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Chapter 1

Introduction

This thesis on econometric modeling consists of two parts. First, I consider multivariate

extensions to univariate discrete choice models. The focus of the chapters is on model repre-

sentation and parameter estimation methods. Univariate choice models are extended to allow

for associations between different univariate choices. When the number of choices involved

is large, parameter estimation in these multivariate extensions leads to numerical problems.

Therefore, new feasible parameter estimation methods are introduced. In the second part, I

discuss the effect of forecasts on future values of macro-economic variables. Since economic

agents react to forecasts, these might affect the course of the economy. Below, I provide a

short introduction to both parts. Although the chapters in this thesis are related, they can be

read independently.

1.1 Discrete Choice Modeling

Each individual makes numerous discrete choices a day. For example, traveling to work can

be done by bike, by car or by public transport. In a supermarket, individuals choose between

several brands. The choices people make are of interest in many field of research, such as

marketing, micro-economics and transportation.

Choice models aim to investigate how these discrete decisions are made and what aspects

influence the choices. For example, prices, personal income and advertisements may influ-

ence brand choice. Information from choice models provides insights in choice processes

and helps, for example, marketeers to decide upon future pricing and promotion.
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Econometric choice modeling originated in 1860 and evolved further with pioneering

work of Nobel Prize winner Daniel McFadden in the 1970s. Since then, a vast literature on

the decision process has emerged. Ben-Akiva and Lerman (1985), Train (2003) and Agresti

(2007) provide good overviews of the practice of choice modeling. The four chapters in the

first part of this thesis extend the choice literature in several ways. The first three chapters

discuss multivariate discrete choices (stemming from Cox, 1972). Multivariate extensions

are rare since univariate discrete choice models are not easily scalable to higher dimensions.

A large part of the discussion in these chapters is devoted to deriving feasible parameter es-

timation methods which can easily be scaled to high choice dimensions. The fourth chapter

deals with a two-stage decision process (originating with Swait, 1984) and discusses the di-

vision of covariates over these stages. Below I provide a summary of the contributions of

these chapters.

Chapter 2 is based on Bel et al. (2014) and involves multivariate yes/no-decisions. Discrete

yes/no-decisions may give information about other choices that have been made. For exam-

ple, if I decide to visit an outlet shop (yes) I will not likely visit a shop with expensive brands

(no) during the same trip. That is, discrete choices are interrelated and Chapter 2 investigates

these associations using multivariate binary choice models.

Cox (1972) describes these multivariate choices. The paper gives a wide range of model

specifications, from a restrictive independence model to a full multinomial representation

over the complete set of multivariate binary choices. Since both do not incorporate the as-

sociation structure between decisions, Cox (1972) introduces a logistic model specification.

This specification is the basis of Chapters 2 to 4 in this thesis. Russell and Petersen (2000)

show that combining conditional choice models using Besag (1974) leads to the multivariate

logistic specification of Cox (1972).

The focus of this chapter is parameter estimation when the number of correlated binary

choices is large. Cox (1972) states that difficulties arise when the number of choices increase.

Russell and Petersen (2000) state that “as the number of categories becomes large, the ap-

proach taken [. . . ] will clearly become infeasible”. Chapter 2 shows that these problems are

circumvented by by introducing three scalable estimation methods, which result in accurate

parameter estimates of the multivariate choice model even when many correlated choices are

involved. The three methods are: stratified importance sampling, a generalized method of
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moments and composite conditional likelihood (Lindsay, 1988). The performance of these

methods is analyzed using several simulation studies. In terms of accuracy, efficiency and

speed, composite likelihood turns out to be the best alternative for full likelihood estimation.

Although the composite likelihood estimator is inefficient compared to a regular maximum

likelihood approach, the increase in estimation speed certainly outweighs the loss in effi-

ciency for the problem at hand.

Because of its accuracy and efficiency, the composite likelihood method is also applied in

Chapters 3 and 4. These chapters extend on the ideas of Chapter 2. Chapter 3 is based on

Bel and Paap (2014) and extends the multivariate binary logit of Cox (1972) to a multivari-

ate multinomial logit model for estimating associations between multinomial choices. For

example, if I choose the cheap alternative for product A, I am probably also likely to choose

the cheap alternative for productB. The chapter contributes to the literature by introducing a

new and easily scalable model specification for multivariate multinomial choices. Where ex-

isting approaches cannot handle large dimensions, I show that the combination of the model

specification and the use of the composite likelihood parameter estimation method is feasible

in large multivariate problems.

Chapter 4 is based on Bel and Schoonees (2015) and involves multivariate ordered choices.

Choice options are specifically ordered as in Likert scale survey questions. I advocate a mul-

tivariate extension of the existing bivariate ordered choice Dale (1986) model. The Dale

(1986) model is a global odds ratio model where the correlations between two univariate

choices are described by so-called global odds ratios. This model specification results in

a Plackett (1965) distribution function. Unfortunately, this distribution function is not eas-

ily scalable to higher dimensions where more than two ordered choices are made. That is,

Molenberghs and Lesaffre (1994) show that the Plackett distribution does not have an ana-

lytical expression if the dimension is larger than three. This highly complicates parameter

estimation. Chapter 4 extends the Dale model to a multivariate setting by again using a

composite likelihood method for parameter estimation. Since an expression for the bivari-

ate distribution function is available from Dale (1986), I use composite pairwise likelihood.

Simulation studies show that the approach leads to accurate parameter estimates and that

efficiency losses are rather small.

Chapter 5 is the final chapter on discrete choice modeling and is based on Bel and Paap
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(2015). This chapter focuses on modeling the situation where individual do not consider all

available choice options when making their final choice. That is, individuals take decisions

in two stages: first, an (unobserved) consideration set is formed and second, the final choice

is made from this subset of choice items.

The idea of two stages in the choice process originates with Howard and Sheth (1969) and

economic theory is provided by Wright and Barbour (1977). An important contribution to

this literature is Swait (1984). Chapter 5 adds a critical note. Since the choice model consists

of two stages and the first stage is unobservable for the econometrician, it is unclear which

covariates should enter which stage of the choice process. For example, does pricing affect

the consideration stage or does it directly affect choice? Chapter 5 investigates whether the

role of the covariates can be determined by purely statistical measures. Simulation studies

show that inference and interpretation of the unobserved consideration stage is only correct if

the division of covariates over the two stages is in accordance with the actual data generating

process. Statistical tests are not helpful in deciding the role of the covariates.

In sum, the novel contributions of these chapters to the discrete choice literature are (i)

extensions of univariate discrete choice models to multivariate choices; (ii) computational

feasible parameter estimation methods for multivariate choice models and; (iii) a critical

note on the role of covariates in two-stage choice modeling.

1.2 Modeling the Impact of Forecasts

The second part of this thesis consists of one chapter based on Bel and Paap (2013) and

handles the effect of forecasts on macro-economic variables. Economic agents are interested

in key economic variables such as growth, inflation, interest rates and exchange rates. Since

these are important features for decisions on, for example, savings and expenditures and

buying or selling stocks, economic agents are highly interested in forecasts of these key

variables.

I advocate that forecasts themselves have impact on the economy, since economic agents

base decisions on these forecasts. For example, economic agents react if the Dutch Bureau

for Economic Policy Analysis posts an extreme forecast. For time series modeling, the
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change in behavior of agents due to forecasts may lead to structural changes in the model

parameters.

The contribution of Chapter 6 is a time series model specification which incorporates

the reactions to forecasts. I use smooth transition autoregressive models as introduced by

Teräsvirta and Anderson (1992). This nonlinear model handles discontinuities in the time

series of interest. The smooth transition autoregressive model allows for gradual changes

from regime to regime, see van Dijk (1999) for a clear overview of all aspects concerned

with this type of model specifications.

Since I expect that forecasts affect the regime switching process, I use the forecasts as

transition variable. This forecast can either be an exogenous expert opinion or an endogenous

forecast generated by the model. For the latter, I use Dueker et al. (2007). They propose a

contemporaneous transition model where the regimes are not predetermined. This thesis

chapter provides a justification and interpretation of this contemporaneous model by relating

it to the forecast of the time series of interest.

Results of an application to US inflation show indeed that forecasts have an impact on the

level of inflation and reactions to forecasts indicate that economic agents have mean reverting

behavior.





Chapter 2

Parameter Estimation in Multivariate

Logit Models with Many Binary Choices

2.1 Introduction

Multivariate choice models are widely used to describe correlated binary decision data in

different fields of applied research. For example, grocery product choices by consumers

are likely to be correlated across different brands or product categories (Chib et al., 2002).

Choices for different types of insurances are correlated (Donkers et al., 2007), and effects

of a medicine treatment on two or more physiological systems are also related (Ashford and

Sowden, 1970). As a final example, Feddag (2013) investigates several ‘health-related qual-

ity of life’-questions in a survey among cancer patients and the answers to these questions

are likely to be correlated. Hence, simultaneous discrete decisions occur in many different

fields of research.

The number of choices to be made in multivariate decision problems can be rather large.

The number of products in a supermarket is large; individuals have to decide upon life, car,

house insurances, and so forth; and the number of questions in a survey might also be large.

There is therefore a need for a model that is applicable in these settings. In principle such

models are available. However, current econometric estimation methods for multivariate

choice models suffer from a computational burden if the number of choices grows large.

The standard econometric model to describe correlated multivariate binary choices is

the multivariate probit model (Ashford and Sowden, 1970; Edwards and Allenby, 2003).
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The main disadvantage of this model is that the computation of the choice probabilities

involves high-dimensional integrals which cannot be solved analytically. Numerical inte-

gration methods are not very accurate and slow in high dimensions and simulation-based

estimation methods are often used instead (Cappellari and Jenkins, 2006). However, the

computational efforts to perform simulation-based estimation become excessive when a large

number of correlated choices is considered. To avoid the evaluation of integrals one may opt

for multivariate binary decision models based on correlated logistic regressions. These mod-

els are nonetheless difficult to generalize to higher dimensions (Carey et al., 1993; Glonek

and McCullagh, 1995).

To avoid these difficulties we opt for the multivariate logit [MVL] model (Cox, 1972).

Russell and Petersen (2000) show that this model can be written as a restricted multinomial

logit [MNL] specification over all possible outcomes of the multivariate binary choices. The

multivariate choice problem over K choices is reformulated as a multinomial choice model

over 2K alternatives.

The problem of this MVL specification is that the outcome space of the multivariate

binary random variable, and thereby the computation time, increases exponentially with the

number of choices. From a practical point of view, standard maximum likelihood [ML]

parameter estimation becomes computationally infeasible even for a moderate number of

choices. Further, numerical problems can occur as probabilities get too small for practical

use. Russell and Petersen (2000) apply the model to four binary choices only and state

that “as the number of categories becomes large, the approach taken in our research will

clearly become infeasible”. Guimares et al. (2003) propose to use a more feasible approach

based on Poisson regression. Unfortunately, this method only holds for the conditional logit

specification where explanatory variables differ across choices. It therefore does not solve

the infeasibility for all multivariate logit specifications.

In this chapter, we propose three novel estimation methods for the MVL model which

provide parameter estimates in an acceptable amount of time even if the number of binary

choices is large. In the first proposed method, we use a sampling method to reduce the num-

ber of alternatives in the estimation routine. Using the method proposed by Ben-Akiva and

Lerman (1985), we can still obtain consistent estimators for the model parameters. In the

second method we take advantage of the fact that the MVL model has simple conditional

probabilities. We use these conditional probabilities in a composite conditional likelihood
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[CCL] approach (Lindsay, 1988). In case of K binary choices, only K conditional prob-

abilities have to be evaluated instead of 2K joint probabilities, which reduces computing

time. Furthermore, this method solves the problem of very small joint probabilities as these

probabilities are not used within the estimation routine. Finally, we consider a generalized

method of moments [GMM] estimator based on the conditional probabilities and hence this

approach has the same advantages as the CCL approach. Monte Carlo results show that

the three novel estimation methods are much faster, have similar small-sample biases as the

standard ML approach of Russell and Petersen (2000), and that the loss in efficiency is very

limited.

The remainder of this chapter is organized as follows. In Section 2.2 we describe the

multivariate logit model as discussed by Russell and Petersen (2000). Parameter inference

is considered in Section 2.3. We first present standard ML parameter estimation followed

by our three alternative methods. Section 2.4 describes the results of the Monte Carlo study

which compares the estimation methods with respect to computation time, small-sample

bias, and efficiency. Section 2.5 gives an illustration of the MVL model for a case with

10 binary choices for store visits of households in a shopping mall. Finally, Section 2.6

concludes.

2.2 Model Specification

In this section we discuss the model specification for the multivariate logit model. We use the

specification as introduced by Cox (1972) and further implemented by Russell and Petersen

(2000).

Following Russell and Petersen (2000), we let Yi denote the K-dimensional random

variable describing the joint set of choices for individual i = 1, . . . , N , defined as Yi =

{Yi1, . . . , YiK}, where Yik denotes the k-th binary choice for individual i, for k = 1, . . . , K.

The set of possible realizations of Yi is called S which contains 2K elements. It can immedi-

ately be seen that the number of possible realizations grows exponentially with the number

of binary choices K.

The choices in Yi may be correlated. To describe these dependencies Russell and Petersen

(2000) specify the conditional probabilities of the k-th random variable Yik given all other

choices, that is, yil for l 6= k. These conditional probabilities are a logit function of individual
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characteristics Xi, model parameters α, β and ψ, and yil, that is

Pr[Yik = 1|yi1, . . . , yik−1, yik+1, . . . , yiK , Xi] =
exp (Zik)

1 + exp (Zik)
(2.1)

with

Zik = αk +Xiβk +
∑
l 6=k

yilψkl, (2.2)

where yil is the realization of Yil, αk are alternative-specific intercepts, Xi is a (1 × p)-

vector of explanatory variables with corresponding parameter vector βk, and where ψkl are

association parameters. The association parameters capture the correlation between Yik and

Yil for l 6= k. Positive association implies that options k and l tend to have similar values

and negative association implies that they tend to be different. Conditional independence

between Yik and Yil occurs when ψkl = 0. As we can only consider correlations and no

causal impacts, we have to impose ψkl = ψlk for symmetry, see also Russell and Petersen

(2000). The model can be extended by including explanatory variables that differ across

individuals and the different binary choices. Such an extension is straightforward, but to

simplify notation we do not include such variables here.

Using the results in Besag (1974), the joint distribution of Yi follows directly from the

full set of conditional distributions. Russell and Petersen (2000) show that the conditional

distributions in (2.1) imply an MNL specification for the joint distribution of Yi, that is

Pr[Yi = yi|Xi] =
exp (µyi)∑
si∈S exp (µsi)

, (2.3)

where yi is a possible realization from the outcome space S and where µyi is defined as

µyi =
K∑
k=1

(
yik(αk +Xiβk) +

∑
l>k

yikyilψkl

)
. (2.4)

Hence, the parameters αk and βk only occur in the numerator of the probability function

for yik = 1. Further, the association parameter ψkl only occurs in the numerator when both

yik = 1 and yil = 1. Note that this implies that all pairs should occur in the available data to

be able to estimate these association parameters.
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The interpretation of the impact of the intercept parameters and Xi follows from the log

odds ratio

log

(
Pr[Yi = yi|Xi]

Pr[Yi = (0, . . . , 0)|Xi]

)
=

K∑
k=1

yik

(
(αk +Xiβk) +

∑
l>k

yikyilψkl

)
, (2.5)

where we use that µ(0,...,0) = 0 for identification. Clearly, the odds ratio equals µyi as defined

in (2.4) and provides the probability to observe yi relative to the base set of choices where

all choices are 0.

The association parameter ψkl is in theory an unbounded parameter and thus does not

directly represent a correlation. However, log odds ratios give a direct interpretation of these

association parameters. That is, it is easy to show that

log

(
Pr[Yi = (0, . . . , 0, yk = 1, 0, . . . , 0, yl = 1, 0, . . . , 0)|Xi] Pr[Yi = (0, . . . , 0)|Xi]

Pr[Yi = (0, . . . , 0, yk = 1, 0, . . . , 0)|Xi] Pr[Yi = (0, . . . , 0, yl = 1, 0, . . . , 0)|Xi]

)
= ψkl.(2.6)

A positive ψkl thus implies that choices k and l more often move together than apart.

The MVL model can be used to find dependencies in multivariate choices. In the next section

we discuss several estimation methods to uncover these dependencies. We discuss why standard ML

estimation using the joint probabilities in (2.3) is not computationally feasible in caseK is large. New

feasible methods are therefore introduced.

2.3 Parameter Inference

This section proposes four estimation methods for the MVL model specification defined in Sec-

tion 2.2. The first approach is a standard maximum likelihood estimation procedure. This approach

however is computationally infeasible when the number of choices K is large. We therefore propose

three alternative novel estimation methods.

Standard ML

The first estimation method directly follows Russell and Petersen (2000). To estimate the model

parameters they suggest to use the joint probabilities in (2.3). That is, Russell and Petersen (2000)

use the MNL specification on the full outcome space S which results in the log-likelihood function

`m(θ; y) =

N∑
i=1

log Pr[Yi = yi|Xi], (2.7)
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where the joint probabilities Pr[Yi = yi|Xi] are given in (2.3). Further, θ summarizes all model

parameters. To distinguish between the several methods we add the superscript m to the likelihood

function. Standard errors of the estimator can be obtained in the same way as for standard MNL

models, see, for example Amemiya (1985).

This estimation approach is very suitable when the number of choices K is small. However, the

number of alternatives S increases exponentially with K. For example, 10 binary choices already

lead to 210 = 1024 potential outcomes of Yi. This leads to very small probabilities in (2.3) and a sum

of many terms in the denominator, which may both lead to computational problems. Furthermore, the

computation time of the probabilities and hence the log-likelihood function will increase rapidly with

the number of choices. The dominating factor in the time spent computing the log likelihood function

for a single observation in (2.7) is the sum over the exponents, which has order of complexity 2K .

We next propose three alternative novel estimation methods which avoid the computation of all joint

probabilities.

Stratified Importance Sampling

The first alternative method reduces the number of elements in the denominator and thereby avoids

large summations and the evaluation of small probabilities. To achieve this we use a stratified subset of

the full outcome space for parameter estimation, where the selection probabilities for outcomes differ.

Straightforwardly using such a selection may however result in an inconsistent ML estimator. We use

the correction term of Ben-Akiva and Lerman (1985, Section 9.3) to correct for the stratification. This

correction term is related to the sampling probability of the subset.

Formally, let Di be a subset of the full outcome space S. We know from McFadden (1978) that

maximization of the conditional log-likelihood

`s(θ; y) =

N∑
i=1

log Pr[Yi = yi|Di, Xi] (2.8)

yields consistent parameter estimates if yi ∈ Di. From Bayes’ theorem we can write

Pr[Yi = yi|Di, Xi] =
Pr[Yi = yi|Xi] Pr[Di|Yi = yi, Xi]∑

di∈Di
Pr[Yi = di|Xi] Pr[Di|Yi = di, Xi]

=
exp (µyi + log (Pr[Di|Yi = yi, Xi]))∑

di∈Di
exp (µdi + log (Pr[Di|Yi = di, Xi]))

, (2.9)

where we use that Pr[Yi = yi|Xi] for all yi in S follows from (2.3). Hence, the correction term in the

MNL specification for using sub-sampleDi instead of full outcome space S is log (Pr[D|Yi = yi, Xi]).
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To select an appropriate sub-sample Di we follow Ben-Akiva and Lerman (1985). They propose

to use stratified importance sampling [SIS] for the creation of the subset Di and to find the values for

the correction term. This selection method creates disjoint strata containing comparable alternatives.

One randomly selects (with equal probabilities) a fixed number of alternatives within each stratum.

For stratum r we select nr alternatives. For the stratum that contains yi we make sure that yi is

contained in the selected set.

Specifically, we create strata of singles, pairs, triplets et cetera in the multivariate binary choice

data. Even though there may be many triplets, SIS allows us to limit the number of triplets we actually

need to consider.

Formally, let R be the number of disjoint strata and let qr be the stratum-specific probability to

be in subset Di based on the fixed amount of alternatives to be drawn. This probability equals nr

divided by the number of alternatives in stratum r. Then, referring to Ben-Akiva and Lerman (1985),

Pr[Di|Yi = yi, Xi] ∝ 1/qr(yi), where r(yi) is the stratum containing the joint set of binary choices

under consideration.

Hence, the correction term equals the negative logarithm of the stratum-specific selection proba-

bilities. The joint probabilities in (2.9) are then given by

Pr[Yi = yi|Di, Xi] =
exp

(
µyi − log

(
qr(yi)

))∑
di∈Di

exp
(
µdi − log

(
qr(di)

)) . (2.10)

Replacing the joint probabilities in (2.7) by (2.10) provides a stratified log-likelihood. The stratified

importance sampling ML estimator is consistent but there is loss in efficiency compared to full ML

due to the sampling.

It is easy to see the advantages of this approach over the standard ML approach of Russell and

Petersen (2000). Using only a subset Di in stratified importance sampling reduces the dimension

in the MVL model and thereby avoids the large summation in the denominator of (2.3). The order

of complexity of a likelihood contribution calculation reduces from 2K to the size of Di, which can

be chosen considerably smaller than 2K . Furthermore, an optimal choice of strata R and sampling

probabilities qr will not imply large efficiency losses. Nonetheless, small sampling probabilities qr

decreases computation time but increases efficiency loss. A Monte Carlo study has to shed light on

the effect of the size of Di on efficiency losses. In the remainder of this section we introduce two

alternative novel estimation methods.
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Composite Conditional Likelihood

Given the structure of the multivariate logit model it is possible to use composite conditional like-

lihood (Lindsay, 1988) for parameter estimation. Where both the method by Russell and Petersen

(2000) and the method proposed in the previous paragraph write the MVL model as a Multinomial

Logit specification on a large outcome space, the CCL representation uses the conditional probabil-

ities in (2.1) as separate, nonetheless correlated, choices. Hence, CCL avoids summation over the

complete outcome space. It can be shown that the CCL approach provides consistent estimators at

the cost of a loss in efficiency (Varin et al., 2011).

Following Molenberghs and Verbeke (2005, Chapter 12), the conditional probabilities in (2.1)

lead to the composite log-likelihood function for the MVL model, that is,

`c(θ; y) =

N∑
i=1

`c(θ; yi) =

N∑
i=1

K∑
k=1

`c(θ; yik)

=
N∑
i=1

K∑
k=1

log Pr[Yik = yik|yil for l 6= k,Xi],

(2.11)

where the superscript c stands for CCL. The estimator θ̂ which follows from maximizing (2.11) is

consistent as N →∞ (Varin et al., 2011).

Varin et al. (2011) furthermore show that standard errors in CCL can be computed using the

Godambe (1960) information matrix, which has a sandwich form and equals

Gc
θ̂

= Hc
θ̂

(
Jc
θ̂

)−1
Hc
θ̂

(2.12)

with

Hc
θ̂

=
1

N

N∑
i=1

K∑
k=1

∇`c(θ̂; yik)∇`c′(θ̂; yik) and Jc
θ̂

=
1

N

N∑
i=1

∇`c(θ̂; yi)∇`c′(θ̂; yi), (2.13)

where∇`c(θ̂; yik) and ∇`c(θ̂; yi) denote the first-order derivatives of the corresponding

log-likelihood contributions in (2.11). The covariance matrix of the parameter estimates then follows

from (−Gc
θ̂
)−1.

Although the composite conditional likelihood does not correspond to the correct likelihood func-

tion, it still takes dependencies in the MVL model into account. The advantage over the full multino-

mial representation in (2.3) is that CCL avoids the large summation in the denominator. The order of

complexity for a likelihood contribution is further reduced to K because of the separation of condi-

tional choices. It is therefore possible to compute CCL even when there is a large number of choices.
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Nonetheless, since the composite instead of the true likelihood function is used, the estimator is not

efficient. A Monte Carlo study in Section 2.4 will however show a rather small and acceptable effi-

ciency loss.

Generalized Method of Moments

The final estimation method we consider for the multivariate logit model is generalized method of

moments (Hansen, 1982). To reduce the computation time we base the moment conditions only on the

conditional probabilities. Assuming exogeneity of the explanatory variables, the moment conditions

E(Yik − Pr[Yik = 1|yil for l 6= k,Xi]) = 0 ∀ k = 1, . . . ,K,

E((Yik − Pr[Yik = 1|yil for l 6= k,Xi])Xi) = 0 ∀ k = 1, . . . ,K, (2.14)

E((Yik − Pr[Yik = 1|yil for l 6= k,Xi])Yil) = 0 ∀ l 6= k

are valid to estimate the parameters in θ. We denote the sample analogue of these moment conditions

for observation i by mi(θ), which is a (p+K)×K-dimensional vector.

The number of moment conditions equals (p + K) ×K. When K > 1, the number of moment

conditions exceeds the number of parameters in the model and we use a two-step GMM approach

(Cameron and Trivedi, 2005, Chapter 6). First, we estimate the parameters assigning equal weight to

all moment conditions. In the second step, we optimally weigh the moment conditions according to

the covariance matrix of the moment conditions to obtain the final parameter estimates. That is, in

the second step we solve

min
θ
M(θ)′WM(θ), (2.15)

where M(θ) = 1
N

∑N
i=1mi(θ). The weighting matrix W is estimated as the matrix

( 1
N

∑N
i=1mi(θ)mi(θ)

′)−1 evaluated at the first round estimate of θ, see, for example, Cameron and

Trivedi (2005, Chapter 6.3).

The covariance matrix of the parameter estimates from GMM follows from

(
Hg′
θ̂

(
Jg
θ̂

)−1
Hg

θ̂

)−1

(2.16)

with Hg

θ̂
=
∑N

i=1∇mi(θ̂) and Jg
θ̂

=
∑N

i=1mi(θ̂)m
′
i(θ̂) where the superscript g stands for GMM.

The GMM approach uses conditional probabilities (2.1) instead of joint probabilities (2.3) and

hence the large summation in the denominator of (2.3) is avoided. GMM therefore has the same com-
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putational advantages as the CCL approach. The order of complexity for a single observation equals

the number of moment conditions. Hence, this is lower than 2K if K > 4 and p reasonably small.

As the suggested GMM approach has more moment conditions than parameters it is possible to use a

standard test for over-identifying restrictions to test for the validity of the MVL model specification.

In sum, in this section we have proposed four parameter estimation methods for the multivariate

logit model. Since the standard ML method is computationally infeasible when the number of choices

is large, we have proposed three novel estimation methods. In the next section we compare these new

estimation methods with the standard ML approach in a Monte Carlo study. We focus on small-

sample bias, loss in efficiency and computation time for several numbers of correlated binary choices

K and sample sizes N .

2.4 Monte Carlo Study

In this section we conduct a Monte Carlo study to investigate the properties of the four estimation

methods described in the previous sections. First, we compare computation times of the four methods.

