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Abstract. This paper offers a demand-based theory of how platform maturity affects the adoption of 

platform complements. We argue that differences between early and late adopters of the platform include 

willingness to pay for the platform-and-complement bundle, risk preferences, preference for novelty, and 

search behavior. These differences create heterogeneous demand conditions for complements that affect 

both average complement performance and variance in the types of complements that are more or less 

successful. Using a novel dataset of 2,921 sixth-generation console video games, we find that platform 

maturity has a negative relationship on video games’ unit sales. Furthermore, as the platform matures, we 

find that the sales disparity between new intellectual property (IP) games and games based on existing 

video game properties or media tie-ins grows to the detriment of new IP games. We find that the sales 

disparity between superstar games and flops also widens as the platform matures. These effects are 

accentuated by the introduction of a next generation platform, which further skews the complement’s 

customer pool as early adopters migrate away from the current generation platform. Robustness tests that 

control for unobserved heterogeneity help rule out alternative explanations and support our argument that 

these performance implications are truly driven by heterogeneity in demand.  

Keywords: platform markets, complementary goods, demand-perspective, industry evolution, video 

games 
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"I understand the manufacturers don't want [new platforms] too often because it's expensive, but it's 

important for the entire industry to have new consoles because it helps creativity. It's a lot less risky for 

us to create new IPs when we're in the beginning of a new generation.”  

Yves Guillemot, CEO Ubisoft (Morris, 2012) 

Introduction 

In two-sided markets such as video games, operating systems and newspapers, the availability of popular 

complements influences platform success (Gawer, 2014; Schilling, 1998; 1999; 2002; Wareham, Fox & 

Giner, 2014). For example, the popular video game Tetris led to Nintendo’s dominance in the handheld 

video game market with the Game Boy in the early 1990s. Similarly, the American Broadcasting 

Company (ABC) quickly realized the importance of quality content in persuading viewers to migrate 

from black-and-white to color TVs in the early 1960s. Licensing exclusive Disney content helped ABC 

attract a critical mass of color TV adopters.  

The influence of complements on platform performance inspired researchers on two-sided 

markets (Rochet & Tirole, 2003; 2006), platform markets (Schilling, 1998; 1999; 2002), and technology 

ecosystems (Adner & Kapoor, 2010) to focus on how changes on the complements side affect consumer 

demand for platforms. The central argument revolves around indirect network effects: An increase in the 

number of complements supporting a platform results in increased platform adoption by end-users 

(Clements & Ohashi, 2005; Parker & Van Alstyne, 2005; Stremersch, Tellis, Franses & Binken, 2007). 

Recent studies have also looked at the heterogeneous effect of different types of complements on platform 

adoption (Cennamo & Santalo, 2013; Corts & Lederman, 2009; Kim, Prince & Qui, 2014; Landsman & 

Stremersch, 2011). For example, Binken and Stremersch (2009) find that superstar complements – 

complements of high quality and high popularity – are especially important for platform success. 

While this research shows that the evolution of the complement market affects platform 

performance, the converse has received little attention – how does the evolution of the platform market 

affect the performance of complements? One salient aspect of platform evolution for the performance of 

complements is relatively intuitive – since the only potential adopters of a given complement will be 
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those consumers who have already adopted the platform, well-established platforms provide a larger 

potential market for complements.2 But the implications of platform evolution go beyond simply adding 

more potential consumers for complements. Important and systematic differences between early and late 

adopters of a platform mean the type of consumers in the pool of potential adopters shifts over time (Von 

Hippel, 1986). Early and late adopters may have different preferences and exhibit different behaviors 

(Rogers, 2003), which may also impact the performance of different types of complements over time. 

This paper explores how the evolution of a platform from inception towards maturity affects 

performance outcomes for complementary products. We explore both the average effect on complements, 

as well as which types of complements are more or less affected. This question is distinct from traditional 

considerations of technology lifecycles or dominant designs (Abernathy & Utterback, 1978; Dosi, 1982; 

Utterback & Abernathy, 1975) because the lifecycle of a given complement is not independent, but 

instead is embedded into the larger lifecycle of its platform. In video games, for example, the lifecycle of 

an average game is compressed within three to six months (Binken & Stremersch, 2009; Tschang, 2007), 

while video game consoles have an average lifecycle of seven years. Thus, complements launched early 

in a platform’s lifecycle face an audience of mostly early adopters, while later launching complements 

face an audience comprised of a mix of early and late adopters. The innovation diffusion literature 

suggests that early adopters of an innovation (such as a new platform) are qualitatively different from late 

adopters. Late adopters are typically risk-averse, respond to relatively basic information when searching, 

and have a lower willingness to pay, while early adopters actively seek out product information and are 

more willing to take risks (Cabral, 1990; Rogers, 2003). We build on this logic to theorize that demand-

side user heterogeneity (based on the adopters of the platform) will affect both the level of success of 

complements as well as the specific types of complements that will be more successful early or late in the 

platform’s lifecycle.  

To analyze these dynamics, we use a dataset of 2,921 video games released in the UK between 

                                                           
2 Whether this is good or bad for complements depends on how many competing complements are attracted to a 

successful platform, as noted by Venkatraman & Lee (2004). 
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2000 and 2007 on three competing platforms spanning the entire sixth generation of consoles. The market 

for video games has often been described as a “canonical” example of a two-sided platform (Cennamo & 

Santalo, 2013; Clements & Ohashi, 2005; Dubé, Hitsch & Chintagunta, 2010). Worldwide sales for the 

video game industry reached $100 billion in 2014, with over 70% of sales coming from video games and 

the remainder from hardware and accessories (ESA, 2013; Gartner, 2013). Video game consoles are a 

particularly fitting setting given their generational nature. Hardware systems have clearly demarcated 

beginnings and ends, and the timing of competing consoles that are part of the same generation typically 

occurs within an eighteen months timeframe. The data allow us to control for and rule out a number of 

competing explanations – the effect of competition among complements, the effect of the impending 

introduction of a new generation game console, and unobserved heterogeneity at the complement level. 

This paper contributes in three primary areas. First, the paper contributes to the small but growing 

body of work on platform competition that focuses on complementors instead of platform owners. 

Existing work has already explored the implications of competition among complementors (Boudreau & 

Jeppesen, 2014; Boudreau, 2012; Venkatraman & Lee, 2004).3 By articulating how platform evolution 

affects the innovation and new product introduction strategies of complementors, our approach links the 

literature on platforms and complementors with that on innovation strategy and industry evolution 

(Klepper, 1997; Ahuja, Lampert & Tandon, 2008). Second, by considering the impact of consumer 

heterogeneity this paper contributes to the strategy research on demand-based perspectives (Adner & 

Kapoor, 2010; Adner & Zemsky, 2006; Priem, 2007). The fact that a complementor’s potential customer 

pool is relatively exogenously given by the efforts of the platform owner represents a different 

perspective on how demand-related factors affect firm innovative performance. Finally, our theory and 

findings also have important implications for platform owners. Given the popularity of platform- and 

ecosystem-based business models, organizational researchers have been interested in what ecosystem 

                                                           
3 Following Gawer (2014) and Gawer & Cusumano (2014) we use the terms ‘provider of complementary goods’ and 

‘complementor’ interchangeably. Brandenburger, Nalebuff and Maulana (1996) classify products as complements 

when greater sales of one product increase demand for the other (e.g. video game consoles and video games). 
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governance and management strategies will be most successful for the platform (Cennamo & Santalo, 

2013; Wareham et al., 2014). This study identifies specific types of complements that platform owners 

should encourage to enter during different stages in the platform’s lifecycle in order to be most 

successful.  

Theory Development & Hypotheses 

In this section we develop our theory of how heterogeneity among the consumers who adopt a platform 

has implications for the performance of innovative complementary products. We first outline stylized 

differences between early and late adopters of an innovation. We then discuss the implications of these 

differences in the context of two sided markets before offering specific hypotheses. 

