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Abstract. 

Immunization of volunteers under chloroquine prophylaxis by bites of Plasmodium falciparum sporozoite (PfSPZ)–

infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied 

intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ 

chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3 monthly immunizations with 7.5  10
4
 

PfSPZ. Control groups 2 and 4 received normal saline. Groups 1 and 2 underwent CHMI (#1) by mosquito bite 60 

days after the third immunization. Groups 3 and 4 were boosted 168 days after the third immunization and 

underwent CHMI (#2) 137 days later. Vaccinees (11/20, 55%) and controls (6/10, 60%) had the same percentage of 

mild to moderate solicited adverse events. After CHMI #1, 8/10 vaccinees (group 1) and 5/5 controls (group 2) 

became parasitemic by microscopy; the two negatives were positive by quantitative real-time polymerase chain 

reaction (qPCR). After CHMI #2, all vaccinees in group 3 and controls in group 4 were parasitemic by qPCR. 

Vaccinees showed weak antibody and no detectable cellular immune responses. Intradermal immunization with up 

to 3  10
5
 PfSPZ-CVac was safe, but induced only minimal immune responses and no sterile protection against Pf 

CHMI. 

INTRODUCTION 

Malaria accounted for an estimated 198 million clinical cases and 584,000 deaths in 2013, 

with children under 5 years of age in sub-Saharan Africa most severely affected.
1
 Significant 

advances have been made in malaria control between 2000 and 2013: an expansion of malaria 

interventions helped to reduce malaria incidence by 30% globally and by 34% in Africa.
1
 To 

ensure these positive trends and maintain gains achieved over the past decade, current control 

and preventive measures such as artemisinin-based combination therapies, rapid diagnostic tests, 

long-lasting insecticidal nets, and indoor residual spraying should be supported by a highly 
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effective malaria vaccine. Emergence of artemisinin-resistant malaria in southeast Asia
2,3

 and 

widespread insecticide resistance in malaria transmitting anopheline mosquitoes
4
 further increase 

this need. Combining various control and preventive measures including large-scale vaccination 

will ultimately offer the best prospect for success. 

Progress in the clinical development of efficient immunization strategies as a forerunner of 

an effective malaria vaccine has been facilitated by controlled human malaria infections 

(CHMIs). CHMIs involve small groups of malaria-naive volunteers exposed to the bites of 

Plasmodium falciparum sporozoite (PfSPZ)–infected laboratory-reared anopheline mosquitoes. 

We have previously shown that healthy malaria-naive volunteers can be fully protected against a 

CHMI by mosquito bite with a homologous Pf strain for more than 2 years after three 

immunizations under chloroquine prophylaxis by bites from 12 to 15 PfSPZ-infected mosquitoes 

at monthly intervals (chemoprophylaxis and sporozoites [CPS]).
5,6

 Chloroquine kills disease-

associated blood stages but does not affect pre-erythrocytic (sporozoite or liver) stages, which 

are exposed to the host’s immune system. CPS-induced protection is mediated by immunity 

against pre-erythrocytic stages.
7
 

Although being a strong proof of concept, this protocol is unsuitable for direct practical 

application as long as PfSPZ are inoculated by mosquito bites. Sanaria Inc. (Rockville, MD) has 

developed a process for manufacturing infectious, aseptic, purified, vialed, and cryopreserved 

PfSPZ (Sanaria
®
 PfSPZ Challenge).

8–13
 To date, single doses of cryopreserved PfSPZ have been 

administered at different doses up to 1.25  10
5
 PfSPZ in 221 human subjects by the intradermal 

(ID) (N = 84), intramuscular (IM) (N = 70), intravenous (IV), or direct venous inoculation (DVI) 

(N = 67) routes using a needle and syringe to assess safety, tolerability, and infectivity.
8,10–13

 

Here, we report the first phase I/IIb trial of CPS immunization with aseptic, purified, and 

cryopreserved PfSPZ, an approach called PfSPZ-CVac (PfSPZ-chemoprophylaxis vaccine) to 

assess safety, tolerability, immunogenicity, and protection against a standard homologous CHMI 

with five PfSPZ-infected mosquitoes. 

MATERIALS AND METHODS 

Study population. 

We recruited healthy male and female subjects aged 18 to 35 years without a history of 

malaria, adhering to inclusion and exclusion criteria as described previously.
7
 All subjects had an 

estimated 10-year risk of developing a cardiac event of less than 5% as estimated by the 

systematic coronary evaluation system.
14

 Baseline ophthalmologic examination revealed no 

abnormalities on fundoscopy that might preclude treatment with chloroquine. 

Subjects gave written informed consent before inclusion. The trial was conducted in 

accordance with Good Clinical Practice and approved by the Central Committee for Research 

Involving Human Subjects of The Netherlands (CCMO NL39541.091.12). An Investigational 

New Drug application was filed with the U.S. Food and Drug Administration; Clinicaltrials.gov 

identifier: NCT01728701. 

Trial design. 

This prospective, single center, double-blind, randomized, placebo-controlled clinical trial 

was performed at the Radboud University Medical Center (Radboudumc), Nijmegen, The 



Netherlands, from September 2012 to February 2014. Thirty subjects were randomly assigned to 

four study groups: vaccine groups 1 and 3 (each 10 subjects) and control groups 2 and 4 (each 

five subjects) (Figure 1). All groups received ID injections with either aseptic, purified, 

cryopreserved, and infectious PfSPZ (PfSPZ Challenge)
8
 or normal saline (NS) under 

chloroquine cover as described below. Sixty days after the last immunization with PfSPZ 

Challenge, groups 1 and 2 received a standard CHMI by five mosquitoes infected with Pf NF54 

SPZ.
15

 Protection was defined as thick smear negative through day 21 post-CHMI. Subsequent 

study procedures involving groups 3 and 4 were dependent on the rate of protection: if  75%, 

groups 3 and 4 would receive CHMI with heterologous Pf NF135.C10-infected mosquitoes
16

; if 

< 75%, groups 3 and 4 would receive a fourth PfSPZ-CVac immunization or NS injection, 

respectively, followed by homologous Pf NF54 CHMI. 