Second, we examine small-sample bias and efficiency losses by looking at the average parameter

estimates and the root mean squared error [RMSE] over the replications. Since the standard ML

method uses the full information likelihood function, this method is expected to be most efficient. We

compare the three alternative novel estimation methods to this method to analyze loss in efficiency.

Finally, we check whether standard errors provided by the methods allow for valid inference in small

samples.

For our Monte Carlo study we consider the MVL specification in (2.3) and (2.4). The number of

choices is either small (K = 4), medium (K = 8) or large (K = 12). We consider a relatively small

sample size (N = 500) and a large sample (N = 5000). As explanatory variables Xi we take two

positively correlated random variables; one continuous and one discrete. Both variables are drawn

from a bivariate normal distribution with variances 0.25 and correlation 0.75 and the second variable is

made discrete based on a zero threshold. To avoid the need to consider many different data generating

processes [DGPs], the DGP parameters are chosen in such a way that different types of correlation

structures occur within our set of K binary variables, see Tables 2.2 to 2.4 for the values of the DGP-

parameters. For all K, positive and negative as well as large and small association parameters are

used. Note that the size of the association parameters depends on K and thus differs over K. The

GMM approach uses the discussed two-step estimator. For the stratified sampling approach we have

to chooseR and qr. Since the sets of binary choices within a stratum should be comparable, we create
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Table 2.1: Average computation time over 100 replications (1000
observations)a

Estimation method

Number of choices K ML SIS2K/2 SIS2K/3 CCL GMM

4 0.79 1.02 0.89 0.25 1.22
8 37.33 15.89 8.17 1.66 7.25
12 1538.94 200.76 70.94 5.57 33.73
a In seconds in Matlab R2013a on a Quad-Core Intel Xeon 2.67Ghz processor

(8GB RAM) running Windows 7 64 bits

strata of singles, pairs, triplets, et cetera. An intuitive choice for qr is the relative fraction of stratum

r in the data. We consider two alternatives: one where the size of subset Di is 2K/2 and one where it

is 2K/3.

All estimation methods are implemented in Matlab R2013a on a quad-core Intel Xeon 2.67Ghz

processor with 8GB RAM. Before we discuss the results of the Monte Carlo study, we first focus

on computation time. Table 2.1 displays the average computation time over 100 replications and

N = 1000 observations for different values of K, where we use the DGPs from Tables 2.2 to 2.4.

Since large summations in the denominator of (2.3) and small joint probabilities do not occur for

smallK, standard ML estimation is still computationally feasible. However, for largerK, differences

in computation time grow rapidly. For instance, the computation time for standard ML when K = 12

is on average 25.6 minutes and the other three methods have a clear advantage. The computation

time of CCL is more than 275 times faster (only 5.6 seconds). These computation times are in line

with the (objective) order of complexity presented in Section 2.3. If the small-sample bias and losses

in efficiency are both small, the alternative estimation methods are sound alternatives for parameter

estimation in the large MNL specification with large K. Note that the difference in computation time

will further increase if we include more explanatory variables in the model or consider even largerK.

Tables 2.2 to 2.4 display the average and RMSE of the estimators over 5000 replications. Since

results are highly comparable and to save space, a diverse selection of parameters from the DGPs

is displayed.1 The DGP with N = 5000 shows that the bias is quite small for all estimation meth-

ods. For small sample sizes, the deviation of the parameter estimates from the DGP values is larger.

Nonetheless, all methods find comparably accurate estimates. Our newly introduced estimation meth-

ods thus are capable of finding estimates comparable to the regular likelihood approach.

To further analyze the loss in efficiency between the three novel estimation methods and standard

ML, we consider best and worst cases of the RMSEs across all parameters, see Tables 2.2 to 2.4. As

expected, standard ML is most efficient. The subset approach used in SIS causes a loss of information

1The results for the other parameters are similar and available upon request.
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and thereby an increase in RMSE. Obviously, the smaller the subset, the larger the loss in efficiency.

In the best and worst case, the RMSE of ML and SIS with a subset D of size 2K/2 differ 3.7 and 7.0

percent, respectively. The smaller subset of size 2K/3 yields efficiency losses between 12.0 and 20.4

percent. For CCL and GMM, only small efficiency losses occur. The differences of GMM with ML in

terms of RMSE are between 0.02 and 7.3 percent. These differences are smallest for the parameters

of the covariates. For CCL, the minimum and maximum differences are only 0.1 and 0.9 percent,

respectively.

Table 2.2: Average parameter estimates and RMSE in a simulation study with 4 binary choices (5000
replications)a

DGP ML SIS2K/2 SIS2K/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.35 -0.358 0.230 -0.354 0.257 -0.365 0.298 -0.358 0.230 -0.381 0.239
β2 -1 -1.018 0.277 -1.027 0.320 -1.037 0.364 -1.018 0.277 -0.990 0.274

-0.5 -0.503 0.251 -0.508 0.286 -0.508 0.315 -0.504 0.252 -0.498 0.252
ψ1,4 0.35 0.354 0.220 0.357 0.259 0.361 0.277 0.354 0.220 0.355 0.236
ψ2,4 -0.9 -0.912 0.231 -0.926 0.260 -0.930 0.277 -0.913 0.231 -0.851 0.239
ψ3,4 0.55 0.559 0.212 0.562 0.248 0.567 0.279 0.559 0.212 0.562 0.230

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.35 -0.350 0.071 -0.349 0.079 -0.351 0.091 -0.350 0.071 -0.353 0.071
β2 -1 -1.003 0.085 -1.003 0.098 -1.003 0.108 -1.003 0.086 -0.998 0.085

-0.5 -0.499 0.077 -0.500 0.088 -0.501 0.095 -0.499 0.077 -0.499 0.076
ψ1,4 0.35 0.351 0.068 0.352 0.079 0.353 0.085 0.351 0.068 0.352 0.069
ψ2,4 -0.9 -0.902 0.071 -0.904 0.081 -0.903 0.084 -0.902 0.071 -0.894 0.070
ψ3,4 0.55 0.551 0.067 0.552 0.078 0.553 0.086 0.551 0.067 0.551 0.069
a To save space we only report results of six parameters selected from a wide range of the parameter space. The

results for the other parameters are similar and available upon request.
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Table 2.3: Average parameter estimates and RMSE in a simulation study with 8 binary choices (5000
replications)a

DGP ML SIS2K/2 SIS2K/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.95 -0.972 0.269 -0.974 0.286 -0.973 0.316 -0.972 0.270 -1.014 0.287
β3 -1 -1.024 0.330 -1.032 0.352 -1.050 0.393 -1.026 0.333 -0.986 0.331

-0.5 -0.511 0.295 -0.517 0.310 -0.521 0.345 -0.512 0.296 -0.504 0.299
ψ1,8 0 -0.009 0.262 -0.008 0.275 -0.011 0.299 -0.009 0.263 0.003 0.271
ψ2,7 0.15 0.146 0.257 0.148 0.269 0.151 0.294 0.146 0.257 0.152 0.266
ψ3,5 -0.9 -0.928 0.296 -0.936 0.309 -0.959 0.331 -0.931 0.297 -0.824 0.302

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.95 -0.949 0.082 -0.949 0.087 -0.949 0.096 -0.949 0.082 -0.954 0.084
β3 -1 -1.003 0.099 -1.004 0.105 -1.005 0.115 -1.003 0.099 -0.994 0.100

-0.5 -0.501 0.090 -0.502 0.093 -0.503 0.103 -0.501 0.090 -0.499 0.090
ψ1,8 0 -0.001 0.080 -0.001 0.084 -0.001 0.090 -0.001 0.080 0.002 0.082
ψ2,7 0.15 0.149 0.079 0.149 0.082 0.148 0.087 0.149 0.079 0.150 0.080
ψ3,5 -0.9 -0.905 0.092 -0.906 0.094 -0.908 0.101 -0.905 0.092 -0.875 0.097
a To save space we only report results of six parameters selected from a wide range of the parameter space. The

results for the other parameters are similar and available upon request.

Table 2.4: Average parameter estimates and RMSE in a simulation study with 12 binary choices
(5000 replications)a

DGP MLb SIS2K/2
b SIS2K/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -1.55 – – – – -1.602 0.368 -1.591 0.314 -1.645 0.347
β4 -1 – – – – -1.074 0.451 -1.040 0.386 -0.995 0.390

-0.5 – – – – -0.525 0.401 -0.508 0.340 -0.518 0.352
ψ3,12 -0.35 – – – – -0.405 0.432 -0.390 0.397 -0.346 0.395
ψ5,10 0.15 – – – – 0.136 0.398 0.133 0.368 0.114 0.371
ψ7,8 0.55 – – – – 0.570 0.390 0.554 0.349 0.486 0.374

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -1.55 – – – – -1.558 0.106 -1.555 0.094 -1.561 0.097
β4 -1 – – – – -1.007 0.128 -1.005 0.116 -0.993 0.115

-0.5 – – – – -0.503 0.117 -0.502 0.103 -0.505 0.103
ψ1,4 -0.35 – – – – -0.355 0.121 -0.352 0.116 -0.341 0.116
ψ2,4 0.15 – – – – 0.151 0.113 0.150 0.107 0.139 0.109
ψ3,4 0.55 – – – – 0.548 0.111 0.547 0.103 0.519 0.110
a To save space we only report results of six parameters selected from a wide range of the parameter

space. The results for the other parameters are similar and available upon request.
b As estimation for ML and SIS2K/2 take too long (see Table 2.1) we do not include them in the

5000 replications simulation.
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In practice one usually opts for the most efficient approach. However, the estimation method

should also be computationally feasible such that parameter estimates can be obtained in a reasonable

amount of time. The large summation over all possible alternatives in the standard ML method may

lead to numerical problems and long computation times for large K. CCL and GMM seem to be

useful alternatives for standard ML and produce useful parameter estimates in little time. The small-

sample bias is similar and the loss in efficiency is rather small. For SIS, there is a clear trade-off

between the size of the subset and the loss in efficiency.

Table 2.5: Empirical size of the distribution of the four estimators of the MVL
model with 4 binary choices (5000 observations, 5000 replications)a

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

ML α1 0.026 0.052 0.099 0.896 0.949 0.977
β2 0.025 0.048 0.098 0.894 0.947 0.972

0.024 0.048 0.097 0.902 0.950 0.975
ψ1,4 0.024 0.050 0.099 0.901 0.949 0.976
ψ2,4 0.023 0.047 0.097 0.896 0.946 0.972
ψ3,4 0.026 0.052 0.099 0.898 0.949 0.977

SIS2K/2 α1 0.028 0.051 0.100 0.897 0.949 0.975
β2 0.024 0.049 0.096 0.898 0.947 0.972

0.024 0.049 0.098 0.898 0.949 0.975
ψ1,4 0.027 0.051 0.103 0.900 0.953 0.975
ψ2,4 0.023 0.046 0.096 0.892 0.944 0.972
ψ3,4 0.025 0.050 0.100 0.900 0.949 0.976

SIS2K/3 α1 0.026 0.051 0.098 0.896 0.948 0.974
β2 0.022 0.049 0.099 0.899 0.948 0.975

0.025 0.047 0.096 0.906 0.952 0.977
ψ1,4 0.024 0.049 0.097 0.899 0.949 0.975
ψ2,4 0.025 0.050 0.101 0.898 0.948 0.973
ψ3,4 0.027 0.049 0.101 0.895 0.946 0.975

CCL α1 0.027 0.052 0.099 0.896 0.948 0.977
β2 0.025 0.049 0.098 0.893 0.946 0.972

0.025 0.048 0.098 0.903 0.950 0.975
ψ1,4 0.025 0.050 0.099 0.900 0.949 0.974
ψ2,4 0.023 0.048 0.099 0.895 0.945 0.972
ψ3,4 0.025 0.053 0.099 0.898 0.949 0.977

GMM α1 0.029 0.057 0.106 0.888 0.943 0.972
β2 0.027 0.053 0.105 0.889 0.942 0.970

0.027 0.050 0.100 0.903 0.950 0.973
ψ1,4 0.032 0.062 0.111 0.888 0.940 0.969
ψ2,4 0.033 0.063 0.116 0.881 0.933 0.965
ψ3,4 0.032 0.061 0.111 0.885 0.940 0.970

a To save space we only report results of six parameters selected from a
wide range of the parameter space. The results for the other parameters are
similar and available upon request.
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Table 2.6: Empirical size of the distribution of the four estimators of the MVL
model with 8 binary choices (5000 observations, 5000 replications)a

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

ML α1 0.022 0.048 0.098 0.900 0.948 0.972
β3 0.021 0.044 0.099 0.899 0.949 0.978

0.026 0.051 0.101 0.899 0.954 0.977
ψ1,8 0.025 0.048 0.096 0.901 0.952 0.976
ψ2,7 0.025 0.052 0.104 0.891 0.947 0.975
ψ3,5 0.022 0.048 0.100 0.898 0.944 0.974

SIS2K/2 α1 0.027 0.052 0.102 0.900 0.949 0.975
β3 0.023 0.047 0.099 0.900 0.948 0.976

0.026 0.050 0.102 0.892 0.950 0.976
ψ1,8 0.027 0.053 0.096 0.899 0.952 0.978
ψ2,7 0.025 0.056 0.103 0.894 0.948 0.975
ψ3,5 0.025 0.047 0.093 0.893 0.945 0.974

SIS2K/3 α1 0.023 0.050 0.105 0.902 0.948 0.976
β3 0.022 0.045 0.098 0.897 0.948 0.973

0.027 0.050 0.100 0.900 0.954 0.979
ψ1,8 0.026 0.047 0.098 0.899 0.951 0.977
ψ2,7 0.023 0.049 0.099 0.898 0.947 0.975
ψ3,5 0.025 0.049 0.098 0.890 0.946 0.974

CCL α1 0.023 0.048 0.100 0.900 0.948 0.972
β3 0.022 0.044 0.100 0.898 0.949 0.976

0.026 0.051 0.103 0.899 0.952 0.977
ψ1,8 0.026 0.049 0.099 0.896 0.951 0.974
ψ2,7 0.027 0.054 0.105 0.888 0.945 0.975
ψ3,5 0.024 0.049 0.100 0.897 0.942 0.970

GMM α1 0.029 0.057 0.109 0.887 0.941 0.967
β3 0.028 0.054 0.107 0.886 0.941 0.970

0.029 0.055 0.105 0.892 0.949 0.976
ψ1,8 0.035 0.060 0.117 0.874 0.931 0.961
ψ2,7 0.039 0.069 0.119 0.868 0.931 0.963
ψ3,5 0.034 0.064 0.121 0.873 0.930 0.958

a To save space we only report results of six parameters selected from a
wide range of the parameter space. The results for the other parameters are
similar and available upon request.
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Table 2.7: Empirical size of the distribution of the four estimators of the MVL
model with 12 binary choices (5000 observations, 5000 replications)a

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

SIS2K/3 α1 0.025 0.048 0.093 0.900 0.950 0.975
β4 0.023 0.051 0.098 0.903 0.957 0.977

0.023 0.044 0.095 0.898 0.949 0.975
ψ3,12 0.024 0.046 0.093 0.902 0.949 0.975
ψ5,10 0.021 0.046 0.094 0.901 0.953 0.977
ψ7,8 0.024 0.042 0.094 0.904 0.947 0.974

CCL α1 0.025 0.050 0.095 0.894 0.948 0.974
β4 0.024 0.051 0.106 0.894 0.946 0.975

0.024 0.048 0.097 0.902 0.949 0.971
ψ3,12 0.024 0.048 0.098 0.891 0.947 0.974
ψ5,10 0.023 0.049 0.101 0.895 0.948 0.974
ψ7,8 0.025 0.050 0.098 0.898 0.950 0.972

GMM α1 0.036 0.066 0.119 0.876 0.935 0.965
β4 0.030 0.065 0.120 0.882 0.938 0.967

0.028 0.055 0.102 0.892 0.943 0.968
ψ3,12 0.044 0.076 0.127 0.862 0.918 0.953
ψ5,10 0.043 0.069 0.129 0.862 0.920 0.954
ψ7,8 0.045 0.072 0.125 0.870 0.925 0.954

a To save space we only report results of six parameters selected from a
wide range of the parameter space. The results for the other parameters are
similar and available upon request.

Apart from bias and efficiency, we also consider the validity of the standard errors with respect

to significance testing of the model parameters. Tables 2.5 to 2.7 display the empirical size of the

t-test for N = 5000 for both tails of the t-statistic. The table shows that size distortions are rather

small. The largest size distortions are found for the GMM approach. For example, a theoretical

90 percent confidence interval for ψ3,12 in GMM turns out to have a coverage of 84.2%. This size

distortion is still acceptable. For the other approaches the size distortions are smaller. The same

coverage probability is 89.9% for the CCL approach. Unreported results show that even for small N

size distortions of ML, SIS and CCL are still negligible. Hence, hypothesis tests can be carried out

in the usual manner for these estimation methods. In accordance with existing literature (Altonji and

Segal, 1996), size distortion for the GMM approach are larger in small samples.

In sum, the Monte Carlo study shows that the novel estimation methods are sound alternatives

for the regular likelihood approach. Where computation times in standard ML increase exponentially

over the number of choices, the computation time stays limited using CCL, GMM or SIS. Further,

small-sample biases are comparable to full ML and efficiency losses are rather small and acceptable.

Given the win in computation time, the avoidance of numerical problems, small small-sample biases

and negligible losses in efficiency, CCL is the most promising alternative estimation method.
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2.5 Application

In this section we illustrate the use of an MVL model with many choices. We consider survey data

of 2046 individuals on store visits in a particular Dutch specialized shopping mall. Visits to different

stores are likely to be correlated and hence, it is convenient to model these simultaneous decisions

using a multivariate logit specification. In this application we consider simultaneous choices for

ten different stores. All stores fall under the general theme of home decoration and do-it-yourself.

Table 2.8 details the types of stores. Our dependent variable can take 210 = 1024 different values. As

explanatory variables we have Family size, Age, Gender, Income, Number of visits and Appreciation

of the shopping mall.

The simulation study in Section 2.4 showed that for this size of the outcome space, large differ-

ences in computation time occur. Hence, one may not be willing to use standard Maximum Likeli-

hood estimation. Based on the simulation results we consider the CCL approach (fast and accurate)

to estimate the model parameters.2 As benchmark we will also consider the standard ML approach.

The standard ML approach takes about 1.6 hours on a dual-core Intel 3.4Ghz processor with 4GB

RAM which shows that this method is not very convenient if you want to investigate several model

specifications. The CCL approach on the other hand only takes 2.3 minutes.

First, we test for independence among the choices for store visits. The Likelihood Ratio [LR]

statistic in the maximum likelihood approach for the restriction that all ψ = 0 is 1373.4 (45 degrees

of freedom). This statistic clearly shows that independence is rejected. Hence, we find evidence for

correlations between visiting the different store types and the MVL model from Section 2.2 thus is

applicable to the data. An adjusted LR-test for CCL (Varin et al., 2011) yields the same conclusion.

Tables 2.8 to 2.11 display the parameter estimates and standard errors for the two estimation meth-

ods. The parameter estimates are very similar and both methods find the same parameter estimates

to be significantly different from 0. The standard errors in the CCL approach are slightly smaller

than in the standard ML estimation approach but this may be due to the relatively small sample size.

Unreported results show that the GMM and SIS approach also provide similar results. The results of

SIS indicate that subset Di should be large to get results close to standard ML.

The negative estimates of the choice-specific intercepts in Tables 2.8 and 2.10 show that most

stores are visited only by a minority of the individuals. The order of the intercepts shows that stores

selling kitchens are visited least, where stores selling building materials are visited by the most indi-

viduals.
2The results of the other two approaches are available upon request.
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Several relations between the explanatory variables and store visits are found. For example,

the more frequent visitors of the mall visit more stores selling paint/wallpaper, building materials

and hardware. These can be seen as the fanatic handymen. Furthermore, visitors who very much

appreciate the mall are more likely to also buy their furniture, lamps and floor and wall decorations at

this shopping mall.

The association parameters in Table 2.11 show the relations between the visits to different stores.

Clear interpretations can be given. For example, individuals who visit a store selling an odd jobs arti-

cle (paint/wallpaper, building materials or hardware) are likely also to visit other odd jobs stores. The

same holds for stores selling lamps, curtains/carpets and furniture since the corresponding association

parameters are positive. Negative and significant association parameters are for instance found for the

combination hardware and curtains/carpets. Apparently, individuals seem to be unlikely to visit both

these store types in this shopping mall.

In sum, the MVL model gives understandable and interpretable parameter estimates for the data

of store visits in a Dutch shopping mall. Furthermore, the standard ML and CCL approach yield very

similar estimation results and conclusions. The clear advantage of the CCL approach is the time it

takes to obtain parameter estimates with small loss in efficiency. The reduction in computation time

is large, and with the CCL method it becomes feasible to easily consider several model specifications.

In case the number of stores would have been larger, ML estimation would break down while CCL

could still be used.
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2.6 Conclusion

The multivariate logit model is used to model correlated simultaneous binary choices. In this chapter

we proposed three novel estimation methods for this model: estimation by (i) stratified importance

sampling; (ii) composite conditional likelihood; and by (iii) generalized method of moments. The

new estimation methods are especially of interest when the dimension of the choice problem is large.

Methods available in the literature go together with a large computational burden. The new methods

in this chapter circumvent this problem.

Results from a Monte Carlo study show that the new estimation methods yield comparable small-

sample biases as the standard (full information) maximum likelihood approach as proposed by Rus-

sell and Petersen (2000). Furthermore, efficiency losses compared to the full likelihood approach are

rather small. Because of these findings, the decrease in computation time and avoidance of numerical

problems are clear advantages of our proposed estimation methods. The composite conditional like-

lihood approach turns out to have the largest decrease in computation time, leads to a very small loss

in efficiency, and provides accurate standard errors.

In an application, we applied the methods to store visits in a shopping mall. Multivariate binary

choice data occur widely in practice. Hence, other applications in different fields of research can be

given. Since the dimension of the choice problem will often be large, our methods are highly useful

in applied research.

Several extensions to the current research are possible. For instance, a conditional logit specifi-

cation can easily be derived. Furthermore, the association parameters can also depend on exogenous

variables or be individual-specific (in panel data models). Finally, instead of binary choices, this

model can be extended to a multivariate multinomial specification. The feasible estimation methods

proposed in this chapter can be used in all these cases. Especially CCL is applicable to extensions of

the current model specification if a clear composition of the conditional probabilities can be given.





Chapter 3

A Multivariate Model for Multinomial

Choices

3.1 Introduction

It is common practice in applied research to use multinomial choice models to describe categorical

data (McFadden, 1983, Chapter 24). These models are suited to describe single multinomial choices.

In practice we are often dealing with multiple correlated multinomial decisions. Answers to survey

questions with two or more choice possibilities are likely to be correlated. The choice for job location

may be correlated with residence choice. In marketing one may be interested in dependencies of si-

multaneous brand choices for several product categories. Hence, simultaneous multinomial decisions

occur in different areas of research.

In this chapter we propose a straightforward model to describe simultaneous multinomial de-

cisions with potentially high dimensions. Extensions of familiar univariate models are not always

suitable. That is, a correlated multinomial probit (MNP, Hausman and Wise, 1978) approach would

be an obvious choice, Zhang et al. (see, for example, 2008). Nonetheless, parameter estimation of

such models implies solving high-dimensional integrals. Given the computational burden in uni-

variate MNP models (Geweke et al., 1997), frequentist inference in the multivariate counterpart is

unlikely to be feasible. Another option is to use mixed logit models (Hensher and Greene, 2003) and

let unobserved heterogeneity capture correlation among decisions. Again, computation implies solv-

ing integrals which becomes cumbersome when the number of simultaneous decisions increases. A

nested logit specification (Maddala, 1983, Chapter 3) is perhaps a more feasible approach. However,

this model is designed to describe a single choice from a large number of alternatives. The nested



30 A Multivariate Model for Multinomial Choices

logit model is therefore not suitable for simultaneous decisions. Finally, one may consider a multi-

nomial choice model for all possible combinations of choices. The number of choice combinations

however easily becomes large, see also Amemiya (1978) and Ben-Akiva and Lerman (1985, Chapter

10). Clearly, model interpretation becomes difficult. Furthermore, parameter estimation becomes

infeasible as probabilities get numerically small and evaluation of the likelihood requires summation

over all potential outcomes.

In this chapter we want to model dependencies in a large number of simultaneous discrete deci-

sions without the numerical problems discussed above. To fill the gap in the literature, we propose a

general and novel multivariate multinomial logit [MV-MNL] specification. In essence, we extend the

multivariate (binary) logit [MVL] model of Cox (1972) and Russell and Petersen (2000) to multino-

mial decisions. The advantages of this MV-MNL specification are that (i) the number of parameters

stays limited; (ii) there is a clear interpretation of the model parameters in terms of odds ratios and

that; (iii) zero restrictions on a subset of parameters result in independence between the multinomial

choices.

The contribution of this chapter is threefold. First, the novel model specification is easily scalable

to higher dimensions due to its special structure. Second, a quick and reliable estimation method is

available which makes applying the model much more practical. That is, we can avoid the summation

over all potential combinations of the multivariate multinomial choices. We consider conditional

instead of joint probabilities using a composite likelihood function (Lindsay, 1988), see Chapter 2

and Bel et al. (2014) for a similar approach in MVL models. Finally, the MV-MNL specification can

easily be extended to a fixed-effects specification for panel data. Parameter estimation stays feasible

by using sufficient statistics in combination with the composite likelihood approach.

The model is related to the multivariate MNL specification of Amemiya (1978) and Ben-Akiva

and Lerman (1985, Chapter 10) but in contrast to these specifications we explicitly focus on the de-

pendence structure in the multinomial choices. Agresti (2007, Chapter 9) also considers dependencies

in multivariate choices but is not in particular interested in the dependence structure as he proposes the

evaluation of contingency tables, where individual characteristics are discarded. Burda et al. (2008)

focus on numerous choices on the same attribute, but we deal with separated, nonetheless correlated,

multinomial choices.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce the new MV-

MNL specification. We also discuss parameter identification, interpretation and parameter inference.

A small Monte Carlo study shows the accuracy of the parameter estimates and a small loss in effi-

ciency due to the use of the composite instead of the true likelihood. An extension to panel data is

discussed in Section 3.3. Section 3.4 provides two illustrations of the use of MV-MNL models. The
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first illustration concerns a cross-sectional survey on satisfaction about life and the second illustra-

tion deals with the choice for tuna using a household panel scanner data set. Finally, Section 3.5

concludes.

3.2 Model Specification

In this section we discuss the model specification for the multivariate multinomial logit model. This

model is an extension of the multivariate logit model introduced by Cox (1972) and Russell and

Petersen (2000). We discuss model specification, parameter identification and interpretation of the

model parameters. Section 3.2.1 shows the model representation for the choice probabilities in a

simple bivariate trinomial logit model to clarify the structure and identification of parameters of the

model.