Differences between Early and Late Adopters of Technologies and Platforms 

Research on the diffusion of technologies has long asserted that there are key differences between the 

early versus later adopters of a given technology. Adopters of an innovation can be placed on a continuum 

ranging from early adopters (“innovators”) to late adopters (“laggards”).4 We recognize that adopter types 

are actually continuous, but for sake of exposition we focus on the distinction between two groups – early 

adopters and late adopters. While Rogers (2003) outlines many differences between early and late 

adopters that include factors such as age and gender, we focus here on four factors that have particular 

implications for our theory development: Willingness to pay, risk preferences, preferences for novelty, 

and search processes. We discuss each below. 

First, early adopters of a technology (including a platform) will be more willing to spend time and 

money on the platform and its complements than later adopters. The underlying logic is that early 

adopters make adoption decisions without knowing whether the platform will emerge as the dominant 

                                                           
4 Diffusion processes follow a normal distribution where innovativeness is partitioned in standard deviations from 

the average adoption time (Rogers, 2003). Similar to a platform’s lifecycle, cumulative adoption follows an S-

shaped curve where the mean denotes the inflection point. Rogers identifies five adopter categories: Innovators 

(2.5% of all adopters); early adopters (13.5%); early majority (34%); late majority (34%); and, laggards (16%). 

These categories are exhaustive in that they include all adopters of a given innovation, but exclude non-adopters. It 

is important to note that the commonly used adopter categories are a conceptual tool and that the underlying 

dimensions distinguishing early adopters from late adopters are, in fact, continuous. 
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design, oftentimes paying an even higher price for the platform than do late adopters (Schilling 1998, 

1999). Cabral (1990) offers a model of platform adoption that concludes that early adopters must have a 

higher willingness to pay for the technology since they adopt without the benefits of certainty. The rate of 

adoption by subsequent users (both end-users and producers of complementary goods) strongly affects the 

value of a platform, but it is often unknown to early adopters which rival platform will eventually enjoy 

the greatest adoption rate (Arthur, 1989; Katz & Shapiro, 1994). Karshenas and Stoneman (1993) build on 

this perspective to suggest a “rank effect” process, whereby the potential adopter with the highest 

preference adopts first, and then subsequent adopters who have lower valuations. Empirically, 

Kretschmer and Grajek (2009) show this phenomenon in the mobile network industry, where early 

adopters of mobile technologies use the technology much more intensively than later adopters (see also 

Golder and Tellis, 2004). In general, prior research has established that early adopters of a technology 

tend to value the technology more highly than later adopters. 

Second and relatedly, earlier adopters are typically less risk averse than late adopters. Geroski’s 

(2000) review of the innovation diffusion literature notes that a number of studies have explored 

differences in risk attitudes between early and late adopters, and used these differences to explain the 

adoption curve of new technologies. Leonard-Barton (1985) notes that this effect may be due to late 

adopters often having less disposable income, and so have more at risk. The overall belief is that early 

adopters are often less concerned about risk when making adoption decisions. 

 Third, early adopters are likely to have a stronger preference for novelty and exploration than 

later adopters. For example, prior research on computer operating systems (Chau & Hui, 1998) found that 

early adopters tended to be consumers that generally sought out novelty and wanted to experiment with 

new products. This preference for and tolerance of novelty is likely what leads these consumers to be 

early adopters of a technology in the first place – they derive utility from exploring and experiencing a 

new technology. 

Finally, early adopters engage in different search patterns than do later adopters. Early adopters 

frequently seek information from external sources and therefore have greater innovation-specific 
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knowledge than do later adopters. This is in part because, early on, there may not be consensus 

information about the quality of the new product, and certainly not information available from many close 

personal sources (i.e., friends and colleagues) who have tried the new technology. In the case of 

platforms, early adopters may have little information on the variety of complements available on the 

platform, or the eventual size of its installed base (Clements & Ohashi, 2005; Gretz & Basuroy, 2013), 

meaning that they cannot rely on these simple signals. By contrast, late adopters have a large volume of 

information available to help them make adoption decisions. These adopters can thus be relatively 

passive, and rely on readily available signals of quality such as provided by word-of-mouth and social 

contagion in making their adoption decisions (Haigu & Spulber, 2013). Thus, we expect early adopters to 

search broadly for information, while later adopters tend to focus on easily available high quality signals 

when making decisions. 

Implications for Complementors 

These four factors – willingness to pay, risk preference, novelty preference, and search behavior – all 

differentiate early from late adopters of a given technology or platform. Here we discuss how these 

differences may affect the performance of complementary products available on the platform. 

Translating these factors that define early and late platform adopters to complementors entails an 

important assumption – that these characteristics are stable. Thus, we have to assume that if a person was 

novelty-seeking when they were the early adopter of a platform, they will continue to be novelty-seeking 

at least in the domain of the platform and its complements. This seems like a reasonable assumption, as 

consumers do not buy the platform alone, they value the platform-complements bundle as a whole 

(Schilling, 1999). Thus, any personal characteristics that affected their decision to purchase the platform 

will likely spill over to their purchase decisions around the complements. In addition, many of the studies 

articulating differences between early and later adopters have found that the factors distinguishing the 

consumers in one technology were consistent across other technologies. For example, early adopters that 

sought out the novel aspects of online travel booking also tended to be consumers that were early adopters 

of other Internet behaviors, and for similar reasons (Kah, Vogt & MacKay, 2008). This, combined with 
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research showing that factors like risk preferences tend to be relatively stable for a given person over time 

(Andersen, Harrison, Lau & Rustrom, 2008; Harrison, Johnson, McInnes & Rustrom, 2005), suggests that 

it is reasonable to assume that if the four factors discussed above distinguished early adopters of the 

platform from late adopters, then these same characteristics might also inform their interaction with 

complements on the platform. 

As a result of the fact that the complementor draws its pool of potential customers from the pool 

of platform adopters, this means that differences in consumer preferences (such as those discussed above) 

will have an impact on the success or failure of any given complement. Thus, a complement that faces a 

pool of potential adopters that are primarily comprised of early adopters of the platform will face 

consumers with a higher willingness to pay, who are more risk seeking, who prefer novelty, and who are 

willing to “dig deep” when doing research to figure out which complements to adopt. By contrast, those 

complements that face a pool of users primarily comprised of later adopters of the platform will face the 

opposite situation – consumers with a lower willingness to pay, who are risk averse, who dislike novelty, 

and who gravitate towards a single, high-reliability signal of complement quality. Practically, given that 

(a) complement life cycles are relatively short compared to longer platform life cycles, and (b) that early 

adopters adopt early by definition, this means that complementors launching complements in the early 

stages of a platform’s maturity and evolution will face a pool comprised largely of early adopters, while 

those that launch later in the platform’s lifecycle will face a mixed customer pool, likely weighted 

towards later adopters since that population is typically seen as larger than that of the early adopters 

(Rogers, 2003). This core insight provides the underlying theory behind the hypotheses that we offer 

below. 

Hypotheses 

Given the theory outlined above, deriving specific and testable hypotheses is relatively straightforward. 

Here we offer one hypothesis that builds off the assertion that early adopters have a higher willingness to 

pay, two hypotheses that build on risk and novelty preferences, and two that build on differences in search 

behavior (and risk preferences).  
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First, the fact that early platform adopters may value the technology of a platform higher has 

implications for the platform, but also for the producers of complements. For most platforms (e.g. video 

games, computers, mobile phones) users do not purchase the platform for itself, but for the ability to use 

value creating complements (Schilling 1999; 2002). This is illustrated in the market for video games 

where over 70% of $21bn sales revenue in the US in 2014 was spent on games, and the remainder on 

video game consoles and accessories. Thus, we expect the higher valuation of the technology bundle of 

platform-plus-complements to mean that early adopters are more willing to spend money and time on 

complements than later adopters. The result is that we expect that complements launched earlier in the 

platform’s lifecycle will be more successful than ones launched later.5 We thus argue that: 

Hypothesis 1. As platforms mature, the average adoption (i.e., sales) of complements will 

decrease. 

 Second, late adopters of platforms not only allocate less money and time and thus purchase fewer 

complements, they also enjoy different types of complements. This can be understood through the 

example of casual gamers and hardcore gamers in the video game industry. More so a continuum rather 

than a dichotomy, casual gamers overlap with what Rogers (2003) defines as late adopters while hardcore 

gamers resemble the depiction of early adopters. Consider the following quote by video game theorist 

Jesper Juul: “The stereotypical casual player has a preference for positive and pleasant fictions, has 

played few video games, is willing to commit small amounts of time and resources toward playing video 

games, and dislikes difficult games.” (Juul, 2010; p. 29; emphasis in original) And: “The stereotypical 

hardcore player has a preference for emotionally negative fictions like science fiction, vampires, fantasy 

and war, has played a large number of video games, will invest large amounts of time and resources 

toward playing video games, and enjoys difficult games” (Juul, 2010; p. 29; emphasis in original).  