PfSPZ-CVac immunizations. 

All subjects received standard chloroquine chemoprophylaxis for a period of 13 weeks (91 

days) as described previously.
5
 Of chloroquine base, 300 mg was given on days 0, 1, and 7 and 

weekly thereafter through to day 91. On days 8, 36, and 64, vaccine groups received six ID 10 

µL injections (three injections in the deltoid region of each arm) of PfSPZ Challenge, containing 

a total of 7.5  10
4
 PfSPZ. Controls received six ID 10 µL injections of NS in a similar manner 

as the vaccine groups. Vials of PfSPZ Challenge stored in liquid nitrogen vapor phase were 

thawed and diluted in phosphate-buffered saline containing 1% human serum albumin, and all 

subjects were injected within 30 minutes of thawing. Because the protection threshold was not 

met after the CHMI administered to groups 1 and 2, subjects in groups 3 and 4 received a fourth 

injection of PfSPZ Challenge or NS, 168 days after the third immunization. 

On days 5 and 10–14 after injections, subjects were checked on an outpatient basis by 

attending physicians and blood was drawn for thick blood smears; standard hematological (full 

blood count, platelets and differentiation of white blood cells) and biochemical (sodium, 

potassium, creatinine, urea nitrogen, aspartate aminotransferase, alanine aminotransferase, 

alkaline phosphatase, -glutamyl transferase, and total bilirubin) parameters; markers of 

myocardial tissue damage, coagulation, inflammation, and hemolysis as described previously 

(highly sensitive troponin T, D-dimer, and lactate dehydrogenase)
7
; and retrospective assessment 

of blood-stage parasitemia by quantitative real-time polymerase chain reaction (qPCR). 

Additional blood samples for qPCR measurements were provided on a voluntary basis on days 8 

and 9 after the second and third immunizations. All signs and symptoms (solicited and 

unsolicited) were recorded and graded as follows: mild/grade 1 (awareness of symptoms that 

were easily tolerated and did not interfere with usual daily activity), moderate/grade 2 

(discomfort that interfered with or limited usual daily activity), or severe/grade 3 (disabling, with 

subsequent inability to perform usual daily activity, resulting in absence or required bed rest). 

Tympanic temperature was measured and recorded as fever grade 1 (37.6–38.0°C), grade 2 (> 

38.0–39.0°C), or grade 3 (> 39.0°C). Causality of adverse events (AEs) was classified as not, 

possibly, probably, or definitely related to the trial. 

CHMI by mosquito bite. 

Anopheles stephensi mosquitoes were reared at the Radboudumc insectary and infected by 

feeding on cultured gametocytes of Pf N54 parasites, according to standard procedures as 

described previously.
17

 Of the mosquitoes used for CHMI, 100% had PfSPZs in their salivary 



glands, and mosquitoes were infected with an average of 75,800 and 98,000 PfSPZs per 

mosquito for CHMI #1 (groups 1 and 2) and CHMI #2 (groups 3 and 4), respectively. 

Thirty-three days after the last dose of chloroquine, corresponding to 60 days after the last 

immunization with cryopreserved PfSPZ, vaccine group 1 (N = 10) and control group 2 (N = 5) 

underwent CHMI by allowing five An. stephensi sporozoite–infected mosquitoes to feed for 10 

minutes as described previously.
15

 The salivary glands of all blood-engorged mosquitoes were 

dissected to confirm the presence of PfSPZs. When necessary, feeding sessions were repeated 

with fewer mosquitoes until exactly five infectious mosquitoes had fed. Starting from day 5 after 

CHMI, subjects were checked daily on an outpatient basis as described above for PfSPZ-CVac 

immunizations. Blood sampling for thick smear reading and retrospective assessment of 

parasitemia by qPCR was performed once daily on days 5 and 6, twice daily on days 7–15, once 

daily on days 16–21, and for 2 days after initiation of antimalarial treatment. Antimalarial 

treatment, consisting of a curative regimen of atovaquone/proguanil (1,000/400 mg) once daily 

for 3 days, was initiated either as soon as parasites were detected on a thick blood smear or 21 

days after CHMI by mosquito bite for those who did not become infected. Final follow-up visits 

were on days 35 and 140 after CHMI. 

On day 14 after CHMI, one subject in vaccine group 1 was unblinded due to a cardiac serious 

AE (SAE).
18

 All other subjects in groups 1 and 2 were unblinded according to protocol 24 days 

after CHMI by mosquito bite. 

Because of the cardiac SAE, the trial was put on hold for 64 days (March 13, 2013 to May 

16, 2013) by the Safety Monitoring Committee and the Central Committee for Research 

Involving Human Subjects of The Netherlands. New safety measures were adopted for follow-up 

after mosquito CHMI of groups 3 and 4. The endpoint of thick blood smear positivity for 

diagnosis of malaria was changed to qPCR positivity. Atovaquone/proguanil treatment was to be 

initiated after 1) two consecutive positive qPCRs when temperature < 38.0°C, 2) one positive 

qPCR in the presence of a temperature  38.0°C, or 3) a positive thick smear prepared upon 

clinical indication during an evening visit, which took place during days 7–15. Subjects who 

underwent standard vaccinations within 3 months before start of the trial or were planning to 

take standard vaccinations during the trial period up to 8 weeks after CHMI were excluded; this 

is because the study subject with the SAE had received diphtheria, poliomyelitis, tetanus, 

parenteral typhoid fever, and hepatitis A and B vaccinations between the immunization period 

and CHMI, and it is possible that these immunizations may have played a role in the 

myocarditis.
18

 

Study outcome parameters. 

