampin therapy were identified. Culture sites and culture timing varied among the patients. In 47 (43 inpatients, 4 employees) efficacy could be analyzed by comparing a positive culture

obtained immediately before therapy and a follow-up culture from the last day of therapy or within 4 days.

Colonization was defined as recovery of MRSA from a body site without evidence of invasive disease. Drug-attributable adverse experiences were determined by chart review.

Staphylococcus aureus was isolated from cultures done routinely or as part of screening programs. Screening programs included periodic cultures of intensive care unit patients and epidemiologically indicated cultures of employees. Screening cultures were streaked on mannitol salt agar plates (Regional Media Laboratories, Inc., Lenexa, Kan.), which were incubated at 35° C and read at 24 and 48 hours. Oxacillin susceptibility testing of the routine cultures was performed by Kirby-Bauer agar disk diffusion at 35° C with 48-hour incubation. Starting in December 1985 oxacillin susceptibility was tested both with an automated system (Vitek Automicrobiic System, McDonnell Douglas Health Information Systems, Hazelwood, Mo.) using a 2 µg/ml breakpoint and with Mueller-Hinton agar containing 4% sodium chloride and 6 µg/ml oxacillin (Regional Media Laboratories), incubated for 24 hours at 35° C.

Proportions were compared with the Fisher's exact test (level of significance, $p = 0.05$).

RESULTS

The mean age of the 47 patients eligible for evaluation was 67.7 ± 13.4 (SD) years. Fifty-three percent (25 patients) had been admitted from a nursing home or transferred from another hospital. Fifty-three percent (25 patients) received part of their hospital care in an intensive care unit. Sixty-two percent (29 patients) were treated on the internal medicine service. The mean interval between the date of the first culture that was positive for MRSA and the start of TS/R/B was 19.4 ± 25.0 days. The mean interval from hospital admission to start of therapy was 47.1 ± 35.6 days. During that interval the patients received an average of 4.9 ± 2.9 antibiotics. The overall length of hospitalization was 88.0 ± 60.8 days.

The mean duration of TS/R/B therapy was 6.0 ± 2.4 (SD) days. Reflecting the variation in dosing schedules reported in the litera-

Table 1. Antimicrobial agents used in attempts to eradicate MRSA

Outcome (No. of patients)*	Trimethoprim-sulfamethoxazole		Rifampin		Bacitracin ointment			
	160/800 mg bld	80/400 mg bld	300 mg bid	600 mg qd	None	bid	tid	qid
Cleared	26	5	15	16	2	3	25	1
Relapsed	7	2	7	2	0	0	7	.2
Failed	7	0	1	6	1	1	4	1

qd daily; bid, twice daily; tid, three times daily; qid, four times daily.

Table 2. Characteristics of care of patients in whom MRSA eradication was successful or unsuccessful

	Eradication outcome				p (Fisher's exact test)	
	Successful (N = 40)		Unsuccessful (N = 7)			
	No.	%	No.	%		
Admitted from other hospital	7	17.5	2	28.6	0.4043	
Admitted from nursing home	14	35	2	28.6	0.5533	
Admitted from community	19	47.5	2	28.6	0.5745	
Stayed in intensive care unit	22	55	3	42.9	0.4255	
Received concomitant antimicrobial agents	19	47.5	3	42.9	0.5745	
On medical service	23	57.5	6	85.7	0.1608	
Eventual MRSA infection	14	35	3	42.9	0.4990	
Survived hospitalization	22	55	5	71.4	0.3521	

ture,^{12, 14, 15} the doses of TS/R/B given to the patients whose charts were reviewed showed some variation (Table 1). Forty of the 47 patients eligible for evaluation received oral trimethoprim-sulfamethoxazole, 160/800 mg twice daily, with the others receiving 80/400 mg twice daily. Twenty-four patients received oral rifampin, 600 mg once daily, and 23 received 300 mg twice daily. Nearly all the patients (23/24) who took rifampin once daily received the 160/800 dose of trimethoprim-sulfamethoxazole, but only 17 of the 23 patients who took rifampin twice daily received the 160/800 dose ($p = 0.0424$). Bacitracin ointment was applied to affected sites three times a day in 36 patients, twice daily in 4, and four times daily in 4. No bacitracin was given to 3 patients, 2 of whom had a successful outcome.

