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Chapter 1  | Introduction 

 

Over the past decades, laboratory experiments have become an important source of data 

within economics. For most of the twentieth century, the majority of economists held the 

view that it is impossible to use experiments in order to test the predictions made by 

economic theory (Friedman, 1953; Lipsey, 1979; Samuelson and Nordhaus, 1985). 

Although seminal economic experiments were conducted throughout the last centuries, 

for a considerable period these studies remained largely isolated pieces of work (Bardsley 

et al., 2010).  This is no longer the case today. Experimental papers are published 

frequently even in the most general top journals and many economic departments 

around the world have computer laboratories suited to perform the most complex forms 

of experiments. 

Despite this strong increase in experimental work, many economists remain skeptical 

about the value of laboratory experiments. The main concern remains that of external 

validity: the degree to which findings from experiments can be generalized to other 

environments. Binmore (1999), for example, argues that the conditions in the typical 

experiment are such that economic theory cannot reasonably be expected to work well. 

In particular, he suggests that economic theory should only hold when incentives are 

adequately high and learning opportunities are sufficient, which is arguably not the case 

in many experiments. Levitt and List (2007a, 2007b, 2008) make similar arguments. They 

state that incentives in experiments tend to be considerably smaller than those in many 

naturally occurring settings, that subjects are often less familiar with the decision task in 

the laboratory than with those in everyday life, and that they have no opportunity to seek 

outside advice. They also stress that selection mechanisms in the laboratory differ from 

those in the field, that experiments are completed over short durations whereas real life 

decision are made over longer time frames, and that the nature and extent of scrutiny 

that subjects face in the laboratory is unparalleled in the field. Such scrutiny can be 
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expected to induce greater levels of social behavior in the laboratory than in many field 

settings. 

While the above arguments clearly have their merit, some nuances are in order. First, it 

should be stressed that (most of) the criticisms above do not uniquely apply to laboratory 

experiments. Binmore (1999) acknowledges that if economic theories only hold when 

stakes are adequately high and learning opportunities are sufficient, then we should also 

not expect them to hold in field settings that do not satisfy these conditions. Levitt and 

List (2007a) acknowledge that the arguments they put forth “apply with equal force to 

generalizing from data generated from naturally occurring environments” (p. 170). As a 

result, it is not obvious whether data from a laboratory experiment are less informative 

than field data to predict behavior in a different and unrelated field environment (Falk 

and Heckman, 2009). Second, the impact of the aforementioned factors on behavior and, 

therefore, the external validity of experiments are in the end empirical questions. Not just 

that, these questions can be well studied by employing experimental methods (Starmer, 

1999). As noted by Camerer (2011), most conclusive evidence suggesting that the factors 

above impact behavior comes from laboratory data. 

As a result, rather than disregarding laboratory data out of hand, a more constructive 

approach is to actively investigate whether laboratory findings are robust. Two obvious 

approaches to do so present themselves. First, one can try to study questions that are 

typically investigated in the behavioral laboratory in the field, either by conducting field 

experiments (Harrison and List, 2006) or by locating unique naturally occurring data that 

can be used for this purpose. Observing behavior under widely different conditions can 

be an important step in identifying which patterns are robust and which are not. Second, 

one can use experimental methods to map the effect of the abovementioned factors on 

decision-making. Such an approach can ultimately inform the construction of models that 

can provide a framework to transport findings between different environments or 

populations (Levitt and List, 2007a; Falk and Heckman, 2009).  This thesis incorporates 

both approaches.  
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Chapter 2 and 3 use naturally occurring data from TV game shows in order to test 

behavioral hypotheses that are generally difficult to test outside of the controlled 

laboratory. Chapter 4 and 5 employ experiments to investigate the effect of public 

scrutiny on behavior. Finally Chapter 6 takes a slightly different focus. This chapter 

introduces a new and easily applicable method to measure utility and loss aversion, both 

under risk and under uncertainty and employs this method to study whether utility is the 

same under risk and uncertainty. 

1.1 Game Shows as Natural Experiments 

Since the early 90s, numerous papers have used game show data in order to test 

behavioral hypotheses or estimate parameters of behavioral decision models. Due to the 

fact that many game shows include risky and strategic decisions, it is not surprising that 

most of these papers study either risk preference (Gertner, 1993; Metrick, 1995; Beetsma 

and Schotman, 2001; Post et al., 2008) or strategic behavior (Bennett and Hickman, 1993; 

Berk, Hughson, and Vandezande, 1996; Tenorio and Cason, 2002). More recently, game 

shows have also been used to study social interaction, most notably discrimination (Levitt, 

2004; Antonovics, Arcidiacono and Walsh, 2005) and cooperative behavior (List, 2004, 

2006; Belot et al., 2010; Oberholzer-Gee et al., 2010). 

The reason for economists’ interest in game shows is that they allow researchers to study 

behavior in well-designed decision problems when the stakes are large. Due to their 

uncontrolled nature, field data rarely allow for a clean discrimination between competing 

theories. Laboratory experiments do allow researchers to construct such controlled tests, 

but the incentives that can be offered to subjects are limited by the researcher’s budget. 

Game show data can help breach this gap.  

In addition to employing large and widely ranging stakes, game shows differ from 

laboratory experiments on many other dimensions as well. Participants in the laboratory 

tend to be volunteering students with no experience with the abstract task that they will 

be represented with. They have no opportunity to gain advice from friends and know that 



INTRODUCTION 

 

4 

their decisions will be used with the aim of testing scientific hypotheses. Game shows 

differ on all these aspects. The selection mechanisms differ from show to show, but are 

very different from those in the laboratory. In general, there is much more diversity in 

demographic characteristics as participants in many shows appear to be a reasonable 

(middle-class) cross section of the population. Furthermore, contestants tend to be 

familiar with the task at hand and thus had the opportunity to prepare themselves. While 

they are being watched on TV, this type of scrutiny is of a different scope and nature than 

the scrutiny faced in laboratory experiments. From the vantage point of studying the 

robustness of behavioral findings outside of the laboratory, these differences have 

important implications. The downside is that if behavior in a game show differs from that 

in the laboratory, it is difficult to pinpoint which factors underlie this difference. If, 

however, decisions from the laboratory are replicated in the very different environment 

of a TV game show, this provides a strong signal regarding the robustness of these 

findings. 

In Chapter 2, we study cooperative behavior when large sums of money are at stake, 

using data from the British TV game show “Golden Balls”. At the end of each episode, 

contestants play a variant of the classic Prisoner’s Dilemma for large and widely ranging 

stakes averaging over $20,000. The variation is large: from a few dollars to about 

$175,000. 

On average, contestants cooperate 53 percent of the time. This rate is similar to that 

observed in prior experimental work (Dawes and Thaler, 1988; Sally, 1995). With respect 

to demographic characteristics, we observe that young males are less cooperative than 

young females and that this differences changes with age. Older men are more 

cooperative than younger men, while such an age effect is absent for women. As a result, 

from about 46 years onwards men in this game show are more likely to cooperate than 

women. 

The dynamic nature of the show allows us to test a number of interesting behavioral 

hypotheses. In support of the claim that people have reciprocal preferences, we find that 

contestants are significantly less likely to cooperate if their opponent in the final has 
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previously attempted to vote them of the show. Furthermore, we find that cheap talk is 

predictive of behavior. Making a promise is the strongest predictor of behavior in the 

show: those who make a promise are 31 percentage points more likely to cooperate. In 

spite of the predictive power of promises, contestants do not condition their choices on 

the promises made by their opponent. More generally, we find that contestants do not 

appear to condition their choice on any factor that predicts the cooperation likelihood of 

their opponent. This implies that contestants either lack the ability or ignore the 

possibility to reliably interpret information about the expected behavior of others, or do 

not have a preference for matching the other’s choice. Given our finding that people do 

reciprocate votes against them, the former explanation seems more likely. 

Finally, our results provide support for the view that attitudes are strongly influenced by 

context. We find unusually high rates of cooperation when the luck of the game reduces 

the stakes to “merely” a few hundred Pounds. Such amounts are tiny in the light of the 

thousands and even tens of thousands the game is often played for, but would be 

considered very large in any laboratory setting. Supporting the view that contestants 

evaluate money amounts in relative rather than absolute terms, we find that in the early 

days of the show, when the contestants have not had an opportunity to watch the show 

on TV and are still learning what kind of stakes are to be expected, cooperation rates 

appear to be influenced by the salient but normatively irrelevant value representing the 

sum they could have been playing for with a lucky selection of balls. In particular, the 

higher this maximum jackpot, and thus the smaller the actual jackpot appears, the 

greater the likelihood that contestants cooperate. Across episodes, this effect vanishes, 

suggesting that expectations about the stakes become well informed. 

Chapter 3 investigates bargaining behavior using data from the British TV game show 

“Divided”. In Divided, three contestants collectively build up a jackpot through answering 

general quiz questions. Across episodes, their jackpot ultimately ranges from 

approximately $10,000 to $185,000, and averages over $50,000. In the second phase of 

the game, the team’s accumulated money amount is divided into three unequal parts of, 

for example, 60, 30 and 10 percent. Contestants in turn have to claim one of these shares. 
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If they do not immediately agree on who takes which share, they have 100 seconds to 

negotiate and reach consensus. With each second they take they lose one percentage 

point of the initial jackpot, and after 100 seconds there is nothing left. This final stage can 

thus be seen as a natural bargaining experiment where the “subjects” have to 

unanimously decide on the allocation of three indivisible shares, in a format that allows 

face-to-face communication and incorporates (close to) continuous costs to bargaining. 

Overall, 50 percent of the jackpot value is lost in bargaining. Because the jackpot is 

determined by teams’ answers to trivia questions, we are able to investigate the 

influence of entitlements on bargaining. We find that equity concerns play an important 

role in the bargaining process. Contestants that contributed more to the communal 

jackpot claim a larger share, are less likely to lower their claim during the bargaining 

process, and end up with a larger fraction of the jackpot. 

Contestants making hardball announcements, by adding a statement to their initial claim 

that they will not back down from it, act accordingly. These contestants are less likely to 

back down from their initial claim. As a result, they increase their likelihood of taking the 

top share home. Due to the increased bargaining costs, however, this strategy does not 

increase their earnings in an absolute sense and lowers the earnings of their opponents. 

There is no evidence of a first-mover advantage: the order in which contestants get to 

make their claims does not influence the claims they stake, nor the outcomes reached. 

Finally, there is little evidence that behavior and outcomes are related to demographic 

characteristics. 

1.2 Public Scrutiny 

Over recent years, the nature and degree of scrutiny that laboratory subjects face has 

been a major point of criticism of experiments in economics (Levitt and List, 2007a). 

Interestingly enough, scrutiny has thus far predominantly been considered as a disturbing 

factor in tasks in which morality and wealth are competing objectives (Levitt and List, 
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2007a, 2007b). The two chapters investigate whether public scrutiny also influences 

behavior in economic tasks that do not incorporate a moral component. 

Chapter 4 investigates the impact of public scrutiny on risky choice. It presents the results 

from two incentivized experiments that mimic the game of the TV show Deal or No Deal. 

Both experiments include laboratory and limelight treatments. In the laboratory 

treatments, subjects make their decisions anonymously under conditions typically 

employed in economic experiments. In the limelight treatments, subjects make their 

choices in a simulated game show environment, including a live audience, game show 

host, and video cameras.  

Comparing behavior between the laboratory and limelight treatments, we find that 

subjects are more risk averse in the limelight than in the anonymity of a typical behavioral 

laboratory. Estimates of structural choice models indicate that the impact of the limelight 

on risk preference parameters is substantial. At the same time, however, subjects in both 

treatments show path dependent behavior; they take more risk if the game develops 

either substantially worse or substantially better than expected. As a result, under both 

conditions our simple prospect-theory inspired model with a path-dependent reference 

point outperforms expected utility of wealth in explaining subjects’ choices.  

In addition, three other findings emerge. First, exploiting a design difference between the 

sets of experiments we find that ambiguity aversion depends on being in the limelight. 

Although we find substantial evidence for ambiguity aversion in the limelight, we do not 

observe it in the laboratory. Second, passive experience gained by watching others play 

the game does not affects loss aversion in particular or risk aversion in general. Finally, 

estimates from all treatments suggest that preferences are based on imperfectly updated 

expectations. 

Chapter 5 investigates the effect of social cues on behavior in both individual choice and 

interaction tasks. Recent literature has shown that even subtle cues of being watched can 

influence behavior in tasks have a moral component. The presence of pictures of a pair of 

eyes, or an eye-like stimulus, in an otherwise anonymous experimental setting leads to 
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increased donations to strangers (Haley and Fessler, 2005; Rigdon et al., 2009; Oda et al., 

2011; Nettle et al., 2013), increased donations to public goods (Burnham and Hare, 2007), 

and induces greater disapproval of moral transgressions (Bourrat et al., 2011). The fact 

that relatively subtle social cues can influence behavior is significant for the 

experimentalist as it suggests that, even in anonymous laboratory settings, pro-social 

behavior cannot be viewed as being purely intrinsic (Haley and Fessler, 2005; Jaeggi et al., 

2010). 

Thus far, the effect of pictures of eyes has only been investigated in tasks that include a 

moral component. The fact that actual public scrutiny also influences behavior in 

individual choice tasks that have no moral component begs the question whether 

pictures of eyes will also affect behavior in such tasks. Furthermore, it remains unclear 

whether the effect of eyes is something special or whether pictures of eyes constitute 

one among many social cues that produce the same effect.  

Chapter 5 presents the results of an internet experiment designed to acquire a better 

understanding of the effect of pictures of eyes on human behavior. First, in order to 

investigate whether the effect of eyes is limited to interaction tasks, we expand the range 

of tasks to include individual choice tasks that have no moral component.  Second, in 

order to investigate whether different social cues have similar effects, we compare the 

effect of pictures of eyes with a different condition in which we present subjects with 

pictures of other students (peers). 

Our results suggest that the effect of pictures of eyes is limited to interaction tasks that 

include a moral component and that eyes should be considered as distinct from other 

social cues, such as reminders of peers. Whereas pictures of eyes uniformly enhanced 

pro-social behavior in our experiment, this is not the case for reminders of peers. 

Furthermore, reminders of peers trigger more rational behavior in individual choice tasks 

that have no moral component, whereas pictures of eyes do not affect behavior in such 

tasks.  



MEASURING UTILITY  
 

 

9 

1.3 Measuring Utility 

Chapter 6 introduces a new and easily applicable method to measure utility and loss 

aversion, both under risk and under uncertainty. This method extends the trade-off 

method of Wakker and Deneffe (1996) by allowing standard sequences (sequences of 

outcomes for which the utility differences between successive elements is constant) to 

pass through the reference point. Thus, we make the trade-off method robust to sign 

dependence and allow for standard sequences that include gains, losses, and the 

reference point. As with the traditional trade-off method, our method requires no 

simplifying assumptions about utility or event weighting. 

We employ our method to test whether the utility function has the same shape under risk 

and uncertainty. This test is critical for models that capture ambiguity aversion through a 

difference in event weighting between risk and uncertainty, such as multiple priors and 

prospect theory. We cannot reject the hypothesis that utility and loss aversion are the 

same for risk and uncertainty, suggesting that utility primarily reflects attitudes towards 

outcomes. Under both risk and uncertainty, we find S-shaped utility (concave for gains, 

convex for losses) and substantial loss aversion. 
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Chapter 2  | Split or Steal? 
Cooperative Behavior when the Stakes are Large 

 

 

 

This chapter examines cooperative behavior when large sums of money are at 

stake, using data from the TV game show “Golden Balls”. At the end of each 

episode, contestants play a variant on the classic Prisoner’s Dilemma for large 

and widely ranging stakes averaging over $20,000. Cooperation is surprisingly 

high for amounts that would normally be considered consequential but look 

tiny in their current context, what we call a “big peanuts” phenomenon. 

Utilizing the prior interaction among contestants, we find evidence that people 

have reciprocal preferences. Surprisingly, there is little support for conditional 

cooperation in our sample. That is, players do not seem to be more likely to 

cooperate if their opponent might be expected to cooperate. Further, we 

replicate earlier findings that males are less cooperative than females, but this 

gender effect reverses for older contestants because men become increasingly 

cooperative as their age increases. 
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2.1 Introduction 

Cooperation is vital for the functioning of society, and the organizations and communities 

that form its fabric. Not surprisingly, cooperative behavior is the focus of many studies 

across a wide range of scientific disciplines, including psychology (Dawes, 1980; Dawes 

and Messick, 2000), sociology (Marwell and Ames, 1979, 1980; Raub and Snijders, 1997), 

economics (Ledyard, 1995; Fehr and Gächter, 2000a; Fischbacher and Gächter, 2010), 

political science (Ostrom, Walker and Gardner, 1992) and biology (Gardner and West, 

2004; West, Griffin and Gardner, 2007). The key question in this literature is why humans 

cooperate even in situations in which doing so is not in line with their material self-

interest. 

While cooperation is ubiquitous in social life and an important topic for all kinds of 

economic interaction, field data rarely allow for a clean discrimination among competing 

theories. Because carefully designed laboratory experiments do allow for such rigorous 

comparisons, laboratory experiments have provided numerous important insights into 

cooperative behavior, and the resulting rich literature forms the basis of most of our 

knowledge on human cooperation. Still, laboratory settings inevitably have limitations 

that some argue may hinder the generalization of findings to situations beyond the 

context of the lab (Levitt and List, 2007a, 2008). Subjects are often volunteering students 

who thus constitute a non-random sample of the population at large. Also, they generally 

have less familiarity with decision tasks in the laboratory than with those in everyday life, 

no opportunity to seek advice from friends or experts, and they know that their behavior 

is examined in detail. 

From an economic perspective, another obvious drawback to lab studies is that the 

financial stakes employed tend to be relatively small. Even those experiments that utilize 

relatively large payoffs do not involve amounts in excess of a few hundred dollars (e.g., 

Hoffman, McCabe and Smith, 1996a; List and Cherry, 2000; Carpenter, Verhoogen and 

Burks, 2005), giving rise to the question to what extent findings will generalize to 

situations of significant economic importance. One solution is to perform experiments in 
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low-income countries, where small nominal amounts carry a larger value. In the domain 

of social interaction, such experiments are, for example, employed by Slonim and Roth 

(1998), Cameron (1999), Fehr, Fischbacher and Tougareva (2002), Munier and Zaharia 

(2002), Johansson-Stenman, Mahmud and Martinsson (2005), and Kocher, Martinsson 

and Visser (2008). While this might appear an ideal approach, it has its own drawbacks. 

Culture, for example, has been shown to play an important role in social interaction 

(Henrich et al., 2001, 2004; Herrmann, Thöni and Gächter, 2008), making it difficult to 

generalize findings from low-income countries.1 And while the stakes in these experi-

ments are larger than commonly employed, they still rarely exceed a few months’ wages. 

In the current chapter, we study cooperative behavior using another source of data, 

namely the behavior of contestants on the British TV game show “Golden Balls”. Although 

the game show setting is an unusual environment, it has the benefit of employing large 

and varying stakes. Furthermore, game shows are markedly different from laboratory 

experiments in terms of participant selection, scrutiny, and familiarity of participants with 

the decision task. Combined with the strict and well-defined rules, game shows can 

therefore provide unique opportunities to investigate the robustness of existing 

laboratory findings. 

Because game shows are often competitive in nature and ask contestants to make risky 

or strategic choices, is it not surprising that they have mostly been used to study decision 

making under risk (e.g., Gertner, 1993; Metrick, 1995; Beetsma and Schotman, 2001; Post 

et al., 2008) or strategic reasoning (e.g., Bennett and Hickman, 1993; Berk, Hughson and 

Vandezande, 1996; Tenorio and Cason, 2002). More recently, however, game shows have 

also been used to study social interaction, in particular discrimination (Levitt, 2004; 

Antonovics, Arcidiacono and Walsh, 2005) and cooperative behavior (List, 2004a, 2006; 

Belot, Bhaskar and van de Ven, 2010a; Oberholzer-Gee, Waldfogel and White, 2010). The 

current chapter is in the latter category. 

                                                      
1
 Interestingly, though not generally acknowledged, this argument at the same time questions the universal 

applicability of the many findings from higher-income countries, including ours. We refer to Henrich, Heine 

and Norenzayan (2010) for a discussion on this issue. 
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In the final stage of “Golden Balls”, contestants make a choice on whether or not to 

cooperate in a variant of the famous Prisoner’s Dilemma. In particular, the two final 

contestants independently have to decide whether they want to “split” or “steal” the 

jackpot. If both contestants choose “split”, they share the jackpot equally. If one chooses 

“split” and the other chooses “steal”, the one who steals takes the jackpot and the other 

gets nothing. If they both “steal”, both go home empty-handed. On average, the jackpot 

is over $20,000. The variation is large: from a few dollars to about $175,000. 

If we assume that each player only cares about maximizing her immediate financial 

payoff, the choice problem in “Golden Balls” can be labeled as a “weak” form of the 

Prisoner’s Dilemma.2 Where in the classic form of the Prisoner’s Dilemma defecting 

strictly dominates cooperating, here defecting only weakly dominates cooperating: 

choosing “steal” always does at least as well, and sometimes better than choosing “split”. 

Of course, contestants may consider other factors aside from their own monetary payoff 

when deciding which choice to make. Much experimental research suggests that people 

have social preferences in the sense that the payoffs to others enter their utility 

functions. For discussions, see, for example, Fehr and Gächter (1998, 2000b), Fehr and 

Schmidt (1999), Bolton and Ockenfels (2000), Charness and Rabin (2002), Camerer (2003), 

Fehr and Gintis (2007), and Cooper and Kagel (2009). 

The fact that the show is aired on TV of course creates a set of rather special 

circumstances that could affect our results, although there is little existing theory to 

suggest what the effect of a large TV audience would be. One might argue that players 

would not want to be seen as a “jerk” on national television and so would be more likely 

to cooperate, but one can also argue that a player would not want to been seen as a 

“sucker” (or someone who cannot detect the weakly dominant solution to a simple game) 

in public.3 The public nature of the choice could also magnify subtle features created by 

                                                      
2
 Rapoport (1988) introduced this terminology. For the sake of brevity, we will simply use the term 

Prisoner’s Dilemma to refer to the game studied here. 

3
 Most studies related to the issue of observability indicate that people display more other-regarding 

behavior when they are or feel more subject to public scrutiny (see, for example, Hoffman, McCabe and 

Smith, 1996b; Rege and Telle, 2004; Haley and Fessler, 2005), but there is also contradictory evidence 
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the fact that the game is a “weak” form of the Prisoner’s Dilemma. Specifically, if a player 

thinks that the other player will steal, she might decide to split on the grounds that it 

costs her nothing to appear “nice” on TV. These complications do not render our results 

uninteresting, but do need to be incorporated in any attempt to evaluate how our results 

should be interpreted in the context of existing theories and experimental findings on 

cooperation. 

Although “Golden Balls” is unique in its format, the show shares the Prisoner’s Dilemma 

element with a few game shows from other countries including “Friend or Foe” (US, aired 

in 2002-2003) and “Deelt ie ‘t of deelt ie ‘t niet?” (in English: “Will he share or not?”; 

Netherlands, 2002). These two shows have been studied in four different papers. List 

(2004a, 2006) and Oberholzer-Gee, Waldfogel and White (2010) analyze data from 

“Friend or Foe”, and Belot, Bhaskar and van de Ven (2010a) use the Dutch show. List 

focuses on the effects of demographic variables such as gender, race and age. Studying 

the same game show, Oberholzer-Gee, Waldfogel and White compare the behavior in the 

first season of the show with later seasons in which the contestants have had a chance to 

observe prior episodes. Finally, Belot, Bhaskar and van de Ven find that making a promise 

to cooperate prior to the decision is positively related to cooperation if the promise was 

voluntary, but not if the host has elicited it. 

In this chapter we replicate many of the earlier investigations, but also undertake several 

novel analyses that are possible due to some unique features in the format of “Golden 

Balls”. The way the stakes are determined and the very wide range they cover provide the 

basis for new insights into the effect of stakes and context. The dynamic setting of the 

show enables us to look at reciprocity in cooperative behavior, and also at the effect of 

earlier deceitful behavior. 

In our sample, individual players on average cooperate 53 percent of the time. Although 

this rate is similar to earlier findings from the experimental literature (Dawes and Thaler, 

                                                                                                                                                                 
(Dufwenberg and Muren, 2006). Kerr (1999) suggests that the effect depends on conditions related to social 

expectations and sanctions. 
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1988; Sally, 1995), direct comparisons are hampered by systematic differences in the 

stakes, the visibility of decisions, characteristics of the subjects, and preceding 

opportunities for communication or other social interaction. 

We find only limited support for the notion that cooperation will decrease if the stakes 

get significant. The cooperation rate is unusually high when the stakes lie in the low range 

of our sample, perhaps because contestants think that for so little money (relatively 

speaking) they might as well cooperate in public. Cooperation does decline with the 

stakes for stakes below the median, but plateaus at around 45 percent for medium to 

large amounts. 

The high cooperation rate for relatively small stakes suggests that context can convert 

money amounts that would normally be considered consequential or “big” into amounts 

that are perceived to be small, just “peanuts”. This idea is supported by our finding that 

cooperation is not only based on the actual stakes but also on what the jackpot 

potentially could have been. This effect is especially pronounced for those who appeared 

in the earlier episodes of the show and had no or little opportunity to watch the show on 

TV and learn what sizes are large or small in the context of this game. 

A special property of “Golden Balls” is the interaction that occurs among contestants 

prior to the final. Utilizing the dynamic setting, we find evidence that contestants show 

some tendency toward reciprocity. Among contestants whose final opponent has 

attempted to vote them off the show, the propensity to cooperate is significantly lower. 

Contestants do not appear to reciprocate against opponents who have lied earlier in the 

game. Lying seems to be accepted here, similar to bluffing in poker. A possible reason for 

this is that, in contrast to a vote cast against someone, lying is a defensive act that is not 

aimed at anyone in particular. 

Surprisingly, we find little evidence that contestants’ propensity to cooperate depends 

positively on the likelihood that their opponent will cooperate. While an opponent’s 

promise to cooperate is a strong predictor of her actual choice, contestants appear not to 

be more likely to cooperate if their opponent might be expected to cooperate. Our final 
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main result is that young males cooperate less than young females. This difference 

decreases and even reverses as age increases and men become increasingly cooperative. 

The chapter proceeds as follows. Section 2.2 describes the game show in more detail, 

discusses our data and presents descriptive statistics. Sections 2.3 – 2.7 cover the various 

possible factors behind cooperative behavior included in our analysis. Each of these 

sections provides related literature and other background, explains the variables that we 

use, and discusses the results of our Probit regression analyses. Section 2.8 concludes. 

2.2 Game Show and Data 

Description of “Golden Balls” 

The TV game show “Golden Balls” was developed by the Dutch production company 

Endemol. It debuted on the ITV network in the United Kingdom in June 2007 and ran until 

December 2009. Each episode consists of four rounds and starts with four contestants, 

usually two men and two women. 

In Round 1, twelve golden balls are randomly drawn from the “Golden Bank”, a lottery 

machine containing one hundred “golden” balls. Each of these balls has a hidden cash 

amount inside, ranging from a minimum of £10 to a maximum of £75,000.4 Contestants 

know that this is the range for the amounts in the balls, but they do not know the precise 

distribution (though this becomes clearer over time as the show is aired). At a later stage 

of the game, a subset of the cash balls drawn will contribute to the final jackpot. Also, 

four balls hiding the word “killer” inside are mixed with the twelve cash balls. Killer balls 

are undesirable in a way we will explain below. From the sixteen balls, each contestant 

receives four balls at random. For each contestant, two are placed on the front row with 

their contents - either a cash amount or the word “killer” - openly displayed; the other 

two are placed on the back row and their contents are known by the particular contestant 

alone. (Poker players can think of this as two “up” cards and two “down” cards.) The 

                                                      
4
 Values in British pounds can be translated into US dollars using a rate of $1,75 per pound, an approximate 

average of the exchange rate during the period in which the show ran. 
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contestants now have to decide by vote which player will be kicked off the show. Because 

the balls of voted-off contestants are removed from the game and the remaining 

contestants’ balls matter for the ultimate jackpot, there is a strong incentive to retain 

players with high value balls and kick off players with low value balls or killer balls. 

Before the voting starts, each contestant publicly announces the contents of the balls on 

her back row (knowing that these values will subsequently be revealed, but only after the 

vote). Then, the four contestants together have an open discussion in which they can 

voice their evaluation of other players’ statements and their opinion of who should be 

voted off. Each player then anonymously casts a vote against one specific opponent. After 

the votes are tallied, the player who received the most votes leaves the game.5 Lastly, all 

the players reveal the values of their back row balls, and differences between the actual 

values and the previous claims are noted. 

In Round 2, two additional cash balls from the lottery machine and one extra killer ball 

are added to the twelve remaining balls from Round 1. The fifteen balls are then 

randomly allocated to the three contestants. Each of them receives two balls on her front 

row and three on her (hidden) back row. Similar to Round 1, contestants make (cheap 

talk) statements on the balls on their back row, a round of banter follows, votes are cast 

anonymously and tallied, the player who receives the most votes leaves the game, and all 

hidden ball values are revealed.6 Two players and their ten balls proceed to Round 3. 

Round 3 determines the size of the final jackpot. First, one additional killer ball is mixed 

with the ten balls from Round 2. Then five of the balls are selected sequentially at 

random. If a ball selected is a cash ball, its face value is added to the jackpot. If a killer ball 

is drawn, the current cumulative jackpot is divided by ten. For example, if the first two 

                                                      
5
 If two contestants receive two votes each, their opponents openly discuss who they want to keep in the 

show. If they cannot decide, a decision is made at random. If all four contestants receive one vote each, 

contestants openly attempt to form a coalition against one specific contestant. Again, if they cannot decide, 

a decision is made at random. 

6
 The procedure in the case of a tie is similar to that in Round 1. Tie-breaking occurs by discussion or by 

random draw if no agreement is reached. 
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balls were £50,000 and £1,000 and the third is a killer ball, the level of the jackpot is 

reduced from £51,000 to £5,100. A killer ball does not affect the jackpot contribution of 

cash balls drawn thereafter. If the fourth and fifth ball in our example were another killer 

ball and £25,000, respectively, then the actual jackpot would be £25,510. Note that this 

round is a completely stochastic process, and that contestants have full information on 

the balls that are in play. Before the five balls are drawn, special attention is always paid 

to the highest possible jackpot (that is, the sum of the five largest cash values). This value, 

and the number of killer balls, are explicitly stressed by the game show host. 

After Round 3 determined the jackpot, the contestants play a variant of the Prisoner’s 

Dilemma in the fourth and final round. Each contestant receives two golden balls. One of 

the balls says “split” and the other says “steal” on the inside. The contestants then 

simultaneously have to decide which ball they want to play. If both choose “split”, they 

share the jackpot equally. If one chooses “split” and the other chooses “steal”, the 

contestant who steals takes the whole jackpot and the other gets nothing. If they both 

choose “steal”, both go home empty-handed. Before each contestant makes her actual 

decision, a brief time period is reserved for a discussion between the players in which 

they can make non-binding promises, ask about intentions, or attempt to get assurances 

of cooperative behavior. This is the final round of cheap talk. Importantly, the contestants 

have not met before the game starts, and have no opportunity before or during the show 

to make any kind of collusive agreement. 

A relevant question is how the contestants are selected. A spokeswoman of Endemol 

informed us that anyone can apply to be on “Golden Balls” by submitting a detailed 

application form. Shortlisted contestants are then invited to an audition in order to 

determine their skills at playing the game, their character and their suitability to appear 

on a TV show such as Golden Balls. Producers watch tapings of these auditions and put 

together shows such that, according to the producers, “a good mix of characters” is 

represented on each show. Thus while the contestants are not a random sample of 

society, the selection process does not seem to create any obvious confounds with the 

analyses we conduct here. 
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Data and Descriptive Game Characteristics 

We examine the “split” and “steal” decisions of 574 final contestants appearing in 287 

episodes aired between June 2007 (when the show was introduced) and December 2009. 

During this period, 288 episodes were aired, and, at the time of writing, no further 

episodes were aired thereafter. Recordings from the show and additional information 

such as recording and airing dates were kindly provided by Endemol’s local production 

company Endemol UK. The one missing episode could not be supplied because it was not 

present in their archives.7 

For each episode we collected data on the relevant observables in the show, such as the 

hidden and visible ball values, statements made by contestants, the votes, the jackpot 

size, and the decision to “split” or “steal” at the end. Some variables were estimated 

based on contestants’ physical appearance and on information provided in the 

introductory talk and other conversations during the show. 

Table 2.1 displays some descriptive characteristics of the game. Cash balls drawn from the 

lottery machine during the first two rounds have a mean value of £5,654 and a median of 

£1,500. Clearly, the distribution is positively skewed. The mean value of the cash balls 

taken to Round 3 is £6,775, which is statistically significantly greater than the average 

value of all cash balls in the show, implying that the contestants are successful in using 

their votes to keep high-value balls in play and eliminate small ones. The average number 

of killer balls in the game at the start of Round 3 is 3.14, significantly less than the 3.67 we 

would statistically expect if voting was random. Contestants thus also seem successful in 

eliminating killer balls from the game. Unreported analyses of contestants’ voting 

behavior clearly show that contestants indeed try to vote off the opponents that have the 

worst set of balls on their front row. 

                                                      
7
 Sixteen episodes in our data set feature returning contestants. In twelve of these, players who previously 

had lost in the final (opponents “stole” while they themselves chose to “split”) get a second chance. In four, 

unlucky players who had been voted off in the first game round receive a second chance. We do not find 

that returning contestants behave differently, and, unless stated otherwise hereafter, excluding them from 

our analyses does not materially affect our results. 
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At the start of Round 3, special attention is paid to the highest possible jackpot. 

Dependent on the cash balls and killer balls taken to this stage, this maximum varies 

between £5,000 and £168,100, with a mean of £51,493 and a median of £41,150. The 

actual jackpot for which contestants play the Prisoner’s Dilemma game is generally 

considerably smaller due to the skewed distribution of cash ball values and the effect of 

killer balls, but still has a mean size of £13,416 and a median of £4,300. These amounts 

are many times the amounts typically used in laboratory experiments, and also large 

sums relative to the median gross weekly earnings of £397 in the UK in April 2009 (Office 

for National Statistics 2009). About half of the time, the jackpot in our show exceeds 

three months of median UK earnings, and 21 percent of the contestants decide over a 

jackpot that is even larger than a median annual salary (the third quartile in our sample is 

at £18,350). The stakes are also large compared to the two other game shows employed 

in earlier analyses of cooperative behavior: in “Friend or Foe”, the average is about 

$3,500 (List, 2004a, 2006; Oberholzer-Gee, Waldfogel and White, 2010), and for the 

Dutch show, Belot, Bhaskar and van de Ven (2010a) report a median of €1,683. The wide 

range of the jackpot in our sample is caused by its random construction, by the highly 

skewed distribution of cash ball values, and by the effect of killer balls. The largest jackpot 

was played for in an exhilarating episode from March 2008; trainee accountant Sarah 

stole the entire jackpot of £100,150 from collection agent Stephen.8 

  

                                                      
8
 A video clip of this episode is widely available on the Internet, for example through YouTube. 
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Table 2.1: Selected Game Show Characteristics 

The table shows selected characteristics for the British TV game show “Golden Balls”, extracted from our 

sample of 287 episodes. Cash ball (overall) is the monetary value of a cash ball drawn from the lottery 

machine in the first or second round of the game. Cash ball (Round 3) is the monetary value of a cash ball 

that is in play at the start of the third round. No. of killer balls (Round 3) describes the number of killer balls 

that are in play at the start of the third round. Potential jackpot (Round 3) is the jackpot size that is attained 

during the third round if the best-case scenario would occur. Jackpot describes the actual size of the 

jackpot. Decision is a contestant’s decision in the Prisoner’s Dilemma at the end of the show, with a value of 

1 for “split” and 0 for “steal”. Prize won (if non-zero) records the take home prize for a contestant who 

made it to the final (if she did not leave empty-handed). All monetary values are in UK Pounds (£1.00 ≈ 

$1.75). 

 
 N Mean Stdev Min Median Max 

Cash ball (overall) 4,018 5,653.92 10,478.49 10.00 1,500.00 75,000.00 
Cash ball (Round 3) 2,257 6,775.15 12,204.39 10.00 1,600.00 75,000.00 
No. of killer balls (Round 3) 287 3.14 0.90 1.00 3.00 6.00 
Potential jackpot (Round 3) 287 51,493.08 31,386.69 5,000.00 41,150.00 168,100.00 
Jackpot 287 13,416.09 19,182.98 2.85 4,300.00 100,150.00 
Decision (split=1) 574 0.53 0.50 0.00 1.00 1.00 
Prize won 574 4,850.55 11,821.06 0.00 38.75 100,150.00 
Prize won if non-zero 303 9,188.82 15,004.52 1.83 2,175.00 100,150.00 

 

For the jackpot to be awarded, at least one player needs to cooperate. We find that 52.8 

percent of the contestants decide to “split”. While this might seem high, the rate is 

actually remarkably similar to earlier experimental evidence (see, for example, Sally, 

1995). In our sample, both players split the jackpot 31 percent of the time, one splits 

while the other one steals occurs in 44 percent of the shows, and in the remaining 25 

percent of the shows both players steal. The efficiency rate in terms of the percentage of 

jackpots that is actually awarded thus amounts to 75 percent. The efficiency rate 

obtained by dividing the sum of earnings across all episodes by the sum of all jackpots is 

slightly lower at 72 percent. (The difference in efficiency results from contestants’ lower 

propensity to cooperate when the stakes are larger; we explore this effect in detail later.) 

These simple statistics are a first indication that contestants do not condition their 

behavior on that of their opponent. Given the average cooperation rate, we would expect 

to observe (split, split) in 28 percent of the cases and (steal, steal) 22 percent of the time 

if the individual decisions in our sample were randomly matched. Although the actual 

percentages are higher (31 and 25), the differences are relatively small considering that 
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each pair of contestants operates under highly similar conditions (same jackpot, same 

potential jackpot, and many shared unobserved conditions). 

On average, a finalist goes home with £4,851, but the median prize is only £39 because 47 

percent of the contestants get nothing. The 303 contestants who end up with a non-zero 

prize take home £9,189 on average, with a median of £2,175. It is worth noting that 

would we have run this show as an experiment ourselves, the total costs in subject 

payoffs alone would have been £2.8 million. 

Modeling the Decision to “Split” or “Steal” 

In the following sections, we will analyze the decisions to “split” or “steal” the jackpot 

using a binary Probit model. We assume that when people enter the final round they 

have a latent propensity to “split” *y , where ),(* y . Furthermore, we assume that 

this latent propensity is a linear function of personal demographic characteristics x  and 

context characteristics z , in the form uzxy   ''* , where   and   are parameter 

vectors and u  represents an unobserved stochastic component. We do not observe the 

latent propensity to “split” directly, but only the actual decision y , where 1y  if a 

contestant chooses “split” and 0y  if a contestant chooses “steal”. We impose the 

observation criterion )0*(  yy 1 , where (.)1  is the indicator function taking the value 

of 1 if 0*y  and 0 otherwise. Assuming that the stochastic component has a standard 

normal distribution, or )1,0(~ Nu , leads to the binary Probit model of the form 

)''(),|1Pr(  zxzxy  , where (.)  is the standard normal cumulative distribution 

function. Using this framework we estimate the parameter vectors   and   using 

maximum likelihood estimation. We allow for the possibility that the decisions of 

contestants within the same episode are correlated by performing a clustering correction 

on the standard errors (see, for example, Wooldridge, 2003). 

Because coefficients in a Probit model do not have an immediate intuitive economic 

meaning due to the inherent nonlinearities, we will follow the common approach of 

reporting marginal effects instead. More specifically, the marginal effects we report apply 

to the medians of the explanatory variables, with two exceptions. To highlight some of 
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the interaction effects that we find in our data, we set Age to be 20 and Transmissions 

(the number of times the show has aired at the time of recording) to be 0. The resulting 

“representative agent” is a 20 year old white female without higher education, who lives 

in a relatively small town and plays the final of our game for a jackpot of £4,300, which 

potentially could have been £41,150. For dummy variables we consider the effect of a 

discrete change from 0 to 1. As noted by Ai and Norton (2003), the traditional way of 

calculating marginal effects and their standard errors is not valid for interaction terms, 

and we therefore apply the alternative method they propose. For the sake of consistency, 

we report significance levels that apply to the marginal effects, though these levels do not 

differ materially from the significance levels for the original regression coefficients. 

Original coefficients and their significance levels are available from the authors upon 

request. 

2.3 Demographic Characteristics 

First, we investigate how various demographic characteristics are related to the 

propensity to cooperate. Our later analyses include these demographic variables as 

control variables. 

In previous studies examining the relations between demographic characteristics and 

cooperative behavior, most attention has been directed to gender. Psychologists have a 

long history when it comes to investigating the relation between gender and behavior, 

and, over the past decade, economists have become increasingly interested in gender 

effects as well. The standard finding is that women act more pro-socially than males, but 

the reverse is also found.9 For contextual settings similar to ours, List (2004a, 2006), 

Oberholzer-Gee, Waldfogel and White (2010) and Belot, Bhaskar and van de Ven (2010a) 

                                                      
9
 One possible cause for the varying results is that males and females respond differently to specific 

contextual settings of the experiments (Croson and Gneezy, 2009). For example, if women are more risk 

averse than men, this may lead to different social behavior in situations in which risk is involved (Eckel and 

Grossman, 2008). 
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report that women are more cooperative than men, although some results are only 

marginally significant. 

For other demographic characteristics, the experimental findings are also mixed. 

Carpenter, Daniere and Takahashi (2004), for example, run public good experiments with 

symbolic but costly punishment in Bangkok and Ho Chi Minh City. They find that in 

Bangkok males and higher educated subjects contribute more, while there is no 

significant age effect. The same experiment in Ho Chi Minh City, however, shows the 

opposite findings: males and higher educated subjects cooperate less and age increases 

cooperation. Gächter, Herrmann and Thöni (2004) find no influence of background 

characteristics in a one-shot public good experiment with Russian subjects. 

In order to add to this literature we will explore the effect of various demographic 

characteristics on cooperative behavior. We employ the following set of variables: 

- “Gender” is a dummy variable indicating whether a contestant is male (1) or female 

(0). 

- “Age” is a continuous variable measuring the contestant’s age in years. In many 

instances the contestant’s age is not explicitly mentioned during the show. In these 

cases we estimate age on the basis of physical appearance and other helpful 

information such as the age of children. 

- “Race” is a dummy variable indicating whether a contestant is white (1) or non-white 

(0). We apply such a broad distinction because the large majority of contestants are 

white. 