                                                           
5 Prior research has identified two key effects that platform evolution may have on the performance of complements. 

First, platform maturity typically brings in more consumers, which increases the success of complements (Katz & 

Shapiro, 1986; 1994). Second, the increase in consumers draws in competing complements, which decreases the 

success of any given complement (Boudreau, 2012; Wareham et al., 2014). We will control for these two effects 

empirically, to suggest that the remaining decrease in performance predicted in H1 is based on evolution of 

consumer preferences in the potential adopter pool. 
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 This distinction builds off the differences in risk and novelty preferences that we outlined earlier. 

Given that complementors face a decision between producing novel and exploratory complements versus 

derivative and more familiar complements (Tschang, 2007),6 it becomes apparent that novel 

complementors will be especially unsuccessful as the platform evolves and the user base is comprised 

more and more of late platform adopters. Novel complements are shrouded by uncertainty and are 

unprecedented, thus imposing valuation ambiguities to end-users on the platform (Priem, 2007). This 

makes them both high risk and highly novel, which means they will appeal more to early adopters than to 

late adopters. It is for this reason that the adoption of novel complements is disproportionately affected by 

the evolving composition of the platform base. The paper’s second hypothesis therefore is: 

Hypothesis 2. As platforms mature, the adoption of novel complements will decline at a faster 

rate than non-novel complements. 

Third, differences in search behavior and risk preferences between early and late adopters will 

also likely affect the relative performance of the most and the least popular complements on the market 

(i.e., affecting the variance in performance outcomes). That there is a disparity between popular 

(“superstar”) complements and less popular (“flop”) complements is relatively obvious. This fact is well-

illustrated by the example of Grand Theft Auto V. The hit game sold more copies in its opening week in 

the UK than the opening weeks for the next six most popular franchises combined (Dring, 2013). What is 

important is that the pool of early adopters is more likely to search broadly for potential complementors to 

purchase and should be less concerned about the risks of adopting a complement that they end up not 

liking (McPhee, 1963) – both of which should diminish the disparity between superstars and flops. By 

contrast, late adopters should be more risk averse and more inclined to follow the social cues of the 

market, which should increase the success of superstar complements. Empirically this tendency towards 

the dominance of a few complementors in more mature markets has been supported in the markets for 

online DVD sales (Elberse & Oberholzer-Gee, 2008), as well as online recommender systems (Fleder & 

                                                           
6 For example, video game developers are faced with the tension between producing games that are based on new, or 

original, intellectual property (IP) and derivatives of existing video franchises (“sequels”) or external media 

adaptations such as Hollywood films. 
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Hosanagar, 2009). Our third hypothesis, therefore, is that the gap in sales between popular and less 

popular complements will increase as the platform evolves, as more risk averse users who seek less 

deeply adopt the platform: 

Hypothesis 3. As platforms mature, the sales disparity between popular and non-popular 

complements will increase. 

 Finally, the underlying logic of the above discussion suggests that complementors introduced 

early in the platform’s evolution will face an audience of early adopters, while those introduced later will 

face a more mixed audience. There is one additional factor in many platform markets that will affect the 

balance between early and late adopter-type consumers in the market – the introduction of next generation 

platforms. The idea of a next generation platform competing with and eventually replacing the existing 

platform is a common phenomenon in video games, mobile phones, and other platform markets (Adner & 

Kapoor, 2015; Adner & Snow, 2010). Prior research suggests that due to the relative stability of 

preferences, the early adopters of one generation are likely to be early adopters of the next generation (see 

Huh and Kim, 2008, for an example in Korean mobile phones). This would mean that, as the next 

generation platform is introduced, the share of early adopter-type consumers still active in the old 

generation platform will decline as these consumers move to the new platform. This migration will 

accentuate the effects discussed above for H2 and H3, leading us to offer parallel hypotheses about the 

effect of next generation platform sales: 

Hypothesis 4. As the next generation platform launches and gains adopters, the adoption of novel 

complements will decline at a faster rate than non-novel complements. 

Hypothesis 5. As the next generation platform launches and gains adopters, the sales disparity 

between popular and non-popular complements will increase. 

Research Setting and Methodology 

The Market for Console Video Games in the United Kingdom (2000-2007) 

We focus on the sixth generation video game consoles in the United Kingdom. The UK market for video 

games is disproportionate to the country’s size in terms of cultural and economic relevance (Johns, 2006). 

In 2010, the UK market for video game consoles represented about 20% of the global market (IDG, 
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2011). We chose the sixth generation as it was the most recent generation for which data on a completed 

platform lifecycle was available at the time of data collection. Rival platforms in this generation are 

Sony’s PlayStation 2 (PS2), Microsoft’s Xbox and Nintendo’s GameCube. Sony was first to enter the 

sixth generation in November 2000 followed by Microsoft and Nintendo in March and May of 2002, 

respectively. Sony’s PS2 was the dominant platform in this generation with over 9 million units sold in 

the UK. By the end of the sixth generation, Sony dominated the market with 74% market-share followed 

by Microsoft (17%) and Nintendo (9%). The seventh generation game consoles was initiated by the 

introduction of Microsoft’s Xbox 360 in November 2005, followed by Nintendo’s Wii in December 2006, 

and Sony’s PlayStation 3 in March 2007 (see Table 1).  

--- INSERT TABLE 1 HERE --- 

The video game industry is an appropriate location in which to explore our theory for three 

reasons. First, the setting is clearly a platform market. More than once, the console video game industry 

was labeled a “canonical” example of a two sided platform (Cennamo & Santalo, 2013; Clements & 

Ohashi, 2005; Dubé et al., 2010). The industry includes platform owners that create the infrastructure for 

publishers to release games, and end-users who purchase consoles to enjoy the video games released on 

the platform. Platform owners generate revenues both by selling consoles and through royalty payments 

on games sold. In a typical “razors and blades” model, platform owners often sell consoles at a loss to 

increase end-user adoption, especially early in the platform’s lifecycle. Most video games are produced 

and commercialized by independent third party publishers, though platform owners do engage in some 

first-party game development. Second, home video game consoles have clearly defined beginnings and 

ends, which aides us in our operationalization of platform maturity. Given the substantial investments and 

long recoupment trajectories, platform owners typically release new platforms every five to eight years. 

Third, there is a constant supply of video games with a rich variation in terms of types and market 

performance throughout a console’s lifecycle (discussed in more detail below). 

 The most popular franchises in our data include Grand Theft Auto (Take 2 Interactive), FIFA 

(Electronic Arts), Need For Speed (Electronic Arts), Halo (Microsoft), and Super Mario (Nintendo). The 
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most popular game was Grand Theft Auto: San Andreas, which was released in November 2004 and sold 

in excess of 2.3 million units on Sony’s PS2. Highly innovative games were received with mixed 

reactions: Nintendo successfully launched its new intellectual property, Pikmin, early in the lifecycle of 

its floundering GameCube platform (June 2002). The real-time strategy game sold nearly 70,000 units 

and received rave expert evaluations averaging 89/100. By contrast, the now defunct THQ released the 

innovative Psychonauts close to the end of the PS2’s lifecycle (February 2006). The game sold a mere 

12,000 units despite rave expert scores (88/100). These examples illustrate the variance in performance 

that exists for innovative video games despite similarity in quality as determined by expert critics. 

Data and Measures 

We built a novel and comprehensive dataset of sell-through data for all video games released in the UK 

across the three sixth generation game platforms. The data are comprehensive in that all console video 

games released in the UK are included. Video game and platform sell-through data (including release 

dates, firm information, and genre information) come from a series of proprietary databases provided by 

one of the platform owners in the UK. Quality measures were hand-collected from online review 

aggregation database Metacritic.com/games. Information on games’ innovativeness were hand-collected 

by three research assistants and is elaborated on in more detail below. Additional data for instrumental 

variables were collected from the US Bureau of Labor Statistics. Table 2 provides an overview of the 

study’s main variables, and we discuss them below.  