Let Yi denote theK-dimensional random variable describing the joint set of choices for individual

i = 1, . . . , N , defined as

Yi = {Yi1, . . . , YiK}, (3.1)

where Yik describes the k-th multinomial choice for individual i for k = 1, . . . ,K. Yik = j if

individual i chooses j = 1, . . . , Jk for the k-th choice, where Jk is the number of potential outcomes.

Note that there are
∏K
k=1 Jk possible realizations of the random variable Yi. The set of possible

realizations is called S.

The K choices in Yi may be correlated. The starting point for modeling these dependencies is

the conditional probabilities for each choice decision k given all choice decisions l 6= k, see Russell

and Petersen (2000) for a binomial equivalent. These conditional probabilities are a multinomial logit

function of the individual characteristics Xi, the model parameters α, β and ψ and the other choices

yil, that is

Pr[Yik = j|yil for l 6= k,Xi] =
exp(Zik,j)∑Jk
l=1 exp(Zik,l)

(3.2)

with

Zik,j = αk,j +Xiβk,j +
∑
l 6=k

ψkl,jyil , (3.3)

where αk,j are alternative- and choice-specific intercepts, Xi a vector of explanatory variables with

corresponding parameter vector βk,j and where ψkl,jh are association parameters between choosing j
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for the k-th choice and choosing h for the l-th choice. Hence, the correlation between choices yik and

yil is captured by the association parameter. Association means the relative change in the exponent

Zik,j if choices k and l move together compared to being opposite. When ψkl,jh > 0 this implies

positive association and when ψkl,jh < 0 we have negative association. For ψkl,jh = 0 we have

independence between choices yik and yil.

The theorem of Besag (1974) states that all properties of the joint distribution follow from the full

set of conditional distributions. We use this result to show that the conditional distributions in (3.2)

imply the following multinomial logit model for the joint distribution of Yi (see Appendix 3.A.1 for

the formal proof):

Pr[Yi = yi|Xi] =
exp(µyi)∑
si∈S exp(µsi)

, (3.4)

where yi is a possible realization from the outcome space S, and where µyi is defined as

µyi =
K∑
k=1

(
αk,yik +Xiβk,yik +

∑
l>k

ψkl,yikyil

)
. (3.5)

It is easy to see that the equation contains αk and βk corresponding to the specific choice option for

the k-th choice and ψkl,jh corresponding to the observed choice pairs yik and yil.

The role of the intercept parameters and Xi follows from the log odds ratio

ln

(
Pr[Yi = yi|Xi]

Pr[Yi = (1, . . . , 1)′|Xi]

)
=

K∑
k=1

(
αk,yk +Xiβk,yk +

∑
l>k

ψkl,ykyl

)
, (3.6)

where we use that under the identification restrictions Pr[Yi = (1, . . . , 1)|Xi] ∝ 1. Clearly, this odds

ratio equals µyi in (3.5) and provides the probability to observe yi relative to the base set of choice

decisions.

The parameters ψkl,jh indicate the associations between choices k and l. ψkl,jh is in theory an

unbounded parameter and thus does not directly resemble correlation between choices j and h. To

give a direct interpretation to these associations, we use log odds ratios. It is easy to show that

ψkl,jh = ln

(
Pr[Yi = (1, . . . , 1, yik = j, 1, . . . , 1, yil = h, 1, . . . , 1)′|Xi] Pr[Yi = (1, . . . , 1)′|Xi]

Pr[Yi = (1, . . . , 1, yik = j, 1, . . . , 1)′|Xi] Pr[Yi = (1, . . . , 1, yil = h, 1, . . . , 1)′|Xi]

)
.(3.7)

Hence, a positive ψkl,jh implies that the choices j and hmore often move together than apart. Hence,

this indeed implies positive ψkl,jh for positive correlations and negative association parameters for

negative correlations.
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Various restrictions are needed for identification purposes. First, it is easy to see that when all

ψkl,jh-parameters are 0, the conditional probabilities simplify to standard multinomial logit probabil-

ities where the K choices are independent. Hence, to identify the parameters we have to impose the

standard identification restrictions of the multinomial logit model, that is, αk,1 = 0 and βk,1 = 0 for

all k. Second, the conditional probabilities should be compatible with one another to be able to form a

proper joint distribution. That is, the association of choice option j for choice k with choice option h

for choice l should be the same as the opposite relation. Formally, we have to impose ψkl,jh = ψlk,hj

for symmetry. Finally, as utility differences determine choice, we cannot identify all association pa-

rameters. That is, equal changes in all associations would not yield any difference. Therefore, we

impose that ψkl,j1 = ψkl,1h = 0 for all j and h without loss of generality. Note that it is possible

to impose other identification restrictions. In fact, in a large unrestricted MNL which describes the∏K
k=1 Jk possible realizations of the random variable Yi, we can identify (

∏K
k=1 Jk)−1 intercept pa-

rameters and the same number of β parameters. This implies that -together with standard univariate

multinomial logit restrictions- our restrictions on the β parameters are sufficient for identification as

long as one set of choices contains a full set of restricted β parameters. For α and ψ parameters the

restrictions are necessary for K = 2 and sufficient for K > 2. Our choices to identify the parameters

are however motivated by: (i) they are a straightforward extension of parameter identification in the

multivariate binomial choice model of Russell and Petersen (2000); (ii) they are universal, that is,

can be applied for all possible values of K and Jk and; (iii) they yield direct interpretations of the

association parameters via odds ratios. Section 3.2.1 describes the need and implications of these

identification restrictions.

The discussion can easily be changed to a multivariate conditional logit specification where the

explanatory variables instead of parameters vary over alternative choices. Hence, the exponent in

(3.2) then writes

Zik,j = αk,j +Wik,jγk +
∑
l 6=k

ψkl,jyil , (3.8)

where Wik,j denotes the value of the explanatory variables which now differs over i, k and j and γk

denotes the corresponding parameter vector. The joint probabilities are then given by (3.4) with

µyi =
K∑
k=1

(
αk,yik +Wik,yikγk +

∑
l>k

ψkl,yikyil

)
. (3.9)
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The proof directly follows from the proof for the MV-MNL specification in Appendix 3.A.1.1

Finally, the model can be extended with individual-specific association parameters by replacing

the expression for ψkl,jh in (3.5) by

ψi,kl,jh = ξkl,jh +Xiδkl,jh, (3.10)

where ξkl,jh and δkl,jh are additional parameters. The association between decisions j and h now

depends on individual characteristics Xi.

3.2.1 A Bivariate Trinomial Logit Model

To illustrate the properties of the proposed multivariate multinomial logit model and the need for

identification restrictions we consider a bivariate trinomial logit specification. Hence, we haveK = 2

and J1 = J2 = 3. The conditional probabilities with the proper identification restrictions imposed

are defined as

Pr[Yik = 1|yil, Xi] ∝ 1

Pr[Yik = 2|yil, Xi] ∝ exp(αk,2 +Xiβk,2 + ψkl,2yil) (3.11)

Pr[Yik = 3|yil, Xi] ∝ exp(αk,3 +Xiβk,3 + ψkl,3yil).

These conditional probabilities imply the following 9 choice probabilities:

Pr[Yi = (1, 1)′|Xi] ∝ 1

Pr[Yi = (1, 2)′|Xi] ∝ exp(α2,2 +Xiβ2,2)

Pr[Yi = (1, 3)′|Xi] ∝ exp(α2,3 +Xiβ2,3)

Pr[Yi = (2, 1)′|Xi] ∝ exp(α1,2 +Xiβ1,2)

Pr[Yi = (2, 2)′|Xi] ∝ exp(α1,2 + α2,2 +Xi(β1,2 + β2,2) + ψ12,22) (3.12)

Pr[Yi = (2, 3)′|Xi] ∝ exp(α1,2 + α2,3 +Xi(β1,2 + β2,3) + ψ12,23)

Pr[Yi = (3, 1)′|Xi] ∝ exp(α1,3 +Xiβ1,3)

Pr[Yi = (3, 2)′|Xi] ∝ exp(α1,3 + α2,2 +Xi(β1,3 + β2,2) + ψ12,32)

Pr[Yi = (3, 3)′|Xi] ∝ exp(α1,3 + α2,3 +Xi(β1,3 + β2,3) + ψ12,33).

1The proof requires that Zik,1 = 0 which does not hold for this specification. We can however rewrite the
model such that Zik,j = αk,j + (Wik,j − Wik,1)γk +

∑
l 6=k ψkl,jyil with Zik,1 = 0 such that the proof is

similar as in Appendix 3.A.1.
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As we have 9 probabilities we can only identify 8 different intercept parameters. The imposed identi-

fication restrictions result in exactly 4 α-parameters and 4 ψ-parameters and thus cause identifiability.

It is easy to see that imposing ψ12,22 = ψ12,23 = ψ12,32 = ψ12,33 = 0 implies that the joint probabil-

ities can be written as the product of two independent multinomial logit probabilities. Furthermore,

we see that

ψ12,jh = ln

(
Pr[Yi = (j, h)′|Xi] Pr[Yi = (1, 1)′|Xi]

Pr[Yi = (j, 1)′|Xi] Pr[Yi = (1, h)′|Xi]

)
. (3.13)

Hence, a positive value of ψ12,jh implies positive association between choosing j for choice 1 and h

for choice 2.

3.2.2 Parameter Inference

To estimate the parameters of the multivariate binary logit model Russell and Petersen (2000) suggest

to use maximum likelihood using a log-likelihood function based on the joint probabilities, that is

`(θ; y) =
N∑
i=1

ln Pr[Yi = yi|Xi], (3.14)

where Pr[Yi = yi|Xi] is given in (3.4) and where θ summarizes the model parameters.

The same approach is of course possible for our MV-MNL specification. The disadvantage is

however that the computation of these joint probabilities may be a burden if the dimensions of the

logit specification are large. For example, for K = 10 and Jk = 5 for all k we have to take the sum

of 510 different terms in the denominator of the joint probabilities. The outcome space of the multi-

variate multinomial random variable rapidly grows large and the computation time thereby increases

exponentially with the number of choices. Further, numerical problems emerge as probabilities get

small (in the given example 1/510 on average).

To avoid these numerical problems, we propose another estimation approach based on the ideas in

Chapter 2 and Bel et al. (2014) for the MVL specification. Bel et al. (2014) propose to use a composite

likelihood approach (Lindsay, 1988) using all conditional probabilities in the likelihood specification

(Molenberghs and Verbeke, 2005, chapter 12) instead of the joint probabilities in (3.4). The resulting

composite conditional likelihood [CCL] representation only uses conditional probabilities and hence

it avoids summation over the complete outcome space. It thereby also avoids the computation of

numerically small probabilities. It can be shown that the CCL approach provides consistent estimators

(Varin et al., 2011) but at the cost of loss in efficiency.
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The conditional probabilities in (3.2) lead to the composite log-likelihood function of the MV-

MNL specification, that is

`c(θ; y) =

N∑
i=1

`c(θ; yi)

=
N∑
i=1

K∑
k=1

`c(θ; yik) (3.15)

=
N∑
i=1

K∑
k=1

lnP [Yik = yik|yil for l 6= k,Xi].

The estimator θ̂ which follows from maximizing (3.16) is consistent. Varin et al. (2011) show that

standard errors in CCL can be computed using the Godambe (1960) information matrix, which has a

sandwich form and writes

Gθ̂ = Hθ̂J
−1

θ̂
Hθ̂ (3.16)

with

Hθ̂ =
1

N

N∑
i=1

K∑
k=1

∇`c(θ̂; yik)∇`c
′
(θ̂; yik) (3.17)

and

Jθ̂ =
1

N

N∑
i=1

∇`c(θ̂; yi)∇`c
′
(θ̂; yi). (3.18)

where∇`c(θ̂; yik) and ∇`c(θ̂; yi) denote the first-order derivatives of the corresponding

log-likelihood contributions in (3.16). The covariance matrix of the parameter estimates is then given

by (−Gθ̂)
−1.

To test for independence in the multinomial decisions one can use a Likelihood Ratio [LR] statistic

for the restriction that the association parameters ψ equal 0. This LR-statistic does not have a standard

distribution when the CCL estimation approach is used. Based on results by Satterthwaite (1946)

and Kent (1982), Varin et al. (2011) propose to use an adjusted LR-statistic which for our test of

independence boils down to

LR =
ν

Qλ̄
2
(
`c(θ̂; y)− `c(α̂, β̂; y)

)
, (3.19)
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where `c(θ̂; y) is the value of the CCL evaluated in the estimate under the alternative hypothesis and

`c(α̂, β̂; y) the value of the CCL evaluated in the estimate under the null and where Q is the number

of ψ parameters. This LR-statistics is asymptotically χ2(ν) distributed with

ν =

(∑Q
q=1 λq

)2

∑Q
q=1 λ

2
q

, (3.20)

where λ1, . . . , λQ are eigenvalues of (Gψ(H−1)ψ)−1 withGψ theQ×Q sub-matrix of the Godambe

information matrix corresponding to ψ. Moreover, λ̄ denotes the average of the eigenvalues.

Although the composite conditional likelihood does not correspond to the true likelihood func-

tion, it still takes the correlation between choice decisions in the multivariate multinomial logit model

into account. The advantage over the full multinomial representation in (3.4) is that CCL avoids the

large summation in the denominator. It is therefore possible to compute CCL even if there is a large

number of choices and alternatives. Nonetheless, since the composite instead of the true likelihood

function is used, the estimator is not efficient. Chapter 2 and Bel et al. (2014) show that the loss in

efficiency is quite small for MVL models. In the next subsection we conduct a small Monte Carlo

study to analyze the efficiency loss for the MV-MNL specification.

3.2.3 Monte Carlo Study

In this section we conduct a Monte Carlo study to investigate the properties of the composite like-

lihood estimator for the parameters of a multivariate multinomial logit specification. We focus on

potential small sample bias and loss in efficiency caused by using the composite instead of the ex-

act log-likelihood specification in the estimation procedure. Finally, we check whether the normal

distribution can be used to approximate the small sample distribution of the CCL estimator.

For our Monte Carlo study we consider the MV-MNL specification (3.4) with (3.5). The number

of choices K is fixed to 3 and the number of choice alternatives per choice are J1 = 3, J2 = 4

and J3 = 5. We consider a relatively small sample size N = 250 and a large sample N = 5000.

As explanatory variables Xi we take two positively correlated random variables; one continuous and

one discrete. Both variables are drawn from a bivariate normal distribution with variances 0.25 and

correlation 0.75. The second variable is made discrete based on a zero threshold. The parameters of

our data generating process [DGP] are chosen such that there is an unequal distribution over the choice

alternatives but still substantial choice probabilities for every choice combination, see Tables 3.1 and

3.2 for the values of our DGP-parameters.
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Table 3.1: Mean and RMSE of the estimator for the MV-MNL model parameters based on a Monte Carlo
study with N = 250 (10000 replications)a

k = 1 k = 2 k = 3

θ θ̂ RMSE θ θ̂ RMSE θ θ̂ RMSE

α1,2 0.15 0.165 0.684 α2,2 0.15 0.172 0.758 α3,2 0.150 0.164 0.827
α1,3 0.25 0.278 0.690 α2,3 0.25 0.290 0.753 α3,3 0.250 0.262 0.830

α2,4 0.375 0.426 0.757 α3,4 0.375 0.424 0.781
α3,5 0.475 0.540 0.777

X1 β1,2 1.05 1.110 0.525 β2,2 1.05 1.122 0.661 β3,2 1.05 1.138 0.723
β1,3 1.45 1.533 0.526 β2,3 1.45 1.545 0.650 β3,3 1.45 1.556 0.710

β2,4 1.75 1.864 0.650 β3,4 1.75 1.878 0.677
β3,5 1.95 2.083 0.674

X2 β1,2 0.25 0.258 0.464 β2,2 0.25 0.272 0.635 β3,2 0.25 0.274 0.702
β1,3 0.45 0.479 0.452 β2,3 0.45 0.490 0.602 β3,3 0.45 0.486 0.671

β2,4 0.65 0.696 0.594 β3,4 0.65 0.697 0.637
β3,5 0.80 0.850 0.628

a The DGP is given in Section 3.2.3 with K = 3 and J1 = 3, J2 = 4 and J3 = 5.

Table 3.2: Mean and RMSE of the estimator for the MV-MNL model parameters based on a Monte Carlo
study with N = 5000 (10000 replications)a

k = 1 k = 2 k = 3

θ θ̂ RMSE θ θ̂ RMSE θ θ̂ RMSE

α1,2 0.15 0.141 0.131 α2,2 0.150 0.143 0.154 α3,2 0.150 0.138 0.166
α1,3 0.25 0.243 0.137 α2,3 0.250 0.242 0.149 α3,3 0.250 0.241 0.167

α2,4 0.375 0.375 0.145 α3,4 0.375 0.367 0.149
α3,5 0.475 0.467 0.158

X1 β1,2 1.05 1.049 0.107 β2,2 1.05 1.062 0.129 β3,2 1.05 1.046 0.144
β1,3 1.45 1.447 0.101 β2,3 1.45 1.462 0.128 β3,3 1.45 1.454 0.141

β2,4 1.75 1.762 0.130 β3,4 1.75 1.752 0.138
β3,5 1.95 1.953 0.136

X2 β1,2 0.25 0.254 0.098 β2,2 0.25 0.243 0.122 β3,2 0.25 0.258 0.147
β1,3 0.45 0.455 0.099 β2,3 0.45 0.443 0.120 β3,3 0.45 0.455 0.137

β2,4 0.65 0.644 0.121 β3,4 0.65 0.658 0.132
β3,5 0.80 0.806 0.133

a The DGP is given in Section 3.2.3 with K = 3 and J1 = 3, J2 = 4 and J3 = 5.
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Table 3.3: Mean and RMSE of the estimator for the association parameters based on a Monte Carlo study
with N = 250 (10000 replications)a

k = 2

2 3 4
k = 1 ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE

2 0.475 0.513 0.612 0.250 0.267 0.598 0 -0.001 0.601
3 0.250 0.271 0.617 0.475 0.492 0.597 0.25 0.249 0.588

k = 3

2 3 4 5
k = 1 ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE

2 -0.375 -0.409 0.704 -0.15 -0.155 0.663 0 -0.002 0.636 0.15 0.152 0.646
3 -0.150 -0.168 0.672 -0.375 -0.389 0.668 -0.15 -0.166 0.636 0 -0.010 0.642

k = 3

2 3 4 5
k = 2 ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE

2 0.475 0.512 0.814 0.250 0.289 0.827 0 0.008 0.799 -0.25 -0.262 0.780
3 0.250 0.278 0.833 0.475 0.529 0.808 0.25 0.268 0.772 0 0.004 0.756
4 0 0.011 0.862 0.250 0.288 0.834 0.475 0.512 0.781 0.25 0.265 0.761

a The DGP is given in Section 3.2.3 with K = 3 and J1 = 3, J2 = 4 and J3 = 5.

Table 3.4: Mean and RMSE of the estimator for the association parameters based on a Monte Carlo study
with N = 5000 (10000 replications)a

k = 2

2 3 4
k = 1 ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE

2 0.475 0.483 0.122 0.250 0.258 0.120 0 0.001 0.122
3 0.250 0.256 0.131 0.475 0.485 0.122 0.25 0.252 0.119

k = 3

2 3 4 5
k = 1 ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE

2 -0.375 -0.374 0.147 -0.150 -0.151 0.136 0 0.003 0.129 0.15 0.153 0.134
3 -0.150 -0.143 0.137 -0.375 -0.371 0.138 -0.15 -0.146 0.126 0 0.001 0.130

k = 3

2 3 4 5
k = 2 ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE ψ ψ̂ RMSE

2 0.475 0.482 0.164 0.25 0.259 0.163 0 0.004 0.160 -0.25 -0.237 0.155
3 0.250 0.256 0.166 0.475 0.482 0.152 0.25 0.256 0.153 0 0.008 0.150
4 0 0.001 0.161 0.25 0.255 0.162 0.475 0.477 0.157 0.25 0.257 0.149

a The DGP is given in Section 3.2.3 with K = 3 and J1 = 3, J2 = 4 and J3 = 5.
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Tables 3.1 to 3.4 display the mean and root mean squared error [RMSE] of the CCL estimator.

The final two tables show that for N = 5000 the bias in the estimator is quite small. For a smaller

sample size N = 250, the deviation from the DGP parameters is larger. Unreported results show that

the bias is almost the same as the bias in a regular maximum likelihood approach.2 The RMSE shows

that there is a large variance of the estimator for small sample sizes. This is not a surprise as we in

fact try to estimate the parameters of an MNL model with 3 × 4 × 5 = 60 choice alternatives using

only 250 observations.

To analyze the loss in efficiency between CCL and the regular likelihood approach, we consider

the ratio of the RMSEs of both approaches. Table 3.5 shows a selection of these ratios which is based

on best and worst cases. The ratios are close to 1 and hence the loss in efficiency is rather limited even

in small samples. For example, for the largest difference, CCL is only 1.3 percent worse in RMSE

than regular ML. Hence, CCL seems to be a valid alternative for maximum likelihood to estimate the

parameters of an MV-MNL model. The small-sample bias is similar and the loss in efficiency is very

small.

Table 3.5: Relative RMSE of
the maximum CCL and the
regular ML estimatora

Sample size
Parameter 250 5000

α1,2 1.007 1.003
α2,3 1.007 1.003
α3,4 1.007 1.000
β1,3 1.008 1.000

1.002 1.000
β2,4 1.013 1.000

1.004 1.001
β3,5 1.013 1.003

1.002 1.001
ψ12,22 1.005 1.001
ψ13,33 1.005 1.000
ψ23,44 1.006 1.002
a We only report results for

a subset of parameters.
The results for the other
parameters are similar and
available upon request.

2Detailed results are available upon request.
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Table 3.6: Empirical size of the distribution of
the estimators based on a Monte Carlo study with
N = 250 (10000 replications)a

Theoretical 0.025 0.05 0.95 0.975

α1,2 0.028 0.055 0.951 0.976
α2,3 0.027 0.053 0.954 0.977
α3,4 0.022 0.048 0.957 0.980
β1,3 0.031 0.058 0.954 0.979

0.027 0.053 0.953 0.978
β2,4 0.031 0.056 0.910 0.957

0.029 0.055 0.908 0.958
β3,5 0.029 0.054 0.962 0.982

0.031 0.055 0.961 0.982
ψ12,22 0.034 0.059 0.952 0.977
ψ13,33 0.026 0.054 0.943 0.971
ψ23,44 0.029 0.056 0.954 0.979
a We only report results for a subset of param-

eters. The results for the other parameters are
similar and available upon request.

Apart from bias and efficiency, we also consider the validity of using a normal distribution for

testing for significance of the parameters. Table 3.6 displays the empirical size of the t-tests for

N = 250 for both tails of t-statistics. The table shows that even for N = 250 size distortions are

rather small. For example, a theoretical 90 percent confidence interval for ψ13,33 turns out to have

coverage of 88.8 percent. This size distortion is acceptable.

In sum, the simulation study shows that the composite likelihood estimator has similar small-

sample biases as the maximum likelihood estimator and that efficiency losses are limited. Inference

based on t-statistics seems to be valid even in relatively small samples. Because of the advantages of

CCL over ML when dimensions increase, CCL is a good alternative for the estimation of parameters

in a multivariate multinomial logit specification. In Section 3.4.1, we will use the CCL approach in a

small application.

3.3 A Panel Specification

The MV-MNL model can easily be extended to a fixed-effects panel data specification. Let Yit denote

the K-dimensional random variable describing the joint set of choices for individual i = 1, . . . , N at

time t = 1, . . . , T and let Yitk = j if individual i chooses j = 1, . . . , Jk for the k-th choice at time t.

The choice probabilities are given by

Pr[Yit = yit|Xit] =
exp(µyit)∑

sit∈S exp(µsit)
, (3.21)
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where yit is a possible realization from the outcome space S and where µyit is defined as

µyit =
K∑
k=1

(
αik,yitk +Xitβk,yitk +

∑
l>k

ψikl,yitkyitl

)
. (3.22)

Hence, both the intercepts and the association parameters are individual specific. A special case of the

model is where the association parameters are pooled across the individuals in which case we replace

ψikl,yitkyitl in (3.22) by ψkl,yitkyitl .

3.3.1 Parameter Inference

In practice the number of cross sections is usually limited and hence parameter estimation suffers

from the incidental parameter problem. To solve this, we follow Chamberlain (1980) and Lee (2002,

Chapter 6) who condition on a sufficient statistic which eliminates the fixed effects from the model

specification. We extend the solution of Chamberlain (1980) for a univariate panel MNL model to

our multivariate multinomial setting in (3.21). The appropriate sufficient statistics are given by

v
(1)
i,s =

T∑
t=1

I[Yit = s] = ci,s ∀s ∈ S, (3.23)

where ci,s represents the number of times the combination of choices s occurs for individual i. Thus,

only the alternatives containing the same choice sets over time as observed for individual i are used

in the logit specification. That is, only the permutations of choices of individual i over time are taken

into account. Since no permutations can be made for individuals where no change takes place over

time, these observations are not of interest and discarded. Appendix 3.A.2 shows that the choice

probabilities conditionally on these sufficient statistics are given by

Pr[Yi = yi|v(1)
i , Xi] =

exp
(∑T

t=1

∑K
k=1Xitβk,yitk

)
∑

di∈Bi
exp

(∑Ti
t=1

∑K
k=1Xitβk,ditk

) , (3.24)

where Bi is the set of alternatives for which v(1)
i holds. Hence, the individual-specific parameters (in-

tercepts and association parameters) are removed from the probabilities and the β-parameters can be

estimated consistently using a log-likelihood function where we condition on the sufficient statistics.

Note that this approach only works if Xit does not depend on lagged dependent variables.

In case the association parameters are of core interest, these should not be discarded from the

specification. Therefore, we make ψkl,jh not individual-specific and we have to consider other suffi-
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cient statistics

v
(2)
i,k,j =

T∑
t=1

I[Yitk = j] = ci,k,j ∀k, j, (3.25)

where ci,k,j now represents the number of times that individual i chooses option j for the k-th choice.

Appendix 3.A.2 shows that when we condition on these sufficient statistics the choice probabilities

are given by

Pr[Yi = yi|v(2)
i , Xi] =

exp
(∑T

t=1

∑K
k=1

(
Xitβk,yitk +

∑
l>k ψkl,yitkyitl

))
∑

di∈Bi
exp

(∑T
t=1

∑K
k=1

(
Xitβk,ditk +

∑
l>k ψkl,ditkditl

)) ,(3.26)

where ψkl,jh does not drop out since the combination of choices may differ over the alternatives in set

Bi where v(2)
i holds. Hence, we now can find estimates of both βk,j and the association parameters

ψkl,jh describing the relation of the choices in the multivariate multinomial logit specification. Again

this approach is only valid if Xit does not contain lagged dependent variables.