- “City” and “London” are two dummy variables that are constructed in order to 

distinguish contestants that live in major urban areas from those that reside in more 

rural surroundings. Contestants’ city or county of residence is always an integral part 

of the introductory talk. City indicates whether a contestant lives in a large urban 

area (1) or not (0). We define a large urban area as a conurbation with a population 
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exceeding 250,000 inhabitants.10 For some contestants we only know their region 

and not their exact town or city; we then assume a small domicile. London indicates 

whether a contestant lives inside (1) or outside (0) the Greater London Urban Area. 

- “Education” is a dummy variable for the level of education and differentiates 

between those with at least a bachelor degree (1) and those without (0). Players 

generally do not talk about their education during the show. We therefore estimate a 

contestant’s level of education on the basis of her occupation, which is always 

explicitly mentioned when she is introduced, and on the basis of other information 

given in talks. Contestants who are currently enrolled in higher education and people 

whose job title suggests work experience equivalent to the bachelor level or higher 

are included in the higher education category. From the information that we have 

about each contestant, the proper binary values are generally clear. 

- “Student” is a dummy variable indicating whether the contestant currently is a higher 

education (undergraduate or postgraduate) student (1) or not (0). 

Estimates for Age and Education are based on the independent judgments of three 

research assistants, where each value is based on the assessments of two of them. When 

the estimates for Education were different, we decided on the most appropriate value 

ourselves. For Age we took the mean of the two judgments, and included our own 

assessment as a third input if the values of the coders diverged more than five years. 

We have also attempted to collect data on contestants’ marital status and the existence 

of children. These topics were, however, not systematically discussed in the program and 

values would therefore be unknown for the large majority of our contestants. Table 2.2 

summarizes all the variables that are included in our analyses, including the demographic 

characteristics.  

                                                      
10

 For England and Wales, the population data and the definitions of conurbations are taken from the UK 

Office for National Statistics (www.statistics.gov.uk). Similar information for Scotland, Northern Ireland and 

Ireland is from the General Register Office for Scotland (www.gro-scotland.gov.uk), the Northern Ireland 

Statistics and Research Agency (www.nisra.gov.uk) and the Central Statistics Office Ireland (www.cso.ie), 

respectively. 
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Table 2.2: Summary Statistics 

The table shows descriptive statistics for the explanatory variables in our analyses of cooperative behavior 

based on the decisions of 574 contestants to either “split” or “steal” the jackpot in the Prisoner’s Dilemma 

at the end of the British TV game show “Golden Balls”. Age is the contestant’s age measured in years. 

Gender, Race, City, London, Education and Student are dummy variables taking the value of 1 if the 

contestant is male (Gender), is white (Race), lives in a conurbation with a population exceeding 250,000 

inhabitants (City), is a resident of the Greater London Urban Area (London), has completed or is enrolled in 

higher education (bachelor degree or higher) or has equivalent working experience (Education), or is a 

student (Student), respectively. Actual stakes is the natural logarithm of the size of the jackpot in the 

Prisoner’s Dilemma game. Potential stakes is the natural logarithm of the highest possible jackpot at the 

start of the third round. Transmissions expresses the number of episodes that was already aired when the 

current episode was recorded in the studio. Vote received from opp. is a dummy variable taking the value of 

1 if the contestant’s final opponent has tried to vote her off the program at an earlier stage of the game. 

Promise is a dummy variable taking the value of 1 if the contestant explicitly promised her opponent to 

“split” (or not to “steal”) the jackpot. Lie Round 1 (Round 2) is a dummy variable taking the value of 1 if the 

contestant has misrepresented her back row balls – either by overstating a cash ball or by hiding a killer ball 

– in the first (second) round. Lie cash (killer) ball Round 1 (Round 2) is a dummy variable taking the value of 

1 if the contestant has overstated a cash ball (hidden a killer ball) in the first (second) round. Standard 

deviations for the two stakes variables and the transmissions variable are calculated across episodes (N = 

287) to avoid the effect of clusters at the episode level. All monetary values are in UK Pounds (£1.00 ≈ 

$1.75). 

 

 Mean Stdev Min Median Max 

Demographic Characteristics      
  Age 36.78 11.76 18.00 34.40 73.00 
  Gender (male=1) 0.47 0.50 0.00 0.00 1.00 
  Race (white=1) 0.92 0.27 0.00 1.00 1.00 
  City (large=1) 0.47 0.50 0.00 0.00 1.00 
  London (London=1) 0.14 0.35 0.00 0.00 1.00 
  Education (high=1) 0.34 0.47 0.00 0.00 1.00 
  Student (student=1) 0.09 0.28 0.00 0.00 1.00 
      
Stakes and Context      
  Actual stakes (log) 8.19 2.08 1.05 8.37 11.51 
  Potential stakes (log) 10.68 0.60 8.52 10.62 12.03 
  Transmissions 111.68 74.18 0.00 109.00 214.00 
      
Reciprocal Preferences      
  Vote received from opp. (yes=1) 0.05 0.22 0.00 0.00 1.00 
      
Expectational Conditional Cooperation      
  Promise (promise=1) 0.53 0.50 0.00 1.00 1.00 
      
Past Deceitful Behavior      
  Lie Round 1 (lie=1) 0.41 0.49 0.00 0.00 1.00 
  Lie Round 2 (lie=1) 0.36 0.48 0.00 0.00 1.00 
  Lie cash ball Round 1 (lie=1) 0.24 0.42 0.00 0.00 1.00 
  Lie cash ball Round 2 (lie=1) 0.15 0.36 0.00 0.00 1.00 
  Lie killer ball Round 1 (lie=1) 0.21 0.41 0.00 0.00 1.00 
  Lie killer ball Round 2 (lie=1) 0.24 0.43 0.00 0.00 1.00 
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Table 2.3: Binary Probit Regression Results [1/2] 

The table displays results from the Probit regression analyses of contestants’ decisions to “split” (1) or 

“steal” (0) the jackpot in the Prisoner’s Dilemma at the end of the British TV game show “Golden Balls”. 

First (Second) half is a dummy variable taking the value of 1 if less (more) than 50 percent of the episodes in 

our sample were already aired when the current episode was recorded in the studio. Definitions of other 

variables are as in Table 2.2. For each explanatory variable, the marginal effect is shown for a 

representative agent who takes the median value on all variables, except for Age and Transmissions, which 

are set to 20 and 0, respectively. Standard errors are corrected for clustering at the episode level, p-values 

are in parentheses. 
 

 Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 

           
Demographic Characteristics           
  Age 0.002 (0.422) 0.002 (0.345) 0.003 (0.311) 0.002 (0.352) 0.002 (0.403) 
  Gender (male=1) -0.221 (0.002) -0.241 (0.000) -0.233 (0.001) -0.236 (0.001) -0.233 (0.001) 
  Race (white=1) 0.134 (0.101) 0.143 (0.082) 0.139 (0.091) 0.142 (0.089) 0.149 (0.065) 
  City (large=1) -0.039 (0.396) -0.043 (0.359) -0.045 (0.335) -0.039 (0.405) -0.036 (0.439) 
  London (London=1) 0.059 (0.402) 0.066 (0.348) 0.059 (0.400) 0.054 (0.444) 0.058 (0.406) 
  Education (high=1) 0.088 (0.062) 0.093 (0.053) 0.094 (0.050) 0.094 (0.049) 0.091 (0.058) 
  Student (student=1) 0.012 (0.888) -0.002 (0.983) -0.008 (0.923) -0.013 (0.884) -0.007 (0.933) 
  Age x Gender 0.011 (0.001) 0.010 (0.001) 0.010 (0.001) 0.011 (0.001) 0.010 (0.001) 
           
Stakes and Context           
  Actual stakes (log)   -0.043 (0.000) -0.048 (0.000) -0.049 (0.000) -0.048 (0.000) 
  Potential stakes (log)     0.057 (0.139) 0.174 (0.006)   
  Transmissions       -0.000 (0.722)   
  Potential stakes x Transmissions       -0.001 (0.037)   
  Second half (second=1)         0.030 (0.508) 
  Potential stakes x First half         0.139 (0.005) 
  Potential stakes x Second half         -0.035 (0.543) 
           
Wald chi

2
 (df) 34.87(8) 51.61(9) 52.57(10) 57.87(12) 62.35(12) 

Log pseudo-likelihood -379.78 -371.55 -370.42 -368.29 -367.51 
McFadden R

2
 0.043 0.064 0.067 0.072 0.074 

N 574 574 574 574 574 
Number of clusters 287 287 287 287 287 
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Figure 2.1: Age and the Propensity to Cooperate for Males and Females 

The figure displays the relative frequency of contestants who decide to “split” across various 

age intervals. Bars depict the percentage of cooperators within specific age brackets for 

males, females and the aggregate, respectively. For each category, the number of contestants 

is displayed at the bottom of the bar. 

 

Table 2.3, Model 2.1 shows the regression results for a model that includes demographic 

characteristics only. To be able to distinguish both general gender and age effects as well 

as a possible interaction effect, the interaction of gender and age is also included. The 

results show that, relative to our representative 20 year-old female agent, young males 

are 22 percentage points less likely to cooperate (p = 0.002). In line with past results by 

List (2004a) and Carpenter, Connolly and Myers (2008), this difference disappears when 

age increases. The effect of age is significantly different for males and females (p = 0.001). 

Women do not become significantly more or less cooperative when age increases 

(p = 0.422). Men, on the other hand, do have a higher propensity to cooperate as they are 

51  44  95 45  52 97 79 117 196 94  92 186 
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older: their cooperation rate increases by more than one percentage point per year 

(p = 0.000; untabulated). 11 Contrary to the two previous studies, we find that the gender 

difference not only disappears as age increases, but actually reverses; males become 

significantly more likely to “split” from age 46 onwards. Figure 2.1 displays observed 

cooperation rates at different age levels for males, females and aggregates, clearly 

depicting an age effect for men. Further analyses show that there is no evidence of a 

quadratic age effect, neither for men nor for women. We have also experimented with 

specifications where the (semi-) continuous age variable is replaced by a set of dummy 

variables that represent various age groups. The results are economically and statistically 

similar. 

When it comes to race we find weak evidence that whites are more likely (about 13 

percentage points) to cooperate than non-whites (p = 0.101; p < 0.10 in the models 

discussed hereafter). List (2004a, 2006) and Oberholzer-Gee, Waldfogel and White (2010) 

report a similar pattern, yet in more conventional experiments the reverse is often found 

(see, for example, Cox, Lobel and McLeod, 1991). Since possible but unobservable wealth 

effects could contribute to this result, it should be interpreted with caution.  

Higher educated contestants are about 9 percentage points more cooperative (p = 0.062), 

although this effect is only marginally significant in the current model and not 

consistently significant across the various regression models discussed hereafter (0.041 < 

p < 0.070). Similar to the effect of race, the effect of education could be spurious due to 

an unobservable wealth effect. 

Students are frequently used as subjects in experiments, and the reliance on such a 

specific subject pool is often criticized. Sears (1986), for example, extensively describes 

how the use of student subjects might produce misleading or mistaken conclusions about 

social behavior. It is therefore interesting to investigate whether there is evidence that 

                                                      
11

 The effect of age for males could be related to increasing dependence on others (van Lange et al., 1997), 

or to hormonal or neurological changes as men grow older, but we are hesitant to draw conclusions in 

these directions for we cannot exclude that a generational effect (van Lange et al., 1997; List, 2004) or a 

wealth effect is (partly) driving our finding. 
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students behave differently from others, holding other observable characteristics 

constant. This turns out not to be the case. Controlling for demographics such as age and 

education, our regression results yield no indications of a different attitude toward 

cooperation among students (p = 0.888).12 

None of the residence dummy variables have a significant effect. Possibly, relatively small 

social differences between urban and more rural areas in the UK explain this null result.13 

2.4 Stakes and Context 

Economists typically argue that behavior will converge toward the prediction of rational 

self-interest if the stakes increase (e.g., Rabin, 1993; Telser, 1995; Levitt and List, 2007a). 

The evidence from lab and field experiments is, however, not generally supportive of this 

view. Except for the finding that people seem to become more willing to accept relatively 

low offers in ultimatum bargaining games when the stakes are high, empirical research 

generally finds no evidence that stake size affects behavior, even when the stakes are 

increased up to several months’ wages.14 

Given that the stakes in “Golden Balls” are widely ranging, and, on average, considerably 

larger than in previous studies, the show provides an excellent opportunity to re-examine 

the relation between cooperation and stakes. In addition, compared to earlier game-

show studies on cooperation, an advantage of “Golden Balls” is that the stakes are mainly 

built up by a random process and not by contestants’ answers to trivia questions. The 

                                                      
12

 In a similar vein, van Lange et al. (1997) and Bellemare and Kröger (2007) do not detect a difference, 

whereas Carpenter, Connolly and Myers (2008) and Egas and Riedl (2008) do report a negative bias. 

13
 In experiments conducted in a region of Russia where there is a large gap, Gächter and Herrmann (2011) 

do find that rural residents are more cooperative than urban residents. 

14
 See, for example, Hoffman, McCabe and Smith (1996a), Slonim and Roth (1998), Cameron (1999), List and 

Cherry (2000, 2008), Fehr, Fischbacher and Tougareva (2013), Munier and Zaharia (2002), Carpenter, 

Verhoogen and Burks (2005), Johansson-Stenman, Mahmud and Martinsson (2005), and Kocher, 

Martinsson and Visser (2008). For TV game show data, List (2004, 2006) and Oberholzer-Gee, Waldfogel 

and White (2010) also find that cooperative behavior is practically invariant to the stakes. Belot, Bhaskar 

and van de Ven (2010a) report some counter-intuitive evidence that cooperation actually increases with 

stakes. 
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latter may lead to a spurious correlation because the ability to answer trivia questions 

may be related to unobserved background characteristics such as income, which in turn 

may well be related to the propensity to cooperate. 

The variable that we use in our regressions is labeled “Actual stakes” and defined as the 

natural logarithm of the size of the jackpot. 

Model 2.2 in Table 2.3 displays the regression results when the stakes are included. 

Clearly, cooperative behavior in our show is sensitive to the amount that is at stake. To 

illustrate this effect, Figure 2.2 depicts the actual and estimated cooperation rates for 

different stake levels. The fitted line based on our full regression model (Model 2.6 

presented later on) appears to capture the pattern rather well. Cooperation is high when 

the stakes are relatively small: for amounts up to £500, people on average cooperate 73.4 

percent of the time. The rate drops to approximately 45 percent as the stakes increase 

and remains relatively stable for the largest amounts. An unreported test shows that we 

cannot reject that the relation becomes essentially flat for stakes larger than £1,500. 

While the absolute level of the stakes thus appears to have some influence on the 

propensity to cooperate, behavioral research suggests that people do not always evaluate 

prospects just in absolute terms, but rather they sometimes use relative comparisons to 

determine subjective values. This way, what comprises the context can strongly influence 

choices (Kahneman, Ritov and Schkade, 1999). In choice tasks, for example, one can 

increase the likelihood that a given option is chosen by adding an alternative to the 

choice set that is dominated by the given option but not by the other alternatives 

available (Huber, Payne and Puto, 1982). Also, as a consequence of the use of relative 

judgments, seemingly irrelevant anchors can influence how people value goods of various 

kinds (Green et al., 1998; Ariely, Loewenstein and Prelec, 2003; Simonson and Drolet, 

2004) and even (risky) monetary prospects (Johnson and Schkade, 1989). 



STAKES AND CONTEXT 

 

33 

Figure 2.2: Stakes and the Propensity to Cooperate  

The figure displays the relative frequency of contestants who decide to “split” across various 

stake intervals. Tick mark values represent the endpoints of the intervals. Each bar depicts the 

percentage of cooperators within a specific stake bracket. The dashed line reflects the 

average cooperation rate across our full sample, while the solid line connects the average 

estimate of the propensity to cooperate for each stake bracket. The estimates are computed 

using our “full model”, which is Model 2.6 in Table 2.4. For each interval, the number of 

contestants is displayed at the bottom of the bar. 

 

For our purposes, the question of interest is whether the game show influences the 

contestants’ perceptions of what constitutes “serious money”. Suppose that some 

contestants decide that for “serious” money they are willing to bear the reputational 

costs, if any, of defecting on national TV, but if the stakes are small, so-called “peanuts”, 

then they will just cooperate to look good. In this scenario, we would observe the pattern 

of cooperation in our data: high cooperation rates for low stakes and lower cooperation 

for high stakes. The interesting point, however, is that the “small” stakes on this show, 

several hundred Pounds, are quite large relative to most experiments. Even when the 

contestants are playing for what seems to be peanuts, these are big peanuts indeed. 

 36 36 22 28 46 38 22 66 58 48 42 38 56 38 
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In “Deal or No Deal”, another game show that has even larger stakes than Golden Balls, 

Post et al. (2008) also find strong evidence of such a “big peanuts” phenomenon. Namely, 

when unlucky contestants faced decisions near the end of the show that were “merely” 

for thousands of euros, they displayed little or no risk aversion. In fact, some of their 

contestants made risk-seeking choices in such situations. The authors provide further 

evidence for this behavior in classroom experiments designed to mimic the show at two 

levels of stakes, call them “low” and “medium”. In the low stakes treatment the average 

prize was €40 with a maximum of €500, while in their medium stakes treatment the 

average prize was €400 with a maximum of €5,000. While risk aversion increased with 

stakes within each treatment, such an effect was not found across treatments: despite 

the very different money amounts, risky choices were similar for the low and medium 

stakes session. Choices in both conditions were even remarkably similar to those made in 

the actual TV show, despite the huge stakes used there (average €400,000, maximum 

€5,000,000). 

These results suggest that a context can convert a sum of money that would normally be 

considered consequential into perceived peanuts. In the “Golden Balls” scenario, earlier 

expectations about the jackpot size or a specific value from the game might operate as an 

anchor or reference value by which the actual size of the jackpot is evaluated.15 The most 

obvious benchmark contestants may use seems to be the maximum possible jackpot at 

the beginning of Round 3. Though the expected jackpot size might be an alternative 

candidate, it is neither salient nor easily calculated. In fact, even a rough assessment is 

rather complicated, particularly because of the influence of killer balls. The maximum 

potential jackpot, however, is always visually displayed and explicitly stressed by the 

game show host. 

In order to test for such an effect, we include the variable “Potential stakes” in our 

analyses, defined as the highest possible jackpot at the start of Round 3. As with the 

                                                      
15

 We intentionally do not use the term “reference point” in order to avoid associations with prospect 

theory here, since we are hesitant to translate the elements of prospect theory to preferences in this game 

and to derive testable predictions. 
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actual stakes, we take the natural logarithm. Not surprisingly, the actual and the potential 

stakes variable are significantly correlated, but due to the effect of killer balls and the 

skewed distribution of cash balls the degree is rather limited; the Pearson correlation 

coefficient is ρ = 0.30. 

Model 2.3 shows the new results. The positive sign of the potential stakes coefficient is in 

line with what we would expect, but the effect is statistically insignificant for the entire 

sample (p = 0.139). Interestingly, the effect becomes marginally significant if we exclude 

the (returning) contestants who already appeared in a previous episode of the show 

(p = 0.066; untabulated). This gives rise to the idea that the anchoring effect of the 

potential jackpot may decrease over time as contestants become more familiar with the 

show by watching it on TV. Prior shows will give contestants an impression of expected 

payoffs, which may help them to evaluate whether the stakes they face themselves are 

high or low in the context of the game and reduce the role of an episode-specific 

reference value such as the maximum possible jackpot size. 

We explore the effect of experience by testing whether the effect of the potential jackpot 

changes as contestants have watched more episodes on TV. As a (noisy) proxy for how 

many shows a contestant has watched, we define the variable “Transmissions” as the 

number of different episodes broadcast on TV prior to the studio recording of the current 

episode. Model 2.4 in Table 2.3 displays the results. There is no significant main effect of 

this variable (p = 0.722), indicating that there is no evidence of a trend in the cooperation 

rate over time. However, the interaction effect of the number of transmissions and the 

potential stakes is significantly negative (p = 0.037), and implies that the anchoring effect 

of the maximum possible jackpot decreases by 0.10 percentage point for each previously 

aired episode. Controlling for this interaction effect, the effect of the maximum potential 

jackpot is highly significant in the early episodes (p = 0.006), where doubling the 

maximum potential jackpot increases cooperation by more than 12 percentage points.16 

                                                      
16

 Because the potential stakes and the actual stakes are correlated, the interaction of Potential stakes and 

Transmissions might pick up an effect of the interaction of Actual stakes and Transmissions. As a robustness 
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The pattern of a pronounced effect of the potential jackpot size in the earlier but not in 

the later shows also becomes apparent if we include dummy variables that subdivide our 

sample. Model 2.5, for example, uses a natural subdivision and employs a dummy 

variable for the first 149 episodes (0-112 transmissions prior to the recordings) and for 

the remaining 138 (149-214 prior transmissions). Clearly, the effect is significant across 

the first half our data (p = 0.005) and insignificant thereafter (p = 0.543). 

2.5 Reciprocal Preferences 

Reciprocity refers to a tendency to repay kindness with kindness and unkindness with 

unkindness. Reciprocal behavior in the field is generally embedded in long term social 

interaction, and reputation concerns therefore form a plausible explanation for virtually 

all instances where people reciprocate (Sobel, 2005). Reciprocal actions can sometimes 

also be explained by preferences over outcome distributions, most notably by a desire for 

equity or equality (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000). Interestingly, 

laboratory experiments in which such motivations are controlled for have convincingly 

demonstrated that people also have a real intrinsic preference for reciprocity.17 

“Golden Balls” provides a neat opportunity to investigate the presence of reciprocal 

preferences outside of the laboratory and for substantial stakes. In particular, in the first 

two rounds contestants cast votes to determine who has to leave the show. Each vote 

carries a significant weight due to the small number of contestants, and voting against 

somebody can be viewed as unkind, particularly when the other votes were cast against 

other players. If people indeed have reciprocal preferences, we would expect that a 

                                                                                                                                                                 
check, we have therefore also added the latter to Model 4. The effect of this additional control variable is 

insignificant (p = 0.573; untabulated), confirming our interpretation. 

17
 See, for example, Kahneman, Knetsch and Thaler (1986), Blount (1995), Brandts and Solà (2001), Kagel 

and Wolfe (2001), McCabe, Rigdon and Smith (2003), Charness and Rabin (2002), Cox (2002, 2004), Falk, 

Fehr and Fischbacher (2003, 2008), Offerman (2002), Charness (2004), de Quervain et al. (2004). For 

theoretical accounts, see, for example, Rabin (1993), Levine (1998), Dufwenberg and Kirchsteiger (2004), 

Falk and Fischbacher (2006), Cox, Friedman and Gjerstad (2007), and Gul and Pesendorfer (2010). 
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contestant who makes it to the final in spite of her opponent’s vote against her, has a 

lower propensity to cooperate.18 

Although the voting is anonymous, it is often straightforward to deduce who has voted 

against whom. If a contestant in Round 1 (Round 2) receives three (two) votes it is 

obvious that all others have voted against her and that she herself has voted against the 

contestant who received one vote. For the other possible distributions of votes, we can 

usually deduce the individual votes from the banter preceding the vote, or, in the case of 

a tie, from the discussion following the vote. In the banter leading up to a vote, 

contestants generally make abundantly clear whom they intend to vote against (possibly 

out of an attempt to coordinate voting with other contestants). In the case of a tie, 

contestants openly discuss whom they want to leave the program; if it was not already 

clear from the banter whom they had originally voted against, this post-vote discussion 

generally makes it apparent. This procedure allows us to determine a contestant’s vote 

95 percent of the time. For various reasons it is much more difficult to determine clear 

instances of someone going out of their way to be nice to another player, so we limit our 

analysis to negative rather than positive reciprocity. 

Based on the voting information, we create a dummy variable entitled “Vote received 

from opponent”, taking the value of one if a contestant received a vote from her final 

opponent and zero otherwise. If we could not establish whether a contestant received a 

vote from her final opponent, she is assigned the value of zero as well (exclusion of these 

cases does not change our results). Since contestants who receive votes often do not 

make it to the next round, relatively few contestants qualify: as displayed in Table 2.2, 5 

percent (28 subjects) of the final-round contestants received a vote from their opponent. 

Model 2.6 in Table 2.4 includes the new dummy variable. In line with the idea that people 

have reciprocal preferences, the likelihood of a contestant to cooperate with her final 

                                                      
18

 Studying voting patterns in the internationally successful TV game show “The Weakest Link”, both Levitt 

(2004) and Antonovics, Arcidiacono and Walsh (2005) find evidence that people reciprocate against people 

who voted against them in past rounds. However, because players in this show have an incentive to vote off 

players that are more likely to vote against them, they cannot rule out that this strategic concern drives the 

effect. 
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opponent plummets by approximately 21 percentage points if this opponent has voted 

against her earlier in the game (p = 0.019). There are, however, three alternative 

explanations for such a behavioral pattern that are unrelated to a genuine preference for 

reciprocity. Although we cannot rule out that these alternative explanations explain part 

of the effect, they do not appear particularly strong. 

First, the causality may not run from receiving a vote to cooperativeness, but the other 

way around, players voting against contestants with a less cooperative disposition. This 

would imply that cooperation is also related to the number of votes received from other 

players, which appears not to be the case (p = 0.231; untabulated). 

Second, a contestant may like to match her opponent’s choice for reasons other than 

reciprocal concerns, and interpret the earlier vote against her as a signal that her 

opponent dislikes her and will not cooperate. However, her interpretation would 

generally not be legitimate: players do not cooperate less with someone they voted 

against (p = 0.403; untabulated). Moreover, the next section finds little support for such 

expectational conditional cooperation. 

Last, a contestant’s lower propensity to cooperate with someone who voted against her 

may be out of reputation concerns (“I am not to be messed with”) instead of an intrinsic 

preference for reciprocity. However, when asked to explain their choice after the final 

decisions, contestants never use this costless opportunity to strengthen their message 

and point to their reciprocal nature. 

2.6 Expectational Conditional Cooperation 

There is considerable evidence that many people have a preference for conditional 

cooperation, defined as the desire to match the cooperation of others. In laboratory and 

field experiments, about half of the subjects are more willing to cooperate if others do so 

as well (e.g., Fischbacher, Gächter and Fehr, 2001; Frey and Meier, 2004). Conditional 

cooperation can arise from reciprocal preferences, but also for other reasons. Social 

norms or a desire for conformity might account for it, and, especially in the laboratory, 
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egalitarian motives can often explain conditional cooperative behavior because equality 

in payoffs generally only arises if players coordinate on their level of cooperation, as is 

also the case in our show. 

Experimental studies typically investigate conditional cooperation in settings where 

subjects have the possibility to condition their behavior directly on the behavior of 

others. In everyday life, such clear-cut conditioning is usually not possible, especially in 

one-shot situations. Conditional cooperation then has to be based on expectations about 

the behavior of others, and the degree of coordination would depend on the predictive 

power of available information and on whether and how this information is interpreted. A 

natural question is whether conditional cooperation can be observed when the 

conditioning is only on an expectation of cooperation rather than on actual cooperation. 

In “Golden Balls” it is not possible for a contestant to condition directly on her opponent’s 

behavior since the two are playing a simultaneous move game. However, we can 

investigate whether contestants condition their behavior on factors that form reliable 

predictors of their opponent’s behavior. That is, we can investigate the joint hypothesis 

that players make rational forecasts of their opponent’s behavior and then condition their 

behavior on those expectations. 

The first step in such an analysis is determining the factors that a contestant could use to 

form an expectation about their opponent’s likelihood of cooperation. One such factor is 

whether an opponent made a promise to “split”. While the literature on conditional 

cooperation is rather recent, literature investigating the role of communication and, 

especially, promises in social dilemma situations already pointed towards tendencies of 

conditional cooperation. In a meta-analysis of Prisoner-Dilemma experiments, Sally 

(1995), for example, finds that cooperation occurs more often when the other player 

makes an explicit though non-binding promise that she will cooperate. The combination 

of a preference for conditional cooperation and a reluctance to lie (e.g., Charness and 

Dufwenberg, 2005, 2006; Gneezy, 2005) can explain why promises have such an effect: 

people like to cooperate if others do, and a promise is a reliable signal of others’ behavior 

if they have a reluctance to lie. 
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Table 2.4: Binary Probit Regression Results [2/2] 

The table displays results from the Probit regression analyses of contestants’ decisions to “split” (1) or 

“steal” (0) the jackpot in the Prisoner’s Dilemma at the end of the British TV game show “Golden Balls”. The 

opponent variables measure the demographic characteristics of the contestant’s opponent and are defined 

similar to the contestant’s own demographic variables. Other definitions are as in previous tables. 
 

 Model 2.6 Model 2.7 Model 2.8 Model 2.9 Model 2.10 

  Age 0.002 (0.387) 0.003 (0.283) 0.002 (0.457) 0.002 (0.372) 0.002 (0.355) 
  Gender (male=1) -0.249 (0.001) -0.292 (0.000) -0.258 (0.001) -0.252 (0.001) -0.247 (0.001) 
  Race (white=1) 0.149 (0.079) 0.162 (0.077) 0.146 (0.078) 0.147 (0.089) 0.148 (0.083) 
  City (large=1) -0.034 (0.467) -0.027 (0.552) -0.035 (0.463) -0.034 (0.463) -0.037 (0.433) 
  London (London=1) 0.041 (0.565) 0.039 (0.540) 0.050 (0.501) 0.042 (0.551) 0.037 (0.597) 
  Education (high=1) 0.088 (0.068) 0.089 (0.041) 0.089 (0.067) 0.089 (0.065) 0.089 (0.066) 
  Student (student=1) 0.001 (0.988) -0.025 (0.768) 0.008 (0.924) -0.002 (0.983) 0.001 (0.988) 
  Age x Gender 0.011 (0.000) 0.008 (0.010) 0.010 (0.009) 0.011 (0.001) 0.011 (0.001) 
  Actual stakes (log) -0.050 (0.000) -0.054 (0.000) -0.052 (0.000) -0.051 (0.000) -0.052 (0.000) 
  Potential stakes (log) 0.183 (0.004) 0.174 (0.004) 0.170 (0.006) 0.180 (0.004) 0.186 (0.004) 
  Transmissions -0.000 (0.660) -0.000 (0.106) -0.000 (0.608) -0.000 (0.584) -0.000 (0.497) 
  Potential stakes x Transmissions -0.001 (0.026) -0.001 (0.022) -0.001 (0.030) -0.001 (0.025) -0.001 (0.029) 
           
Reciprocal Preferences           
  Vote received from opp. (yes=1) -0.215 (0.019) -0.237 (0.015) -0.202 (0.020) -0.214 (0.026) -0.216 (0.025) 
           
Exp. Conditional Cooperation           
  Promise (promise=1)   0.311 (0.000)       
  Promise opp. (promise=1)   -0.080 (0.053)       
  Age opp.     0.001 (0.732)     
  Gender opp. (male=1)     -0.118 (0.140)     
  Race opp. (white=1)     -0.026 (0.775)     
  City opp. (large=1)     0.051 (0.288)     
  London opp. (London=1)     0.027 (0.713)     
  Education opp. (high=1)     0.116 (0.017)     
  Student opp. (student=1)     0.069 (0.442)     
  Age opp. x Gender opp.     0.004 (0.279)     
           
Past Deceitful Behavior           
  Lie Round 1 opp. (lie=1)       -0.013 (0.782)   
  Lie Round 2 opp. (lie=1)       -0.027 (0.578)   
  Lie cash ball Round 1 opp. (lie=1)        0.037 (0.491) 
  Lie cash ball Round 2 opp. (lie=1)        -0.064 (0.295) 
  Lie killer ball Round 1 opp. (lie=1)        -0.055 (0.330) 
  Lie killer ball Round 2 opp. (lie=1)        0.007 (0.894) 
           
Wald chi

2
 (df) 59.65(13) 98.03(15) 62.40(21) 59.19(15) 62.72(17) 

Log pseudo-likelihood -365.86 -343.31 -359.26 -365.64 -364.52 
McFadden R

2
 0.078 0.135 0.095 0.079 0.082 

N 574 574 574 574 574 
Number of clusters 287 287 287 287 287 
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In the conversation prior to the decision to either “split” or “steal”, many contestants 

explicitly promise to “split” or otherwise make a definitive statement of their intention to 

do so. Based on the statements made in this small talk, we create a dummy variable 

labeled “Promise”, indicating whether the contestant made an explicit, unambiguous 

promise or announcement that she will choose “split” (1) or not (0).19 As shown in Table 

2.2, about half (53 percent) of the contestants make such a promise. We investigate both 

whether observing a promise is predictive of the cooperative behavior of the contestant 

making the promise, and whether a contestant conditions her behavior on whether or 

not her opponent made a promise. 

As shown in Table 2.4, Model 2.7, a player’s promise is a highly significant predictor of her 

propensity to cooperate (p = 0.000). Those who make a promise are about 31 percentage 

points more likely to cooperate. In fact, an explicit promise is the single most reliable 

predictor of whether someone will cooperate.20 

While a promise is a strong signal of cooperation, contestants whose opponent made a 

promise do not have a higher propensity to choose split. In fact, as Model 2.7 also shows, 

if an opponent promises to be cooperative, the other player even displays a marginally 

significant decrease in the likelihood of choosing “split”. Belot, Bhaskar and van de Ven 

(2010a) obtain a similar result. 

An explicit promise is the strongest predictor of cooperation, but, as we have previously 

shown, there are also demographic factors that a contestant could use to forecast 

cooperation. For example, we have seen that young males cooperate less than young 

females. However, inferences from this sort of analysis have to be tentative since there 

                                                      
19

 If a contestant responds affirmative to a question whether she will choose “split” or if she announces that 

she will not choose “steal”, Promise takes the value of one as well. The value is zero in all other cases, 

including when people give the impression that they plan to split but do not explicitly express themselves as 

such, when they just refer to earlier intentions (for example, “I came here to split”), when they confine 

themselves to statements like “you can trust me” and “I will not let you down”, and when they only express 

their preference for a coordinated outcome (“I want us to split”; “I do not want both of us to go home 

empty-handed”). 

20
 Of course, we do not interpret the promise as causing the cooperation. The direction of the causation 

could go the other way. 
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could be an additional confound if opponents have a taste for cooperating with someone 

with particular demographic characteristics. 

As Table 2.4, Model 2.8 shows, we find little evidence that contestants condition their 

behavior on their opponents’ background characteristics. The only weak evidence for 

conditional cooperation is that people cooperate significantly more frequently with 

higher educated opponents (p = 0.017), but education is not a very strong predictor of 

behavior. If we assess the joint significance of the various opponent background 

characteristics, we also find that they collectively do not have a significant effect on 

cooperation.21 Analyzing the show “Friend or Foe?”, Oberholzer-Gee, Waldfogel and 

White (2010) find no conditioning on opponent background characteristics in the first 

season, but they do find it in later seasons. They interpret this as conditional cooperation 

on the basis of learned expectations. We too have investigated whether conditioning 

arises as more episodes were transmitted, but we find no indication for such an effect. 

As an alternative to the two models discussed above, we also examined a two-step 

approach. We first estimated each opponent’s propensity to cooperate given her 

background characteristics and promise behavior, and then added the estimated 

propensity of opponents as an explanatory variable to our regression model. Again, we 

found no indication of conditionally cooperative behavior. 

In summary, we find no evidence of expectational conditional cooperation. Apparently, 

either players cannot or do not forecast the behavior of their opponents, or they do not 

have conditionally cooperative preferences. Our evidence for reciprocal preferences in 

the previous section hints that it is the former rather than the latter interpretation that 

underlies this result. 

Belot, Bhaskar and van de Ven (2010b) also provide evidence that predicting one’s 

opponent’s behavior is difficult. They had subjects watch clips from the Dutch 

                                                      
21

 We also looked at more complex mechanisms related to the similarity of the contestant’s own 

background characteristics and those of her opponent, such as whether people cooperate more with those 

who are more similar to them (“social-distance” effects). In our data, there is no evidence of such behavior. 
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counterpart to “Golden Balls” and asked them to assess the likelihood of each 

contestant’s cooperation. While the estimated likelihood for cooperators was significantly 

higher than for defectors, the difference was only seven percentage points. 

2.7 Past Deceitful Behavior 

In this section, we investigate whether lies influence opponents’ willingness to cooperate. 

In the early rounds of the show, contestants have numerous opportunities to lie about 

the values on their hidden balls, lies that are quickly revealed to everyone. These lies can 

be consequential. If someone hides low value and killer balls and in so doing manages to 

remain in the game, she will have reduced the potential payoff to the remaining 

contestants. 

In the final, contestants might be less likely to cooperate with opponents who have lied, 

either out of reciprocal concerns (e.g., Brandts and Charness, 2003) or because they 

interpret lying as evidence of a self-interested nature and a sign of an imminent “steal” 

decision (e.g., van Lange and Kuhlman, 1994). Thus, past deceitful behavior is not a 

separate possible determinant of cooperation, but rather a special case of either 

reciprocity or conditional cooperation, or both. 

We collected data on the statements made by contestants and the actual values of the 

balls that they possessed, allowing us to specify various measures for deceitful behavior. 

The analyses reported here are restricted to the use of dummy variables. We have also 

tried more complex, continuous variables for lying, but these approaches yielded similar 

results. 

We apply separate variables for each game round. The general variables take the value of 

one if the contestant lied, irrespective of whether she overstated the monetary value of a 

cash ball or failed to disclose a killer ball. To distinguish between these two types of lies, 

we also use specific variables for each type separately. It is not obvious which type of lie 

would be considered more objectionable. On the one hand, lying about killers is much 

more harmful to others than exaggerating the value of a cash ball, and, assuming a 
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preference to reciprocate, doing so could then be expected to have a greater negative 

effect on an opponent’s propensity to cooperate. On the other hand, lying about killer 

balls might also be more understandable, since killer balls have a much greater impact on 

a contestant’s chances to be voted off the show. Players may realize that nearly everyone 

will fail to disclose a hidden killer ball, and thus not be inclined to punish such behavior. 

Lying about cash ball values might be more like gratuitous lying and be viewed more 

harshly, and, consequently, have a greater effect on cooperation. 

As shown in Table 2.2, lying is rather common on the show: 41 percent of the contestants 

who made it to the final lied about their back row balls in Round 1, while 36 percent lied 

in Round 2 (some did both). Furthermore, in the first round, 24 percent overstated the 

value of a cash ball, while 21 percent hid a killer ball (some did both). For the second 

round, these figures are 15 and 24 percent, respectively.22 

Table 2.4 displays the regression results when we add the general dummy variables 

(Model 2.9) and the dummy variables that distinguish between lying about killer balls and 

lying about cash balls (Model 2.10). We find that past lies of an opponent do not affect a 

contestant’s propensity to cooperate: each of the six variables is insignificant 

(0.295 < p < 0.894). In addition to these simple tests, we also investigated whether lying is 

considered less fair and has more impact the more it is unexpected or “abnormal” given 

the circumstances, but again we found no significant effect.23 Lying neither predicts a 

contestant’s own cooperative behavior.24 One plausible interpretation of these results is 

                                                      
22

 Conditional on having at least one killer ball on their back row, contestants hid a killer ball 50 (43) percent 

of the time in Round 1 (Round 2). 

23
 We used a two-stage procedure to express the abnormality of a lie. For each round, we estimated a 

regression model that explains a contestant’s propensity to lie, given the ball values on her back row, the 

ball values on her front row, and the rank of her front row balls relative to those of the other players. For 

each final contestant, the “abnormality” of a lie we then measured as the difference between unity and this 

estimated lie propensity. 

24
 Such a relation might be expected if the propensity to be honest and the propensity to cooperate are 

influenced by a similar preference for “pro-social”, “kind” or “fair” behavior. It has, for example, been 

argued that the reluctance to lie is driven by guilt aversion (Charness and Dufwenberg, 2005, 2006; Gneezy, 

2005), and empirical analysis suggests that guilt aversion is also a strong driving force behind cooperative 

behavior (Dufwenberg, Gächter and Hennig-Schmidt, 2010). 
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that lying is seen as an inherent part of “Golden Balls” and therefore unobjectionable 

behavior, much as bluffing is considered in the game of poker (Charness and Dufwenberg, 

2005). 

2.8 Conclusions and Discussion 

“Golden Balls” provides us with the possibility to examine cooperative behavior outside 

the conventional context of the laboratory with large sums of money at stake. 

Our results provide support for the view that attitudes are strongly influenced by context. 

We find unusually high rates of cooperation when the luck of the game reduces the 

stakes to “merely” a few hundred Pounds. Such amounts are tiny in the light of the 

thousands and even tens of thousands the game is often played for, but would be 

considered very large in any laboratory setting. In the early days of the show, when the 

contestants have not had an opportunity to watch the show on TV and are still learning 

what kind of stakes are to be expected, cooperation rates appear to be influenced by the 

salient but normatively irrelevant value representing the maximum they could have been 

playing for with a lucky selection of balls. Over time, this effect vanishes, suggesting that 

expectations about stakes become well-informed. 

We label the tendency to be unusually cooperative for what would normally be 

considered high stakes a “big peanuts” result. Players seem to feel that when making a 

choice about a few hundred dollars when they might otherwise have been dividing tens 

of thousands, they are playing for “peanuts”, and cooperate, perhaps thinking that it is 

not worth stealing for what they perceive to be so little money. This finding reinforces a 

similar result for risk taking behavior in another game show, “Deal or No Deal”. In that 

context, where the stakes were even higher, amounts of money in the tens of thousands 

of dollars became perceived as peanuts, since hundreds of thousands of dollars had been 

on the line. These are very big peanuts indeed. 

Using the interaction that occurs among contestants prior to the final, we also examined 

the effects that past opposition and lying have on cooperation. Using the votes we find 
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evidence to support the view that people have reciprocal preferences. Contestants are 

less likely to cooperate if their opponent has tried to vote them off the show at an earlier 

stage of the game. Lying on the other hand has no significant effect. We investigated 

several measures, but none was significantly related to cooperation. Lying is evidently not 

frowned upon in “Golden Balls”, perhaps because it is expected. The different impact of 

opposition and lying might be related to their different nature in this game. Voting is a 

directed and aggressive act towards one specific contestant. Lying, on the other hand, is 

an undirected and defensive act. 

With “Golden Balls” we are also able to investigate an interesting, expectational form of 

conditional cooperation. Specifically, since explicit promises to cooperate are strong 

predictors of actual cooperation, we can see whether players are more likely to 

cooperate with someone who has made such a promise. We find no evidence of such 

behavior. More generally, we find that players do not appear to condition their choice of 

whether to cooperate on factors that predict the cooperation likelihood of their 

opponent. Players may lack the ability or ignore the possibility to reliably interpret 

information about the expected behavior of others, or they may not have a preference 

for matching the other’s choice. Given our finding that people reciprocate votes against 

them, the former explanation seems more likely. For situations beyond the context of our 

game these results suggest that conditional cooperation is not a very important 

phenomenon, at the least when direct conditioning is not possible and people would 

need to form expectations about the behavior of others. 