--- INSERT TABLE 2 HERE --- 

Dependent Variable 

Complement adoption is operationalized as the video game’s platform-specific total unit sales.7 Unit sales 

data include point-of-sale transactions for approximately 90% of all (online) retail transactions in the UK 

between November 2000 and November 2007. Data on game sales are complete until January 2012. 

Given that video games have very short product lifecycles –most games sell the bulk of their units within 

                                                           
7 Measuring the success and adoption of video games through total sales in GBP produces similar results. 
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three to six months of being on the market (Binken & Stremersch, 2009, Tschang, 2007) – we are not 

concerned with structural biases caused by unintentional right censoring of our dependent variable for 

games released near the tail-end our data. In addition, given that our primary interest involves differences 

between (for example) new and existing IP games, all games released at the same time would be subject 

to the same (if any) biases. 

We focus on platform-specific unit sales because many games “multi-home”, meaning they are 

launched on multiple platforms at the same time (Landsman & Stremersch, 2011). Given that our theory 

focuses on the underlying maturity of the video game platform and competing platforms may be at 

different levels of maturity at the same date, using platform-specific sales allows us to capture different 

effects by platform. In fact, in additional robustness tests discussed below, we exploit this subsample of 

multi-homing games for a game fixed-effects estimation allowing us to rule out unobserved heterogeneity 

at the game level, instead focusing on the variance that exists on the platform side. As games’ unit sales 

tend to be highly skewed, we log transform the variable.  

Independent Variables 

Our theory of demand heterogeneity in platform adopters generated a set of testable propositions about 

the effect of platform maturity on complement adoption. In order to facilitate a straightforward 

comparison between the three platforms’ installed bases, we compute a normalized measure of platform 

maturity at time 𝑡 such that: 

𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑗𝑡 =
𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐵𝑎𝑠𝑒𝑗𝑡

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐵𝑎𝑠𝑒𝑗
 

The numerator measures platform 𝑗’s installed base in month 𝑡 of a focal game’s release. The 

denominator denotes the cumulative number of platform adopters on platform 𝑗 at the end of its lifecycle. 

Previous studies on platform competition have adopted a similar approach (see Stremersch et al., 2007). 

Following earlier work on two-sided platforms in the console video game industry, we mark the end of a 

console’s lifecycle when monthly platform sales in the UK drop below 1,000 units, or when we observe a 

month without any game introductions at the platform level (Binken & Stremersch, 2009; Cennamo & 
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Santalo, 2013; Landsman & Stremersch, 2011).8 The resulting variable ranges between zero and one, 

which linearizes the S-shaped platform adoption curve allowing for a more straightforward interpretation 

of platform maturity’s effect on game sales.  

 Hypothesis 2 tests the differential effect of platform maturity on novel complements’ and non-

novel complements’ adoption. In the market for video games, novel games are games based on an entirely 

new, or original, intellectual property (IP). In line with Tschang (2007), we operationalize new IP as 

games that are not adaptations of existing media licenses (e.g. motion pictures or TV series) and are not a 

derivative or a sequel of an existing video game franchise. The aforementioned Pikmin and Psychonauts 

are examples of games based on new IP. Data on IP originality were hand-collected. Two graduate 

students and an industry expert consulted video games’ box covers and other online sources to understand 

if a video game was based on a new intellectual property.  

New IP is a binary variable that takes the value of 1 if a video game is based on a new IP and 0 

otherwise. In our sample, 29% of all video games are based on new IP. This statistic corresponds with 

generally accepted statistics of non-imitative or really new innovations in a market (Kleinschmidt & 

Cooper, 1991). Figure 1 displays the distribution of video game introductions per platform and the ratio 

of new IP introductions by platform maturity.9 The figure illustrates that, across different levels of 

platform maturity, there is sufficient variance in terms of the number of games entering each platform as 

well as the ratio of video games that are based on new intellectual property.  

                                                           
8 Note that in their study of the US console video game industry in the same timeframe Binken & Stremersch (2009) 

and Landsman & Stremersch (2011) use a threshold of 5,000 consoles sold to lineate the end of a console’s 

lifecycle. Market analysis firm IDG (2011) estimates that the UK market for video game consoles in 2010 was 

approximately 20% of the US market, hence the threshold of 1,000 units. Neither of the two criteria is fully met for 

the PS2 by the end of the available data on hardware sales (November 2007). This forces us to right-truncate PS2’s 

lifecycle, which may introduce an upward bias in the results. 
9 The supply of video games is disproportionate to the growth of the installed base towards the tail-end of the 

platform lifecycle. Game publishers are myopic to a slowing down in the growth of the installed base: Even when 

the rate of new platform adopters levels off, games publishers keep releasing new games to exploit the existing 

installed base. This observation is consistent with Clements & Ohashi (2005) who study the US video game industry 

(1994-2002). Another potential explanation is that publishers make their seventh generation video games 

backwards-compatible with sixth generation video games to tap into a large pool of end-users and smoothen their 

transition into the next generation. We assess the implications of this alternative explanation in the robustness testing 

section. 
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--- INSERT FIGURE 1 HERE --- 

Hypothesis 3 deals with the comparison between “star” and “flop” complements. We investigate 

this by assessing whether the effect of platform maturity is different at different ends of the complements 

adoption distribution. Thus, we do not need to introduce any new variables to test H3. 

Hypotheses 4 and 5 consider the effect of the next generation platform as a substitute for platform 

maturity in how platform-side dynamics affect complement-side outcomes. Next generation IB measures 

the size of a next generation platform’s installed base at the time of a focal game’s market launch. We 

link each next generation platform to its direct predecessor (e.g. Xbox 360 for games released on 

Microsoft’s Xbox) and count the number of consoles sold at the time of the focal game’s release. There 

are nine months where the PS2 co-existed alongside the PS3, 14 months where the Xbox co-existed 

alongside the Xbox 360, and no months in which the GameCube co-existed alongside the Wii. We log-

transform this variable to fit a normal distribution. 

Control Variables 

In selecting control variables, we focused on important variables that have been shown to influence 

complements’ performance. These controls allow us to rule out specific alternative explanations for the 

observed impact of platform-side dynamics that form the basis of our theory. Given the practical and 

theoretical relevance of network effects in platform markets, we test for the existence of direct and 

indirect network effects on video games’ sales performance. Platform sales measures the number of 

consoles sold at the platform level in month 𝑡𝑗 of a focal game’s release. We introduce a one month lag to 

eliminate reversed causality. To fit a normal distribution we take the log-transformation. Genre 

competition controls for same-side or direct network effects on video games’ sales. Genre competition 

counts the number of same genre video games (relative to the focal game) entering a platform in month 𝑡𝑗 

at the time of a focal game’s release. Here too, we control for reverse causality by introducing a one 

month lag. In addition to the inclusion of rival games entering the platform and the number of consoles 

sold we include the ratio of the installed base at the time of a focal game’s release to the stock of games 
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available on the platform (users-to-games) to control for fluctuating demand/supply levels over a 

platform’s lifecycle. To facilitate interpretation of this coefficient we measure the installed base in units 

of thousand.  

At the game level we control for a video game’s quality as measured by independent expert 

critics. We obtained quality measures from the video games section of review aggregation database 

Metacritic.com. We use the average expert review scores for every game at the platform-game level to 

create a categorical variable that indicates whether a game’s review score is high (n = 780), medium (n = 

1148), low (n = 158), or missing (n = 835). In accordance with Metacritic’s colored grading scheme that 

ranges from 0 to 100, quality scores equal to or above 75 – scores that are denoted as “generally 

favorable” and “universal acclaim” – are marked as high. Similarly, scores that are below 50 – games that 

are met with “generally unfavorable reviews” and “overwhelming dislike” – are marked as low 

(Metacritic, 2015). We use games with missing quality scores as the base category in our regression 

models. We choose to use this categorical measure of quality as exploration of the data suggests strong 

threshold effects, with variance in scores above or below the threshold having minimal impact on sales. 

However, our results are fully robust to a continuous measure of game quality. 