The disadvantage of using the log-likelihood function conditional on the sufficient statistics for

parameter estimation is again the sum over many alternatives in the denominator of the choice prob-

abilities which causes numerical problems. In Appendix 3.A.3 we however show that the Composite

Likelihood method can also be applied in a panel data setting. We thereby avoid the extensive sum

and make parameter estimation of MV-MNL models feasible in a panel context.

In the next section we illustrate the possibilities of the MV-MNL model by applications of its

panel version discussed in this section and its cross-sectional counterpart from Section 3.2 to house-

hold panel scanner data and a survey on life satisfaction, respectively.

3.4 Application

This section considers two illustrations of our newly proposed MV-MNL model. First, we apply the

model on cross sectional survey data on satisfaction. Satisfaction is measured at an ordinal scale

and satisfaction levels on different items are likely to be correlated. Hence, the MV-MNL model

specification from Section 3.2 and the CCL estimation procedure from Section 3.2.2 can be used.

Second, we investigate the product choice of canned tuna fish in a household panel scanner data set.

Various multinomial choices on the characteristics of canned tuna fish are made. As these decisions

are made simultaneously (and not in some natural ordering assumed in nested logit models) the model

presented in Section 3.3 is highly applicable.
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3.4.1 Survey Data on Satisfaction

To illustrate the MV-MNL model discussed in Section 3.2, we consider modeling satisfaction of

2012 Dutch respondents to an extensive survey from 2004.3 Satisfaction is represented by 5 ordinal

dependent variables: Satisfaction about Life, Income, the Social security system, Democracy and

the Government. For Life, Income and Democracy respondents can be Satisfied, Unsatisfied or In

between. Social and Government have two options: either the respondent is Satisfied or (s)he is

Unsatisfied. The base category is Satisfied such that a positive β-parameter indicates less satisfaction

if xi is large and positive. To describe relations in satisfaction level we consider the MV-MNL model

of Section 3.2 with K = 5, J1 = J2 = J4 = 3 and J3 = J5 = 2. As explanatory variables we have

Gender, Age, Unemployment, (self-reported) Health status, Religion, Political interest and Income.

Since our dependent variables are ordered multinomial variables we opt for a stereotype logit

specification (Anderson, 1984). That is, we adjust our model specification in (3.5) such that the pa-

rameter estimates are restricted to be monotonically increasing or decreasing over the choice options.

Formally, we change (3.5) into

µyi =

K∑
k=1

(
αk,yik + φk,yik(Xiβk) +

∑
l>k

ψkl,yikyil

)
, (3.27)

where 0 = φk,1 < · · · < φk,Jk = 1 for ordering and identification purposes. This addition to the

model specification does not change the general set-up of our proposed estimation procedures.

We use the composite likelihood method to estimate the model parameters in (3.27). First, we

test for independence among the five satisfaction levels. The LR-statistic for the restriction that all

ψkl,jh are 0 equals 1808.94. Since the degrees of freedom of the approximate χ2-distribution is 50.44,

independence is clearly rejected. Hence, we find positive support for association between the levels

of satisfaction under consideration.

Tables 3.7 and 3.8 display the parameter estimates and estimated standard errors from the CCL

method. The majority of respondents is satisfied about life, income, social security and the govern-

ment, which results in negative estimates of the choice-specific intercepts. The effect for Government

is modest. The positive estimate of the α2 intercept shows less baseline satisfaction on Democracy.

Several relations between the explanatory variables and satisfaction are found. Note that since

Satisfied is the base category, a negative β-parameter indicates that the probability to be satisfied gets

larger when xi increases. For example, individuals with low (high) self-reported Health status are

3This data is freely available at the website of the The Netherlands Institute for Social Research:
http://www.scp.nl/Onderzoek/Bronnen/Beknopte onderzoeksbeschrijvingen/Culturele veranderingen in
Nederland CV
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Table 3.7: Parameter estimates of the MV-MNL model for a cross-sectional survey on satisfactionab

(standard errors in parentheses)

Life Income Social Sec. Democracy Government

α2
c -0.526 (0.238) -1.096 (0.226) -2.070 (0.270) 1.246 (0.228) -0.667 (0.233)

α3 -2.125 (0.351) -2.307 (0.351) – -0.811 (0.341) –

φ2 0.737 (0.073) 0.519 (0.062) – 0.625 (0.058) –

gender -0.266 (0.128) -0.520 (0.143) -0.023 (0.107) 0.870 (0.187) 0.189 (0.103)
younger than 35 -0.231 (0.168) 0.342 (0.175) -0.243 (0.133) 0.010 (0.241) -0.291 (0.130)
older than 54 -0.348 (0.175) -1.023 (0.189) -0.578 (0.146) 0.065 (0.257) -0.127 (0.143)
unemployment 0.257 (0.165) 0.049 (0.171) 0.368 (0.134) -0.304 (0.247) -0.226 (0.135)
low health status 0.888 (0.159) 0.531 (0.171) 0.286 (0.132) -0.052 (0.233) -0.129 (0.129)
high health status -1.521 (0.196) 0.051 (0.200) -0.063 (0.144) -0.916 (0.232) -0.175 (0.133)
religion -0.041 (0.138) -0.209 (0.148) -0.174 (0.112) 0.016 (0.194) -0.335 (0.110)
low political interest 0.159 (0.137) -0.105 (0.150) 0.023 (0.115) 0.982 (0.206) -0.117 (0.111)
high political interest -0.015 (0.191) -0.557 (0.218) 0.083 (0.160) -0.289 (0.251) 0.526 (0.161)
low income 0.104 (0.151) 0.970 (0.162) -0.029 (0.127) 0.273 (0.223) -0.158 (0.125)
high income -0.677 (0.166) -0.924 (0.202) -0.002 (0.139) -0.204 (0.235) 0.044 (0.129)

a The data is from an extensive survey on cultural development from 2004 by the The Netherlands Institute for Social Research.
b The model specification is described in (3.27).
c Higher subscripts indicate lower satisfaction (the baseline is ’satisfied’).

ceteris paribus more likely to report low (high) satisfaction about life. Furthermore, both women and

respondents of higher age are more satisfied about their income than respectively men and respon-

dents of average age. Unemployed respondents are more likely to report low satisfaction on the social

security system. Respondents with low political interest tend to have ceteris paribus less satisfac-

tion on democracy. Finally, religious respondents report to be more satisfied about the (at that time

Christian-Liberal) government than nonreligious respondents.

The estimates of the association parameters ψ in Table 3.8 indicate the relation between reported

satisfaction levels for the five dependent variables. Clear interpretations can be given. All param-

eter values that are significantly different from 0 are positive. That is, there is a positive relation

between the reported satisfaction levels of respondents. For example, φLife Income,33 indicates that

respondents who report Unsatisfied on Income are likely also to be unsatisfied about life. Respon-

dents unsatisfied about the social security system are more likely also to be unsatisfied about both

Democracy and Government. This can be explained by the Labor party ending second in the previous

elections with 27% of the votes but not being in charge.
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3.4.2 Household Panel Scanner Data

To illustrate the MV-MNL model in a panel data setting we consider product choices of canned

tuna in 21 supermarkets belonging to 4 chains for 1092 individuals during the period 1986(week

25)–1987(week 23) in Springfield, Missouri.4 For each household we take the first 5 purchases in

the sample and hence T = 5. The product choice of canned tuna concerns choosing from four

characteristics: Brand (Chicken of the Sea, Star-Kist, CTL), whether it is Oil-based or not, whether

it is a Light-product or not and Volume of the can. There are three choice options for Brand and two

for the remaining characteristics. We assume that individuals make choices for these characteristics

simultaneously and hence the multivariate multinomial choice model of Section 3.3 is applicable.

That is, we consider a panel data MV-MNL model with K = 4, J1 = 3 and J2 = · · · = J4 = 2 with

N = 1092 and T = 5. The base category for each of the 4 choices is taken to be the characteristic of

the market leader.

As explanatory variables for product choice, we take the product-specific marketing-mix variables

Price of the product, Display and Feature. Hence, (3.22) becomes

µyit =

K∑
k=1

(
αik,yitk +Wityitγ +

∑
l>k

ψikl,yitkyitl

)
, (3.28)

where Wityit are now choice-specific variables. We consider two model specifications. In the first

specification theψ-parameters are individual-specific. The second specification containsψ-parameters

for all households. Hence, we respectively use sufficient statistics v(1)
i,s and v(2)

i,s .

Table 3.9 displays the parameter estimates and estimated standard errors from the model spec-

ification with individual-specific association parameters. Parameter estimates are obtained using a

likelihood approach using (3.23) as sufficient statistic. Hence, the individual-specific association pa-

rameters ψ are not estimated.

4This data set is from the ERIM Database and publicly available at
http://research.chicagobooth.edu/kilts/marketing-databases/erim/erim-dataset
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Table 3.9: Parameter esti-
mates of the MV-MNL model
for a household panel scanner
data set on canned tuna prod-
uct choice (standard errors in
parentheses)a

γ̂ s.e.

Price -0.366 (0.017)
Display 0.888 (0.117)
Feature 1.416 (0.087)
a Results are obtained using

sufficient statistics (3.23).

To interpret the parameter estimates, we opt for conditional marginal effects

∂ Pr[Yitk = j|yitl for l 6= k,Xit,Wityit ]

∂wityit
= γ Pr[Yitk = j|yitl for l 6= k,Xit,Wityit ]×

(1− Pr[Yitk = j|yitl for l 6= k,Xit,Wityit ]) . (3.29)

By averaging these over yitl (l 6= k) and the explanatory variables, that is,

1

N

N∑
i=1

1

T

T∑
t=1

∂ Pr[Yitk = j|yitl for l 6= k,W ]

∂w
(3.30)

we obtain an estimate for the average marginal effects. Table 3.10 reports these effects. An increase

in Price leads to a decrease in the probability for each product characteristic. Equation (3.29) shows

that the maximum marginal effect takes place when Pr[Yitk = j|Xit,Wityit ] = 0.5 and equals 1/4

of the parameter estimate in Table 3.9. The effect is on average larger for the probability to buy

large Volume products and relative small for water-based canned tuna. Both increases in Display and

Feature have a positive effect on the probability for each product characteristic, where the effect of

Feature is larger. A product with characteristics Brand Star-Kist, Oil-based, Light and large volume

would especially gain from advertisements, given the relatively large marginal effects.
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Table 3.11: Parameter estimates of the MV-MNL model for a panel data set on tuna sales (standard
errors in parentheses)a

Brand Oil Light Volume

Star-Kist CTL Yes Yes Large

Association parametersb

Brand

Star-Kist 1.548 (0.150) 2.862 (0.436) 1.937 (0.253)
CTL -1.491 (0.203) 0.259 (0.526) 0.275 (0.327)
Oil

Yes -1.653 (0.755) -1.190 (0.221)
Light

Yes −∞c –

Product-specific characteristics
Price -0.297 (0.014)
Display 0.882 (0.106)
Feature 1.508 (0.086)
a Results are obtained using sufficient statistics (3.25).
b As the association parameters are symmetric only the upper triangular matrix is given.
c This combination of choices does not occur in the dataset.

Table 3.11 displays the parameter estimates and standard errors from the model specification

with fixed association parameters. The parameter estimates of the marketing-mix variables are very

similar to the previous specification. The advantage of this specification is that we also can interpret

the association between characteristics of tuna sales. For example, given that ψ̂12,22 = 1.548, it is

likely that if individuals buy Brand Star-Kist they also choose for the Oil-based tuna. The opposite

conclusion holds for Brand CTL (ψ12,32 = −1.491). Obviously, the choice for Oil-based tuna is

negatively associated with the Light product. Given the large association parameter estimate for

ψ13,22 Brand Star-Kist apparently is market leader in low fat tuna.

To conclude, the two examples in this section show that the MV-MNL model can be used to

model simultaneous multinomial decisions in a cross-sectional and in a panel context.

3.5 Conclusion

In this chapter we have introduced a novel multivariate multinomial logit specification to describe

simultaneous multinomial decisions. The advantages of the new model specification over other po-

tential model specifications are that (i) the number of parameter stays limited; (ii) there is a clear

interpretation of model parameters and that; (iii) parameter estimation is feasible even if the multi-

variate dimension is large.
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To estimate the parameters of the MV-MNL model we have proposed to use a composite like-

lihood function. This method limits the computational burden of a regular likelihood approach and

is computationally feasible even if the multivariate dimension is large. Next, numerical problems

caused by infinitely small probabilities are avoided. The resulting maximum composite likelihood

estimator is consistent. A small Monte Carlo study shows that the small-sample bias of this estimator

is comparable with a regular maximum likelihood estimator and that the loss in efficiency is small.

The applicability of the novel MV-MNL specification is illustrated in an application to self-

reported satisfaction about life, income, social security, democracy and government. The proposed

extension to panel data is illustrated using a household panel scanner data set, where we describe the

purchase choice of canned tuna which we disentangle in several characteristics like brand, oil/water

based and can size.

Finally, the present model specification can be extended in several directions. A possible exten-

sion is to include dynamics to the panel data model. Parameter estimation will be straightforward

unless one opts for dynamics together with individual-specific effects (Honore and Kyriazidou, 2000;

Carro, 2007). Other potential extensions are to adjust the model for multivariate ordered and rank

ordered data or to take into account that not all choice options have to be in the consideration set of

each individual.

3.A Derivations

3.A.1 Joint probabilities in MV-MNL

In this section we derive the joint probability Pr[Yi = yi] in the MV-MNL model taking as starting

point the conditional probabilities. To derive the joint probability (from now on abbreviated as Pr[y])

in the MV-MNL model, we use the identity

Pr[y]

Pr[1]
=

K∏
k=1

Pr[yk|y1, . . . , yk−1, 1, . . . , 1]

Pr[yk = 1|y1, . . . , yk−1, 1, . . . , 1]
. (3.31)

which follows from the theorem of Besag (1974). The denominator in the conditional probabilities

(3.2) is the same in both the numerator and denominator of (3.31) and hence drops out of the ratio.

Second, the numerator of Pr[yk = 1|y1, . . . , yk−1, 1, . . . , 1] is simply proportional to 1 due to our

identification restrictions. Therefore (3.31) simplifies to

Pr[y]

Pr[1]
=

K∏
k=1

exp
(
αk,yk +Xβk,yk +

∑
l<k

ψkl,ykyl +
∑
l>k

ψkl,yk1

)
. (3.32)
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Due to the restriction ψkl,yk1 = 0 we obtain after rewriting

Pr[y]

Pr[1]
= exp

( K∑
k=1

(
αk,yk +Xβk,yk +

∑
l>k

ψkl,ykyl

))
. (3.33)

To obtain Pr[y] we use the identity

Pr[y] =
Pr[y]/Pr[1]∑
s∈S Pr[s]/Pr[1]

, (3.34)

where S is the set of all possible choice combinations. Substituting (3.33) in (3.34) results in

Pr[y] =
exp(µy)∑
s∈S exp(µs)

, (3.35)

where

µy =
K∑
k=1

(
αk,yk +Xβk,yk +

∑
l>k

ψkl,ykyl

)
. (3.36)

3.A.2 Choice probability conditional on sufficient statistic

In this section we derive the panel joint choice probabilities conditional on the proposed sufficient

statistics in a fixed-effects MV-MNL model of Section 3.3. If we condition on the sufficient statistic

in (3.23) or (3.25), only the choice alternatives where the sufficient statistic holds are relevant, that is

Pr[yi|v(r)
i ] =

Pr[yi]∑
di∈Bi

Pr[di]
, (3.37)

where r = {1, 2}, and where Bi is the subset of alternatives which corresponds to v(r)
i . Since we

assume no dynamics we can write

Pr[yi|v(r)
i ] =

∏T
t=1 Pr[yit]∑

di∈Bi

∏T
t=1 Pr[dit]

(3.38)

and as the denominator of the probabilities in both the numerator and denominator are the same, this

simplifies to

Pr[yi|v(r)
i ] =

exp(
∑T

t=1 µyit)∑
di∈Bi

exp(
∑T

t=1 µdit)
. (3.39)
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If we opt for the sufficient statistics in (3.23), we can substitute (3.22) for µyit and rewrite this as

Pr[yi|v(1)
i ] =

exp(
∑T

t=1

∑K
k=1

(
αik,yitk +

∑
l>k ψikl,yitkyitl

)
)∑

di∈Bi
exp(

∑T
t=1

∑K
k=1

(
αik,ditk +

∑
l>k ψikl,ditkditl

)
)
×

exp(
∑T

t=1

∑K
k=1Xitβk,yitk)∑

di∈Bi
exp(

∑T
t=1

∑K
k=1Xitβk,ditk)

. (3.40)

As the combination of αik,j and ψikl,jh is by assumption constant over time, it drops out of the

equation and hence we obtain

Pr[yi|v(1)
i ] =

exp(
∑T

t=1

∑K
k=1Xitβk,yitk)∑

di∈Bi
exp(

∑T
t=1

∑K
k=1Xitβk,ditk)

. (3.41)

For the sufficient statistics in (3.25), we follow the same approach and substituting (3.22) for µyit

results in

Pr[yi|v(2)
i ] =

exp(
∑T

t=1

∑K
k=1 αik,yitk)∑

di∈Bi
exp(

∑T
t=1

∑K
k=1 αik,ditk)

×

exp(
∑T

t=1

∑K
k=1

(
Xitβk,yitk +

∑
l>k ψkl,yitkyitl

)
)∑

di∈Bi
exp(

∑T
t=1

∑K
k=1

(
Xitβk,ditk +

∑
l>k ψikl,ditkditl

)
)
. (3.42)

As now only αik,j is constant over time, only the intercepts drop out of the equation and we obtain

Pr[yi|v(2)
i ] =

exp(
∑T

t=1

∑K
k=1Xit

(
βk,yitk +

∑
l>k ψkl,yitkyitl

)
)∑

di∈Bi
exp(

∑T
t=1

∑K
k=1

(
Xitβk,ditk +

∑
l>k ψikl,ditkditl

)
)
. (3.43)

3.A.3 Composite Conditional Likelihood in panel data setting

In this section we show that the composite likelihood approach is also applicable in a fixed-effects

panel MV-MNL model. This section presents a panel data analog, where composite likelihood and

the use of sufficient statistics is combined.

We use sufficient statistics to remove the individual-specific effects from the conditional proba-

bilities. The sufficient statistics imply that we have to consider permutations of the choices over time.

Given the panel equivalence of the specification in (3.2) any permutation over time of the choices Yitk,

k = 1, . . . ,K, yields the same set of intercepts but a different set of association parameters. Hence,

we can only deal with the situation of individual-specific intercepts αik,j but the ψkl,jh parameters



54 A Multivariate Model for Multinomial Choices

have to pooled. Using sufficient statistic (3.25) we get

Pr[yik|yil for l 6= k,Xi, v
(2)
ik ] =

exp(
∑T

t=1 αik,yik)∑
dik∈B exp(

∑T
t=1 αik,dik)

×

exp(
∑T

t=1Xitβk,yik +
∑

l 6=k ψkl,yikyil)∑
dik∈B exp(

∑T
t=1Xitβk,dik +

∑
l 6=k ψkl,dikyil)

. (3.44)

As the set of intercepts αik,j is constant over time, they drop out of the equation resulting in

Pr[yik|yil for l 6= k,Xi, v
(2)
ik ] =

exp(
∑T

t=1Xitβk,yik +
∑

l 6=k ψkl,yikyil)∑
dik∈B exp(

∑T
t=1Xitβk,dik +

∑
l 6=k ψkl,dikyil)

. (3.45)

Hence, using the full set of conditional probabilities Pr[yik|yil for l 6= k,Xi, v
(2)
ik ] in composite like-

lihood estimation yields an approximation of the full likelihood conditional on the sufficient statistics.

As shown by the simulation study in Section 3.2.3 composite likelihood estimation in cross-sectional

data finds accurate parameter estimates with only small loss of efficiency. Unreported results show

that the same holds in panel data setting.



Chapter 4

Extending the Dale Model to

Multivariate Ordered Responses using

Composite Likelihood Estimation

4.1 Introduction

This project aims to investigate a generalization of the bivariate global odds ratio model suggested

by Dale (1986) to multivariate ordered responses. Imagine a survey with several Likert (1932) scaled

questions. The answers to these questions are likely to be correlated and a multivariate ordered

model is useful to investigate correlations and relations to covariates. Existing estimation methods

are computationally challenging or not extendable to multivariate settings. We propose an easily

scalable extension of the flexible bivariate Dale model to cover for associations in multivariate ordered

responses.

The Dale model is a marginal model for bivariate ordered responses. It uses global odds ratios as

association measure between the responses. That is, the cumulative marginal probabilities, which can

have any form, are linked via these global odds ratios. Since it can handle quite general associations

between responses, this model is more flexible than other marginal models often employed. Poly-

choric correlation measures, such as those used in the multivariate ordered probit model, have limited

flexibility since these measures assume that the same association structure underlies all combinations

of response categories. That is, where a probit model yields correlations between survey questions,

the Dale model gives associations between specific answers to these questions.
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The flexibility of the Dale model has nonetheless not increased its popularity. To date, usage of

the Dale model has been limited to two (or occasionally three) ordered responses, since parameter

estimation of more general versions of the model is particularly hard. Full maximum likelihood [ML]

estimation for a multivariate generalization of the Dale model has been discussed in Molenberghs and

Lesaffre (1994). However, ML is computationally challenging for this class of models since there

is no analytical expression for joint probabilities if more than three ordered choices are involved.

Consequently, software for fitting these models are not readily available. Very few applications of the

method have been reported and not much is known about the performance of the higher-dimensional

model.

In this chapter we introduce a computationally feasible estimation procedure for the multivariate

extension of the flexible Dale model. That is, we investigate the properties of composite likelihood

estimation (see, among others, Varin et al., 2011) in estimating such a model. Composite likelihood

entails replacing the full model likelihood with the likelihood of a misspecified model, which is

usually arrived at by making simplifying assumptions. For example, pairwise composite likelihood

approximates the full likelihood by considering all bivariate contributions to the likelihood. Higher-

order contributions, such as those arising from three- or higher-way associations between responses,

are assumed not to be influential in favor of reduced computational complexity. That is, interaction

terms between more than two factors are discarded. In this chapter we propose to use the pairwise

composite likelihood estimation method on multivariate ordered responses as an alternative for the

full likelihood approach. Note that only marginal and bivariate distributions are identified. Interest

thus does not lie in (fit and forecasts of) the joint distribution, but lies in marginal and bivariate

distributions as well as parameter interpretation.

The outline of this chapter is as follows. We describe the bivariate Dale model as proposed

by Dale (1986) in Section 4.2. Section 4.3 describes the method of composite likelihood and dis-

cusses parameter estimation. Section 4.4 studies the properties of the method through simulations.

Section 4.5 applies the specification to an international survey on health care. Finally, Section 4.6

concludes the chapter.

4.2 The Bivariate Dale Model

This section describes the bivariate Dale model. Note that we fully follow Dale (1986). The con-

tribution of this chapter lies in the multivariate extension and estimation method to be proposed in

Section 4.3.
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Formally, let Yi1 and Yi2 denote two ordered random variables for individual i, i = 1, . . . , N ,

with J1 and J2 choice options, respectively. We specify generalized linear models for the cumulative

marginal probabilities ηik(jk;αk(j), βk) = Pr[Yik ≤ j|Xik, αk(j), βk], k ∈ {1, 2} as

gk(ηik(j;αk(j), βk)) = αk(j)−Xikβk, jk = 1, . . . , Jk − 1 (4.1)

where αk(j) are choice-specific threshold parameters, Xik is a set of explanatory variables specific

to the choice item and where βk denotes the corresponding parameter vector. gk(·) can be any link

function and a typical choice is the inverse of the cumulative distribution function of the logistic

distribution, which is the so-called logit function.

These cumulative marginal distributions do not incorporate potential correlations between ordered

choices yi1 and yi2. Specific to the bivariate Dale model, the association structure is specified by so

called global odds ratios

ψ(j, h; θ) =
Pr[Yi1 ≤ j, Yi2 ≤ h|Xi, θ] Pr[Yi1 > j, Yi2 > h|Xi, θ]

Pr[Yi1 > j, Yi2 ≤ h|Xi, θ] Pr[Yi1 ≤ j, Yi2 > h|Xi, θ]

=
Fi(j, h; θ)[1− ηi1(j; θ)− ηi2(h; θ) + Fi(j, h; θ)]

[ηi1(j; θ)− Fi(j, h; θ)][ηi2(h; θ)− Fi(j, h; θ)]
(4.2)

where θ resembles the model parameters, Fi(j, h; θ) denotes the joint cumulative probability Pr[Yi1 ≤

j, Yi2 ≤ h|Xi, θ] and where the second line follows from standard probability theory. Note that

ψ(j, h; θ) is fully symmetric, that is, ψ(j, h; θ) = ψ(h, j; θ). It is possible to solve for Fi(j, h; θ) in

(4.2) and write it in terms of ηik(j) and ψ(j, h). Hence, the joint cumulative distribution for Yi1 and

Yi2 is well defined, see Appendix 4.A for this Plackett (1965) distribution.

Structure can be laid on the global odds ratios ψ(j, h; θ). That is, a link function

h(ψ(j, h; θ)) = µ+ ρ(j) + κ(h) + ω(j, h)1 (4.3)

can be used and a typical choice for h(·) is the logarithmic function. Uniqueness constraints must be

imposed on the parameters in (4.3). We choose for
∑J1−1

j=1 ρ(j) =
∑J2−1

h=1 κ(h) = 0 and∑J1−1
j=1 ω(j, h) =

∑J2−1
h=1 ω(j, h) = 0 for all h and j, as this allows for clear interpretation. That is,

parameter µ is the average (or correlation) effect, parameters ρ(j) and κ(h) are main effects over the

rows and columns, respectively, and parameter ω(j, h) represents association. The set of parameters

θ now consists of αk(j), βk, µ, ρ(j), κ(h) and ω(j, h)). Note that ηk(j) and ψ(j, h) are functions of

these parameters.

1Individual-specific information can be added by including covariates to this association structure, that is
h(ψi(j, h; θ)) = µ+ ρ(j) + κ(h) + ω(j, h)−Xikγ(j, h)
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Then, the likelihood function needed for full maximum likelihood estimation is given by

`(θ;Y,X) =

N∑
i=1

lnπi(yi1, yi2; θ) (4.4)

where

πi(j, h; θ) = Pr[Yi1 = yi1, Yi2 = yi2|Xi1, Xi2; θ]

= Fi(j, h; θ)− Fi(j − 1, h; θ)− Fi(j, h− 1; θ) + Fi(j − 1, h− 1; θ). (4.5)

The condition that (4.5) must be nonnegative is referred to as the rectangle condition (Joe, 2014) and

leads to restrictions on the parameter space, see Dale (1986).

Hence, the joint probability density function of the bivariate Dale model is fully specified by the

link functions and association structure. The advantage of the Dale model over other existing config-

urations is that the Dale model gives more information in the association structure. That is, instead of

correlations between survey questions, associations between answers to these questions can be found.