We conclude with some comments on the generalizability of our results. There are three 

primary concerns. First, selection procedures may have affected the average cooperation 

rate in our study. Subjects self-select into auditions, are then selected by the producer, 

and during the game they themselves have the opportunity to vote off opponents they 

would rather not play the final with. For some demographic variables, selection may 

perhaps also have affected the correlation with cooperation. Unfortunately, we cannot 

substantiate our intuition that such effects are negligible, nor could we have prevented 

them if they would exist. Note, however, that selection procedures are inevitable in any 
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lab experiment or field setting. Moreover, the subjects in our sample vary widely in terms 

of their demographic characteristics and as a group they seem to resemble a (middle-

class)25 cross-section of the general population more closely than subjects in most 

conventional experiments. 

Second, subjects’ behavior in a game show might be influenced by what could be called 

“a drive to win the contest”. However, an important but hard to answer question would 

then be what “winning” actually means in this context. After all, it seems like a matter of 

personal social preferences whether winning is equivalent to a successful stealing 

attempt or to a successful coordination attempt. 

Last, our contestants are not strictly playing a one-shot game. In the setting we study 

decisions are made on national TV, under the scrutiny of a studio audience and millions of 

viewers. This undoubtedly influences the behavior we observe. However, we do not feel 

that these special circumstances render our findings less interesting or less predictive of 

behavior in other settings. The truth is that every setting is, in some way, special. Subjects 

in a laboratory experiment know that their behavior is being scrutinized to some extent 

as well. Field settings are also “special”; bargaining over the price of a car or a house is 

different from negotiating compensation with a new employer or the division of 

household chores with a spouse. Although it would be fascinating for researchers to be 

able to surreptitiously study the outcomes of these sorts of interactions from the “real 

world”, the researchers would still only be able to speculate on how their results would 

generalize to different real world settings. TV game shows offer a unique opportunity to 

study theoretically interesting behavior at stakes that are impossible to replicate in the 

lab. How the results compare with other contexts will be determined by future research. 

In the absence of an ability to conduct such surreptitious field experiments in many 

domains, researchers are left with two alternatives: run experiments in the lab or the 

field, or study naturally occurring behavior in an interesting setting. This chapter is an 

                                                      
25

 For whatever reason, whether it is the interest in applying or the preferences of the producers, 

contestants are rarely very rich or very poor. 
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example of the latter strategy. Although a game show may seem like a strange 

environment, we think it may be closer to the situations that occur in the workplace than 

many other settings in which cooperation has been studied. Co-workers often must 

choose whether to cooperate, and their actions are often at least semi-public. 

Finally, the big peanuts phenomenon, perhaps the most interesting finding in this 

chapter, is one that does not appear to depend in any important way on the specific 

game show environment. As a US Senator once famously said, “a billion here, a billion 

there, pretty soon you’re talking real money.” 



 

49 

Chapter 3  | Standing United or Falling Divided? 
High Stakes Bargaining in a TV Game Show 

 

 

 

In this chapter, we examine high stakes three-person bargaining in a game 

show where contestants bargain over a jackpot that is split into three unequal 

shares and ranges from about $10,000 to $185,000. In contrast to the 

commonly held view that fairness concerns will be unimportant when 

monetary incentives are sufficiently high, we find that individual behavior and 

outcomes are strongly influenced by equity concerns: those who contributed 

more to the jackpot claim larger shares, are less likely to make concessions, 

and take home larger amounts. Threatening to play hardball is ineffective. 

Although contestants who announce that they will not back down do well 

relative to others, they do not secure larger absolute amounts and harm 

others. In addition, there is no evidence of a first-mover advantage and little 

evidence that demographic characteristics matter. 
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3.1 Introduction 

Bargaining is ubiquitous in our professional and private lives. In politics, negotiations form 

the basis of coalitions between political parties in multi-party systems and between 

countries in international relations. In business, negotiations determine wage 

compensation schemes for employees, the division of surpluses between trading firms, 

and the terms of mergers and acquisitions. In our private lives, negotiations underlie the 

division of household chores between our partner and ourselves, and the division of 

property after a divorce if we fail to do so properly. Not surprisingly, bargaining has 

received considerable attention in both economics and psychology. 

Economists have been particularly interested in the efficiency and distribution of 

bargaining outcomes (Muthoo, 1999). In theoretical accounts, the emphasis is on models 

invoking stylized representations of bargaining settings that facilitate the derivation of 

equilibrium predictions, with Rubinstein’s alternating-offers bargaining model being 

especially influential (Rubinstein, 1982). As a result of this emphasis, bargaining 

experiments in economics typically employ fixed bargaining protocols and are conducted 

anonymously using computer terminals. Psychologists have studied a much wider range 

of topics. Examples include people’s perceptions about the bargaining situation and the 

possible outcomes, their behavior during the bargaining process, and the roles of values, 

culture and communication (Thompson, 1990; Bazerman et al., 2000). In contrast to the 

stylized bargaining settings in economics, psychological experiments often have subjects 

participate in free-form face-to-face negotiations. 

While bargaining has been extensively studied from various perspectives, most empirical 

evidence on bargaining behavior and outcomes derives from laboratory experiments. 

Real-world data generally entail a lack of control, making it difficult—if not impossible—

to distinguish between competing hypotheses. It is still an open question, however, to 

what extent findings from the laboratory generalize to real-world environments (Levitt 

and List, 2007a, 2008; Camerer, 2011). One of the concerns arises from the fact that 

volunteering students are a non-random sample of the population. Also, experimenters 
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are mostly unable to employ high stakes, begging the question whether or not results will 

generalize to situations of significant economic importance. In the present study, we 

examine high stakes bargaining using data from the British TV game show Divided. This 

setting has the unique property that it allows for the study of bargaining behavior in a 

controlled setting where the stakes are high, for a diverse subject pool. 

There is a growing literature that uses game shows to study decision-making. TV shows 

can offer unique research opportunities, because contestants often face relatively well-

defined choice problems for high stakes. Prior studies have focused on risky choice, 

strategic decision making, discrimination, and cooperative behavior (Bennett and 

Hickman, 1993; Gertner, 1993; Metrick, 1995; Berk, Hughson and Vandezande, 1996; 

Beetsma and Schotman, 2001; Tenorio and Cason, 2002; Fullenkamp, Tenorio and 

Battalio, 2003; Levitt, 2004; List, 2004a; Antonovics, Arcidiacono and Walsh, 2005; List, 

2006; Post et al., 2008; Belot, Bhaskar and van de Ven, 2010a; Oberholzer-Gee, Waldfogel 

and White, 2010; van den Assem, van Dolder and Thaler, 2012). The present chapter is 

the first to exploit the favorable combination of features of a game show to study 

bargaining. 

In Divided, three contestants collectively build up a jackpot through answering general 

quiz questions. Across episodes, their jackpot ultimately ranges from approximately 

$10,000 to $185,000, and averages over $50,000. In the second phase of the game, the 

team’s accumulated money amount is divided into three unequal parts of, for example, 

60, 30 and 10 percent. Contestants in turn have to claim one of these shares. If they do 

not immediately agree on who takes which share, they have 100 seconds to negotiate 

and reach consensus. With each second they take they lose one percentage point of the 

initial jackpot, and after 100 seconds there is nothing left. This final stage can thus be 

seen as a natural bargaining experiment where the “subjects” have to unanimously 

decide on the allocation of three indivisible shares, in a format that allows face-to-face 

communication and incorporates (close to) continuous costs to bargaining. 

Overall, we find that 10 percent of the teams agree immediately, 71 percent do so while 

the timer counts down, and 19 percent fail to reach agreement and go home empty-
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handed. The efficiency rate, or the average fraction of the jackpot that is actually 

awarded, is approximately 50 percent. 

Because the jackpot is determined by teams’ answers to trivia questions, we are able to 

investigate the influence of entitlements on bargaining behavior and outcomes. In real 

world settings, entitlements can potentially arise from a wide range of sources, including 

history, custom, status quo, and contributions (Gächter and Riedl, 2005). In Divided, 

however, the only and apparent source of entitlements are contestants’ individual 

contributions to the communal jackpot. Equity theory suggests that contestants prefer 

outcomes to be proportional to inputs (Homans, 1958; Adams, 1965; Walster, Berscheid 

and Walster, 1973). To the best of our knowledge, all tests of equity theory thus far have 

relied on survey data or experiments employing relatively low stakes. With our data, we 

are able to test equity theory in a controlled bargaining setting where the stakes are high. 

We find that equity concerns play an important role in the bargaining process. 

Contestants who contributed more to the communal jackpot claim a larger share, are less 

likely to lower their claim during the bargaining process, and end up with a larger fraction 

of the jackpot. 

At the start of the bargaining process, contestants have 15 seconds to make their case 

and stake their claim to one of the shares. About one in four use this opportunity to make 

a hardball announcement, by adding a statement to their initial claim that they will not 

back down from it. We find that contestants who use this threat do well relative to 

others. However, as a result of increased bargaining costs, hardball announcements do 

not generate higher earnings in an absolute sense and lower the earnings of others. 

The effect of the stakes on behavior in our data is twofold. First, when the stakes are 

relatively high, contestants are more likely to make a hardball announcement. Second, 

the effect of the stakes on the likelihood of concessions is U-shaped: concessions occur 

relatively often at the low and high stake levels, and less so in between. These two effects 

together suggest that at some point, for higher stakes, the increased bargaining costs are 
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outweighing the increased incentive to try and fight for the top share and the possible 

disutility of being worse off than opponents. 

Finally, we obtain a number of potentially interesting null results. There is no evidence of 

a first-mover advantage: the order in which contestants are to make their initial claims 

has no influence on these claims and is neither related to contestants’ subsequent 

behavior nor to their payoffs. Furthermore, we find little evidence that behavior or 

outcomes are related to demographic characteristics including age or gender. 

The chapter proceeds as follows. In Section 3.2, we describe the game show in greater 

detail and discuss our data material. Section 3.3 explains the various explanatory 

variables that we use and discusses related literature. Section 3.4 presents our analyses 

and results. Section 3.5 discusses the results and concludes. 

3.2 Game Show and Data 

Description of Divided 

The format of Divided was developed by the Dutch media firm Talpa, and produced for 

the ITV network in the United Kingdom by Endemol UK. The show debuted on British TV 

in May 2009 and ran until May 2010. A total of 53 episodes were aired, and, at the time 

of writing, no further episodes were aired thereafter. 

Each game is played with three contestants who are strangers to each other, and consists 

of two stages: one in which the contestants team up to accumulate a communal jackpot 

through answering quiz questions, and one in which they have to divide the jackpot 

between them. 

 The first stage lasts for a maximum of five rounds. Round 1 has five questions that are 

worth up to £3,000 each.26 In the subsequent four rounds the number of questions and 

the maximum value per question are 4, 3, 2, 1 and £7,500, £15,000, £30,000, £75,000, 

                                                      
26

 Values in British pounds can be translated into US dollars using a rate of $1,60 per pound, an approximate 

average of the exchange rate during the period in which the show ran. 
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respectively.27 In theory, the maximum potential jackpot is £225,000. How much a 

question actually contributes to the jackpot depends on the team’s speed of answering: 

they have one hundred seconds to agree on an answer, and with each second that passes 

the value of a correct answer falls by one percentage point of its initial value. Incorrect 

answers halve the jackpot, and after three mistakes the team is out of the game. At the 

end of each round, the team can decide to stop and divide the jackpot, but only if they 

make that decision unanimously and within 15 seconds – otherwise, the next round starts 

automatically. Figure 3.1 presents a schematic overview of the first stage of the game. 

The second stage comprises the bargaining element of the game that is central to our 

analysis. The jackpot is split into three unequal shares representing, for example, 60, 30 

and 10 percent of the total jackpot. The largest prize is marked share A, the middle B, and 

the smallest C. The players unanimously have to decide who gets which. First, they each 

receive 15 seconds to make their case and stake their claim to one of the shares. The 

order in which they are asked to do so is determined by their positions on the stage (from 

left to right, for viewers). If they do not agree immediately, they have 100 seconds to 

reach consensus in a free-form discussion. With each second that passes before they 

agree they lose one percentage point of the initial jackpot, and after 100 seconds there is 

nothing left. Halfway, after 50 seconds, there is a time-out. In this brief pause, the 

contestants keep silent and the game show host summarizes the situation by bringing to 

their attention how much they have lost and what is left, or by enumerating the 

remaining values of the three different shares.  

                                                      
27

 Most questions are general knowledge questions of the multiple choice type with one out of three 

answers being correct (such as “which of these flags is the flag of the Netherlands”). In some cases, three 

alternatives need to be put in a particular order (e.g., “starting with the youngest, put these actresses into 

age order”). In the fifth round, the question can have multiple correct alternatives and out of a list of three 

the team must select all of them (e.g., “which of these countries has a currency named the pound”). 
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STOP or PLAY  Dividing stage 
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 ROUND 5: 1 question, 

worth max. £75,000 
  

     
  

Dividing stage   

 
 

Figure 3.1: Flow Chart of the First Stage of the Game 

Three contestants first play a maximum of five rounds of quiz questions in which they team 
up to accumulate a jackpot. Correct answers increase the jackpot, while incorrect answers 
halve it. A third mistake ends the game, and all contestants then leave empty-handed. At the 
end of each of the first four rounds, the team can voluntarily decide to proceed to the second 
stage. In this final part of the game they have to divide the money they accumulated between 
them. 
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The producer has applied a standard procedure to select contestants. A spokeswoman of 

Endemol informed us that anyone could apply to be on Divided by submitting a detailed 

application form. Shortlisted contestants were then invited to an audition in order to 

determine their skill in playing the game, their character, and their suitability to appear 

on a TV game show. Producers watched tapings of these auditions and put together 

teams of three that they deemed to be “good mixes of characters”. Contestants and 

teams were thus not randomly drawn from the general population, but at the same time 

the selection process does not seem to create any obvious confounds in our analyses. 

Data and Summary Statistics 

With permission from Talpa we received copies of all episodes from producer Endemol 

UK. For each episode we collected data on the relevant observables in the show, 

including demographic characteristics of the contestants, the results for each quiz 

question and the individual contributions to the team’s answers, the decisions at the end 

of each round to play on or stop and divide the money, contestants’ claims and how 

these changed during the bargaining phase, whether and when agreement was reached, 

and the individual payoffs. 

Combined, the 53 episodes comprise the games of 56 teams, with some starting in one 

episode and continuing their game in the next. Because 13 teams leave the show early 

after three incorrect answers, only 43 games are used in our analyses. In terms of 

observable demographic characteristics, the composition of the eliminated teams is not 

significantly different from those who did play the bargaining game. Most of the 43 

included teams are mixed-gender teams. Only in 4 exceptions the three contestants are 

all female. Men and women each represent half of the contestant pool. The average 

contestant is 36 years of age, with the youngest being 18 and the oldest 70. The large 

majority (94%) are white, a small minority (9%) are students, about half (49%) are from a 

conurbation with a population exceeding 250,000 inhabitants, and the majority (91%) are 

from outside the area where the recording studios were located (Greater Manchester). 
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Table 3.1 displays some descriptive characteristics for Divided. Quiz questions become 

harder with each round. Even though more skillful teams are more likely to play the later 

rounds, the fraction of correct answers monotonously decreases from 90 percent in 

Round 1 to only 29 percent in Round 5. Out of the thirteen teams not reaching the 

bargaining stage, seven are eliminated in Round 3 (and one or two in each of the other 

four rounds). On average, successful teams decide to start the bargaining over the 

division of the jackpot after three rounds of trivia questions. Mostly, playing on would 

have implied a high risk of losing it all: the modal number of incorrect answers when 

teams voluntarily decide to move to the second stage is two (72%). 

On average, the final jackpot is £33,512. The variation is large: from £7,282 to £115,755. 

In two-thirds of all cases the three shares in the jackpot – A, B, and C – represent close to 

60, 30, and 10 percent, respectively. Only two other subdivisions occur: 70/20/10 and 

65/25/10, both in 16 percent of the cases. The smallest share thus always represents 

about ten percent of the prize money, but the largest and the middle share vary in size. 

The average initial value per jackpot share of £11,171 is many times the amounts typically 

used in laboratory experiments, and also a large sum relative to the median gross weekly 

earnings of £404 in the UK in April 2010 (Office for National Statistics 2010). Overall, 58 

percent of the shares exceed three months of median UK earnings, and 13 percent are 

even larger than the median annual salary. 

Most contestants initially claim the largest share: 79 percent opt for A, 16 percent pick B 

and only 5 percent content themselves with C straight away. As a result, the three 

contestants all claim A about half the time (51%). Only four teams (9%) agree 

immediately. In the end, 22 teams (51%) manage to reach agreement within 50 seconds 

and 35 (81%) reach agreement before the timer has counted down and all the money is 

gone. Eight (19%) fail completely and go home empty-handed. Including the teams that 

agree immediately or leave empty-handed, the average bargaining process lasts 50 

seconds. Correspondingly, the average efficiency rate amounts to 50 percent. Figure 3.2 

displays the distribution of the bargaining duration. 
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Table 3.1: Selected Game Show Characteristics 

The table shows selected characteristics for the British TV game show Divided, extracted from our sample of 

53 episodes. Answer in Round r (r = 1, 2, … ,5) is the status of the team’s answer to a question in Round r, 

with a value of 1 (0) for a correct (incorrect) answer. Jackpot change Round r (r = 1, 2, … ,5) records the 

difference between the size of jackpot at the end and at the start of round r for all teams still in play at the 

end of the round. Quiz rounds measures the number of quiz rounds completed before elimination or 

entering the bargaining stage. Mistakes is the accumulated number of incorrect answers when the team 

enters the bargaining stage. Jackpot describes the size of the jackpot. Prize A (Prize B, Prize C) / jackpot 

expresses the size of the largest (middle, smallest) share as a fraction of the jackpot. Initial claim indicates 

the share that the contestant claims before the timer starts counting down, with a value of 3 (2, 1) for A (B, 

C). Final claim is the share that the contestant claims at the end of the bargaining process, with a value of 3 

(2, 1) for A (B, C). Resolution before t=0 (t=50, t=100) is a dummy variable taking the value of 1 if the team 

reaches agreement before the timer starts (before 50 seconds have passed, before 100 seconds have 

passed). Time to resolution measures the duration of the bargaining process in seconds. Prize won (if non-

zero) records the prize the contestant takes home (if she did not leave empty-handed). Prize won (if non-

zero) / initial jackpot records her prize as a fraction of the initial jackpot (if she did not leave empty-

handed). All monetary values are in UK Pounds (£1.00 ≈ $1.60). 

 

 N Mean Stdev Min Median Max 

All teams       
  Answer Round 1 (correct=1) 280 0.90 0.30 0.00 1.00 1.00 
  Answer Round 2 219 0.87 0.33 0.00 1.00 1.00 
  Answer Round 3 119 0.68 0.47 0.00 1.00 1.00 
  Answer Round 4 37 0.65 0.48 0.00 1.00 1.00 
  Answer Round 5 7 0.29 0.49 0.00 0.00 1.00 
  Jackpot change Round 1 55 9,010 3,135 2,963 9,360 13,170 
  Jackpot change Round 2 54 14,170 8,112 -5,648 16,125 25,500 
  Jackpot change Round 3 34 9,665 19,762 -25,342 5,293 37,950 
  Jackpot change Round 4 17 5,698 31,528 -51,919 -2,280 53,400 
  Jackpot change Round 5 5 -6,319 28,695 -41,040 -17,887 27,750 
Teams eliminated after three mistakes      
  Quiz rounds 13 2.23 1.09 0.00 2.00 4.00 
Teams playing bargaining stage       
  Quiz rounds 43 3.16 1.00 2.00 3.00 5.00 
  Mistakes 43 1.70 0.51 0.00 2.00 2.00 
  Jackpot 43 33,512 26,154 7,282 23,288 115,755 
  Prize A / jackpot 43 0.62 0.04 0.59 0.60 0.70 
  Prize B / jackpot 43 0.27 0.04 0.19 0.30 0.30 
  Prize C / jackpot 43 0.10 0.00 0.10 0.10 0.12 
  Initial claim (A=3, B=2, C=1) 129 2.74 0.53 1.00 3.00 3.00 
  Final claim (A=3, B=2, C=1) 129 2.14 0.83 1.00 2.00 3.00 
  Resolution before t=0 (resolution=1) 43 0.09 0.29 0.00 0.00 1.00 
  Resolution before t=50 43 0.51 0.51 0.00 1.00 1.00 
  Resolution before t=100 43 0.81 0.39 0.00 1.00 1.00 
  Time to resolution (in seconds) 43 50.26 35.39 0.00 50.00 100.00 
  Prize won 129 5,633 8,616 0 2,615 56,895 
  Prize won if non-zero 105 6,921 9,075 135 4,030 56,895 
  Prize won / initial jackpot 129 0.17 0.18 0.00 0.10 0.66 
  Prize won if non-zero / initial jackpot 105 0.20 0.17 0.01 0.15 0.66 
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Figure 3.2: Bargaining Duration 

The histogram shows the distribution of bargaining duration for the 43 teams in our sample, 

where the time frame is divided into ten-second intervals. The leftmost (rightmost) bar 

corresponds to the teams that reach immediate agreement (fail to reach agreement). The 

number of teams not yet in agreement immediately prior to a given duration category is 

displayed at the bottom of the bar. 

 

The stakes-weighted efficiency rate obtained by dividing the sum of earnings across all 

games by the sum of all jackpots is also equal to 50 percent. On average, a contestant 

who plays the bargaining game goes home with £5,633. The 105 contestants who end up 

with a non-zero prize take home £6,921 on average, with a median of £4,030. Would we 

have run this show as an experiment ourselves, the total costs in subject payoffs alone 

would have been £726,706, or about $1.16 million. 

3.3 Variables of Interest and Background 

Demographic Characteristics 

Psychologists have devoted considerable attention to studying individual differences in 

negotiation, especially during the 1970s and the early 1980s. The general picture arising 



STANDING UNITED OR FALLING DIVIDED? 

 

60 

from studies into the roles of demographic and personality characteristics is one of 

contradictory findings, frequent null results, and low explanatory power (Rubin and 

Brown, 1975; Thompson, 1990). For gender, meta-analyses indicate that males are more 

competitive in bargaining (Walters, Stuhlmacher and Meyer, 1998) and better in acquiring 

favorable outcomes (Stuhlmacher and Walters, 1999), but the differences are slim and 

sensitive to the specific experimental conditions employed. 

A more recent study by Elfenbein et al. (2008) does show substantial individual 

differences in bargaining performance between individuals. They had subjects participate 

in multiple negotiations with different counterparts, and find that individual differences 

are persistent but unrelated to a wide range of personality and background variables. 

Bowles, Babcock and McGinn (2005) study the role of structural ambiguity, defined as the 

degree of uncertainty regarding the economic structure of the negotiation. They find that 

gender differences are only present under a high level of structural ambiguity. Such 

ambiguity is largely absent in our show. Altogether, prior work suggests that it is not very 

likely that there are strong effects of demographic characteristics in our data. 

The demographic variables that we study are gender, age and education. Gender is a 

dummy variable that takes the value of one if the contestant is male, Age is a continuous 

variable measuring the contestant’s age in years, and Education is a dummy variable that 

takes the value of one if the contestant has at least a bachelor degree. Contestants 

normally mention their age when they introduce themselves at the start. By contrast, 

they generally do not talk about their education during the show. We therefore estimate 

their level of education on the basis of their occupation and other information they 

provide. Contestants who are currently enrolled in higher education and contestants 

whose job title suggests work experience equivalent to the bachelor level or higher are 

also included in the higher education category. The proper binary values are generally 

clear.28 We have also distinguished between student/non-student, urbanite/villager and 

                                                      
28

 In eight exceptions, we had to estimate a contestant’s age on the basis of her physical appearance and 

other information given in the introductory talk. Seven contestants provided no job or other relevant 

information that we could use to assess their education level; we included these in the lower education 

category. 
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white/non-white contestants, but omit these characteristics from our analyses. There are 

relatively few students (9%) and non-white contestants (6%), and the results for the three 

variables would be insignificant throughout. 

Entitlement Measures 

Entitlements are subjectively-held fairness judgments that people perceive as rights they 

wish to defend, and can arise from history, custom, the status quo, or from the 

contributions that people made to the bundle that has to be divided (Schlicht, 1998). In 

an experiment, Gächter and Riedl (2005) show that such entitlements influence 

bargaining behavior and outcomes in the absence of legal property rights. 

In our show, the three contestants similarly have no legal rights to any of the shares. Still, 

they may feel entitled to a certain share of the jackpot due to their contributions. 

Sociologists and social psychologists have stressed the role of equity as a criterion for 

distributive justice in situations of social interaction (Homans, 1958; Adams, 1965; 

Walster, Berscheid and Walster, 1973). Equity theory states that outcomes are only fair if 

they are proportional to inputs. Imagine two actors, A and B, and denote their outcomes 

by O and their inputs by I, then according to the equity formula a distribution is fair if 

OA/IA = OB/IB. Empirical studies have largely confirmed the idea that people care about 

equity. Many show that inputs and outcomes are positively related (Konow, 2003), and 

some even demonstrate that fairness judgments follow the exact proportionality of 

inputs and outputs posited by equity theory (Schokkaert and Overlaet, 1989; Konow, 

1996; Clark, 1998; Konow, 2000). 

To the best of our knowledge, our study is the first to investigate the role of equity 

concerns in a controlled environment with high stakes. Prior work used surveys or 

experiments with no or relatively low performance-based financial incentives. The high 

stakes of Divided are especially interesting in the light of the argument that fairness 

considerations will be unimportant if the stakes are sufficiently high (Rabin, 1993; Telser, 

1995; Levitt and List, 2007a). 
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Unfortunately, there is not just one single way in which contestants’ contributions to the 

jackpot can be objectively quantified in our game. In fact, there are numerous 

possibilities. As a result, different contestants may adopt different definitions, which 

could be detrimental to the explanatory power of individual measures. Moreover, the 

possible lack of consensus about contributions is potentially aggravated by self-serving 

bias in contestants’ attributions (Camerer and Loewenstein, 1993; Loewenstein et al., 

1993; Babcock et al., 1995; Babcock, Wang and Loewenstein, 1996; Babcock and 

Loewenstein, 1997). Consequently, even if contributions determine entitlements, we may 

not necessarily find strong correlations between contribution measures and behavior and 

outcomes. 

The results we present are for relatively simple contribution measures, in which we credit 

(in)correct answers by the team to the players who argued for (against) the correct 

answer. We distinguish between a composite measure that combines the credits for 

correct and incorrect answers into one metric, and measures that isolate the 

contributions to correct and incorrect answers. We have also investigated various 

measures that account for the money won or lost with a specific question, but the results 

are insensitive to such alternative approaches. 

More specifically, if the group gave a correct answer, the credit for this answer is divided 

equally over all contestants who argued in favor of it. For example, if all three contestants 

argued for the correct answer, then each contestant receives one-third of the credit. If 

two did so, then both receive half of the credit, and if only one argued for the correct 

answer she receives the full credit. Those who did not argue for any particular answer, 

argued for a wrong one, or argued for multiple answers (including or not including the 

correct one) receive no share of the credit.29 If the group gave an incorrect answer, the 

credit is divided equally over those who argued in favor of one of the incorrect answers. 

                                                      
29

 There are three exceptions to this rule: (i) if all contestants argued both for and against the correct 

answer but managed to come to the correct answer together, they are each assigned one-third of the 

credit; (ii) if two contestants argued both for and against the correct answer and came to the correct 

answer together while the third remained silent, then these two share the credit; (iii) if contestants made a 

random guess and this guess turned out to be correct, then they share the credit. 
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Those who did not argue for any particular answer or argued for the correct one only are 

not assigned any credit in this case. 

Based on these credits, we create the following contribution measures: 

- Contribution overall: a contestant’s overall contribution, calculated by adding up 

all credits of a contestant for questions answered correctly and subtracting all 

credits of a contestant for questions answered incorrectly. We normalize by 

dividing by the total number of correct answers minus the total number of 

incorrect answers of the team. 

- Contribution correct: a contestant’s contribution to the team’s correct answers, 

calculated by adding up all credits of a contestant for questions answered 

correctly. We normalize by dividing by the total number of correct answers. 

- Contribution incorrect: a contestant’s contribution to the team’s incorrect 

answers, calculated by adding up all credits of a contestant for questions 

answered incorrectly. We normalize by dividing by the total number of incorrect 

answers. 

Situational Variables 

In addition to the demographic and contribution variables discussed above, we also 

consider the influence of the stakes, the variance across the percentage shares to be 

divided, and the order in which contestants make their initial claims. 

A priori, the effect of stakes can go either way. On the one hand, higher stakes give a 

stronger incentive to fight for the top share and so might lead to bigger claims and more 

impasses. On the other hand, the costs of bargaining are in direct proportion to the 

stakes, which might create an additional incentive to strive for a speedy resolution and to 

easily succumb to others’ pressure if the stakes are high. In addition, contestants may 

experience (dis)utility from being better (worse) off than others and feeling victorious 

(deprived), and it is unclear how these non-monetary costs and benefits are traded off 

against the monetary costs and benefits of bargaining. For flexibility and ease of 
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interpretation we use dummy variables representing the different quartiles of the stake 

distribution. (A quadratic specification yields similar results.) 

Generally, consensus will be more difficult to achieve if the difference between the shares 

is larger. If share A increases relative to the other shares, contestants will have a stronger 

incentive to attempt to take this top share home. Furthermore, the distribution of the 

percentage shares tends to be more unequal than the distribution of the contributions. If 

contestants care about equity, and especially if they care about receiving at least what 

they deserve, larger differences between the shares are likely to make bargaining more 

difficult. As a measure for the divergence between the prizes we use the variance across 

the percentage shares (the standard deviation leads to similar results). 

The order in which contestants express and motivate their initial claim can affect the 

bargaining process. By claiming share A, the first contestant may “force” the others to 

pick a smaller share if they wish to avoid an impasse and the risks and costs it entails. 

Alternating-offer bargaining models and experiments in economics point at the existence 

of such a strategic advantage for the first mover (Rubinstein, 1982; Sutton, 1986; Ochs 

and Roth, 1989). Although structures with offers and counteroffers are often considered 

intuitively appealing because they resemble most real-life negotiations (Muthoo, 1999), 

the strict alternating-offer protocol is a considerable abstraction. It is therefore 

interesting to investigate whether a first-mover advantage also occurs in our setting, 

where contestants’ initial claims are followed by free-form bargaining. We use a dummy 

variable that takes the value of one if the contestant was the first to make her case and 

stake her claim to one of the shares. 

Claim Variables 

Finally, we look at contestants’ announcements to play hardball by stating not to back 

down from their initial claim. We investigate the possible determinants of handball 

announcements, and examine the relations between such statements and actual 

behavior and outcomes. In his influential paper on bargaining, Schelling (1956) stresses 

the importance of commitment strategies. Later work has incorporated the notion of 

commitment into formal bargaining models (Crawford, 1982; Kambe, 1999; Muthoo, 
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1996; Abreu and Gul, 2000; Compte and Jehiel, 2002; Ellingsen and Miettinen, 2008). In 

our bargaining setting, contestants cannot formally commit themselves in the sense that 

they are always free to adjust their claim without incurring monetary costs. However, 

contestants may attempt to convince others that they feel internally committed to a 

specific share. In our analyses of the effect of hardball announcements we control for 

contestants’ initials claims. 

3.4 Analyses and Results 

In this section, we first analyze the determinants of contestants’ initial claims. Next, we 

examine the correlates of hardball announcements and actual concession behavior. Last, 

we analyze the factors driving bargaining outcomes. Table 3.2 presents descriptive 

statistics for variables not yet included in Table 3.1. 

Initial Claims 

Table 3.3 shows the ordered probit regression results for contestants’ decisions to initially 

claim share A (3), B (2) or C (1). We find that a contestant’s contribution to the jackpot 

determines the share that she chooses: those who contributed more are significantly 

more likely to claim a large share. Interestingly, the results for Model 3.2 suggest that 

there is an asymmetry between the types of contributions. When we distinguish 

contributions to correct answers from contributions to incorrect answers, we find that 

the effect is driven by the positive contributions only. The influence of a contestant’s role 

in mistakes is insignificant. Neither the demographic characteristics nor the situational 

variables influence the initial claims. 

Due to the inherent nonlinearities of a probit model, the sizes of the coefficients are not 

easy to interpret. Transformed into marginal effects at the covariate means, we find that 

a 10 percentage-point increase of Contributions overall (correct) increases the likelihood 

of claiming share A by 8.2 (11.1) percentage points, and decreases the likelihood of 

claiming share B or C by 6.0 (8.2) and 2.2 (2.9) percentage points, respectively. 
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Table 3.2: Descriptive Statistics 

The table shows descriptive statistics for our sample of 129 contestants who bargain over their share of the 
jackpot in the final stage of the British TV game show Divided. Age is the contestant’s age measured in 
years. Gender is a dummy variable taking the value of 1 if the contestant is male. Education is a dummy 
variable taking the value of 1 if the contestant has completed or is enrolled in higher education (bachelor 
degree or higher) or has equivalent working experience. Variance shares denotes the variance across the 
three percentage shares to be divided. The contribution variables measure the contestant’s entitlement to 
the communal jackpot. Contribution overall measures her contribution across all quiz questions. 
Contribution correct (incorrect) measures her contribution to the team’s correctly (incorrectly) answered 
questions only. Announce hardball, Opp. announce hardball and Concession are dummy variables taking the 
value of 1 if the contestant stated not to back down from her initial claim, faced at least one opponent who 
had stated not to back down, or gave in during the bargaining process, respectively. Concession is not 
defined if the team agrees immediately or if the contestant initially picked share C. All monetary values are 
in UK Pounds (£1.00 ≈ $1.60). 
 

 N Mean Stdev Min Median Max 

  Age 129 36.16 12.23 18.00 34.00 70.00 
  Gender (male=1) 129 0.50 0.50 0.00 0.00 1.00 
  Education (high=1) 129 0.30 0.46 0.00 0.00 1.00 
  Variance shares 129 0.05 0.01 0.04 0.04 0.07 
  Contribution overall 129 0.33 0.12 0.07 0.33 0.70 
  Contribution correct 129 0.33 0.09 0.10 0.33 0.56 
  Contribution incorrect 129 0.33 0.20 0.00 0.33 1.00 
  Announce hardball (hardball=1) 129 0.23 0.42 0.00 0.00 1.00 
  Opp. announce hardball (hardball=1) 129 0.30 0.46 0.00 0.00 1.00 
  Concession (concession=1) 115 0.50 0.50 0.00 0.00 1.00 

 

 

Hardball Announcements and Concessions 

When agreement is not reached immediately, contestants have to negotiate to 

determine who gets which share. During this negotiation, some will have to make 

concessions to bring agreement within reach. Here we will analyze the behavior of 

contestants during this negotiation process. First, we investigate what determines 

whether contestants make hardball announcements by stating not to back down from 

their initial claim. Second, we investigate the likelihood that a contestant actually makes a 

concession during the bargaining process. 
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Table 3.3: Ordered Probit Regression Results on Initial Claims 

The table displays results from the ordered probit regression analyses of contestants’ decisions to initially 

claim share A (3), B (2), or C (1) in the bargaining stage of the British TV game show Divided. First mover is a 

dummy variable taking the value of 1 if the contestant was the first to make her claim. The stakes quartile 

dummies are used as a flexible specification for the effect of stakes. Definitions of other variables are as 

inTable 3.2. Standard errors are corrected for clustering at the team level, p-values are in parentheses. 

 

 Model 3.1 Model 3.2 

Demographic characteristics     
  Age -0.012 (0.233) -0.013 (0.227) 
  Gender (male=1) -0.187 (0.517) -0.230 (0.428) 
  Education (high=1) 0.005 (0.988) -0.008 (0.980) 
Situational variables     
  First mover (first=1) 0.018 (0.949) 0.007 (0.981) 
  Stakes 2

nd
 quartile 0.279 (0.529) 0.288 (0.510) 

  Stakes 3
rd

 quartile 0.082 (0.820) 0.090 (0.799) 
  Stakes 4

th
 quartile -0.235 (0.515) -0.208 (0.558) 

  Variance shares 12.265 (0.313) 11.742 (0.335) 
Contribution variables     
  Contribution overall 3.007 (0.002)   
  Contribution correct   4.133 (0.004) 
  Contribution incorrect   -0.660 (0.206) 

α1 -0.311 (0.654) -0.218 (0.803) 
α2 0.649 (0.345) 0.750 (0.386) 

Log pseudo-likelihood -74.45 -73.71 
McFadden R

2
 0.075 0.084 

N 129 129 
Number of teams 43 43 

 

 

The columns labeled Model 3.1 and Model 3.2 in Table 3.4 contain the results from the 

probit regression analyses of the decision to make a hardball announcement (1) or not (0) 

at the start of the bargaining stage. The two models are estimated for the subset of 

contestants who initially claimed share A.30 The results for the stakes dummy variables 

indicate that contestants are less likely to make hardball announcements if the jackpot is 

relatively small. The raw frequencies also demonstrate this pattern. In the bottom jackpot 

quartile, where the stakes are €15,195 or lower, only 13 percent of the contestants who 

                                                      
30

 Only one of the contestants who claimed share B made a hardball announcement. Including contestants 

who claimed share B does not influence our results. 
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claim share A accompany their claim with a hardball announcement. For the second, third 

and fourth quartile, this percentage is 32, 25 and 39 percent, respectively. Furthermore, 

the results for Variance shares indicate that hardball announcements are more likely if 

the differences between the shares are larger. If the share distribution is 60/30/10, 

roughly 17 percent of the contestants make a hardball announcement. For the more 

extreme 65/25/10 and 70/20/10 divisions, the proportions of hardball announcements 

are 24 and 48 percent, respectively. Demographic and contribution variables do not 

influence the likelihood that a contestant makes a hardball announcement. 

We now turn to contestants’ actual concession behavior. Models 3 through 6 display the 

results from the probit regression analyses on contestants’ decisions to lower their claim 

(1) or not (0). Model 3.3 and Model 3.4 are restricted to variables that are exogenous to 

the bargaining stage, while Model 3.5 and Model 3.6 also include initial claims and 

hardball announcements. The analysis is performed for the subset of contestants who 

initially claimed share A or B and did not reach agreement immediately, as only these 

contestants have the opportunity to lower their claim. 

The coefficients for the stakes dummies suggest a U-shaped effect of the jackpot size. For 

observations from the second and third quartile, the likelihood of a concession is 

significantly smaller than for observations from the first. In the first and fourth quartile, 

concessions are approximately equally likely. The proportions of contestants lowering 

their claims in the four quartiles are 63%, 43%, 41% and 55% respectively. 

The way the jackpot is divided across the three shares A, B, and C has no significant 

influence here. The demographic variables are also insignificant. For the effect of 

contributions, however, we find an interesting asymmetry. While the initial claims are 

especially driven by positive contributions, concessions turn out to be mostly determined 

by negative contributions. The Contribution overall variable does not reach significance, 

but when we distinguish between positive and negative contributions, we find that 

Contribution incorrect is significant. In terms of marginal effects, a 10 percentage-point 

increase in Contribution incorrect implies a 7.2 percentage-point increase in the likelihood 

of a concession. 



 

 

Table 3.4: Probit Regression Results on Hardball Announcements and Concessions 

The table displays results from the probit regression analyses on contestants’ hardball announcements (Model 3.1 and 2) and concessions (Model 3.3, 4, 5 and 

6) in the bargaining stage of the British TV game show Divided. The hardball (concession) analyses are performed on the subset of contestants who initially 

claimed share A (who initially claimed share A or B and did not reach agreement immediately). Definitions of variables are as in the previous tables. Standard 

errors are corrected for clustering at the team level, p-values are in parentheses. 

 

 Hardball announcements  Concessions 

 Model 3.1 Model 3.2  Model 3.3 Model 3.4 Model 3.5 Model 3.6 

Demographic characteristics              
  Age -0.008 (0.553) -0.007 (0.625)  0.000 (0.998) -0.007 (0.562) -0.003 (0.798) -0.009 (0.433) 
  Gender (male=1) -0.161 (0.576) -0.123 (0.696)  0.080 (0.773) -0.096 (0.715) 0.005 (0.987) -0.184 (0.522) 
  Education (high=1) 0.011 (0.972) 0.033 (0.920)  -0.003 (0.992) -0.057 (0.852) 0.064 (0.847) 0.034 (0.920) 
Situational variables              
  First mover (first=1) -0.106 (0.701) -0.121 (0.664)  0.179 (0.559) 0.300 (0.359) 0.154 (0.623) 0.278 (0.394) 
  Stakes 2

nd
 quartile 0.942 (0.040) 0.934 (0.044)  -0.529 (0.029) -0.532 (0.032) -0.503 (0.056) -0.535 (0.046) 

  Stakes 3
rd

 quartile 0.767 (0.092) 0.746 (0.106)  -0.583 (0.009) -0.545 (0.018) -0.541 (0.013) -0.508 (0.022) 
  Stakes 4

th
 quartile 1.032 (0.015) 1.009 (0.021)  -0.239 (0.302) -0.156 (0.514) -0.175 (0.479) -0.090 (0.720) 

  Variance shares 30.679 (0.033) 31.002 (0.032)  -6.632 (0.524) -9.183 (0.385) -4.396 (0.639) -7.050 (0.461) 
Contribution variables              
  Contribution overall -0.006 (0.996)    -1.273 (0.273)   -1.620 (0.201)   
  Contribution correct   -0.533 (0.772)    0.085 (0.961)   -0.539 (0.764) 
  Contribution incorrect   -0.005 (0.994)    1.801 (0.035)   2.001 (0.027) 
Claim variables              
  Initial claim A (A=1)          0.388 (0.239) 0.524 (0.143) 
  Announce hardball (hardball=1)          -0.985 (0.002) -1.000 (0.003) 
  Opp. announce hardball (hardball=1)         0.491 (0.098) 0.499 (0.099) 
Constant -2.696 (0.008) -2.538 (0.029)  0.993 (0.151) 0.097 (0.914) 0.701 (0.316) -0.273 (0.750) 

Log pseudo-likelihood -53.84 -53.79  -76.59 -74.24 -69.87 -67.48 
McFadden R

2 
0.102 0.103  0.039 0.069 0.123 0.153 

N 102 102  115 115 115 115 
Number of teams 43 43  39 39 39 39 
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Model 3.5 and Model 3.6 also incorporate the effects of initial claims and hardball 

announcements. Contestants who make hardball announcements turn out to put their 

money where their mouth is. A hardball announcement indeed decreases the likelihood 

of making a concession. A player who says that she will not budge is approximately 37 

percentage points less likely to make a concession. Hardball announcements are also 

considered as credible threats: when contestants face an opponent who made a hardball 

announcement, they are approximately 20 percentage points more likely to make a 

concession. Further, concessions are equally likely for players who initially picked the top 

prize and for those who picked the middle prize. 