Eradication treatment was successful in 40 of 47 patients eligible for evaluation. Later cultures, obtained at various times, showed relapse in 9 of 40 patients. For all four employees included in the group of 47, eradication treatment was successful and there were no relapses.

In 38 patients MRSA was detected with Kirby-Bauer methods (before December 1985); eradication was successful in 32, of whom 9 relapsed. Of the 9 patients whose MRSA was detected with Vitek or Mueller-Hinton agar with oxacillin (December 1985 and later), eradication was successful in 8, none of whom relapsed.

Twenty-four of 25 anterior nares sites were cleared, but only 16 of 22 other sites were cleared ($p = 0.0324$). During follow-up periods of up to 21 months, relapse was detected in 8 of the 24 patients from whom nasal carriage had cleared and in 1 of the 16 patients from whom carriage elsewhere had cleared. MRSA failed to clear in only 1 of 23 patients who received rifampin twice daily but failed in 6 of 24 patients on a once-daily regimen of rifampin (Table 1) ($p = 0.0547$). The choice of rifampin regimen, however, had no impact on patients' remaining free of relapse. Of the 23 patients who took rifampin twice daily, 15 remained clear of MRSA, as did 16 of the 24 patients on the once-daily regimen. Although MRSA cleared initially in all 7 patients who received the 80/400 mg

Table 3. Published studies of eradication by trimethoprim-sulfamethoxazole/rifampin of the carrier state of MRSA

Source	Antimicrobial agents used				Outcome of treatment courses				Follow-up in mo
					Extranasal sites		Nasal sites only		
	TMP/SMX (bid)	Rifampin	Bacitracin	Clear/total	Relapse/clear	Clear/total	Relapse/clear	Follow-up in mo	
Winn et al. ¹²	160/800	600 qd	tid	4/6	—	6/6	—	0.5-4.5	
Ward et al. ¹⁴	80/400	300 bid	tid	13/16	0/13	10/10	0/10	<3	
Ellison et al. ¹⁵	160/180	600 bid	No	8/12	2/8	0/0	0/0	<1 for 6	
Current series	160/800*	600* qd	tid*	16/22	1/16	24/25	8/24	6.9 in 2 0-21	

*Usual dose; see Table 1. TMP/SMX, Trimethoprim-sulfamethoxazole; qd, daily; bid, twice daily; tid, three times daily.

dose of trimethoprim-sulfamethoxazole, therapy with the 160/800-mg regimen failed initially in 7 of 40 patients ($p = 0.2964$). Eventually, patients receiving similar proportions of 160/800 mg and 80/400 mg, respectively, remained clear of relapse (Table 1).

Successfully treated patients were similar in several respects to those in whom the TS/R/B regimen failed. The two groups were similar in age (67.6 ± 14.2 years mean \pm SD for successes, 68.4 ± 6.9 for failures), the interval between the first MRSA culture to the start of therapy (19.2 ± 25.4 days for successes, 20.3 ± 22.1 for failures), the interval from admission to start of therapy (48.3 ± 37.0 days for successes, 40.8 ± 26.1 for failures), the length of hospital stay (88.8 ± 60.3 days vs. 84.3 ± 62.8), the number of prior antibiotics (5.1 ± 3.0 vs. 3.6 ± 2.0), and the length of therapy (6.1 ± 2.5 days vs. 5.6 ± 1.8). No statistically significant differences were demonstrated in the proportions of patients in each group who were admitted from nursing homes, who stayed in an intensive care unit, and who were on the medical service (Table 2). MRSA infection ultimately developed in 36% of the patients. For 36% of the patients, hospitalization was terminated by death. No adverse reactions attributable to the TS/R/B regimen were noted.