To control for systematic variation in consumer preferences by genre, we include game genre 

fixed effects.10 The video game industry is also characterized by strong seasonality as many blockbuster 

games are released in the weeks leading up to Christmas when demand for entertainment goods spikes 

(Einav, 2007). To control for this seasonality in demand and supply we include eleven month-of-release 

fixed effects using January as base level. Lastly, time invariant differences at the platform level may also 

structurally affect game sales, so we include two platform fixed effects with Sony’s PS2 being the base 

category. High collinearity between the progression of time and the platform maturity measure prevents 

us from including year fixed effects. Additionally, since our dependent variable is the game’s cumulative 

unit sales, it is not very useful to control for games’ prices in our models (i.e. producers will strategically 

                                                           
10 There are 15 genres in the data: action (base), fighting, graphic-adventure, music, non-game, platform, puzzle, 

racing, real game, role playing game, shooter, simulation, skateboarding, sports, and war. 
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adjust their prices to influence demand over the game’s lifecycle). This is reinforced by the fact that 

console video games are brought to market with mostly homogenous recommended retail prices imposed 

by the platform owner. We address both concerns in the robustness testing section by including macro-

economic controls and using an alternative dependent variable (i.e. cumulative revenues). 

--- INSERT TABLE 3 HERE --- 

Table 3 lists descriptive statistics for the study’s covariates. Even though VIF statistics are well 

below conventional limits, we note that there exists a high pairwise correlation between Platform sales 

and Users-to-games (0.72). Our findings are robust to alternative specifications where we exclude the 

users-to-games measure. The final sample comprises 2,921 observations released across 190 console-

months. 

Analytical Approach 

Primary empirical analyses rely on Ordinary Least Squares (OLS) regressions of the form:  

ln (𝑈𝑛𝑖𝑡 𝑠𝑎𝑙𝑒𝑠)𝑖𝑗 = 𝛽0 + 𝛽𝑋𝑖𝑗 +  𝜀 

Where 𝛽𝑋𝑖𝑗 represents a vector of variables including Platform maturity, ln(Next generation IB), New IP, 

their interactions, and the control variables specified above. The models estimate the log of cumulative 

unit sales for game i on platform j. We address concerns about endogeneity and unobserved heterogeneity 

when discussing alternate explanations and robustness checks below. 

To identify the sales disparity between superstar games and flops we use weighted least absolute 

deviation estimators, or quantile regressions (Koenker & Bassett, 1978). Quantile regressions are apt 

estimators when the researcher is interested in how independent variables affect various points in the 

distribution of the dependent variable. Recent studies have used quantile regressions to estimate effects on 

observations residing in the tail-end of the distribution (Boudreau et al., 2011; Elberse & Oberholzer-Gee, 

2008). By jointly estimating and comparing coefficients for observations in the lower quantiles and higher 

quantiles of the dependent variable, we can make inferences about the effect of platform maturity on the 

sales disparity between popular and non-popular video games. We report outcomes to estimations 
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𝑄𝑢𝑎𝑛𝑡𝜏, where τ = 10 estimates non-popular games and τ = 90 estimates popular video games. Our 

findings are robust to alternative thresholds for popularity. We compare the coefficients of both 

estimations by jointly estimating interquantile-range regressions. The estimated variance–covariance 

matrix is obtained via bootstrapping 100 replications. The “coefficients” reported in model 3 of Table 5 

denote the differences between the coefficients of Models 1 and 2 of Table 5 (𝑄𝑢𝑎𝑛𝑡90 − 𝑄𝑢𝑎𝑛𝑡10) and 

the extent to which they are significant. 

Results 

The Effect of New IP, Platform Maturity, and Next Generation Platforms on Game Sales 

Table 4 shows the results of the OLS regressions that test H1, H2, and H4. Model 1 includes only the 

various fixed effects, Model 2 adds controls, Model 3 adds Platform maturity testing H1, and Models 4-6 

add interaction effects to assess H2 and H4. In Model 7 we explore the possibility that producers’ choice 

to develop novel IP games is non-random by estimating a treatment effects model. We explain the 

underlying logic for Model 7 in the section about alternative explanations below. We report two measures 

for model fit and improvement. The R2 shows that the overall variance explained by our models ranges 

from 22% in Model 1 to 32% in Model 6. Additionally, we report F-tests to document the improvements 

that the addition of independent variables and interactions make to the model’s explanatory power. 

Models 4-6 take Model 3 as base and show that the inclusion of platform maturity and the interaction 

terms significantly improves the fit of our models.  

--- INSERT TABLE 4 HERE --- 

We focus on Model 4 for the interpretation of our control variables and for the effect of platform 

maturity on game sales. Control variables all perform as expected. Individual games sell more units when 

recent platform sales have been higher (platform sales), and when there is a higher ratio of users-to-

games on the platform. A ten per cent increase in platform sales triggers a 41% increase in game sales 

implying that gamers buy multiple games when they adopt a platform (p < 0.01). We further find that an 

increase of 1,000 consumers for every game boosts games’ unit sales by nearly 13% (p < 0.01). On the 
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other hand, games realize lower sales when many similar competitors launch simultaneously (genre 

competition), and when games are based on novel IP (new IP). One additional same genre game that 

enters the platform in the same month of the focal game reduces average unit sales by 2.86% (p < 0.01). 

This finding supports the “competitive crowding” effect often hypothesized for complementors in 

platform markets (Boudreau, 2012; Wareham et al., 2014). Similarly, novel IP games see sales that are 

(on average) 54% lower than those based on existing IP (either sequels or games with media tie-ins) (p < 

0.01). We also see that, as the next generation platform takes more of the market, sales of current 

generation games realize marginally lower sales (p < 0.05). 

We find support for H1 in Model 4. H1 predicts that game sales will decline as the platform 

matures, after controlling for the effects of competition and the installed base. All else equal, we find that 

games at the end of the platform lifecycle generate nearly 30% lower unit sales than games launched early 

in the platform lifecycle (p < 0.01). Our theory suggests that this effect emerges because later adopters 

spend less on complements, diluting the potentially positive effect of the larger installed base. 

 We focus on Model 4 for the interpretation of H2. This hypothesis predicts that the negative 

effect of new IP will become more severe as the platform matures. Our theory suggests that later adopters 

of the platform are more risk averse, and are less interested in exploring new IP, compared with early 

adopters. We test this effect by including an interaction between new IP and platform maturity. We find 

that the interaction term is negative and significant (p < 0.01). At the end of the platform lifecycle, games 

that are based on novel IP will have 74% lower unit sales than games that are sequels or based on external 

media adaptations. It should be noted that the main effect of platform maturity washes out when we 

include the interaction with New IP. This result suggests that end-users that adopt the platform at late 

stages of the platform lifecycle are mostly buying games based on existing IP while shying away from 

more novel offerings. The widening gap between existing and new IP games over the platform lifecycle is 

shown visually in Figure 2, which strongly supports H2. 

--- INSERT FIGURE 2 HERE --- 

 In Model 5 we test Hypothesis 4. Our theory predicts that next generation IB will function 
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similarly to platform maturity in that both capture the extent to which the pool of potential adopters is 

more highly skewed towards later adopters of the platform, which we argue are more risk averse. We test 

H4 by interacting new IP with our measure of next generation installed base. Similar to the interaction 

between platform maturity and new IP, the interaction with next generation IB is negative and significant 

(p < 0.01). Games released on the existing platform that are based on novel IP sell increasingly fewer 

units as the next generation platform gains traction. We find that a 10% increase in the next generation’s 

installed base results in an additional 1.61% drop in unit sales for games based on new IP. After including 

the interaction term we note that growth of a next generation installed base primarily affects games based 

on new IP (rather than games based on existing IP), which is in line with our suggested theory and the 

assumption that early adopters of a platform will be the first to migrate to a next generation platform of 

the same type. This gap is shown in Figure 3, and supports H4. In Model 6 we add both interaction terms 

simultaneously and note no changes to our main results. 