Final Payoffs 

A contestant’s bargaining outcome can be defined in two different ways: relative to 

others and relative to the initial size of the jackpot. First, we consider payoffs relative to 

those of the opponents. That is, we look at the share (A, B or C) that a contestant ends up 

with. Players who fail to reach agreement and go home empty-handed are excluded from 

this analysis. Note that the stakes and the differences between the three percentage 

shares cannot influence the likelihood of receiving a particular share, given the fact that 

all shares are awarded and that these factors are constant at the team level. 

Table 3.5 displays the results. Model 3.1 and Model 3.2 are restricted to variables that are 

exogenous to the bargaining stage, while Model 3.3 and Model 3.4 also include initial 

claims and hardball announcements. In line with previous analyses, the restricted models 

show that those who contributed more to the jackpot are more likely to end up with a 

larger share. This effect is driven by both positive and negative contributions. The 

extended models similarly demonstrate the relation between contributions and 

bargaining outcomes. Because the effect of positive contributions on the bargaining 

process is reflected in the initial claims, including initial claims in the model reduces the 

significance of the measure for positive contributions. As before, we find no effect of 

demographic characteristics and there is no first-mover advantage. 
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Table 3.5:Ordered Probit Regression Results on Share Won 

The table displays results from the ordered probit regression analyses on contestants’ final claims A (3), B 

(2) or C (1) when agreement is reached in the bargaining stage of the British TV game show Divided. 

Definitions of variables are as in the previous tables. Standard errors are corrected for clustering at the 

team level, p-values are in parentheses. 

 

 Model 3.1 Model 3.2 Model 3.3 Model 3.4 

Demographic characteristics         
  Age -0.011 (0.357) -0.010 (0.386) 0.000 (0.979) 0.002 (0.887) 
  Gender (male=1) -0.011 (0.956) 0.066 (0.748) 0.138 (0.521) 0.245 (0.275) 
  Education (high=1) -0.020 (0.925) -0.003 (0.989) -0.146 (0.590) -0.120 (0.659) 
Situational variables         
  First mover (first=1) -0.132 (0.687) -0.181 (0.590) -0.115 (0.735) -0.160 (0.639) 
Contribution variables         
  Contribution overall 2.871 (0.002)   2.300 (0.030)   
  Contribution correct   2.969 (0.037)   2.216 (0.167) 
  Contribution incorrect   -1.260 (0.049)   -1.243 (0.043) 
Claim variables         
  Initial claim A (A=1)     6.302 (0.000) 5.927 (0.000) 
  Initial claim B (B=1)     5.780 (0.000) 5.511 (0.000) 
  Announce hardball (hardball=1)     0.889 (0.011) 0.869 (0.017) 
  Opp. announce hardball (hardball=1)    -0.522 (0.018) -0.547 (0.014) 

α1 0.438 (0.186) 0.069 (0.910) 6.288 (0.000) 5.504 (0.000) 
α2 1.357 (0.000) 0.996 (0.107) 7.393 (0.000) 6.622 (0.000) 

Log pseudo-likelihood -110.10 -109.52 -94.37 -93.70 
McFadden R

2
 0.046 0.051 0.182 0.188 

N 105 105 105 105 
Number of teams 35 35 35 35 

 

The results for Model 3.3 and 4 show that contestants who announce to play hardball 

fare better than others. In terms of marginal effects, those who announce not to back 

down are approximately 30 percentage points more likely to go home with the top share 

and 29 percentage points less likely to go home with the bottom share. At the same time, 

if an opponent makes a hardball announcement, this has a negative effect on a 

contestant’s final share. More specifically, it decreases the likelihood of receiving the top 

share by 15 percentage points, and increases the likelihood of ending up with the bottom 

share by 21 percentage points. 

These analyses of contestants’ final claims ignore the efficiency of the bargaining process. 

A contestant may feel like a winner if she secured more money than her opponent after 

fighting for share A for 70 seconds, but if she could have won more money in an absolute 

sense by directly going for share B, then objectively the latter approach would have been 
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the better strategy (ex-post). Next, we therefore analyze the money that players take 

home as a fraction of the initial jackpot. 

Table 3.6 shows the results, again for two models with exogenous variables only and for 

two extended models with variables for initial claims and hardball announcements. As in 

the previous analyses, those who contributed more to the jackpot secure a larger payoff. 

Again the effect is non-trivial: a 10 percentage-point increase in contribution increases 

earnings by approximately 4 percent of the initial jackpot. 

Hardball announcements clearly frustrate the bargaining process. The previous analysis 

showed that contestants who announce hardball do well relative to others, but the 

present one points out that these players do not go home with larger amounts in an 

absolute sense. Their opponents, however, are significantly worse off from both a relative 

and an absolute perspective. 

The stakes dummy variables point at a U-shaped effect of the initial jackpot: contestants 

generally fare better at the top and bottom stakes quartiles and less so in between. This 

result is in line with the U-shaped pattern for concession behavior: concessions occur 

more often at the top and bottom stakes quartiles, which shortens the time to resolution 

for these quartiles. In addition, contestants are less likely to reach a speedy consensus if 

the differences between the prizes are larger. 

This final analysis is the sole analysis that generates a significant effect for a demographic 

variable: older contestants take home a smaller part of the initial size of the pie. Again, 

there is no evidence of a first-mover advantage. 
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Table 3.6: OLS Regression Results on Prize Won / Initial Jackpot 

The table displays results from the OLS regression analyses on the fraction of the initial jackpot that the 

contestant takes home in the British TV game show Divided. Definitions of variables are as in the previous 

tables. Standard errors are corrected for clustering at the team level, p-values are in parentheses. 

 
 Model 3.1 Model 3.2 Model 3.3 Model 3.4 

Demographic characteristics         
  Age -0.003 (0.022) -0.003 (0.032) -0.002 (0.030) -0.002 (0.041) 
  Gender (male=1) -0.019 (0.484) -0.017 (0.551) -0.014 (0.614) -0.012 (0.682) 
  Education (high=1) -0.017 (0.620) -0.017 (0.641) -0.025 (0.496) -0.025 (0.495) 
Situational variables         
  First mover (first=1) -0.004 (0.899) -0.009 (0.809) 0.002 (0.951) -0.001 (0.963) 
  Stakes 2

nd
 quartile -0.089 (0.056) -0.089 (0.057) -0.083 (0.124) -0.082 (0.127) 

  Stakes 3
rd

 quartile -0.082 (0.063) -0.083 (0.061) -0.079 (0.126) -0.079 (0.123) 
  Stakes 4

th
 quartile 0.020 (0.655) 0.019 (0.671) 0.033 (0.531) 0.032 (0.543) 

  Variance shares -4.037 (0.009) -4.002 (0.011) -3.769 (0.032) -3.726 (0.036) 
Contribution variables         
  Contribution overall 0.388 (0.000)   0.374 (0.001)   
  Contribution correct   0.437 (0.007)   0.436 (0.003) 
  Contribution incorrect   -0.114 (0.092)   -0.115 (0.086) 
Claim variables         
  Initial claim A (A=1)     0.071 (0.059) 0.079 (0.049) 
  Initial claim B (B=1)     0.072 (0.091) 0.089 (0.068) 
  Announce hardball (hardball=1)     0.053 (0.175) 0.054 (0.170) 
  Opp. announce hardball (hardball=1)    -0.068 (0.050) -0.070 (0.050) 
Constant 0.285 (0.000) 0.306 (0.001) 0.215 (0.007) 0.223 (0.009) 

Adjusted R
2
 0.123 0.117 0.152 0.148 

N 129 129 129 129 
Number of teams 43 43 43 43 

 

3.5 Conclusions and Discussion 

The British TV game show Divided offers the opportunity to study high stakes bargaining 

in a controlled setting and for a diverse subject pool. In line with equity theory (Homans, 

1958; Adams, 1965; Walster, Berscheid and Walster, 1973), we find strong evidence that 

contestants derive entitlements from their contributions to the jackpot. Interestingly, 

positive and negative contributions appear to have different effects: positive 

contributions drive contestants’ opening claims, while negative contributions are 

important for concessions during the subsequent free-form negotiation process. One 

explanation for this asymmetry is that those with negative contributions initially consider 

such contributions to be innocent mistakes for which they should not be held 

accountable, and that subsequent communication works to promote a more objective, 
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less self-biased view. The asymmetry is, however, also in line with query theory (Johnson, 

Häubl and Keinan, 2007): contestants’ initial focus on positive contributions occurs when 

the problem is framed in positive terms (“what share do you deserve?”), but switches to 

negative contributions when the framing becomes negative (“who should move their 

claim downward?”). 

Announcing a hardball strategy of not backing down turns out to not be beneficial. 

Contestants who used this threat do well relative to others, but they do not manage to 

get larger amounts in an absolute sense. Their opponents are worse off, because 

contestants who make a hardball announcement also walk the walk: they are less likely to 

make a concession, and thus frustrate the team’s chances of coming to resolution. The 

inefficacy of a hardball approach is in line with game-theoretic reasoning, as cheap talk 

should not yield any advantage if actors’ interests are not sufficiently aligned (Crawford 

and Sobel, 1982) and neither should simple strategies that anyone can follow. 

We find that contestants are more likely to announce a hardball strategy if the stakes are 

higher. Actual concession behavior appears to be affected by the stakes in a non-

monotonic fashion. The likelihood of concessions in our sample is U-shaped: contestants 

display a higher propensity to make concessions at the lowest and highest stakes 

quartiles, and less so in between. As a result, consensus is more easily reached if the 

jackpot is at the lower or upper quartile, and contestants retain a larger share of the 

jackpot in these cases. 

We find little to no effect of background characteristics on bargaining behavior and 

outcomes. This is in line with earlier results that demographic characteristics hardly 

explain any variance in bargaining performance (Rubin and Brown, 1975; Thompson, 

1990; Walters, Stuhlmacher and Meyer, 1998; Stuhlmacher and Walters, 1999; Elfenbein 

et al., 2008), except in situations that have substantial structural ambiguity (Bowles, 

Babcock and McGinn, 2005). Furthermore, there seems to be no first-mover advantage. 

Those who get to make their claim early do not earn more. This suggests that first-mover 

advantages might be restricted to bargaining games of alternating offers. 
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We conclude with some thoughts on the generalizability of our results. There are three 

possible grounds for external validity concerns: the specific bargaining game, possible 

selection effects, and the unusual decision environment. 

First, the bargaining game indeed has some notable characteristics. Presumably, it was 

designed to make reaching consensus relatively difficult in order to promote the 

entertainment value of the show. Four characteristics spring to mind: the unanimity rule 

for reaching a decision, the use of face-to-face free-form communication, the indivisibility 

of the shares to be divided, and the continuous costs to bargaining. These aspects will 

undoubtedly have their effect on the bargaining process. 

The unanimity rule most likely makes it more difficult to reach consensus. Miller and 

Vanberg (2013) conducted an experiment with a highly structured bargaining game in 

which three subjects had to agree on the division of a joint pie by either the unanimity 

rule or the majority rule, and find that the effect of requiring unanimity in itself is 

aggravated by an increased tendency among subjects to reject offers. Communication has 

been found to affect bargaining in several ways. Bazerman et al. (2000) review the 

negotiation literature and conclude that face-to-face communication has the potential to 

foster agreements by development of rapport, decrease misunderstandings, and increase 

truth telling. At the same time, they find that face-to-face communication can lead to 

more pressure tactics and impasses if tensions are high. 

We are unaware of studies that examine the impact of indivisible shares and continuous 

costs to bargaining. For indivisible shares, the effect is probably highly dependent on the 

sizes of the differences between the shares. Dividing three equal shares will lead to 

immediate consensus under all circumstances. The highly unequal shares used in Divided, 

however, are likely to hamper agreement in comparison with less restrictive division 

rules. Continuous costs to bargaining probably increase tension. More discrete rules, such 

as a drop of 10 percentage points every 10 seconds or a once-and-for-all destruction of 

the jackpot after 100 seconds with no destruction in between, would have given subjects 

more time to negotiate before cost had to be incurred. It also seems reasonable to 

assume that the bargaining costs lead to some kind of sunk-cost effect, making players 
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less willing to back down from their initial claim. Overall, these four characteristics of our 

specific bargaining game thus appear to make consensus formation relatively difficult. On 

the other hand, aspects such as the large incentives (as compared to standard 

experiments) and the fact that the team has cooperated before playing the game may 

work to promote or facilitate consensus formation. 

The main focus of our analyses has not been on the general level of consensus. Rather, 

we focused on comparative statics, and it is unclear to what extent the specific bargaining 

game influences the effects of variables such as contributions and stakes. 

Communication, for example, might increase the importance of contributions by allowing 

subjects to reach consensus regarding who has earned which share, but it can also 

hamper the role of contributions because it allows for more pressure tactics. While such 

sensitivities are an interesting domain for further research, face-to-face communication, 

continuous cost to bargaining, and the requirement of a unanimous decision are features 

that our game show environment shares with many real world settings. 

The second generalizability concern relates to possible selection effects. Contestants self-

select into auditions and are then selected by producers of the show to play the game for 

real. It is unclear to which degree such selection processes may have influenced our 

findings. Still, our sample varied widely in terms of background characteristics, seemingly 

forming a cross-section of middle-class society. It is much closer to a cross-section of the 

general population than university students commonly employed in conventional 

laboratory experiments. Furthermore, take note that selection procedures are not unique 

to game shows, and form an intrinsic part of almost any field or laboratory setting. 

Last, a game show setting may impact behavior. While there is no live studio audience, 

contestants know that many people will observe their behavior on TV. This makes that 

the bargaining game is not strictly one-shot, as contestants’ behavior and outcomes 

might affect their reputation. The specific setting provides an incentive to fight harder, as 

one may not want to appear weak on TV. However, being stubborn and then 

consequently loosing (a large fraction of) the jackpot is also an outcome to be avoided. 

Relatedly, the game show format might create a desire to “win the contest” and go home 
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with more money than fellow team members, but contestants may also interpret the 

“contest” as a challenge to come to resolution with the people they teamed up with. 

We do not consider the possible influences of the specific decision environment to render 

our findings less interesting or less predictive of behavior in other settings. In laboratory 

and real-life situations there is normally always some degree or form of scrutiny, and 

each specific setting and contextual aspect will cause particular motives to be more 

prominent than others. For example, people normally approach bargaining for a pay 

increase at work differently from bargaining with a stranger over a second-hand car, and 

differently from bargaining with a spouse over who should do the ironing. That is not to 

say that we cannot learn anything more general from observing behavior in specific 

settings. We cannot study behavior under each and every possible set of conditions, and 

the optimal approach to assess the robustness and generalizability of findings is therefore 

to study behavior in a limited number of diverging settings. The contribution of the 

present chapter should be evaluated in this light. We employed the unique features of a 

TV game show to study bargaining behavior outside the laboratory and for stakes that are 

impossible to replicate in a behavioral laboratory. 

One of our main results is that entitlements derived from contributions are an important 

driving force behind bargaining behavior and outcomes. The importance of moral 

property rights in our high-stakes environment refutes the commonly held view that 

fairness concerns are unimportant when monetary incentives are sufficiently large. 

Another main result is perhaps in the inefficacy of adopting a hardball strategy to obtain a 

bigger share of the pie. Due to bargaining costs, the total pie in our game shrinks such 

that there is no advantage left for the threatening party and others are worse off. The 

recent political impasse in the US may serve as an illustration of the broader relevance of 

this finding. In a very different context than our show, pie-decreasing hardball moves of 

opposing politicians led to a costly shut down of the government and unprecedented 

threats to default on the government’s debt. 
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Chapter 4  | Risky Choice in the Limelight 

 

 

 

This chapter examines how risk behavior in the limelight differs from that in 

anonymity. In two separate experiments we find that subjects are more risk 

averse in the limelight. However, risky choices are similarly path dependent in 

the different treatments. Under both limelight and anonymous laboratory 

conditions, a simple prospect theory model with a path-dependent reference 

point provides a better explanation for subjects’ behavior than a flexible 

specification of expected utility theory. Additionally, our findings suggest that 

ambiguity aversion depends on being in the limelight, that passive experience 

has little effect on risk taking, and that reference points are determined by 

imperfectly updated expectations. 
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4.1 Introduction 

Individual decision-making is at the core of both economics and psychology, and 

continuous research efforts have resulted in a rich literature. Still, a persistent concern 

about empirical research in these fields is that specific contextual aspects may restrict the 

generalizability of findings. Each laboratory or field setting provides its own unique 

context that cannot be disregarded a priori (Loewenstein, 1999; Levitt and List, 2007a, 

2007b; Falk and Heckman, 2009; Camerer, 2011). One particular aspect of the context is 

the degree of public scrutiny under which a decision is made. Psychological research in 

this area indicates that the mere presence of others can facilitate performance in simple 

tasks but impair it in more complex ones (Zajonc, 1965; Bond and Titus, 1983), and that 

the expectation that one may have to justify one’s decisions to observers creates a desire 

to make decisions that others will judge favorably (Lerner and Tetlock, 1999). 

Economists have demonstrated relatively little interest in context effects, and their 

studies on public scrutiny have primarily focused on social preferences (Levitt and List, 

2007a, 2007b). Surprisingly, whether and how public scrutiny influences risky choice has 

received relatively little attention from both economists and psychologists.31 In our 

professional and private lives we make decisions under varying degrees of scrutiny, and 

mapping the influence of this contextual aspect is therefore an important step in further 

broadening the scope of our understanding of risky choice. Also, from a methodological 

point of view, it is useful to know to what extent findings on risk preferences from a 

behavioral laboratory generalize to real world situations with more scrutiny, and whether 

risky choices observed in a high-scrutiny field setting resemble those in a situation with 

more privacy. 

                                                      
31

 Weigold and Schlenker (1991) find evidence that subjects display a degree of risk tolerance they believe 

to be judged favorably by observers. Vieider (2009) finds that loss aversion decreases when subjects are 

made accountable. He attributes this finding to the ease with which his subjects could recognize loss 

aversion as a bias and their wish to avoid negative judgments that would result from displaying this bias. 

Neither of these two studies used real incentives, which makes it costless for subjects to make a choice that 

is not truly preferred but thought to be more justifiable in the eyes of onlookers. For hypothetical and 

incentivized tasks, Miller and Fagley (1991), Takemura (1993, 1994), and Vieider (2011) find that the effect 

of framing outcomes as gains or losses decreases when subjects are made accountable. 



INTRODUCTION  

 

81 

A special example of the relevance of our research question is in the growing literature 

that studies decision making under risk on the basis of television (TV) game shows. Shows 

that have been used include Card Sharks (Gertner, 1993), Jeopardy! (Metrick, 1995), 

Illinois Instant Riches (Hersch and McDougall, 1997), Lingo (Beetsma and Schotman, 

2001), Hoosier Millionaire (Fullenkamp, Tenorio and Battalio, 2003), Who Wants to Be a 

Millionaire? (Hartley, Lanot and Walker, 2006), and Deal or No Deal (Post et al., 2008). 

These shows offer unique opportunities to increase our understanding of how individuals 

and households make significant risky decisions such as stock market investments and the 

purchase, insurance, and financing of property.32 The large prizes in game shows enable 

researchers to study behavior for stakes that are considerably more consequential than 

those typically employed in experiments, and the simple and well-defined decision 

problems impose fewer auxiliary assumptions than uncontrolled field data. Also, even 

though selection effects are inevitable, game show contestants generally resemble a 

cross-section of the general population more closely than subjects in most conventional 

experiments. Given the attractive and distinguishing combination of features that game 

shows can have, more game show-based papers are likely to appear. Some critics, 

however, question the external validity of game show research, arguing that contestants’ 

choices might be influenced by pressures from the audience and distress from being in 

the limelight. As noted by Gertner (1993, p.519), for example: “if contestants care about 

the entertainment they provide, they may make riskier decisions than they otherwise 

would.” 

First and foremost, the present chapter contributes to the risky choice literature by 

comparing risky decision making in and out of the limelight. Next to this, it also adds 

some evidence to the literature on ambiguity aversion by comparing the effect of 

ambiguity under these two conditions, and to a recent literature on the effect of 

experience on choices by comparing the behavior of subjects with and without passive 

                                                      
32

 Game shows have been deployed on various other research domains as well, including strategic decision 

making (Bennett and Hickman, 1993; Berk, Hughson and Vandezande, 1996; Tenorio and Cason, 2002), 

discrimination (Levitt, 2004; Antonovics, Arcidiacono and Walsh, 2005) and cooperative behavior (List, 

2004a, 2006; Belot, Bhaskar and van de Ven, 2010a; Oberholzer-Gee, Waldfogel and White, 2010; van den 

Assem, van Dolder and Thaler, 2012). 
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experience. Finally, our estimations of structural models of choice add to the literature on 

reference point formation. 

To analyze how risky choice in the limelight differs from that under standard 

experimental conditions, we conducted two incentivized experiments that mimicked the 

game of the TV show Deal or No Deal (henceforth: DOND). The next section describes 

DOND and explains why we used this particular game. In both experiments, we employed 

laboratory and limelight treatments. In the laboratory treatments, subjects made 

decisions in the anonymity of a standard, computerized laboratory setting as typically 

employed in economic experiments. In the limelight treatments, subjects made their 

choices in a simulated game show environment, which included a live audience, a game 

show host, and video cameras. 

By using a game show environment to create public scrutiny, we also shed light on the 

validity of game shows as natural risky choice experiments. For domains other than risky 

choice, a number of studies have investigated this specific issue before. Tenorio and 

Cason (2002), Healy and Noussair (2004), and Antonovics, Arcidiacono and Walsh (2009) 

observe how students play The Price is Right and The Weakest Link under laboratory 

conditions and find that their behavior or performance is similar to that of contestants in 

the TV show. 

We consider two ways in which the differences between the treatments can influence 

risky choice. First, we investigate whether the general degree of risk taking differs 

between treatments. Second, we examine whether the pattern of path-dependent risk 

behavior is different. Earlier DOND-based research has found that people show path 

dependency in the sense that they take more risk if the game develops either 

substantially worse or substantially better than earlier expectations (Post et al., 2008). 

These two effects are known as the break-even and house-money effect (Kameda and 

Davis, 1990; Thaler and Johnson, 1990). 

If only the general degree of risk taking is affected, this is problematic only in so far as risk 

preferences are measured in one setting and used to derive point predictions about 
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behavior in another setting. It would imply that it is inappropriate to apply the same risk 

preference parameters across different settings. If, however, the pattern in risky choice is 

different, the repercussions are potentially more involved, because it would mean that 

we cannot use the same type of risky choice model across different settings. 

Our results show that subjects are more risk averse in the limelight than in the anonymity 

of a typical behavioral laboratory. Simple statistics, probit analyses, and structural choice 

model estimations consistently lead to this conclusion for both our experiments. The 

estimates for structural choice models suggest that the impact of the limelight on risk 

preference parameters is substantial. 

At the same time, however, we find a similar pattern of path-dependent risk behavior in 

the laboratory and limelight treatments. Under both experimental conditions, our simple 

prospect theory-inspired model (Kahneman and Tversky, 1979; Tversky and Kahneman, 

1992) with a path-dependent reference point provides a better explanation for subjects’ 

behavior than a flexible specification of expected utility theory. Although our study is not 

designed to point out whether prospect theory or expected utility theory has greater 

descriptive power and any conclusion in this direction would depend on the precise 

empirical implementation of these two theories, it does show that the combination of 

elements included in our prospect theory model comes closer to the appropriate 

descriptive model of risky choice, and that this finding holds both in and out of the 

limelight. 

Three other noteworthy findings from our analyses are related to ambiguity aversion, the 

effect of experience, and reference-point formation. First, a design difference between 

the two sets of experiments that we conducted reveals that the effect of ambiguity 

depends on being in the limelight or not. Under limelight conditions, subjects take less 

risk in tasks where they experience some uncertainty about the distribution of possible 

outcomes than in tasks where the distribution is known. This difference in behavior is 

absent under laboratory conditions. Second, passive experience does not seem to affect 

loss aversion or risk aversion in general. One of our experiments featured a comeback 

treatment with subjects who had seen others perform the experimental task at an earlier 
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occasion. Comparisons between treatments show that their behavior is largely similar to 

that of inexperienced subjects. Last, we find evidence that preferences are based on 

imperfectly updated expectations. For all treatments, the parameter estimates of our 

prospect theory model indicate that subjects’ reference points are influenced by their 

initial beliefs about task outcomes. 

The chapter proceeds as follows. Section 4.2 describes the design, procedure and results 

of our first experiment. Section 4.3 reports on our second experiment. Section 4.4 

discusses our results and concludes. 

4.2 First Experiment 

Design and Procedure 

The experiment followed the basic setup of the popular TV game show Deal or No Deal. In 

DOND, contestants are repeatedly asked to make choices between a sure amount and a 

risky lottery. At the start, a contestant chooses one case out of a total of 26 numbered 

(brief)cases. Each closed case contains one of the game’s 26 randomly distributed and 

widely ranging monetary amounts. After selecting this personal case, a contestant has to 

select six of the other cases to be opened. The prizes in these cases are revealed and are 

no longer in play, thereby increasing the information on the prize in the contestant’s 

personal case. After the contents of six cases have been revealed, an imaginary “banker” 

offers to buy the contestant’s case. If the contestant decides “Deal”, she receives the 

amount offered and the game ends. If the contestant decides “No Deal”, the game 

continues and she has to open five additional cases. Based on the then remaining set of 

15 prizes, the banker makes a new offer. The contestant again has to decide either “Deal” 

or “No Deal”. After a “No Deal”, this process continues either until the contestant accepts 

an offer, or until no case other than the contestant’s own case is left and she receives the 

content of this case. The game lasts for a maximum of nine rounds. The number of cases 

to be opened in each round is 6, 5, 4, 3, 2, 1, 1, 1, and 1, reducing the number of 

remaining cases from 26 to 20, 15, 11, 8, 6, 5, 4, 3, 2, and finally 1. Figure 4.1 presents a 

schematic overview of the course of the game. 
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Figure 4.1: Flow Chart of the Game 

In each of a maximum of nine game rounds, the subject chooses a given number of cases to 

be opened. After the prizes in the chosen cases are revealed, an imaginary banker offers to 

buy the subject’s own case. If the subject accepts the offer (“Deal”), she receives the amount 

offered and the game ends. If the subject rejects the offer (“No Deal”), play continues and she 

enters the next round. If the subject decides “No Deal” in the ninth round, she receives the 

prize in her own case. (Taken from Post et al., 2008.) 
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In the experiment, subjects played DOND for real incentives in either a computer 

laboratory (laboratory treatment) or in a classroom mimicking a TV studio (limelight 

treatment). The prizes in the experiment were equal to the prizes used in the original 

Dutch edition of the TV show, scaled down by a factor of 10,000. The smallest amounts 

were rounded up to one cent. The resulting set of prizes was €0.01 (9 times due to 

rounding up); €0.05; €0.10; €0.25; €0.50; €0.75; €1; €2.50; €5; €7.50; €10; €20; €30; €40; 

€50; €100; €250; €500. The distribution of the prizes was clearly positively skewed, with a 

median of €0.63 and a mean of €39.14. Figure 4.2 demonstrates how the game was 

shown to subjects. 

The laboratory treatment was conducted as a typical economic experiment. Subjects 

played DOND in the quiet, controlled environment of a computerized laboratory, and 

made their choices on a private computer terminal. The setting was designed to minimize 

potential scrutiny from other subjects. In particular, computers surrounding a given 

subject were empty and a sunken screen and dividers were used to ensure privacy. 

The limelight treatment was designed to replicate a TV studio as closely as possible. The 

experiment took place in a theater-style lecture room. Subjects made their decisions on a 

lightened stage in front of a live audience, consisting of fellow students and some 

university employees. They were guided through the experiment by a game show host, 

played by a popular lecturer. Furthermore, video cameras were pointed at the subject on 

stage. The game was shown on a computer monitor in front of the subject and projected 

on a large screen for the audience. Members of the audience were allowed to applaud, 

shout hints, and the like. Before a game started, the host had a brief introductory talk 

with the subject on stage, covering basic topics such as the subject’s name, age, favorite 

sports, and other interests. 
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Figure 4.2: Example of the Game as Displayed on the Experimental Screens  

The various prizes are listed in the columns on the left and right side. Prizes that are 
eliminated are blurred. The current bank offer is shown at the top, and the subject or host 
can select either “Deal” or “No Deal” by clicking on the respective button. The remaining 
cases are shown in the center of the screen, while the subject’s own case is in the bottom 
left-hand part. This example shows the two options open to a subject after opening six cases 
in the first round: accept a bank offer of €5.44, or continue to play with the remaining 20 
cases. Note that a comma is used to separate decimals here, as this is common for our 
subjects. 
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The data from the limelight treatment has previously been analyzed in Post et al. 

(2008).33 To facilitate comparisons with the actual game show in that study, each subject 

replayed one of the first 40 scenarios from the Dutch version of DOND: independent of 

the order in which a subject opened the numbered cases, the order in which the prizes 

and the offers appeared corresponded exactly to the original scenario. In addition, we 

matched the gender of subjects and TV contestants: female (male) subjects were 

randomly assigned to scenarios from female (male) contestants. We did not select these 

40 scenarios to encourage or avoid particular situations or behaviors. In fact, subjects 

played a randomly chosen game that had been generated by chance at an earlier point in 

time.34 The instructions were as similar as possible to those that had been handed out to 

TV show contestants. Subjects received the original Dutch instructions used for the TV 

version, plus a cover sheet explaining the experiment. We did not impose any time 

constraint. 

Subjects were randomly selected from a larger population of business or economics 

students at the Erasmus University of Rotterdam who had applied to participate in 

economic experiments. In total, 40 subjects took part in the limelight treatment, and 40 

took part in the laboratory treatment: one for each of the 40 scenarios in both 

treatments. We subdivided subjects in the limelight treatment across two separate 

sessions. In total, 80 students were invited to the two limelight sessions, approximately 

40 per session. This was done to ensure a sufficiently large audience and to create a 

buffer in case some subjects would not show up. After one subject had finished playing 

the game, a new subject was selected to play, until 20 subjects had played the game. 

Hence, approximately half of the students in each session were selected to play. Subjects 

were paid according to the outcome of their game. Subjects who were not selected 

received no pay. Each game lasted about five to ten minutes, and an entire session lasted 

                                                      
33

 The limelight treatment was employed there to analyze the isolated effect of the amounts at stake. 

(Another treatment was conducted under identical limelight conditions but used stakes that were a factor 

of ten larger.) 

34
 If a subject played on longer than the original contestant, we had no information on eliminated prizes and 

bank offers from that point onward. We then randomly selected the eliminated prizes ourselves (holding 

them constant across treatments) and set the offers according to the pattern observed for the TV episodes. 
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approximately 2.5 hours. The 40 subjects who were selected for the laboratory treatment 

were similarly subdivided across two different sessions. In each session, 20 subjects 

played the game simultaneously. 

Using the game of DOND has several benefits. Its appealing qualities have attracted 

considerable research attention, making it the most frequently studied game show in the 

domain of risky choice (Blavatskyy and Pogrebna, 2010; Brooks et al., 2009a, 2009b; Deck, 

Lee and Reyes, 2008; Post et al., 2008). The game involves only simple stop-go decisions 

(“Deal” or “No Deal”) that require no or minimal skill, knowledge or strategy. Moreover, 

the dynamic nature of the game allows to not only compare general levels of risk taking 

between treatments, but also the pattern of path dependence. In addition, subjects may 

find it relatively natural to make decisions in front of an audience when the task at hand 

is from a TV game show, and the entertainment value of DOND may help to involve the 

audience in the game. The great popularity of the game on TV brings the advantage that 

it is generally well understood by subjects. 

Descriptive Statistics and Probit Analysis 

In total, we observed 579 decisions made by 80 subjects. A crude way to investigate 

differences in risky choice between the treatments is to compare subjects’ stop rounds. A 

stop round is the round in which a subject decides to accept the bank offer (“Deal”), or 10 

if she rejects all nine offers. The bank offer typically starts as a small percentage of the 

average remaining prize, and gradually increases as the game proceeds. Deciding “Deal” 

at a relatively early (late) stage thus implies a relatively high (low) degree of risk aversion. 

Figure 4.3 shows the distribution of the stop round for both treatments. Subjects in the 

limelight treatment decide to “Deal” earlier than subjects in the laboratory treatment. 

The average stop round in the limelight treatment is 6.93, compared to 7.93 in the 

laboratory treatment. The difference of exactly one round is statistically significant (t-test: 

p = 0.019; Mann-Whitney U test: p = 0.021). 
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Figure 4.3: Distributions of Stop Rounds (First Experiment)  

The figure depicts the distribution of stop rounds for the two treatments of our first 
experiment. The stop round is the round in which the bank offer is accepted (“Deal”), or 10 
for subjects who rejected all offers. In the laboratory treatment, subjects played the game in 
a standard economic laboratory setting, while in the limelight treatment subjects played the 
game in an environment mimicking a TV studio with live audience. 

 

The stop round is a crude measure as it does not reflect differences in the actual bank 

offer, the stakes, or the risk of continuing play. To control for these factors, we perform a 

probit regression analysis. The dependent variable is the subject’s decision, taking the 

value of 1 for “Deal” and 0 for “No Deal”. We explain subjects’ decisions using the 

following variables: 

- EV/100: included to control for the stakes, and calculated as the current 

average remaining prize (divided by 100 Euros for more convenient regression 

coefficients); 
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Table 4.1: Probit Regression Results (First Experiment) 

The table displays the maximum likelihood estimation results of a probit model aimed at explaining the 
decisions of the subjects in the laboratory (N = 40) and limelight (N = 40) treatment of our first experiment. 
The dependent variable is the subject’s decision, with a value of 1 for “Deal” and 0 for “No Deal”. EV is the 
current average remaining prize in Euros, BO is the bank offer in Euros, Stdev is the standard deviation of 
the distribution of the average remaining prize in the next game round, and Limelight is a dummy variable 
that takes a value of 1 for observations from the limelight treatment. In addition to the maximum likelihood 
estimates for the regression coefficients, the table reports the log-likelihood (LL), McFadden R

2
, and the 

total number of observations (No. obs.). The p-values (within parentheses) are corrected for correlation 
between the responses of a given subject (subject-level cluster correction). 
 

 
Coefficient 

 Constant -1.340 (0.036) 
EV/100  1.836 (0.000) 
EV/BO -1.188 (0.004) 
Stdev/EV  2.186 (0.000) 
Limelight  0.509 (0.004) 

LL -131.1 
 McFadden R

2 
0.355 

 No. obs. 579 
  

- EV/BO: included to control for the expected return of continuing play, and 

calculated as the average remaining prize divided by the bank offer, or the 

expected relative return (+1) from rejecting both the current and all 

subsequent bank offers; 

- Stdev/EV: included to control for the riskiness of continuing play, and 

calculated by dividing the standard deviation of the distribution of the average 

remaining prize in the next round by the current average remaining prize; 

- Limelight: the main variable of interest, a dummy variable that takes the value 

of 1 if the choice was made in the limelight treatment and 0 if it was made in 

the lab treatment. 

We do not include the common demographic variables Age and Gender. Our subjects are 

all students of about the same age, and Gender does not have significant explanatory 

power. We allow for the possibility that errors of individual subjects are correlated 

through cluster corrections on the standard errors (Wooldridge, 2003). 
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Table 4.1 shows the regression results. As expected for risk-averse individuals, the 

propensity to “Deal” is positively related to the riskiness of continuing play, and 

negatively related to the expected return of continuing play. Furthermore, the “Deal” 

propensity increases with the stakes. Consistent with the simple analysis of stop rounds, 

subjects in the limelight are more likely to “Deal” than those in the laboratory (p = 0.004). 

As mentioned earlier, in the context of DOND, people have been shown to take more risk 

after earlier expectations have been shattered or surpassed. In order to investigate this 

pattern descriptively for our two treatments, we classify subjects as being “losers”, 

“neutrals”, or “winners”. We follow the method of Post et al. (2008), which takes into 

account the downside risk and the upside potential of rejecting a bank offer. In particular, 

we define a subject’s best-case scenario (BCr) and worst-case scenario (WCr) of opening 

another case in round r as: 

(4.1)    
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where nr is the number of remaining cases in round r, xr is the average remaining prize in 

round r, and xr
min  and xr

max  stand for the smallest and largest remaining prize, 

respectively. A subject is classified as a “loser” if her BCr belongs to the worst one-third of 

all subjects in that round, and as a “winner” if her WCr belongs to the best one-third. 

Game situations that satisfy neither condition (or both) are classified as “neutral”. If two 

subjects share the same BCr or WCr but one falls below the one-third cutoff and one 

above it, then both are classified as “neutral”. 
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Table 4.2: Decisions after Bad and Good Fortune (First Experiment) 

The table summarizes the decisions of the subjects in the laboratory (Panel A; N = 40) and limelight (Panel 
B; N = 40) treatment of our first experiment. The samples are split based on the fortune experienced during 
the game. A subject is classified as a “loser” (“winner”) if her average remaining prize, after eliminating the 
lowest (highest) remaining prize, is among the worst (best) one-third for all subjects in the same game 
round. The table displays the percentage bank offer (“%BO”), the number of subjects (“No.”) and the 
percentage of subjects choosing “Deal” (“%D”) for each category and game round. 

 

    Loser   Neutral   Winner 

Round   %BO No. %D 
 

%BO No. %D 
 

%BO No. %D 

A. Laboratory 

1   6 14 0   6 12 0   6 14 0 
2 

 
15 14 0 

 
13 12 0 

 
15 14 0 

3 
 

42 13 0 
 

32 14 0 
 

32 13 0 
4 

 
68 14 0 

 
61 12 8 

 
56 14 7 

5 
 

83 13 0 
 

74 12 0 
 

73 13 15 
6 

 
92 12 8 

 
88 12 25 

 
86 12 25 

7 
 

98 9 33 
 

99 11 0 
 

94 9 11 
8 

 
104 6 17 

 
101 13 23 

 
102 6 17 

9 
 

101 5 20 
 

102 10 70 
 

104 5 60 
1-9 

  
100 6 

  
108 13 

  
100 11 

B. Limelight 

1   6 14 0   6 12 0   6 14 0 
2 

 
15 14 0 

 
13 12 0 

 
15 14 0 

3 
 

42 13 0 
 

32 14 0 
 

32 13 0 
4 

 
68 14 0 

 
61 12 25 

 
56 14 14 

5 
 

81 12 0 
 

76 11 18 
 

74 12 17 
6 

 
92 11 9 

 
87 9 44 

 
88 11 55 

7 
 

94 4 25 
 

98 12 25 
 

93 4 0 
8 

 
106 4 0 

 
101 8 50 

 
102 4 75 

9 
 

108 1 0 
 

101 7 29 
 

105 1 100 
1-9 

  
87 2 

  
97 19 

  
87 16 

 

Table 4.2 shows the choices of subjects conditional on the classification of their game 

situation. In both treatments, winners and losers continue play more often than subjects 

in the neutral group. This difference is especially pronounced for losers. 

Structural Models 

We now move to the estimation of structural choice models in order to examine how the 

more risk-averse behavior in the limelight as opposed to the laboratory corresponds to 

differences in risk preference parameters, and to further investigate the pattern of path 
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dependence. We implement two simple structural models: one in the spirit of expected 

utility theory (EU), and the other inspired by prospect theory (PT).35 

Structural choice models allow for a wide range of specifications. For example, there are 

many ways to specify the utility function, the error term, reference point dynamics, and 

probability weighting. We follow the methodology used in the earlier DOND-based 

studies by Post et al. (2008) and Baltussen et al. (2012), and summarize this approach 

below. For further methodological details, background and discussion, we refer to these 

two prior studies. 

For our EU specification, we apply a flexible-form expo-power utility function that allows 

for the combination of increasing relative risk aversion (IRRA) and decreasing absolute 

risk aversion (DARA): 

(4.3)    


  )exp(1
)(

1


x
xu  

where α and  are the risk aversion coefficients, subject to α ≥ 0 to exclude (more 

exotic) utility functions that combine concavity and convexity. The expo-power function 

reduces to a CRRA (constant relative risk aversion) power function when α → 0, and to a 

CARA (constant absolute risk aversion) exponential function when  = 0.36 

 

 

                                                      
35

 Henceforth, we refer to these models as the EU model and the PT model. We acknowledge that both 

theories can be implemented through numerous different and sometimes overlapping specifications. The fit 

for EU could, for example, be improved with an even more flexible utility function that has both concave 

and convex segments. As explained in the introduction, our study does not aim to point out whether 

prospect theory or expected utility theory has greater descriptive power. 

36
 We do not follow Post et al. (2008) in including initial wealth as a free parameter. This simplification is in 

line with the standard approach in experimental research, and rules out the possibility of erroneously 

capturing differences in risk aversion between randomized treatments by differences in wealth estimates. 
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For PT, we use a simple representation that incorporates loss aversion, uses probabilities 

as decision weights, and has equal curvature for gains and losses. In particular, the value 

function is defined as: 

(4.4)    
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where 0  is the loss-aversion parameter, RP is the reference point, and 0  

represents the curvature of the value function. 

Recent literature suggests that reference points are expectation-based and dynamically 

but partially updated (Kőszegi and Rabin, 2006, 2007; Abeler et al., 2011; Baucells, Weber 

and Welfens, 2011; Ericson and Fuster, 2011). In this spirit, the reference point in round r, 

RPr, is modeled as a function of the current bank offer, Br, and the relative increase of the 

average remaining prize during the game, 
rrr xxxd /)( 0 : 

(4.5)    
rrr BdRP )( 21        

where 
1 < 1 (

1 >1) indicates that the reference point generally takes a value below 

(above) the current bank offer, and where 
2 ≤ 0 allows for (imperfect) updating of the 

reference point across rounds. 
2  = 0 reflects perfect updating, while 

2  < 0 implies that 

the reference point sticks to initial expectations. To illustrate: when 
1  = 1 and 

2  = 0, 

the reference point equals the current bank offer; when 
1  = 1 and 

2  = -1, the reference 

point corresponds to the amount that would have been on offer if the average prize had 

been at its starting level; when 
1  = 0 and 

2  = 0, the reference point is zero and all 

outcomes are considered as gains. Combined with loss aversion and a value function that 

is concave for gains and convex for losses, the reference point model allows for break-

even and house-money effects. 

Post et al. (2008) and Baltussen et al. (2012) also include a separate term for changes 

during the last two rounds. We drop this short-term lag for brevity and convenience. As 

also found by Baltussen et al. (2012), intermediate changes are economically and 
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statistically insignificant for the reference point, and including the term has no material 

effect on the other parameters for each of our treatments.37 Moreover, the use of one 

single stickiness parameter facilitates comparisons between treatments. 

We make the simplifying assumption that subjects look ahead only one round, implying 

that they compare the current bank offer with the distribution of possible bank offers in 

the next round. As explained by Post et al. (2008), assuming a myopic frame rather than 

multi-stage backward induction is behaviorally plausible and does not materially affect 

the results. Post et al. (2008) also show that the percentage bank offer can be adequately 

captured by the simple function: 

(4.6)    )9(

1 )1( r

rrr bbb 

      

where br is the percentage bank offer relative to the expected value of the remaining 

prizes in round r, and ρ measures the speed at which it approaches the expected value  

(0 ≤ ρ ≤ 1). Post et al. (2008) estimate ρ to be 0.832 for the 40 episodes of the Dutch 

edition of DOND that we used as scenarios in our experiment. In our analysis, we treat 

this bank offer model as deterministic and known to the subjects. 