DISCUSSION

In this study the efficacy of eradication of MRSA colonization with TS/R/B parallels that of previous reports (Table 3).^{12,14,15} Winn et al.¹²

reported a 5-day regimen of TS/R/B that cleared MRSA from all six patients with nasal carriage. Of six additional patients with extranasal colonization, the regimen was successful in only four. The latter six included four with both nasal and extranasal carriage; infection was cleared in two patients.¹² The same group of investigators published a 1981 report in which a lower trimethoprim-sulfamethoxazole dose was used.¹⁴ Hexachlorophene baths were given during the initial 2 days of therapy. Although the regimen was uniformly successful in eradicating carriage confined to the nares, only 11 of the 14 patients with MRSA colonization of the nares plus a wound, or of a wound alone, were successfully treated. Rifampin resistance was not detected after treatment in those patients for whom the regimen failed. In an unspecified number of patients late follow-up cultures were performed as long as 3 months after the regimen was administered; none relapsed.

Ellison et al.¹⁵ treated 13 patients and 1 employee with MRSA colonization with oral rifampin, 600 mg twice daily, and oral trimethoprim-sulfamethoxazole, 160/800 mg twice daily for 5 days. Of 12 initial treatment courses for which follow-up cultures were available, 8 posttherapy cultures were negative. However, 2 of the 8 patients relapsed 6 and 9 months later. Follow-up of the remaining 6 patients continued for up to 1 month. All of the researchers' patients showed at least one extranasal colonization site. Failure was partially predicted by

the presence of a foreign body at the colonized site. In both this and the report by Ward et al.,¹⁴ there were no adverse drug reactions related to the regimen.

Although the earlier series^{12, 14, 15} obtained similar results with both once-daily and twice-daily rifampin, the current study detected a trend toward greater initial success with twice-daily rifampin. Rifampin's 2- to 5-hour half-life¹⁹ may make more frequent dosing more desirable in this setting.

Our patients were characteristic of those who have been at risk for infection or colonization with MRSA.^{14, 20-22} Both the eradication-success and eradication-failure groups were dominated by elderly patients with prolonged hospital stays who had been exposed to multiple antimicrobial agents. The only factor distinguishing eradication failures was extranasal colonization.

The 85% efficacy of eradication of MRSA colonization with TS/R/B parallels that in previous reports of smaller numbers of patients. This regimen, however, is less effective for sites other than the anterior nares. No adverse reactions to the regimen were noted. Unfortunately, relapse after this regimen limits its value.

This series of patients is nearly as large as the three previous series combined. It thus provides an important endorsement of the regimen's safety and efficacy, particularly in the short term for patients with nasal colonization. Its conclusions, however, must be tempered by the realization that it is an uncontrolled, retrospective analysis, in which some variation in antimicrobial dosing was tolerated. Phage typing and plasmid analysis data are not available to determine how many of the patients shared staphylococcal strains and whether the treatment failures and relapses might represent, in some cases, reinfection with newly acquired strains. The current series provides a basis for the design of a prospective controlled study.

Studies of methicillin-susceptible *S. aureus* colonization in patients undergoing dialysis suggest that control of staphylococcal colonization could prevent invasive infection.²³ Thus, identifying a regimen effective in the long-term

control of MRSA colonization holds promise not only for limiting the nosocomial transmission of MRSA but also for preventing serious infection.

We thank Ms. Mary Snitily for technical assistance.