The primary study outcome was frequency and magnitude of AEs. Secondary study 

outcomes included occurrence of Pf parasitemia after each immunization and CHMI, as assessed 

by microscopic examination of thick blood smears and/or qPCR. Thick blood smears were 

prepared and read as described previously.
7
 qPCR was performed as described previously

19
 with 

some modifications. In brief, 5 µL Zap-oglobin II Lytic Reagent (ref. no: 7501369-HA; 

Beckman Coulter, Brea, CA) was added to each 0.5 mL blood sample, mixed and stored at 

80°C. After thawing samples were spiked with phocine herpes virus (PhHV) as extraction 

control and DNA was extracted by a MagnaPure LC isolation instrument (Roche, Basel, 

Switzerland). Isolated DNA was resuspended in 50 µL H2O and 5µL was used as template. For 

the detection of Pf, the TaqMan MGB probe AAC AAT TGG AGG GCA AG-FAM was used 



(Thermo Fisher Scientific, Waltham, MA). For the quantification of PhHV, we used primers and 

probe as described previously.
20

 The sensitivity of qPCR was 35 parasites/mL of whole blood. 

The prepatent period (by qPCR or thick smear) was defined as the period between mosquito bite 

CHMI and the first positive qPCR ( 500 parasites/mL) or thick smear result ( 2 unambiguous 

parasites). The difference in the prepatent period assessed by qPCR compared with thick smear 

was defined as  prepatency. 

Immunologic analysis. 

Plasma and peripheral blood mononuclear cells (PBMCs) were obtained from blood 

collected into citrated BD (Franklin Lakes, NJ) Vacutainer CPT Cell Preparation Tubes on the 

following time points: one day before initiation of chloroquine prophylaxis (I1  1) for all 

volunteers, the day before the third immunization (I3  1) and CHMI (C  1, 59 days after the 

third immunization) in groups 1 and 2, and one day before and 52 days after the fourth injection 

of PfSPZ/NS injections in groups 3 and 4 (I4  1, I4 + 52). 

Analysis of antibody responses by enzyme-linked immunosorbent assay. 

Plasma concentrations of malaria antigen-specific antibodies were determined against a pool 

of 100 sera from adults living in a highly endemic area in Tanzania (HIT serum)
5
 by 

standardized enzyme-linked immunosorbent assay (ELISA). Recombinant proteins of 

circumsporozoite protein (PfCSP) and liver stage antigen 1 (PfLSA-1)
21

 are expressed by 

sporozoites and liver stages, respectively, while merozoite surface protein 1 recombinant protein 

(PfMSP-1)
22

 is expressed by late liver and blood stages.
23

 Antibody reactivity to these antigens 

was determined to assess exposure to and thus induction of immunity to the different stages of 

the malaria cycle during the immunization regimen. 

The 96-well polystyrene flat-bottom plates (NUNC
™

 Maxisorp; Thermo Fisher Scientific) 

were coated overnight at 4°C with 2 µg/mL of antigen, washed with phosphate-buffered saline 

(PBS) and blocked for 1.5 hours at room temperature (RT) with 150 µL of 5% milk in PBS. In 

all the washing steps that followed, plates were washed with PBS + 0.05% Tween (PBST). 

Serially diluted plasma samples (starting at 1:50 to 1:800 in 1% milk in PBST [sample buffer]) 

were incubated for 3 hours at RT in a humidified chamber. As a standard, duplicates of pooled 

HIT serum were included on every plate in a 7-point dilution series. Reactivity for each antigen 

in undiluted HIT serum was defined as 100 arbitrary units (AU). Bound immunoglobulin G 

(IgG) was detected using horseradish peroxidase (HRP)–conjugated antihuman IgG (Thermo 

Fisher Scientific) followed by TMB One Component HRP Microwell Substrate (Tebu Bio, 

Heerhugowaard, The Netherlands). The reaction was stopped using 0.2 M H2SO4 and absorbance 

was measured with a spectrophotometer plate reader at 450 nm (Anthos 2020 ELISA plate 

reader, Cambridge, UK). Optical density values were converted into AUs by four-parameter 

logistic curve fit using Auditable Data Analysis and Management System for ELISA 

(ADAMSEL v1.1; http://www.malariaresearch.eu/content/software). 

Antibodies against PfSPZs by immunofluorescense assay. 

Aseptic, purified PfSPZ suspended at 2  10
3
 in 20 L PBS with 2% bovine serum albumin 

were added to Cel-Line (Thermo Fisher Scientific) immunofluorescense assay (IFA) slides as 

described before.
24

 Pre-immune control sera (I1  1) were added at a single dilution of 1:50; the 

post-immune samples of 52 days after the fourth injection (I4 + 52) were added at 2-fold 



dilutions starting at 1:50. Anti-PfCSP monoclonal antibody 2A10
25

 was used as positive control. 

After incubation at 37°C for 1 hour, slides were washed and Alexa fluor 488–conjugated goat 

antihuman IgG (cat. no. A11013; Molecular Probes, Thermo Fisher Scientific) (1:250 in 0.2% 

Evans blue) was added followed by incubation at 37°C for 1 hour and a washing step. 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA) was added to each well, 

and a cover slip placed on the slide. Samples were assessed with an Olympus (Shinjuku, Tokyo, 

Japan) BX51 fluorescence microscope at 400 magnification. The positive control was a serum 

specimen from a volunteer immunized with PfSPZ vaccine (radiation-attenuated PfSPZ) and a 

malaria-naive serum sample was used as negative control.
24

 The endpoint titer was defined as the 

last serum dilution at which fluorescence intensity was higher than pre-immune sera. A 

postimmunization serum sample was considered positive if it had fluorescence at a dilution of 

1:50 or higher, and the preimmunization serum from that volunteer was negative at 1:50. 

Analysis of cellular immune responses by flow cytometry. 