We apply maximum likelihood techniques to estimate the unknown parameters. The 

likelihood of each decision is based on the utility difference between the current bank 

offer and future bank offers. We assume that a decision is more difficult if the standard 

deviation of the utility values from continuing play is larger, and set the standard 

deviation of the model error proportional to this measure. To reduce the potential 

influence of individual observations, we truncate the likelihood of each decision at a 

minimum of one percent. 

 

                                                      
37

 The unimportance of recent changes for the reference point in experiments can be explained by the 

shorter duration of a game. The original model was designed to capture the behavior of contestants in the 

TV version of the game, where the recording of a game lasts for about an hour and where recent 

developments are thus more salient. In our experiments, a game lasts no more than ten minutes, increasing 

the likelihood that subjects simply compare their current situation with that at the start of their game. 
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Table 4.3: Expected Utility Model Estimates (First Experiment) 

The table displays the maximum likelihood estimation results of our EU model for the laboratory (Panel A; 
N = 40) and limelight (Panel B; N = 40) treatment of our first experiment. Shown are the risk aversion 

parameters (α and ) of the utility function, and the noise parameter (σ). The table also shows the log-
likelihood (LL), the AIC and BIC statistics, and the number of decisions (No. obs.). The implied certainty 
coefficient (CC; certainty equivalent as a fraction of the expected value) is shown for 50/50 gambles of €0 or 
€10

z
, z = 0, 1, 2, 3. The p-values (within parentheses) are corrected for correlation between the responses of 

a given subject (subject-level cluster correction). 
 

 
Laboratory 

 
Limelight 

α - 
 

  0.021 (0.000) 

 -0.861 (0.022) 
 

0.000 (1.000) 
σ 0.544 (0.000)   0.332 (0.000) 

LL -85.5 
 

-78.7 
AIC 177.0  163.4 
BIC 188.2  174.2 
No. obs. 308   271 

CC (0/1) 1.378   0.995 
CC (0/10) 1.378 

 
0.948 

CC (0/100) 1.378 
 

0.554 
CC (0/1000) 1.378 

 
0.067 

 

Table 4.3 gives the results of the EU model for both treatments. For the laboratory 

treatment, the expo-power function converges to a risk-seeking CRRA power function. In 

terms of explanatory power, this model outperforms a naive model that assumes risk 

neutrality (2(2) = 24.27, p < 0.001). In contrast, the function reduces to a risk-averse 

CARA exponential function for the limelight treatment. This model also fits the data 

better than a risk-neutral model (2(2) = 10.29, p = 0.006). 

The shapes of the estimated utility functions are thus very different for the two 

treatments: one is convex and the other concave. Certainty equivalents (CEs) and 

certainty coefficients (CCs) can help to interpret the degrees of risk aversion implied by 

the models. The values nicely illustrate the substantial differences between the two 

treatments. For a lottery with a 50 percent chance of €100 and €0 otherwise, the implied 

CE under limelight conditions is €27.72. The CC is 27.72 / 50.00, or 55 percent. For the 

laboratory treatment, the CE (CC) of €68.91 (138%) is well above the expected value 

(100%). 
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Table 4.4: Path Dependence (First Experiment) 

The table shows the maximum likelihood estimation results of our EU model for subsamples from the 
laboratory (Panel A) and limelight (Panel B) treatment of our first experiment. For each treatment, the 
sample is split based on the fortune experienced during the game. A subject is classified as a “loser” 
(“winner”) if her average remaining prize, after eliminating the lowest (highest) remaining prize, is among 
the worst (best) one-third for all subjects in the same game round. Definitions are as in Table 4.3. 

 

  Loser   Neutral   Winner 

A. Laboratory 

α - 
 

  - 
 

  - 
  -1.459 (0.070) 

 
-0.459 (0.290) 

 
-0.668 (0.101) 

σ 0.530 (0.000)   0.431 (0.007)   0.577 (0.000) 

LL -22.0   -32.9   -28.5 
No. obs. 100   108   100 

CC (0/1) 1.509 
 

1.244 
 

1.320 
CC (0/10) 1.509 

 
1.244 

 
1.320 

CC (0/100) 1.509 
 

1.244 
 

1.320 
CC (0/1000) 1.509   1.244   1.320 

B. Limelight 

α -2.251 (0.095)   0.018 (0.064)   0.027 (0.000) 

 0.000 (1.000) 
 

0.000 (1.000) 
 

0.000 (1.000) 
σ 0.271 (0.000)   0.374 (0.000)   0.252 (0.000) 

LL -8.3 
 

-34.5 
 

-20.2 
No. obs. 87 

 
97 

 
87 

CC (0/1) 1.473 
 

0.995 
 

0.993 
CC (0/10) 1.938 

 
0.954 

 
0.932 

CC (0/100) 1.994 
 

0.595 
 

0.464 
CC (0/1000) >1.999   0.076   0.051 

 

The EU specification has difficulties to capture the different preferences of losers, 

neutrals and winners (as defined earlier). This is illustrated in Table 4.4, which reports 

separate EU-model estimates for the subsamples. In the limelight, the estimated utility 

function for losers reflects a preference for risk, while neutrals and winners are risk 

averse. In the laboratory, each subgroup is best described by a model of risk-seeking 

preferences, but losers are more risk prone than neutrals and winners. The CCs illustrate 

the differences between the utility functions. 
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Table 4.5: Prospect Theory Model Estimates (First Experiment) 

The table displays the maximum likelihood estimation results of our PT model for the laboratory (Panel A; 
N = 40) and limelight (Panel B; N = 40) treatment of our first experiment. Shown are the loss aversion (λ) 
and curvature (α) parameters of the value function, the two parameters of the reference point model (θ1 
and θ2), and the noise parameter (σ). The table also shows the log-likelihood (LL), the AIC and BIC statistics, 
and the number of decisions (No. obs.). The implied certainty coefficient (CC; certainty equivalent as a 
fraction of the expected value) is shown for 50/50 gambles of €0 or €10

z
, for any z > 0, assuming that the 

reference point equals 0%, 100%, or 200% of the expected value. For λ and α, the null hypotheses are that 
these parameters equal unity, implying no utility curvature and no loss aversion. The other parameters are 
tested relative to zero. The p-values (within parentheses) are corrected for correlation between the 
responses of a given subject (subject-level cluster correction). 
 

 
Laboratory 

 
Limelight 

α 0.554 (0.000)   0.711 (0.001) 
λ 1.505 (0.042) 

 
2.825 (0.000) 

θ1 1.014 (0.000) 
 

1.040 (0.000) 
θ2 -0.045 (0.001) 

 
-0.072 (0.019) 

σ 0.334 (0.000)   0.257 (0.000) 

LL -66.8 
 

-63.6 
AIC 143.7 

 
137.2 

BIC 162.3 
 

155.2 
No. obs. 308 

 
271 

CC (0%) 0.572 
 

0.754 
CC (100%) 0.960 

 
0.796 

CC (200%) 1.428 
 

1.246 

 

Table 4.5 shows the PT estimates. In the laboratory treatment, we find a rather strong 

utility curvature, with an α of 0.554. The loss aversion coefficient, λ, equals 1.505. Both 

values differ significantly from unity (α: p < 0.001; λ: p = 0.042). Furthermore, the 

reference point sticks to earlier expectations, with 
2  = -0.045 (p = 0.001). In the absence 

of changed expectations, it takes a value that is close to the current bank offer  

(
1  = 1.014). 

In the limelight treatment, utility curvature (α = 0.711, p = 0.001) and loss aversion 

(λ = 2.825, p < 0.001) occur as well. Again, the reference point is sticky (
2  = -0.072, 

p = 0.019), and, on average, close to the bank offer (
1  = 1.040). While the curvature and 

reference point parameters are not significantly different between the two treatments, 

loss aversion is stronger in the limelight than in the laboratory (α: p = 0.142; λ: p = 0.003; 

1 : p = 0.166; 
2 : p = 0.423). 
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Finally, note that the PT model  which can capture the path dependence of risk attitudes 

through a sticky reference point, loss aversion, and reflection of the value function 

around the reference point  explains subjects’ choices significantly better than the EU 

model. This better fit holds for both the limelight and the laboratory treatment, also 

when we take into account the larger number of parameters as compared to the EU 

model (consider the very different AIC and BIC values). 

4.3 Second Experiment 

Design and Procedure 

To investigate the robustness of the results, we conducted a second experiment. Below 

we list the design differences. In all other respects, the new experiment was the same as 

the previous one. 

First, we used fixed percentage bank offers. Although subjects in the first experiment had 

been informed about the two most important factors that determine the bank offer (the 

bank offer strongly depends on the average remaining prize, and the percentage bank 

offer gradually increases over the rounds), subjects still faced some ambiguity about the 

precise offers. Therefore, we cannot exclude that the treatment effects are related to 

ambiguity rather than risk preferences (Ellsberg, 1961; Camerer and Weber, 1992). In the 

second experiment we therefore used fixed percentage bank offers for each game round. 

That is, the bank offer was a percentage of the expected value of the prize in the subject’s 

case that depended on the round number only. For round 1 to 9, the percentages were 

15, 30, 45, 60, 70, 80, 90, 100, and 100, respectively. Subjects were informed about this 

precise structure in the instructions. 

Second, we added a third treatment. Subjects in the limelight treatment passively gained 

experience in playing the game by watching the decisions and outcomes of others. In the 

first experiment, a subject in the limelight, on average, had watched 9.5 others play the 

game before she was selected to play herself. In contrast, laboratory subjects did not 

observe any other subject playing prior to their own game. To examine whether 
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differences in such passive experience matter, we also ran a comeback treatment. This 

treatment consisted of subjects who had been audience members in the limelight 

treatment, but had not been selected to play the game on stage themselves. These 

subjects were invited to play the game in the laboratory afterwards. 

An additional benefit of this approach is that subjects in the limelight treatment now 

always had the opportunity to play the game. In the first experiment, this was not the 

case as those who were not selected went home empty-handed. As a result, a sense of 

relief or feelings of luck may have influenced the behavior of those selected. Our 

announcement of the comeback session avoids this possible confound. 

Last, we now used completely random scenarios and more formal experimental 

instructions. Because comparison with the actual game show was not one of the 

objectives of this new experiment, there was no need to replay scenarios from the 

original TV show or to use the instructions that had been handed out to TV show 

contestants. 

The subjects were randomly selected first-year economics students at the Erasmus 

University of Rotterdam. Subjects who had taken part in the first experiment could not 

participate. In total, we observed 91 subjects in the laboratory treatment, 40 in the 

limelight treatment, and 51 in the comeback treatment.38 All subjects in the comeback 

treatment had previously watched 20 subjects play the game on stage in our limelight 

treatment. 

 

 

 

                                                      
38

 The laboratory treatment of this second experiment is also used by Baltussen et al. (2012) to investigate 

different types of incentive systems. 
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Figure 4.4: Distributions of Stop Rounds (Second Experiment) 

The figure depicts the distribution of stop rounds for the three treatments of our second 
experiment. In the comeback treatment, subjects played the game in a standard economic 
laboratory setting after viewing others play the game in the limelight treatment. Other 
definitions are as in Figure 4.3. 

 

Analyses 

As with the first experiment, we start with an analysis of the stop rounds.39 Recall that 

deciding “Deal” relatively early (late) indicates a relatively high (low) degree of risk 

aversion. The treatment differences are less pronounced than before. The average stop 

round in the limelight treatment is 7.55, compared to 7.87 in the laboratory treatment 

and 8.27 in the comeback treatment. While the average stop round is thus lowest in the 

limelight treatment, the differences with the two other treatments are not statistically 

significant (vs. laboratory: t-test p = 0.463, Mann-Whitney U test p = 0.406;  
                                                      
39

 Three subjects in this experiment ended up with trivial choice problems involving prizes of one cent only. 

Each rejected all nine offers, implying stop round values of 10. The results are not materially different when 

we set their stop round equal to the number of the first round that had no prizes other than prizes of one 

cent (or to the average of this number and 10). We omit these uninformative choices in the subsequent 

probit regression analyses and structural choice model estimations. 
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vs. comeback: t-test p = 0.109, Mann-Whitney U test p = 0.126). The difference between 

the laboratory and the comeback treatment is not significant either (t-test: p = 0.291; 

Mann-Whitney U test: p = 0.362). Figure 4.4 shows the distribution of the stop round for 

the three treatments. 

The absence of a treatment effect in the stop rounds may be related to the crudeness of 

this analysis. While the 40 subjects in each of the two treatments in the first experiment 

played the same 40 scenarios as TV show contestants, subjects in this experiment faced 

completely random scenarios. Decision problems can thus be markedly different between 

treatments, making it even more important to control for differences in the stakes, bank 

offer, and risk of continuing play. Therefore, we now move to the probit and structural 

model analyses. For background on the methods, we refer to the previous section. 

Table 4.6 shows the results of the probit regression. The results closely resemble those of 

the first experiment. The propensity to “Deal” is positively related to the riskiness of 

continuing play and to the stakes, and negatively to the expected return of continuing 

play. After controlling for these variables, subjects in the limelight turn out to be 

significantly more likely to “Deal” than those in the laboratory (p = 0.037) and then those 

in the comeback treatment (p = 0.004). There is no significant difference between the 

laboratory and the comeback treatment (p = 0.414). 

Panel A of Table 4.7 presents the results of the structural model estimations for EU. As in 

the previous experiment, the expo-power function converges to a risk-seeking CRRA 

power function for the laboratory treatment. The same is found for the comeback 

treatment. In both cases the estimated model outperforms a naive model that assumes 

risk neutrality (laboratory: 2(2) = 30.23, p < 0.001; comeback: 2(2) = 15.20, p < 0.001). 

The  parameter is not significantly different between the laboratory and comeback 

treatment (p = 0.359). For the limelight treatment, the expo-power function again 

reduces to a risk-averse CARA exponential function that outperforms risk neutrality  

(2(2) = 11.97, p = 0.003). 
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Table 4.6: Probit Regression Results (Second Experiment) 

The table displays the maximum likelihood estimation results of a probit model aimed at explaining the 
decisions of the subjects in the laboratory (N = 91), limelight (N = 40) and comeback (N = 51) treatment of 
our second experiment. Comeback is a dummy variable that takes a value of 1 for observations from the 
comeback treatment. Other definitions are as in Table 4.1. 
 

 
Coefficient 

 Constant -1.519 (0.000) 
EV/100 1.090 (0.000) 
EV/BO -0.661 (0.000) 
Stdev/EV 1.267 (0.000) 
Limelight 0.293 (0.037) 
Comeback -0.111 (0.414) 

LL -291.1 
 McFadden R

2 
0.258 

 No. obs. 1367 
  

Certainty equivalents and certainty coefficients can again help to interpret the parameter 

values and treatment differences. The CE (CC) for a lottery with a 50 percent chance of 

€100, for example, is €38.07 (76%) in the limelight. For the laboratory and comeback 

treatment, the values are €63.07 (126%) and €59.43 (119%), respectively. 

Panel B of Table 4.7 presents the estimation results for PT. In the laboratory treatment, 

we find a rather strong utility curvature, with an α of 0.408. Loss aversion is limited, with 

λ equaling 1.259. Both values differ significantly from unity (α: p < 0.001; λ: p = 0.005). 

Furthermore, the reference point sticks to earlier expectations, with 
2  = -0.009 

(p < 0.001), and is, on average, located in the vicinity of the bank offer (
1  = 1.002). For 

subjects in the comeback treatment, we find a curvature of 0.639, a loss aversion of 

1.407, and reference point parameters of -0.067 and 1.015 (all p ≤ 0.005). When we 

compare the various parameters of these two treatments, we find that subjects in the 

comeback treatment demonstrate less curvature and a stickier and more elevated 

reference point than subjects in the laboratory treatment (α: p = 0.001; λ: p = 0.278;  

1 : p = 0.014; 
2 : p = 0.015). 
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Table 4.7: EU and PT Model Estimates (Second Experiment) 

The table displays the maximum likelihood estimation results of the EU (Panel A) and PT (Panel B) model for 
the laboratory (N = 91), limelight (N = 40) and comeback (N = 51) treatment of our second experiment. The 
panels follow the format and definitions of Table 4.3 and Table 4.5. 
 

 
Laboratory 

 
Comeback  Limelight 

A. Expected Utility Theory 

α - 
  

-   0.010 (0.000) 

 -0.504 (0.000) 
 

-0.332 (0.006)  0.000 (1.000) 
σ 0.375 (0.000) 

 
0.296 (0.000)  0.196 (0.000) 

LL -165.2 
 

-88.1  -71.3 
AIC 336.5 

 
182.2  148.6 

BIC 350.0 
 

194.1  159.6 
No. obs. 677 

 
401  289 

CC (0/1) 1.261 
 

1.189  0.998 
CC (0/10) 1.261 

 
1.189  0.975 

CC (0/100) 1.261 
 

1.189  0.761 
CC (0/1000) 1.261 

 
1.189  0.140 

B. Prospect Theory 

α 0.408 (0.000)  0.639 (0.000)  0.751 (0.000) 
λ 1.259 (0.005)  1.407 (0.000)  1.863 (0.000) 
θ1 1.002 (0.000)  1.015 (0.000)  1.088 (0.000) 
θ2 -0.009 (0.000)  -0.067 (0.005)  -0.154 (0.000) 
σ 0.223 (0.000)  0.163 (0.000)  0.231 (0.000) 

LL -142.7  -59.9  -61.0 
AIC 295.4  129.8  131.9 
BIC 317.9  149.8  150.3 
No. obs. 677  401  289 

CC (0%) 0.367  0.676  0.794 
CC (100%) 0.996  0.951  0.857 
CC (200%) 1.633  1.324  1.206 

 
 

In the limelight treatment, we similarly find significant values for utility curvature  

(α = 0.751, p < 0.001), loss aversion (λ = 1.863, p < 0.001), and stickiness of the reference 

point (
2  = -0.154, p < 0.001). In the absence of changed expectations, the reference 

point takes a value that is relatively close to the current bank offer (
1  = 1.088). In line 

with the first experiment, subjects in the limelight are more loss averse (p = 0.006) than 

subjects in the laboratory. In addition they now also display significantly less curvature of 

the value function (p < 0.001) and a stickier and more elevated reference point (both 

p < 0.001). Compared to the comeback treatment, subjects in the limelight are again 
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more loss averse (p = 0.040), and they also have a stickier (p = 0.003) and more elevated 

(p < 0.001) reference point. Utility curvature is not significantly different (p = 0.173). 

Similar to the first experiment, the PT model explains subjects’ choices significantly better 

than the EU model. This better fit holds for all three treatments. Further analyses yield 

evidence of the same pattern of path dependence as in the first experiment: in all 

treatments, we find that losers have a greater risk appetite than winners and neutral 

subjects. 

The major difference between the two experiments was that the future bank offers were 

somewhat ambiguous to subjects in the first, and fixed and known to them in the second. 

A comparison of the estimation results can thus give an indication of whether the effect 

of ambiguity on behavior is similar or different in and out of the limelight.40 

Because the bank offer structure differs between the experiments, and the stop round 

and probit analyses cannot take this difference into account, we consider the structural 

model results only. For EU, the expo-power function reduces to a similar CRRA power 

function in the two laboratory treatments; the relevant risk aversion parameter is not 

significantly different (risk:  = -0.504; ambiguity:  = -0.861; p = 0.371). In the limelight, 

however, the risk aversion parameter of the resulting CARA function is marginally 

significantly larger in the experiment with ambiguity than in the one without (risk: 

α = 0.010; ambiguity: α = 0.021; p = 0.066). The differences between the CEs (CCs) for a 

lottery with a 50 percent chance of €100 again illustrate the treatment effects. Under 

laboratory conditions, the values of €63.07 (126%; risk) and €68.91 (138%; ambiguity) are 

relatively similar. Under limelight conditions, the values of €38.07 (76%; risk) and €27.72 

(55%; ambiguity) are clearly more different. 

For PT, the differences in behavior translate into different loss aversion coefficients. For 

the laboratory treatments, there is no significant difference between the two 

                                                      
40

 Admittedly, comparisons between the limelight treatments are potentially confounded by another design 

difference. In contrast to subjects in the other treatments, subjects in the limelight treatment with 

ambiguity (first experiment) were told at the start that only half of them would play the game. A sense of 

relief or feelings of luck might have influenced the behavior of those selected. 
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experiments (risk: λ = 1.259; ambiguity: λ = 1.505; p = 0.349). For the limelight 

treatments, however, the coefficient is larger in the one with ambiguity (risk: λ = 1.863, 

ambiguity: λ = 2.825, p = 0.020).41 

4.4 Conclusions and Discussion 

To analyze how risky choice in the limelight differs from that under more usual 

experimental laboratory conditions, we conducted two incentivized experiments that 

mimicked the game of the TV show Deal or No Deal. In the laboratory treatments of the 

experiments, subjects made decisions in a standard, computerized laboratory setting as 

typically employed in economic experiments. In the limelight treatments, subjects made 

their choices in a simulated game show environment, which included a live audience, a 

game show host, and video cameras. The second experiment also had a comeback 

treatment, in which subjects who had previously gained passive experience by watching 

others play the game made decisions under laboratory conditions. 

We find that subjects are more risk averse in the limelight than in the anonymity of a 

typical behavioral laboratory. In both experiments, subjects in the limelight have a higher 

propensity to opt for the sure alternative. For the EU model, this translates into a more 

concave (risk-averse) utility function. For PT, we observe a higher loss aversion 

coefficient. 

Findings from studies on investor behavior corroborate this result. Barber and Odean 

(2001, 2002) find that investors trade more and more speculatively after switching from 

phone-based to online trading. Konana and Balasubramanian (2005) report that investors 

tend to keep their core investments with traditional brokers and use a small fraction of 

their wealth to speculate online. 

                                                      
41

 In addition, in the laboratory, the reference point is stickier and more elevated under ambiguity than 

under risk, and there is marginally significantly less curvature (1: p = 0.004;2: p = 0.009; α: p = 0.061). In 

contrast, in the limelight, the reference point is less sticky and less elevated under ambiguity than under 

risk, and there is no significant difference in curvature (1: p = 0.015; 2: p = 0.022; α: p = 0.707). 
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A number of psychological studies suggest that our treatment effect could be related to 

the emotions evoked by being in the limelight. Emotional states are likely to be different 

in and out of the limelight, and these differences might bring about differences in risk 

behavior (Loewenstein et al., 2001; Rick and Loewenstein, 2008). Public scrutiny may 

entail feelings of stress and anxiety, and lead to a state of physiological arousal. Several 

studies indicate that anxiety lowers subjects’ propensity to take risk. Using both student 

and clinical samples, Maner et al. (2007) show that behavioral and self-report measures 

of dispositional anxiety are consistently positively associated with risk aversion. 

Raghunathan and Pham (1999) triggered anxiety in subjects by having them read 

hypothetical scenarios and asking them to experience these events as vividly as possible 

by imagining what they would feel and think in these situations. They find that these 

subjects are more likely to choose a low-risk, low-reward option over a high-risk, high-

reward option than subjects in a control group. Kuhnen and Knutson (2011) report similar 

results. Mano (1994) studies the effect of what he calls “distress” – a combination of a 

negative (unpleasant) emotional state with a high level of arousal – and finds that 

subjects who are more distressed display a lower willingness to take risk. Future research 

could more directly investigate the link between risk tolerance and emotions in and out 

of the limelight through psychological and physiological measurements of emotional 

states. 

Our second experiment indicates that people in the limelight also have a higher reference 

point and adjust it more slowly, and that their value function has less curvature. The 

latter is in line with earlier findings by Miller and Fagley (1991), Takemura (1993, 1994) 

and Vieider (2011). However, the difference is not significant when we compare subjects 

in the limelight with experienced subjects in the comeback treatment, suggesting that it 

may be a spurious effect related to subjects’ experience with the game from watching 

others play. The other results for the comeback treatment reinforce our previous findings 

about the difference between risk attitudes in and out of the limelight. 

While the general degree of risk aversion is affected by the limelight manipulation, the 

dynamic pattern in risk behavior is not. In particular and in line with the break-even 
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effect, subjects in and subjects out of the limelight are more risk prone when the game 

develops substantially worse than expected. Of course, on average, losers faced lower 

stakes, and increasing relative risk aversion (IRRA) thus appears to be a simple 

explanation for their greater risk appetite. However, IRRA cannot explain that the choice 

patterns resemble those found by Post et al. (2008) for games that used stakes of up to 

10,000 times the size of those used in our experiment. Furthermore, IRRA would also 

imply more risk aversion for winners than for subjects in the middle group, which is not 

what we observe. The risk appetite of winners is in line with the house-money effect: 

when all possible outcomes are in the gain domain, people no longer feel they might be 

losing their “own” money and take more risk. 

Our simple PT model allows for a sticky reference point and can capture these path-

dependent and very different risk attitudes. All five treatments in our experiments point 

out that the reference point is sticky and partly determined by subjects’ (presumed) initial 

beliefs about the task outcome. This finding is in line with recent literature on reference-

point formation that argues that reference points are expectation-based and imperfectly 

updated (Kőszegi and Rabin, 2006, 2007; Abeler et al., 2011; Baucells, Weber and 

Welfens, 2011; Ericson and Fuster, 2011). 

For all treatments, the PT model indeed explains subjects’ choices significantly better 

than the EU model that we employ. The different degree but similar pattern of risk 

aversion under the two conditions is important in the light of the recent debate on the 

external validity of laboratory and field studies (Levitt and List, 2007a, 2007b; Camerer, 

2011). Kessler and Vesterlund (2012) argue that while attention has focused on the 

generalizability of quantitative results, it is much more relevant to focus on the 

generalizability of qualitative results, as most experimental studies are focused on the 

direction rather than the magnitude of effects. Furthermore, they argue that while the 

external validity of quantitative results is highly contested, this is not the case for the 

external validity of qualitative results. Levitt and List (2007b, p.351) for example state 

that: “even for those experiments that are affected by our concerns, it is likely that the 

qualitative findings of the lab are generalizable, even when the quantitative magnitudes 
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are not.” Indeed, a large number of studies suggest that qualitative results generalize 

between lab and field settings, even if quantitative results differ (Kagel and Roth, 2000; 

Tenorio and Cason, 2002; Healy and Noussair, 2004; Isaac and Schnier, 2005; Antonovics, 

Arcidiacono and Walsh, 2009; Östling et al., 2011; Bolton, Greiner and Ockenfels, 2013). 

Our finding of similar patterns of risk taking under different experimental conditions 

supports the positive view on the generalizability of qualitative results. At the same time, 

the different degrees of risk taking across conditions sketch a negative picture on the 

generalizability of quantitative estimates. Where scrutiny has thus far predominantly 

been considered as a disturbing factor in tasks where moral and wealth are competing 

objectives (Levitt and List, 2007a, 2007b), this result suggests that scrutiny also affects 

behavior when moral concerns do not play a role. 

The most important difference between the two sets of experiments in our study was 

that the second used a simple deterministic model for the percentage bank offers that 

was known to subjects, while subjects in the first set were faced with some uncertainty 

about the precise offers. Much empirical evidence shows that people are averse to 

ambiguity, or uncertainty about outcome probabilities (Ellsberg, 1961; Camerer and 

Weber, 1992). When we compare the results of the two experiments, we find that 

subjects under limelight conditions are indeed more adventurous when the bank offer 

structure is deterministic and known rather than ambiguous to them, while we find no 

evidence that behavior under laboratory conditions is affected by this design change. The 

different effect of ambiguity in and out of the limelight is in line with literature that 

suggests that ambiguity aversion is related to the presence of outside observers (Curley, 

Yates and Abrams, 1986; Trautmann, Vieider and Wakker, 2008; Muthukrishnan, Wathieu 

and Xu, 2009). Also, the absence of an effect of ambiguity under laboratory conditions 

corresponds with the findings of Fox and Tversky (1995). Through various experiments 

under conditions of anonymity resembling our laboratory treatments, they find evidence 

that ambiguity aversion does not occur when there is no contrast of the ambiguous event 

with a similar but less ambiguous event. Such a contrast is indeed salient in most studies 

that classify ambiguity aversion as a real phenomenon. In our case, the task did not 
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embed any contrast, and subjects were not aware of any other related experiment with 

differently generated bank offers.42,43 

Comparisons between the results of the comeback treatment and the basic laboratory 

treatment can identify the effect of passive experience on risk tolerance in our 

experiment. Recent literature shows that experience helps to eliminate anomalous 

behavior, in particular loss aversion among market participants (List, 2003, 2004b, 2011; 

Engelmann and Hollard, 2010; Seru, Shumway and Stoffman, 2010). We find no clear 

evidence in this direction, perhaps because the experience of the subjects in the 

comeback treatment was only passive, because learning is slow and subjects observed 

only 20 others, or because their choice problems were of a different nature than those in 

a market context. More specifically, we find that the passive experience that comeback-

treatment subjects acquired by watching others play does not affect the loss aversion 

parameter of our PT model, but we do find evidence for decreased curvature and a more 

elevated and sticky reference point. Interestingly, although the empirical fit of the PT 

model is much better than that of the EU model for every treatment, the improvement is 

strongest for the comeback treatment. This suggests that passive experience strengthens 

rather than weakens prospect-theory like behavior here. A possible explanation is that 

experience from watching others brings along vivid task-specific expectations and 

reference, which in turn guide subjects’ own behavior. The more sticky reference point of 

experienced subjects indeed points in this direction. 

                                                      
42

 Interestingly, the comparative ignorance hypothesis of Fox and Tversky (1995) is grounded on the finding 

of Heath and Tversky (1991) that ambiguity aversion is driven by people’s feeling of (in)competence. 

Possibly, the presence of onlookers in our limelight treatments undermined our subjects’ confidence in 

their capability to perform the task, and this way amplified the effect of the ambiguous bank offer structure 

on choice. 

43
 The uncertainty about the bank offers in our first experiment can be interpreted as a “background risk”, 

although in a strict sense, background risk is mostly regarded and implemented as an additive risk to a 

subject’s overall wealth and not – akin to the uncertainty about future percentage bank offers here – as a 

multiplicative risk to the outcomes of one choice option only. Based on certain assumptions, most 

theoretical accounts predict that individuals take less risk in the presence of background risk (Pratt and 

Zeckhauser, 1987; Gollier and Pratt, 1996; Eeckhoudt, Gollier and Schlesinger, 1996). Experiments by 

Harrison, List and Towe (2007) and Lee (2008) confirm this prediction, whereas the findings of Lusk and 

Coble (2008) and Herberich and List (2012) indicate that background risk has little to no effect on risky 

choice. 
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Using DOND as the experimental task has a number of advantages, most notably that the 

game allows for the study of path dependence. However, at the same time, the stop-go 

nature of DOND might confound the interpretation of our results. In fact, subjects in our 

limelight treatments were asked to either decide to take risk and stay in the limelight, or 

to opt for a safe money offer and step out of the limelight. As a result, subjects are more 

likely to “Deal” if they suffer a fixed disutility from being in the limelight. Although we 

cannot completely rule out this alternative explanation for our results, it does not appear 

particularly strong for several reasons. First, self-reflection suggests that such a disutility 

would rapidly decrease as the game progresses. Many people even get used to being in 

the limelight after a while. When subjects have to make decisions that make a real 

difference, they have already gone through an introductory talk with the host and played 

several trivial game rounds. Second, deciding “No Deal” commits to playing only one 

round more, and rounds last only briefly, especially at the critical stages of the game 

when few or only one case is to be opened. The extra time that would be involved is, in 

fact, negligible in the light of the time already spent on stage. Third, and perhaps most 

importantly, the data contradict a fixed disutility of being in the limelight. If such a 

disutility existed, the decisions of the most unfortunate subjects in our sample would be 

disproportionately strongly affected by it. In our data, we find that losers have a strong 

tendency to continue play, and this tendency appears to be even stronger in the limelight 

than in the laboratory, not weaker. 

Another potential downside of using DOND is that a game show setting may entail a 

specific demand effect under limelight conditions. As pointed out by Gertner (1993), 

taking risk is more entertaining for spectators and this might lead subjects to make riskier 

choices. In contrast to this intuitive prediction, however, we find that subjects take less 

risk in the limelight than in the laboratory. Apparently, this specific demand effect is 

relatively unimportant. 
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In sum, our findings provide a mixed message about the generalizability of findings from 

one setting to another when the degree of public scrutiny is different. Quantitative 

measurements of risk preferences do not seem to have universal applicability, but the 

qualitative pattern of path dependence in risk behavior appears to be robust. 
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Chapter 5  | On the Social Nature of Eyes: 
The Effect of Social Cues in Interaction and Individual 
Choice Tasks 

  

In this chapter, we apply a dual strategy to better understand the effect of 

pictures of eyes on human behavior. First, we investigate whether the effect of 

eyes is limited to interaction tasks in which the subjects’ decisions influence 

the outcomes of other subjects. We expand the range of tasks to include 

individual choice tasks in which the subjects’ decisions only influence their own 

outcomes. Second, we investigate whether pictures of eyes are one of many 

social cues or are unique in their effect. We compare the effect of pictures of 

eyes with the effect of a different condition in which we present the subjects 

with pictures of other students (peers). Our results suggest that the effect of 

pictures of eyes is limited to interaction tasks and that eyes should be 

considered distinct from other social cues, such as reminders of peers. While 

pictures of eyes uniformly enhance pro-social behavior in interaction tasks, 

this is not the case for reminders of peers. Furthermore, the reminders of peers 

lead to more rational behavior in individual choice tasks, whereas the effect of 

pictures of eyes is limited to situations involving interaction. Combined, these 

findings are in line with the claim that the effect of pictures of eyes on 

behavior is caused by a social exchange heuristic that works to enhance 

mutual cooperative behavior. 

 

 

This chapter is based on the paper “On the social nature of eyes: The effect of social cues in 

interaction and individual choice tasks.”, co-authored by Aurélien Baillon and Asli Selim, and 

published in Evolution and Human Behavior (Baillon, Selim, and van Dolder, 2013). The authors are 

grateful to Han Bleichrodt, Rafael Huber, Umut Keskin, Jim Leonhardt, Kirsten Rohde, Joeri Sol, Jan 

Stoop, Martijn van den Assem and anonymous reviewers for their many constructive and valuable 

comments on previous versions of this chapter. The chapter benefited from discussion with seminar 

participants at the Erasmus University of Rotterdam, and with participants of the Tiber Symposium 

on Psychology and Economics 2011 at Tilburg University, the Subjective Probability, Utility, and 

Decision Making (SPUDM) 2011 conference in Kingston upon Thames, the Erasmus-Technion 

Workshop on Decisions and Predictions at Ein Bokek, and the Foundations and Applications of 

Utility, Risk and Decision Theory (FUR) 2012 conference at Georgia State University. 
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5.1 Introduction 

Humans frequently behave altruistically, even towards genetically unrelated strangers. 

While some of this altruistic behavior can likely be explained by concerns for the actor’s 

(possible third-party) reputation, it has been argued that this explanation is incomplete. 

Tightly controlled economic experiments have repeatedly shown that subjects behave in 

an altruistic manner towards anonymous strangers, even when opportunities for 

repeated interaction and reputation formation are systematically ruled out (Camerer, 

2003). Recent literature, however, has shown that people are sensitive to subtle cues of 

being watched. In particular, it was demonstrated that, in anonymous experimental 

settings, the mere presence of pictures of a pair of eyes, or an eye-like stimulus, led to 

significant increases in donations to strangers in dictator games (Haley and Fessler, 2005; 

Rigdon et al., 2009; Oda et al., 2011; Nettle et al., 2013), increased donations to a public 

good (Burnham and Hare, 2007), and induced greater disapproval of moral transgressions 

(Bourrat, Baumard, and McKay, 2011). The susceptibility of human beings to these subtle 

cues implies that, even in an anonymous laboratory setting, pro-social behavior should 

not necessarily be viewed as purely intrinsic (Haley and Fessler, 2005; Jaeggi, Burkhart, 

and van Schaik, 2010). 

A number of studies have investigated the generality of the effect of eyes on social 

behavior and have attempted to gain deeper insight into the possible mechanisms 

underlying this effect. A potential concern is that the observed phenomenon may have 

been caused by an experimenter demand effect (Ekström, 2012). Field experiments, 

however, suggest that this is not the case, as eye-like stimuli have induced pro-social 

behavior even when the subjects did not know that they were participating in an 

experiment. Bateson, Nettle, and Roberts (2006) studied the effect of pictures of eyes on 

the amount of money that employees at a university psychology department contributed 

to an “honesty box” in the coffee room. The authors found that, when a picture of eyes 

was placed next to the “honesty box”, the employee donations tripled. Ernest-Jones, 

Nettle, and Bateson (2011) showed that placing pictures of eyes in a university cafeteria 

that required diners to clear their own trays halved the odds of littering. However, the 
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effect of eyes was only significant when the cafeteria was relatively quiet. Similarly, 

Ekström (2012) found that pictures of eyes increased the amount of money that was 

donated to charity in Swedish supermarkets by 30% during days on which relatively few 

people visited the stores. On the days on which the stores were busy, the eyes had no 

effect on customer donations. Finally, Powell, Roberts, and Nettle (2012) reported similar 

results to the previous findings. The authors found that displaying pictures of eyes on 

charity collection buckets in a supermarket increased donations and that this effect was 

significantly stronger when the supermarket was quiet rather than busy. 

Although the eye effect appears to be robust in field settings, several studies suggest that 

there are conditions under which these effects will not occur. The field studies discussed 

above suggested that pictures of eyes influence behavior only when the subject is in a 

non-crowded setting. Fehr and Schneider (2009) found that eyes did not influence the 

tendency of trustees to repay trust in a trust game. In Mifune, Hashimoto, and Yamagishi 

(2010), pictures of eyes increased donations in a dictator game when the recipient was an 

in-group member, but not when the recipient was an out-group member. 

The common interpretation of the eye effect is that pictures of eyes trigger feelings of 

being watched, which in turn activate reputation concerns and subsequent behavioral 

changes. Such an argument seems plausible, given that actual opportunities to acquire a 

positive reputation that may pay off in the future have been found to enhance pro-social 

behavior (Gächter and Fehr, 1999; Wedekind and Milinski, 2000; Milinski et al., 2001; 

Milinski, Semmann, and Krambeck, 2002; Rege and Telle, 2004; Seinen and Schram, 2006; 

Engelmann and Fischbacher, 2009). To the best of our knowledge, Oda et al. (2011) 

provided the only direct test of this conjecture. The authors showed that the eye effect 

was mediated by expectations of future reward but not by a fear of punishment.  

In the present chapter, we apply a dual strategy to better understand the effect of eyes 

on human behavior by expanding both the nature of the tasks and the types of social cues 

that were used as stimuli. Firstly, we examine whether the influence of eyes is limited to 

interaction tasks in which the subjects’ decisions also influence the outcomes of other 

subjects, or whether this influence also carries over to individual choice tasks in which the 
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subjects’ decisions influence only their own outcomes. There is good reason to believe 

that eyes may influence decision-making in non-interaction tasks. A long line of 

psychological research has shown that the mere presence of others can facilitate the 

performance of simple tasks but impair the performance of more complex tasks (Zajonc, 

1965; Bond and Titus, 1983). With respect to choice behavior, research on accountability 

suggests that people care about how others view their decisions, even in individual choice 

tasks (Kruglanski and Fruend, 1983; Lerner and Tetlock, 1999; Vieider, 2011). In particular, 

when subjects know that their decisions will be made public, they adjust their behavior to 

comply with the prevailing view among their audience. If the view of the audience is 

unknown, the subjects engage in pre-emptive self-criticism, by carefully analyzing the 

problem to arrive at a more justifiable decision (Lerner and Tetlock, 1999). These findings 

are intuitive as people are unlikely to be exclusively concerned with signaling a 

cooperative disposition; they will, for example, also care about appearing smart, 

conscientious, and successful. Therefore, if eye-like stimuli trigger a feeling of being 

monitored, their impact should not be limited to triggering pro-social behavior in 

interaction tasks, but can be expected to extend to individual choice tasks. 

However, it is not definite that the effect of eyes should extend beyond interaction tasks. 

Cosmides (1989) and Cosmides and Tooby (1989, 1992) argued that humans have evolved 

specialized, domain-specific cognitive modules for solving problems that are encountered 

in social exchange. To support this claim, the authors showed empirical evidence that a 

specialized cheater-detection mechanism existed. Later research suggested that people 

also have a memory bias for cheaters (see Mealey, Daood, and Krage, 1996, Oda, 1997, 

and Oda and Nakajima, 2010; see Barclay and Lalumière, 2006, and Mehl and Buchner, 

2008, for contradictory findings). The ability to detect and remember cheaters may be 

necessary to successfully establish relationships of mutual cooperation. However, this 

ability is not sufficient because people must also aspire to cooperate in the first place. 

Kiyonari, Tanida, and Yamagishi (2000) therefore proposed the existence of a “social 

exchange heuristic,” which facilitates the establishment of mutual cooperation by 

encouraging subjects to perceive one-shot prisoner dilemmas as assurance games in 

which mutual cooperation is the most preferable outcome. As argued by Oda et al. 
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(2011), the eye effect may be due to a similar social heuristic that evolved to facilitate 

mutual cooperation. If this social heuristic is the cause, then there is no a priori reason to 

expect pictures of eyes to have any effect in the absence of interaction and thus, no 

reason to believe that eyes will influence behavior in individual choice tasks. 

Secondly, in addition to exploring whether pictures of eyes influenced behavior in 

individual choice tasks, we investigate the nature of that influence by comparing this 

effect with the effect of another condition that is designed to remind the subjects of 

other people in their social group. The literature is somewhat ambivalent regarding 

whether eyes are special cues or simply one among many social cues that could produce 

the same result. For instance, in addition to presenting subjects with pictures of eyes, 

Haley and Fessler (2005) manipulated auditory cues that indicated the presence of others 

by using sound-deafening earmuffs. The authors found that the earmuffs appeared to 

reduce the subjects’ generosity, although the effect did not reach statistical significance. 

Lambda and Mace (2010) studied whether the presence of other students influenced 

decisions in an ultimatum game if the subjects were explicitly guaranteed that their 

decisions would remain anonymous. The authors found that the presence of other 

students did not affect the subjects’ behavior and cited this result as evidence against an 

eye effect. Being reminded of others without being exposed to a direct eye gaze may not 

have the same effect as an eye cue. To investigate whether the effects were the same, we 

also implement a peers condition in which pictures of our subjects’ social group (i.e., 

university students) are displayed during the experiment. 
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Figure 5.1: Screenshot of the University Website as Used in the Experiment 

Placed at the top left of the screen, the pictures randomly rotate every six seconds. The 

picture displayed on the screenshot above is one of the images that were common to all 

conditions.  