However, extensions to a multivariate setting are computationally challenging. Section 4.3 introduces

such extension and proposes a computationally and numerically feasible estimation method.

4.3 The Multivariate Dale Model and Composite Likeli-

hood Estimation

The model specification in the bivariate setting can easily be used to make inferences about asso-

ciations and relations to covariates. However, Molenberghs and Lesaffre (1994) show that model

specification and parameter estimation complicate rapidly if three or more ordered choices are inves-

tigated. That is, the expression for the full likelihood is extensive for three ordered choices and is

not analytically solvable for a dimension larger than three. We propose to use composite likelihood

methods with simplifying assumptions in return for computational robustness.

Composite likelihood discards the complicated full likelihood in favor of a simpler likelihood, or-

dinarily constructed by making simplifying assumptions such as imposing higher-order independence

among response variables. A review of composite likelihood methods is given by Varin et al. (2011).

Following Varin et al. (2011), we introduce a set of events with proper density on the response

vector Y . If the likelihood for each of these events are given by Lm(θ; y) the composite likelihood



4.3 The Multivariate Dale Model and Composite Likelihood Estimation 59

function is

LC(θ; y) =

N∏
i=1

M∏
m=1

Lm(θ; yi) (4.6)

where the subscript C stands for composite likelihood. Since each component is a valid density

function, the resulting composite likelihood function yields consistent estimators. Since (4.6) is a

multiplication of the components, LC(θ; y) has the properties of a likelihood of a misspecified model.

Different forms of compositions have been proposed in the literature. As our purpose is to start

from the bivariate Dale model, a pairwise specification is appropriate. The pairwise likelihood con-

siders all pairs of responses, out of a total of K responses, through the specification (Cox and Reid,

2004; Varin et al., 2011)

LC(θ; y) =
N∏
i=1

K−1∏
k=1

K∏
l=k+1

L2(yik, yil; θ), (4.7)

where L2(·) is the pairwise likelihood function. Note that each component by itself is a valid density

function. Only the marginal and bivariate association parameters are estimated using the pairwise

composite likelihood function and higher-order associations are neglected.

Suppose that we consider K multivariate ordered responses, and want to generalize the bivari-

ate Dale model from Section 4.2 to the multivariate situation. The pairwise log-likelihood function

follows from (4.4) as

lc(θ; y,X) =
N∑
i=1

K−1∑
k=1

K∑
l=k+1

lnπikl(yik, yil; θ), (4.8)

where yik denotes the realization of Yik of response k for individual i. Appropriate generalizations of

(4.1) and (4.3) must also be made. Specifically, (4.1) and (4.3) are given by

gk(ηik(j; θ)) = αk(j)−Xikβk, j = 1, . . . , Jk − 1 (4.9)

h(ψkl(j, h; θ)) = µkl + ρkl(j) + κkl(h) + ωkl(j, h).2 (4.10)

Hence, where the full likelihood specification in the multivariate Dale model would involve a difficult

estimation procedure using simulations (Molenberghs and Lesaffre, 1994), we introduce a relatively

simple procedure using a pairwise composite likelihood method. That is, the log-likelihood only

consists of a collection of bivariate Plackett distributions. Since this procedure consists of density

functions which are separately valid, the estimator is consistent (Varin et al., 2011). Nonetheless,

composite likelihood is an approximation of the full likelihood. The joint distribution cannot be

investigated and only marginal and bivariate distributions can be investigated. Computational advan-

2Again, the association effects can be extended with the individual-specific effects Xikγkl(j, h).
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tages outweigh this drawback if estimators are accurate and efficiency losses are small. Simulation

studies in Section 4.4 show that the pairwise composite likelihood method gives accurate parame-

ter estimates and efficiency losses are small. The method therefore is a sound alternative for full

maximum likelihood; it reduces computational complexity and is appropriate for interpretation of

associations in multivariate ordered data with high dimensions.

4.3.1 Parameter Inference

The set of parameters θ to be estimated consists of the marginal category thresholds αk(j), the

marginal effects of the covariates βk, the association intercept parameters µkl, the association main

effects ρkl(j) and κkl(h) and the association interaction effects ωkl(j, h). In this section we detail

parameter estimation and inference of the parameters.

For estimation purposes we use the composite likelihood approach as introduced in the previous

section. That is, we maximize the composite log-likelihood function in (4.8). The analytical expres-

sion of the derivatives is given in Appendix 4.B. Note that the estimator is consistent although not

efficient since the composite instead of the full likelihood is used (Varin et al., 2011). Differences

between the two approaches are investigated in simulation studies in Section 4.4.

Composite likelihood assumes independence between the likelihood contributions L2(yik, yil; θ)

in (4.7). Therefore, standard parameter inference as in maximum likelihood does not hold. We briefly

describe standard error calculation and likelihood ratio tests as described in Varin et al. (2011).

We follow an adjusted strategy to obtain parameter standard errors. The second Bartlett (1953)

identity does not hold and we therefore need to distinguish between the sensitivity matrix

Hθ̂ =
1

N

N∑
i=1

K−1∑
k=1

K∑
l=k+1

∇`2(θ; yik, yil)∇`′2(θ; yik, yil) (4.11)

and the variability matrix

Jθ̂ =
1

N

N∑
i=1

∇`c(θ; yi)∇`′c(θ; yi), (4.12)

where ∇`·(·) denotes the first derivative of the corresponding log-likelihood contribution (see Cox

and Reid, 2004, for a broad explanation). This results in the Godambe (1960) sandwich information

matrix specified as

Gθ̂ = Hθ̂J
−1

θ̂
Hθ̂. (4.13)
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Asymptotic results (Molenberghs and Verbeke, 2005) show that the central limit theorem holds and

the estimator is asymptotically normally distributed, that is

√
n(θ̂ − θ) ∼ N(0, G−1

θ ). (4.14)

Composite likelihood therefore yields consistent estimators. Efficiency is nonetheless lost, which can

be investigated by comparing the Fisher information matrix from maximum likelihood estimation

with the Godambe (1960) sandwich information matrix from our estimation methodology. Hence,

we can investigate the influence of neglecting higher order associations in our multivariate ordered

choice model, given that we know the full likelihood specification.

In line with the model specification it would be of interest to test for joint significance of the

association parameters in ψkl(j, h; θ). Several adjusted likelihood ratio [LR] tests have been proposed

and we opt for the method of Kent (1982) including a Satterthwaite (1946) adjustment. That is, the

LR test-statistic is defined as

LR =
2ν

Qλ̄
(`c(θ; y)− `c(θR; y)), (4.15)

where Q is the number of restricted parameters,

ν =
(
∑Q

q=1 λq)
2∑Q

q=1 λ
2
q

(4.16)

and where λ1, . . . , λQ denote the eigenvalues of (GR(H−1)R)−1 with GR the Q × Q sub-matrix of

the Godambe (1960) sandwich information matrix corresponding to the restricted parameters under

the null hypothesis. Moreover, λ̄ denotes the average of the eigenvalues. Then, (4.15) has a χ2-

distribution with ν degrees of freedom under the null hypothesis. Hence, the LR-test compares the

composite log likelihood value with the restricted likelihood value as standard likelihood ratio tests

do. The distribution is nonetheless shifted taking into account the assumption of independence of

likelihood contributions in (4.7).

Model comparison can easily be done using adjusted information criteria. Gao and Song (2010)

derive the composite likelihood analogue of the Bayesian information criterion [BIC], that is

BIC = −2`c(θ; y) + dim(θ) lnn (4.17)

where dim(θ) replaces the number of parameters in standard BIC. This effective number of pa-

rameters equals tr(HθG
−1
θ ) where tr(·) is the trace of the matrix. This criterion can then be used
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to compare model specifications with different sets of covariates in the multivariate ordered choice

model.

4.4 Simulation Study

In this section we conduct a Monte Carlo study to investigate the properties of the pairwise composite

likelihood method in comparison to the full likelihood approach. We especially focus on potential

small-sample biases and efficiency losses due to the misspecified likelihood. For comparison rea-

sons, we add the multivariate ordered probit specification to our analysis. We again use a pairwise

composite likelihood method following Bhat et al. (2010).

As usual, we simulate the data from the joint distribution, that is the multivariate Dale model

following Molenberghs and Lesaffre (1994). This specification does not have an analytical expression

when the dimension is larger than 3 (Molenberghs and Lesaffre, 1994). We therefore do a simulation

study where we have 3 ordered choices. We then also are able to use full maximum likelihood

as benchmark method. Note that the higher-order associations - disregarded in pairwise composite

likelihood - now consist of the three-way global odds ratios.

We consider two data generating processes [DGPs]. First, we investigate what the multivariate

Dale model can find more than multivariate probit. That is, where the correlation effects in this

DGP are close to 0 we add positive and negative association effects for the specific combinations of

choices. Second, we investigate the impact of neglecting higher order associations which actually

have significant effect on the multivariate choices. Hence, these DGPs are extreme cases to show

what information might be lost in practical applications.

We use logit link functions for the marginal effect ηk(j) and a log transformation for ψkl(j, h)

since positive global odds ratios are obliged. The number of choice options Jk per ordered choice is

3. We consider a likely sample size of N = 1000 observations. As covariate Xik we take a normally

distributed variable which is different over all ordered choices. The effect of the covariate is positive

for the first ordered choice, non-existent for the second and negative for the third. We further take

a simplified version of h(ψikl(j, h; θ)) where ρkl(j) = κkl(h) = 0. See Tables 4.1 and 4.2 for the

values of our DGP-parameters.
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Table 4.1: Mean and RMSE of the parameter estimates for the multivariate Dale model
parameters based on the first simulation studya with N = 1000 (1000 replications)

full likelihood composite likelihood ordered probit
θ θ̂ RMSE θ̂ RMSE θ̂ RMSE

α1(1) -0.8 -0.804 0.070 -0.804 0.070 -0.485 0.042
α1(2) 1 0.998 0.076 0.998 0.076 0.602 0.045
α2(1) -0.45 -0.450 0.064 -0.450 0.064 -0.280 0.040
α2(2) 0.85 0.851 0.068 0.851 0.068 0.527 0.041
α3(1) -0.95 -0.955 0.077 -0.955 0.077 -0.575 0.046
α3(2) 0.95 0.948 0.073 0.948 0.073 0.571 0.043
β1 0.85 0.853 0.064 0.853 0.064 0.510 0.038
β2 0 0.000 0.060 0.000 0.060 0.000 0.037
β3 -0.85 -0.856 0.069 -0.855 0.069 -0.510 0.040
µ1,2 0.1 0.101 0.114 0.101 0.114
µ1,3 0.1 0.103 0.113 0.104 0.113
µ2,3 0.05 0.043 0.114 0.042 0.114
ω1,2(2, 1) 0.2 0.199 0.112 0.199 0.111
ω1,2(1, 2) -0.3 -0.299 0.104 -0.298 0.103
ω1,2(2, 2) -0.4 -0.401 0.118 -0.401 0.117
ω1,3(2, 1) -0.2 -0.198 0.119 -0.197 0.119
ω1,3(1, 2) 0.1 0.100 0.122 0.099 0.121
ω1,3(2, 2) 0.45 0.455 0.123 0.455 0.121
ω2,3(2, 1) 0.05 0.048 0.110 0.048 0.109
ω2,3(1, 2) -0.05 -0.043 0.105 -0.043 0.105
ω2,3(2, 2) -0.25 -0.263 0.114 -0.262 0.114
ψ1,2,3(1, 1, 1) 0.95 1.019 0.352
ψ1,2,3(2, 1, 1) 0.95 1.011 0.367
ψ1,2,3(1, 2, 1) 1.25 1.364 0.561
ψ1,2,3(2, 2, 1) 1.2 1.290 0.525
ψ1,2,3(1, 1, 2) 0.85 0.903 0.314
ψ1,2,3(2, 1, 2) 0.8 0.844 0.308
ψ1,2,3(1, 2, 2) 1 1.083 0.438
ψ1,2,3(2, 2, 2) 1.05 1.138 0.494
σ1,2

b 0.051 0.042
σ1,3 0.036 0.041
σ2,3 0.020 0.041
a The first simulation study investigates the advantage over multivariate ordinal probit

by having insignificant correlation effects.
b σ denotes the correlation between the choice items in multivariate ordinal probit

Table 4.1 shows the mean and root mean squared error [RMSE] of the estimates from all three

methods over 1000 replications for the first DGP. It is clear that the estimation methods result in small

small-sample biases. Most importantly, the estimates of our composite likelihood approach are highly

comparable to the full likelihood estimates. The largest difference is only 0.0009.

To analyze the loss in efficiency between the composite likelihood and full likelihood approach

we compare the RMSEs of both methods. These measures are highly comparable. At a maximum, the

loss in efficiency is only 0.3 percent. Since we find comparable sample biases and small efficiency

losses, the advantages of computation time and scalability are in favor of our proposed estimation

method.
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The parameter estimates of the multivariate ordered probit model are shown in the final columns

of Table 4.1. From the insignificant average estimates of the correlation parameters we expect no

relation between the ordered choices. However, different conclusions can be drawn from the multi-

variate Dale model. 4 out of 9 association effects significantly differ from 0. Since some are positive

and some are negative, these effects are vanished in the multivariate ordered probit specification. The

multivariate Dale model does capture this association structure and thus gives more information than

standard polychoric correlations.

Table 4.2: Mean and RMSE of the parameter estimates for the multivariate Dale model
parameters based on the second simulation studya with N = 1000 (1000 replications)

full likelihood composite likelihood ordered probit
θ θ̂ RMSE θ̂ RMSE θ̂ RMSE

α1(1) -0.8 -0.799 0.089 -0.799 0.069 -0.504 0.042
α1(2) -0.05 -0.051 0.063 -0.051 0.063 -0.043 0.040
α2(1) -1.05 -1.050 0.104 -1.050 0.074 -0.650 0.044
α2(2) -0.25 -0.249 0.068 -0.249 0.066 -0.163 0.041
α3(1) -1.05 -1.050 0.104 -1.051 0.073 -0.650 0.043
α3(2) -0.25 -0.249 0.067 -0.249 0.065 -0.163 0.040
β1 0.1 0.102 0.051 0.102 0.053 0.063 0.034
β2 0 0.001 0.046 0.001 0.051 0.001 0.032
β3 -0.1 -0.100 0.047 -0.099 0.050 -0.061 0.032
µ1,2 1.4 1.410 0.156 1.409 0.121
µ1,3 1.4 1.412 0.157 1.411 0.122
µ2,3 1.9 1.910 0.186 1.908 0.129
ω1,2(2, 1) 0.1 0.105 0.092 0.104 0.092
ω1,2(1, 2) -0.3 -0.300 0.083 -0.300 0.080
ω1,2(2, 2) 0.3 0.299 0.082 0.299 0.080
ω1,3(2, 1) 0.1 0.103 0.092 0.102 0.092
ω1,3(1, 2) -0.3 -0.300 0.082 -0.299 0.079
ω1,3(2, 2) 0.3 0.299 0.084 0.299 0.081
ω2,3(2, 1) -0.05 -0.044 0.098 -0.044 0.098
ω2,3(1, 2) -0.05 -0.050 0.097 -0.050 0.098
ω2,3(2, 2) 0.3 0.296 0.094 0.296 0.092
ψ1,2,3(1, 1, 1) 3.25 3.512 1.321
ψ1,2,3(2, 1, 1) 1 1.096 0.438
ψ1,2,3(1, 2, 1) 1.75 1.895 0.735
ψ1,2,3(2, 2, 1) 0.5 0.540 0.204
ψ1,2,3(1, 1, 2) 1.75 1.866 0.704
ψ1,2,3(2, 1, 2) 0.5 0.536 0.205
ψ1,2,3(1, 2, 2) 1 1.053 0.356
ψ1,2,3(2, 2, 2) 0.25 0.260 0.087
σ1,2

b 0.508 0.035
σ1,3 0.508 0.035
σ2,3 0.638 0.029
a The second simulation study investigates the harm of neglecting three-way global

cross ratios which have significant effect on the multivariate choices.
b σ denotes the correlation between the choice items in multivariate ordinal probit
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Table 4.2 shows the results of the second simulation study, where higher order associations in the

DGP have a significant effect on multivariate choice. Again, differences of small-sample biases are

small and negligible. The loss in efficiency is somewhat larger, since significant effects are neglected

in the pairwise composite likelihood approach. The largest efficiency loss found in this simulation

study is 10 percent. It depends on the researcher whether (s)he thinks that this loss in efficiency is

acceptable. Since parameter estimates are highly comparable, the harm of neglecting higher order

associations is only small.

As a final advantage of the composite likelihood approach over the other approaches we compare

computation times. Note that other sets of parameters are estimated and the comparison is not entirely

fair. Nonetheless, differences are interesting since they are large. Composite likelihood is on average

9 times faster than multivariate probit and more than 16 times faster than the maximum likelihood

approach. This holds for a dimension of 3 but the advantage will only increase if the dimension

gets larger. Namely, the number of parameters and the complexity increases for the full likelihood

approach, and multivariate probit needs more and more integrals to be investigated.

In sum, the simulation study shows that our composite likelihood approach has the advantage of

being (i) comparable to the full likelihood approach in small-sample bias and efficiency; (ii) able to

find associations between specific choice options and; (iii) reasonably fast in computation. Together

with its scalability, we think this to be reasons to favor our estimation method over other available

methods for parameter interpretation purposes. We therefore empirically illustrate the estimation

method in Section 4.5.

4.5 Application

In this section we apply the multivariate Dale model to International Social Survey Program [ISSP]

data from 2011.3 The data set consists of 33900 respondents from 30 countries. We choose 8 ques-

tions on satisfaction on the health system. These questions are on Likert scale basis and the rating

scales are J1 = 4, J2 = · · · = J7 = 5 and J8 = 7. The questions and scales are shown in Table 4.C.1.

As explanatory variables for the ordered choices we use dummy variables for age lower than 35 and

age higher than 64 (compared to age 35-64), male (compared to female), employed in the past and

never employed (compared to employed respondents) and country-specific dummies (compared to

the US). Although possible, we do not add covariates in the link function for associations, but leave

the flexibility of all correlation (µ), main (ρ and κ) and association (ω) effects. As the survey ques-

tions are all health-related and asked to the same respondents, the answers are likely to be correlated.

3This data is openly available at http://www.issp.org/page.php?pageId=4
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The model specification introduced in this chapter is therefore highly applicable, especially if one is

interested in interpretation of the association structure.

We use the composite likelihood method from Section 4.3 since there is no analytical expression

for the full likelihood specification with 8 correlated ordered choices. The composite likelihood

method highly simplifies the analysis as it neglects three- to eight-way associations. Since there is

no analytical expression for the joint distribution, focus lies on parameter interpretation and marginal

and bivariate distributions. The simulation study in Section 4.4 showed that neglecting higher order

associations does not tremendously harm small-sample bias and efficiency of the estimator.

We first test for the necessity of the parameters in the global odds ratios in (4.10). TheLR-statistic

in (4.15) of only correlation effects tested against univariate analyzes equals 43188.0 (17.5 degrees of

freedom). This statistic clearly shows that independence is rejected. Testing for the addition of main

effects yields an LR-statistic of 5403.0 (123.5 degrees of freedom). Finally, testing for the addition of

association effects yields an LR-statistic of 15436.3 (217.4 degrees of freedom). These conclusions

clearly are in favor of a multivariate analysis opposed to separate univariate analyses.

Table 4.3 displays the intercept estimates, which represent the baseline respondent (an employed

male of age 35 to 64 from the United States). On average, this respondent disagrees that the health

care system will improve, disagrees that the government should only provide limited services and in

the end is fairly satisfied about the health care system.

Table 4.C.2 shows the parameter estimates belonging to the covariates. Unreported results show

that the difference of these estimates to a univariate specification or only small (0.06 at a maximum).

That is, the relation between covariates and the ordered dependent variables is not influenced much

by taking associations into account. From the table we see that respondents of age higher than 64

ceteris paribus more often agree with the proposition. That is, they are more satisfied about the

health care system and demand less for changes. The same relations hold for respondents who have

never been employed. They further on average highly believe that improvements will come in the

future. Respondents of age lower than 35 on average do not think they will get the best treatment

available by the doctor of their choice. Finally, some differences between countries can be given. All

statements are compared to the base country, the United States. Respondents from Great Britain are

rather negative about the health care system, while respondents from Sweden are overly positive. The

countries which are most and least satisfied about the health care system are Sweden and Bulgaria,

respectively.
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More interest goes to the special feature of our model specification. The multivariate Dale model

gives associations which indicate what correlation structure there is in the answers of respondents.

First, the correlation effects represented by µ are shown in Table 4.4. There especially is high positive

association between the questions on best treatment (Q6) and doctor of own choice (Q7). Further,

respondents satisfied with the health care system (Q8) seem also to expect future improvements (Q2)

and respondents in favor of limited services (Q4) also tend to think that health care is too excessively

used (Q3).

Figure 4.1 displays log global odds ratios for all pairs of ordered choices.4 The subfigure at

grid (3, 5) clearly shows that associations might differ over combinations of answers. Where µ3,5

indicates that correlation between answers to inefficiency of the system and excessive use does not

significantly differ from 0, we clearly see associations between specific answers. That is, respondents

with extreme answers, answer extreme to both questions. This effect is significant. Nonetheless,

since some associations are negative where others are positive, µ3,5 does not capture this attribute

of the data. The sub-figures at grids (1, 8) and (3, 4) show other pairs of questions and also show

large and significant differences between combinations of answers. For example, grid (1, 8) shows

the association in the answers to questions on limited health care services and the inefficiency of the

system. Clearly, main effects ρ(i) for the limited services play a role. Further, κ(j) for health care

satisfaction adds information to the analysis with the question on the need of changes (grid (3, 4)).

In sum, the multivariate Dale model can be used to analyze correlated answers in this ISSP survey.

Interpretations of effects of covariates are clear and the LR-test clearly shows that the answers to

the survey questions are correlated. If the associations are especially of interest, the multivariate

Dale model is favored over univariate analyses. Only reporting correlations might lead to misleading

conclusions since some answers to the questions might be more associated with one another than

others. The main and associations effects clearly give extra information. Therefore, together with

the fact that there is no analytical expression for the full likelihood specification, analysis using a

multivariate Dale model is favorable over multivariate ordered probit and the full maximum likelihood

approach.

4For the reason of space, we do not report all results. All parameter estimates including standard errors are
available upon request.
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Figure 4.1: Log global cross ratios for the pairwise composite likelihood method in the ISSP health care survey

4.6 Conclusion

In this project we have investigated the multivariate extension of the bivariate Dale (1986) model.

This model is highly appropriate to analyze correlated ordered responses. We have advocated the

pairwise composite likelihood method to overcome computational and analytical problems. Where

the full likelihood function has no analytical expression if the number of ordered choices is larger
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than three, the composite likelihood method circumvents this problem. Opposed to available methods

in the literature, the computational burden is only small.

Although we use a misspecified likelihood function, simulation studies show that it yields com-

parable and negligible small-sample biases. Further, efficiency losses are small. A comparison with

the multivariate ordered probit model shows that more information is found due to the association

structure in the global odds ratios.

In an application, we have used the composite likelihood method on ISSP health care survey

data and found plausible results. Note that the full likelihood approach could not have been used

analytically given the high dimension of 8 ordered responses.

In sum, the multivariate Dale model together with the proposed estimation method is highly ap-

plicable and useful in empirical research when interest lies in parameter interpretation. This research

gives the opportunity to estimate relations between many responses in a reasonable amount of time

with high accuracy.

4.A Plackett Distribution

It can be shown by rewriting that the joint cumulative probability Fi(j, h; θ) of the bivariate Dale

model can be expressed as (see Dale, 1986)

Fi(j, h; θ) =


1
2(ψi(j, h)− 1)−1[1 + (ηi1(j) + ηi2(h))(ψi(j, h)− 1)−

S(ηi1(j), ηi2(h), ψi(j, h))] if ψi(j, h) 6= 1;

ηi1(j)ηi2(h) otherwise

(4.18)

where

S(ηi1(j), ηi2(h), ψi(j, h)) =

√√√√√ [1 + (ηi1(j) + ηi2(h))(ψi(j, h)− 1)]2+

4ψi(j, h)(1− ψi(j, h))ηi1(j)ηi2(h).
(4.19)
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4.B Derivatives

We use a quasi-Newton method for parameter estimation. It is therefore helpful to have the first-

order derivatives of the log-likelihood with respect to the model parameters available to improve

convergence. Let

likl(j, h) = log πikl(j, h; θ)

likl =

Jk∑
j=1

Jl∑
h=1

likl(j, h). (4.20)

The parameter vector θ contains five types of parameters, namely those of the form θk, θk(j), θkl,

θkl(j) and θkl(j, h). The different derivatives for these types of parameters are

∂lc
∂θk

=
N∑
i=1

∑
l 6=k

Jk∑
j=1

Jl∑
h=1

∂likl
∂Fikl(j, h)

· ∂Fikl(j, h)

∂ηik(j)
· ∂ηik(j)

∂θk

∂lc
∂θk(j)

=

N∑
i=1

∑
l 6=k

Jl∑
h=1

∂likl
∂Fikl(j, h)

· ∂Fikl(j, h)

∂ηik(j)
· ∂ηik(j)
∂θk(j)

∂lc
∂θkl

=
N∑
i=1

Jk∑
j=1

Jl∑
h=1

∂likl
∂Fikl(j, h)

· ∂Fikl(j, h)

∂ψikl(j, h)
· ∂ψikl(j, h)

∂θkl

∂lc
∂θkl(j)

=

N∑
i=1

Jl∑
j=1

∂likl
∂Fikl(j, h)

· ∂Fikl(j, h)

∂ψikl(j, h)
· ∂ψikl(j, h)

∂θkl(j)

∂lc
∂θkl(j, h)

=

N∑
i=1

∂likl
∂Fikl(j, h)

· ∂Fikl(j, h)

∂ψikl(j, h)
· ∂ψikl(j, h)

∂θkl(j, h)
. (4.21)

The derivatives of likl with respect to Fikl(j, h) are common to all of (4.21) and write

∂likl
∂Fikl(j, h)

= ζikl(j, h)− ζikl(j + 1, h)− ζikl(j, h+ 1) + ζikl(j + 1, h+ 1)

∂likl
∂Fikl(Jk, h)

= ζikl(Jk, h)− ζikl(Jk, h+ 1)

∂likl
∂Fikl(j, Jl)

= ζikl(j, Jl)− ζikl(j + 1, Jl)

∂likl
∂Fikl(Jk, Jl)

= ζikl(Jk, Jl) (4.22)

where ζikl(j, h) = 1/πikl(j, h).
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Omitting indices i, j and h for convenience, the partial derivatives of Fkl with respect to ηk and

ψkl are given by

∂Fkl
∂ηk

=


ηl if ψkl = 1;

1
2(1− S−1(ηk, ηl, ψkl)(1 + ψkl(ηk − ηl)− ηk − ηl)) otherwise

(4.23)

∂Fkl
∂ψkl

=


0 if ψkl = 1;

1
2 [1− S(ηk, ηl, ψkl) + (ψkl − 1)(ηk + ηl − 2ηkηl)]×

S−1(ηk, ηl, ψkl)(ψkl − 1)−2 otherwise.

