Gegevens aanvrager / verzendadres

Ref:

Heiman F.L. Wertheim
Medical Microbiology
L348
Erasmus MC
Dr Molewaterplein 40
3015 GD Rotterdam

Tel: 0104633510
E-mail: h.wertheim@erasmusmc.nl
Budget: 2230

Aanvraag kopie / Boek te leen

ISSN p/e: 0195-6701 / 0195-6701
Titel: J Hosp Infect
Jaar: 1989
Volume: 14
Aflvering: 2

Auteur: Bulanda M, Gruszka M, Heczko B,
Artikel: Effect of mupirocin on nasal carriage of Staphylococcus
Pagina’s: 117-24
PMID: 2572628

Opmerking:

Subject: Normal electronic delivery
Date: Tue, 5 Jul 2005 11:51:18
From: h.wertheim@erasmusmc.nl

Nota adres (indien anders dan verzendadres)
Heiman F.L. Wertheim Erasmus MC
Medical Microbiology
Dr Molewaterplein 40
3015 GD Rotterdam

Aktor: Levering via MBSN
Effect of mupirocin on nasal carriage of *Staphylococcus aureus*

M. Bulanda, M. Gruszka and B. Heczko

Department of Bacteriology, Institute of Microbiology, Medical Academy, Kraków, Poland

Accepted for publication 21 February 1989

Summary: Mupirocin eliminates nasal carriage of *Staphylococcus aureus* among medical and surgical personnel for periods varying from several weeks up to one year. In persons recolonized after therapy densities of *S. aureus* populations in nares were much lower than in the same persons before therapy.

Keywords: Mupirocin; staphylococcal carriage.

Introduction

The epidemiological importance of nasal carriage of *Staphylococcus aureus* is well recognized. The anterior nares are the main reservoir for this organism from which it may disseminate to the skin or be transmitted from person to person (Williams, 1963). The emergence of methicillin-resistant strains of staphylococci has emphasized the importance of finding methods to treat the carrier state (Ayliffe et al., 1986). Recent reports of nosocomial outbreaks caused by multiple antibiotic-resistant staphylococci have demonstrated that these strains are difficult to eliminate from the hospital environment (Casewell, 1986), since only a small number of colonised personnel are necessary to perpetuate an outbreak.

Several systemic and local antibiotic regimens have been used to eradicate the staphylococcal carrier state (Jarvis & Wigley, 1961; Noble et al., 1964; Martin & White, 1968; Quickel et al., 1971; McAnally, Lewis & Brown, 1984). In most cases, only a temporary suppression was achieved. In other trials the therapy resulted in higher nasal colonisation rates in treated subjects due to suppression of total nasal bacterial flora (Martin & White, 1968).

Mupirocin has been successfully used to eradicate staphylococcal nasal carriage among staff in two separate studies, based upon evaluation of small
sample groups for a short time (Dacre, Emmerson & Jenner, 1983; Casewell, Hill & Duckworth, 1985). These studies stimulated us to evaluate the efficacy of mupirocin (Bactroban, Beecham, UK) in treating \textit{S. aureus} carriers among hospital personnel over a longer period of time.

**Materials and methods**

Nasal carriage of \textit{S. aureus} was determined in 348 volunteers among the medical and surgical personnel of our hospital. Carriage categories were estimated according to the formula of Leedom and co-workers (1965), with our own modifications (Heczko \textit{et al.}, 1973) on the basis of the presence of \textit{S. aureus} in six consecutive nasal swabblings taken at weekly intervals. Individuals studied were classified as persistent carriers (PC) when all six cultures were positive for \textit{S. aureus}, or intermittent carriers (IC) when 3–5 cultures showed presence of the bacterium of the same phage and resistance pattern. Transient carriers (TC) differed from IC in harbouring \textit{S. aureus} 3–5 times which were of various phage and/or resistance patterns, while persistent non-carriers (NC) showed all cultures negative for \textit{S. aureus}. The swabs were cultured on Chapman agar (Difco) and on Tryptic Soy Agar (Difco) supplemented with 5% sheep blood for 48 hrs at 37°C. Colonies typical for \textit{S. aureus} were subcultured on blood agar and then tested for production of coagulase by a standard method (Subcommittee on Taxonomy of Staphylococci and Micrococci, 1965). The remaining flora was tested on blood agar and MacConkey agar and then identified using standard methods (Manual of Clinical Microbiology, 1970). Numbers of bacteria on original plates were estimated in a semiquantitative manner by scoring + for 1 to 10 colonies per plate, ++ for 10 to 100 colonies and +++ for more than 100 colonies.