For the assessment of Pf-specific immune responses, in vitro restimulation assays of PBMCs 

were performed as described previously.
26

 In brief, cryopreserved PBMCs were thawed and 

stimulated in vitro for 24 hours with glycerol-cryopreserved schizont-stage Pf NF54–infected 

erythrocytes (PfRBCs) and aseptic, purified, cryopreserved Pf NF54 SPZ prepared like PfSPZ 

Challenge in the presence of antihuman CD107a antibody (Pacific Blue, H4A3, Biolegend, San 

Diego, CA) at 100 µL/well (final concentrations: 5  10
6
 PBMC/mL; 10  10

6
 PfRBC/well; 1.25 

 10
6
 PfSPZ/mL). Uninfected red blood cells (uRBCs) and medium with 1% HSA (AlbuRx 25; 

CSL Behring AG, Bern, Switzerland) were used as a negative control. For the last 4 hours, 

Brefeldin A (10 µg/mL; Sigma-Aldrich, St. Louis, MO) and Monensin (2 µM; Sigma) were 

added, along with PMA (50 ng/mL; Sigma) and ionomycin (1 µg/mL; Sigma) in positive control 

wells. Cells were stained with a viability marker (live/dead fixable dead cell stain aqua; 

Invitrogen, Carlsbad, CA) and antibodies against CD3 (PerCp, UCHT1), interferon gamma 

(IFN- [PECy7, 4S.B3]), and granzyme B (FITC, GB11; all Biolegend); CD4 (ECD, 

SFCI12T4D11), T cell receptor (PE, IMMU510; both Beckman Coulter), CD8 (APC-H7, 

SK1; BD Biosciences) and CD56 (biotin, MEM188 with eBioscience Streptavidin eFluor 660; 

eBioscience, San Diego, CA).
26

 Intracellular cytokine staining was performed using the Fixation 

and Permeabilization Buffer Kit (eBioscience). For every individual subject, samples from all 

time points were thawed, stimulated, and stained within the same experimental round. Flow 

cytometry was performed on a 9-color Cyan ADP (Beckman Coulter) and data were analyzed 

using FlowJo software (version 9.6.4; Tree Star, Ashland, OR). Gating of cytokine-positive cells 

was performed automatically, based on the geometric mean fluorescent intensity of cytokine-

negative PBMCs for each subject, time point, and stimulus. Responses to uRBCs were subtracted 

from the response to PfRBCs for every subject on every time point. 

Analysis of chloroquine and monodesethylchloroquine concentrations. 

Plasma of volunteers in groups 1 and 2 collected on the day before CHMI (C  1) was used 

to assess chloroquine and monodesethylchloroquine levels. The plasma samples (100 µL) were 

precipitated by methanol (400 µL) containing hydroxychloroquine (50 ng/mL). After mixing and 

centrifugation, supernatants were diluted to half in ammonium formate solution 20 mmol/L with 

formic acid (0.5% v/v), and 15 µL per sample was injected into the system. Chloroquine and 

monodesethylchloroquine were separated and quantified by liquid chromatography mass 



detection (TSQ Quantum Ultra; ThermoFisher, France) using an Atlantis DC18 (100  2.1 mm, 

3 µm) column (Waters, France) using water/methanol (95/5% v/v) with formic acid (0.1% v/v) 

as mobile phase. The flow rate was 0.30 mL/minute and the column temperature was kept at 

25°C. Hydroxychloroquine was used as internal standard. Data were acquired in the positive ion 

mode with an electrospray ionization source. Multiple reaction monitoring was used for data 

collection. 

Statistical methods. 

Statistical analyses were performed with GraphPad Prism 5 (La Jolla, CA). The difference in 

AEs between two groups was calculated by unpaired Student t test on the cumulative duration of 

AEs. Differences between groups in prepatent periods by qPCR, in prepatency between thick 

smear and qPCR ( prepatency), and in antibody levels were tested by the Mann–Whitney test. 

Differences in antibody concentrations between time points within a group were tested by 

Wilcoxon signed-rank test. 

RESULTS 

Trial overview. 

Of 65 screened subjects (median age = 21 years; range = 18–27 years), 30 were included in 

the study (Figure 1 and Table 1). Of these subjects under chloroquine chemoprophylaxis (groups 

1 and 3), 20 were immunized as a single cohort by ID injection three times at 4-week intervals 

with 7.5  10
4
 cryopreserved PfSPZ, while 10 controls (groups 2 and 4) received chloroquine 

chemoprophylaxis and ID injections of NS following the same schedule. The 15 volunteers in 

groups 1 and 2 underwent CHMI #1 60 days after the last immunization, corresponding to 33 

days after the last chloroquine dose. One subject in vaccine group 3 received tetanus vaccination 

after the third immunization session and was later excluded based on the safety procedures 

adopted for CHMI #2, because of the SAE after CHMI #1. Another subject in group 3 was 

unable to continue participation for the fourth immunization because of logistical reasons. 

Therefore, 13/15 subjects (8/10 in group 3; 5/5 in group 4) received a fourth immunization of 7.5 

 10
4
 PfSPZ at 168 days after the third immunization (Figure 1). Five of these 13 subjects were 

not able to participate in CHMI #2 for logistical reasons. Altogether four subjects in each group 

underwent CHMI #2 at 109 days after the last (fourth) chloroquine dose, corresponding to 137 

days after their last injection of PfSPZ or NS. 

Safety and tolerability during PfSPZ-CVac immunizations. 

Immunizations were well tolerated. There were no signs of local reactogenicity in vaccinees 

or controls. Of 20 PfSPZ-CVac recipients, 11 (55%; seven in group 1 and four in group 3) 

reported predominantly mild to moderate probably/possibly associated solicited AEs (mean 

duration = 0.3 ± 0.5 days) beginning on days 1–33 after the first three immunizations (Table 2). 

Six of 10 (60%) NS recipients (three in group 2 and three in group 4) reported predominantly 

mild to moderate probably/possibly associated solicited AEs (mean duration = 0.3 ± 0.4 days) 

beginning on days 1 to 20 after the first three immunizations. The other nine PfSPZ-CVac and 

four NS-inoculated volunteers did not report any complaints. There was no difference in the 

cumulative duration of probably/possibly related solicited AEs per subject between vaccinees 

(groups 1 and 3) and controls (groups 2 and 4) (P = 0.52). There were no solicited AEs after the 

fourth PfSPZ-CVac injection in vaccine group 3, and one mild headache in control group 4. 