--- INSERT FIGURE 3 HERE --- 

The Effect of New IP, Platform Maturity, and Next Generation Platforms on Superstar and Flop 

Games  

In Table 5 we compare both tails in the distribution of the dependent variable to assess if the sales 

disparity between non-popular and popular video games widens as platforms mature (H3) and as the next 

generation platform gains traction (H5). Using simultaneous quantile regression techniques, we estimate 

all covariates on τ = 10 (non-popular games, or flops) and τ = 90 (popular games, or superstars), in 

Models 1 and 2 respectively. We then take the difference between the coefficients and report these values 

and their significance levels in Model 3. We report a measure of model fit in the form of a pseudo R2. The 

pseudo R2 is calculated as:  

1 −
𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑢𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑢𝑡 𝑟𝑎𝑤 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒
. 

We explain 21% of the variance in our estimation of non-popular games (Model 1), and 20% of the 

variance in our estimation of superstar games (Model 2).  
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--- INSERT TABLE 5 HERE --- 

 H3 predicts that as more late adopters adopt a platform, the sales disparity between popular and 

non-popular complements amplifies. Analogously, H5 predicts that as the next generation platform 

increases in installed base, the sales disparity between popular and non-popular complements also 

amplifies. In each case, our theory suggests that the risk aversion and limited information searching habits 

of later adopters drive the results. The results in Model 1 show that, for non-popular video games (τ = 10), 

platform maturity (p < 0.01) and installed base next generation (p < 0.01) have a negative effect on game 

sales. This suggests that low performing games increasingly fall behind superstar games during later 

stages of the platform lifecycle. The effect of these variables for superstars in Model 2, however, is not 

significant. These high performing games perform about the same both early and late in the platform’s 

lifecycle (and before and after the launch of the next generation platform). These results are consistent 

with H3 and H5. As late adopters increasingly adopt the platform and comprise of the potential pool of 

game adopters, game sales will strongly congregate around a few key titles at the cost of other games in 

the market. Note that platform maturity and next generation IB are the only variables in our models for 

which the coefficients between superstar and flop games significantly differ. These results are robust to 

the usage of different thresholds (i.e. Q80-Q20; Q90-Q50) 

Alternative Explanations 

Our theoretical explanation for the observed empirical results discussed above hinges on the idea that 

early adopters of a platform differ significantly from late adopters of the platform, and that these 

differences affect the performance of complements. When compared with later adopters, early adopters 

will be more willing to spend on complements, will be more risk-tolerant in terms of new IP, and will be 

willing to search deeper for lesser-known games instead of simply following the crowd. While the results 

discussed above are consistent with an explanation based on consumer heterogeneity, we cannot measure 

consumers directly and so have only indirect evidence. Below we consider a number of alternative 

explanations for the results, to convince the reader that the results are indeed driven by heterogeneity 

among consumers. 
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 First, many potential alternate explanations are ruled out by the direct controls that we include in 

the model. By controlling for game quality, we can eliminate the potential that games based on new IP are 

harder to make and thus have lower inherent quality. We can also rule out the idea that, as the platform 

matures, there is simply more competitive entry by game producers. While this is true, our controls for 

competitive entry and the stock of games relative to the platform’s user-base mean that the observed 

effect of platform maturity on game sales is after controlling for the effect of competition that play a 

significant role in Boudreau’s work (Boudreau, 2012; Boudreau et al., 2011).  

 Second, we find similar results using two very different measures of consumer heterogeneity – 

platform maturity and installed base next generation. These two measures capture different factors that 

are likely to dilute the share of the potential adopter population that are early adopters – the former 

because early adopters are less numerous than late adopters, and the latter on the theory that early 

adopters of one generation are likely to be early adopters of the subsequent generation. Not only are these 

two variables theoretically different, they are only modestly correlated (0.313) in our data. Despite these 

differences, the results (both main effect and interactions) for the two variables are nearly identical. This 

provides further evidence that is consistent with consumer heterogeneity-based explanations. 

 Third, one concern is that our models are inherently cross-sectional, and compare very different 

types of games to create our results. Publishers may strategically time the release of different types of 

video games anticipating higher sales volumes. Furthermore, as the costs for acquiring System 

Development Kits (SDK’s) fall over time, producers with substantially smaller production budgets – and 

subsequently, lower sales thresholds – may seize the opportunity to enter a platform. We address this 

concern through two approaches – by exploiting the multi-homing nature of many games, and by treating 

new IP as an endogenous variable. Multi-homing games are those introduced at the same time on more 

than one competing platform. Since platform maturity is different for each platform even at the same date, 

we can use a game-level fixed effect specification that works solely off this cross-platform variation in 

maturity. This approach allows for a relatively clean assessment of the effect of platform maturity. 

Results for the full subsample of multi-homing games are shown in Model 1 of Table 6. As the results 
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show, both platform maturity (p < 0.01) and installed base next generation (p < 0.01) show a negative and 

significant effect on game sales. For a single game released on multiple platforms, the game will perform 

worse on the more mature platform, even after considering the other controls in the model (including 

platform fixed effects), consistent with H1. By eliminating concerns about unobserved game-level 

heterogeneity, this game fixed effect specification supports a consumer-driven interpretation of our 

results. Furthermore, when we split the sample by multi-homing games based on existing IP in Model 2 

and multi-homing games based on new IP in Model 3 we find similar results. Notably, the platform 

maturity and next generation IB coefficients for new IP games are stronger than those for established IP 

games, which is consistent with H2 and further validates our theory. 

--- INSERT TABLE 6 HERE --- 

Our alternate approach to concerns about the endogeneity of the decision for when to introduce a 

given game is to use a treatment effects model that controls for the likelihood of any given game being 

based on new IP as opposed to existing IP. This approach involves a first stage prediction of the 

likelihood of creating new IP and the inclusion of a treatment hazard in the second stage, similar to a 

Heckman selection model (except we can observe outcomes for all games, not just those based on novel 

IP) (Guo & Fraser, 2009). Following earlier empirical work (Dubé et al., 2010; Gretz & Basuroy, 2013), 

we use an exclusion restriction from the first stage to the second, namely the lagged cost of producing 

video games in the US.11 This instrumental variable adheres to good economic practices in that it is 

correlated with the endogenous regressor, but uncorrelated with the error term of the outcome equation. 

The results from the treatment regression are reported in Model 7 in Table 4 and are consistent with those 

reported in Model 6. This suggests that the introduction of new IP may not be endogenous, at least not in 

                                                           
11 We exploit the fact that nearly half of the games (46%) in our sample are produced in the US. We obtained data 

on Producer Price Indexes (PPI) for video game publishing from the Bureau of Labor Statistics as a cost-side 

instrument. Video game production cycles during the sixth generation game consoles were approximately one year. 

Hence, we lag PPI games publishing by one year. The assumption is that increases in the cost of making video 

games in 𝑡𝑗 − 12 negatively affect game publishers’ willingness to take risks and produce original IP. This 

assumption is confirmed as the instrumental variable positively affects producers’ likelihood of developing new IP 

games (p < 0.05). The instrument is uncorrelated with the outcome equation. 
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the sense that producers know which new IP games will be successful far enough in advance to 

intentionally time the date of their launch. This makes sense – the ability to predict which games will be 

successful with any certainty is quite limited in the video game industry. 

Fourth, there are similar concerns about unobserved heterogeneity in terms of new IP games 

launched at different points in the platform lifecycle. Publishers that successfully establish new 

intellectual properties may deploy an exploitation strategy by releasing sequels based on their successful 

franchises, leaving the production of novel games to less shrewd producers. To assess the average 

treatment effect (ATE) for games that are based on new IP vis-à-vis non-novel games at different stages 

in the platform lifecycle, we run a splined-sample matched pairs regression. Using propensity score 

matching (PSM) based on nearest neighbors, we link each new IP video game with their most similar 

non-novel counterparts within every decile of platform maturity. The coefficients and effect sizes on new 

IP across different levels of platform maturity are shown in Figure 4. The results show that games based 

on new IP actually perform very well initially, but realize progressively lower sales compared with 

established IP games at later periods in the platform’s evolution. This matching-based approach helps to 

alleviate concerns about unobserved differences between novel and non-novel IP games contingent on the 

stage of the platform lifecycle. 

--- INSERT FIGURE 4 HERE --- 

While obviously not conclusive, the combination of clear theoretical predictions, consistent 

empirical evidence, and an ability to rule out a number of alternate explanations increases confidence that 

our explanation based on important differences between early and late adopters of the underlying platform 

is the correct explanation for the results. 

