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Chapter 1 PANCREATIC CANCER

Pancreatic cancer, frequently referred to as pancreatic ductal 
adenocarcinoma (PDAC), remains the fourth leading cause of cancer-related 
deaths in the United States. In 2015 alone, it is estimated that almost 50,000 
people will be affected and more than 40,000 deaths will occur [1]. Over 
time, progress in the field has been slow, with the overall 5-year survival 
barely improving from 1% between 1950-1954 to 7.8% between 2005 and 
2011 [2]. The grim prognosis can be attributed to the late presentation of 
the disease; most patients present with locally advanced or metastasized 
disease. Currently, only 15-20% are eligible for curative therapy in the 
form of surgery, resulting in a 5-year survival of 12-18% in this group 
[3–5]. The remaining 80-85% have unresectable disease and a median 
survival between 4.5 and 10.6 months, depending on the stage at diagnosis 
[6]. Since the latter group is not eligible for curative resection, the only 
therapeutic option left is systemic chemotherapy, which has been shown 
to improve survival and alleviate symptoms associated with the disease. 

For years, gemcitabine was the only weapon in the arsenal of the physician 
against PDAC and demonstrated improved 1-year survival of 18% compared 
to 2% in patients treated with 5-Fluoruracil [7]. Thereafter, many clinical 
trials followed using gemcitabine as a backbone of multiagent regiments 
with the majority showing disappointing results. Exception to this rule 
was the addition of nanoparticle albumin bound (nab)-paclitaxel, which 
improved median overall survival to 8.5 months compared 6.7 to months 
when gemcitabine was used as single agent [8]. This however, was 
accompanied with significant toxicities. Two years after the publication of 
the phase III results, a modification in the dosing frequency was proposed 
and preliminary results showed less toxicity, less costs, and improved 
median survival of 11.1 months [9]. Probably one of the most remarkable 
breakthroughs in the field has been the trial where FOLFIRINOX (a regimen of 
5-FU, leucovorin, irinotecan, and oxaliplatin) was compared to gemcitabine 
monotherapy. The median overall survival in the FOLFIRINOX group was 11.1 
months compared to 6.8 months in patients treated with gemcitabine alone 
[10]. Other approaches using molecular therapies targeting the MAPK/ERK 
pathway, such as epidermal growth factor receptor (EGFR) inhibitors [11,12] 
and MEK-inhibitors [13,14], failed to meet clinically meaningful endpoints. 
Similarly, mammalian target of rapamycin (mTOR) inhibitors [15,16], 
vascular endothelial growth factor (VEGF) inhibitors [17,18], and hedgehog 
inhibitors [19] did not show statistically significant survival benefit. 

The risk factors for developing PDAC include various environmental 
factors, non-hereditary diseases and hereditary genetic syndromes. 
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Smoking [20] and obesity [21] are well established environmental risk 
factors associated with PDAC, while data regarding dietary intake [22,23] 
and non-steroidal anti-inflammatory drug (NSAID) [24,25] intake show 
conflicting results. Other major risk factors are chronic pancreatitis 
[26] and diabetes [27,28], although diabetes has been implied to be a 
consequence of PDAC rather than a cause. The relative risk of developing 
PDAC is largest when germline mutations are involved in genes such as 
STK11/LKB1 (Peutz-Jeghers syndrome)[29], p16 (familial atypical multiple 
mole melanoma [FAMMM]) [30], PRSS1 (hereditary pancreatitis) [31], 
BRCA and PALB2 (hereditary breast cancer) [32,33], and DNA mismatch 
repair genes (MLH1, MSH2, and MSH6 all causing Lynch syndrome) [34]. 

TWO TYPES OF PRECURSOR LESIONS

PDAC can arise from two distinct precursor lesions: Pancreatic 
Intraepithelial Neoplasia (PanIN) and Pancreatic Cystic Neoplasm 
(PCN). PanIN lesions can progress from PanIN-1 to PanIN-3, while 
accumulating genetic mutations along the way, similar to the adenoma 
to carcinoma sequence described in colorectal cancer (Figure 1) [35]. 

The KRAS oncogene, the human homolog of an oncogene isolated from the 
Kirsten rat sarcoma virus, is the most early and frequently mutated gene and 
already found altered in more than 90% of PanIN-1A lesions, suggesting a 
role in tumor initiation [36]. In transgenic mouse models, KRAS mutations by 
themselves have been shown to lead to focal lesions resembling PanIN lesions, 
but not invasive carcinoma [37]. Mutations in KRAS leads to production of 
a constitutively active Ras protein, resulting in activation of downstream 
signaling pathways, including RAF-mitogen-activated kinase (MAPK), 
phosphoinositide-3-kinase (PI3K), and Ral GDS pathways [38]. These 
effector pathways are involved in many cellular functions and processes, 
which include proliferation, survival, apoptosis, and cytoskeletal remodeling. 
Other genes commonly affected during carcinogenesis include inactivation 
of tumor suppressor genes such as p16/CDKN2A, BRAF, TP53, and SMAD4 
[36]. These genes were also found to be altered as a part of the on average 
63 genetic mutations found in pancreatic cancers using next generation 
sequencing. All these genetic alterations can be broadly classified into 12 
cellular signaling pathways. These pathways, however, were not uniformly 
affected in all tumors analyzed, underlining the fact that pancreatic cancer 
is a heterogeneous disease. Therefore, the authors suggest to abandon 
strategies aimed to target specific mutated genes, and instead target key 
nodal points of affected pathways [39]. This principle is the foundation of 
personalized medicine using molecular profiling in cancer, where treatment 
is tailored according to genetic status instead of the underlying tumor type. 
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Chapter 1
Similar to PanIN lesions, PCNs are cystic lesions that are considered potential 
precursors of PDAC [40,41]. Currently, the prevalence of incidental pancreatic 
cysts (including non-neoplastic cysts), found when imaging of asymptomatic 
individuals is performed, is estimated to be over 2% [42,43]. Of those, 
PCNs account for more than 50% and are categorized into 4 types: Serous 
Cystic Adenoma (SCA), Solid Pseudopapillary Neoplasm (SPN), Intraductal 
Papillary Mucinous Neoplasm (IPMN), and Mucinous Cystic Neoplasm 
(MCN) [44–46]. It is well established that SCA scarcely become malignant, 
and the prognosis is excellent even in the face of metastatic disease [47,48]. 

Figure 1. The pie chart indicates the percentage of mutations in each of the genes tested in 
PanIN-1 lesions. The bottom figure is a schematic model illustrating the increasing percentage 
of mutant KRAS cells within PanIN lesions as they progress from a low-grade (PanIN-1) to a 
high-grade PanIN (PanIN-3) and to an invasive ductal adenocarcinoma. Figure adapted from 
Kanda et al., Gastroenterology. 2012 Apr; 142(4): 730–733.e9.
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Therefore, the management of SCAs is guided by the presence of symptoms 
only. In contrast, SPNs are generally resected due to their malignant potential 
and because these lesions typically occur in young women. After excision of 
the SPN, the prognosis is excellent with a disease free survival in 95.6% [49]. 

As opposed to SCA and SPN, IPMN and MCN confer a substantial risk 
for developing PDAC and the concomitant grim prognosis. Identical 
to PanIN lesions, IPMN and MCN has been shown to harbor KRAS 
mutations. Additionally, mutations in RNF43, TP53, and SMAD4 have 
been found in both IPMN and MCN [50]. In 2011, Wu et al. discovered 
recurrent activating mutations at codon 201 of GNAS, an oncogene more 
common in pituitary tumors, in 66% of IPMN cases studied [51]. These 
mutations are specific for IPMN, as they were not found in MCN or SCA. 
Other studies, analyzing cyst fluid or tissue derived from IPMN, found 
rates of GNAS mutations varying between 41% and 64% [52–55]. Even 
though the presence of GNAS mutations is highly specific for IPMN, no 
correlation has been found with the malignant potential of a pancreatic cyst.