Overall, the most commonly reported AE was headache (6/20 [30%] vaccine subjects and 3/10 

[30%] controls), which occurred once in a vaccine group 3 volunteer as the single reported grade 

3 AE. 

After the first PfSPZ-CVac immunization, a remarkable unsolicited AE occurred in one 

subject in vaccine group 3. Several hours after the fourth chloroquine dose, transitory urticaria 

developed at multiple sites of the body lasting for 3 days (corresponding to days 5–8 after PfSPZ 

Challenge injection). The subject did not receive any treatment of the urticaria. This subject had 

a raised D-dimer level 2 days after resolution of the urticaria (1,060 ng/mL, upper limits of 

normal being 500 ng/mL) that decreased to 520 ng/mL within the next 4 days. The volunteer 

continued in the study, received two more immunizations with PfSPZ-CVac and underwent 

CHMI, but did not develop urticaria or any other indication of an allergic reaction. However, the 

D-dimer levels were elevated after each of the three following immunizations (range = 520–

1,350 ng/mL). 

None of the 20 PfSPZ-CVac recipients developed parasitemia during the immunization 

period, as detected by thick blood smears and retrospectively by qPCR. Furthermore, 

lymphocyte and platelet counts did not decline after immunizations. 

Protective efficacy after CHMI by Pf-infected mosquitoes. 

All five controls in group 2 became thick smear positive. However, this group showed a wide 

variation in prepatent periods (median = 13.5 days, range = 10.5–16 days; Figure 2 and Table 1) 

and a median  prepatency (difference between prepatent period by thick blood smear and 

qPCR) of 6.5 days (range = 3.0–9.0 days), which was significantly longer compared with 

previous studies
7,26,27

 (P = 0.006). This wide range is explained by the prolonged parasitemia 

below the detection limit for microscopy in two of the control subjects (represented by the 

triangle and star lines in Figure 3). Retrospective parasitemia measurement by qPCR revealed a 

median prepatent period of 7.0 days (range = 7.0–10.5 days), comparable to previous 

studies
7,26,27

 (P = 0.56). 

Eight of 10 vaccinees developed patent parasitemia by thick smear (median prepatent period 

by thick smear of 12 days, range = 10.5–15 days), while two subjects in group 1 remained thick 

smear negative throughout the 21-day follow-up period (Figure 2). Importantly, both thick 

smear–negative subjects had positive qPCRs on either day 7 post-CHMI (85 parasites/mL) or 

days 7 and 7.5 (252 and 265 parasites/mL), but then remained qPCR negative through day 21 

post-CHMI (Supplemental Figure 1). This initial prepatent period by qPCR was in line with the 

other volunteers in this group (range = 7.0–10.5 days) and similar to control group 2 (P = 0.55). 

On the day before CHMI (C  1), plasma chloroquine was deemed to be below the minimum 

therapeutic concentration in vivo in all 15 subjects.
28

 However, it is noteworthy that both thick 

smear–negative subjects had higher levels of chloroquine in plasma (13 µg/L) than all of the 

thick smear–positive subjects ( 5 µg/L). The monodesethylchloroquine levels (principal active 

metabolite of chloroquine) were not different in these two individuals with negative thick smears 

than the subjects who were thick smear positive (< 5 µg/L). The combined data suggest that a 

parasite killing effect of residual chloroquine levels cannot be excluded in the two thick smear–

negative but qPCR-positive individuals. 

The second CHMI was administered to groups 3 and 4 after a fourth immunization. All eight 

subjects became qPCR positive (Figure 4) with a median prepatent period of 10.5 days (range = 



7–10.5 days) in immunized volunteers (N = 4) and 7 days (range = 7–10 days) in controls (N = 4; 

P = 0.11, Mann–Whitney U test, two-tailed). There were no thick smear results to report because 

all subjects were treated based on qPCR results. 

AEs after CHMI by Pf-infected mosquitoes. 

All subjects in groups 1 and 2 experienced solicited AEs possibly or probably related to 

CHMI (mean number of AEs per subject in group 1 = 6.9, mean duration = 0.6 ± 1.2 days; group 

2 = 8.4, mean duration = 0.6 ± 0.7 days), with headache (N = 29), fever (N = 20), and nausea (N 

= 19) most commonly reported (Table 3). There was no significant difference between the 

cumulative duration of AEs per subject in group 1 compared with group 2 (3.8 versus 4.7 days, 

respectively; P = 0.64). One SAE occurred in a subject in vaccine group 1 on day 13 after CHMI 

and 2 days after initiation of treatment with atovaquone/proguanil (72 days after last PfSPZ-

CVac immunization), which was diagnosed as acute myocarditis.
18

 Abnormal laboratory values 

normalized without complications in all subjects. 

All volunteers in group 3, except for one, experienced solicited AEs possibly or probably 

related to CHMI (mean number of AEs per subject in group 3 = 4.8, mean duration = 0.5 ± 0.6 

days; in group 4 = 6.8, mean duration = 0.9 ± 1.9 days), with headache (N = 15), nausea (N = 9), 

and chills (N = 7) as most common symptoms (Table 3). The cumulative duration of AEs per 

subject in group 3 was similar to group 4 (2.3 versus 6.0 days, respectively; P = 0.051). In 

addition, there was no significant difference between control groups 2 and 4 (P = 0.51), although 

there was a trend toward a lower frequency of AEs in group 4 in which antimalarial treatment 

was initiated after qPCR instead of thick smear positivity. 

Humoral and cellular immune responses. 

First we addressed whether volunteers immunized with PfSPZ-CVac in group 1 had specific 

antibodies to PfCSP, PfLSA-1, or PfMSP-1 at 59 days after the third immunization and one day 

before CHMI. Antibodies to PfCSP were significantly increased compared with 

preimmunization (P = 0.03) with fold increases in titers ranging from 0.9 to 5.7 (median = 2.66). 

Five of 10 subjects showed a greater than 2-fold rise of anti-PfCSP antibody titers. Antibodies to 

PfLSA-1 and PfMSP-1 showed no significant increase (Figure 5A). The increase in anti-PfCSP 

antibody titers was comparable in both PfSPZ-CVac groups (1 and 3) after the first two 

immunizations (P = 0.41). 