5.2 Method 

Subjects 

We conducted an online experiment on 165 students from the Erasmus School of 

Economics (henceforth ESE), Erasmus University Rotterdam, the Netherlands (32% 

females, age range = 18–33, mean = 21.1 years, S.D. = 2.06 years). The experiment was 

conducted during the first half of June 2010. We sent an email that contained 

personalized links to the website developed for the experiment to 600 students. The 

students were informed that the deadline to participate was two weeks after receipt of 

the recruitment email and that the payment for their participation could range up to €50; 

they received an email reminder one week after the initial email. The invitation emails 

and instructions can be found Appendix 5.A. The subjects were permitted to withdraw 

from the experiment at any time and their data were analyzed anonymously. 
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Figure 5.2 Pictures Used in Each Condition. 

(A) Eyes, (B) Peers, (C) Control. (In the experiment, the faces of the people in the peers 

pictures were visible. The faces have been obscured here for publication purposes only.) 

 

Procedure 

We constructed a replica of the ESE website (Figure 5.1) for this experiment. After the 

initial login to any computer at the ESE, Internet Explorer opens up automatically. The 

homepage consists of the ESE website, which displays news and important information. 

Students and staff members are required to use this website to look up information and 

for many administrative procedures. Similarly to the ESE website, our experimental 

website was bilingual (Dutch and English) and compatible with most browsers (such as 

Internet Explorer, Mozilla Firefox, Opera, Safari, and Chrome) and most screen sizes. 

To present our subjects with pictures of eyes and peers in an unobtrusive manner, we 

used the picture banner from the official ESE website. This banner typically displays 

rotating pictures from the campus. The pictures rotate randomly at an approximate 

interval of six seconds. We constructed three conditions by manipulating the types of 

pictures that rotated in this banner. The banner was visible to the subjects during the 

entire experiment. 
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For the eyes condition, we used pictures of the faces of statues of Erasmus, who is the 

school’s namesake. The students are familiar with images of Erasmus because there are 

multiple statues of him on the campus and his image appears on official university 

documents. Thus, using such pictures would not appear out of the ordinary, and we could 

safely assume that the cues remained sufficiently subtle. Moreover, the neutral facial 

expressions displayed by the statues reduced the risk of accidently priming emotions 

(Figure 5.2A). 

For the peers condition, we used pictures of students who were not looking directly at 

the camera to avoid a potential eye effect. The students in these pictures were engaged 

in studying, chatting, having lunch, etc., on campus. Our subject pool consisted of 

undergraduate students, thus the representations of their fellow university students 

could act as social cues that remind them of their own social group (Figure 5.2B, please 

note that faces have been obscured for publication purposes but were visible in the 

experiment). 

Finally, as a control, we used pictures of empty halls from university buildings (Figure 

5.2C). On the whole, the pictures from the three conditions did not differ much from 

pictures one could find on any university website and were similar to the pictures 

normally found on the ESE website. In addition to these condition specific pictures, the 

subjects also viewed two pictures of university buildings that were common to all 

conditions and were taken from the ESE website. Each subject was randomly allocated to 

one of the three conditions, and all of the tasks were carried out for real money for some 

randomly selected subjects after the experiment. 

During the experiment, the subjects completed four tasks: two tasks involved interaction 

between the subjects, and two tasks involved individual choices under uncertainty. The 

order of the tasks was randomized across subjects. The four tasks were selected on the 

basis of past research and were designed so that social cues can be expected to impact 

the subjects’ behavior. Each task and the corresponding predictions are described in 

detail below. 
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At the end of the experiment, the students answered a small questionnaire including 

demographic questions (gender, age, nationality, and education). For details we refer to 

Appendix 5.B. Some of the answers for the first task described below were missing. 

Approximately 60 subjects were asked to re-enter their answers, of whom 12 failed to do 

so. As this affected every condition equally, there was no reason to believe that it would 

affect our results. We nonetheless studied whether it had any effect on our results and 

found that it had none (see Appendix 5.C.3). For each task, we report simple non-

parametric tests for differences between conditions. The more advanced parametric 

statistical models that control for the subjects’ characteristics are reported in Appendix 

5.C. All of the results reported in this chapter are robust, and statistical significance is 

generally stronger in the more advanced analyses than in the simple analyses. 

Task 1: Joy of Destruction Mini-Game 

The first interaction task we used was the so-called Joy of Destruction mini-game (JoD) 

(Abbink and Herrmann, 2010). Although research on cooperation and social-preferences 

has traditionally focused on pro-social behavior, a recent and growing body of literature 

has begun to apply economic games to the study of anti-social behavior, such as the anti-

social punishment of cooperators in public good settings (e.g., Herrmann, Thöni, and 

Gächter, 2008; Gächter and Herrmann, 2009; Gächter, Herrmann, and Thöni, 2010). The 

JoD has been used in this literature to show that a considerable fraction of subjects is 

willing to pay money to destroy part of the payoff to another subject. In particular, the 

subjects destroyed their opponents’ payoffs only infrequently when their behavior could 

be perfectly observed and their opponents could find out with certainty what caused the 

destruction. However, when the scenario was altered so that their opponent could no 

longer find out with certainty whether the destruction was caused by nature or by 

intention, the subjects’ willingness to destroy markedly increased. Note that this 

difference occurred despite the complete anonymity of the subjects in both cases (Abbink 

and Sadrieh, 2009; Abbink and Herrmann, 2010). 

To achieve a significant amount of destruction and thereby facilitate the investigation of 

possible differences between our conditions, we adopted the “hidden” setup of the JoD 
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in which it is unclear to the subjects what caused the reduction of their income. In our 

JoD variant, two subjects each received an endowment of €25. Then, unaware of each 

other’s identity, both subjects were asked whether they would be willing to pay €1 to 

destroy €10 of the other subject’s endowment. There was a 1/3 probability that €10 of 

the opposing subject’s endowment would be destroyed regardless of the subject’s 

decision, making it impossible for the opposing subject to tell what caused the 

destruction. 

In the JoD game, there is no compelling rationale behind destruction: it is harmful to 

others and costly to oneself. Previous findings on the JoD further suggest that destruction 

mainly occurs in situations in which the behavior cannot be perfectly observed. In light of 

these findings, and of past studies that have showed that eyes increase pro-social 

behavior in simple tasks, we consider this task a way to validate whether the effect of our 

eyes cues align with the past findings of eyes. Furthermore, the design of this task also 

allows us to compare the effect of the eyes to the peers condition in an interaction task. 

Task 2: Dictator Game 

The second interaction task was the dictator game, which is widely studied in economics 

and which demonstrates what is often deemed to be pure altruism on the part of the 

subjects (Camerer, 2003). In this game, one subject, the dictator, received a monetary 

endowment of €50 and was asked how much she would donate to another anonymous 

subject. The other subject simply received what had been donated to her, and nothing 

else. The pro-social action here was to donate some money to the receiver, but this 

would in return lower the dictator’s own income. We chose this task because the impact 

of eye-like stimuli on the dictator game has been studied before (Haley and Fessler, 2005; 

Rigdon et al., 2009; Oda et al., 2011; Nettle et al., 2013). These past studies found that 

donation rates were significantly higher in response to eye cues. Including this task in our 

experiment thus provides us with another opportunity to see whether we could replicate 

the eye effect in our web-based setup. Furthermore, it provided us with a second 

opportunity to compare the effect of the eyes to the effect of peers in an interaction task. 
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Task 3: Ellsberg’s Paradox  

The third task we employed was a variant of the standard ambiguity aversion task devised 

by Ellsberg (1961). The task included two bags containing black and red chips. In one bag 

(Bag K), the proportion of red and black chips was known, whereas in the second bag (Bag 

U), this proportion was unknown. The subjects were asked to choose a color (black or 

red) and a bag from which to draw a chip. If the color of the drawn chip matched the 

color that the subject had chosen, then the subject received €50.  

When the proportion of red and black chips is 50-50, Bag K and Bag U are normatively 

equivalent. Following Laplace’s argument that ignorance should be represented by a 

uniform probability distribution, Bag U should also be considered as a 50-50 bag. If the 

subjects do not follow this argument and believe that one of the colors makes up more 

than 50% of the balls in Bag U, then they should bet on this color and strictly prefer Bag 

U. Nevertheless, many studies have shown that a disproportionate number of people 

choose Bag K (Camerer and Weber, 1992). The distaste for the unknown bag is often 

referred to as ambiguity aversion, and, given that the bags are normatively equivalent, 

can be interpreted as a bias (see, for instance, Raiffa, 1961). 

In our experiment, we implemented the standard Ellsberg choice situation with a 50-50 

proportion of red and black chips in Bag K, however we also varied the proportion of red 

and black chips from 10%-90% to 90%-10% (i.e., 10%-90%, 20%-80%, 30%-70%…). For 

each possible proportion for Bag K, the subjects were asked to state which bag (K or U) 

they would prefer to draw a ball from. When the probability was different from 50%, the 

subjects overwhelmingly selected the normatively superior option, i.e., Bag K if the 

probability of winning in this bag was 60% or higher, and Bag U if the probability of 

winning in Bag K was 40% or lower. No clear differences between the conditions could 

therefore be detected in these scenarios (see Appendix 5.C.4). Hence, we report only our 

analysis of the traditional 50-50 case. 

Previous studies have shown that being observed by others matters for this task. Curley, 

Yates, and Abrams (1986) found that publicly experiencing the consequence of one’s own 

decision in an Ellsberg task generates more ambiguity aversion compared to the situation 
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where privacy was ensured (see also Trautmann, Vieider, and Wakker, 2008, and 

Muthukrishnan, Wathieu, and Xu, 2009). These authors argued that subjects will fear a 

negative evaluation if the bet’s outcome is not in their favor, and the subjects will believe 

that choosing bag K is easier to justify due to its informational advantage (its content is 

known, unlike the one of bag U). Therefore, if our social cues (eyes and peers) trigger 

concerns of being monitored, we would expect more ambiguity aversion in those 

conditions compared with the control. 

Task 4: Simple vs. Compound Lotteries  

Bar-Hillel (1973) has shown that people show systematic biases when comparing simple 

gambles to compound gambles. To be more specific, people appear to overestimate the 

likelihood of conjunctive events (e.g., drawing, with replacement, four red chips from a 

bag with 10 black and 10 red chips) and underestimate the likelihood of disjunctive 

events (e.g., drawing, with replacement, at least one red chip from a bag with 9 black 

chips and 1 red chip when the subject is permitted four tries). The cause for this bias is 

often thought to be a realization of the anchoring and adjustment heuristic (Tversky and 

Kahneman, 1974). It is believed that, when the subjects evaluate the compound event, 

they think about the probability of drawing a particular chip, which then takes the role of 

an anchor. If the subjects do not adjust properly for the compound nature of the event, 

then they overestimate conjunctive events and underestimate disjunctive events. Thus, 

people overvalue the conjunctive gambles and undervalue the disjunctive gambles.  

In the final task, we investigated the effect of our cues on subjects’ evaluation of 

compound gambles. The subjects were asked to make six choices between simple and 

conjunctive (compound) gambles. The options presented to the subjects were similar to 

the ones proposed by Bar-Hillel (1973) and have previously been implemented by Vieider 

(2011). For instance, in a simple gamble, a subject extracted one chip from a bag that 

contained 10 red and 10 black chips. The subject received €50 if the chip was red. In the 

conjunctive, compound gamble, the subject extracted 7 times (with replacement) from a 

bag that contained 18 red and 2 black chips. The subject won €50 if the chip was red each 

time. In all of the choice-situations of this task, the probability of winning in the simple 
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gamble exceeded the probability of winning in the conjunctive, compound gamble. 

Although the simple gamble was thus objectively superior to the compound gamble, past 

research has showed that a significant number of people found the compound gamble 

more attractive (Bar-Hillel, 1973; Kruglanski and Fruend, 1983; Vieider, 2011). 

In line with the view that lowered anonymity leads to a desire to make better, more 

justifiable choices, Kruglanski and Freund (1983) and Vieider (2011) found that subjects 

who expected their choices to be evaluated later on were more likely to make the correct 

choice when deciding between simple and compound events. Therefore, if our social cues 

(eyes and peers) triggered the subjects’ concerns of being monitored, we would expect 

them to make fewer mistakes in these conditions compared to the control. 

5.3 Results 

Task 1: Joy of Destruction Mini-Game 

The overall destruction rate obtained in the JoD over the three conditions is similar to the 

findings in Abbink and Herrmann (2010). Over our entire sample, 24.84 percent of the 

subjects decide to destroy (N = 153), compared with 25.8 percent of the subjects in 

Abbink and Herrmann’s (2010) experiment. Across conditions, however, we observe 

sharp differences. 

In our control condition (N = 51), the subjects destroy 38.78 percent of the time (Figure 

5.3A). The destruction rate is halved in the eyes (N = 49) and peers (N = 53) conditions 

compared with the control condition, constituting a significant decrease (eyes: 17.65%, 

2(1) = 5.534, p = 0.019; peers: 18.87%, 2(1) = 4.959, p = 0.026). There is no significant 

difference between the eyes and the peers condition (2 (1) = 0.026, p = 0.872). 
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Figure 5.3: Results From the Interaction Tasks 

The graph in (A) shows the percentage of subjects who chose to destroy their opposing 

subject’s money in the JoD mini-game, while the graph in (B) shows the mean amount of 

money that was transferred in the dictator game for the different conditions. Error bars in the 

graph in (B) show ± 1 standard error of the mean.  

 

Task 2: Dictator Game 

The standard finding with respect to the dictator game is that over 60% of the subjects 

decide to give away money. The mean donation rate across all subjects is typically 20% of 

the endowment, although the rational, self-interested action is not to allocate any money 

to the other subject (Camerer, 2003). Across our entire sample, our findings are in line 

with the statistics presented above; a total of 63.64 percent of our subjects give away 

money, while the average amount transferred is €10.93, or approximately 22 percent of 

the €50 endowment (N = 165, 55 in each condition). 

In our control condition, the subjects give away €9.75 on average (Figure 5.3B). The 

pictures of eyes strongly increase donations to an average amount of €13.93  

(Mann-Whitney U test p = 0.047). By contrast, the average donation in the peers 

condition is not significantly different from the control (mean: €9.11,  

Mann-Whitney U test p = 0.414). The donations amounts are significantly different 

between the eyes and the peers condition (Mann-Whitney U test p = 0.013). 
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Figure 5.4: Results From the Individual Choice Tasks 

The graph in (A) shows the percentage of subjects who chose the ambiguous option (Bag U) 

over the risky option (Bag K), while the graph in (B) shows the percentage of subjects who did 

not make any errors in the final task. 

 

Regarding the probability of donating, we find the highest rates of donation in the eyes 

condition, in which 76.36 percent of the subjects donate some amount. In the control, 

the percentage of subjects who donate is considerably lower than in the eyes condition, 

at 63.64 percent, and the lowest rate of donation occurs in the peers condition, at 50.91 

percent. Here, however, neither the eyes nor the peers condition differ significantly from 

the control (2(1) < 2.121, p > 0.145). The eyes and peers conditions differ significantly 

from each other, in that the subjects in the eyes condition are significantly more likely to 

donate compared the subjects in the peers condition (2(1) = 7.700, p = 0.006). 

Task 3: Ellsberg’s Paradox  

In the Ellsberg task, the subjects choose between two bags. The probability of winning 

was known for Bag K (50%) and unknown for Bag U. In line with past findings, we observe 

that the majority of subjects choose Bag K in our control condition, while only a small 

fraction selected Bag U (N = 55, 14.45%, see Figure 5.4A). In contrast to the interaction 

tasks, we find no effect of eyes on the subjects’ bag choice (N = 55, 20%, 2(1) = 0.573,  

p = 0.449). In the peers condition, however, the subjects are significantly less likely to 
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show a bias against the ambiguous option than in the other conditions: more than a third 

of the subjects in this condition choose Bag U (N = 55, 34.55%, comparison with the 

control: 2(1) = 5.939, p = 0.015, comparison with the eyes: 2(1) = 2.933, p = 0.087). 

Task 4: Simple vs. Compound Lotteries 

The simple gamble is always preferable to the compound gamble; thus, we will refer to 

the choices that favor the compound gambles as errors. In the control condition (N = 55), 

fewer than a third of the subjects does not make any errors (Figure 5.4B). There is no 

difference between the eyes condition (N = 55) and the control condition (both 32.73%, 

2(1) = 0.000, p = 1). In the peers condition (N = 55), however, 49.09 percent of the 

subjects never make an error. The difference between the peers condition and the two 

other conditions is marginally significant when the other conditions are separate (both: 

2(1) = 3.046, p = 0.081) and significant at the five percent level when the other two 

conditions are combined (2(1) = 4.160, p = 0.041). 

The number of errors reveals a similar pattern to the results presented above. The 

median number of errors made is one out of six in the peers condition, compared with 

two out of six in the other two conditions. The mean number of errors made is 2.27 in the 

control, 1.98 in the eyes condition and 1.60 in the peers condition. Mann-Whitney tests 

indicate that the difference in the number of errors is marginally significant between the 

peers and the control conditions (Mann-Whitney U test p = 0.077). The eyes condition 

does not differ significantly from the two other conditions (p > 0.229).  

5.4 Conclusions and Discussion 

In the current chapter, we apply a dual strategy to better understand the effect of 

pictures of eyes on human behavior. First, to identify whether the eye effect is limited to 

interaction tasks, we expand the range of tasks to include individual choice tasks. Second, 

to ascertain whether eyes are special or are simply one among many social cues that may 

produce the same results, we compare the effect of eyes with the effect of another 

condition that presents the subjects with pictures of other students (peers). 
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In agreement with past findings, we find that pictures of eyes lead to more pro-social 

behavior in interaction tasks. Our results reveal that the subjects give more money to 

strangers and are less likely to destroy the endowment of others in response to eyes 

cues. However, we find that eyes do not influence subjects’ behavior in individual choice 

tasks, in which their choices do not influence the outcomes of others. This difference 

suggests that the eye effect is limited to situations that involve interaction, which is 

compatible with the view that this effect may be caused by a social exchange heuristic 

that works to establish mutual cooperation, as suggested by Oda et al. (2011). 

The differences between the eyes condition and the peers condition show that different 

social cues can have different behavioral implications. In the dictator game, the eyes 

promote giving, while the peers do not. Moreover, the peers influence behavior in the 

two individual choice tasks, while the eyes do not. The finding that different social cues 

can have different effects is important because it implies that care is required to avoid 

drawing overly general conclusions from the observed effects of one specific social cue. 

It is noteworthy that, in the individual choice tasks, the peers condition uniformly 

increases economic rationality. In that condition, we observe less ambiguity aversion and 

fewer mistakes in choices between simple versus compound lotteries. In the interaction 

tasks, we find that peers only influenced behavior in the JoD game, where the pro-social 

act of not destroying is also economically rational. By contrast, peers do not appear to 

influence behavior in the dictator game, in which the pro-social and the rational action 

misalign. In short, the criterion of economic rationality seems to play an important role in 

the peers condition. It is possible that this effect may be an artifact of our subject pool, 

which consisted of subjects who were all trained in economics and might fear negative 

judgment from their peers if they do not make a rational decision. However, it should be 

noted that this finding also agrees with the general tenet of the accountability literature 

that considering the judgment of others will encourage pre-emptive self-criticism and 

careful analysis of the problem to arrive at a more justifiable decision (Lerner and Tetlock, 

1999). While the finding of the peers condition in the ambiguity task contradicts the 

recent literature that suggests that considering others’ judgment will increase ambiguity 
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aversion, it is important to note that these papers have all focused on the observation of 

the actual outcome by others. The accountability literature suggests that expecting 

judgment based on the outcomes of one’s decisions generally hampers performance, 

while expecting judgment based on the decision process employed generally improves 

performance (Simonson and Staw, 1992; Siegel-Jacobs and Yates, 1996). It may be that 

being presented with pictures of peers during decision-making caused the latter, rather 

than the former, mechanism to operate. The latter mechanism can explain the results 

obtained in the present chapter. 

It is possible that an alternative mechanism, different from considerations about others’ 

judgment, may have caused the peers effect. For example, pictures that feature multiple 

people may trigger a competitive mindset, i.e., a desire to outperform others. 

Alternatively, the pictures in the peers condition, which displayed other people who did 

not look directly at the camera, may have made anonymity even more salient than the 

pictures in the control condition, which did not show any people at all. While the former 

explanation could account for the increased performance in individual choice tasks, it is 

not straightforward how the latter could do so. More importantly, both mechanisms fail 

to account for the findings in the interaction tasks. Competitive subjects should give less 

than other subjects in the dictator game, which we did not observe. Furthermore, both 

increased competitiveness and anonymity should be expected to increase destruction in 

the JoD game. In this game, subjects with a competitive mindset may attempt to improve 

their relative payoffs by destroying part of their opponents’ endowment, and increasing 

anonymity has been found to increase destruction rates in previous studies (Abbink and 

Sadrieh, 2009; Abbink and Herrman, 2010). By contrast, we find that destruction is 

significantly lower in the peers condition compared with the control.  

The influence of our subtle cues on the subjects’ behavior is remarkable, given that the 

pictures we employed were common pictures that can be found on any university 

website. Furthermore, it is noteworthy that we find significant effects for both of the 

social cues in a web-based experiment. Web-based experiments have the advantage of 

diminishing the participation costs for subjects because they do not need to come to the 
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laboratory and are free to participate at any time. Furthermore, these experiments allow 

subjects to make decisions in their natural environment. The obvious drawback is that the 

environment in which subjects make their decisions is less controlled than it would be in 

the laboratory. For our experiment, it was possible that subjects were in a public setting 

when they participated in the experiment, which could reduce the relative effectiveness 

of the social cues (Ernest-Jones, Nettle and Bateson, 2011; Ekström, 2012; Powell, 

Roberts, and Nettle, 2012). Therefore, using a web-based design instead of a carefully 

controlled anonymous laboratory setting potentially lowered our chances of finding 

statistically significant effects (i.e., increased type II errors). That we find statistically 

significant effects of eyes in both interaction tasks and peers in both the individual choice 

tasks and one of the interaction tasks suggests that reduction in control was not a major 

problem in our experiment. 

Interestingly, in another recent web-based study, Raihani and Bshary (2012) were unable 

to find an eye effect in a dictator game played online using Amazon Mechanical Turk 

(AMT). Our experiment differs from theirs in a number of ways, which makes it difficult to 

conclusively identify what caused the results to differ. Raihani and Bshary (2012) argued 

that interacting via AMT may have caused the subjects to feel truly anonymous and 

therefore be irresponsive to subtle social cues, similar to the argument put forth by 

Lambda and Mace (2010). This increased anonymity may explain the discrepancy 

between our findings and the findings from Raihani and Bshary (2012), as AMT ensures a 

larger degree of anonymity than our experimental setup. In our experiment, the subjects 

received personalized links to participate in the experiment and the payment of randomly 

selected subjects was conducted face-to-face so that the subjects could verify that the 

gambles in individual choice tasks were fairly resolved. Another explanation for the 

difference, however, may be that in our experiment the subjects played the game against 

fellow students from the same university, while the subjects in Raihani and Bshary’s 

experiment played against subjects from all over the world. In light of Mifune, Hashimoto, 

and Yamagishi’s (2010) finding that pictures of eyes make people act more altruistically 

only towards members from their own in-group, this provides another explanation for 

why we find a significant effect of eyes while Raihani and Bshary (2012) did not. 
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To study the eye effect in an unobtrusive manner, we used pictures of Erasmus’ eyes. 

Seeing Erasmus on the website would be normal for our subjects, who all studied at the 

Erasmus School of Economics. However, the image of a famous intellectual such as 

Erasmus could induce a desire to appear smart. Priming subjects with words such as 

“professor” has been found to improve subjects’ performance at answering trivia 

questions (Dijksterhuis and van Knippenberg, 1998). Nevertheless, we do not believe that 

our experiment was compromised in such a way. First, it should be noted that all of the 

subjects from the three conditions were, in a sense, primed with “Erasmus” because the 

name Erasmus was displayed at least four times on each screen for each condition (see 

Figure 5.1, at the top and at the bottom) and on the pictures that were common to all 

conditions. Moreover, the website that was used closely resembled that of the Erasmus 

School of Economics. Second, previous research showed that priming subjects with 

university-related concepts decreased the number of mistakes made by subjects 

(Dijksterhuis and van Knippenberg, 1998). In our experiment, such priming should mean 

that subjects should have made fewer errors in the individual choice tasks in the eyes 

condition. As we have observed, especially in the choices between simple and compound 

gambles, this reduction in errors did not occur. Pictures of eyes did not lead to better 

decisions. 

Observing that eyes do not influence behavior in our individual choice tasks does not 

guarantee that eyes will not influence behavior in any individual choice task. It could be 

argued that subjects react to pictures of eyes only when the task allows them to 

demonstrate positive qualities, such as being smart, conscientious, or successful, in an 

obvious manner and that our tasks did not allow them to do so. However, it is important 

to stress that both of the individual choice tasks were specifically selected to maximize 

the chance of observing an eye effect. For both tasks, past research indicates that 

manipulating anonymity in these tasks influences subjects’ behavior. Thus, people appear 

to consider the judgment of others while performing these tasks. Moreover, in the task 

that compared simple vs. compound lotteries, qualities such as intelligence or 

conscientiousness could be demonstrated by choosing the objectively superior gamble 

(all of our subjects had attended mathematical courses on probability theory). 
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To conclude, our findings suggest that eyes should be considered distinct from other 

social cues, such as reminders of peers. Although reminders of peers influence a broad 

range of tasks, the eye effect appears to be limited to triggering pro-social behavior in 

situations that involve interaction. Combined with findings from previous studies, these 

results are in line with the claim that responses to eyes are caused by a social exchange 

heuristic aimed at enhancing cooperative behavior among in-group members (Mifune, 

Hashimoto, and Yamagishi, 2010), mediated by increased expectations of future reward 

(Oda et al., 2011).  
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Appendix 5.A Recruitment Emails 

5.A.1 Recruitment e-mail 

 

Dear student, 

 

We would like to invite you to participate in a web-based experiment on economic decision-

making, run by the "Behavioural Economics Group" at the ESE. The experiment is carried out 

online, so you can participate at any time and anywhere you like over the next two weeks. All you 

have to do is to use the link below and follow the instructions on the website. The experiment will 

take 10-15 minutes of your time, and in return you will get a chance to win up to 50 euros! We 

will randomly select 19 people among the participants and have a budget of 850 euros for this 

experiment. 

 

Your personal link to the experiment is: 

[PERSONALIZED LINK TO THE WEBSITE] 

 

You will not have to log into our website: this personal link will automatically register that you 

have participated in the experiment. 

 

The experiment will be online only 2 weeks, so if you want to have a chance of winning 50 euros, 

you should make sure to participate in the experiment very soon. 

 

Thank you for your interest in our experiments! 

 

Best regards,  

XXXXXXXXXXX 
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5.A.2 Reminder e-mail 

 

Dear student, 

 

There is only one week left to take part in our web-based experiment and to get a chance to win 

50 euros. 

 

Your personal link to the experiment is: 

[PERSONALIZED LINK TO THE WEBSITE] 

 

More information: 

This is a web-based experiment on economic decision-making, run by the "Behavioural Economics 

Group" at the ESE. The experiment is carried out online, so you can participate at any time and 

anywhere you like. All you have to do is to use the link above and follow the instructions on the 

website. The experiment will take 10-15 minutes of your time, and in return you will get a chance 

to win up to 50 euros! We will randomly select 19 people among the participants and have a 

budget of 850 euros for this experiment. 

 

You will not have to log into our website: this personal link will automatically register that you 

have participated in the experiment. 

 

The experiment will be online only 1 more week, so if you want to have a chance of winning 50 

euros, you should make sure to participate in the experiment very soon. 

 

Thank you for your interest in our experiments! 

 

Best regards,  

XXXXXXXXXXX 
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Appendix 5.B Experimental Instructions 

5.B.1 Welcome page 

 

Welcome and thank you for taking part in our experiment! 

You will be participating in a web-based experiment in economic decision-making. Based on the 

decisions that you make during the experiment, you might receive a monetary payment up to €50 

which will depend on your choices in the experiment.  

In the experiment, you will be asked to make seventeen choices distributed among four different 

tasks. Two of these tasks, each involving one choice, will require you to make decisions that will 

influence both your own and another participant's outcome. The other two tasks, involving the 

remaining fifteen choices, concern decisions regarding bets. 

At the end of the experiment, when all participants have submitted their answers, for each of the 

17 choice situations we will randomly select participants for whom this choice situation will be 

carried out for real money. For every choice situation we will select different participants. Thus, 

you have a chance that one choice situation will be carried out for real money for you. 

We have attempted to make the instructions of the experiment as clear as possible. However, if 

you still have trouble understanding a task after reading the instructions, have any other 

questions, or encounter technical difficulties, please contact XXXXX@ese.eur.nl. You can send an 

email, close the window, and continue the experiment after you have received a reply. 

Click next if you're ready to start the experiment. 

 
Next 
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5.B.2 Joy of Destruction Mini-Game 

 

In this task, you will be randomly matched with another participant in the experiment. We will 

refer to this other participant as "Player B". Both you and Player B will receive an endowment of € 

25. You have to decide whether to reduce Player B's income or to leave it as it is. If you pay € 1, 

you can reduce Player B's income by € 10. Player B will be asked to make the same choice 

regarding your income and will incur the same cost (€ 1) if (s)he chooses to reduce your income.  

After Player B and you have decided whether or not to reduce each other's income, a die will be 

thrown twice. Once for you and another time for Player B.  

Let us consider the throw concerning Player B's income. If the die shows 1 or 6 Player B's income 

will be reduced, independent of your decision. If the die shows any other number (2,3,4,5) then 

your decision will be realized: If you have decided to reduce Player B's income, the income will be 

reduced. If you have decided not to reduce Player B's income, the income will not be reduced.  

The same procedure will be applied to determine your income: first a throw of a die, then, if the 

die shows a 1 or a 6, your income will be reduced irrespective of Player B's decision. If the die 

does not show a 1 or a 6, Player B's decision regarding your income will be carried out.  

Please be aware that neither Player B nor you will learn about the outcome of the throws of the 

die. Therefore, if Player B's income is reduced by € 10, Player B will never learn what the reason 

for this reduction has been: your decision or the results of the throw of the die. Similarly, if your 

income is reduced, you will not know whether this is due to Player B's decision or the throw of the 

die. 

Please make your decision: Your endowment in this experiment is € 25. 

Do you want to pay € 1 to reduce Player B's income by € 10? 

 Yes 

 No 

Once you have made your decision, click next. 

 

 
Next 
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5.B.3 Dictator Game 

 

You have been allocated € 50. Your task is to decide how much of this amount to allocate to 

another individual. The other individual will receive this amount and you will keep the rest. 

The other individual will be a randomly selected participant of the experiment. This participant 

cannot be selected to be paid out for his or her own decisions in the experiment; hence, his or her 

payoff solely depends on your choice. If you happen to be the randomly selected participant 

whose choice will be paid out for real, we will make sure that you and the other participants will 

be invited to receive your payments on different days, so as to rule out any chance that you will 

meet the other participant. You will not learn the identity of the participant you are matched 

with, and likewise the other participant cannot learn your identity. 

You are now asked to state the amount you wish to allocate to the other participant. This must be 

a number (integer) between 0 and 50.  

Once you have made your decision, click next. 

 
Next 



APPENDIX 5.B EXPERIMENTAL INSTRUCTIONS  

 

141 

5.B.4 Ellsberg Tasks 

 

This task involves 9 choices. For each of these choices, one participant will be randomly selected, 

and his/her decision will be implemented for real, and the resulting outcome will be paid in euros. 

Please state your decision for each of the following choice tasks.  

You will have to pick a colour: red or black, and draw a chip from a bag containing red and black 

chips. If your colour is drawn you will win €50, but if the other colour is drawn, you will win 

nothing. You have to decide from which bag you would like to draw a chip: Bag A or Bag B.  

 In Bag A, there will be 10 chips. Each chip can only be black or red, but the proportion of 

each colour will be unknown. The bag will be ready before you choose your colour, but 

you will not be allowed to check what is in it before choosing a colour and drawing a chip.  

 

 In Bag B, we will put (in front of you) x chips of your colour and 10 - x chips of the other 

colour. 

If x were 0, Bag A would be more interesting because there could be at least one chip with your 

colour in this bag. If x were 10, Bag B would be more interesting because it would guarantee €50. 

For x=1, 2, ..., 9, you have to choose the bag from which you want to extract a chip so as to win 

€50 if you draw a chip of your colour. 

 

Once you have made your decision, click next.  

 

 

 

Choice 1 

x=1 

 

Choice 2 

x=2 

 

Choice 3 

x=3 

 

Choice 4 

x=4 

 

Choice 5 

x=5 

 

Choice 6 

x=6 

 

Choice 7 

x=7 

 

Choice 8 

x=8 

 

Choice 9 

x=9 

Bag 

A 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

unknown 

proportio

ns of red 

and black 

chips 

Bag 

B 

1 chip of 

your 

colour, 9 

chips of 

the other 

colour 

2 chips of 

your 

colour, 8 

chips of 

the other 

colour 

3 chips of 

your 

colour, 7 

chips of 

the other 

colour 

4 chips of 

your 

colour, 6 

chips of 

the other 

colour 

5 chips of 

your 

colour, 5 

chips of 

the other 

colour 

6 chips of 

your 

colour, 4 

chips of 

the other 

colour 

7 chips of 

your 

colour, 3 

chips of 

the other 

colour 

8 chips of 

your 

colour, 2 

chips of 

the other 

colour 

9 chips of 

your 

colour, 1 

chip of 

the other 

colour 

 A    B A    B A    B A    B A    B A    B A    B A    B A    B 

Next 
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5.B.5 Compound vs. Simple Lotteries 

 

This task involves 6 choices. For each of these choices, one participant will be randomly selected, 

and his/her decision will be implemented for real, and the resulting outcome will be paid in euros. 

Please state your decision for each of the following choice tasks. 

Each of the choice tasks involves choosing between an option that involves drawing one chip from 

a bag and another option that involves drawing multiple chips from a different bag. 

In case of drawing multiple chips from the bag, the poker chips you draw will be placed back in 

the bag and the chips in the bag will be mixed before you extract again, so as to keep the 

composition of the bag constant. This holds true for all choice situations below.  

Please pay attention to both the composition of the bags and the number of extractions, which 

both vary across tasks. 

In each choice situation, you have to choose between two options to win €50. 

 

 

 

Choice 1 

 

Choice 2 

 

Choice 3 

 

Choice 4 

 

Choice 5 

 

Choice 6 

Option 

A 

extract 1 time 

from a bag with 

10 red and 10 

black chips, win 

if red 

extract 1 time 

from a bag with 

5 red and 15 

black chips, win 

if red 

extract 1 time 

from a bag with 

5 red and 15 

black chips, win 

if red 

extract 1 time 

from a bag with 

2 red and 18 

black chips, win 

if red 

extract 1 time 

from a bag with 

4 red and 16 

black chips, win 

if red 

extract 1 time 

from a bag with 

6 red and 14 

black chips, win 

if red 

Option 

B 

extract 7 times 

from a bag with 

18 red and 2 

black chips, win 

if 7 times red 

extract 5 times 

from a bag with 

15 red and 5 

black chips, win 

if 5 times red 

extract 7 times 

from a bag with 

16 red and 4 

black chips, win 

if 7 times red 

extract 4 times 

from a bag with 

10 red and 10 

black chips, win 

if 4 times red 

extract 6 times 

from a bag with 

15 red and 5 

black chips, win 

if 6 times red 

extract 2 times 

from a bag with 

10 red and 10 

black chips, win 

if 2 times red 

 A    B A    B A    B A    B A    B A    B 

 

Once you have made your decision, click next.  

 
Next 
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5.B.6 Confirmation Screen and Additional Questions 

 

Confirmation 

Your choices have been registered. Please answer the following questions to validate your 

participation in the experiment.  

Read each of the following statements carefully and indicate how characteristic it is of you 

according to the following scale44: 

  

Not at all 

characteristic 

of me 

Slightly 

characteristic 

of me 

Moderately 

characteristic 

of me 

Very 

characteristic 

of me 

Extremely 

characteristic 

of me 

I worry about what other people will think 

of me even when I know it doesn't make 

any difference.  

     

I am unconcerned even if I know people are 

forming an unfavorable impression of me.  
     

I am frequently afraid of other people 

noticing my shortcomings. 
     

I rarely worry about what kind of 

impression I am making on someone. 
     

I am afraid that others will not approve of 

me.  
     

I am afraid that people will find fault with 

me.  
     

Other people's opinions of me do not 

bother me.  
     

When I am talking to someone, I worry 

about what they may be thinking about me. 
     

I am usually worried about what kind of 

impression I make.  
     

                                                      
44

 This questionnaire was intended to measure fear of negative evaluation (Leary, 1983). We have decided 

to disregard this questionnaire for two reasons. First, subjects complained about it in their comments after 

the experiment (whereas most of the other comments were positive). The main problems seemed to be 

that these were the only psychological questions we used, which made it overtly obvious to the subjects 

what we were trying to measure and that the Dutch version of the scale was completely unidirectional 

(none of the questions were reversely coded, a higher score always implied more fear). Therefore, subjects 

considered the questions to be suggestive and disliked providing answers. Second, and possibly related to 

the first point, we noticed in the website’s log files that many subjects preferred not to answer these 

questions and only did so when they were asked to do it for a second time. Therefore, it is very likely that 

they did not put much effort into answering the questions. 
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If I know someone is judging me, it has little 

effect on me. 
     

Sometimes I think I am too concerned with 

what other people think of me.  
     

I often worry that I will say or do the wrong 

things. 
     

 

Did you use a calculator to make some choices in the experiment? 

 Yes 

 No  

 

Please indicate you age, gender, year of study, and nationality. 

Age:   

 

Gender:  

  

Male 

  

Female 

 

Year of study:  

  

Bachelor 1 

  

Bachelor 2 

  

Bachelor 3 

  

Master 

  

Other 

 

Nationality:  

  

Dutch 

  

Other 
   

 

Any comment? 

(optional) 

   

 

5.B.7 Final Screen 

 

Thank you for your participation. Your answers have been recorded.  

When the experiment is over, we will let you know whether you have been selected to play one 

of your choices for real. 
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Appendix 5.C Additional Analyses 

5.C.1 Descriptive Statistics  

Table 5.1 displays the descriptive statistics for the 162 subjects that completed the 

questionnaire at the end of the experiment (three subjects neglected to do so). The 

majority of our subjects were male (68%), Dutch (65%), and in the second year of their 

bachelor’s degree (57%). Furthermore, around 14 percent were in their first year of the 

bachelor’s degree, 12 percent were in their third year, 16 percent were following a 

master’s program, and 1 percent did not fall into any of these categories. Both the 

average and the median age were 21, and age ranged from 18 to 33. It should, however, 

be mentioned that over 90 percent of our subjects was under the age of 25 (not in table). 

A considerable share of subjects admitted to having used a calculator during the 

experiment (45%). Note that using a calculator was by no means forbidden in the 

experiment. We simply asked this question since using a calculator would facilitate 

finding correct answers in one of the tasks. 

5.C.2 Joy of Destruction Mini-Game 

In the JoD mini-game, the subjects had the option to pay €1 to destroy €10 of another 

player’s endowment. As presented in the chapter, χ2-tests show that subjects are 

significantly less likely to destroy the endowment of the other subject in eyes condition 

and the peers condition, relative to the control. There is no difference between the eyes 

and the peers condition. In the current section we show that these results are robust 

when we apply Probit regressions and control for the effect of other variables. 

Furthermore, due to a technical problem, the decisions submitted by some of the 

subjects (58 out 165) were initially not recorded in the database. These subjects received 

an email telling them that they could go back to the website to fill in the missing decision 

and most of them (46 out of 58) did so. Here, we provide additional tests showing that 

there is no indication that this data problem influenced our results.  
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Table 5.1: Descriptive Statistics of the Subjects 

The table shows descriptive statistics for our sample of 162 subjects who participated in the experiment 

and answered the questionnaire (three subjects neglected to do so). Age is the subject’s age measured in 

years. Gender, Nationality, Calculator, Bachelor 1, Bachelor 2, Bachelor 3, Master, and Other are dummy 

variables indicating whether a contestant is female (Gender), Dutch (Nationality), indicates having used a 

calculator (Calculator), is a first year Bachelor student (Bachelor 1), a second year Bachelor student 

(Bachelor 2), a third year Bachelor student (Bachelor 3), a master student (Master), or indicates that she is 

neither in the first three years of her Bachelor, nor a Master student (Other), respectively. 

    Mean Median Stdev Min Max 

Age 21.10 21 2.06 18 33 
Gender (Female = 1) 0.32 0 0.47 0 1 
Nationality (Dutch = 1) 0.65 1 0.48 0 1 
Calculator (yes = 1) 0.45 0 0.50 0 1 
Year of study      
 Bachelor 1 0.14 0 0.35 0 1 
 Bachelor 2 0.57 1 0.50 0 1 
 Bachelor 3 0.12 0 0.32 0 1 
 Master 0.16 0 0.37 0 1 
  Other 0.01 0 0.11 0 1 

 

Table 5.2 shows the results for Probit modesl on the probability that a subject destroys 

the endowment of another subject; significance levels are based on robust standard 

errors. Furthermore, since coefficients in a Probit model do not offer intuitive 

interpretations in terms of effect size, we report marginal effects evaluated at the 

covariate means. Model 5.1 provides a simple comparison between conditions. In line 

with the χ2-tests, we observe that destruction rates both in the eyes (p = 0.01) and the 

peers (p = 0.02) conditions are significantly lower than in the control condition. There is 

no significant difference between the eyes and the peers condition (p = 0.87, 

untabulated). Adding our control variables (Table 5.2, Model 5.2), we find that only 

nationality has a significant influence on destruction. Dutch students are significantly less 

likely to destroy the other’s endowment (p < 0.01). The effect of both the eyes and the 

peers condition remain statistically significant (respectively p = 0.01 and p = 0.04). In 

short, these analyses show that the simple, non-parametric tests applied in the main 

chapter prove robust in more advanced analyses controlling for age, gender, nationality, 

education year, and the use of a calculator. 
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Table 5.2: Probit Regression Results on Destruction Rate in the JoD Mini-Game 

The table displays results from the Probit regression analyses of subjects’ decisions to destroy (1) or not 

destroy (0) part of another subject’s endowment. Eyes and peers are dummy variables taking the value 1 if 

subjects were in the eyes condition (Eyes) or the peers condition (Peers), respectively. Definitions of the 

other variables are as in Table 5.2. Model 5.1 is estimated on the entire sample of 153 subjects who 

successfully submitted a decision in the JoD mini-game. Model 5.2 and Model 5.3 are estimated on the set 

of 150 subjects who both successfully submitted a decision in the JoD mini-game and answered the 

questionnaire at the end of the experiment. Model 5.4 is estimated on the set of 104 subjects for whom the 

decision in the JoD mini-game was successfully recorded the first time round (i.e. not affected by technical 

problems) and who answered the questionnaire at the end of the experiment. For each explanatory 

variable, the marginal effect at the covariate means is shown. Robust standard errors are used and p-values 

are shown in parentheses.  