CHRONIC PANCREATITIS 

In addition to PanIN lesions and PCN, another risk factor for PDAC is 
chronic pancreatitis (CP), a degeneration of the pancreas due to progressive 
inflammation-induced fibrosis, resulting in loss of endocrine (acinar cell) 
and exocrine (islet cell) functions [56]. CP is estimated to occur in 3.5 to 
10/100,000 people (the National Pancreas Foundation), and CP patients 
may be 10 times more likely to develop PDAC as compared to the normal 
population [57,58]. The most commonly associated risk factor for CP is 
heavy alcohol use - more than 5 drinks per day appears to be the threshold. 
However, autoimmune diseases, smoking and genetic predisposition 
contribute as risk factors for developing CP. Diagnosis is mainly performed by 
clinical findings and morphology based on radiographic imaging, as there are 
no useful biochemical tests available [59]. Even though functional tests are 
useful to diagnose pancreatic insufficiency, they do not specifically diagnose 
CP as the cause of the insufficiency, making them imperfect diagnostic tools 
for CP by themselves.The major clinical manifestations are abdominal pain, 
as well as varying degrees of exocrine pancreatic dysfunction leading to 
steatorrhea and malnutrition, and endocrine dysfunction leading to diabetes 
type 3c [60]. While symptoms of impairment of exocrine and endocrine 
function can be treated by enzyme and hormone replacement therapies 
[61,62], managing pain complaints in patients remains problematic. Sensory 
receptors in the visceral tissues (nociceptors) relay sensory information 
to the central nervous system, which is subsequently perceived as pain 
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Chapter 1 [63]. Importantly, these nociceptors may be sensitized by inflammatory 
stimuli or tissue damage, thereby decreasing the threshold for signaling, 
and increasing pain sensation in patients [64]. Importantly, in CP patients 
receptor sensitization has also been reported, which hampers treatment of 
these pain complaints. Current treatment consists of opioids, which fails in 
half of the patients due to the paradoxal nociceptive sensitization induced 
by these compounds [65]. Anti-depressants and treatments which block 
nociceptor signal processing by reducing their sensitivity and reducing 
neurotransmitter release are also used, with pregabalin showing reduction 
of chronic pain in in PC patients on a randomized, controlled trial [66]. 
Nevertheless, patients are still undergoing surgery for unresolved pain 
complaints, and additional research on pain management in CP is needed. 

DETECTION OF PANCREATIC DISEASE 

Radiographic modalities of preference used in the diagnostic workup 
of a pancreatic cyst are multidetector Computed Tomography (CT) and 
Magnetic Resonance Cholangiopancreatography (MRCP), of which MRCP 
is preferred due to better resolution and the absence of radiation exposure 
[67–69]. Endoscopic modalities include the use of Endoscopic Retrograde 
Cholangiopancreatography (ERCP) and Endoscopic Ultrasound (EUS). 
Endoscopic ultrasound (EUS) has the advantage that aspiration or brush 
samples may be obtained which can be used for cytology. Pathological 
evaluation of cytology can be a valuable asset to differentiate between 
various pancreatic neoplasms including intraductal papillary mucinous 
neoplasia (IPMN) and mucinous cystic neoplasia (MCN) [70,71]. However, 
in addition to the differentiation between different cysts, it is even more 
important to be informed about the presence and/or risk of malignant 
transformation. Risk stratification in patients with pancreatic cysts is 
not possible because of the low correlation between morphological 
features and dysplastic grade [72]. While pancreatic cyst fluid currently 
has a limited role in clinical decision making towards pancreatic cysts 
management [73], cyst fluid obtained by EUS-fine needle aspiration 
(FNA) may contain valuable information to aid in these clinical decisions. 

Current criteria for resection of a PCN are based on the Sendai consensus 
guidelines established in 2006 [74], which were updated in 2012 [73]. 
The recommendation of surgery as described in these guidelines relies 
primarily on morphological aspects of PCN acquired by imaging techniques. 
However, implementation of the 2006 guidelines demonstrates a very 
low specificity of 23-30%, even though the sensitivity was close to 100% 
in side-branch intraductal papillary mucinous neoplasm (sb-IPMN), 
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showing that unnecessary surgery for benign cysts is still being performed 
on a regular basis [75,76]. IPMN involving main duct are generally 
resected because of the high risk of malignant transformation, however, 
it is not possible to predict when and if this will happen. This may lead 
to surgery and the concomitant morbidity and (possibly) mortality of a 
pancreaticoduodenectomy or distal pancreatectomy. Vice versa, Fritz et al. 
pointed out that almost 25% of sb-IPMNs that do not fulfill the guideline 
criteria already have invasive carcinoma or carcinoma in situ [77], further 
demonstrating the need for additional markers to improve the diagnostic 
accuracy of PCN. So far, there are no reliable biomarkers in cyst fluid 
known to predict which cysts will follow a benign course or which cyst 
has developed or will develop into a malignancy. Therefore, there is a need 
for additional predictors to aid in the clinical decision to operate or not.
 
BIOMARKERS IN PANCREATIC CYSTIC NEOPLASMS 

Carcinoembryonic Antigen (CEA)
First discovered in 1965 in human colon adenocarcinoma [78], CEA is 
a glycoprotein that was found to be expressed about 65-times higher on 
average in colon carcinoma tissue compared to normal tissue [79]. It is 
thought to be involved in colon carcinoma cell adhesion by serving as a 
ligand for E- and L-selectin, and therefore play a role in metastasis [80]. 
Over the years, the differences in expression of CEA between colorectal 
carcinoma and normal tissue have led to many studies involving CEA as a 
tumor marker. Elevated levels of CEA in serum is measurable in numerous 
benign diseases and gastrointestinal cancers, including pancreatic cancer 
[81]. The use of serum CEA levels has been studied for the diagnosis and 
prognosis of pancreatic cancer, but yielded poor sensitivity and specificity 
[82,83]. False positive results of serum CEA may in part be explained 
by an increase of circulating CEA in several benign conditions, such as 
liver disease, pancreatitis, and smoking [84,85]. With the emergence 
of pancreatic cystic neoplasms as a premalignant condition, the use 
of CEA was extended towards measurements in pancreatic cyst fluid. 

CEA is the most studied tumor marker in pancreatic cyst fluid and can be used 
to differentiate between mucinous and non-mucinous cysts. Lewandrowski 
et al. measured CEA levels in 26 pancreatic cyst and found concentrations 
>367 ng/ml in mucinous cysts, as opposed to concentrations <23 ng/ml in 
non-mucinous cysts [86]. Larger studies in 111 and 272 cyst fluid samples 
using a cut-off value of >192 ng/ml diagnosed mucinous cysts with a 
sensitivity of 75% and 73%, and a specificity of 83.6% and 65%, respectively 
[87,88]. Other studies employed cut-off values of 30 ng/ml and 109.9 ng/ml 
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Chapter 1 but none of the studies could find a correlation of CEA levels with the presence 
of malignancy in a pancreatic cyst [89,90]. Thus, even though CEA appear to 
be useful for the diagnosis of mucinous cysts, it does not correlate with the 
dysplastic grade of the cystic epithelium, making the applicability in the risk 
management of pancreatic cysts limited [91]. Nevertheless, combining cyst 
size with CEA is now recommended to guide clinical decision making [92], 

Other protein-based markers 
Carbohydrate Antigen 19-9 (CA 19-9) is a glycolipid first found in the serum 
of colon carcinoma, gastric carcinoma, and pancreatic cancer patients [93]. 
In the context of pancreatic disease, the use of CA 19-9 is limited for follow-
up after curative surgery in pancreatic cancer. The routine use of CA 19-9 in 
the diagnostics of pancreatic cancer is not recommended due to the limited 
sensitivity (70-90%) and specificity (68-91%) [94]. Serum CA 19-9 can 
also be elevated in several other malignancies such as cholangiocarcinoma, 
hepatocellulair carcinoma, coloncarcinoma, and ovariumcarcinoma. 
Furthermore, about 10% of the Caucasian population who do not carry 
Lewis antibodies are unable to produce CA 19-9 [95]. In pancreatic cysts, the 
use of CA 19-9 was studied by Frossard et al. where a threshold of 50,000 
U/ml resulted in an 86% sensitivity and 85% specificity in discriminating 
malignant MCN compared to other cystic lesions. Another pooled analysis 
of twelve studies including the previous study, show that CA 19-9 <37 U/
ml has a sensitivity of 19% and specificity of 98% in diagnosing SCA and 
pseudocysts [96]. Other tumor markers studied in pancreatic cyst fluid 
include CA 72-4, CA 125 and CA 15-3 [86,87,97–99]. Nevertheless, none 
of the tumor markers discussed with the exception of CEA made it into 
routine clinical practice for the diagnostic work up of a pancreatic cyst. 