Robustness Tests 

Beyond considerations of the alternate explanations discussed above, we have also conducted a number of 

other robustness checks, each of which produces similar results to those reported in the main results. First, 

while the entry of competitive games on the market (genre competition) is not the focus of the paper, 

there are legitimate reasons why the entry of competitive games would be endogenous (Cennamo & 
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Santalo, 2013). We can use a 2SLS approach to endogenize competitive entry (not at the level of the 

genre, but across all genres) using instruments based on the lagged Producer Price Index (PPI) in the U.S. 

(Dubé et al., 2010; Gretz & Basuroy, 2013), and doing so produces results that are similar to those 

reported here. Second, to eliminate potential biases caused by heterogeneous pricing policies we re-

estimate all models with an alternative dependent variable. Instead of total unit sales, we consider games’ 

cumulative revenues (in GBP) as a dependent variable. Results are consistent to this alternative DV. 

Third, we assess the robustness of the results to alternative constructions of the game quality variables. In 

one approach, we have included average quality scores for each game as a continuous variable, both with 

and without a dummy for games that did not receive a score. We have also constructed alternate dummy-

based systems that distinguish only between (for example) highly rated games and all other games. Again, 

the results are consistent. Fourth, given that we cannot include time fixed effects given their collinearity 

with our platform maturity variable, we have run models including a large number of macroeconomic 

factors such as GDP growth, population growth, and other measures. Including these does not change the 

results substantively. Fifth, we have constructed multiple versions of the next generation IB variable. This 

includes a simple dummy noting if the next generation console has been launched and the age of the next 

generation platform. The results are similar. Sixth, we identified which games released at the end of our 

timeframe are cross-generation compatible (i.e. multi-homing on seventh generation consoles). While we 

find that these games perform better than other games released in the same timeframe that are not cross-

generation compatible, our main results hold. Seventh, we currently lag both platform sales and genre 

competition to guard against counter causality. Including those variables measured in the current period, 

or with longer lags, produces similar results. Finally, we have run quantile regression models that focus 

on different thresholds for flop and superstar games and the results are consistent. In total, these checks 

give us strong confidence that our observed results are robust to a number of different approaches and 

specifications. 

Discussion 
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We studied the performance of complements in platform markets. The paper’s main proposition was that 

a shifting composition in the platform’s user base affects the adoption of complements. The lower 

willingness to pay and increased risk aversion of late platform adopters means that complements 

introduced later in a platform’s lifecycle will perform worse than those introduced earlier. Moreover, we 

suggest that these dynamics do not affect all types of complements equally. Late adopters display stronger 

herding characteristic and search less proactively for novel goods. For these reasons, the disparity 

between novel (or, innovative) and non-novel complements also widens as platforms mature. Similarly, 

we conjectured that as platforms mature, there will be a stronger concentration around fewer 

complements widening the gap in sales between superstars and flops on the platform.  

Analyzing a dataset of 2,921 sixth generation console video games in the UK, we found a 

negative relationship between platform maturity and game sales, particular for games based on original 

IP. Additionally, using quantile regressions we found that the sales disparity between superstar games 

(90th quantile) and flops (10th quantile) grew as platforms matured. By showing that these effects also 

occur as users migrate to the next generation platform, and by controlling for concerns about endogeneity 

and unobserved heterogeneity through empirical techniques including game-level fixed effects and a 

treatment effects model, we are confident in suggesting that underlying heterogeneity in the population of 

potential adopters for a given complement is truly the explanation for the observed empirical results. 

The importance of complements on platforms’ popularity has been emphasized in extant 

conceptual and empirical work on two-sided platforms (Schilling 1998; 1999; 2002; Stremersch et al., 

2007; Wareham et al., 2014). Moreover, the added impact of superstar complements on the demand side 

is non-negligible (Binken & Stremersch, 2009; Lee, 2013). Nevertheless, the study of platform 

complements is still in its early stages and much work remains to be done in order to build a substantial 

body of work explaining the adoption of various types of platform complements. We found that 

complement adoption is affected by demand heterogeneities in the form of end-users entering the 

platform at different points in time. The approach taken was anchored in, and is supportive of, the 

emerging body of studies on platforms that shifts focus away from a predominantly price-centered 
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approach typically found in economics (Rochet & Tirole, 2003; 2006). Following work by Gawer (2014), 

rather than static entities, we approached platforms as dynamic, or as “evolving meta-organizations”. The 

type of dynamism that was investigated in this study adds to our growing understanding of how 

competition between the providers of complementary goods unfolds as a platform matures. 

The paper holds additional implications for demand-side perspectives in management studies. 

Demand-based perspectives offer a complementary view to the strategy literature that has been criticized 

for having a “supply-side bias” (Adner, 2002). Customer heterogeneity can help explain competitive 

outcomes at the product level (Adner & Levinthal, 2001; Adner & Zemsky, 2006). Studying products has 

value for scholars of the resource based view of the firm as it is at the product level where customers 

assess the value of individual resources and bundles of resources (Lippman & Rumelt, 2003; Sirmon, 

Gove & Hitt 2008; Wernerfelt, 1984). After all, consumers are the final arbiters of value (Bowman & 

Ambrosini, 2000; Priem, 2007). We found that consumers’ valuations change as the platform matures. 

Late adopters of a technology adopt fewer complementary goods. Furthermore, they let early adopters’ 

consumption behavior inform their own adoption decisions. These demand-side shifts moderate the 

impact of indirect network effects and affect competitive outcomes for complements in platform markets. 

Besides these theoretical implications, our findings have additional implications for firms’ resource 

deployment and resource bundling strategies, adding further validity to the value of demand-based 

perspectives in strategy and technology innovation studies. 

Finally, our study has important managerial implications as illustrated by the example of Watch 

Dogs. In May 2014, Ubisoft released its highly anticipated action adventure video game Watch Dogs on 

four platforms spanning two generations of consoles. The innovative game faced an addressable audience 

of over 160 million seventh generation platform adopters (PlayStation 3 and Xbox 360) and just shy of 13 

million eight generation platform adopters (PlayStation 4 and Xbox One). Despite this gap in installed 

bases, over two thirds of the game’s eight million units sold occurred on eight generation platforms 

(Ubisoft, 2014). Our results help explain Watch Dogs’ surprising performance and simultaneously inform 

managerial decision making. First, contrary to commonly held managerial perceptions, results show that 
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launching complements early in a platform’s lifecycle when the installed base has not yet reached its full 

potential may not dampen success. Secondly, complementors should carefully balance their exploration 

and exploitation efforts contingent on a platform’s maturity. Results indicate that innovation for 

complements yields higher sales performance at early stages in a platform’s lifecycle. Thirdly, the results 

hold implications for complementors’ portfolio management. Since the adoption disparity between 

popular and less popular complements increases as platforms mature, complementors are advised to 

allocate greater resources towards fewer goods to increase their chances of success. 
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TABLES & FIGURES 

Table 1. Sixth Generation Video Game Consoles in the UK (2000-2007) 

Video Game 

Console 

Platform 

Owner 

UK 

Introduction 

Platform 

Lifecycle  

UK Launch 

Price (GBP) 

UK Installed 

Base (1000) 

Game 

Launches 

Next Gen. 