(4.24)

The derivatives of ηk and ψkl with respect to the parameters depend on the choice of the link

functions gk(·) and hkl(·). In case that the logarithmic link function and the restrictions (4.3) are used

for the association parameters we have that

∂ψikl(j, h)

∂µkl
= ψikl(j, h)

∂ψikl(j, h)

∂ρkl(j)
= ψikl(j, h)− ψikl(1, h)

∂ψikl(j, h)

∂κkl(h)
= ψikl(j, h)− ψikl(j, 1)

∂ψikl(j, h)

∂ωkl(j, h)
= ψikl(j, h)− ψikl(j, 1)− ψikl(1, h) + ψikl(1, 1). (4.25)

The derivatives of ηk with respect to the marginal parameters under the logit function are given

by

∂ηik(j)

∂αk(j)
= ηik(j)(1− ηik(j)) (4.26)

∂ηik(j)

∂βk
= −ηik(j)(1− ηik(j))Xik. (4.27)

4.C Tables
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Chapter 5

Including Covariates in Two-Stage

Unobserved Consideration Set Discrete

Choice Models

5.1 Introduction

Discrete choice modeling stems from the seminal work of Daniel McFadden (see, among many others,

McFadden, 1978) and is widely practiced in empirical literature. Imagine the choice among various

products in a supermarket where interest lies in the effect of pricing and advertisement. Standard

models (Franses and Paap, 2001) assume that all individuals take all possible choice options into

account. It is nonetheless likely that individuals choose from an individual-specific subset of the

outcome space (Gensch, 1987). That is, individual i might only consider the cheapest products while

individual j is interested in the low fat brands. Hence, the choice problem is seen as a two-step

procedure, where first the consideration set is formed and then the final choice is made from the

consideration set. These individual-specific considerations are typically unobserved by the researcher.

There is a vast literature on this two-step procedure originating with Howard and Sheth (1969).

Wright and Barbour (1977) and Hauser and Wernerfelt (1990) describe economic theory and back-

ground. Sheridan et al. (1975) give an early application of a two-step procedure in job choice and

Swait (1984) applies the theory to transportation demand. Since individual-specific considerations

are often not observed, they are handled as latent variables in the estimation procedure (Manrai,

1995). Maximum likelihood estimation (ML, Ben-Akiva and Boccara, 1995) and Bayesian routines

(van Nierop et al., 2010) are widely used. Compared to a benchmark multinomial logit model, An-
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drews and Srinivasan (1995) show significant improvements in terms of model fit of incorporating

unobserved considerations to the choice process. Further, effect sizes of explanatory variables differ

and are typically larger if the two-stage approach is taken. For an overview of the vast literature of

two-step choice modeling we refer to Roberts and Lattin (1997).

The current chapter adds a note to the existing literature. Since inducing a consideration set in the

choice model introduces two stages, an important question is which covariates impact which stage of

the choice process. If considerations were observed, one could look to variable selection in the con-

sideration stage. This is impossible with unobserved considerations and classification of covariates

is therefore more difficult. The division of covariates over the consideration and final choice stage

is however important for interpretation. For example, do price reductions of a supermarket brand

change individual-specific consideration probabilities or do they directly affect choice? Andrews and

Srinivasan (1995) include in their brand choice application all covariates in both choice stages and do

not give a justification for this choice. Bronnenberg and Vanhonacker (1996) assume that prices are

local (within the consideration set) instead of global. van Nierop et al. (2010) assume that “consid-

eration is driven by in-store merchandising activity”, and hence assume that “these variables do not

directly drive [choice] utility”.

The main research questions of this chapter are whether such theoretical assumptions are needed

for the division of covariates over the stages and whether misplacement considerably affects in- and

out-of-sample fit. That is, if it is not certain how to divide the covariates, can optimal classification be

attained from model fit? Further, are obtained consideration probabilities informative if the division

of covariates in the two-stage choice problem is unknown?

The outline of this chapter is as follows. First the model specification and parameter inference is

described in Section 5.2. The description is only brief, since we use a basic model from the two-stage

modeling literature (Swait, 1984). Section 5.3 presents a Monte Carlo study to investigate the impact

of wrong placement of covariates in the two stages of the discrete choice model. We investigate

in- and out-of-sample fit, consideration probabilities and parameter estimates. Finally, Section 5.4

concludes.

5.2 Model Specification

To model both unobserved consideration and multinomial choices we consider two stages of the

decision process: a consideration and a decision stage. This section describes the model specification,

where we assume that the (unobserved) considerations of choice items follow a binary logit model

and a multinomial logit specification identifies the decision stage (Swait, 1984).
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Consideration stage

Let Cij denote the random variable describing the 0/1 consideration decision for individual i =

1, . . . , N for choice option j = 1, . . . , J . Note, these Cij are unobserved by the econometrician and

equal 1 if item j is in the consideration set of individual i and 0 otherwise. We describe this random

variable by a binary logit specification given by

Pr[Cij = 1|Wij , γj , δj ] =
exp(γj +Wijδj)

1 + exp(γj +Wijδj)
, (5.1)

where γj is an intercept and where Wij is a choice-specific set of explanatory variables with corre-

sponding parameter vector δj .

We assume that the random Cij are independent and hence the joint distribution of

Ci = (Ci1, . . . , CiJ) is given by

Pr[Ci = ci|Wi, θ] =

J∏
j=1

exp(cij(γj +Wijδj))

1 + exp(γj +Wijδj)
, (5.2)

where θ summarizes the model parameters and ci is a possible realization from the complete outcome

space S. This outcome space contains all possible consideration sets and its size thus equals 2J .

Choice stage

Let Yi be a multinomial random variable describing the choice of individual i which can take the

values 0, . . . , J . These J + 1 choices correspond to J choice items and a no choice option. This no

choice option is added to allow for an empty consideration set from the first stage. The multinomial

decision problem given the consideration set ci is described by a multinomial logit model, that is,

Pr[Yi = j|ci, Xij , θ] =
cij exp(αj +Xijβj)∑J
l=0 cil exp(αl +Xilβl)

, (5.3)

where αj is the choice-specific intercept of the model and where Xij is a choice-specific set of ex-

planatory variables with corresponding parameter vector βj . The model is conditional on the first

stage and hence if individual i does not consider item j, the probability of choosing j equals 0.

To estimate the parameters θ of the two-stage choice process we consider the maximum likelihood
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approach. This log-likelihood function is given by

`(θ; y) =

N∑
i=1

log Pr[Yi = yi]

=

N∑
i=1

log
∑
ci∈S

Pr[Yi = yi|ci, Xi, θ] Pr[Ci = ci|Wi, θ], (5.4)

where Pr[Ci = ci|Wi, θ] and Pr[Yi = yi|c,Xi, θ] are given in (5.2) and (5.3), respectively. Note that

the consideration sets are unobserved and the log-likelihood function therefore consists of a weighted

sum over all possible consideration sets. That is, the model actually is a concomitant variable mixture

type model (see Wedel, 2002) with restrictions on the parameters. Consideration probabilities that

come out of the estimation procedure give insights on the unobserved considerations.

As the two stages of the decision process interact, it is probably not easy to determine which covariate

affects which stage. In the supermarket example, the price of the product might influence considera-

tion, the final product choice, or both. In the next section we investigate via Monte Carlo experiments

whether we can find a justification for the division of covariates over the two stages via statistical

model comparison. If we cannot find such justification, the division of covariates over Wij and Xij

should be based on solid theoretical grounds. Furthermore, we investigate the impact of the division

of covariates on the inference of the consideration probabilities.

5.3 Simulation Study

In this section we conduct several simulation studies to investigate the effect of covariate misplace-

ment in the two-stage choice model described in Section 5.2. We answer the research questions from

Section 5.1 in particular by looking at in- and out-of-sample fit, fitted consideration probabilities and

parameter estimates.

We consider the model specification as in (5.2) and (5.3) where the number of choice alternatives

J is 3. Hence, the individuals have 4 choice options since a no choice option is added to the choice

stage. We consider an empirically likely sample size N of 1000 and do 5000 replications. As ex-

planatory variables we take two standard normally distributed random variables, z1 and z2. These

explanatory variables are used in three data generating processes [DGPs] as depicted in Table 5.1.

The parameters of our DGPs are chosen such that large, moderate and small consideration and choice

probabilities occur, see Table 5.4 for the values of our DGP-parameters.
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Table 5.1: DGPs and model specifications including abbreviations of the models
used in the simulation study.

Data generating processes
m(z1; z2) z1 impacts consideration, z2 impacts choice
m(z1, z2;−−) z1 and z2 impact consideration
m(−−; z1, z2) z1 and z2 impact choice

Model specifications
m(z1; z2) z1 impacts consideration, z2 impacts choice
m(z2; z1) z2 impacts consideration, z1 impacts choice
m(z1, z2;−−) z1 and z2 impact consideration
m(−−; z1, z2) z1 and z2 impact choice
m(z1, z2) benchmark multinomial logit model, z1 and z2 impact choice

Interest lies in the impact of misplacement of the explanatory variables. That is, if the researcher

in the supermarket example erroneously puts the price of the product in the consideration stage in-

stead of the choice stage, what would be the impact on model fit? Furthermore, we address whether

interpretation on the latent consideration probabilities will be correct. We investigate these questions

by introducing five model specifications shown in Table 5.1 for the three different DGPs. The sim-

ulation study is highly stylized and extensions would only increase difficulty in the classification of

covariates.

To compare the estimation results of the five models, we investigate in- and out-of-sample hit

rate and log-likelihood values of all model specifications for each DGP. We define the hit rate as

the percentage of observations where the model specification gives largest probability to the actually

chosen alternative. We investigate the hit rate of both consideration and choice probabilities. Note

that in empirical studies the consideration probability is unobserved and a hit rate cannot be found.

We compare the (out-of-sample) hit rates of the different model specifications by looking at the

distribution over the replications. Further, we look at the percentage of replications where the correct

model specification outperforms the other specifications. The parametric Vuong (1989) test can be

used to compare log-likelihood values of non-nested model specifications. If the hit rates and the

Vuong test point to the model specification in line with the DGP, classification of covariates can be

based on these measures. Otherwise, solid theoretical grounds are needed to identify which covariate

enters which stage of the decision process in the unobserved consideration set model.
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5.3.1 Simulation Results

This section presents the results of the simulation studies. First, we evaluate the fit of the unobserved

consideration sets in the misspecified model specification. Second, we present parameter estimates.

Finally, we investigate in- and out-of-sample hit rates and log-likelihood values over the replications.

Hence, this is the core of our research. If hit rates and log-likelihood values are clearly optimal for

the correct specification, the division of the covariates over the consideration and choice stage can be

based on these statistical measures.

Consideration Sets

Table 5.2 displays the average size of the 2J estimated consideration sets for all specifications. Note

that the comparison to the actual unobserved consideration sets cannot be done in empirical studies.

The table shows accurate sizes of the consideration sets for the correctly specified model. Nonethe-

less, large deviations from the simulated values for the misspecified model specifications occur. For

example, for model specification m(z1, z2;−−) in the study with DGP m(z1; z2), 30% of the obser-

vations are in the consideration set (0, 1, 0), although the DGP corresponds to a probability of only

6% for this set. Apparently, the consideration stage probabilities depend highly on which covariate

enters which stage of the choice problem. Table 5.3 shows the average hit rate of the considerations.

Clearly, these hit rates are small if the division of covariates over the two stages is incorrect. Where

in DGP m(z1; z2) the in- and out-of-sample hit rate is near 50% for correct classification, the other

hit rates are significantly worse. Wrong classification in the two-stage decision process thus yields

highly different estimates for the consideration probabilities. Hence, conclusions on these considera-

tion predictions can only be valid if the division of covariates is very certain to be correct.
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Table 5.2: Average size of the estimated consideration sets over the replications for each model specification
in all DGPs (1000 observations, 5000 replications).

DGP m(z1; z2)
Consideration set DGP Model Specification

m(z1; z2) m(z2; z1) m(z1, z2;−−) m(−−; z1, z2)
mean stda mean std mean std mean std mean std

000b 0.116 0.010 0.117 0.036 0.043 0.027 0.320 0.039 0.009 0.011
001 0.008 0.003 0.009 0.006 0.170 0.088 0.039 0.014 0.051 0.050
010 0.061 0.008 0.065 0.032 0.131 0.039 0.308 0.041 0.016 0.018
011 0.021 0.005 0.026 0.020 0.454 0.096 0.166 0.024 0.175 0.097
100 0.286 0.015 0.280 0.048 0.032 0.020 0.065 0.016 0.024 0.027
101 0.046 0.007 0.045 0.017 0.016 0.011 0.004 0.002 0.155 0.132
110 0.268 0.014 0.267 0.047 0.104 0.023 0.076 0.019 0.044 0.042
111 0.194 0.012 0.192 0.031 0.050 0.014 0.021 0.007 0.527 0.188

DGP: m(z1, z2;−−)
Consideration set DGP Model Specification

m(z1; z2) m(z2; z1) m(z1, z2;−−) m(−−; z1, z2)
mean std mean std mean std mean std mean std

000 0.152 0.012 0.146 0.029 0.054 0.028 0.153 0.025 0.049 0.022
001 0.040 0.006 0.038 0.015 0.115 0.042 0.041 0.011 0.142 0.059
010 0.071 0.008 0.142 0.040 0.080 0.038 0.073 0.020 0.076 0.044
011 0.071 0.008 0.195 0.056 0.131 0.039 0.072 0.018 0.196 0.085
100 0.285 0.014 0.151 0.038 0.166 0.084 0.284 0.046 0.060 0.033
101 0.023 0.005 0.037 0.021 0.065 0.033 0.023 0.010 0.182 0.105
110 0.267 0.014 0.130 0.031 0.295 0.086 0.266 0.043 0.080 0.035
111 0.091 0.009 0.160 0.044 0.094 0.033 0.089 0.018 0.214 0.055

DGP: m(−−; z1, z2)
Consideration set DGP Model Specification

m(z1; z2) m(z2; z1) m(z1, z2;−−) m(−−; z1, z2)
mean std mean std mean std mean std mean std

000 0.098 0.009 0.079 0.037 0.168 0.083 0.095 0.041 0.095 0.037
001 0.036 0.006 0.026 0.020 0.176 0.116 0.192 0.112 0.037 0.016
010 0.098 0.009 0.117 0.072 0.231 0.130 0.090 0.050 0.098 0.043
011 0.036 0.006 0.050 0.038 0.195 0.105 0.368 0.118 0.037 0.016
100 0.267 0.014 0.147 0.080 0.055 0.036 0.044 0.022 0.262 0.053
101 0.098 0.009 0.063 0.061 0.038 0.035 0.040 0.038 0.103 0.031
110 0.267 0.014 0.340 0.127 0.089 0.042 0.065 0.027 0.266 0.054
111 0.098 0.009 0.178 0.106 0.048 0.025 0.106 0.037 0.102 0.021
a The mean represents the mean over 5000 replications of the size of the consideration sets within each

replication. The standard deviation over the replications is represented by std.
b A consideration set like 101 represents the set where choice option 1 and 3 are considered and choice

option 2 is not.
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Table 5.3: Average hit rate of consideration over the replications
for each model specification in all DGPs (1000 observations, 5000
replications).a

DGP m(z1; z2)
Model Specification In-sample hit rate Out-of-sample hit rate

mean stdb mean std

m(z1; z2) 0.474 0.019 0.470 0.019
m(z2; z1) 0.062 0.011 0.062 0.011
m(z1, z2;−−) 0.164 0.017 0.163 0.017
m(−−; z1, z2) 0.184 0.040 0.184 0.041

DGP m(z1, z2;−−)
Model Specification In-sample hit rate Out-of-sample hit rate

mean std mean std

m(z1; z2) 0.219 0.047 0.216 0.046
m(z2; z1) 0.292 0.025 0.291 0.025
m(z1, z2;−−) 0.528 0.021 0.523 0.021
m(−−; z1, z2) 0.057 0.029 0.056 0.029

DGP m(−−; z1, z2)
Model Specification In-sample hit rate Out-of-sample hit rate

mean std mean std

m(z1; z2) 0.237 0.048 0.235 0.048
m(z2; z1) 0.105 0.031 0.104 0.031
m(z1, z2;−−) 0.076 0.015 0.075 0.014
m(−−; z1, z2) 0.269 0.019 0.266 0.019
a The hit rate is defined as the fraction of observations where the

model specification gives largest probability to the actually con-
sidered consideration set.

b The mean represents the mean over 5000 replications of the hit
rate of consideration. The standard deviation over the replications
is represented by std.
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Parameter Estimates

Table 5.4 displays the average parameter estimates of the correctly specified model specifications.

Parameter estimates of the misspecified models are highly different, since the consideration proba-

bilities are highly different from the data generating process. The table shows that parameters are

accurately estimated and reasonable root mean squared errors are found.1 Only the estimates of γj

in m(−−; z1, z2) are somewhat skewed. Tables 5.2 and 5.3 nonetheless showed that consideration

probabilities are estimated rather accurately.

Table 5.4: Average parameter estimates and root mean squared error over the replications for the
correct model specification in all DGPs (1000 observations, 5000 replications).a

m(z1; z2) m(z1, z2,−−) m(−−; z1, z2)
DGP mean rmse DGP mean rmse DGP mean rmse

α1 0 – – α1 0 – – α1 0 – –
β1 0 – – α2 0.5 0.523 0.180 β1 0 – –
α2 -1.75 -1.764 0.236 α3 1 1.072 0.696 0 – –
β2 -2.25 -2.337 0.317 α4 2.25 2.365 0.965 α2 -1 -1.002 0.281
α3 1 1.056 0.475 γ1 1.25 1.336 0.562 β2 0.75 0.785 0.207
β3 0 0.034 0.259 δ1 0.75 0.795 0.312 -2.25 -2.358 0.392
α4 2.5 2.610 0.669 -2.25 -2.378 0.532 α3 2 2.194 0.869
β4 2.25 2.396 0.736 γ2 0 0.030 0.398 β3 1.5 1.627 0.476
γ1 1.5 1.717 1.160 δ2 1.5 1.565 0.340 0 0.031 0.292
δ1 0.75 0.893 0.660 0 -0.008 0.156 α4 3.5 3.794 1.280
γ2 0.25 0.314 0.375 γ3 -2.75 -2.790 0.251 β4 2.25 2.468 0.704
δ2 1.5 1.565 0.306 δ3 2.25 2.299 0.334 2.25 2.550 1.041
γ3 -1.75 -1.763 0.167 2.25 2.294 0.299 γ1 1 1.443 2.880
δ3 2.25 2.313 0.251 γ2 0 0.084 1.230

γ3 -1 -0.956 0.189
a For reasons of space, the parameter estimates of the other model specifications are available

upon request.

1Some replications in the simulation study converge to parameter estimates where a consideration probabil-
ity approaches 1. Since parameter estimates are then not clearly identified, we discard these replications from
the analysis. Note that this extreme convergence happens more often for the misspecified than for the correctly
specified models.
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Hit rate and Log-likelihood

Given the conclusions from the previous paragraphs, it is important to classify the division of co-

variates carefully. Both unobserved consideration probabilities and parameter estimates are highly

different if the model specification is not in accordance with the DGP. The main question of this

research is whether the classification of covariates can be done based on statistical measures. Since

the size of the estimated consideration sets cannot be compared to unobserved consideration sets in

empirical research, this (clear identification) can unfortunately not be used. Table 5.5 displays the

average hit rate of the choices for each model specification. The hit rates are very close to each other

for all data generating processes. That is, from these hit rates only it is not possible to identify which

model specification is in correspondence with the DGP. The table further shows the fraction of repli-

cations where the correct model specification has the highest in- and out-of-sample hit rate. Since in

DGP m(z1; z2) this is only the case in 52 and 46%, respectively, it is not save to base the division

of covariates on this statistical measure. That is, the wrong specification would have been chosen in

roughly 50% of the replications. Hence, Table 5.2 showed that consideration probability estimates

are then far from the truth and cannot be interpreted savely.

Thus, decisions on classification of covariates cannot be based on in- and out-of-sample hit rates.

We therefore introduce parametric testing. First, practitioners might look at Wald tests for the in-

clusion of covariates. Unfortunately, unreported test results show that this test cannot discriminate

between the model specifications in Table 5.1. This is not surprising, since both explanatory vari-

ables in the end influence final choice. Although this influence might by direct instead of indirect, the

optimization will still try to capture relations between the covariate and discrete choice. Hence, sig-

nificance of the parameters are still found in the misspecified models. Next, we opt for the Vuong test

for comparison of non-nested models. Table 5.6 shows the fraction of Z-scores over the replications

larger than 1.645, thus reporting the fraction of rejection of the null hypothesis that the model speci-

fications are equally likely at a 5% level. For example, m(z1; z2) significantly outperforms m(z2; z1)

in only 39,5% of the replications, while m(z1; z2) is in accordance with the DGP. That is, we would

not be able to identify the correct specification in 60% of the cases. We cannot decide on classifica-

tion of covariates in the two-stage problem based on this Vuong tests. Only DGP m(z1, z2,−−) is

significantly identified since the Vuong test punishes the other specifications for the larger number of

parameters.



5.3 Simulation Study 85

Table 5.5: Average hit rate of choice over the replications for
each model specification in all DGPs (1000 observations, 5000
replications).a

DGP m(z1; z2)
Model Specification In-sample hit rate Out-of-sample hit rate

mean stdb mean std

m(z1; z2) 0.569 0.016 0.564 0.016
m(z2; z1) 0.567 0.016 0.562 0.016
m(z1, z2;−−) 0.561 0.016 0.557 0.016
m(−−; z1, z2) 0.562 0.016 0.558 0.016
m(z1, z2) 0.561 0.016 0.558 0.016

fractionc 0.521 0.462

DGP m(z1, z2;−−)
Model Specification In-sample hit rate Out-of-sample hit rate

mean std mean std

m(z1; z2) 0.479 0.016 0.469 0.017
m(z2; z1) 0.484 0.016 0.476 0.016
m(z1, z2;−−) 0.495 0.016 0.488 0.016
m(−−; z1, z2) 0.487 0.017 0.480 0.017
m(z1, z2) 0.483 0.016 0.479 0.016

fraction 0.665 0.617

DGP m(−−; z1, z2)
Model Specification In-sample hit rate Out-of-sample hit rate

mean std mean std

m(z1; z2) 0.433 0.016 0.424 0.016
m(z2; z1) 0.432 0.016 0.424 0.016
m(z1, z2;−−) 0.429 0.016 0.423 0.016
m(−−; z1, z2) 0.435 0.015 0.429 0.016
m(z1, z2) 0.430 0.016 0.425 0.016

fraction 0.347 0.369
a The hit rate is defined as the fraction of observations where the

model specification gives largest probability to the actual choice.
b The mean represents the mean over 5000 replications of the hit

rate of choice. The standard deviation over the replications is rep-
resented by std.

c Fraction denotes the fraction of replications where the correct
model specification has the highest hit rate.
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Table 5.6: Fraction of Z-scores of the Vuong test larger than 1.645
over the replications for each model specification in all DGPs (1000
observations, 5000 replications).a

DGP m(z1; z2) m(z1, z2,−−) m(−−; z1, z2)
Model Specification fractionb fraction fraction

m(z1; z2) – 0.999 0.566
m(z2; z1) 0.395 0.991 0.409
m(z1, z2;−−) 0.790 – 0.009
m(−−; z1, z2) 0.972 0.958 –
m(z1, z2) 0.670 0.967 0.304

Fraction of log-likelihoodsc

In-sample 0.927 0.949 0.957
Out-of-sample 0.878 0.932 0.902
a The Z-score is the test statistic from the parametric Vuong test com-

paring likelihood values of non-nested models.
b Fraction denotes the fraction of replications where the Z-score is

larger than 1.645, thus where the Vuong test significantly rejects the
null hypothesis at a 5 percent level in favour of the correct model
specification.

c Fraction of log-likelihoods denotes the fraction of replications where
the correct model specification has the highest log-likelihood value.

Both the hit rate and Vuong test cannot give a certain classification of covariates in the two-stage

choice model. We finally look at log-likelihood values. Table 5.6 shows the in- and out-of-sample

fraction of replications where the correct model specification has the largest log-likelihood value.

These measures give clearer judgment on which covariate has to enter which stage of the decision

process. That is, the log-likelihood value of the specification in accordance with the DGP is largest

in more than 90% of the replications.

In sum, the division of covariates over the two stages in the choice process is important for

interpretation of the estimates of the unobserved consideration probabilities. In- and out-of-sample

hit rates give no definite answer to the placement question, since hit rates of the specification in

accordance of the DGP do not clearly outperform the other specification hit rates. Further, the Vuong

test on the log-likelihood values will not yield the correct specification with enough certainty, either.

The choice on which covariate enters which stage of the decision process can best be based on log-

likelihood values: the largest log-likelihood value indeed belongs to the correct specification in about

90% of the replications. Since some uncertainty is still involved, theoretical grounds for classification

are recommended. Note that the classification of covariates does not matter much for in- and out-of-

sample fit of the final choices. Nonetheless, it is highly important for parameter interpretation and

interpretation of the unobserved consideration probabilities.
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5.4 Conclusion

In this chapter we provide a critical note to the two-stage unobserved consideration set literature. In

this literature, it is assumed that the choice process can be divided into two stage. First, an individual-

specific and unobserved subset of choice options is created in the consideration stage. Second, the

choice is made from this subset of options. There is vast theoretical evidence that individual choices

are made in this way instead of in the standard one-stage choice process.

We note that implications arise when the inclusion of covariates is concerned. That is, the division

of covariates over the two stages is highly important for interpretation of unobserved consideration

probabilities and parameter estimates. Nonetheless, effects on in- and out-of-sample fit of the choice

variable are only small and negligible and do not help to identify covariate classification. If placement

of the covariates cannot be based on statistical measures, solid theoretical grounds are needed to

justify interpretation of the model parameters.

We find that both in- and out-of-sample hit rate and the parametric Vuong test do not give clear

justification for the classification of covariates. If one wants to decide upon inclusion of covariates

in the two-stage decision problem based on statistical measures, it is best to choose the specification

with the largest log-likelihood value. Then, the correct model specification is chosen in more than

90% of the replications of the simulation study. Note that in 10%, the wrong specification would have

been chosen, and interpretation of consideration probabilities would have been far from the truth.

Thus, theoretical grounds are still highly recommended.

More information in the modeling process would give more justification for covariate inclusion.

That is, if the number of observations N is larger, identification of the correct model specification

would be easier. We chooseN equal to 1000 since this is a sample size likely to encounter in practice.