The third immunization increased anti-PfCSP antibodies in 7/10 subjects in group 1, but in 

only one subject more than 2-fold (I3  1 versus I3 + 59; median fold increase with range = 1.26 

[0.79–2.45]; P = 0.28). In contrast, after the fourth immunization anti-PfCSP antibodies were 

boosted in 8/8 subjects of group 3 and by at least 2-fold in three subjects (I4  1 versus I4 + 52; 

median fold increase with range = 1.43 [1.25–5.74]; P = 0.008; Figure 5B). Similarly, 7/8 

subjects of group 3 had antibodies against PfSPZ by IFA after the fourth immunization (anti-

PfSPZ titers ranged from 50 to 400, geometric mean = 110) in contrast to controls (anti-PfSPZ 

titer < 50). Although the proportion of anti-PfCSP responders increased in group 3 after the 

fourth dose, the magnitude of the antibody response remained similar to the post-third dose in 

group 1 (P = 0.24). These data suggest that four immunizations will increase the number of 

responders without further increasing the specific antibody titer. Antibodies against PfLSA-1 and 

PfMSP-1 did not significantly increase after the fourth immunization (data not shown). 



In contrast to humoral responses, neither IFN-, CD107a nor granzyme B recall responses to 

PfRBC or PfSPZ, which were found to be indicative of parasite exposure previously,
26,29

 were 

induced after three PfSPZ-CVac immunizations in any of the T-cell subsets analyzed (vaccine 

group 1 versus control group 2, data not shown). Furthermore, even after the fourth PfSPZ-CVac 

immunization administered in group 3 there were still no measurable responses to PfRBC when 

compared with control group 4 or preimmunization (data not shown). 

DISCUSSION 

This first clinical study of PfSPZ-CVac showed that the ID immunization regimen of up to 

four doses of 7.5  10
4
 PfSPZ in healthy malaria-naive volunteers was safe and well tolerated, 

but did not confer detectible cellular immune responses and protection against a homologous 

CHMI. In contrast, a three-dose CPS protocol using PfSPZ-infected mosquitoes for 

immunization induces strong cellular responses and > 90% protection against CHMI as 

previously shown in a number of clinical trials.
5,7,26

 Dose-dependent sterile protection has been 

observed with 5/10 volunteers protected after PfSPZ-infected bites from a total of only 15 

mosquitoes.
26

 In these CPS studies, transient parasitemia as detected by qPCR occurs in the 

majority of volunteers in particular after the first immunization.
5
 This reflects complete liver 

maturation followed by rapid chloroquine-mediated killing of blood-stage parasites. Under these 

conditions, the host’s immune system is apparently sufficiently exposed to a critical parasite load 

and broad array of antigens for induction of protective pre-erythrocytic immune responses.
23,30

 

In this study, we believe that insufficient numbers of PfSPZ migrated to and developed in the 

liver as supported by the weak humoral and absent cellular immune responses against Pf antigens 

and lack of sterile protection. CPS-induced humoral responses have been shown to correlate with 

the numbers of bites by PfSPZ-infected mosquitoes and thus with the degree of Pf-antigen 

exposure.
23

 Here, anti-PfCSP antibody responses after PfSPZ-CVac immunizations were 

comparable to responses after CPS immunizations,
23

 indicating exposure to adequate numbers of 

PfSPZ. However, anti-PfLSA-1 and anti-PfMSP-1 antibody responses were absent, reflecting 

very limited hepatocyte invasion and liver-stage development. This interpretation was further 

supported by the absence of cellular recall responses after PfSPZ-CVac immunizations, that is, 

parasite-specific IFN-, CD107a, or granzyme B responses, indicative of parasite exposure,
26,29

 

and degranulation of CD4 T cells, previously shown to be associated with protection.
26

 

In this trial, PfSPZ were administered ID by needle injection suggesting that the route of 

administration may influence outcome. In fact, murine data show that the route of administration 

of fresh and cryopreserved PfSPZ is a key determinant of successful liver infection; IV and IM 

injections result in significantly higher (50-fold and 2- to 3-fold, respectively) liver loads 

compared with ID and subcutaneous (SC) injections.
31

 Furthermore, Ploemen and others
31

 

demonstrated that both IM and ID routes increase liver loads when using smaller volumes and 

injections at multiple sites. Such methods approach the way anopheline mosquitoes successfully 

administer SPZs: in some cases before a capillary is found the female mosquito probes the 

dermal skin several times, while injecting tiny volumes of sporozoite-containing saliva.
32

 In 

mice, compared with ID administration, IV inoculation of SPZs either radiation attenuated or in 

combination with chloroquine treatment increases parasite liver loads and augments cellular 

immune responses with higher protective efficacy against an infection with Plasmodium 

berghei.
33

 



A series of clinical trials have been conducted to identify the lowest dose of PfSPZ Challenge 

that gives 100% infection with a prepatent period similar to CHMI studies with the standard 

regimen of five NF54-PfSPZ-infected mosquitoes, and a clear dose response. These trials show 

that IV or DVI administration is more efficient than IM, which is more efficient than the ID 

administration, all of which is in agreement with murine data; 100% infection has been achieved 

by IV and DVI,
10

 IM,
8,12

 and ID
34

 administration. However, a prepatent period of < 11.5 days 

and a dose response have only been achieved by IV/DVI and IM administration and have not 

been achieved by ID administration.
8,10–13

 As shown in murine models, the efficiency at which 

PfSPZs reach the liver as reflected by liver parasite loads is a direct result of the route of 

administration. This difference between IV and ID (or SC) administration has also been seen in 

human volunteers with the protective efficacy generated by radiation attenuated, aseptic, 

purified, and cryopreserved PfSPZ vaccine. Four to six doses of 1.35  10
5
 irradiated PfSPZ of 

PfSPZ vaccine administered SC or ID gave minimal immune responses and protection,
24

 

whereas five doses of 1.35  10
5
 PfSPZ administered IV gave excellent immune responses and 

100% protection.
35

 Thus, IV/DVI is the most effective and efficient method for PfSPZ 

administration. 