\textit{Staphylococcus aureus} strains were phage typed with phages of the basic set for human strains and experimental phages for Polish \textit{S. aureus} strains (88, 89, 187) (Blair & Williams, 1961; Parker, 1983) and tested for antibiotic resistance by the standard technique of Bauer \textit{et al.} (1966).

The study was conducted in two groups separately: first, the drug was used in medical staff for five days and its effect followed over one year. The study was then repeated among the surgical staff according to a modified protocol: the drug was given for three days and its effect observed over one month. The study was conducted in a double blind manner; mupirocin was supplied in the form of a sterile nasal ointment, 2% in a paraffin base, together with appropriate placebo. Numbered tubes containing either mupirocin or the placebo were distributed to volunteers according to a randomised code. The volunteers were instructed to apply a small amount of an ointment three times daily to each nostril. Nasal swabs were taken four days after the treatment and then after varying intervals. Post-treatment swabs were cultured as before treatment and strains of \textit{S. aureus} were compared with corresponding strains isolated before the treatment by phage
typing. When phage types were the same before and after treatment, the re-appearance of *S. aureus* was regarded as a relapse; when the types were different, as a reacquisition. In doubtful cases, or when the strains were non-typable, antibiotic resistance patterns were compared.

**Results**

Sixty nine volunteers classified as persistent, intermittent, or transient carriers of *S. aureus* were treated with mupirocin (Table I). Strains of *S. aureus* isolated before treatment from the medical staff were mostly typed with group II phages (type 3A/3C/55) and more rarely with experimental phages. About 20% were non-typable. Among the strains from surgical staff about 30% were typed as II group and the rest were equally susceptible to the phages of different groups or non-typable.

The drug removed *S. aureus* from nasal swab cultures in all but two volunteers within four days after stopping the treatment (Figure 1). After treatment the percentage of medical staff with positive cultures for *S. aureus* increased and about 30 subjects remained stably colonized during the subsequent six months. 60% of the carriers again yielded *S. aureus* in their nares at one year after treatment, of these 42% showed relapses while 58% were reacquisitions.

Some differences were found between the surgical and medical groups.

![Figure 1. Effect of mupirocin or placebo on nasal carriage of *Staphylococcus aureus* among medical staff.](image-url)
Figure 2. Effect of mupirocin on nasal carriage of *Staphylococcus aureus* in medical and surgical staff.

Only 25% of the surgical personnel returned to carriage of *S. aureus* after one month (Figure 2) while 35% of medical staff yielded *S. aureus* two weeks after stopping mupirocin, with a steady increase to 60% after one year. This difference was explained by comparing the distribution of different carrier categories among the study populations, and by analysing relapses and reacquisitions. Losses of *S. aureus* from nares and relapses occurred mostly among the carriers harbouring strains of II phage group, while reacquisitions occurred among those carrying *S. aureus* of other phage groups or non-typable strains. The reacquired strains were typable with experimental phages. Among eleven persistent carriers from treated medical personnel, relapses were found in four and reacquisitions in six subjects. Among eight intermittent carriers, five persons returned to carriage in one year, two of them reacquired new strains of *S. aureus* while the three others had relapses. On the other hand, the surgical group was composed of persistent, intermittent and transient carriers on more equal proportions (Table II). Only three of them reacquired a new strain of a *S. aureus* while one demonstrated the constant presence of a *S. aureus* strain of the same phage and resistance pattern regardless of treatment. Placebo carriers of the surgical group showed relapses more often than reacquisitions of *S. aureus*.

It was found that mupirocin strongly influenced the density of the *S. aureus* populations in the nares of the treated carriers over a prolonged period (Figure 3). All the subjects selected for this study harboured high numbers of *S. aureus* in their nasal vestibules before treatment, while only a
Effect of mupirocin on *S. aureus*

Table 1. *Nasal carriage of Staphylococcus aureus among hospital staff volunteers*

<table>
<thead>
<tr>
<th>Study group</th>
<th>PC</th>
<th>IC</th>
<th>TC</th>
<th>NC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td>28 (15.1)</td>
<td>9 (4.3)</td>
<td>2 (0.9)</td>
<td>169 (79.9)</td>
<td>208 (100)</td>
</tr>
<tr>
<td>Surgical</td>
<td>16 (11.4)</td>
<td>9 (6.8)</td>
<td>10 (7.1)</td>
<td>110 (78.7)</td>
<td>140 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>44 (12.7)</td>
<td>13 (3.7)</td>
<td>12 (3.4)</td>
<td>279 (80.2)</td>
<td>348 (100)</td>
</tr>
</tbody>
</table>

* PC = persistent carriers; IC = intermittent carriers; TC = transient carriers; NC = persistent non-carriers (see text for definitions).