Another approach was employed by Streitz et al, who performed 1D 
gel electrophoresis of cyst fluid samples, and showed that detection of 
glycoproteins in the sample was able predict mucinous cysts with 85% 
sensitivity and 100% specificity, although no correlation was made with 
actual malignant transformation [100]. Jabbar et al. used mass spectrometry 
to analyze expression of different mucins in pancreatic cyst fluid [101]. They 
found that mucin profiling discriminated PCN with malignant potential with 
a 97.5% accuracy, which was better than conventional methods and CEA, 
although as others point out, this study still did not actually describe the 
risk of malignant transformation [102]. However, while not distinguishing 
cysts that will definitely show malignant progression from those that do 
not, positive identification of mucin in the cyst fluid is a step in the right 
direction and one that might well be used in clinical practice. Interestingly, 
the converse might also be possibility – rather than identifying mucinous 
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cysts, non-mucinous SCA might be identified by the presence of vascular 
endothelial growth factor (VEGF)-A in the fluid of these cysts [103], 

While detection of CEA, Ca 19-9 and mucin detection are now the 
only markers close to or in use in the clinic, substantial effort is 
made to identify novel markers with potential to identify malignant 
cysts. Many of these new techniques use DNA or RNA as basis. 

DNA-based biomarkers
It has long been established that patients with cancer often have increased 
levels of cell free DNA (cfDNA) in their peripheral blood [104], and in 
pancreatic cancer patients, high levels of cfDNA are associated with 
poor prognosis [105]. The presence of this circulating cfDNA has been 
explained by the release of DNA from tumor cells that die through necrosis 
[106]. However, not all circulating cfDNA is derived from tumor cells, 
and cfDNA has a half-life of minutes to hours, making it difficult to use 
the amount of cfDNA as reliable tumor marker [107]. A more promising 
approach might therefor be to screen the cfDNA for the presence of tumor 
oncogenes. This approach seems particularly promising in tumors where 
the mutations are a priori known, or where a large proportion of patients 
have the same oncogenic transformations, such as the KRAS mutation in 
colorectal carcinomas [108]. Interestingly, QIAGEN has recently received CE 
registration for its in vitro diagnostic tool to detect EGF-receptor mutations 
in non-small cell lung cancers, showing that this is a technique feasible 
to implement in clinical practice. As KRAS mutations are also common 
in pancreatic cancer, this would also appear a promising approach to 
identify malignant pancreatic cysts from non-malignant ones. The largest 
study to date that has been performed in PCN is the PANDA study, a large 
multicenter study investigating the use of KRAS mutation detection in 
pancreatic cyst fluids [109]. They showed that while KRAS mutations were 
more prevalent in mucinous cysts, the presence of KRAS mutations did not 
distinguish premalignant from malignant cysts, While additional allelic loss 
was highly specific for malignant cysts (96%), sensitivity was low (37%). 
In a small validation study, detection of loss of heterozygosity resulted in 
a sensitivity of 50% and specificity of 71% [110]. Other studies suggest that 
while KRAS mutations detected in cyst fluid are not predictive of pancreatic 
cancer prognosis, KRAS mutations detected in cfDNA from serum are [111], 
although others even dispute this latter fact [105]. Other mutations have 
been identified in malignant pancreatic cysts, with GNAS being one of the 
most frequently observed in IPMN. Together with KRAS, GNAS gives a 98% 
specificity and 84% sensitivity to detect IPMN malignancy preoperatively, 
but is not useful for MCN [55]. It appears that combining molecular markers 
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Chapter 1 (i.e. BRAF, CDKN2A, CTNNB1, GNAS,  KRAS, NRAS, PIK3CA, RNF43, 
SMAD4, TP53, and VHL and loss of heterozygosity thereof) together 
with clinical markers may be needed to improve diagnostic accuracy 
of PCN [112], In addition to amount of cfDNA, and its mutational status, 
methylation patterns may distinguish tumor from non-tumor samples [113]. 
Furthermore, integrity of the DNA may contain information, as tumor DNA 
is considered to be longer as compared to DNA released by normal cells 
[114,115]. Thus, DNA may provide a lot of information, though the correct 
interpretation and implementation for pancreatic disease is as yet far off. 

MicroRNA-based biomarkers
microRNAs (miRs) are small non-protein-coding RNA molecules of 20-
25 nucleotides long. The first miR was discovered in 1993, while to date, it 
is estimated that around 4000 miRs may be expressed [116,117]. It is now 
well established that miRs are produced as a long single stranded primary 
transcript, which is processed by the RNAse II Drosha/DGCR8 complex 
to a ~60 nucleotide hairpin structure, and subsequently cleaved by Dicer 
into ~22 nucleotide long miRNAs [118,119]. The main function of miRs 
is regulating the expression of genes by binding to the 3’- untranslated 
regions of specific messenger RNAs (mRNA), thereby effectively regulating 
all cellular functions [120]. One miR may target multiple mRNAs, thereby 
interfering with many cellular processes [121]. As such, it is not surprising 
that more and more evidence points towards a role of deregulated miRs 
oncogenesis [120], and that miRs are now increasingly being investigated 
as potential diagnostic tool as well as target for cancer treatment. Combined 
mRNA profiling and miR profiling in an attempt to identify the deregulated 
miRs and their target genes in pancreatic cancer showed miR-200c, 
miR-429 and miT-200b to be differentially regulated between PDAC and 
healthy individuals [122]. However, many other overexpressed miRs have 
been identified in PDAC, and more are emerging every year. For instance, 
Frampton et al showed that overexpressed miR-21, miR-23a, and miR-27a 
act as inhibitors of PDAC-associated tumor suppressors [123], Vychytilova-
Faltejskova and colleagues suggest that miR-21, miR-34a, miR-198 and 
miR-217 are highly expressed in PDAC and may act as biomarker for 
diagnosis [124], and Humeau et al show that hsa-miR-21, hsa-miR-23a, 
hsa-miR-23b and miR-29c are upregulated in saliva of PDAC patients, and 
have excellent specificity in diagnosing pancreatic cancer patients [125]. So 
far however, none of these markers have been corroborated thoroughly and 
studies show conflicting results. A lack of technical reproducibility between 
laboratories as well as differences in diagnostic scoring may have hampered 
the corroberation of many of these studies [126]. In addition, miRs have been 
measured in different bodily samples, including serum, cyst fluid and saliva, 
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and it is as yet unclear which presents the most promising compartment, 

OUTLINE OF THE THESIS 

As outlined above, several pressing questions are outstanding in the 
field of (pre) malignant pancreatic disease. First, we need to identify 
those pancreatic cysts at risk for malignant transformation, in order to 
remove them prior to progression to PDAC. However, it is imperative to 
exclude unnecessary surgery of benign cysts in order to limit surgery-
related morbidities. Second, patients with chronic pancreatitis have a 
highly increased risk of developing PDAC. For these patients, better pain 
management strategies are required, but limiting inflammatory responses 
would be beneficial as well. Third, presentation of PDAC is often unexpected, 
in metastatic state, and novel treatment strategies are urgently needed in 
order to improve survival rates in these patients. This thesis is divided 
into two parts. In part one of thesis, we focus on the identification of novel 
biomarkers for pancreatic malignancy. In part two, we investigate potential 
targeted therapies for PDAC and CP, with an emphasis on the proliferative 
and inflammation enhancing signaling capacities of the mTOR-S6 pathway. 

Part I: In chapter 2 we make an inventory of the resections performed in our 
tertiary center for pancreatic cystic neoplasms. We investigate the potential 
of adherence to Sendai guidelines to preclude unnecessary surgery, and 
conclude that better diagnostics of malignant and non-malignant cysts 
is required. The first step in distinguishing these is to identify mucinous 
cysts, and we demonstrate that assessment of mucinous background in 
cytopathological smears is a cheap, quick and efficient way to improve 
mucinous cyst diagnosis. In Chapter 3 we investigate the potential of 
microRNA based biomarkers to distinguish malignant from non-malignant 
cysts, by attempting to validate a 9-miR panel in pancreatic cyst fluid. In 
Chapter 4 we focus our attention on DNA-based molecular biomarkers, and 
investigate whether DNA integrity in pancreatic cysts fluid may serve as a 
basis to separate malignant cysts from those that do not require surgery. 