Further, if individuals are repeatedly measured over time and structure is laid on the dynamic consid-

eration probabilities, clearer conclusions on the classification of covariates may be found. Nonethe-

less, the explanatory variables in the current study are uncorrelated and correlations would yield extra

difficulties to discriminate between the model specifications. Note, it is always uncertain whether the

model specification is in accordance with the DGP. Unobserved consideration probabilities should

therefore be treated with care.





Chapter 6

Modeling the Impact of Forecast-based

Regime Switches on US Inflation

6.1 Introduction

Lucas (1976) showed that macro-econometric models with constant parameters cannot be used for

evaluating policy changes, since policy changes usually result in behavioral changes of economic

agents. Hence, these behavioral changes result in inconstant model parameters. It is well known that

agents also react to macro-economic forecasts. This suggests that unexpected economic forecasts

may also lead to changes in the model parameters over time.

Several theoretical and empirical studies indicate this effect of forecasts. Theoretically, Fellner

(1976) explains that publics expectations are prone to self-justifying skepticism about policy makers

and policy makers react to that. Empirically, Givoly and Lakonishok (1979) find that serious upward

revisions in financial earnings forecasts lead to significant effects on stock prices. Steiner et al. (2009)

show that macro-economic announcements cause an immediate reaction of returns in asset prices.

Moreover, they find that reactions to positive news are faster than reaction to negative news. Sinclair

et al. (2012) shows that forecast errors have an impact on the target interest rate set by the Federal

Reserve Bank [FED].

Although literature suggests that the impact of forecasts occurs in various fields, this chapter

mainly focuses on US inflation time series data. The choice for this series is coherent, as (i) policy

makers react to forecasts due to the policy of inflation targeting starting in the FED Volcker-regime in

1975 (Clarida et al., 2000) and; (ii) companies and consumers use inflation forecasts to decide upon
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future savings and expenditures. Carroll (2003) states that people update their expectations to public

forecasts rather than to past inflation rates.

Furthermore, economic theory also provides support for the impact of inflation forecasts on the

inflation rate. It is mainly mentioned as the expectations trap (Christiano and Gust, 2000) or self-

fulfilling expectations, where publics expectations of high inflation increase the actual inflation rate.

Albanesi et al. (2003) state: “expectations of high or low inflation lead the public to take defensive

actions, which then make accommodating those expectations the optimal monetary policy”. Both the

expectations trap before 1979 (Leduc et al., 2007) and inflation targeting since the 1980s suggest that

inflation forecasts play a key role.

To describe the effect of forecasts on future inflation, we propose in this chapter a nonlinear time

series model which accounts for dynamic effects of (inflation) forecasts. That is, the model allows

for structural breaks in the parameters based on the relative size of a forecast of the underlying time

series. To describe these structural changes we employ the smooth transition autoregressive [STAR]

model (Chan and Tong, 1986; Teräsvirta and Anderson, 1992). Although there are many applications

of regime switching models, none of these consider the impact of forecasts on regime changes. In

many time series applications the transition is based on a lagged value of the dependent variable, see

Teräsvirta (1994), among many others. Now, the classification into regimes depends on a forecast

of the dependent variable. Note that evaluation of the forecast is impossible due to the Lucas (1976)

critique. This forecast may either be exogenous in the sense that it is formed outside the model or

endogenous when the forecast is generated inside the model specification. In the latter case, the

proposed model resembles the contemporaneous STAR [C-STAR] model of Dueker et al. (2007) and

hence provides a motivation for this specification.

The remainder of this chapter is organized as follows. Section 6.2 introduces our model specifica-

tion to describe the impact of forecasts. Parameter estimation, statistical inference and a nonlinearity

test are discussed in Section 6.3. We perform several simulation studies to justify the validity of the

test. Section 6.4 illustrates our modeling approach using the gross domestic product [GDP] deflator

based inflation rate of the United States [US]. Finally, Section 6.5 concludes.

6.2 Model Specification

We put forward a nonlinear time series model which accounts for structural changes due to a forecast

of the underlying time series. As we expect reactions to relatively low and relatively high forecasts,

we include three regimes. We further expect that the size of the structural change depends on the size

of the forecast. Therefore, we use smooth transition modes, see van Dijk et al. (2002) for a survey.
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Formally, let yt be the variable of interest at time t = 1, . . . , T . Let pt|t−1 denote the forecast of

yt based upon all information up to and including time t−1. The three-regime smooth transition time

series then is given by

yt = φ1xt + (φ0 − φ1)xtG0(pt|t−1; γ0, κ0) + (φ2 − φ1)xtG2(pt|t−1; γ2, κ2) + σtεt (6.1)

with εt ∼ IID(0, 1), where xt is a k-dimensional vector containing a vector of ones, explanatory

variables and lagged values of yt and where φi, i ∈ {0, 1, 2}, are (k × 1)-parameter vectors. The

parameter σt describes the potentially time-varying standard deviation of the disturbances which we

will discuss later.1

The functions G0(·) and G2(·) takes values between 0 and 1 depending on the level of the fore-

casts pt|t−1 and describe the probability to be below or above some threshold value. We opt for the

logistic function

Gi(pt|t−1; γi, κi) =
1

1 + exp(−γi(pt|t−1 − κi))
, (6.2)

resulting in the logistic STAR [L-STAR] model (Teräsvirta, 1994). The parameter γi determines

the smoothness of the transition function and κi denotes he point of inflection of the logistic curve.

It is easy to see that under the restriction κ0 < κ2, γ0 < 0 and γ2 > 0, G0(·) approaches 1 for

small forecasts. Hence, the relevant parameter vector is φ0. For large forecasts, G2(·) approaches

1 resulting in φ2 as the relevant parameter vector. These restrictions are however not necessary for

identification but other restrictions may lead to different interpretation of the regime parameters.

6.2.1 Specification of the influential forecast

In many time series applications of STAR models pt|t−1 is replaced by yt−1. To serve the purpose of

our model we take a different approach. The classification into regimes depends on the forecast pt|t−1

of the dependent variable yt. Different specifications can be used. The impact of the forecast pt|t−1

should be important enough to result in reactions of decision makers in the economy.

The simplest case is if the forecast stems from an expert opinion or from another econometric

model. In this case we obtain a regular L-STAR model. One can also use the model in (6.1) to provide

the forecast. Then, we assume that the forecaster is familiar with the impact of his or her forecast

and acts to that by incorporating regime changes. As the forecaster does not yet have knowledge on

future regime switches, (s)he can do no better than imposing the state of time t− 1 in his or her naive

1For now, the variance is independent of changes in the forecast pt|t−1.
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forecast. The relevant forecast for period t given the information at time t− 1 is therefore given by

pt|t−1 = φ1xt|t−1 + (φ0 − φ1)xt|t−1G0(pt−1|t−2; γ0, κ0) + (φ2 − φ1)xt|t−1G2(pt−1|t−2; γ2, κ2),(6.3)

where we use the previous realization of the transition functions Gi(·) and where xt|t−1 is the set of

explanatory variables for time t given all information up to time t− 1.

The model specification (6.1)-(6.3) adopts and extends the ideas of Dueker et al. (2007). They

propose a STAR model with contemporaneous classification. Since pt|t−1 contains model parameters

it belongs to the class of contemporaneous models. Our current representation of this C-STAR model

provides a justification and interpretation of using a contemporaneous, not predetermined classifica-

tion into regimes. Further, we extend the model of Dueker et al. (2007) from two to three regimes.

6.2.2 Specification of the time-varying threshold

The threshold parameter κi in (6.2) is assumed to be fixed in original STAR specifications. As macro-

economic time series have been fluctuating in the past decades, it is nonetheless likely that reactions

to the forecast are relative to time. For instance, a high forecast in the 1990s with a low inflation level

would not have been striking during the oil crises in the late 1970s. We therefore allow the threshold

to be time-varying, relative to the local level of inflation. That is, agents compare the forecast to the

level of inflation series in the near past.

We consider two specifications for the time-varying κit. First, let κit = κi+ȳ
(d)
t , where ȳ(d)

t is the

average of the dependent variable over the previous d periods. The larger ȳ(d)
t , the larger pt|t−1 has to

be for agents to react. It also implies that regime 0 is more likely to occur. For the second specification

of κit, imagine a large forecast in a highly volatile period. As large changes are expected, it is likely

that reactions to this forecast are less extreme than reaction to the same forecast in periods with low

volatility. We therefore impose that κit = κiσt + ȳ
(d)
t . Hence, we now also account for the local level

of the variance in the inflation innovations.

In sum, the specification in (6.1)-(6.2) where G0(·) and G2(·) depend on the level of the forecast

pt|t−1 provides the framework for investigating the impact of forecasts on decisions of agents. We

allow for exogenous and endogenous forecasts as described in (6.3) and for time-varying threshold

parameters. The model allows us to investigate the impact of forecasts on macro-economic variables

of interest.
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6.3 Statistical Inference

We discuss inference of our smooth transition model specification from Section 6.2. Section 6.3.1

considers parameter estimation, while Section 6.3.2 concerns testing for our specific form of nonlin-

earity

6.3.1 Estimation procedure

To estimate the parameters in (6.1)-(6.2) we use nonlinear least squares [NLS], see, for example,

Davidson and MacKinnon (2004, Chapter 6). It is however not possible to apply regular NLS proce-

dures that are used for STAR models. First of all, the argument of the logistic function in (6.2) may

depend on parameters as in (6.3). Further, we want to allow for a time-varying variance σ2
t . We use

weighted NLS [WNLS] instead.

We allow for a time-varying variance because of the so-called great moderation. Many macro-

economic time series display a drop in volatility in the 1980s, see Kahn et al. (2002) and Summers

(2005). We allow for these changes by adding a break to the variance σ2
t .

To facilitate notation, we define

f(xt; θ) = φ1xt + (φ0 − φ1)xtG0(pt|t−1; γ0, κ0t) + (φ2 − φ1)xtG2(pt|t−1; γ2, κ2t) (6.4)

where θ = (φ0, φ1, φ2, γ0, γ2, κ0, κ2) and hence (6.1) can be written as

yt = f(xt; θ) + σtεt. (6.5)

To capture the great moderation we follow Sensier and van Dijk (2004) and define

σ2
t = σ2

1 + (σ2
2 − σ2

1)Gσ(t; γσ, κσ) + ηt. (6.6)

In contrast to Sensier and van Dijk (2004) we allow for the possibility of a smoother transition using

Gσ(t; γσ, κσ) =
1

1 + exp(−γσ(t− κσ))
(6.7)

which again is the logistic function. Hence for γσ > 0 the variance is σ2
1 for the first part of the sample

and σ2
2 for the second part. The transitions is halfway at t = κσ and γσ reflects the smoothness of the

transition.
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The WNLS procedure to estimate the model parameters θ can be summarized by the following

five steps:

1. minimize
∑T

t=1(yt − f(xt; θ))
2 with respect to θ resulting in θ̂0

2. compute the residuals ε̂t = yt − f(xt; θ̂0)

3. use NLS on (6.6) replacing σ2
t by ε̂2

t

4. compute the fitted values of σ2
t using (6.6) resulting in σ̂2

t

5. minimize
∑T

t=1( 1
σ̂t

(yt − f(xt; θ)))
2 with respect to θ resulting in θ̂

The estimator is asymptotically normally distributed. The covariance matrix of the estimator can be

computed using

σ̂2
ε

(
T∑
t=1

1

σ̂2
t

(
∂f(xt; θ)

∂θ
|θ=θ̂

)(
∂f(xt; θ)

∂θ
|θ=θ̂

)′)−1

. (6.8)

Diagnostic tests on the residuals (such as heteroskedasticity and serial correlation tests) can be done

in a similar manner as for linear time series models. Since there are unidentified nuisance parameters

under the null hypothesis of linearity we cannot use standard tests to compare our model to a linear

specification. In the next section we propose a nonlinearity test based on Luukkonen et al. (1988) to

test for our specific type of nonlinearity.

6.3.2 Nonlinearity test

The first step in the modeling process is to test for the presence of our proposed type of nonlinearity.

As comparing our model specification (6.1) with a linear model specification leads to the problem of

unidentified parameters under the null hypothesis, standard tests do not apply. Instead, we use a test

by Luukkonen et al. (1988) which is based on the first-order Taylor expansion around γi = 0 of the

logistic function Gi(·) in (6.2).

A first-order Taylor expansion of the restricted two-regime model version of (6.1) results in

yt = φ1xt + β̃0xt + β̃1xtpt|t−1 + σtεt, (6.9)

where

β̃0 = (0.5− 0.25γ0κ0)(φ0 − φ1)

β̃1 = 0.25γ0(φ0 − φ1). (6.10)
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It is easy to see that if γ0 = 0 or φ0 = φ1 the additional regime is not present in the specification.

Hence, the nonlinearity test boils down to testing β̃1 = 0 using a standard Wald or t-test with a

standard distribution. For testing for an additional third regime we use the approach of van Dijk and

Franses (1999).

Simulation study

If regime switches in the model in (6.1) are based on an exogenous forecast pt|t−1 it fits in the frame-

work of Luukkonen et al. (1988). However φi also emerges in pt|t−1 when the endogenous forecast

in (6.3) is used and it is not straightforward to implement the test. We replace pt|t−1 by its fitted value

from the model in (6.1), p̂t|t−1, such that the standard linear test on β̃ in (6.9) can still be used. To

justify whether this strategy leads to proper inference, we perform several simulation studies.

Under the null hypothesis we take a simple linear autoregressive model of order 1, that is

yt = ρ0 + ρ1yt−1 + νt for t = 1, . . . , T, (6.11)

where ρ0 and ρ1 are parameters and νt ∼ NID(0, σ2
ν). To investigate the impact of the autoregressive

parameters on the test we consider ρ1 equal to 0.2, 0.75 and 0.95. Moreover, we choose ρ0 to be 0.8,

0.25 and 0.05, respectively, so that the unconditional mean of the time series equals 1. We compare

the empirical size of the test for β̃ = 0 in the test regression (6.9) with the nominal size.

Table 6.1 displays the empirical size of the test based on 10000 replications. Since we gener-

ate the data without any nonlinearity, empirical sizes give the probability to wrongly reject the null

hypothesis. For autoregressive parameters not close to unit root rather small size distortions occur,

even for 250 observations. For ρ1 = 0.95, the size distortion is bigger but not severe. For example,

for T = 250 the empirical size belonging to the significance level of 10% is about 5%, while for

ρ1 = 0.75 and ρ1 = 0.2 the empirical size is about 8 and 9%, respectively.

All values in Table 6.1 are smaller than the corresponding theoretical size. This implies that the

test is a bit too conservative. However, these small size distortions cause no severe problems in prac-

tice. Moreover, size distortions get smaller for larger T and hence the test seems to be asymptotically

valid.

Unreported results show that similar results are found for the regular STAR model and our model

with the exogenous forecast. This indicates that the nonlinearity test introduced by Luukkonen et al.

(1988) is appropriate to use for the model specification in (6.1)-(6.3).
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Table 6.1: Empirical size of the Wald-test for
β̃1 = 0 in test regression (6.9) (10000 replications)a

Parameters Nominal size
T ρ0 ρ1 0.10 0.05 0.01

250 0.80 0.2 0.093 0.045 0.010
250 0.25 0.75 0.081 0.037 0.006
250 0.05 0.95 0.047 0.018 0.002

1000 0.80 0.2 0.096 0.046 0.006
1000 0.25 0.75 0.096 0.047 0.009
1000 0.05 0.95 0.070 0.029 0.003

a The DGP is yt = ρ0 + ρ1yt−1 + νt with νt ∼
NID(0, 1) for t = 1, . . . , T .

To investigate whether the nonlinearity test has power against our smooth transition specification,

we consider another simulation study. The data generating process [DGP] is given by

yt = ρ0 + ρ1yt−1 + ρ1,0yt−1G0(pt|t−1; γ, κ) + νt for t = 1, . . . , T, (6.12)

where ρ1,0 is the adjustment of the autoregressive parameter when G0(·) is equal to 1. Hence, we

now simulate under a specific alternative of nonlinearity.

Table 6.2 displays the power of the Wald test for β̃ = 0 in the test regression (6.9) for different

parameter values based on the nominal size of 5%. Results are again based on 10000 replications. We

compare large and small autoregressive terms ρ1, different distances from linearity ρ1,0 and different

parameter values for γ and κ.

Several conclusions can be drawn from the table. First of all, as expected, the power is larger

for a larger sample size. Secondly, the power is larger when the alternative is further away from

the null hypothesis. These are familiar aspects of the power of a statistical test. Thirdly, a larger

autoregressive parameter ρ1 leads to larger power of the test. Higher persistence in the time series

leads to smaller standard errors and hence it becomes easier to detect nonlinearities. Fourth, for large

γ the breaks are more prominent and easier to detect which results in larger statistical power. Finally,

a threshold parameter κ which is further from the unconditional mean in the largest regime results in

more separate regimes. It is therefore easier to detect the two regimes and hence the power increases.

Most importantly, the power properties of the test for our specification have a similar pattern as

for the standard STAR model. Since we include an estimate of pt|t−1 in the test regression instead of



6.3 Statistical Inference 97

Table 6.2: Power of the Wald-test for β̃0 in test regression (6.9) for a nominal size
of 5% (10000 replications)a

T = 250 T = 1000

γA
b γB γA γB

ρ1 ρ1,0 κA
c κB κA κB κA κB κA κB

-0.05 0.048 0.050 0.047 0.048 0.050 0.053 0.052 0.049
-0.10 0.045 0.050 0.047 0.048 0.051 0.067 0.050 0.050

0.3 -0.15 0.049 0.053 0.047 0.048 0.057 0.077 0.050 0.061
-0.20 0.048 0.062 0.047 0.051 0.062 0.105 0.048 0.064
-0.25 0.052 0.062 0.048 0.053 0.069 0.131 0.047 0.075

-0.05 0.042 0.049 0.043 0.058 0.061 0.084 0.066 0.114
-0.10 0.053 0.066 0.057 0.093 0.113 0.177 0.123 0.301

0.6 -0.15 0.066 0.098 0.077 0.157 0.189 0.305 0.212 0.548
-0.20 0.087 0.131 0.108 0.257 0.278 0.460 0.345 0.779
-0.25 0.117 0.176 0.145 0.381 0.369 0.582 0.492 0.923

-0.05 0.043 0.047 0.053 0.050 0.176 0.171 0.204 0.197
-0.10 0.089 0.095 0.107 0.114 0.441 0.458 0.550 0.542

0.9 -0.15 0.146 0.159 0.197 0.209 0.671 0.716 0.799 0.812
-0.20 0.209 0.234 0.292 0.312 0.818 0.857 0.922 0.939
-0.25 0.273 0.306 0.404 0.424 0.902 0.937 0.970 0.981

a The DGP is given in (6.12).
b Slow transition is obtained by putting γA = 2.3. The transition function covers

approximately 50% of the range of the data. With γB = 11.5 the transition
function covers 10% of the data range indicating a fast transition.

c Parameter κA equals the unconditional mean of (the largest) regime 1 plus 1
standard deviation (transition function is larger than 0.5 for about 15.9% of the
data). Parameter κB equals the unconditional mean of regime 1 plus 1.5 standard
deviation (transition function is larger than 0.5 for about 6.7% of the data).

its true value, the power is smaller than in regular STAR models. Unreported results however show

that the loss in power is relatively small.

Based on the results from the two simulation studies we conclude that the adjusted version of the

nonlinearity test of Luukkonen et al. (1988) can be used for our specific type of nonlinearity. For

testing for an additional third regime we refer to van Dijk (1999). These nonlinearity tests are used in

the next section to test for STAR type nonlinearity in US inflation data.
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6.4 Application

We apply the model discussed in Section 6.2 to the seasonally adjusted quarterly gross domestic

product deflator based US inflation rate [henceforth called US inflation] over the period 1960.Q1-

2013.Q4.2 There are many (potentially influential) forecasts available for this inflation series (Fama

and Gibbons, 1984). In this application we use the University of Michigan inflation expectation series

[henceforth called Michigan series] which is a widely accepted example of an inflation forecast series

created by a large number of consumers (Curtin, 1982).

In Section 6.4.1 we describe several specifications of the STAR model to describe US inflation.

In Section 6.4.2 we discuss selecting the appropriate model. Section 6.4.3 deals with parameter inter-

pretation. As the model is highly nonlinear, marginal effects (Section 6.4.3) and impulse responses

(Section 6.4.3) are used.

6.4.1 Model specification

Figure 6.1 displays a plot of US inflation. It is clear from the figure that inflation peaked in the 1970s

and 1980s because of the oil crises (Byrne and Davis, 2004) and became less volatile in the second

half of the 1980s [great moderation,][](Rossi and Sekhposyan, 2010). The inflation rate is almost

never negative in this period: deflation is only found in 2009.Q2 during the latest financial crisis.

Figure 6.1: Seasonally adjusted quarterly GDP US inflation rate 1960.Q1-2013.Q4

2This data is publicly available at http://www.phil.frb.org/research-and-data/ where we use the revised data
series.



6.4 Application 99

To model US inflation we first consider a simple linear AR model where we include an intercept

and the Michigan series. There are many potential predictors of inflation (Stock and Watson, 2007;

Groen et al., 2013) but this simple structure allows us to fully focus on regime changes in the inflation

series itself. According to the Schwarz (1978) information criterion the appropriate lag order is 2.

LM -tests indicate no serial correlation in the residuals.

As exogenous influential forecast we opt for the widely accepted Michigan series as this series

is available over the whole sample period and shows a correlation of 0.88 with US inflation. We

further include the endogenous forecast pt|t−1 to the analysis and a regular STAR model with yt−1 as

switching variable for comparison reasons.

It is clear from Figure 6.1 that a constant threshold parameter results in a model where the two

oil crises are in regime 2 where inflation and hence forecasts of inflation are high. However, a large

forecast in this high inflation period is different from a large forecast in the 1990s. We therefore

assume that the time-varying threshold parameter will be preferred over constant thresholds. A grid

search over d = 1, . . . , 20 in ȳ(d)
t shows that d = 8 yields in general the best fit in terms of root mean

squared error. This suggests that agents compare the level of the forecast to the level of US inflation

in the previous two years.

6.4.2 Model selection

Before we can adopt the model specification in (6.1)-(6.2), we test for our specific form of nonlinear-

ity. The first two rows of Table 6.3 display the results for the nonlinearity test described in Section

6.3.2. The starting point for these tests in the ARX(2)-specification. The first row shows that in our

proposed model specification the hypothesis of linearity is clearly rejected in favor of an additional

regime. This does not hold for the regular STAR specification. Further, a third regime is a significant

improvement for the majority of specifications. Hence, the test results are in favor of our three-regime

model specification.

The second panel of Table 6.3 shows that there is no indication for severe misspecification in

the nonlinear models. Ramsey (1969) RESET -tests indicate that there is no neglected nonlinearity

in the series. LM -tests for first and first-to-second order serial correlation in the residuals (Breusch,

1978; Godfrey, 1978) do not indicate misspecification. Tests for first and first-to-second orderARCH

effects do not find ARCH effects in the residuals except for ARCH(2) in the specification with the

exogenous forecast and κit = κiσt + ȳ
(d)
t . In sum, these test results give a justification for using the

model as explained in Section 6.2.
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Table 6.3: Nonlinearity and misspecification tests (p-values) for the 6 model specifications for US
inflationa

κt = κ+ ȳt−1|t−d κt = κσ̂t + ȳt−1|t−d

STAR exogenous endogenous STAR exogenous endogenous

Nonlinearity second regime 0.372 0.001 0.007 0.389 0.001 0.007
third regime 0.153 0.794 0.023 0.000 0.000 0.002

RESET-test 0.080 0.041 0.777 0.336 0.011 0.196
Serial Correlation first-order 0.548 0.946 0.063 0.722 0.935 0.917

first-to-second order 0.554 0.896 0.071 0.486 0.801 0.990
ARCH-effects first-order 1.000 0.597 0.645 0.458 0.226 0.394

first-to-second order 0.790 0.380 0.806 0.211 0.004 0.115

a The tests are the adjusted nonlinearity test by Luukkonen et al. (1988), the Ramsey (1969) RESET test, the serial correlation
test by Breusch (1978); Godfrey (1978) and the ARCH LM-test for heteroskedasticity by Engle (1982).

For model selection purposes, we compare the fit of the model specifications, that is the regular

STAR, the exogenous and the endogenous models for both threshold specifications. Since these

models are non-nested, standard likelihood ratio tests cannot be used. We therefore opt for the Vuong

(1989) test based on the assumption of normality of the disturbances. Further, we use a nonparametric

sign test on the absolute value of the residuals (Dixon and Mood, 1946).

Table 6.4 displays the test statistics. The Vuong (1989) test does not favor the nonlinear model

specifications compared to theARX(2)-model because of the large increase of the number of param-

eters. The nonlinearity test in Table 6.3, which is especially designed to compare linear AR models

versus STAR models however indicated that adding nonlinearity leads to improvements of the model.

The nonparametric sign test shows more support for this claim concerning theARX(2)-specification.

Since we want to choose one specification, we opt for the model with the lowest sum of squared resid-

uals [SSR].

We compare the in-sample endogenous forecast of the selected model specification with the ex-

ogenous Michigan series and yt−1. The bias of the forecast is 0.176 compared to 0.349 for the

Michigan series and 0.195 for yt−1. The root mean squared prediction error is 0.226 versus 0.409 and

0.267 for the endogenous, exogenous and random walk forecasts, respectively. Again, these results

support our endogenous forecast specification in (6.3).

In sum, based on the test results and model fit we opt for the nonlinear specification with the

endogenous forecast and influential forecast pt|t−1 and κit = κi + ȳ
(d)
t .
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Table 6.4: Vuong (1989) and sign tests for comparing the 6 different specifications and an ARX(2)-model
for US inflation (p-values in parentheses)a

ARX(2) κt = κ+ ȳt−1|t−d κt = κσ̂t + ȳt−1|t−d

STARb Exo Endo STAR Exo Endo

SSR 1c 0.907 0.849 0.806 0.884 0.844 0.813

ARX(2) 2.954 2.335 1.539 5.672 2.564 1.054
(0.003) (0.020) (0.124) (0.000) (0.010) (0.292)

κt = κ+ ȳt−1|t−d STAR 0.440 -0.762 -0.888 0.643 -0.608 -1.665
(0.044) (0.446) (0.375) (0.520) (0.543) (0.096)

Exo 0.449 0.454 -0.210 1.442 0.572 -0.674
(0.076) (0.098) (0.833) (0.149) (0.567) (0.500)

Endo 0.440 0.477 0.495 1.438 0.348 -0.371
(0.044) (0.270) (0.473) (0.150) (0.728) (0.711)

κt = κσ̂t + ȳt−1|t−d STAR 0.514 0.519 0.491 0.500 -1.273 -1.683
(0.317) (0.270) (0.419) (0.473) (0.203) (0.092)

Exo 0.486 0.519 0.528 0.528 0.509 -0.770
(0.367) (0.270) (0.188) (0.188) (0.367) (0.441)

Endo 0.486 0.481 0.514 0.514 0.500 0.468
(0.367) (0.317) (0.317) (0.317) (0.473) (0.188)

a The upper-triangular matrix in the table shows the results for the Vuong (1989) test. A positive test
value indicates that the model presented in the row is better than the model in the column. The lower-
triangular matrix displays the sign test. A test value smaller than 0.5 indicates that the model presented
in the row is better.

b ’STAR’ stands for the regular STAR-model, ’Exo’ stands for the model with the exogenous forecast,
’Endo’ stands for the model with the endogenous forecast pt|t−1

c The sum of squared residuals [SSR] for the ARX(2) specification is normalized to 1.