The dose of 7.5  10
4
 PfSPZ-CVac administered ID in our study was well tolerated with 

remarkably few AEs, most of which were mild and occurred with the same frequency in 

controls, who received only NS. However, there was a cardiac SAE at 12 days after CHMI (59 

days after the last dose of PfSPZ Challenge) and 2 days after initiation of curative treatment with 

atovaquone/proguanil in a subject of vaccine group 1. The subject was diagnosed as having acute 

myocarditis, but the pathophysiological basis for this acute myocarditis remains unclear and a 

definitive etiology could not be established.
18

 

Interestingly, there was a discrepancy in the protection against CHMI by mosquito bite as 

assessed by thick smear and retrospective qPCR in two subjects of group 1, raising the 

possibility that early parasitemias could have been limited by residual chloroquine. Another 

finding suggesting an impact of chloroquine was the significantly prolonged  prepatency in 

control group 2 (Figure 3) compared with controls of recent previous CHMI studies. However, it 

is noteworthy that in a previous CHMI trial in which there were similar plasma concentrations 

(range < 5–14 µg/L for chloroquine and < 5 µg/L for monodesethylchloroquine),
5
 all five 

controls became thick smear positive between days 7 and 11 after CHMI. These plasma 

concentrations were deemed to be below the minimum therapeutic concentration in vivo based 

on literature (Rombo and others
28

: minimum = 30 µg/L), but also because identical blood-stage 

parasite multiplication kinetics were seen in control subjects compared with previous studies. 

This suggests that any residual chloroquine levels had no measurable parasiticidal effect.
36,37

 

Thus, the reasons for the lack of development of parasite densities detectable by thick blood 

smear in the two subjects who were positive by qPCR are not understood. 

In conclusion, this study shows that three to four doses of ID administered 7.5  10
4
 PfSPZ 

Challenge given with chloroquine, the PfSPZ-CVac regimen used in this trial, were well 

tolerated and safe, but did not protect against a homologous CHMI by mosquito bite. The lack of 

protection was almost certainly due to suboptimal parasite exposure, as supported by weak 

humoral responses and lack of T-cell responses previously shown to be associated with 

protection. A PfSPZ-CVac trial using DVI may result in high-level liver stage infection and 

protection. 
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FIGURE 1. Trial flow chart. On days 8, 36, and 64 after initiation of chloroquine chemoprophylaxis, vaccine groups 1 

and 3 received injections containing 7.5  10
4
 Plasmodium falciparum sporozoites (PfSPZ), while control groups 2 

and 4 received normal saline. On day 124, groups 1 and 2 underwent controlled human malaria infection (CHMI) 

with PfSPZ by mosquito bite. Groups 3 and 4 received additional PfSPZ injections on day 232 and underwent 

CHMI on day 369. BMI = body mass index; ECG = electrocardiogram. 

 

 

FIGURE 2. Time to parasitemia by microscopy after controlled human malaria infection (CHMI) #1. The time to 

thick smear positivity is shown for 10 Plasmodium falciparum sporozoite chemoprophylaxis vaccine (PfSPZ-CVac) 

recipients (group 1, black line) and five control subjects (group 2, gray dashed line). 

 

 

FIGURE 3. Parasite dynamics by quantitative real-time polymerase chain reaction (qPCR) after controlled human 

malaria infection (CHMI) #1. Individual parasite density curves of control subjects (N = 5) measured by qPCR are 

shown up to day of treatment, based on diagnosis by thick smear. The gray dotted line indicates the average parasite 

detection limit for microscopy. Four of five subjects were first positive on day 7. One subject was first positive on 

day 10.5. 

 

 

FIGURE 4. Parasite dynamics by quantitative real-time polymerase chain reaction (qPCR) after controlled human 

malaria infection (CHMI) #2. Parasite densities are shown until the day of treatment, based on diagnosis by 

quantitative polymerase chain reaction. Each line represents a single subject: the gray lines represent subjects of 

vaccine group 3 (N = 4), the black lines subjects of control group 4 (N = 4). 

 

 

FIGURE 5. Specific antibody responses induced by immunization by Plasmodium falciparum sporozoite 

chemoprophylaxis vaccine (PfSPZ-CVac). Parasite-specific plasma antibody responses are shown for vaccine group 

1 (N = 10, black circles), control group 2 (N = 5, gray squares), and vaccine group 3 (N = 8, white triangles) at the 

following time points: (A) 1 day before the first immunization (I1  1) and 59 days after the third immunization (1 

day before controlled human malaria infection [CHMI]) (C  1); (B) 1 day before (I3  1) and 59 days after the third 

immunization (I3 + 59) (1 day before CHMI) (C  1) as well as 1 day before the fourth immunization (I4  1) and 

52 days later (I4 + 52). Antibody responses are expressed as arbitrary units (AU) in relation to Tanzanian pooled 

serum (100). Each line represents a single subject. Differences were analyzed using Wilcoxon matched-pairs signed-

rank test. Significant differences are indicated by * (P < 0.05) and ** (P < 0.01). CSP = circumsporozoite protein; 

LSA-1 = liver stage antigen 1; MSP-1 = merozoite surface protein 1. 

 

 

 

 



TABLE 1 

Trial summary table 

 

Group 1 Group 2 Group 3 Group 4 

N = 10 N = 5 
N = 10 (N = 4 

received CHMI) 

N = 5 (N = 4 

received CHMI) 

Dose (number of PfSPZ) 3  75,000 0 
3  75,000 (N = 2) 

0 
4  75,000 (N = 8) 

Route of administration ID ID ID ID 

Number of volunteers who became TS+ 8 5 N/A N/A 

Listing of times to TS+ (days) 
10.5, 10.5, 11, 12, 12, 

14, 14.5, and 15 

10.5, 10.5, 13.5, 14, 

and 16 
N/A N/A 

Geometric mean time to TS+ (days) 13.7 12.7 N/A N/A 

Listing of parasite density by qPCR at time of TS+ 

(parasites/µL blood) 

14, 26, 13, 40, 46, 66, 

24, and 27 

44, 120, 75, 32, and 

1 
N/A N/A 

Geometric mean parasite density by qPCR at time 

of TS+ (parasites/µL blood) 
27.9 26.3 N/A N/A 

Number of volunteers who became qPCR+ 10 (100%) 5 (100%) 4 (100%) 4 (100%) 

Listing of times to qPCR+ (days) 