Part II: In Chapter 5 we investigate the mTOR-S6 signaling pathway in 
PDAC patients. This pathway contributes to protein synthesis, and is an 
important mediator of cell proliferation. We demonstrate that some, but not 
all PDAC patients show an increased activation of the mTOR-S6 signaling 
pathway, and more importantly, that inhibition of this signaling pathway 
is not effective in all pancreatic cancer cells. We set out to develop an in 
in vitro assay in order to predict which patients respond to inhibitors of 
mTOR signaling, in order to guide clinical decision making as to the use of 
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Chapter 1 these inhibitors in the treatment of patients. In Chapter 6, we describe the 
secondary outcomes of a clinical trial in which chronic pancreatitis patients 
are treated with medical cannabinoids in an attempt to alleviate their 
pain symptoms. In this chapter, we investigate the immune modulatory 
properties of these cannabinoids by studying pro-and anti-inflammatory 
mediators in serum from these patients. In Chapter 7, we investigate these 
immune regulatory properties in more detail by analyzing the effect of 
cannabis on cellular kinome activity, and investigating modulation of the 
mTOR-S6 pathway in immunocytes from CP patients and healthy controls. 
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Chapter 2 ABSTRACT 

Widespread use of cross-sectional imaging and increasing age of the 
general population have increased the number of detected pancreatic 
cystic lesions. However, several pathological entities with a variety in 
malignant potential have to be discriminated to allow clinical decision 
making. Discrimination between mucinous pancreatic cystic neoplasms 
(PCN) and non-mucinous pancreatic lesions is the primary step in the 
clinical work-up, as malignant transformation is mostly associated with 
mucinous PCN. We performed a retrospective analysis of all resected PCN 
in our tertiary center from 2000-2014, to evaluate preoperative diagnostic 
performance and the results of implementation of the consensus 
guidelines over time. This was followed by a prospective cohort study 
of patients with an undefined pancreatic cyst, where the added value of 
cytopathological mucin evaluation to Carcinoembryonic Antigen (CEA) 
in cyst fluid for the discrimination of mucinous PCN and non-mucinous 
cysts was investigated. Retrospective analysis showed 115 patients 
operated for a PCN with a correct preoperative classification in 96.2% of 
the patients. High grade dysplasia or invasive carcinoma was observed in 
only 32.3% of mucinous PCN. In our prospective cohort (n=71), 57.7% of 
patients were classified as having a mucinous PCN. CEA ≥192 ng/ml had 
an accuracy of 63.4%, and cytopathological mucin evaluation an accuracy 
of 73.0%. Combining these two tests further improved diagnostic accuracy 
of a mucinous PCN to 76.8%. CEA level and mucin evaluation were not 
predictive of the degree of dysplasia. These findings show that adding 
cytopathology to cyst fluid biochemistry improves discrimination between 
mucinous PCN and non-mucinous cysts. 
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INTRODUCTION

Pancreatic Cystic Neoplasms (PCN) are potential premalignant lesions 
which can lead to pancreatic ductal adenocarcinoma or colloid carcinoma 
[1]. The prevalence of pancreatic cysts, including non-neoplastic cysts, was 
estimated around 2% in patients undergoing preventive cross-sectional 
imaging, and increases with age [2]. Four distinct PCN entities with varying 
malignant potential are recognized according to WHO classification: (i) 
serous cystic adenoma (SCA), (ii) solid pseudopapillary neoplasm (SPN), 
(iii) mucinous cystic neoplasm (MCN), and (iv) intraductal papillary 
mucinous neoplasm (IPMN), with the latter two classified as mucinous 
PCN [1]. Early differentiation of mucinous PCN and non-mucinous cysts is 
essential to clinical management, decision to resect, and patient survival. 
SCA have minimal malignant potential and excellent prognosis even in 
metastatic disease [3]. SPN is considered as a neoplasm with malignant 
potential but a rather favorable survival rate exceeding 95% in 5 years [4]. 
In contrast, MCN has a higher risk of malignant degeneration although 
the rates of invasive carcinomas are variable in different studies, between 
6% and 36% [5,6]. The prognosis of MCN is much improved if the cyst is 
resected prior to invasion, with a 5-year disease-specific survival of 100% 
[7]. Because identification of high risk MCN is not possible preoperatively, 
current guidelines recommend resection of MCN in all surgically fit 
patients. The frequency of high risk dysplasia and invasive carcinoma 
in IPMN varies between 24% and 62%, depending on the anatomical 
involvement of the pancreatic duct, and is categorized in main duct (MD-
IPMN), side-branch (SB-IPMN), and mixed type (MT-IPMN) [8]. After 
adjusting for stage, the prognosis of IPMN-associated adenocarcinoma is 
similar to that of pancreatic ductal adenocarcinoma [9]. 

Currently, the management of MCN and IPMN is based upon international 
consensus guidelines established in 2006 [10], which were updated 
in 2012 [8]. The algorithm for the management of cystic lesions of the 
pancreas involves evaluation by imaging such as magnetic resonance 
cholangiopancreatography (MRCP) or endoscopic ultrasound (EUS). 
However, the interobserver agreement for both modalities remains 
moderate at best for characteristics of PCN, and additional markers to 
discriminate mucinous from non-mucinous PCN may be helpful, particular 
in hospitals where imaging is less frequently performed [11,12]. 

We performed a retrospective analysis of all resected PCN in our tertiary 
referral center, showing an increased number of PCN diagnosed over time, 
with increased sensitivity of identification of high risk mucinous PCN 
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upon the introduction of the updated Sendai guidelines. Nevertheless, 
non-malignant PCN are still frequently resected. In a first step towards 
identification of PCN with the highest malignant potential, we subsequently 
show in a prospective cohort, that inclusion of biochemical and cytological 
analysis of cyst fluid improves accuracy of detection of potentially 
malignant mucinous lesions. 

METHODS

Retrospective Study
From 2000 to 2014, all patients who underwent pancreatic surgery at the 
Erasmus MC were identified using the ‘PALGA’, a nationwide network and 
registry of histo- and cytopathology in the Netherlands. The identified 
cases were cross-checked with a list of patients who underwent any form 
of pancreatic surgery during that time period at the Erasmus MC. Only 
patients who had a histopathologically proven PCN were included. All 
clinical data were retrospectively collected using the electronic patient files. 

Prospective Study
From January 2009 to October 2013 all patients suspected with a 
pancreatic cyst based on physical complaints or incidental findings, who 
subsequently underwent endoscopic ultrasound-fine needle aspiration 
(EUS-FNA), were included. In this cohort, 27 patients underwent surgery, 
of which 22 patients were part of both the retrospective and prospective 
cohorts (the remaining 5 were operated in other hospitals). The remainder 
of the included patients in the prospective cohort did not undergo 
resection, but only EUS-FNA. Appropriate ethical approval was obtained 
for all procedures involving patients or patient material, Instutional Review 
Board (MEC-2008-233).

Definitions
Dysplasia
The WHO classification was used to describe dysplasia ranging from no 
dysplasia, low grade dysplasia, moderate dysplasia, high grade dysplasia, 
to invasive carcinoma. The highest grade of dysplasia found throughout the 
resection specimen was used. High grade dysplasia and invasive carcinoma 
were then classified as “high risk PCN”. SPN were also considered high 
risk PCN as these lesions are generally recommended to be resected. No 
dysplasia, low grade dysplasia, and moderate dysplasia were classified as 
“low risk PCN”. 
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Pancreatic cyst fluid
After EUS-FNA of a pancreatic cyst, CEA levels were measured in 
pancreatic cyst fluid. Furthermore, cytopathology was evaluated for the 
presence of neoplastic epithelial cells and mucinous background. Mucinous 
background refers to the presence of mucin in cytopathological analysis, 
which is microscopically visible in the May-Grünwald-Giemsa staining. 

Outcome
The classification of a pancreatic cysts as a mucinous PCN or non-
mucinous cyst was based on the pathology reports after resection, 
confirmation in EUS-FNA obtained cyst fluid, or the clinical diagnosis 
when neither were available. 

Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics 21. 
Univariable and multivariable logistic regression were used for the 
performance of CEA and mucinous background in differentiating  
between mucinous PCN and non-mucinous cysts. A p-value of <0.05 
was considered statistically significant. 

RESULTS

Retrospective analysis of PCN resections
Between 2000 and 2014 a total of 115 patients underwent pancreatic 
resection for a pancreatic cystic lesion. The clinical characteristics of these 
patients are presented in table 1. In total, thirty seven (32.7%; 2 cases 
could not be classified) were classified as high risk PCN. Of the mucinous 
PCN, only 30 out of 96 (31.3%) were high risk. Over the years, a significant 
increase in resections of PCN, in particular of IPMN and MCN (Figure 1A), 
was observed, with the majority occurring in the last 6 years. Of this 
increasing number of resections, a considerable percentage (34.2%) were 
asymptomatic lesions found incidentally or during surveillance for familial 
pancreatic cancer or a genetical predisposition for pancreatic cancer 
(Supplementary Figure 1). Thus, increased frequency of imaging and 
surveillance tools in recent years have lead to increased incidental finding 
of pancreatic lesions. 

Diagnostic performance of resected PCN
Proper diagnosis of mucinous PCN is essential in order to prevent 
unnessecary resection of non-mucinous lesions such as SCA and 
pseudocysts. To determine the accuracy of preoperative diagnosis 
based on imaging techniques and clinical characteristics, we compared 
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the preoperative diagnosis with the gold standard of diagnosis; i.e. 
histopathological assessment of resection specimens. After exclusion of 
9 patients with an inconclusive preoperative diagnosis, 106 remained for 
analysis (Supplementary Figure 2). In total, there were 93 mucinous PCN 
of which 96.8% were diagnosed correctly in the preoperative assesment. In 
contrast, non-mucinous lesions were diagnosed correctly in only 53.8% of 
the cases. Overall, there were 9 misdiagnosed cases (Table 2), of which 3 
cases (out of 4; 75%) were before 2006 and 6 cases (out of 102; 5.9%) were 
from 2006 onwards, demonstrating improved diagnosis upon introduction 
of the initial Sendai guidelines [10]. Potentially serious were case #1, 
preoperatively diagnosed as SPN, which turned out to be high grade IPMN, 
and case #2 which was a MCN with invasive carcinoma preoperatively 
misdiagnosed as pseudocyst. Case #3 was a MCN misdiagnosed as a SCA, 
and cases #8 and #9 were SPN mistaken for a MCN and cystic panNET, 
respectively. Four SCA were misdiagnosed before resection, two of which 
were mistakenly identified as mucinous lesions. In this misdiagnosed 
cohort, only 2 cases underwent EUS-FNA. Over time, there was a gradual 
improvement in the diagnostic performance, with up to 96.2% of the 
mucinous PCN correctly distinguished from non-mucinous cysts between 
2012-2014 (Figure 1B). However, while the performance in differentiation 
of mucinous PCN and non-mucinous cysts improved over time, there was 
a consistent high rate of resections of low risk PCN, with up to 67.7% (31 
out of 96 cases) resected without having high grade dysplasia or invasive 
carcinoma (Figure 1C and Supplementary Table 1). 

IPMN description
In IPMN specimens involving the main pancreatic duct, main duct–IPMN 
(MD-IPMN) and mixed type-IPMN (MT-IPMN), the frequency of samples 
containing high grade dysplasia or invasive carcinoma was 46.8% (22 out 
of 47). In contrast, the incidence of high risk PCN in SB-IPMN was much 
lower (26.1%, 6 out of 23). Of note: in 2 cases of MD-IPMN and 7 of SB-
IPMN, adenocarcinoma was found adjacent to the IPMN. While in these 
cases IPMN was scored based on its own malignant state, (e.g. IPMN with 
low grade dysplasia and adjacent unrelated carcinoma were classified 
as low risk) resection was of course warranted due to the carcinoma 
present. Excluding unrelated adjacent carcinoma, the rate of high risk PCN 
in SB-IPMN was 35.3% (6 out of 17; 1 unknown). In the period between 
2009 and 2011, 27.6% of resected IPMN cases were high risk (8 out of 29) 
whereas between 2012 and 2014 this proportion was 48.6% (18 out of 37) 
(Supplementary Figure 3), suggesting that the updated Sendai guidelines 
of 2012 result in fewer false positive cases. Of the 71 patients that underwent 
a pancreatic resection, 1 histology report could not be retrieved, 20 had 
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low grade dysplasia (28.2%), 21 moderate dysplasia (29.6%), 10 high grade 
dysplasia (14.1%), 19 invasive carcinoma (26.8%). Forty four out of seventy 
one (62%) patients presented with symptoms before resection, whereas 
others were incidental findings or found during surveillance for familial 
pancreatic cancer. 

Histology of IPMN
Of the 71 IPMNs, the distribution of the histologic classification was as 
follows: 23 were of the intestinal type, 12 of the pancreatobiliary type, 19 of the 
gastric type, and 2 of the oncocytic type (Supplementary Figure 4). Twelve 
patients were found to have 2 subtypes in their respective pancreatic 
resection specimen. The pancreatobiliary (58.3%) or oncocytic (100%) 
types were more associated with high risk PCN. In contrast, the rate of 
high risk PCN was lower in intestinal (21.1%) and gastric subtypes (26.1%) 
(Supplementary Table 1). 

Recurrence of IPMN
The median follow-up after surgery was 12.1 months (IQR 5.7 – 24.9). 
During follow-up, there was progression of residual IPMN in 9 (12.9%) 
patients. New onset of IPMN was observed in 3 (4.3%) cases, suggestive of 
a predisposition for pancreatic lesion development in accordance with the 
field defect theory in IPMN [8]. In 35 cases (50.0%) no follow-up imaging 
after surgery was performed, but patients were routinely followed-up at 
the outpatient department and evaluated based on clinical grounds. In the 
remaining twenty three cases (32.9%), imaging demonstrated a stable 
pancreas. 

Mucinous Cystic Neoplasm description
A total of 27 MCN were resected from 2000 till 2014. The incidence of 
high risk PCN was 7.7% (2 out of 26, one case could not be retrieved), 
while 92.3% was considered a low risk PCN (Supplementary Table 1). The 
majority of the MCN, including the two malignant ones, were located in the 
tail (92.6%). The average size was 5.8 cm (±2.6). More than half (61.5%) 
presented with symptoms.

The median follow-up after surgery was 11.9 months (IQR 0.7 – 34.3). 
After follow-up, 10 out of 27 patients had a demonstrable stable residual 
pancreas, while in the other 17 patients no imaging was performed. 

Prospective analysis of mucinous background addition to diagnosis
While in our specialist tertiary referral center, preoperative diagnosis of 
resected PCN is almost 100% accurate, global decision making would 
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Total (n= 115*) Low risk PCN 
(n = 76)+

High risk PCN 
(n = 37)+

Age, years 

Range 14.5 – 84.4 20.2 – 79.3 14.5 – 84.4

Mean (SD) 60.1 (16.0) 60.4 (14.5) 59.1 (19.2)

Gender, n (%)

Male 38 (33.0) 23 (30.3) 15 (40.5)

Female* 77 (67.0) 53 (69.7) 22 (59.5)

Histological diagnosis, n (%)

Main Branch IPMN 24 (20.9) 13 (17.1) 11 (29.7)

Side Branch IPMN* 24 (20.9) 17 (22.4) 6 (16.2)

Mixed Type IPMN 23 (20.0) 12 (15.8) 11 (29.7)

Mucinous Cystic Neoplasm* 27 (23.5) 24 (31.6) 2 (5.4)

Serous Cystadenoma 10 (8.7) 10 (13.2) 0 (0)

Solid Pseudopapillary Neo-
plasia

7 (6.1) 0 (0) 7 (18.9)

Presentation, n (%)

Incidental 36 (31.3) 25 (32.9) 11 (29.7)

Abdominal Pain 31 (27.0) 21 (27.6) 10 (27.0)

Jaundice* 13 (11.3) 6 (7.9) 6 (16.2)

Acute pancreatitis 19 (16.5) 14 (18.4) 5 (13.5)

Chronic pancreatitis 1 (0.9) 1 (1.3) 0 (0)

Weight loss 6 (5.2) 4 (5.3) 2 (5.4)

Surveillance 3 (2.6) 1 (1.3) 2 (5.4)

Other 4 (3.5) 3 (3.9) 1 (2.7)

Unknown* 2 (1.7) 1 (1.3) 0 (0)

Other 4 (3.5) 3 (3.9) 1 (2.7)

Unknown* 2 (1.7) 1 (1.3) 0 (0)

*Numbers do not add up because dysplasia of 2 cases could not be retrieved 
+ Lesions with adjacent adenocarcinoma were classified based upon dysplasia as 
found in the cyst.
PCN = Pancreatic Cystic Neoplasm; SD = Standard Deviation; IPMN = Intraductal 
Papillary Mucinous Neoplasm.