Figure 3. Density of *Staphylococcus aureus* in nasal vestibules of medical staff after mupirocin. + = 1 to 10 colonies of *S. aureus* in primary culture; ++ = 11 to 100 colonies; +++ = over 100 colonies.

A low proportion showed a comparable density of staphylococcal growth, even one year after treatment.

**Discussion**

A large number of studies, mostly done about 20 years ago when outbreaks of staphylococcal infection were frequently encountered in hospitals (Williams, 1963), were devoted to the mechanisms of nasal carriage of *S. aureus*. The problem of infections caused by methicillin-resistant staphylococci, which emerged in the latter half of the 1970s and again in the
last decade, has focused the attention of microbiologists on nasal carriage as 
the reservoir of these organisms (Ayliffe et al., 1986; Caswell, 1986). 
However, host and parasite factors determining staphylococcal carriage are 
poorly understood, and it is possible that genetic factors play a role (Aly & 
Maibach, 1974; Kinsman, McKenna & Noble, 1983).

Up until recently, only two ways of eliminating carriage could be applied 
with some effect: inhibition of \( S. \text{ aureus} \) multiplication in the nares with 
antibiotics or selective enzymes (Jarvis & Wigley, 1961; Noble et al., 1964; 
Martin & White, 1968; Quickel et al., 1971; McAnally, Lewis & Brown, 
1984), or replacement of epidemic strains of \( S. \text{ aureus} \) in the nares with 
those of presumptive low virulence (Shinefield et al., 1974). Both 
approaches possess several limitations: antibiotics may cause disappearance 
of \( S. \text{ aureus} \) for only a short period of time, and moreover usually destroy 
the normal flora of the nasal vestibule, while replacement therapy with 
\( S. \text{ aureus} \) strain 502A may lead to infection induced by this strain.

In our study mupirocin eliminated nasal carriage of \( S. \text{ aureus} \) for at least 
several weeks, a period of time longer than previously reported (Dacre, 
Emmerson & Jenner, 1983; Caswell, Hill & Duckworth, 1985). We have 
not found any strain resistant to mupirocin either before or during the 
study. Although we have not presented the data here, we noted that 
mupirocin selectively influenced the bacterial populations in the nares. 
Coagulase-negative staphylococci and diphtheroids were unchanged in 
number. This is of interest, since Sutherland et al. (1985) reported the MIC 
values of mupirocin for coagulase-negative staphylococci to be similar as 
those for \( S. \text{ aureus} \).

<table>
<thead>
<tr>
<th>Carrier type</th>
<th>Loss of ( S. \text{ aureus} )</th>
<th>No change of ( S. \text{ aureus} )</th>
<th>Acquisition of Different Phage Types Strain</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M(S)*</td>
<td>M(S)</td>
<td>M(S)</td>
<td>M(S)</td>
</tr>
<tr>
<td><strong>Mupirocin</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>11(5)</td>
<td>4(0)</td>
<td>5(1)</td>
<td>1(0)</td>
</tr>
<tr>
<td>IC</td>
<td>3(3)</td>
<td>3(0)</td>
<td>1(0)</td>
<td>1(0)</td>
</tr>
<tr>
<td>TC</td>
<td>0(4)</td>
<td>0(1)</td>
<td>1(2)</td>
<td>0(0)</td>
</tr>
<tr>
<td><strong>Placebo</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>0(0)</td>
<td>3(7)</td>
<td>4(3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>IC</td>
<td>0(0)</td>
<td>0(1)</td>
<td>1(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>TC</td>
<td>0(0)</td>
<td>1(2)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>14(12)</td>
<td>11(11)</td>
<td>12(7)</td>
<td>2(0)</td>
</tr>
</tbody>
</table>

* M(S) = Medical (Surgery) staff.
Effect of mupirocin on S. aureus

We are indebted to Dr Robinson, Medical Director, Beecham Research Laboratories for his helpful advice and for reviewing this manuscript. We also thank the clinicians and nurses of the Died Memorial District Hospital in Kraków for their support.

References