      Model 5.1 Model 5.2 Model 5.3 Model 5.4 
Condition dummies         
 Eyes -0.18 (0.01) -0.18 (0.01) -0.18 (0.01) -0.18 (0.03) 
 Peers -0.17 (0.02) -0.14 (0.04) -0.15 (0.03) -0.15 (0.08) 
Control variables         
 Age   -0.01 (0.50) -0.01 (0.55) 0.00 (0.90) 
 Gender (female = 1)   0.06 (0.46) 0.07 (0.40) 0.05 (0.64) 
 Nationality (Dutch = 1)   -0.26 (0.00) -0.26 (0.00) -0.30 (0.00) 
 Year of study       
  Bachelor 2   0.02 (0.86) -0.04 (0.76) -0.23 (0.24) 
  Bachelor 3   0.04 (0.80) 0.01 (0.93) -0.21 (0.00) 
  Master   0.18 (0.39) 0.14 (0.49) -0.04 (0.87) 
 Calculator (yes = 1)   -0.06 (0.43) -0.06 (0.42) 0.01 (0.93) 
 Second time (yes = 1)         -0.08 (0.27)   
Log pseudo-likelihood -82.15 -69.21 -68.74 -47.2 
N 153 150 150 104 

 

Table 5.3 shows descriptive statistics on destruction rates depending on whether the 

subject’s decision was recorded the first time round or whether they had to record their 

decisions a second time due to the data storage problem. For the eyes and the control 

condition, the findings are highly similar in both cases. Subjects destroy the others’ 

endowment in 18.18 percent of the cases when recording their decision for the first time 

and 16.67 percent when recording it the second time in the eyes condition. These 

statistics are 39.39 percent and 37.50 percent, respectively, for the control condition. 

When investigating the peers condition the gap appears a bit larger, subjects destroy the 

other’s endowment in 21.95 percent of the cases when answering the question for the 

first time, and 8.33 percent of the cases when answering the question for a second time. 

A Fisher’s exact test, however, indicates that this difference is not statistically significant 

(p = 0.42).  
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Table 5.3: Descriptive Statistics on Destruction Rate 

The table shows descriptive statistics on destruction rate in the JoD mini-game depending on whether 

subjects’ decisions were recorded the first time the subjects submitted them, or whether subjects had to 

record their decisions for a second time due to a technical problem with the website. Results are shown for 

all conditions both separately and combined. Overall statistics are provided in the final column. 

  First time  Second time  Overall 

  N % destroy  N % destroy  N % destroy 

Eyes 33 18.18  18 16.67  51 17.65 

Peers 41 21.95  12 8.33  53 18.87 

Control 33 39.39  16 37.50  49 38.78 

Total 107 26.17  46 21.74  153 24.84 

 

Overall, the qualitative pattern seems to be the same independent of whether subjects 

recorded their decisions for the first or the second time: subjects in the eyes and peers 

conditions destroy at a similar rate, which is lower than the destruction rate in the control 

condition. Performing χ2-tests, we find that even for the subset of subjects who recorded 

the questions for the first time the differences between conditions approach significance 

(comparing eyes with control: p = 0.06; comparing peers with control: p = 0.10). The 

additional observations from the subjects who had to record their decision for a second 

time thus only strengthen the statistical evidence for an already apparent pattern. 

Table 5.2, Model 5.3 incorporates a dummy variable taking the value 1 if the decision had 

to be recorded a second time, 0 otherwise, into the full model. This analysis shows that 

being requested to answer the question a second time does not steer behavior in a 

particular direction. Model 5.4 reports the results of estimating the model on the subset 

of subjects whose decisions were successfully stored the first time round. While the 

significance levels drop a bit, we observe that the estimates of the marginal effects are 

not at all affected by leaving out these subjects. This provides further indication that the 

data storage problem did not affect our results in a meaningful way. 
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5.C.3 Dictator Game 

In the main chapter, we have shown that the results from non-parametric Mann-Whitney 

tests suggest that the amount donated in the dictator game differs significantly between 

conditions. In particular, subjects donate significantly more to the other subject in the 

eyes condition compared to the other two conditions. There is no significant difference in 

the amount donated between the peers and the control condition. Looking at the 

percentage of subjects who decide to give away money, χ2-tests indicate that neither the 

eyes nor the peers conditions differs significantly from the control, but that subjects in 

the eyes condition are significantly more likely to donate as compared to subjects in the 

peers condition. In the present section we will show that these results are robust, or even 

strengthened, by performing more advanced analyses and controlling for the effect of 

other variables on the willingness to donate money to a stranger. 

First, we analyze the amount donated by the Dictator by means of a Tobit model. We use 

a Tobit model to account for the fact that our dependent variable “Amount given” is 

censored between €0 and €50. Model 5.1 and Model 5.2 in show our results, significance 

levels being based on robust standard errors. Model 5.1 presents a simple test of the 

condition effects to compare the results from the (parametric) Tobit analyses with those 

of the (non-parametric) Mann-Whitney tests reported above. We observed that the 

difference between the eyes condition and the control condition decreases in significance 

due to the distributional assumptions made in the Tobit. Still, the difference between the 

eyes and the control conditions remains marginally significant (p = 0.08)—and is 

significant if we perform a one-sided test (p = 0.04). More importantly, however, adding 

our control variables (Model 5.2) the condition effect increases in significance, becoming 

significant at the 5 percent level in a two-sided test (p = 0.04). None of the control 

variables seems to have a strong influence on behavior, except that Dutch students seem 

less willing to donate money (p = 0.09).  
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Table 5.4: Regression Results on Giving in the Dictator Game 

The table displays results from regressions on the subjects’ giving behavior in the dictator game. Model S4.1 

and Model 5.2 display results of Tobit regression analyses on the amount donated by the subjects. Model 

5.3 and Model 5.4 displays results of Probit analyses on the subjects’ decisions to either donate (1) or not 

(0). Definitions of the variables are as in previous tables. In the results of the Probit regressions we depict 

marginal effects at the covariate means. For both Tobit and Probit models, we apply robust standard errors. 

P-values are shown in parentheses.  

   Amount transferred  Probability giving 
      Model 5.1 Model 5.2  Model 5.3 Model 5.4 
 Constant 5.15 (0.06) -3.16 (0.91)      
Condition dummies          
 Eyes 6.31 (0.08) 7.41 (0.04)  0.13 (0.13) 0.18 (0.05) 
 Peers -2.91 (0.48) -2.81 (0.51)  -0.12 (0.18) -0.09 (0.38) 
Control variables          
 Age   0.88 (0.50)    0.01 (0.72) 
 Gender (female = 1)   -3.04 (0.37)    0.04 (0.64) 
 Nationality (Dutch = 1)   -5.62 (0.09)    -0.22 (0.01) 
 Year of study         
  Bachelor 2   -5.29 (0.29)    -0.10 (0.39) 
  Bachelor 3   -4.92 (0.39)    0.06 (0.73) 
  Master   -7.31 (0.35)    -0.17 (0.41) 
 Calculator (yes = 1)    -3.60 (0.31)       -0.02 (0.85) 
Sigma 18.80 18.51      
Log pseudo-likelihood -490.89 -474.73  -104.24 -97.92 
N 165 162   165 162 

 

Interpreting the parameters, an individual’s willingness to donate increases by about 

€7.41 euro’s in the eyes condition compared to the control condition. This difference is 

larger than the observed difference in money allocated between conditions due to the 

fact that the Tobit takes censoring in the data into account. As could be expected, the 

difference between the eyes condition and the peers condition is significant both in 

Model 5.1 and Model 5.2 (p < 0.02, untabulated). 

Model 5.3 and 5.4 show the results of Probit models on the probability that a subject 

allocates a non-zero amount to another subject. As before, we report marginal effects 

evaluated at covariate means and significance levels are based on robust standard errors. 

Model 5.3 provides a simple comparison between conditions. As suggested by the χ2-tests 

reported earlier, the Probit results shows that no condition differs significantly from the 

control condition, while the subjects in the eyes condition are significantly more likely to 

donate compared to those in the peers condition (p < 0.01, untabulated). Adding our 

control variables, however, increases the significance of the eyes condition sharply, 
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indicating that subjects in the eyes condition are significantly more likely to give a positive 

amount to another subject compared to the subjects in the control condition (p = 0.05). 

The size of this effect is impressive: the subjects in the eyes condition are almost 18 

percentage points more likely to donate money compared to the subjects in the control 

condition and more than 25 percentage points more likely to donate money compared to 

the subjects in the peers condition (p < 0.01). The difference between the peers condition 

and the control condition remains insignificant (p = 0.38). Again the only control variable 

that seems to matter is nationality, Dutch students are 22 percentage points less likely to 

allocate a positive amount to another subject (p = 0.01). 

In conclusion, using more advanced analyses and controlling for a range of other variables 

that can potentially influence giving behavior, we find that this only strengthens the 

conclusions drawn in the main chapter. It is interesting to note that while Dutch students 

acted less anti-social in the JoD mini-game, these same students acted less pro-social in 

the Dictator game. This suggests that this subcategory of students is not, in fact, more or 

less kind, but rather is less likely to deviate from the prediction of rational self-interest. 

5.C.4 Ellsberg Tasks  

Here we present a number of additional analyses regarding the ambiguity questions used 

in the experiment. First, we will show that the findings in the general Ellsberg tasks 

(Ellsberg, 1961) that are reported in the main chapter are robust if we use Probit analyses 

and control for the effect of other variables on the subjects’ decisions. Second, we will 

investigate the other questions posed to subjects. As mentioned in the main chapter, we 

implemented the standard Ellsberg choice situation with a 50-50 proportion of red and 

black chips in Bag K, but we also varied the proportion of red and black chips from 10%-

90% to 90%-10% (i.e., 10%-90%, 20%-80%, 30%-70%…). Here we will show that when the 

probability was different from 50 percent, subjects overwhelmingly select the 

normatively superior option, i.e., Bag K if the probability of winning in this bag is 60 

percent or higher, Bag U if the probability of winning in Bag K is 40 percent or lower. As a 

result, no clear differences between conditions can be detected in these scenarios. 
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Table 5.5: Probit Regression Results on Choosing Risk over Ambiguity 

The table displays results from the Probit regression analyses of subjects’ decisions to choose the risky Bag 

K (1) over the ambiguous Bag U (0). Definitions of the variables are as in previous tables. For each 

explanatory variable, the marginal effect is shown at the covariate means. Robust standard errors are used 

and p-values are shown in parentheses.  

      Model 5.1 Model 5.2 
Condition dummies      
 Eyes -0.07 (0.46) -0.11 (0.27) 
 Peers -0.21 (0.02) -0.19 (0.03) 
Control variables     
 Age   -0.03 (0.17) 
 Gender (female = 1)   0.11 (0.14) 
 Nationality (Dutch = 1)   0.06 (0.43) 
 Year of study    
  Bachelor 2   0.06 (0.58) 
  Bachelor 3   0.08 (0.49) 
  Master   0.03 (0.84) 
 Calculator (yes = 1)     0.05 (0.49) 
Log pseudo-likelihood -85.79 -81.58 
N 165 162 

 

 

As discussed in the main chapter, the standard Ellsberg question we employed involved 

two bags containing black and red chips; in one bag (Bag K) the proportion of red and 

black chips was known, whereas in the second bag (Bag U) this proportion was not 

known. The subjects were asked to choose a color and a bag to draw a chip from. If the 

color of the drawn chip matched the one they had chosen, they received €50. When the 

proportion of red and black chips is 50-50, Bag K and Bag U are normatively equivalent, 

but many studies have shown that a disproportionate number of people choose Bag K 

(Camerer and Weber, 1992). In line with this common pattern, we observe that 85.5 

percent of the subjects chose Bag K in our control condition. Using χ2-tests, we find that 

behavior does not differ between the eyes and the control condition. In the peers 

condition, however, subjects are significantly less likely to show a bias in favor of Bag K. 
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Table 5.6: Descriptive Statistics of the Ambiguity Aversion Index 

The table displays the descriptive statistics of the ambiguity aversion index over different conditions. We 

calculated the index by counting the number of times a subject prefers the risky prospect over all nine 

choice-tasks. The higher this index, the greater the degree to which the subject shows a preference for the 

risky prospect over the ambiguous one. 

   N Mean Median St.Dev. min max 
Eyes 55 5,11 5,00 1,29 0 9 

Peers 55 4,75 5,00 1,27 0 9 

Control 55 5,02 5,00 0,91 2 7 

Total 165 4,96 5,00 1,17 0 9 

 

 

To investigate the robustness of this finding, we perform Probit analyses on the likelihood 

of choosing Bag K. The findings are reported in Table 5.5. As before, we report marginal 

effects around covariate means and apply robust standard errors in order to calculate 

statistical significance. These analyses yield results that are perfectly in line with the χ2-

tests reported in the paper. That is, subjects are significantly less likely to show a bias 

toward bag K in the peers condition as opposed to the control condition (p < 0.03). The 

difference between eyes and peers is marginally significant in Model 5.1 (p = 0.09, 

untabulated), but drops in significance when background characteristics are accounted 

for (p = 0.32, untabulated). The difference between the eyes and the control condition 

does not reach significance in any of the models (p > 0.27). None of the control variables 

influences the choice for Bag K. These analyses thus show the effect of the peers 

condition, as compared to the control condition, to be a rather robust phenomenon, 

whereas there is no evidence for an effect of the “eye” condition.  

As mentioned above, we also asked subjects to choose between the ambiguous prospect 

and a range of risky prospects with a probability of winning of 10, 20, 30, 40, 60, 70, 80, 

and 90 percent. We start by using these questions to create an index of “ambiguity 

aversion”, defined as the degree to which people tended to prefer the risky prospect to 

the ambiguous one. We generate this index by counting the number of times a subject 

prefers the risky prospect over all nine choice-tasks. The higher this index, the greater the 
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degree to which the subject shows a preference for the risky prospect over the 

ambiguous one. This index indicates, as shown in Table 5.6, that subjects in the peers 

condition were less attracted by the risky urn. This difference is significant in Mann-

Whitney tests (in comparison with the control: p = 0.05, comparison with the eyes 

condition: p = 0.05). The difference between the other two conditions is not significant  

(p = 0.98).  

An interesting point, however, is that the above effect seems to be caused entirely by the 

choice when the probability of winning in the risky prospect is 50 percent. When we leave 

out this choice in our construction of the index, we find no significant differences 

between groups (p > 0.21). Figure 5.5 illustrates this point: when it comes to the index, 

the major differences arise around a score of four or five. Most subjects (87.3%) act 

consistently; they stick to the ambiguous prospect until the probability of winning in the 

risky prospects becomes sufficiently high, and after this point they consistently choose 

the risky prospects and do not switch back to the ambiguous one. Therefore, the 

switching points at which subjects decides to give up the ambiguous prospect for the risky 

ones drive the difference in the indexes that we observe between the conditions. 

Switching at the 50 percent risky prospect implies a score of five, switching prior to it at 

the 40 percent prospect implies a score of six, and switching only at the 60 percent 

prospect implies a score of four. Therefore, as can be clearly seen in Figure 5.5, the choice 

at the 50 percent prospect is the main driving force behind the differences in the 

ambiguity index. 
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Figure 5.5: Ambiguity Index for the Three Conditions  

The ambiguity aversion index is calculated by counting the number of times a subject prefers 

the risky prospect over all nine choice-tasks. The higher this index, the greater the degree to 

which the subject shows a preference for the risky prospect over the ambiguous one. 

 

Finally, Figure S5 shows this finding by depicting the percentage of subjects who chose a 

risky prospect as a function of the probability of winning in that risky prospect. It is easy 

to see that when the probability of winning in the risky prospect is not 50 percent, most 

of the subjects show a strong preference for either of the two prospects: when the 

probability is lower than 50 percent, a strong majority of subjects choose the ambiguous 

prospect, and when it is higher than 50 percent, an overwhelming majority of subjects 

choose the risky one. Due to these strong majorities, we can no longer use χ2-tests to 

statistically test for differences between conditions in these tasks, as the χ2-test is not 

reliable when data is highly unbalanced. Therefore, we employ Fischer’s exact test to test 
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Figure 5.6: Choosing the Risky Prospect as Function of Winning Probability  

The figures display the percentage of subject selecting the risky prospect for each of the nine 

choice questions that vary the probability of winning from 10% to 90% by condition. The 

Figure in (a) displays results for the complete set of data. The Figure in (b) displays results 

excluding a few subjects who showed inconsistent preferences in this task. 
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for differences between conditions in the choice task. It should be noted that applying 

Fischer’s exact test does not alter our conclusions for choice regarding the 50 percent 

prospect, the difference between the peers and the control condition remains highly 

significant (p = 0.03), although the difference between the peers and the eyes condition is 

no longer significant (p = 0.13). For the other choice-tasks, neither the eyes nor the peers 

condition differs significantly from the control (p > 0.11). The only condition comparison 

that approaches significance is that between eyes and peers in the 90 percent choice task 

(p = 0.05). 

It should, however, be noted that this difference completely disappears when we only 

focus on those 87.3 percent of the subjects who behave completely consistent within this 

task. If we leave the inconsistent subjects out of the analyses, the eyes and peers 

condition yield the exact same propensity to choose the risky prospect in the 90 percent 

choice task (p = 1.00). Focusing on these consistent individuals, again only the difference 

between the peers and the control condition at the 50 percent choice becomes significant 

(p = 0.01), while the difference between the eyes and peers condition becomes 

marginally significant (p = 0.09). No further condition differences emerge (p > 0.11). This 

implies that the only robust pattern in the ambiguity aversion task is the finding that 

when choosing between an ambiguous prospect and a risky prospect with a 50 percent 

winning probability, subjects in the peers condition are significantly less likely to show a 

bias in favor of the risky prospect as compared to the subjects in the control condition. 
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5.C.5 Simple vs. Compound Lotteries 

As shown in the main chapter, we find that there are significant differences in the 

likelihood that subjects mistakenly choose the compound gamble over the superior 

simple gamble. While there is no difference between the eyes and the control condition, 

χ2-tests indicates that the likelihood of making such a mistake is marginally significantly 

lower in the peers condition as compared to the other two conditions separately, and 

significantly lower if we combine the other two conditions. Furthermore, looking at the 

number of mistakes reveals a similar pattern. Mann-Whitney tests indicate that subjects 

in the peers condition make marginally significantly fewer errors in the peers as opposed 

to the control condition, where the eyes condition does not differ significantly from the 

other two conditions. In the present section we will show that these results are robust, or 

even strengthened, when performing more advanced analyses and controlling for the 

effect of other variables on the likelihood of making errors. 

First, we perform a Probit analysis on the likelihood of making one or more mistakes. We 

consider four models: two in which we compare the eyes and peers condition to the 

control condition, and two in which we compare the peers condition to the other two. For 

both analyses we apply a simple model without control variables and a model that 

accounts for the effects of several control variables. Table 5.7 shows our results, again, 

using robust standard errors and reporting marginal effects evaluated at covariate means 

in order to give parameters a substantive meaning.  

As Table 5.7 clearly shows the standard condition only models (Model 5.1 and Model 5.3), 

are perfectly in line with the χ2-tests reported earlier; we observe no difference between 

the eyes and the control, a marginal significant difference between peers and the other 

two conditions separate (p = 0.08) and a significant difference between the peers 

condition and the two other conditions combined (p = 0.04). Adding the control variables 

(Model S7.2 and Model S7.4), we find that these results are robust and indeed increase in 

significance somewhat (respectively p = 0.06 and p = 0.01). Furthermore, females are 

more likely to make at least one error, Dutch student are less likely to do so, and the use 

of a calculator drastically decreases the likelihood of making an error. 
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Table 5.7: Probit Regression Results on the Likelihood of Making a Mistake 

The table displays results from the Probit regression analyses on the likelihood that subjects choose a 

compound gamble over a strictly better simple gamble at least once. Model 5.1 and Model 5.2 compare 

both the eyes and the peers condition to the control, Model 5.3 and Model 5.4 compare the peers 

condition to the two other conditions combined. Definitions of the variables are as in previous tables. For 

each explanatory variable, we report marginal effects evaluated at covariate means. Robust standard errors 

are used and p-values are shown in parentheses.  

 

 

 

  Control as reference  Control + eyes as reference 

      Model 5.1 Model 5.2  Model 5.3 Model 5.4 
Condition dummies           
 Eyes 0.00 (1.00) 0.08 (0.42)      
 Peers -0.16 (0.08) -0.23 (0.06)  -0.16 (0.04) -0.27 (0.01) 
Control variables          
 Age   0.00 (0.87)    -0.01 (0.80) 
 Gender (female = 1)   0.19 (0.02)    0.19 (0.02) 
 Nationality (Dutch = 1)   -0.20 (0.02)    -0.19 (0.03) 
 Year of study         
  Bachelor 2   0.05 (0.71)    0.05 (0.72) 
  Bachelor 3   -0.03 (0.87)    -0.02 (0.90) 
  Master   0.15 (0.41)    0.17 (0.33) 
 Calculator (yes = 1)     -0.58 (0.00)       -0.58 (0.00) 
Log pseudo-likelihood -107.66 -69.43  -107.66 -69.72 
N 165 162   165 162 

 

Secondly, we estimate an Ordinal Probit model where the dependent variable is the 

number of mistakes (0 through 6). Table S8 shows our results. We report coefficients with 

their significance levels. As in all previous analyses, significance levels are based on robust 

standard errors. Furthermore, we report marginal effects evaluated at covariate means 

for each possible outcome category (0 through 6 mistakes). We present two models: a 

basic condition model without control variables, and a full model, which includes control 

variables alongside the general condition effects. 
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Table 5.8: Ordinal Probit Regression Results on the Number of Mistakes 

The table displays results from Ordinal Probit regression analyses on the number of mistakes that subjects 

make. The Condition model only includes condition dummies, whereas the Full model includes all our 

controls. We report both coefficients and marginal effects on the likelihood that a person makes a specific 

number of errors evaluated at covariate means. Robust standard errors are used and p-values are shown in 

parentheses.  

      Coeff. 

. 

Marginal Effects 
        P(0) P(1) P(2) P(3) P(4) P(5) P(6) 

Condition 

Model 

          
Condition dummies          

 Eyes -0.15 (0.48) 0.06 0.00 0.00 -0.01 -0.01 -0.02 -0.01 
  Peers -0.43 (0.04) 0.16 0.00 -0.01 -0.03 -0.04 -0.05 -0.04 

Log pseudo-likelihood -285.94               
N     165               

Full 

Model 

          
Condition dummies           

 Eyes -0.10 (0.63) 0.04 0.00 0.00 -0.01 -0.01 -0.01 0.00 
 Peers -0.52 (0.02) 0.20 0.01 -0.03 -0.06 -0.05 -0.04 -0.02 

Control variables          
 Age -0.03 (0.66) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
 Gender (female = 1) 0.16 (0.40) -0.06 -0.01 0.01 0.02 0.02 0.01 0.01 
 Nationality (Dutch = 1) -0.56 (0.01) 0.20 0.02 -0.02 -0.06 -0.06 -0.05 -0.03 
 Year of study          
  Bachelor 2 -0.01 (0.97) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  Bachelor 3 0.16 (0.64) -0.06 -0.01 0.01 0.02 0.02 0.01 0.01 
  Master 0.14 (0.72) -0.05 0.00 0.00 0.02 0.01 0.01 0.01 

Calculator (yes = 1) -1.51 (0.00) 0.53 0.02 -0.06 -0.15 -0.14 -0.11 -0.08 
Log pseudo-likelihood -239.70               
N 162               

 

As can be seen in Table 5.8, both models show that the subjects in the peers condition 

are significantly less likely to make errors (p < 0.04). The difference between eyes and 

peers is insignificant in the first model (p = 0.16, untabulated) and marginally significant in 

the second model (p = 0.06, untabulated). With respect to the control variables, we find 

that Dutch students are significantly less likely to make mistakes, supporting the idea that 

this sub-group behaves more in line with rationality based arguments. Naturally, subjects 

who use calculators are also significantly less likely to make mistakes. 

In conclusion, the non-parametric tests reported in the chapter are in line with the more 

advanced analyses including control variables reported here. In general, adding control 

variables seems to strengthen our results rather than weaken them. 
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Chapter 6  | Source-Dependence of Utility and Loss Aversion: 
A Critical Test of Ambiguity Models 

 

 

 

This chapter tests whether utility is the same for risk and for uncertainty. This 

test is critical for models that capture ambiguity aversion through a difference 

in event weighting between risk and uncertainty, like the multiple priors models 

and prospect theory. We present a new method to measure utility and loss 

aversion under uncertainty without the need to introduce simplifying 

parametric assumptions. Our method extends Wakker and Deneffe’s (1996) 

trade-off method by allowing for standard sequences that include gains, losses, 

and the reference point. It provides an efficient way to measure loss aversion 

and a useful tool for practical applications of ambiguity models. We cannot 

reject the hypothesis that utility and loss aversion are the same for risk and 

uncertainty, suggesting that utility primarily reflects attitudes towards 

outcomes. Utility is S-shaped, concave for gains and convex for losses and there 

is substantial loss aversion. Our findings support models that explain ambiguity 

aversion through a difference in event weighting and suggest that descriptive 

ambiguity models should allow for reference-dependence of utility.  

 

 

 

 

 

 

 

 

This chapter is based on the paper “Source-Dependence of Utility and Loss Aversion: A Critical Test of Ambiguity Models”, 

co-authored by Mohammed Abdellaoui, Han Bleichrodt, and Olivier L’Haridon (Abdellaoui et al., 2013b). We gratefully 

acknowledge helpful comments from Aurélien Baillon, Ferdinand Vieider, Peter P. Wakker, and Horst Zank.  
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6.1 Introduction 

An extensive amount of empirical work, originating from Ellsberg's (1961) famous thought 

experiment, shows that people are not neutral towards ambiguity, as assumed by 

subjective expected utility. New models have been proposed to explain these ambiguity 

attitudes. Broadly speaking, these ambiguity models can be subdivided into two classes. 

The first class models ambiguity aversion through a difference in utility between risk 

(known probabilities) and uncertainty (unknown probabilities). The best-known model of 

this class is the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005). Other 

models that belong to this class were proposed by Nau (2006), Chew et al. (2008), Seo 

(2009), and Neilson (2010). The second class of models assumes that utility does not 

depend on the source of uncertainty and is the same for risk and uncertainty. Instead, 

ambiguity aversion is modeled through a difference in event weighting. This class includes 

the multiple priors models (Gilboa and Schmeidler, 1989; Jaffray, 1989; Ghirardato, 

Maccheroni, and Marinacci, 2004) and modifications thereof (Gajdos et al., 2008; 

Maccheroni, Marinacci, and Rustichini, 2006), vector expected utility (Siniscalchi, 2009), 

Choquet expected utility (Gilboa, 1987; Schmeidler, 1989), and prospect theory (Kahneman 

and Tversky, 1979; Tversky and Kahneman, 1992). 

This chapter investigates whether utility is source-independent and the same for risk and 

uncertainty. We assume a general utility model, previously suggested by Miyamoto (1988), 

Luce (1991), and Ghirardato and Marinacci (2001), that includes most of the ambiguity 

models of the second class as special cases, and generalize it to include sign-dependence to 

also cover prospect theory. We test the central condition underlying this model and obtain 

support for it. We measure utility for gains and for losses and also measure loss aversion. 

Previous evidence suggests that the distinction between gains and losses is relevant 

because ambiguity attitudes differ between gains and losses (e.g., Cohen, Jaffray, and Said, 

1987; Hogarth and Kunreuther, 1989; Abdellaoui, Vossmann, and Weber, 2005; Du and 

Budescu, 2005) and loss aversion is crucial in explaining attitudes towards both risk (Rabin 

2000) and ambiguity (Roca, Hogarth, and Maule, 2006).  
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Measuring loss aversion is complex, in particular if event weighting may be different for 

gains and losses. Previous measurements of loss aversion sidestepped this problem by 

introducing simplifying assumptions. We introduce a new method to measure loss aversion 

that imposes no simplifying assumptions and requires no complete measurement of utility. 

It can easily be applied, which may encourage the use of ambiguity models in decision 

analysis. Our method extends the trade-off method of Wakker and Deneffe (1996) by 

allowing standard sequences (sequences of outcomes for which the utility difference 

between successive elements is constant) to pass through the reference point. Our method 

also simplifies the axiomatization of ambiguity models as there is a close connection 

between measurements of utility using the trade-off method and preference conditions 

(Köbberling and Wakker, 2003).  

Our experimental data contain two messages. First, they provide support for models that 

explain ambiguity aversion through a difference in event weighting. We cannot reject the 

hypothesis that utility and loss aversion are the same for risk and uncertainty. This suggests 

that utility is source-independent and primarily reflects attitudes towards outcomes.  

The second message is that descriptive ambiguity models should allow for reference-

dependence of utility. We obtain clear evidence that utility differs for gains and losses and 

there was sizeable loss aversion. Most ambiguity models do not allow for reference-

dependence and assume that ambiguity attitudes are the same for gains and losses. This 

assumption may be adequate for normative purposes, but, as our data clearly show, does 

not match behavior.  

6.2 Background 

Binary Prospect Theory 

Consider a decision maker who has to make a choice in the face of uncertainty. Uncertainty 

is modeled through a state space  . Exactly one of the states will obtain, but the decision 

maker does not know which one. Subsets   of   are called events and    denotes the 

complement of  .  
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Acts map states to outcomes. Outcomes are money amounts and more money is preferred 

to less. In our measurements, we will only use two-outcome acts    , signifying that the 

decision maker obtains €   if event   occurs and €   otherwise. If probabilities are known, 

we will write     for the act that pays €   with probability   and €   with probability    . 

We will refer to     as an uncertain act (meaning that probabilities are unknown) and to 

    as a risky act (meaning that probabilities are known).  

We use conventional notation to express the preference of the decision maker, letting  ,  , 

and   represent strict preference, weak preference, and indifference. Preferences are 

defined relative to a reference point   . Gains are outcomes strictly preferred to    and 

losses are outcomes strictly less preferred than   . An act is mixed if it involves both a gain 

and a loss. For mixed acts the notation     signifies that   is a gain and   is a loss. A gain 

act involves no losses (i.e. both   and   are nonnegative) and a loss act involves no gains. 

For gain and loss acts the notation     signifies that the absolute value of   exceeds the 

absolute value of  , i.e. if   and   are gains then     and if   and   are losses then    .  

Under binary prospect theory (PT) the decision maker’s preferences over mixed acts     

are evaluated by: 

(6.1a)      ( ) ( )    (  ) ( ) 

and preferences over gain or loss acts by: 

(6.1b)      ( ) ( )  (    ( )) ( ) 

where     for gains and     for losses.   is a strictly increasing, real-valued utility 

function that satisfies  (  )   . The utility function is a ratio scale and we can choose the 

utility of one outcome other than the reference point.   is an overall utility function that 

includes loss aversion. In empirical applications   is often decomposed in a basic utility 

function, capturing the decision maker’s attitudes towards final outcomes, and a loss 

aversion coefficient   capturing attitudes towards gains and losses (Sugden, 2003; 

Köbberling and Wakker, 2005; Köszegi and Rabin, 2006). Our method does not require this 

decomposition.  



BACKGROUND  

 

165 

The event weighting functions         , assign a number   ( ) to each event   such 

that 

  ( )    

  ( )    

   is monotonic:     implies   ( )     ( ). 

The event weighting functions    depend on the sign of the outcomes and may be 

different for gains and losses. They need not be additive. For gains, binary PT contains most 

transitive ambiguity models as special cases, as was pointed out by Miyamoto (1988), Luce 

(1991), and Ghirardato and Marinacci (2001). The ambiguity models only differ when the 

number of outcomes is at least three. Equations (6.1a) and (6.1b) represent the extension 

of these models to include sign-dependence. 

Binary PT evaluates mixed risky acts     as  

(6.2a)      ( ) ( )    (   ) ( ) 

and gain and loss risky acts     as 

(6.2b)      ( ) ( )  (    ( )) ( )      .  

   is a strictly increasing probability weighting function that satisfies   ( )    and 

  ( )    and again may differ between gains and losses. Hence, in the evaluation of risky 

acts the event weighting functions    are replaced by probability weighting functions     

Binary PT assumes that utility is the same for risk and uncertainty. Ambiguity aversion is 

modelled through a difference between    and   . 

Previous Evidence 

Tversky and Kahneman (1992) assumed that utility differs between gains and losses and is 

S-shaped, concave for gains and convex for losses. In addition, they assumed that utility is 

steeper for losses than for gains, reflecting loss aversion. Nearly all the empirical evidence 
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on utility comes from decision under risk. There is much evidence that utility for gains is 

indeed concave (Wakker, 2010). For losses the evidence is more equivocal. While most 

studies found convex utility, some have also found linear or concave utility (e.g., Bruhin, 

Fehr-Duda, and Epper, 2010). The utility for losses is usually closer to linear than the utility 

for gains. 

Empirical evidence on utility under uncertainty is scarce. Abdellaoui, Vossmann, and Weber 

(2005) measured utility under uncertainty and confirmed that it was concave for gains and 

slightly convex for losses. Their parametric estimates were close to those previously 

obtained under risk, but they did not directly measure utility under risk. Abdellaoui et al. 

(2011) and Vieider et al. (2013) measured utility under risk and under uncertainty for small 

stakes and under parametric assumptions about utility. They found that utility was linear 

both for risk and for uncertainty. This finding might be due to the small stakes used in 

these studies: for small stakes utility is usually close to linear (Wakker, 2010). 

Nearly all empirical measurements of loss aversion made simplifying assumptions about 

utility and probability weighting, typically assuming linear utility and either ignoring 

probability weighting (Pennings and Smidts, 2003; Booij and van de Kuilen, 2009; Baltussen, 

van den Assem, and van Dolder, 2013) or assuming equal weighting for gains and losses 

(Gächter, Johnson, and Herrmann, 2010). The exception is Abdellaoui, Bleichrodt, and 

Paraschiv (2007) who imposed no simplifying assumptions on either probability weighting 

or utility. However, they measured loss aversion in decision under risk only and their 

method is not applicable in decision under uncertainty. 

Most studies found loss aversion coefficients around 2, meaning that losses weight 

approximately twice as much as absolutely commensurate gains (Booij, van Praag, and van 

de Kuilen, 2010). A difficulty in comparing the results of these studies is that they not only 

made different parametric assumptions, but also adopted different definitions of loss 

aversion.  

Finally, even though binary PT is consistent with much of the empirical data that has been 

collected on decision under risk and uncertainty and includes many ambiguity models as 
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special cases, there is some evidence challenging it. For example, Starmer and Sugden 

(1993) and Birnbaum (2008) reported event-splitting effects that violate binary PT and 

Birnbaum and Bahra (2007) and Wu and Markle (2008) obtained violations of binary PT for 

mixed acts. We, therefore, included a test of the main condition underlying binary PT in our 

experiment. This test is explained below. 

6.3 Measurement Method 

Our method for measuring utility and loss aversion consists of three stages and is 

summarized in Table 6.1. In the first stage, a gain and a loss are elicited that connect utility 

for gains (measured in the second stage) with utility for losses (measured in the third 

stage). The measurements in the second and in the third stage employ the trade-off 

method of Wakker and Deneffe (1996). Within each domain, we determine a standard 

sequence of outcomes such that the utility difference between successive elements of the 

sequence is constant. The trade-off method is commonly used in decision theory (Wakker, 

2010), but thus far it could only be used to measure utility for gains and utility for losses 

separately. It could not be used to measure loss aversion, which requires that the utility for 

gains and the utility for losses can be compared. Our method allows measuring utility for 

gains and utility for losses jointly and, consequently, it permits the measurement of loss 

aversion. In all the derivations presented below we impose no parametric assumptions on 

utility and the weighting functions    and         ,. Hence, our method is parameter-

free. 
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Table 6.1: Three-Stage Procedure to Measure Utility 

The third column shows the quantity that is assessed in each of the three stages of the procedure. The fourth 

column shows the indifference that is elicited. The fifth column shows the stimuli used in the experiment. ℓ𝑎𝑙𝑡  

and 𝑘𝐿𝑎𝑙𝑡
 were used to test for consistency (see Section 6.4 for explanation). 

 

  Assessed quantity Indifference Choice variables 

Stage 1  

            €     
   color of a ball drawn from an 

unknown Ellsberg urn,    ½ 

  
    

       

  
    

        

Stage 2 Step 1     
 

 
           €    ; 𝑘    

 𝑎𝑙𝑡  € ; 𝑘 𝑎𝑙𝑡
    Step 2 to 𝑘    

    
 

 
      

 

 
  

Stage 3 Step 1       
       

  €   ; 𝑘𝐿    
 Step 2 to 𝑘𝐿   

      
        

  

 

 

First Stage: Elicitation of the Gauge Outcomes 

We start by selecting an event   that will be kept constant throughout the first stage and a 

gain  . Then we elicit the loss   for which       . It follows from equation (6.1a) that: 

(6.3)     ( ) ( )    (  ) ( )   (  )    

We next elicit certainty equivalents   
  and   

  such that   
       and   

       . The 

indifference   
       implies that 

(6.4)    (  
 )    ( ) ( ).      

The indifference   
        implies that 

(6.5)    (  
 )    (  ) ( ).      

Combining Eqs. (6.3) (6.5) gives 

(6.6)    (  
 )    (  

 ).       

Equation (6.6) defines the first elements   
  and   

  of the standard sequences for gains 

and losses that we will construct in the second and third stages. 

For choice under risk, the elicitation of   
  and   

  is similar except that the event   is 
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replaced by a known probability  , and that the weights   ( ) and   (  ) are replaced 

by   ( ) and   (   ), respectively. 

Second and Third Stage: Elicitation of Utility for Gains and Losses 

In the second stage, we elicit a standard sequence of gains. Let ℓ be a prespecified loss. We 

first elicit the loss   such that the decision maker is indifferent between the acts   
 

 
  and 

ℓ    , where   
  is the gain that was elicited in the first stage. We can take an event    

different from the event   used in the first stage, but, for simplicity, we applied the same 

event in all three stages in our experiment. The indifference   
 

 
  ℓ     implies that 

(6.7)      ( ) (  
 )    (  ) ( )    (  ) (ℓ).   

Rearranging Eq. (6.7) and using  (  )    gives, 

(6.8)     (  
 )   (  )  

  (  )

  ( )
( (ℓ)   ( )).    

Next, we elicit the gain   
  such that   

 
 
    

 
 
ℓ. From this indifference we obtain after 

rearranging 

(6.9)     (  
 )   (  

 )  
  (  )

  ( )
( (ℓ)   ( )).    

Combining Eqs. (6.8) and (6.9) gives: 

(6.10)    (  
 )   (  

 )   (  
 )   (  ).      

We proceed by eliciting a series of indifferences   
 

 
      

 

 
ℓ       𝑘 , to obtain the 

sequence {     
    

       

 }. It is easy to see that for all  ,  (  
 )   (    

 )   (  
 )  

 (  ). For decision under risk, we apply the above procedure with the event   replaced by 

a probability  . 

The standard sequence of losses is constructed similarly. We select a gain   and an event   

and elicit the gain   such that     
      .45 We then proceed to elicit a standard 

                                                      
45

 Again, we could have selected an event    different from the events used in the first two stages, but we 

used the same event in our experiment. 
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sequence {     
    

       

 }  by eliciting a series of indifferences     
        

 , 

      𝑘𝐿   For risk, we replace the event   by a probability    

By combining the second and the third stages we elicit a sequence 

{   

      
       

       

 } that runs from the domain of losses through the reference 

point to the domain of gains and for which the utility difference between successive 

elements is constant. We can scale utility by selecting the utility of an arbitrary element. In 

the analyses reported below, we set  (   

 )    from which it follows that  (  
 )   𝑘 ⁄  

for       𝑘 , and  (  
 )    𝑘 ⁄ , for       𝑘𝐿. 

6.4 Experiment 

Experimental Set-Up 

Subjects were 75 economics students of the Erasmus School of Economics, Rotterdam (29 

female, mean age of 20.7 years). Each subject was paid a flat fee of €10 for participation in 

the experiment. Before conducting the actual experiment, the experimental protocol was 

tested in several pilot sessions. 

The experiment was run on computers. Subjects answered the questions individually in 

sessions of at most two subjects. They first received instructions about the tasks and then 

completed five training questions. Subjects were told that there were no right or wrong 

answers and that they should go through the experiment at their own pace. They were 

instructed to approach the experimenter if they needed any advice concerning the 

experiment. A session lasted 40 minutes on average. 

The order in which utility under risk and uncertainty were measured was randomized 

between sessions. When a subject had completed the first part of the experiment, the 

experimenter would approach her to explain the next part. Within the risk and uncertainty 

elicitations, the second and third stage were also randomized; some subjects started with 

the elicitation of the gain sequence, others with the elicitation of the loss sequence. The 

first stage always had to come first because it served as an input for the other two stages. 
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We used sizeable monetary amounts because we were interested in studying both utility 

curvature and loss aversion. Utility is approximately linear over small intervals (Wakker and 

Deneffe, 1996) and we feared that it would be hard to detect differences between utility 

under risk and uncertainty for small stakes. Given that substantial losses were involved, all 

choices were hypothetical. It is impossible to find subjects willing to participate in an 

experiment where they can lose substantial amounts of money. We will provide a more 

detailed discussion of the use of incentives in the concluding section. 

We did not directly ask subjects for their indifference values, but, instead, used a series of 

binary choice questions to zoom in at them. Examples of such a zooming-in process can be 

found in  

Table 6.5 in Appendix 6.B. We applied a choice-based elicitation procedure as previous 

research suggests that it leads to more reliable results than directly asking for indifference 

values (Bostic, Herrnstein, and Luce, 1990; Noussair, Robin, and Ruffieux, 2004). 

Details 

To perform the elicitation described in Section 6.3, we had to specify a number of 

parameters, which are depicted in the final column of Table 6.1. We made the common 

assumption that the reference point    was equal to    In the risk condition, the outcome 

of an act was determined by drawing a ball from an urn containing five red balls and five 

black balls. Subjects could state which color they preferred to bet on with the chance of 

winning always equal to 50 percent. In the uncertainty condition, the outcome of an act 

was determined by drawing a ball from an urn containing ten balls, which were either red 

or black in unknown proportions. Again, subjects could select the color they preferred to 

bet on.  