Table 1. Patient characteristics of the retrospective cohort. 
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Figure 1. Numbers and presentation of PCN over the years. (A) Graph depicting 
all PCN resections from 2000 till 2014 (n=115) in the Erasmus MC, Rotterdam, the 
Netherlands. For all types of PCN, a triennial increase of resections can be noted. (B) 
The percentage matching preoperative diagnosis compared to the histopathological 
diagnosis over time in the retrospective cohort. (C) Graph depicting the distribution 
of dysplasia in resected mucinous PCN over the years. 
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benefit from additional easily implementable markers distinguishing 
mucinous PCN and non-mucinous lesions. Pancreatic surgery is associated 
with important morbidity and mortality, and even incidental unneccesary 
surgeries should be prevented. We therefore decided to investigate the 
added value of distinguishing mucinous background in EUS-FNA samples 
in the discrimination between mucinous PCN and non-mucinous cysts. 
To this aim, we determined CEA in cyst fluid and performed cytological 
evaluation of the collected fluid which included rapportage of the presence 
or absence of mucin and evaluation of the epithelial component. Seventy 
one (71) subjects were included in this prospective study and underwent 
EUS-FNA. The patient characteristics are described in Table 3. 
The median follow-up after EUS-FNA was 13.1 months (IQR 5.3 – 33.4). 
During that time 38.0% (27 out of 71 patients) were resected of which 4 out 
of 27 (14.8%) contained high grade dysplasia, meaning the other 85.2% had 
moderate dysplasia at highest, or were a pseudocyst or SCA.

Carcinoembryonic Antigen (CEA) 
The mean CEA level was higher in mucinous PCN (5078 ng/ml; n=41) 

Case 
number

Gender Age Preoperative 
diagnosis

Histological 
diagnosis, 
dysplasia

Year of  
resection

EUS-FNA 
performed

1 Female 45 SPN SB-IPMN, high 
grade

2008 No

2 Male 66 Pseudocyst MCN, invasive 
carcinoma

2003 No

3 Female 67 SCA MCN, unknown 2007 Yes

4 Female 37 MD-IPMN SCA 2004 No

5 Female 77 Cystic PanNET SCA 2005 No

6 Female 40 Cystic PanNET SCA 2011 No

7 Male 73 MD-IPMN SCA 2014 Yes

8 Female 36 MCN SPN 2009 No

9 Female 24 Cystic PanNET SPN 2012 No

EUS-FNA = Endoscopic Ultrasound – Fine Needle Aspiration; SPN = Solid 
Pseudopapillary Neoplasm; SB-IPMN = Side Branch – Intraductal Papillary Mucinous 
Neoplasm; MCN = Mucinous Cystic Neoplasm; MD-IPMN = Main Duct – Intraductal 
Papillary Mucinous Neoplasm; SCA = Serous Cystadenoma; PanNET = Pancreatic 
Neuroendocrine Tumor

Table 2. Characteristics of misdiagnosed patients in retrospective cohort
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compared to non-mucinous cysts (252 ng/ml; n=30). The frequently 
used cutoff value of 192 ng/ml [13,14] resulted in a sensitivity of 39% and 
specificity of 96.7%, yielding an overall accuracy of 63.4% to differentiate 
between mucinous PCN and non-mucinous cysts (Supplementary Table 
2). Univariable logistic regression yielded an OR of 18.6 (95%CI: 2.3 - 
150.0; p=0.006) of having a mucinous PCN (Table 4). Evaluating CEA as 
a predictor for dysplasia did not yield a correlation given the wide range in 
low and high risk PCN (Low risk PCN: 1.3 – 83,690.0 ng/ml, n=19; high risk 
PCN: 0.2 – 172.1 ng/ml, n=4; p = 0.33). 

Cytopathology and mucin evaluation
Next, we determined the presence of mucin in the EUS-FNA samples, 
which were available for 67 patients (examples in Figure 2A-D). 
Cytopathology results were available in 52 cases, 15 samples were not 
diagnostic and another 4 were not available for evaluation. Epithelial cells 
were present in 8 (11.9%) samples, which actually contributed to diagnosis 
in only 5 (7.5%) cases. Mucin was present in 24 of the 52 cases, and yielded 
a sensitivity of 66.6%, specificity of 81.8%, PPV of 83.3%, NPV of 64.3%, 
and accuracy of 73.0% of predicting a mucinous PCN (Supplementary 
Table 2). Univariable analysis of the presence of mucinous background 
had an OR of 9.0 (95%CI: 2.4-33.8; p=0.001) (Table 4). Similar to CEA, 
no association of mucinous background to the degree of dysplasia was 
observed (p=0.135). 

Combining tests
Using both CEA levels and detection of mucin delivered the highest 
diagnostic properties. The combined test had a sensitivity of 75% and 
specificity of 79.1% with a diagnostic accuracy of 76.8%. Multivariable 
logistic regression still indicates both as an independent predictor of 
mucinous PCN; CEA OR 11.2 (95%CI 1.2 – 105.3; p=0.034) and mucinous 
background OR 7.7 (1.9 – 31.3; p=0.004) (Table 4). Figure 2E shows our 
proposed diagnostic algorithm using cyst fluid analysis.

DISCUSSION

In this combined retrospective and prospective analysis of pancreatic cystic 
neoplasms we observed that pancreatic cystic neoplasms, in particular 
IPMN and MCN, are resected with increasing incidence. Between 2006 
and 2008, there were 11 pancreatic resections performed for a PCN, which 
increased fivefold between 2012 and 2014. The growth in resections of 
PCN observed in this study is in accordance with the increased detection 
of pancreatic cysts due to improvement of imaging techniques and the 
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widespread use of cross-sectional imaging [15]. 

In our tertiary referral center, the misclassification rate of PCN was lower 
than 5% in the last 6 years. During the last 3 years 96.2% out of 52 resected 
PCN were correctly classified preoperatively. Missclassification occured in 
9 cases, 5 of which were nevertheless justified resections as these were a 
high grade SB-IPMN, 2 SPNs, and 2 MCNs. Seven out of nine misclassified 
cases did not undergo the EUS-FNA which might have avoided false 
positive surgery. Although diagnostic pancreatic cyst fluid with low levels 
of CEA and absence of mucin was available in one patient (#7), this was 
not taken into consideration and the patient was misdiagnosed with an 
IPMN. Using our currently proposed algorithm, this patient would have 
more likely been diagnosed with a SCA. 

Especially in centers with lower pancreatic cyst volume, the clinical 
diagnosis may be strengthened by tools that are less hampered by inter-
observational differences. Importantly, discrimination between mucinous 
PCN and non-mucinous pancreatic lesions is the primary step in the clinical 
work-up, as malignant transformation is mostly associated with mucinous 
PCN. Routine diagnostics include the cytological evaluation of the epithelial 
component in cyst fluid. However, in accordance to earlier studies, cytologic 
evaluation of the epithelial component (without mucinous background 
evaluation) performed poorly, most likely due to paucicelullarity [13,14]; 
presence of epithelial cells was detected in only 11.9% of the cases, with 
diagnostic usefulness limited to a mere half of these. 

CEA has been described as a diagnostic tool for evaluation of mucinous 
PCN [13,14]. In our study, diagnostic accuracy of CEA in discriminating 
between mucinous PCN and non-mucinous cysts was 63.4%, which is 
comparable to an earlier report [14]. Previous studies using separate 
mucin staining for diagnosing mucinous PCN found varying results [16,17]. 
In our study, evaluation of the presence of mucin (without additional 
staining required) in cytopathological analysis (OR 7.7), additional to 
CEA, can improve diagnostic accuracy to 76.8%. Thus, we show that a 
simple evaluation such as mucinous background analysis, which is easy 
to perform in the routine histopathological practice, can lead to enhanced 
diagnostic accuracy. We therefore advise pathologists to evaluate and 
report the background status in cytopathological analysis of pancreatic 
cyst fluid. 