References

1. Jevon MP. "Celbenin"-resistant staphylococci [Letter]. *Br Med J* 1961;1:124-5.
2. Kayser FH, Mak TM. Methicillin-resistant staphylococci. *Am J Med Sci* 1972;264:197-205.
3. Boyce JM, Causey WA. Increasing occurrence of methicillin-resistant *Staphylococcus aureus* in the United States. *Infect Control* 1982;3:77-83.
4. Preheim LC, Rimland D, Bittner MJ. Methicillin-resistant *Staphylococcus aureus* in Veterans Administration Medical Centers. *Infect Control* 1987;8:191-4.
5. Haley RW, Hightower AW, Khabbaz RF, et al. The emergence of methicillin-resistant *Staphylococcus aureus* infections in United States hospitals. *Ann Intern Med* 1982;97:297-308.
6. Thompson RL, Cabezudo I, Wenzel RP. Epidemiology of nosocomial infections caused by methicillin-resistant *Staphylococcus aureus*. *Ann Intern Med* 1982;97:309-17.
7. Standiford HC. Methicillin-resistant *Staphylococcus aureus* infections: it's time to get tough. *Infect Control* 1987;8:187-9.
8. New preparations of vancomycin. *Med Lett Drugs Ther* 1986;28:121-2.
9. Locksley RM, Cohen ML, Quinn TC, et al. Multiple antibiotic-resistant *Staphylococcus aureus*: introduction, transmission, and evolution of nosocomial infection. *Ann Intern Med* 1982;97:317-24.
10. Bartzokas CA, Paton JH, Gibson MF, et al. Control and eradication of methicillin-resistant *Staphylococcus aureus* on a surgical unit. *N Engl J Med* 1984;311:1422-4.
11. Craven DE, Reed C, Kollisch N, et al. A large outbreak of infection caused by a strain of *Staphylococcus aureus* resistant to oxacillin and aminoglycosides. *Am J Med* 1981;71:53-8.
12. Winn RE, Ward TT, Hartstein AI, et al. Epidemiological, bacteriological and clinical observations on an interhospital outbreak of nafcillin-resistant *Staphylococcus aureus*. In: Nelson JD, Grassi C, eds. Current chemotherapy and infectious disease; vol. 2. Washington, D.C.: American Society for Microbiology, 1980:1096-7.
13. Aeilts GD, Sapico FL, Canawati HN, et al. Methicillin-resistant *Staphylococcus aureus* colonization and infection in a rehabilitation facility. *J Clin Microbiol* 1982;16:218-23.
14. Ward TT, Winn RE, Hartstein AL, et al. Observations relating to an inter-hospital outbreak of methicillin-resistant *Staphylococcus aureus*: role of antimicrobial therapy in infection control. *Infect Control* 1981;2:453-9.
15. Ellison RT, Judson FN, Peterson LC, et al. Oral rifampin and trimethoprim/sulfamethoxazole therapy in asymptomatic carriers of methicillin-resistant *Staphylococcus aureus* infections. *West J Med* 1984;140:735-40.

16. Saravolatz LD, Pohlod DJ, Arking LM. Community-acquired methicillin-resistant *Staphylococcus aureus* infections: a new source for nosocomial outbreaks. *Ann Intern Med* 1982;97:325-9.
17. Bryan CS, Wilson RS, Meade P, et al. Topical antibiotic ointment for staphylococcal nasal carriers: survey of current practices and comparison of bacitracin and vancomycin ointments. *Infect Control* 1980;1:153-6.
18. Cascwell MW, Hill RLR. Elimination of nasal carriage of *Staphylococcus aureus* with mupirocin ("pseudomonic acid")—a controlled trial. *J Antimicrob Chemother* 1986;17:365-72.
19. Farr B, Mandell GL. Rifampin. In: Mandell GL, Douglas RG, Bennett JE, eds. *Principles and practice of infectious diseases*. 2nd ed. New York: John Wiley, 1985:216-20.
20. Crossley K, Loesch D, Landesman B, et al. An outbreak of infections caused by strains of *Staphylococcus aureus* resistant to methicillin and aminoglycosides. I. Clinical studies. *J Infect Dis* 1979;139:273-9.
21. Peacock JE Jr, Marsik FJ, Wenzel RP. Methicillin-resistant *Staphylococcus aureus*: introduction and spread within a hospital. *Ann Intern Med* 1980; 93:526-32.
22. Boyce JM, Landry M, Deetz TR, et al. Epidemiologic studies of an outbreak of nosocomial methicillin-resistant *Staphylococcus aureus* infections. *Infect Control* 1981;2:110-6.
23. Yu VL, Goetz A, Wagener M, et al. *Staphylococcus aureus* nasal carriage and infection in patients on hemodialysis: efficacy of antibiotic prophylaxis. *N Engl J Med* 1986;315:91-6.

Bound volumes available to subscribers

Bound volumes of AMERICAN JOURNAL OF INFECTION CONTROL are available to subscribers (only) for the 1988 issues from the Publisher, at a cost of \$25.00 (\$31.00 international) for Vol. 16 (January-December). Shipping charges are included. Each bound volume contains a subject and an author index. The binding is durable buckram with the journal name, volume number, and year stamped in gold on the spine. *Payment must accompany all orders.* Contact The C. V. Mosby Company, Circulation Department, 11830 Westline Industrial Drive, St. Louis, Missouri 63146, USA; phone 800-325-4177, ext. 351.

Subscriptions must be in force to qualify. Bound volumes are not available in place of a regular journal subscription.