Both for gains and for losses, we elicited six points of the utility function under both risk 

and uncertainty. Next to these elicitations, we performed a second smaller sequence in the 

domain of gains, varying the gauge amount ℓ. By definition ℓ needs to be smaller or equal 

to   . In the main elicitation we set ℓ       . Asking the question whether the elicited 

amounts would depend on the value of ℓ, we also elicited   
  and   

  using an alternative 



SOURCE-DEPENDENCE OF UTILITY AND LOSS AVERSION 

 

172 

gauge amount ℓ𝑎𝑙𝑡     . Under binary PT the elicitations of   
  and   

  should not depend 

on the selected value of ℓ  This second elicitation was meant to test sign-comonotonic 

trade-off consistency (Köbberling and Wakker, 2003), the central condition underlying 

binary PT. 

Figures 6.4-6.6 in the appendix 6.A show the displays used under uncertainty. The screens 

under risk were similar, except that the two branches would simply say 50% rather than 

“Red” or “Black”. Figure 6.6 displays the typical decision that subject had to make. Subjects 

were faced with a choice between two acts denoted as options A and B. They could not 

state indifference. By choosing between the two acts, the subject narrowed down the 

interval in which her indifference value should fall.  

After narrowing down the interval thrice, we presented subjects with a scrollbar (Figure 

6.6). The scrollbar allowed subjects to specify their indifference value up to    precision. 

The starting point of the scrollbar was in the middle of the interval determined by their 

previous choices. The range of the scrollbar was wider than this interval, so that subjects 

could correct any mistakes they might have made. The data on the use of the scrollbar also 

give an indication of the quality of the data. If many subjects would provide answers that 

did not align with their previous choices, possibly even violating stochastic dominance, this 

might signal poor understanding of the task. After specifying a value with the scrollbar, 

subjects were asked to confirm their choice (Figure 6.7). If they cancelled their choice, the 

process started over. If subjects confirmed their choice, they moved on to the next 

elicitation. 

We included a number of repetitions to test for consistency. First, in each of the six 

standard sequences (the short and the long gain sequences and the loss sequence for both 

risk and uncertainty), we repeated the second-to-last iteration in the elicitation of 

  
        . Repeating the second-to-last iteration is a strong test of consistency, as 

subjects were probably close to indifference at the end of the iteration process. 

Furthermore, at the end of eliciting the long gain sequence, we elicited   
  again, for both 

risk and uncertainty. Together, these repetitions and the way in which subjects used the 

scrollbar allowed us to gain insight into the quality of the data. 
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6.5 Analyses 

Analyses of Utility Curvature 

We employ two different methods to investigate utility curvature. 46  For the first, 

nonparametric, method, we calculate the area under the utility function. The domain of   

is normalized to      , by transforming every gain   
  to the value   

   
 ⁄  and every loss   

  

to   
   

 ⁄ .47 If utility is linear, the area under this normalized curve equals ½. For gains, we 

consider utility to be convex [concave] if the area under the curve is smaller [larger] than ½. 

For losses, utility is considered to be convex [concave] if the area under the curve is larger 

[smaller] than ½.  

We also analyze the utility function by parametric estimation. We employ the power family, 

  , as it is the most commonly employed parametric family. For gains [losses]     

corresponds to convex [concave] utility,     corresponds to linear utility, and     

corresponds to concave [convex] utility. Estimation is done using nonlinear least squares. 

To test for robustness, we have also performed a mixed-effects estimation in which each 

individual parameter was estimated as the sum of a fixed effect, common to all subjects, 

and an individual-specific random effect. The results were similar. A potential problem in 

estimating a model like binary PT using nonlinear least squares is collinearity between 

utility and the event weights, which implies that the obtained estimates may not be 

uniquely identified. The trade-off method avoids this problem by keeping event weighting 

fixed, while eliciting utility and, hence, the obtained estimates are uniquely identified.  

Loss Aversion 

In the literature, loss aversion has been defined in a multitude of ways. Abdellaoui, 

Bleichrodt, and Paraschiv (2007) concluded that the definitions proposed by Kahneman and 

                                                      
46

 We have also used a third, nonparametric, method based on changes in the slope of utility. This method 

leads to similar conclusions. 

47
 One subject violated monotonicity so that   

  was not the largest loss. For this subject we transform losses 

  
  to   

     
       

  
  ⁄ . 
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Tversky (1979) and Köbberling and Wakker (2005) were empirically most useful, and we 

will use these. Other definitions (Wakker and Tversky, 1993; Bowman, Minehart, and 

Rabin, 1999; Neilson, 2002) turned out to be too strict for empirical purposes, leaving many 

subjects unclassified. 

Kahneman and Tversky (1979) defined loss aversion as – (  )   ( ) for all    . To 

measure loss aversion, we compute – (   
 )  (  

 )⁄  and – (   
 )  (  

 )⁄  for  

       , whenever possible.48 Usually  (   
 ) and  (   

 ) cannot be observed directly 

and has to be determined through linear interpolation. Some subjects occasionally violate 

stochastic dominance. As a result, their utility is not unique and one amount can have 

multiple utilities. For these amounts, we consider utility to be undefined. A subject is 

classified as loss averse if – (  )  ( )⁄    for all observations, as loss neutral if 

– (  )  ( )⁄    for all observations, and as gain seeking if – (  )  ( )⁄    for all 

observations. To account for response error, we also use a more lenient approach, 

classifying subjects as loss averse, loss neutral, or gain seeking if the above inequalities hold 

for more than half of the observations. 

Köbberling and Wakker (2005) defined loss aversion as the kink of utility at the reference 

point (Bernatzi and Thaler (1995) suggested a similar definition). Formally, they defined 

loss aversion as   
 ( )   

 ( )⁄ , where   
 ( ) represents the left derivative and   

 ( ) the 

right derivative of   at the reference point. To operationalize this empirically, we compute 

each subject’s coefficient of loss aversion as the ratio of  (  
 )   

 ⁄  over  (  
 )   

 ⁄ , 

because   
  and   

  are the loss and gain closest to the reference point. Given that 

 (  
 )     (  

 )  this ratio is equal to   
    

 ⁄ . Hence, our method immediately gives an 

approximation of Köbberling and Wakker’s (2005) loss aversion coefficient without the 

need to further measure utility. A subject is classified as loss averse if this ratio exceeds 1, 

as loss neutral of it is equal to 1, and as gain seeking if it is smaller than 1. 

                                                      
48

 These computations require that    
  is contained in [  

   ) and    
  in (    
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6.6 Results 

Three subjects violated stochastic dominance in the first stage of the measurement 

procedure. This undermines their subsequent answers and they are removed from the 

analyses. For the remaining 72 subjects, we can determine the entire utility function, for 

both gains and losses and under both risk and uncertainty. Of these 72 subjects, 14 violated 

stochastic dominance at least once. Violations of stochastic dominance potentially signal a 

lower degree of understanding or a lower degree of effort put in the task. We have, 

therefore, also analyzed the data including only the 58 subjects who never violated 

stochastic dominance, leading to similar conclusions. 

Consistency Checks 

Overall, consistency is satisfactory. Subjects make the same choice in 63.7 percent of the 

repeated choices. Reversal rates round ⅓ are common in the literature (Stott, 2006). 

Moreover, our consistency test is strict, as subjects are close to indifference in the 

repeated choice and, hence, reversals are more likely. There is no difference in consistency 

between risk and uncertainty.  

The correlation between the original measurement and the repeated measurement of   
  

is almost perfect. For risk, Kendall’s τ is 0.924, for uncertainty it is 0.938. 

As a final indication of consistency, we compare whether the final answer provided by 

using the slider fell within the interval as set up by the bisection procedure. Subjects 

provided answers that align with their original choices. Furthermore, when a subject’s final 

answer is outside the bisection interval, it typically only violated the final choice, probably 

indicating that they were close to indifference at this point. 

A Test of Binary PT 

As explained in Section 6.4, we elicited two sequences of gains, a longer one based on 

ℓ       , which we use in the main analysis, and a shorter one based on ℓ𝑎𝑙𝑡    . If 

our subjects behave according to binary PT, then the values of   
  and   

  in the short 

sequence should be equal to those obtained in the long sequence.  
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We find support for binary PT, both for risk and for uncertainty. The correlation between 

the obtained values is substantial. Under risk, Kendall’s τ is 0.564 for   
  and 0.518 for   

   

Under uncertainty, these values are 0.694 for   
  and 0.625 for   

   All correlation 

coefficients are different from 0 (p < 0.001). Moreover, for uncertainty, we cannot reject 

the hypotheses that the values of   
  and   

  obtained in the short sequence are equal to 

those obtained in the long sequence (Mann-Whitney U test: both p > 0.684). For risk, the 

values of   
  differ marginally (p = 0.055), but the values of   

  do not differ (p = 0.138). 

Hence, even though   
  is chained to   

 , the marginal difference for   
  does not carry over 

to   
 . 

Ambiguity Aversion 

The measurement of   and   
  in stage 1 of our method provide insight into subjects’ 

ambiguity attitudes. Let    and    denote the elicited values of   for risk and uncertainty, 

respectively. Then,            and          . A subject is ambiguity averse if 

                . By transitivity,                 and, thus,      . This is true 

for 63.9 percent of our subjects (Binomial test:        ) and the median elicited value of 

   (        ) indeed exceeds the median value of    (     ) (Mann-Whitney U test:  

p = 0.012). Hence, we find evidence of ambiguity aversion in the measurement of  . 

Ambiguity aversion also predicts that     
 , the value of   

  measured under risk will exceed 

    
 , the value of   

  measured under uncertainty. This follows by transitivity from 

    
                        

 . However, this is only true for 44.4 percent of our 

subjects and we cannot reject the hypothesis that   
  was the same for risk and for 

uncertainty (Mann-Whitney U test: p = 0.807).  
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Figure 6.1: Utility for Gains and Losses Under Prospect Theory Based on Median Data 

The figure displays the utility for gains and losses under prospect theory based on the median 

responses of our subjects. Panel A displays utility under risk. Panel B displays utility under 

uncertainty.  

 

The Utility for Gains and Losses 

Figure 6.1, Panel A displays the utility for gains and losses under risk, based on the median 

data. Figure 6.1, Panel B shows the same graph for uncertainty. Taken at face value, the 

utility functions seem similar. They are consistent with the typical finding of convex utility 

for losses and concave utility for gains. Furthermore, both utility functions appear 

considerably steeper for losses than for gains, indicating loss aversion. 
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Table 6.2: Classification of Subjects According to the Shape of their Utility Function 

The table classifies the subjects according to the shape of their utility function based on the area under the 

normalized utility function. Panel A displays the results under risk. Panel B displays the results under 

uncertainty. 

 

Panel A: Risk  

 Losses  

Gains Concave Convex Linear  Total 

Concave 13 31 1  45 
Convex 15 8 1  24 
Linear 2 0 1  3 

Total 30 39 3  72 

Panel B: Uncertainty 

 Losses  

Gains Concave Convex Linear  Total 

Concave 13 30 0  43 
Convex 18 10 2  30 
Linear 1 0 0  1 

Total 32 40 2  72 

 

 

To investigate these patterns more thoroughly, we move to the individual level analysis. 

Table 6.2 shows that the classification of subjects according to the shape of their utility 

function is very similar for risk and uncertainty and there are no differences in the overall 

distribution of classifications between conditions (Fisher’s exact test: p = 0.943). Utility 

under risk and uncertainty are related (Kendall’s τ = 0.389 for gains and 0.455 for losses,  

p < 0.001 in both cases) and the common pattern is that of an S-shaped utility function: 

concave for gains and convex for losses. Less than 20% of the subjects behave according to 

the traditional assumption in decision theory that utility is concave throughout. 

The parametric results confirm the above conclusions. Table 6.3 shows the estimated 

power functions at the individual level. Utility is mostly concave for gains and convex for 

losses. Under risk, 32 subjects have S-shaped utility. Under uncertainty, this is the case for 

30 subjects. 
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Table 6.3: Summary of Individual Power Coefficients for Gains and Losses 

The table depicts the results of fitting power functions on each subject’s choices individually. Shown are the m

edian and interquartile range (IQR) for the resulting estimates.  

 Risk  Uncertainty 

 Gains Losses  Gains Losses 

Median 0.857 0.924  0.937 0.898 
IQR [0.616-1.062]  [0.649-1.154]  [0.716-1.188] [0.675-1.356] 

 

 

Figure 6.2 shows the relationship between individual estimates for the power coefficients 

under risk and uncertainty. The dashed lines correspond to the case where subjects have 

exactly the same coefficients in the two domains. Most estimates are relatively close to the 

dashed lines and there is no strong indication that subjects had different curvature under 

risk than under uncertainty. 

Mann-Whitney U tests on these power function estimates indicate that there is no 

difference in curvature for losses between risk and uncertainty (p = 0.866). There is some 

indication that utility for gains is more concave under risk (p = 0.027).49 The power 

coefficients of utility under risk and under uncertainty are moderately correlated: Kendall’s 

τ being 0.373 for gains and 0.423 for losses. 

 

                                                      
49

 The difference is not significant if we restrict our attention to the 58 subjects who never violate stochastic 

dominance. 
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Figure 6.2: Individual Power Coefficients under Risk and Uncertainty 

The figure depicts the relationship between individual power coefficients under risk and 

uncertainty. Panel A displays the power coefficients for gains. Panel B displays the power 

coefficients for losses. Subjects who had a power coefficient in excess of 2.5 are not shown in 

the graphs (4 for gains, 7 for losses). The dashed lines correspond to the case where subjects 

had exactly the same coefficients under risk and uncertainty.  

 

Loss Aversion 

Figure 6.3 displays the relationships between the medians of   
  and    

  under risk and 

under uncertainty. An advantage of our method is that it immediately reveals that there is 

loss aversion in the sense of Kahneman and Tversky (1979) when   
     

 .50 Hence, 

there is no need to measure the entire utility function to obtain insight into the presence or 

absence of loss aversion. As Figure 6.3 clearly shows,    
  is below   

  for all j, both under 

risk and under uncertainty. An estimate of the degree of loss aversion is obtained 

 

                                                      
50

 For a given j,   
  and    

   have the same utility by construction,  (  
 )    (  

 )  and, thus,   
     

  

implies that  (  
 )    (   

 ), consistent with Kahneman and Tversky’s definition of loss aversion 

( ( )      (  ) for all x > 0). 
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Figure 6.3: Relationship Between Gains and Losses of Same Utility  

The figure depicts the relationship between median gains and median losses with the same 

absolute utility. Panel A displays the relationship between median gains and losses under risk. 

Panel B displays the same relationship under uncertainty. The dashed line corresponds to the 

case where gains and losses of the same absolute utility would be of equal size. The straight line 

 

 

by regressing the   
  on (   

 )   The     in Figure 6.3 display the coefficients from this 

regression. Both     (for risk and uncertainty) are different from unity (p < 0.001) and the 

values that we obtain are close to those observed previously for risk. We cannot reject the 

hypothesis that the values of   are the same for risk and uncertainty (p = 0.431), which can 

be taken as an indication that loss aversion is similar under risk and uncertainty. 

Moving to the individual level, we find that   
     

  for all j (Wilcoxon tests, all p < 

0.001). Furthermore,   
    

 ⁄  does not differ between risk and uncertainty for any j 

(Mann-Whitney U tests: all p > 0.254).  
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Table 6.4: Results Under the Various Definitions of Loss Aversion 

The table depicts the results under the two definitions of loss aversion for both risk and uncertainty. The table 

displays how the coefficient is defined and the number of loss averse, gain seeking, and loss neutral subjects 

in both conditions. The numbers in parentheses for Kahneman and Tversky’s definition correspond with the 

case where response errors are not taken into account. Furthermore, the table depicts the median and 

interquartile range (IQR) for each measure of loss aversion under both definitions. 

 

Definition Coefficient Condition Median  
[IQR] 

Loss 
averse 

Gain 
seeking 

Loss 
neutral 

Kahneman and Tversky (1979) 
  (  )

 ( )
 

Risk 
2.19  

[1.06, 5.59] 
58(46) 10(6) 1(1) 

Uncertainty 
2.48  

[1.10, 7.16] 
54(50) 16(10) 0(0) 

Köbberling and Wakker (2005) 
  

 

   
  

Risk 
1.86  

[1.06, 4.47] 
56 13 3 

Uncertainty 
2.00  

[1.21, 6.50] 
57 14 1 

 

Table 6.4 shows the results of the individual analyses of loss aversion based on Kahneman 

and Tversky’s (1979) and Köbberling and Wakker’s (2005) measures. The table clearly 

shows evidence of loss aversion, irrespective of the definition used and regardless of 

whether we take response errors into account. According to both definitions, the median 

loss aversion coefficients for risk and uncertainty do not differ (Mann-Whitney U tests:  

p > 0.257 in both tests) and are moderately correlated (Kendall’s τ > 0.368, p < 0.001 in 

both tests). 

Finally, the two measures of loss aversion are substantially correlated. For risk, Kendall’s τ 

is 0.740 and for uncertainty it is 0.799 (all p < 0.001 in both cases). It is comforting to 

observe that these two distinct measures, one of a local nature and relying on a single kink 

in the slope of the utility function, and the other global and relying on different absolute 

utilities associated with the same absolute money amounts in the positive and negative 

domain, show a high degree of consistency in classifying subjects. 
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Figure 6.4: The Relationship Between Individual Power Coefficients for Gains and Losses 

Panel A displays the power coefficients under risk. Panel B displays the power coefficients 

under uncertainty. Subjects who had a power coefficient in excess of 2.5 are not shown in the 

graphs (6 for risk, 9 for uncertainty). The dashed lines correspond to the case where subjects 

had exactly the same coefficients for gains and losses. 

 

Reflection 

The aggregate findings reported earlier suggest that the power coefficients are similar in 

the gain and loss domains. This implies that the utility for losses is the mirror image of the 

utility for gains and is referred to as reflection.51 It is of interest to test whether reflection 

also holds at the individual level. Practically, this would allow us to infer utility for both 

gains and losses by only measuring it in one of these domains. Theoretically, it would 

provide support for the idea that utility in both domains is caused by the same 

psychophysical response to changes relative to the reference point. Reflection is a central 

                                                      
51

Reflection is also defined as risk [ambiguity] attitudes for losses being the mirror image of risk [ambiguity] 

attitudes for gains. As risk [ambiguity] attitudes are jointly determined by utility and event weighting under 

binary PT, it is clear that this definition differs from the one we use here. 
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result in Tversky and Kahneman (1992) and is widely adopted in theoretical and empirical 

analyses based on prospect theory (e.g., Barberis, Huang, and Santos, 2001). 

We find little indication that reflection should be rejected. Based on the area measure, 

there was some, albeit marginal, difference in curvature between gains and losses (Mann-

Whitney U tests: p = 0.067). For uncertainty, there is no difference (Mann-Whitney U tests: 

p = 0.724). Reflection also implies that the power coefficients for gains and losses should be 

identical. We cannot reject this hypothesis, neither for risk (Mann-Whitney U tests:  

p = 0.128) nor for uncertainty (p = 0.814). 

On the other hand, both the area measure and the power coefficients, are only slightly 

correlated under uncertainty, and moderately correlated under risk. For the area measure, 

Kendall’s τ is 0.317 under risk (p < 0.001), and 0.191 under uncertainty (p = 0.018). For the 

power coefficients, Kendall’s τ is 0.325 under risk (p < 0.001), and 0.231 under uncertainty 

(p = 0.004). Figure 6.4 displays the relation between the power coefficients for both risk 

and uncertainty. The straight line corresponds to reflection. Both for risk and for 

uncertainty, reflection approximately held for most subjects, but for some it is a poor 

working hypothesis, particularly under uncertainty. 

6.7 Conclusions and Discussion 

Ambiguity models differ in whether they allow different utility functions for risk and 

uncertainty. Under binary prospect theory, which includes the multiple priors models and 

prospect theory as special cases, utility is independent of the source of uncertainty and, 

hence, the same for risk and uncertainty. Ambiguity aversion is modelled through a 

difference in event weighting. We test empirically whether the assumption of identical 

utility functions is justified and obtain support for it. We cannot reject the hypothesis that 

utility and loss aversion are the same under risk and under uncertainty. We also obtain 

convincing evidence for reference-dependence: utility is concave for gains, but convex for 

losses and there is substantial loss aversion. Finally, the elicited standard sequences are 
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similar for different stimuli supporting the central condition underlying binary prospect 

theory (Köbberling and Wakker 2003), which has not been tested before. 

Our findings pose a descriptive challenge for models that explain ambiguity aversion 

through a difference in utility curvature between risk and uncertainty alone, like the 

popular smooth ambiguity model. We observed that standard sequences are similar for risk 

and uncertainty. In Appendix C we show that this implies under the smooth model that the 

utility function under uncertainty cannot be a concave or convex transformation of the 

utility function under risk, even on small preference intervals. Hence, the transformation 

function has an irregular shape, which complicates its use in applications. 

It is interesting that loss aversion under risk and under uncertainty is similar. If loss 

aversion reflects the psychological intuition that losses loom larger than gains then one 

would expect that measurements of loss aversion are related across domains. Previous 

evidence of this correlation gave mixed results. Gächter, Johnson, and Herrmann (2010) 

found a positive correlation between loss aversion in a risky and in a riskless task, but 

Abdellaoui et al. (2013a) found that loss aversion under risk and loss aversion in 

intertemporal choice were uncorrelated. Several studies have found that loss aversion is 

fickle and subject to framing (e.g., Novemsky and Kahneman 2005, Ert and Erev 2008, 

Abdellaoui et al. 2013a). We find that loss aversion is stable under risk and uncertainty if 

the elicitation method is held constant.  

In many decisions probabilities are unknown. People are often not neutral towards 

ambiguity and it is often important to take ambiguity attitudes into account. Our study 

contributes to the application of ambiguity models in empirical studies and decision 

analysis by providing a new parameter-free method to measure utility and loss aversion 

under uncertainty that is robust to event weighting and that can easily be implemented. 

Our method extends the trade-off method by allowing for standard sequences that contain 

both gains and losses and that go through the reference point. It provides a straightforward 

way of exploring whether decision makers are loss averse without the need to elicit the 

entire utility function. As stage 1 of our method shows, three elicitations suffice to measure 
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loss aversion in the sense of Köbberling and Wakker (2005) and with a few more 

measurements loss aversion in the sense of Kahneman and Tversky (1979) can be verified.  

Our conclusion that both utility and loss aversion are the same for risk and for uncertainty 

is not caused by the fact that subjects faced the same stimuli for risk and uncertainty. A 

simple heuristic that subjects might have used was to simplify the uncertain decision task 

by assuming that the probability of their preferred color in the ambiguous urn was ½. Then, 

the decisions under risk and uncertainty would be the same and our conclusions would 

naturally follow. Our data does not corroborate this hypothesis. The value of the loss   

stated in the first stage of our method is significantly lower under ambiguity (Mann-

Whitney U tests: p < 0.001), consistent with ambiguity aversion. Consequently, the 

subsequent choices that subjects faced were markedly different for risk and uncertainty. 

Even though the choices were different, the obtained utilities were similar for risk and for 

uncertainty. 

An easy response strategy in the trade-off method is to let the outcomes of the standard 

sequence increase by the difference between the gauge outcomes (  and ℓ  in the 

sequence of gains   and   in the sequence of losses). This would bias the results in the 

direction of linear utility. We checked for this heuristic but found little evidence to support 

it, even allowing for response error.  

The trade-off method is chained in the sense that previous responses are used in the 

elicitation of subsequent choices. Chaining may lead to error propagation, where errors 

made in one particular choice affect later choices. We checked for the impact of error 

propagation using the simulation methods developed by Bleichrodt and Pinto (2000) and 

Abdellaoui, Vossmann, and Weber (2005) In both simulations, we confirmed the 

conclusions from those studies that the impact of error propagation was negligible.52 We 

also repeated the parametric analysis of utility accounting for serial correlation in the error 

                                                      
52

 Bleichrodt, Cillo, and Diecideu (2010) also concluded that error propagation was negligible in their 

measurements using the trade-off method. 
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terms.53 The estimates were identical to the ones reported in Section 6.5. Hence, we 

conclude that the chained nature of our measurements had no noticeable impact on the 

results either.  

We used hypothetical outcomes because we wanted to detect utility curvature. For small 

money amounts little utility curvature is usually observed and the equality of utility for risk 

and for uncertainty would then automatically follow. A second reason for not using real 

incentives is that we wanted to include losses. Ambiguity attitudes differ between gains 

and losses and loss aversion is important in explaining risk and ambiguity attitudes. 

Because we used substantial losses, we could not implement real incentives: it is 

impossible to find subjects willing to participate in an experiment in which they can lose 

substantial amounts of money. Given that all but one of the questions involved losses, we 

could not play out one of the gain questions for real either. Subjects would know 

immediately which question would be played out for real. The literature on the importance 

of real incentives is mixed. Most studies found that for small to modest stakes there was 

little or no effect of using real instead of hypothetical choices for the kind of tasks that we 

asked our subjects to perform (Bardsley et al., 2010). Therefore, we concluded that the 

limited potential advantage of using real incentives did not outweigh the advantages of 

being able to use larger outcomes and losses.  

A potentially more important problem in our analyses is that our design did not allow for 

obtaining non-parametric measurements of the weighting functions. Therefore, we are 

unable to test whether the weighting functions differ between risk and ambiguity, and 

cannot conclusively state that the ambiguity aversion that we observe is caused by 

differences in event weighting. Furthermore, one might worry that the lack of statistically 

significant results in our present study is due to decision errors (i.e., noise). In the current 

design, such errors work against models that model ambiguity aversion through differences 

in utility between risk and ambiguity, and in favor of models that model ambiguity aversion 

through differences in event weighting. In this sense, our choice for hypothetical choices 

                                                      
53

 We assumed that the error terms followed an AR(1) process  𝑡    𝑡    𝑡  with  𝑡 normally distributed 

with expectation 0 and variance    and estimated this using generalized least squares.  
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works in favor of the latter type of model, as real incentives tend to reduce variance (Smith 

and Walker, 1993; Camerer and Hogarth, 1999). In the future, we plan to supplement our 

analyses with a second experiment that includes measurements on the weighting function 

and is conducted with a larger group of subjects to increase statistical power. 

While the final verdict will thus have to wait, the fact that the curvature and loss aversion 

parameters are very similar in an absolute sense does pose a descriptive challenge for 

models that capture ambiguity attitudes through a difference in utility between risk and 

uncertainty. In addition, our findings convincingly show that reference-dependence of 

utility is important both in modeling attitudes towards risk and in modeling attitudes 

towards ambiguity. In both conditions, utility is S-shaped, concave for gains and convex for 

losses and we observed clear evidence for loss aversion with most subjects being loss 

averse.  
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Appendix 6.A Display of the Experimental Questions 

 

Figure 6.5: Choice Screen Under Uncertainty 

 

 
 
 
 
 

Figure 6.6: Scrollbar Screen Under Uncertainty 
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Figure 6.7: Confirmation Screen Under Uncertainty 
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Appendix 6.B Illustrations of the Bisection Method 

 

Table 6.5: Example Elicitations of Indifferences using the Bisection Method Under Risk 

 Offered choices in  
elicitation   

Offered choices in  
elicitation  1

  
Offered choices in  
elicitation  2

  

1 0 vs. (2000, 0.5; -2000) (2000,0.5;0) vs. 1000 (300,0.5;-200) vs. (800,0.5;-700) 
2 0 vs. (2000, 0.5; -1000) (2000,0.5;0) vs.   500 (300,0.5;-200) vs. (800,0.5;-450) 
3 0 vs. (2000, 0.5; -1500) (2000,0.5;0) vs.   750 (300,0.5;-200) vs. (800,0.5;-325) 

Slider Start value: -1250 
Interval: [-2000,-500] 

Start value: 625 
Interval: [250,1000] 

Start value: -388 
Interval: [-576,-200] 
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Appendix 6.C: Proof Regarding the Smooth Model 

The following proof shows that equal utility midpoints for risk and uncertainty imply 

ambiguity neutrality or volatile ambiguity attitudes under the smooth model. In our 

experiment we ask indifferences   
 

 
        

 

 
ℓ. Under the smooth model this implies: 
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Suppose utility midpoints are the same for risk and uncertainty. Because the    sum to one, 

we also have 
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   (  ) 

If   is strictly concave or strictly convex (A2) and (A3) can never be jointly true. Hence, 

either   is linear or it has both convex and concave parts on any interval [    
    

     

    𝑘 . 
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Chapter 7  | Conclusions 

 

This thesis employs natural and laboratory experiments to investigate decision making 

under risk and uncertainty, cooperative behavior, and bargaining. 

In Chapter 2 and 3, we find that many of the patterns found in the experimental laboratory 

carry over to the drastically different environment of TV game shows. In line with previous 

experimental results, we find evidence that contestants in TV game shows have reciprocal 

preferences, frame money amounts in relative terms, care about equity, and tend to stick 

to their promises. The fact that these findings emerge both in low stakes, relatively 

anonymous laboratory settings with student subjects as well as in high stakes, public game 

show settings with much more diverse subject pools, is a positive sign with respect to the 

generalizability of behavioral findings. 

At the same time, however, Chapter 4 and 5 show that varying the degree of public 

scrutiny or presenting subjects with subtle social cues can have a significant impact on 

behavior. In Chapter 4, we observe that contestants are considerably more risk averse 

when they make their decisions in the limelight as opposed a more anonymous laboratory 

setting. In Chapter 5, we observe that presenting subjects with pictures of eyes leads them 

act in a more social fashion, whereas presenting them with pictures of peers does not 

uniformly enhance social behavior but does trigger more rational behavior in individual 

choice tasks. 

Comparing these results to those of the first two chapters, this thesis provides a mixed 

message about the generalizability of findings between different environments. On the one 

hand, qualitative findings seem to be highly robust across different conditions. In our TV 

game shows, we observe behavioral patterns that resemble well-documental patterns from 

the laboratory. Similarly, in Chapter 4 we observe path dependence in risk behavior both in 

and out of the limelight. On the other hand, however, quantitative estimates appear to be 

more volatile. These findings are in line with recent studies suggesting that qualitative 

results generalize between laboratory and field settings even if quantitative results differ 



CONCLUSION 

 

194 

(Kagel and Roth, 2000; Tenorio and Cason, 2002; Healy and Noussair, 2004; Isaac and 

Schnier, 2005; Antonovics, Arcidiacono and Walsh, 2009; Östling et al., 2011; Bolton, 

Greiner and Ockenfels, 2013). 

Finally, Chapter 6 introduces a new method to measure utility and loss aversion under both 

risk and uncertainty without the need to introduce simplifying parametric assumptions. 

Using this method, we are unable to reject the hypotheses that both utility and loss 

aversion are the same for risk and uncertainty, suggesting that utility primarily reflects 

attitudes towards outcomes. Both under risk and uncertainty, utility is S-shaped, concave 

for gains and convex for losses, and there is substantial loss aversion.  
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Summary 

 

This thesis employs natural and laboratory experiments to investigate decision making 

under risk and uncertainty, cooperative behavior, and bargaining. 

Chapter 2 employs data form the British TV game show Golden Balls to study cooperative 

behavior. In this show, contestants play a variant on the prisoner’s dilemma for large and 

widely ranging stakes averaging over $20,000. In line with previous experimental results, 

we find evidence that contestants in TV game shows have reciprocal preferences, frame 

money amounts in relative terms, and tend to stick to their promises. We also find that 

young males are less cooperative than females and that this gender effect reverses for 

older contestants as men become increasingly cooperative if age increases. 

Chapter 3 uses data from the British TV game show Divided to study bargaining behavior. 

In this show, contestants bargain over a jackpot that is split into three unequal shares and 

ranges from about $10,000 to $185,000. In contrast to the commonly held view that 

fairness concerns will be unimportant when monetary incentives are sufficiently high, we 

find that individual behavior and outcomes are strongly influenced by equity concerns: 

those who contributed more to the jackpot claim larger shares, are less likely to make 

concessions, and take home larger amounts. Threatening to play hardball is ineffective. 

Although contestants who announce that they will not back down do well relative to 

others, they do not secure larger absolute amounts and harm others. In addition, there is 

no evidence of a first-mover advantage and little evidence that demographic 

characteristics matter. 

Together, these two chapters show that many of the patterns found in the experimental 

laboratory carry over to the drastically different environment of a TV game show. The fact 

that these findings emerge both in low stakes, relatively anonymous laboratory settings 

with student subjects as well as in high stakes, public TV game show settings with much 
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more diverse subject pools, is a positive sign with respect to the generalizability of 

behavioral findings. 

Chapter 4 and 5 investigate the effect of public scrutiny on behavior in both individual 

choice and interaction choice tasks. Chapter 4 examines whether risky behavior in the 

limelight differs from that under anonymity. In two experiments, we find that subjects are 

more risk averse when they make their decisions in the limelight. At the same time, 

however, their choices follow the same pattern of path dependence in and out of the 

limelight; subjects take more risk if the game develops either substantially worse or 

substantially better than expected. As a result, a simple prospect theory model with a 

path-dependent reference point provides a better explanation for subjects’ behavior than 

a flexible specification of expected utility theory. Additionally, our findings suggest that 

ambiguity aversion depends on being in the limelight, that passive experience has little 

effect on risk taking, and that reference points are determined by imperfectly updated 

expectations. 

Chapter 5 examines the effect of social cues, in particular pictures of eyes and pictures of 

peers, on decisions in both interaction and individual choice tasks. We find that the effect 

of pictures of eyes is limited to interaction tasks and that it is distinct from the effect of 

pictures of peers. Whereas pictures of eyes uniformly enhance pro-social behavior in our 

experiment, this is not the case for pictures of peers. Furthermore, pictures of peers 

trigger more rational behavior in individual choice tasks that have no moral component, 

whereas pictures of eyes do not affect behavior in such tasks. 

These two chapters suggest that public scrutiny and social cues can influence behavior, 

and that this influence is not limited to tasks that have a moral component. Together with 

the first two chapters, this thesis provides a mixed message about the generalizability of 

findings between different environments. On the one hand, qualitative findings seem to 

be highly robust across different conditions. In our TV game shows, we observe 

behavioral patterns that resemble well-documental patterns from the laboratory. 

Similarly, in Chapter 4 we observe path dependence in risk behavior both in and out of 

the limelight. On the other hand, however, quantitative estimates appear to be more 
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volatile. These findings are in line with recent studies suggesting that qualitative results 

generalize between laboratory and field settings even if quantitative results differ (Kagel 

and Roth, 2000; Tenorio and Cason, 2002; Healy and Noussair, 2004; Isaac and Schnier, 

2005; Antonovics, Arcidiacono and Walsh, 2009; Östling et al., 2011; Bolton, Greiner and 

Ockenfels, 2013). 

In Chapter 6, we introduce a new method to measure utility and loss aversion under both 

risk and uncertainty without the need to introduce simplifying parametric assumptions. 

Our method extends Wakker en Deneffe’s (1996) trade-off method by allowing for 

standard sequences that include gains, losses, and the reference point. We employ this 

method to measure utility under both risk and uncertainty, and investigate whether 

utility takes the same shape for both conditions. This test is critical for models that 

capture ambiguity aversion through a difference in event weighting between risk and 

uncertainty, like the multiple priors models and prospect theory. 

We cannot reject the hypotheses that both utility and loss aversion are the same for risk 

and uncertainty, suggesting that utility primarily reflects attitudes towards outcomes. 

Utility is S-shaped, concave for gains and convex for losses, and there is substantial loss 

aversion. Our findings support models that explain ambiguity aversion through a 

difference in event weighting and suggest that descriptive ambiguity aversion models 

should allow for reference dependence of utility. 
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In dit proefschrift worden laboratoriumexperimenten en natuurlijke experimenten 

aangewend om risicogedrag, coöperatief gedrag, en onderhandelingsgedrag te 

bestuderen. 

Hoofdstuk 2 gebruikt data van de Britse TV spelshow “Golden Balls” om coöperatief 

gedrag te onderzoeken. In deze show spelen deelnemers een variant van het 

welkbekende gevangenendilemma voor grote en sterk variërende geldbedragen, 

gemiddeld meer dan 13 duizend Britse pond. In lijn met bevindingen uit experimenteel 

onderzoek vinden observeren we dat mensen wederkerig gedrag vertonen, zich aan hun 

beloftes houden, en dat deelnemers uitkomsten evalueren ten opzichte van een, 

normatief gezien, irrelevant referentiepunt. Tevens vinden we dat jonge mannen minder 

coöpereren dan jonge vrouwen, maar dat dit sekseverschil andersom ligt voor oudere 

deelnemers doordat mannen zich coöperatiever gedragen naarmate ze ouder zijn. 

Hoofdstuk 3 gebruikt data van de Britse TV spelshow “Divided” om 

onderhandelingsgedrag te analyseren. In deze show onderhandelen deelnemers over een 

jackpot die in drie ongelijke delen wordt gesplitst. Het betreft ook hier hoge bedragen: de 

jackpot is gemiddeld meer dan 33 duizend Britse pond. In tegenstelling tot het 

veelgehoorde punt dat rechtvaardigheidsoverwegingen niet van belang zullen zijn als 

monetaire prikkels hoog genoeg zijn, vinden we dat individueel gedrag en uitkomsten 

sterk worden beïnvloed door de mate waarin spelers hebben bijgedragen aan de jackpot: 

bij een hogere bijdrage claimt men een groter deel van de jackpot, is men minder geneigd 

concessies te doen, en neemt men een groter deel van de jackpot mee naar huis. 

Daarnaast vinden we dat het aankondigen van een agressieve onderhandelingsstrategie 

geen beter resultaat oplevert. Hoewel deelnemers die stellig aankondigen geen enkele 

concessie te zullen doen met een relatief groot deel van de jackpot naar huis gaan, 

incasseren zij geen groter bedrag in absolute zin en heeft hun gedrag een negatieve 
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impact voor anderen. Tot slot is er geen indicatie dat het voordelig is als eerste een claim 

op tafel te kunnen leggen, en zijn er weinig aanwijzingen dat demografische factoren 

verklarende kracht hebben. 

Tezamen geven deze twee hoofdstukken aan dat veel patronen uit het experimentele 

laboratorium generaliseren naar de drastisch verschillende omgeving van een TV 

spelshow. Het feit dat deze bevindingen uit de uiterst publieke omgeving van een TV 

spelshow, met hoge geldbedragen en een diverse groep “proefpersonen” stroken met 

bevindingen uit experimenten waar bedragen doorgaans laag zijn, studenten als 

proefpersoon fungeren en beslissingen een hoge mate van anonimiteit hebben, is een 

positief teken wat betreft de generaliseerbaarheid van bevindingen omtrent 

beslissingsgedrag.  

Hoofdstuk 4 en 5 onderzoeken het effect van bekeken worden op beslissingsgedrag, 

zowel waar het individueel gedrag als interactiegedrag betreft. Hoofdstuk 4 onderzoekt of 

risicogedrag anders is als mensen hun keuzes maken voor een groot publiek  (in de 

schijnwerpers staan) dan wanneer ze hun keuzes maken onder meer anonieme 

omstandigheden. In twee experimenten vinden we dat proefpersonen minder risico 

nemen wanneer ze in de schijnwerpers staan. Tegelijkertijd volgen de beslissingen een 

vergelijkbaar patroon van padafhankelijkheid: proefpersonen nemen meer risico als het 

spel zich substantieel beter of slechter ontwikkelt dan oorspronkelijk verwacht. Een 

eenvoudig prospect theory model met een padafhankelijk referentiepunt verklaart het 

gedrag van proefpersonen beter dan een flexibele specificatie van verwachte-

nutstheorie. Tevens vinden we dat ambiguïteitsaversie  sterker is als anderen meekijken, 

dat passieve ervaring met het spel weinig effect heeft op risicogedrag, en dat 

referentiepunten worden bepaald door onvolledige aanpassing van verwachtingen. 

Hoofdstuk 5 onderzoekt het effect van subtiele sociale stimuli op beslissingen in 

interactieve en individuele keuzesituaties, in het bijzonder van foto’s van ogen en foto’s 

van medestudenten. We vinden dat het effect van foto’s van ogen zich beperkt tot 

interactietaken en dat dit effect verschilt van dat van foto’s van medestudenten. Waar 

foto’s van ogen sociaal gedrag stimuleren in interactietaken, is dit niet altijd het geval 
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voor foto’s van medestudenten. Daarnaast zorgen foto’s van medestudenten voor meer 

rationeel gedrag in individuele taken zonder morele component. Foto’s van ogen hebben 

geen invloed in dergelijke taken. 

Deze twee hoofdstukken laten zien dat bekeken worden en zelfs subtiele sociale stimuli 

gedrag kunnen beïnvloeden, en dat deze invloed zich niet beperkt tot taken met een 

morele component. Samen met de eerste twee hoofdstukken schetst dit proefschrift een 

gemengd beeld wat betreft de generaliseerbaarheid van bevindingen tussen 

verschillende omgevingen. Aan de ene kant lijken kwalitatieve patronen robuust over 

verschillende condities. In onze spelshows vinden we gelijksoortige gedragingen als 

voorheen geobserveerd in het gedragslaboratorium. Tevens zien we in hoofdstuk 4 dat de 

padafhankelijkheid van risicogedrag niet anders is wanneer men in de schijnwerpers 

staat. Tegelijkertijd echter, blijken kwantitatieve resultaten minder robuust. Deze 

bevindingen bevestigen de uitkomsten van recente studies die laboratorium- en 

veldgedrag met elkaar vergelijken (Kagel and Roth, 2000; Tenorio and Cason, 2002; Healy 

and Noussair, 2004; Isaac and Schnier, 2005; Antonovics, Arcidiacono and Walsh, 2009; 

Östling et al., 2011; Bolton, Greiner and Ockenfels, 2013). 

In hoofdstuk 6 introduceren we een nieuwe methode om de nutsfunctie en verliesaversie 

te meten onder zowel risico en onzekerheid. Onze methode vereist geen simplificerende 

parametrische assumpties en bouwt voort op de trade-off methode van Wakker en 

Deneffe (1996) door het mogelijk te maken standaardreeksen op te zetten die zowel 

winsten, verliezen en het referentiepunt bevatten. We gebruiken deze methode om nut 

te meten onder risico en onzekerheid en onderzoeken vervolgens of de nutsfunctie 

verschilt tussen deze condities. Deze test is cruciaal voor modellen die 

ambiguïteitsaversie verklaren door verschillen in het wegen van gebeurtenissen tussen 

risico en onzekerheid, zoals het multiple priors model en prospect theory. 

We zijn niet in staat de hypotheses te verwerpen dat de nutsfunctie en verliesaversie 

hetzelfde zijn onder risico en onzekerheid. Dit resultaat suggereert dat de nutsfunctie 

puur attitudes ten opzichte van uitkomsten betreft. We vinden dat de nutsfunctie S-

vormig is, concaaf voor winsten en convex voor verliezen, en dat er sprake is van 
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aanzienlijke verliesaversie. Onze bevindingen ondersteunen modellen die 

ambiguïteitsaversie verklaren aan de hand van een verschil in de weging van 

gebeurtenissen. Daarnaast suggereren onze bevindingen dat descriptieve modellen voor 

ambiguïteitsaversie rekening moeten houden met het feit dat mensen uitkomsten 

evalueren met betrekking tot een referentiepunt. 
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