7.0, 7.0, 7.0, 7.0, 7.0, 

7.0, 9.0, 10.5, 10.5, 

and 10.5 

7.0, 7.0, 7.0, 7.0, 

and 10.5 

7.0, 10.5, 10.5, and 

10.5 

7.0, 7.0, 7.0, and 

10.0 

Geometric mean time to qPCR+ (days) 8.1 7.6 9.5 7.7 

Listing of parasite densities by qPCR at time of 

qPCR+ (parasites/µL blood) 

0.08, 1.01, 0.09, 0.13, 

0.25, 0.07, 0.08, 0.05, 

0.05, and 0.08 

1,02, 0.47, 0.90, 

0.13, and 1.78 

0.74, 1.40, 0.08, and 

0.06 

0.86, 0.36, 0.97, and 

0.52 

Geometric mean parasite density by qPCR at time 

of qPCR+ (parasites/µL blood) 
0.11 0.63 0.27 0.63 

CHMI = controlled human malaria infection; ID = intradermal; N/A = not applicable; PfSPZ = Plasmodium 

falciparum sporozoite; qPCR+ = quantitative real-time polymerase chain reaction positive; TS+ = thick smear 

positive. 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 2 

AEs during immunizations #1–4 

Adverse event* 

PfSPZ-CVac groups 1† (N = 10) and 3 (N = 2†/N = 8‡) Control groups 2† (N = 5) and 4‡ (N = 5) 

No. of 

volunteers 

Mean duration ± 

SD (days) 

Occurrence after 

injections (days) 

No. of 

volunteers 

Mean duration ± 

SD (days) 

Occurrence after 

injections (days) 

Abdominal pain 2 0.9 ± 1.0 6, 25 2 0.1 ± 0.02 1–10 

Chills 2 1.1 ± 1.2 2–4, 4 N/A N/A N/A 

Diarrhea 1 0.6 20 N/A N/A N/A 

Headache 6 0.2 ± 0.2 2 to 33 3 0.5 ± 0.6 1–20 

Nausea 4 0.4 ± 0.6 6 to 27 1 0.1 ± 0.1 20 

Vomiting 2 0.02 ± 0.0 1, 6 N/A N/A N/A 

Any 11 0.3 ± 0.5 N/A 6 0.3 ± 0.4 N/A 

AE = adverse events; N/A = not applicable; PfSPZ-CVac = Plasmodium falciparum sporozoite chemoprophylaxis 

vaccine; SD = standard deviation. 

* Subjects could have more than one AE. Only solicited AEs that were possibly or probably related to the study are 

listed. Solicited AEs were fever, headache, malaise, fatigue, dizziness, myalgia, arthralgia, nausea, vomiting, chills, 

diarrhea, abdominal pain, chest pain, palpitations, and shortness of breath. 

† Total of three PfSPZ or normal saline immunizations. 

‡ Total of four PfSPZ or normal saline immunizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 3 

AEs after mosquito CHMI 

CHMI #1 PfSPZ-CVac group 1 (N = 10) Control group 2 (N = 5) 

AE* No. of volunteers Mean duration ± SD (days) No. of volunteers Mean duration ± SD (days) 

Abdominal pain 2 0.5 ± 0.1 2 0.1 ± 0.1 

Chest pain, unspecified 1 0.0 0 N/A 

Chills 6 0.2 ± 0.1 3 0.4 ± 0.2 

Diarrhea 0 N/A 1 0.1 ± 0.0 

Dizziness 1 1.2 2 0.1 ± 0.0 

Fatigue 2 4.0 ± 5.2 1 0.4 ± 0.3 

Fever 7 0.3 ± 0.3 4 0.6 ± 0.4 

Headache 8 0.5 ± 0.4 5 0.9 ± 1.1 

Malaise 1 0.3 1 0.5 

Myalgia 2 1.2 ± 0.7 3 1.2 ± 0.7 

Nausea 5 0.3 ± 0.3 3 0.3 ± 0.4 

Vomiting 2 0.0 ± 0.0 1 0.2 

Any 10 0.6 ± 1.2 5 0.6 ± 0.7 

Grade 3 AE 

 Fever 3 0.2 ± 0.1 1 0.5 

 Headache 1 0.4 0 N/A 

 Nausea 0 N/A 1 0.3 

 Vomiting 2 0.0 ± 0.0 1 0.2 

 Any 4 0.1 ± 0.2 2 0.3 ± 0.2 

CHMI #2 PfSPZ-CVac group 3 (N = 4) Control group 4 (N = 4) 

AE No. of volunteers Mean duration ± SD (days) No. of volunteers Mean duration ± SD (days) 

Abdominal pain 0 N/A 2 0.3 ± 0.2 

Chills 1 0.3 2 0.0 ± 0.0 

Dizziness 0 N/A 1 0.1 

Fever 1 0.6 2 0.8 ± 1.0 

Headache 3 0.4 ± 0.5 3 2.4 ± 3.2 

Malaise 1 2.2 0 N/A 

Myalgia 1 0.6 ± 0.6 1 1.5 

Nausea 3 0.3 ± 0.2 2 0.2 ± 0.1 

Vomiting 1 0.0 0 N/A 

Any 3 0.5 ± 0.6 4 0.9 ± 1.9 

Grade 3 AE 

 Fever 0 N/A 1 0.4 

 Headache 0 N/A 1 0.1 

 Vomiting 1 0.0 0 N/A 

 Any 1 0.0 1 0.3 ± 0.2 

AE = adverse event; CHMI = controlled human malaria infection; N/A = not applicable; PfSPZ-CVac = 

Plasmodium falciparum sporozoite chemoprophylaxis vaccine; SD = standard deviation. 

* Subjects could have more than one AE. Only solicited adverse events that were possibly or probably related to the 

study are listed. 

 

 

 



SUPPLEMENTAL FIGURE 1. Parasite density in vaccine group 1 after controlled human malaria infection #1. 

Individual parasite density curves of vaccine group 1 subjects (N = 10) measured by qPCR are shown up to day of 

treatment, based on diagnosis by thick smear. The grey dotted line indicates the average parasite detection limit for 

microscopy. Two subjects remained thick smear negative through day 21 post-CHMI. 
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