Importantly, our cohorts show that despite improvements in diagnostics 
and updated guidelines, the rate of resections with no, low, or moderate 
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dysplasia remaines high, especially in SB-IPMN and MCN, demonstrating 
the need for better diagnostic tools for clinical decision making. The 
occurence of high grade dysplasia and invasive carcinoma in IPMN 
involving the main duct was 46.8%, and therefore the current management 
to resect all MD-IPMN and MT-IPMN in surgically fit patients is warranted 
[18,19]. In contrast, we found that only 26.1% of the resected SB-IPMN 
were histologically classified as a high risk, while the majority of resected 

Total (n = 71) Non-mucinous 
(n = 30)

Mucinous (n 
= 41)

Age, years 

Range 19.9 – 82.0 31.6 – 78.9 19.9 – 82.0

Mean (SD) 60.9 (12.7) 58.7 (13.4) 62.4 (12.0)

Mean CEA (SD), ng/ml 3039 (13390) 252 (237) 5078 (2716)

Gender, n (%)

Male 28 (39.4) 11 (36.7) 17 (41.5)

Female 43 (60.6) 19 (63.3) 24 (58.5)

Diagnosis, n (%)

Main Branch IPMN 2 (2.8) 0 (0) 2 (4.9)

Side Branch IPMN 20 (28.2) 0 (0) 20 (48.8)

Mixed Type IPMN 6 (8.5) 0 (0) 6 (14.6)

Mucinous Cystic Neoplasm 13 (18.3) 0 (0) 13 (31.7)

Pseudocyst 13 (18.3) 13 (43.3) 0 (0)

Serous Cystadenoma 16 (22.5) 16 (53.3) 0 (0)

GIST 1 (1.4) 1 (3.3) 0 (0)

Surgery, n (%)

Yes 27 (38.0) 4 (13.3) 23 (56.1)

No 44 (62.0) 26 (86.7) 18 (43.9)

Dysplasia, of resected (n=27)

No dysplasia 2 (7.4)

Low grade dysplasia 13 (48.1)

Moderate grade dysplasia 4 (14.8)

High grade dysplasia 4 (14.8)

Not applicable 4 (14.8)

SD = Standard Deviation; CEA = Carcinoembryonic Antigen; IPMN = Intraductal Papillary 
Mucinous Neoplasm; GIST = Gastrointestinal Stromal Tumor

Table 3. Characteristics of patients in prospective cohort
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SB-IPMN showed low grade or moderate dysplasia only. Excluding cases 
with adjacent carcinoma, the rate of high risk SB-IPMN would only be 
35.3%, implying a low correlation of the current guidelines with degree of 
dysplasia. This low correlation is in accordance with earlier reports and 
has led to a debate regarding Sendai guidelines and the management of 
SB-IPMN [20,21]. The incidence of carcinoma in MCN was found to be even 
lower with 7.7%, similar to an earlier report [6]. In fact, most resected MCN 
(82.3%) had low or moderate dysplasia only. Currently, there are no reliable 
predictors for the identification of high risk mucinous PCN, as promising 
markers in pancreatic cyst fluid such as microRNAs and p53 require clinical 
validation [22,23]. Furthermore, improved clinical risk stratification is 
needed to reduce the burden of pancreatic surgery with high morbidity and 
mortality in selected patients.

We acknowledge several limitations in our study. The retrospective part of 
the study is unavoidably exposed to selection bias as mainly PCN with high 
risk stigmata were resected. Additionally, the outcome in our prospective 
cohort was not always based on the golden standard of histopathology but 
on clinical diagnosis. However, more than 50% was confirmed histologically 
and the performance of classifying PCN in this institution based on clinical 
data was shown to be very accurate in our retrospective data. 

CONCLUSIONS

In summary, we show that the number of patients that are diagnosed 
with PCN is increasing over time. Combination of cytopathology and 
cyst fluid biochemistry is highly specific and sensitive for discrimination 

Odds Ratio 95% Confidence 
Interval

P-value

Univariable analysis

CEA≥192 ng/ml 18.6 2.3 - 150.0 0.006

Mucin background 9.0 2.4 - 33.8 0.001

Multivariable analysis

CEA≥192 ng/ml 11.2 1.2 - 105.3 0.034

Mucin background 7.7 1.9 - 31.3 0.004

CEA = Carcinoembryonic Antigen

Table 4. Logistic regression for the differentiation of mucinous pancreatic cystic 
neoplasm versus non-mucinous cysts
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Figure 2. The use of mucinous background in diagnosis of mucinous PCN. Representative 
microscopical images of mucinous background in cytopathological analysis of pancreatic cyst 
fluid (A, B, C) and representative image of a reactive background obtained from a pseudocyst 
without mucin present (D) (200x magnification). (E) proposed diagnostic algorithm incorporating 
the use of pancreatic cyst fluid obtained by EUS-FNA.
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between mucinous PCN and non-mucinous cysts. However, preoperative 
discrimination of high-grade from low-grade PCN is still problematic 
and requires novel biomarkers and long term surveillance data to better 
predict the course of the PCN, especially those with low rate of progression, 
including MCN and SB-IPMN. 
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Supplementary Figure 1. Increase in number of PCN over the years. The initial presentation of 
patients with a PCN was classified in symptomatic or asymptomatic. Patients were considered 
symptomatic when initial presentation included abdominal pain, jaundice, acute pancreatitis, chronic 
pancreatitis, weight loss or other complaints. Asymptomatic presentation includes discovery of the 
lesion incidentally or due to surveillance for familial risk.
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Supplementary Figure 2. Flowchart for evaluation of diagnostic performance of all PCN resections. 
Patients were excluded when preoperative diagnosis was not clearly stated or when multiple 
imaging modalities contradicted. IPMN and MCN were clustered as mucinous PCN. All preoperatively 
diagnosed pancreatic ductal adenocarcinoma (PDAC) were histopathologically confirmed as such. 
Numbers are presented as ‘correct diagnosed/total type PCN’.
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Supplementary Figure 3. Distribution of dysplasia in resected IPMN over the years. The rate of 
resections for low risk PCN, while declining in the last few years, remains as high as 51.4% between 
2012 and 2014.

Supplementary Figure 4. Different subtypes of IPMN as can be evaluated with regular H&E 
staining (200x magnification).
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Un-
known

No
dysplasia

Low 
grade 
dysplasia

Moderate
dysplasia

High grade 
dysplasia

Invasive 
carcinoma

Total High risk 
cyst (%)

IPMN 7/12 (58.3)

Pancreatobiliary 0 0 3 2 1 6 12 6/23 (26.1)

Intestinal 0 0 6 11 3 3 23 4/19 (21.1)

Gastric 1 0 10 4 0 4 19 2/2 (100)

Oncocytic 0 0 0 0 1 1 2 2/2 (100)

Tubulo-papillary  
neoplasia

0 0 0 0 2 0 2 3/5 (60)

Intestinal and 
Gastric

0 0 0 2 1 2 5 3/5 (60)

Gastric and  
Pancreatobiliary

0 0 0 2 2 1 5 1/1 (100)

Intestinal and  
Pancreatobiliary

0 0 0 0 0 1 1 1/1 (100)

Intestinal and 
Colloid

0 0 0 0 0 1 1

Unknown 0 0 1 0 0 0 1

MCN 1 2 20 2 0 2 27 2/26 
(7.7%)

Supplementary Table 1. Subtypes and dysplasia of IPMN and MCN patients in retrospective cohort.
In case of adjacent PDAC, the dysplasia of the IPMN was noted.  
The dysplasia of 1 case and the subtype of another case could not be retrieved 
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Variable Sensitivity, % Specificity, % Positive 
Predictive 
Value, %

Negative 
Predictive 
Value, %

Diagnostic 
accuracy, %

CEA≥192 ng/ml 39.0 96.7 94.1 53.7 63.4

Mucin background 66.6 81.8 83.3 64.3 73

CEA≥192 ng/ml + 
Mucin background

75.0 79.1 82.7 70.4 76.8

Supplementary Table 2. Diagnostic performance of CEA and the presence of mucin in cytological 
analysis.
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Chapter 4 ABSTRACT

Background Identification of pancreatic cysts with malignant potential is 
important to prevent pancreatic cancer development. Integrity of cell free 
DNA (cfDNA) has been described as tumor biomarker, but its potential for 
pancreatic cancer is unclear. 