6.4.3 Parameter interpretation

Table 6.5 and Tables 6.A.1 and 6.A.2 display the parameter estimates of the model specifications.

We focus on the interpretation of the estimation results of the specification selected in Section 6.4.2

which is shown in the third panel of Table 6.5. At first glance we see that the estimates for γi are

relatively small indicating a smooth transition from regime to regime.

As the structure of the model is highly nonlinear direct interpretations of individual parameter

estimates is difficult. We therefore consider several graphs to investigate features of US inflation and

the impact of forecasts. Figure 6.2 plots the values of the transition functions over time. The spikes

in the transition function for regime 2 during the oil crises show that the model can distinguish high

from moderate forecasts during these crises. Since ȳ(d)
t is relatively large just after these crises, the

low forecast regime dominates. Inflation targeting led to a steady US inflation rate in the 1990s and

hence, the inflation rate has mostly been in the intermediate regime.
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Table 6.5: WNLS parameter estimates of the 3 model specifications with κi,t =
κ+ ȳt−1|t−d for US inflation (standard errors in parentheses)

regime 0a regime 1 regime 2a

STAR
κ -0.363 (0.328) 0.387 (10.851)
γ -293.377 – 293.379 –
c 0.153 (0.391) -0.140 (0.044) -0.437 (0.327)
INFLt−1 -0.099 (0.269) 0.451 (0.083) -0.300 (0.573)
INFLt−2 -0.195 (0.265) 0.169 (0.069) 0.275 (0.481)
MSt−1 0.245 (0.475) 0.381 (0.060) 0.374 (0.224)
κgm 1985.Q3 (4.779)
γgm 5.882 –
σ2
1 0.057 (0.008)
σ2
2 − σ2

1 -0.028 (0.009)

Exogenous
κ 0.064 (0.015) 0.370 (0.017)
γ -246.640 – 246.659 –
c 0.145 (0.143) -0.189 (0.094) 0.058 (0.121)
INFLt−1 0.268 (0.158) 0.113 (0.108) 0.540 (0.169)
INFLt−2 -0.348 (0.151) 0.303 (0.105) -0.070 (0.168)
MSt−1 0.036 (0.225) 0.608 (0.174) -0.398 (0.200)
κgm 1984.Q3 (18.238)
γgm 0.171 –
σ2
1 0.054 (0.008)
σ2
2 − σ2

1 -0.026 (0.009)

Endogenous
κ -0.067 (0.022) 0.081 (0.016)
γ -30.628 – 56.547 –
c -0.500 (0.084) 0.296 (0.061) -0.475 (0.061)
INFLt−1 0.466 (0.083) -0.170 (0.059) 0.834 (0.055)
INFLt−2 -0.699 (0.096) 0.760 (0.089) -0.801 (0.090)
MSt−1 0.826 (0.115) -0.082 (0.091) 0.505 (0.105)
κgm 1981.Q1 (3.644)
γgm 5.882 –
σ2
1 0.058 (0.007)
σ2
2 − σ2

1 -0.032 (0.008)
a Parameters of regime 0 and regime 2 are in difference with regime 1
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Figure 6.2: Transition functions for US inflation for the model with an endogenous forecast pt|t−1 and a
time-varying threshold parameter κi,t = κi + ȳt−1|t−d

The parameter estimates of the time-varying variance are also shown in Table 6.5. These imply

that a decrease in variance in the chosen model took place in the first quarter of 1981. This date

is somewhat earlier than reported in other studies (Kahn et al., 2002) and earlier than in the other

specifications (1985.Q3).

To shed more light on the effect of forecasts we decompose the change in US inflation in three

parts. The first part concerns the effect of changes in explanatory variables holding the regime con-

stant (average absolute effect of 0.11). The second part is the error term (average absolute effect

of 0.16). The third part describes the effect of the forecast-based regime switches (average absolute

effect of 0.17). Figure 6.3 displays the decomposition over time in percentage points. The effect of

the forecast-based regime switches is largest in about 45% of the time.



104 Modeling the Impact of Forecasts

Figure 6.3: Percentage decomposition of the absolute effect of changes over time (yt − yt−1) in US inflation
for the model with an endogenous forecast pt|t−1 and a time-varying threshold parameter κi,t = κi + ȳt−1|t−d

Marginal effects

To analyze the differences in dynamic patterns across the three regimes, we consider marginal effects.

Marginal effects are defined as the change in y caused by one standard deviation increase in x, where

x denotes lagged values of US inflation or the Michigan series. Note that the change in x can also

cause regime switches to occur. Marginal effects therefore differ over time and are plotted in Figure

6.4. Further, Table 6.6 displays the average marginal effects weighted with the regimes.

Table 6.6 shows that the first lag of inflation on average has a larger impact on the inflation rate

in the higher regimes. This indicates that agents rely more on the near past in periods with relatively

high forecasts. The second lag of inflation has a smaller absolute impact in the outer regimes. Thus,

the distant past is less important to agents in economically uncertain periods. Further, the influence

of the Michigan series is similar in all regimes. This partly contradicts the findings of Carroll (2003).

Where they find that in periods of extreme forecasts people tend to adjust their personal forecasts to

the expert opinion, we find that actions to adjust the inflation rate are as much based on the widely

accepted Michigan series as in the intermediate regime.

The last panel of Figure 6.4 shows the marginal effect of a positive change in pt|t−1. For all

regimes this effect is on average negative. That is, an increase in the forecast adjusts the inflation rate

downward. This effect is smallest in the intermediate and economically stable regime. If regime 0
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is very prominent, the marginal effect is large and positive. Hence, for relatively small forecasts the

adjustments are upward. Agents thus behave such that the inflation rate is mean reverting: an increase

in the forecast leads to reactions which lower the inflation rate if the forecast is relatively large, but

increase the inflation rate if the forecast was still relatively low. This contradicts the expectations

trap literature (Christiano and Gust, 2000), where an upward change in inflation is expected when

forecasts are large. It is nonetheless in line with inflation targeting since the FED Volcker regime:

deviation from the target inflation rate leads to reversing actions.

Figure 6.4: Marginal effects in the application of US inflation of a one standard deviation increase in the
explanatory variables and pt|t−1 for the model with an endogenous forecast pt|t−1 and a time-varying threshold
parameter κi,t = κi + ȳt−1|t−d

(a) marginal effect of INFLt−1 (b) marginal effect of INFLt−2

(c) marginal effect of MSt−1 (d) marginal effect of pt|t−1

Table 6.6: Descriptive statistics of marginal effects as displayed in Figure 6.4a

yt−1 yt−2 mst−1 pt|t−1

5%b average 95% 5%b average 95% 5% average 95% 5% average 95%

0.098 0.357 0.537 -0.186 0.023 0.411 -0.016 0.215 0.445 -0.237 -0.022 0.152
regime 0 -0.009 0.193 0.522 -0.186 0.026 0.381 -0.120 0.216 0.445 -0.290 -0.090 0.152
regime 1 0.183 0.392 0.639 -0.194 0.138 0.423 0.000 0.216 0.463 -0.209 -0.002 0.254
regime 2 0.282 0.383 0.484 -0.166 -0.013 0.394 0.123 0.214 0.365 -0.125 -0.011 0.090

a The first row shows the equally weighted marginal effects. The second to fourth rows show the weighted marginal effect where the
weights are based on the probability to be in the specific regime.

b 5% stands for the 5 percent percentile, while 95% stands for the 95 percent percentile.
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Impulse response analysis

To interpret the dynamic properties of the model we use generalized impulse response functions

(Koop et al., 1996, GIRF). We examine the impact of a shock δ for different information sets Ωt in a

similar way as in van Dijk (1999). The GIRF is defined as

GIRFy(h, δ,Ωτ ) = E[yτ+h|ετ = ετ + δ,Ωτ ]− E[yτ+h|Ωτ ], (6.13)

where τ denotes the timing of the shock, h is the horizon and where Ωτ is the information set at time

τ . Hence, the impulse response function denotes the dynamic effect of a shock δ at time τ on future

values of yt. We average over all possible information sets Ωτ and we also split the results depending

on the regime at time τ . Note that a shock may also affect future regimes and the analysis thus takes

full advantage of the nonlinearity of the model specification.

We further define the π-absorption time of the shock as the amount of time periods it takes before

π% of the shock is absorbed (van Dijk et al., 2007), that is

Ay(π, δ,Ωt) =
∞∑
m=0

(1−
∞∏
h=m

Iy(π, h, δ,Ωt)), (6.14)

where

Iy(π, h, δ,Ωt) = I[|GIRFy(h, δ,Ωt)| ≤ π|δ|] (6.15)

with I[·] an indicator function which is 1 if the argument is true and 0 otherwise.

Figure 6.5 displays the impulse response function for positive and negative shocks in yτ for dif-

ferent regimes. The differences across regimes are relatively small although the reaction to a shock in

regime 2 has a larger absorption time. Only for regime 2 it takes more than one quarter to absorb 50%

of the shock. Nonetheless, it takes for all shocks 3 to 6 quarters until 90% of the shock is absorbed.

Hence, an innovative shock has a small but relatively long-lasting effect on the inflation rate in the

future.
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Figure 6.5: Impulse response analysis in the application of US inflation for various shocks δ to yt for the model
with an endogenous forecast pt|t−1 and a time-varying threshold parameter κi,t = κi + ȳt−1|t−d

(a) δ = −σ̂τ (b) δ = −2σ̂τ

(c) δ = σ̂τ (d) δ = 2σ̂τ

Given the structure of the model it is perhaps more interesting to examine the effect of a shock to

the forecast pt|t−1

GIRFp(h, δ,Ωτ ) = E[yτ+h|Ωτ , pτ |τ−1 = pτ |τ−1 + δ]− E[yτ+h|Ωτ ]. (6.16)

Figure 6.6 shows the effect of a shock to the forecast pt|t−1 for shocks of various magnitudes and for

different regimes at time τ .3 The first two graphs show that a negative shock has a positive impact

on the future inflation rate in regime 0 and 1. That is, a decrease in the forecast pt|t−1 leads to an

increase in the inflation rate for approximately a year. Hence, agents try to correct for a predicted

decrease when inflation is already in the lower regimes. The effect of a negative shock in regime

2 starts off negative, thus indicating mean reverting behavior of economic agents. The bottom two

graphs indicate that a positive shock results in immediate adjusting behavior in regime 0, which is

corrected in the long run. These effects of shocks to the forecast are small but again long-lasting.

For example, it takes on average 5 quarters before a negative shock of magnitude στ in regime 1 is

absorbed for more than 90%.
3Note that this is a theoretical exercise as the model does not explicitly allow for a random shock to the

forecast.
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Figure 6.6: Impulse response analysis in the application of US inflation for various shocks δ to pt|t−1 for the
model with an endogenous forecast pt|t−1 and a time-varying threshold parameter κi,t = κi + ȳt−1|t−d

(a) δ = −σ̂τ (b) δ = −2σ̂τ

(c) δ = σ̂τ (d) δ = 2σ̂τ

We finally consider the hypothetical situation where we impose a shock to the forecast which

makes the forecast equal to the realization. This analysis investigates the importance of forecast

accuracy and whether extreme events could have been circumvented with more accurate forecasts.

Figure 6.7 displays impulse response functions for five data points where the forecast pt|t−1 was

inaccurate. For example, the financial crisis was at its peak in the third quarter of 2009 and the

forecast has not been capable of capturing this downward spike in inflation. If the forecast pt|t−1

had been correct, the inflation rate would have been higher for approximately 1.5 years bringing it

towards the level of 2005. Further, reactions to the sudden peaks in 1985.Q1 and 2007.Q1 are similar

and more accurate forecasts would have changed the inflation rate for about a year. Finally, if the peak

in inflation in the oil crisis in 1974.Q3 would have been forecasted correctly, the trough in Figure 6.1

had been smoother. This hypothetical analysis shows the importance of accurate forecasts: where

forecasts have been inaccurate a more accurate forecast would have highly changed agents reactions

and thereby the future inflation rate.
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Figure 6.7: Impulse response analysis in the application of US inflation of a shock in pτ |τ−1 which makes the
forecast exactly equal to the dependent variable. Five quarters where the forecast of inflation is far from the
realization are displayed.

In sum, we find that our model proposed in Section 6.2 is capable of capturing familiar aspects of

US inflation. Marginal effects and impulse response analyses show that agents take the forecast of the

dependent variable into account when they take action at the economic market. The model especially

shows that relatively low forecasts result in structural reactions of agents which cause the inflation

rate to be higher than the original forecast.

6.5 Conclusion

In this chapter we introduced a novel STAR type time series model where regime switched are based

on the relative size of the forecast of the underlying time series. The forecast determining regime

switches can either be exogenous to the model or based on a forecast from the model itself. The

specification analyzes the impact of forecasts based on whether the forecast is relatively high or low.

The time series model describes macro-economic variables where it is likely that forecasts have an

impact on the dependent variable.

The model is applied to US GDP deflator inflation rate. Since the level of inflation changes over

time we include a time-varying threshold parameter in the L-STAR specification such that the relative

size of the forecast determines regime changes.
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Empirical results show that (i) forecasts lead to regime changes and have an impact on the level

of inflation; (ii) a relatively large forecast results in actions which lower the inflation rate; (iii) the

absorption time of negative shocks in the forecast of inflation is relatively large and the effect of

these shocks is positive in the long run, indicating mean reverting behavior and; (iv) a counter-factual

scenario where forecasts during the financial crisis in 20009 where assumed to be correct would have

resulted in a higher level of inflation in the subsequent quarters.

The model in this chapter is applicable to (macro-economic) variables which are likely to be

prone to forecasts. The impact of forecasts in other key variables is of future interest. Several other

extensions are possible. For example, we now assume that the reaction to one-step ahead forecasts

already take place in the next quarter. Nevertheless, reactions of agents may be slow. Hence, the

forecast of today may lead to regime changes in later quarters. Another extension may be to consider

a Philips curve type of model and allow the effect of predictors to change according to the relative

size of the forecast.
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6.A Tables

Table 6.A.1: WNLS parameter estimates of the 3 model specifications with
κi,t = κ for US inflation (standard errors in parentheses)

regime 0a regime 1 regime 2a

STAR
κ 0.603 (0.017) 1.227 (0.200)
γ -198.625 – 198.612 –
c 0.341 (0.188) -0.251 (0.152) 0.213 (0.213)
INFLt−1 0.280 (0.252) 0.108 (0.182) 0.349 (0.223)
INFLt−2 -0.109 (0.165) 0.289 (0.120) -0.299 (0.164)
MSt−1 -0.519 (0.202) 0.657 (0.157) -0.130 (0.177)
κgm 1985.Q4 (3.737)
γgm 5.880 –
σ2
1 0.057 (0.007)
σ2
2 − σ2

1 -0.029 (0.007)

Exogenous
κ 0.475 (0.743) 1.261 (0.084)
γ -4.968 – 227.138 –
c 0.661 (3.114) 0.293 (0.824) -0.313 (0.743)
INFLt−1 -0.860 (2.638) 0.407 (0.149) 0.192 (0.186)
INFLt−2 -1.076 (2.524) 0.369 (0.161) -0.350 (0.193)
MSt−1 -0.859 (4.525) -0.066 (0.704) 0.431 (0.667)
κgm 1985.Q3 (7.894)
γgm 5.318 –
σ2
1 0.058 (0.007)
σ2
2 − σ2

1 -0.028 (0.008)

Endogenous
κ 0.603 (0.031) 0.791 (0.025)
γ -175.689 – 120.575 –
c -0.676 (0.186) 0.772 (0.172) -0.942 (0.166)
INFLt−1 0.782 (0.235) -0.455 (0.191) 1.040 (0.182)
INFLt−2 0.252 (0.182) -0.064 (0.113) 0.027 (0.111)
MSt−1 -0.352 (0.266) 0.496 (0.255) -0.003 (0.240)
κgm 1981.Q3 (2.786)
γgm 5.851 –
σ2
1 0.063 (0.008)
σ2
2 − σ2

1 -0.039 (0.008)
a Parameters of regime 0 and regime 2 are in difference with regime 1
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Table 6.A.2: WNLS parameter estimates of the 3 model specifications with
κi,t = κσ̂t + ȳt−1|t−d for US inflation (standard errors in parentheses)

regime 0a regime 1 regime 2a

STAR
κ -0.484 (1.360) 0.397 (0.870)
γ -2.719 – 2.717 –
c -1.143 (1.796) 0.588 (2.099) -1.855 (1.421)
INFLt−1 -0.838 (1.320) 0.842 (1.242) -0.840 (1.248)
INFLt−2 0.849 (1.273) -0.313 (1.352) 0.969 (1.263)
MSt−1 0.578 (1.200) 0.078 (1.063) 0.962 (0.804)
κgm 1981.Q3 (2.580)
γgm 5.885 –
σ2
1 0.064 (0.009)
σ2
2 − σ2

1 -0.034 (0.010)

Exogenous
κ 0.054 (0.017) 0.443 (0.037)
γ -246.662 – 246.609 –
c 0.231 (0.135) -0.255 (0.074) 0.117 (0.108)
INFLt−1 0.190 (0.155) 0.170 (0.103) 0.467 (0.167)
INFLt−2 -0.270 (0.150) 0.237 (0.099) -0.020 (0.170)
MSt−1 -0.050 (0.213) 0.692 (0.157) -0.466 (0.189)
κgm 1985.Q3 (24.862)
γgm 5.879 –
σ2
1 0.054 (0.008)
σ2
2 − σ2

1 -0.026 (0.008)

Endogenous
κ -0.292 (0.028) 0.398 (0.283)
γ -209.647 – 293.380 –
c 0.168 (0.144) -0.113 (0.041) 0.301 (0.741)
INFLt−1 -0.557 (0.096) 0.460 (0.067) 0.125 (0.837)
INFLt−2 -0.434 (0.129) 0.236 (0.059) -0.298 (0.861)
MSt−1 0.877 (0.053) 0.300 (0.054) 0.159 (0.391)
κgm 1985.Q3 (4.736)
γgm 5.868 –
σ2
1 0.053 (0.008)
σ2
2 − σ2

1 -0.025 (0.009)
a Parameters of regime 0 and regime 2 are in difference with regime 1



Nederlandse Samenvatting

(Summary in Dutch)

Dit proefschrift bestaat uit twee delen op het gebied van econometrisch modelleren. Allereerst on-

derzoek ik het schatten van parameters in (multivariate) discrete keuzemodellen. Ik behandel model

complicaties wanneer de specificatie complexer wordt. Keuzemodellen geven inzicht in beslissingen

van personen. Daarnaast geven ze weer wat de invloed is van andere variabelen op het keuzeproces.

De nieuwe uitbreidingen op standaard keuzemodellen in dit proefschrift laten onder andere zien hoe

verschillende keuzes elkaar beı̈nvloeden. Voor deze complexe model specificaties stel ik nieuwe me-

thodes voor om de parameters te schatten. Als tweede behandel ik het effect van voorspellingen op

macro-economische variabelen. Omdat actoren op de economische markt op belangrijke voorspellin-

gen reageren, zullen deze voorspellingen invloed hebben op het verloop van de economie.

Discrete Keuzemodellen

Iedereen maakt iedere dag veel discrete keuzes. De reis naar werk kan bijvoorbeeld worden afgelegd

per fiets, auto of openbaar vervoer. De keuze voor producten in een supermarkt is ook een voorbeeld

van zo’n discreet keuzeproces. Keuzemodellen zijn bedoeld om deze keuzes te beschrijven en te zien

welke aspecten de keuzes beı̈nvloeden. De keuze voor een bepaald merk zal bijvoorbeeld samenhan-

gen met de prijs van het product, maar ook met het inkomen van de persoon of met advertenties.

Met behulp van econometrie kunnen relaties tussen variabelen en keuzes worden onderzocht.

Econometrische keuzemodellen dateren uit omstreeks 1860 en Nobelprijs-winnaar Daniel McFadden

heeft belangrijk werk geleverd. Vier hoofdstukken in dit proefschrift dragen bij aan de kennis over

keuzemodellen.

Drie hoofdstukken introduceren een multivariate uitbreiding op bestaande univariate keuzemodellen.

Deze hoofdstukken onderzoeken op welke manier keuze A beı̈nvloed wordt door keuzes B,C, et
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cetera. Omdat discrete keuzemodellen niet gemakkelijk uit te breiden zijn naar meer dimensies, is de

literatuur over multivariate keuzes schaars. Dit proefschrift introduceert bruikbare methodes voor het

vinden van parameterschattingen voor dit type model.

De multivariate extensie van keuzemodellen wordt voorgesteld voor drie verschillende situaties.

Allereerst kijk ik naar zogeheten gecorreleerde binaire keuzes. Dit hoofdstuk is gebaseerd op Bel

et al. (2014). Bijvoorbeeld kan gedacht worden aan de keuzes om winkels wel of niet te bezoeken.

De keuze om een tweedehands winkel te bezoeken is waarschijnlijk (positief of negatief) gecorreleerd

met keuzes om andere winkels in te gaan. Hiervoor gebruik ik een bestaande model specificatie zoals

geı̈ntroduceerd door Cox (1972). Een volgende stap is de uitbreiding naar meerdere multinomiale

keuze die evengoed gecorreleerd kunnen zijn. Dit onderzoek is gebaseerd op Bel and Paap (2014).

Het is bijvoorbeeld erg aannemelijk dat de keuze voor een goedkoop merk in productklasseA, ook een

keuze voor een goedkoop merk in productklasse B oplevert. Voor deze gecorreleerde multinomiale

keuzes introduceer ik een nieuwe model specificatie welke ook gemakkelijk toepasbaar is wanneer

het probleem een groot aantal keuzes en keuze-opties bevat. Als laatste multivariate extensie kijk ik

naar gecorreleerde geordende keuzes, gebaseerd op Bel and Schoonees (2015). Hierbij breid ik het

bivariate Dale (1986) model uit naar een multivariate setting.

Omdat de voorgenoemde model specificaties gemakkelijk zeer groot worden met veel keuzes en

veel keuze mogelijkheden, kan de standaard schattingsmethode maximum likelihood lastig worden

gebruikt. Zo worden kansen numeriek klein en wordt de computertijd voor het schatten van de pa-

rameters erg groot. Bij problemen op grote schaal zal maximum likelihood niet in staat zijn een

oplossing te geven. Daarom stel ik in het eerste hoofdstuk verschillende alternatieve schattingsme-

thoden voor, waarvan de composite likelihood methode het beste alternatief blijkt en in de overige

hoofdstukken ook wordt gebruikt. Lindsay (1988) heeft composite likelihood geı̈ntroduceerd als “een

likelihood-type object welke gevormd wordt door individuele log-likelihood componenten samen te

nemen”. Het maximaliseren van deze composite log-likelihood is een consistente schattingsmethode

(Varin et al., 2011), maar omdat de methode niet de exacte likelihood functie gebruikt is deze inef-

ficiënt. De hoofdstukken in dit proefschrift laten aan de hand van simulaties zien dat het verlies van

efficiëntie zeer klein is. Daarom is de reductie van complexiteit dankzij composite likelihood een

duidelijk voordeel. Zelfs in het geval van grote dimensies is composite likelihood nog bij machte ac-

curate parameter schattingen te produceren - dit in tegenstelling tot de standaard maximum likelihood

methode. Dit proefschrift is het eerste om deze methode toe te passen op multivariate keuzemodellen.

Een laatste hoofdstuk over keuzemodellen bediscussieerd het keuzeproces van individuen. Dit hoofd-

stuk is gebaseerd op Bel and Paap (2015). Bestaande literatuur toont aan dat een multinomiale keuze
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vaak in twee stappen wordt gemaakt: allereerst wordt een set van overwegingen gevormd waarna

hieruit een keuze wordt gemaakt. In een supermarkt wordt bijvoorbeeld niet gekozen uit alle merken,

maar heeft de klant al eerder een voorselectie gemaakt. De voorselectie van de klant is vaak niet

geobserveerd door de econometrist.

Ik voeg een kritische noot toe aan de literatuur. Het is namelijk moeilijk vast te stellen welke

verklarende variabele welke stap van het keuzeproces beı̈nvloedt. Heeft de prijs van een product bij-

voorbeeld effect op overweging van een product, op de uiteindelijke keuze of op allebei? Ik bekijk of

de rol van de verklarende variabelen kan worden geı̈dentificeerd aan de hand van statistische maatsta-

ven. De uitkomst laat zien dat dit niet goed mogelijk is en dat de schatting van de niet geobserveerde

set van overwegingen alleen geı̈nterpreteerd kan worden als de indeling van variabelen met zekerheid

overeenkomt met het data genererende proces.

De bijdrage van deze 4 hoofdstukken aan de literatuur zijn: (i) de extensie naar multivariate analyse

van discrete keuzemodellen; (ii) een computationeel bruikbare schattingsmethode voor parameters in

deze multivariate keuzemodellen en (iii) een kritische bijdrage aan de rol van verklarende variabelen

in een twee-staps keuzeproces.

Modelleren van de Invloed van Voorspellingen

Het tweede deel van het proefschrift omvat één hoofdstuk en is gebaseerd op Bel and Paap (2013).

Dit hoofdstuk beschrijft het effect van voorspellingen op macro-economische variabelen zoals inflatie.

Omdat actoren op de economische markt beslissingen baseren op nieuws en voorspellingen, ga ik uit

van invloed van voorspellingen op de economie. Reacties op een voorspelling van het Nederlandse

Centraal Planbureau zullen bijvoorbeeld het verloop van economische variabelen veranderen.

De bijdrage van dit hoofdstuk is een nieuwe model specificatie die rekening houdt met de reac-

tie op voorspellingen. Een smooth transition autoregressive model (Teräsvirta and Anderson, 1992)

wordt gebruikt om om te gaan met de discontinuı̈teit van de tijdreeks veroorzaakt door de voorspel-

ling. Deze voorspelling kan of een exogene mening van een expert zijn of door het model zelf worden

gegenereerd. Voor dit laatste gebruik ik het zogenoemde contemporaneous smooth transition autore-

gressive model (Dueker et al., 2007).

Een applicatie van dit model op inflatie in de Verenigde Staten laat zien dat voorspellingen inder-

daad invloed hebben op het niveau van inflatie. Volgens de uitkomsten van het model zorgen reacties

op voorspellingen dat het niveau van inflatie weer terugkeert naar het gemiddelde ten opzichte van de

extreme voorspelling.
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