Introduced (UK) 

PS 2 Sony November 2000 84 months  £       299.99  9,083 1,775 March 2007 

Xbox Microsoft March 2002 57 months  £       299.99  3,110 738 November 2005 

GameCube Nintendo May 2002 48 months  £       129.99  1,050 408 December 2006 

 

Table 2. Measures & Operationalizations 

Measure Measure Unit of analysis 

Unit sales Cumulative unit sales. Game-platform 

Platform maturity Ratio of a platform's installed base at the time of focal game's release to the platform's installed base at the end of the platform lifecycle. Platform-month 

New IP Indicator variable that takes the value of 1 if a game is based on a new intellectual property. Game  

Platform sales Count of game consoles sold at the time of a focal game's release. Platform-month 

Users-to-games Ratio of a platform's installed base (in thousands) to the stock of games available on the platform. Platform-month 

Genre competition Count of same genre games launched on a platform in the four weeks preceding focal game's launch. Game-platform 

Next generation IB Installed base of next generation platform from the same brand (e.g. Microsoft) as the focal game's platform (e.g. Xbox). Platform-month 

 

Table 3. Descriptive Statistics and Pairwise Correlation Coefficients 

Variable Obs. Mean St. Dev. Min. Max. VIF 1 2 3 4 5 6 

1. ln(Revenues) 2,921 9.603 1.721 1.099 14.671 1.50       

2. ln(Platform sales) 2,921 10.759 0.987 7.170 13.555 2.37 0.239      

3. Users-to-games 2,921 5.493 1.957 2.581 18.617 2.11 0.214 0.720     

4. Genre competition 2,921 5.052 3.828 1 18 1.10 0.063 0.242 0.178    

5. ln(Next generation IB) 2,921 0.738 2.999 0 13.418 1.13 -0.113 -0.162 -0.031 -0.032   

6. New IP 2,921 0.290 0.454 0 1 1.02 -0.186 0.108 0.100 0.004 -0.051  

7. Platform maturity 2,921 0.617 0.294 0 1 1.28 -0.202 -0.356 -0.242 0.069 0.313 -0.092 
Absolute correlations greater than 0.05 are significant at p < 0.05. 
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Table 4. The Effect of New IP, Platform Maturity, and Next Generation IB on Game Sales 

 ln(Unit sales) 

Model 

(OLS) 

1 

(OLS) 

2 

(OLS) 

3 

(OLS) 

4 

(OLS) 

5 

(OLS) 

6 

(MLE) 

7 

ln(Platform salest-1) 
 

0.375** 

[0.050] 

0.315** 

[0.054] 

0.366** 

[0.054] 

0.314** 

[0.054] 

0.356** 

[0.054] 

0.329** 

[0.052] 

Users-to-games 
 

0.155** 

[0.033] 

0.120** 

[0.033] 

0.121** 

[0.032] 

0.121** 

[0.033] 

0.121** 

[0.032] 

0.128** 

[0.031] 

Genre competitiont-1 
 

-0.035** 

[0.010] 

-0.029** 

[0.011] 

-0.029** 

[0.010] 

-0.029** 

[0.011] 

-0.029** 

[0.010] 

-0.027** 

[0.010] 

ln(Next generation IB) 
 

-0.032* 

[0.014] 

-0.030* 

[0.014] 

-0.032** 

[0.014] 

0.003 

[0.014] 

-0.008 

[0.014] 

-0.017 

[0.015] 

New IP 
 

-0.683** 

[0.061] 

-0.697** 

[0.061] 

-0.747** 

[0.062] 

-0.727** 

[0.061] 

-0.760** 

[0.062] 

-2.753** 

[0.210] 

Platform maturity 
  

-0.368** 

[0.117] 

0.201 

[0.136] 

-0.359** 

[0.116] 

0.101 

[0.135] 

0.110 

[0.147] 

New IP * Platform maturity 
   

-1.690** 

[0.207]  

-1.374** 

[0.206] 

-1.624** 

[0.205] 

New IP * Next generation IB 
    

-0.167** 

[0.032] 

-0.124** 

[0.033] 

-0.149** 

[0.032] 

        

Platform dummies (2) YES YES YES YES YES YES YES 

Quality dummies (3) YES YES YES YES YES YES YES 

Month of release dummies (11) YES YES YES YES YES YES YES 

Genre dummies (14) YES YES YES YES YES YES YES 

        

Constant 
8.809** 

[0.244] 

3.486** 

[0.629] 

4.521** 

[0.702] 

3.806** 

[0.699] 

4.553** 

[0.698] 

3.964** 

[0.696] 

4.969** 

[0.691] 

Observations 2921 2921 2921 2921 2921 2921 2921 

R2 0.219 0.295 0.297 0.313 0.310 0.320  

F-change   56.90** 9.88** 66.41** 27.72** 37.48**   
** p < 0.01, * p < 0.05, + p < 0.10. 

Models 1-6: OLS regressions of games' logged unit sales. F-statistics for models 4, 5, and 6 are calculated using model 3 as base. 

Model 7: Treatment effects model of New IP estimated with instrumental variable. Exclusion restriction is the lagged cost of video 

game development in US (0.076: p < 0.05)). 

Platform maturity and Next generation IB are mean-centered to facilitate interpretation of interactions. 

Heteroskedasticity robust standard errors reported in parentheses. 
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Table 6. Using Game Fixed Effects to Control for 

Unobserved Heterogeneity 

 All games Existing IP New IP 

Model 
(OLS) 

1 

(OLS) 

2 

(OLS) 

3 

ln(Platform salest-1) 
0.428** 

[0.061] 

0.490** 

[0.060] 

0.050 

[0.137] 

Users-to-games 
0.061 

[0.051] 

0.003 

[0.066] 

0.268** 

[0.079] 

Genre competitiont-1 
0.014 

[0.012] 

0.011 

[0.013] 

-0.000 

[0.023] 

ln(Next generation IB) 
-0.030** 

[0.011] 

-0.022* 

[0.010] 

-0.102** 

[0.017] 

Platform maturity 
-1.637** 

[0.367] 

-1.303* 

[0.522] 

-1.667** 

[0.509] 

    

Platform dummies YES YES YES 

Game dummies YES YES YES 

    

Constant 
6.507** 

[1.062] 

6.298** 

[0.820] 

7.980** 

[1.945] 

Game-platform obs. 1519 1169 350 

Games 640 479 161 

R2 0.898 0.906 0.902 
** p < 0.01, * p < 0.05, + p < 0.10. 

Game fixed effect regressions on subsamples of multi-homing video 

games (1), multi-homing video games based on existing IP (2), and 

multi-homing video games based on new IP (3). 

Heteroskedasticity robust standard errors in parentheses. 

Table 5. The Effect of New IP, Platform Maturity, and Next Generation IB on 

Superstars and Flop Games 

 Simultaneous Quantile Regressions 

Model 
(Q10) 

1 

(Q90) 

2 

(Q90-Q10) 

3 

ln(Platform salest-1) 
0.339** 

[0.112] 

0.250** 

[0.066] 

-0.089 

[0.135] 

Users-to-games 
0.159* 

[0.072] 

0.142** 

[0.044] 

-0.017 

[0.076] 

Genre competitiont-1 
-0.038+ 

[0.022] 

-0.006 

[0.014] 

0.032 

[0.024] 

ln(Next generation IB) 
-0.096** 

[0.030] 

-0.014 

[0.002] 

0.110** 

[0.035] 

New IP 
-0.553** 

[0.119] 

-0.478** 

[0.103] 

0.076 

[0.149] 

Platform maturity 
-0.888** 

[0.224] 

0.259 

[0.165] 

1.147** 

[0.225] 

    

Platform dummies (2) YES YES YES 

Quality dummies (3) YES YES YES 

Month of release dummies (11) YES YES YES 

Genre dummies (14) YES YES YES 

    

Constant 
2.375 

[1.481] 

6.866* 

[0.960] 

4.491* 

[1.875] 

Observations 2921 2921 2921 

Pseudo R2 0.212 0.198   
** p < 0.01, * p < 0.05, + p < 0.10. 

Standard errors calculated using the bootstrapping method (100 replications).  

Model 3 estimates interquantile range coefficients, or the difference in quantiles (Q90 - Q10). 

Interquantile results are robust to alternative quantiles (e.g. Q80-Q20; Q90-Q50). 
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Figure 1. Game Launches over the Platform Lifecycle 

 

Figure 2. The Effect of Platform Maturity on Sales by Game Type 
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Figure 3. The Effect of Next Generation IB on Sales by Game Type 

 

Figure 4. Matched Sample Treatment Effects of New IP on Game Sales12 

 

                                                           
12 The effect of new IP games on unit sales from splined-sample PSM regressions based on nearest neighbors 

matching. Sample split in platform maturity deciles (full sample treatment effect for the PSM regression is = 0.741: 

p < 0.01). Matching variables include ln(Platform sales), Users-to-games, Genre competition, ln(Installed base), 

Platform maturity, and platform, quality, calendar month, and genre fixed effects. Estimated with heteroskedasticity 

robust standard errors. Coefficients and significance levels reported (+ p < 0.10; * p < 0.05; ** p < 0.01). 