Methods Normal apoptotic cells release uniformly truncated DNA, whereas 
malignant tissues release long fragments of cell free DNA (cfDNA). We 
measured 247 base pair (bp) and 115 bp DNA fragments of ALU repeats by 
qPCR in serum from healthy controls and pancreatic cancer patients, and in 
cyst fluid from pancreatic cyst patients. 

Result No differences in total cfDNA (ALU115) and cfDNA integrity 
(ALU247/115) were observed between sera from healthy controls (n=19) 
and pancreatic cancer patients (n=19). Though elevated as compared to 
serum, no differences in cfDNA were found in cyst fluid between high risk 
(n=10) and low risk (n=20) cyst patients. 

Conclusion cfDNA integrity is not a useful marker to identify (pre)
malignant pancreatic lesions. 
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DNA integrity 
as biomarker 
in pancreatic 
cyst fluid 

INTRODUCTION

Pancreatic cystic neoplasms (PCN) can give rise to pancreatic cancer, with 
intraductal papillary mucinous neoplasms (IPMN) and mucinous cystic 
neoplasms (MCN) being the most relevant lesions, whereas serous cystic 
adenomas have no malignant potential [1]. Development of pancreatic 
cancer may be prevented by resection of the cysts with high risk malignant 
potential. Unfortunately, current imaging and diagnostic techniques have 
difficulty distinguishing low risk cysts from high risk cysts, which in some 
cases leads to unnecessary surgery [2]. Thus, better differential diagnostic 
tools are urgently needed. Patients with neoplastic diseases often have 
an increased amount of free circulating, cell-free DNA (cfDNA) in their 
peripheral blood, which originates from the tumor [3–5]. This cfDNA is not 
all of an equal length. While apoptotic cells release small, ~180 base pair 
(bp) DNA fragments, necrotic cells release larger fragments of irregular size 
[6]. Whereas apoptosis is a normal physiological process occurring in all 
cells that need to be cleared from the body, necrosis is a potentially harmful 
form of cell death, which occurs under pathological conditions, including 
cancer. Thus, the presence of longer DNA fragments in serum is taken 
as a sign of enhanced necrosis taking place in the body and is thought 
to be indicative of disease [7]. DNA fragments can be reliably measured 
by employing the abundant presence in the human genome of DNA ALU 
repeats - repetitive ~300 bp sequences found in genomic introns [8]. 
Using different primers, fragments of these ALU repeats can be detected of 
either >200 bp (indicative of necrotic DNA), or of <200 bp (detecting both 
necrotic and apoptotic DNA). Detection of these longer cfDNA fragments 
and their relative abundance compared to short cfDNA fragments in sera 
appears to be a promising tool for diagnosis and prognostic prediction of 
malignancies [9–11]. However, the percentage of cfDNA originating from 
tumor cells has been estimated to range from 10% to 90% of total cfDNA, 
and applicability of measuring cfDNA length (i.e. DNA integrity) in serum 
may therefore depend on the type of disease [6]. Thus, while ALU-repeat 
measurements have been shown to adequately predict colorectal and 
breast cancer, the presence of pancreatic cancer could not be diagnosed by 
high length cfDNA fragments in serum [12]. We speculated that pancreatic 
cyst fluid, coming from a small and enclosed environment comprising of 
fluid that is solely produced by the pathologic epithelium, would provide a 
more suitable biological fluid in which to search for tumor markers. 
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MATERIAL AND METHODS

Pancreatic cyst fluid acquirement
Pancreatic cyst fluid of patients undergoing surgery was collected from 
two separate biobanks (Erasmus MC Rotterdam, the Netherlands, MEC-
2008-233 and MEC-2012-107, and Hôpital Beaujon, Clichy France; DC-
2009-938). Fluid was obtained by endoscopic ultrasound-fine needle 
aspiration (EUS-FNA) or post-resection and stored sterile at -80°C until 
analysis. Samples were selected so as to represent the different groups 
of pancreatic cyst based on malignant potential. Cysts with histologically 
confirmed low grade and intermediate dysplasia were grouped under ‘low 
grade dysplasia’, and cysts with high grade dysplasia or invasive carcinoma 
were considered ‘high grade dysplasia’. 

Serum acquirement
Patients with pancreatic adenocarcinoma who were eligible for surgery 
were included at the EMC. Healthy controls (mean age 60±4 years) were 
collected from the biorepository of the Rotterdam arm of the ERSPC 
[13,14] (MEC 138.741/1994/152). Serum was obtained by whole blood 
centrifugation in serum separator tubes (BD-Vacutainer), aliquoted and 
stored at -80°C until analysis. 

Sample preparation and qPCR
After preparation of samples [15], DNA integrity was determined by 
measuring the presence of ALU repeat fragments of 115 bp size and of 247 
bp size, using previously described primers [16]. The ALU115 primers are 
designed to amplify both the shorter and the longer fragments, and are 
therefore indicative of total circulating cfDNA (including DNA released 
from both apoptotic and necrotic cells) whereas the ALU247 primers only 
amplify the longer DNA fragments, and thus detect of tumor DNA. For full 
protocol and details see Supplementary Material. 

RESULTS

No difference in cfDNA fragment length in sera from pancreatic cancer 
patients versus controls. 
While previous reports were unable to find a relationship between 
pancreatic cancer and cfDNA length in serum, we wanted to verify this 
in our own cohort (see Table 1). The mean total circulating cfDNA, as 
represented by ALU115-qPCR values, was 20±3 pg/μl in control sera (n=19) 
vs 36±14 pg/μl in sera from pancreatic cancer patients (n=19) (p=0.559) 
(Figure 1A), whereas the mean amount of circulating tumor DNA, as 
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Number of patients 19

Age, years

 Range 24-82

 Mean (SD) 65 (13)

Gender, n (%)  

 Male 11 (57.9)

 Female 8 (42.1)

Disease location (%)  

 Pancreas corpus 3 (15.8)

 Pancrease head/uncinate 5 (26.3)

 Pancreas head 7 (36.9)

 Bile duct 3 (15.8)

 Papilla 1 (5.2)

Table 1: Patient characteristics of the serum samples

Figure 1. Levels of cfDNA in serum or pancreatic cyst fluid do not identify high risk/
adenocarcinoma patients. PCRs detecting short, apoptotic cell-derived cfDNA (ALU115) 
and longer cfDNA fragments (ALU247) were performed on (A) serum from healthy 
donors (n=19) and patients with pancreatic adenocarcinoma (ADC, n=19) and (B) 
pancreatic cyst fluid from patients with low grade dysplasia (LGD, n=20) and high grade 
dysplasia (HGD and ADC, n=10). cfDNA was detected by ALU115 and ALU247, and DNA 
integrity was calculated (ALU247/ALU115). No differences in cfDNA levels and cfDNA 
integrity were observed. 

DNA integrity 
as biomarker 
in pancreatic 
cyst fluid 
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determined by ALU247-qPCR values, was 8±1 and 14±6 pg/μl (p=0.793). 
The ratio of ALU247/ALU115, allowing quantification of the integrity of the 
cfDNA, was 0.41±0.02 and 0.40±0.05 for healthy controls and pancreatic 
cancer patients, respectively (p=0.267). Thus, no increased total cfDNA 
or tumor-associated DNA was detected in sera from pancreatic cancer 
patients. 

No difference in cfDNA fragment length in pancreatic cyst fluid between 
low risk and high risk cyst patients.
Next, we analysed cyst fluid obtained from 40 pancreatic cyst patients, 
23 of which had low risk cysts, and 17 had high risk cysts. In 10 of these 
samples, we were unable to perform a reliable analysis due to the mucinous 
nature of the fluid. In the remaining samples (Table 2), we observed 
drastically higher levels of cfDNA as compared to sera, presumably due 
to the enclosed nature of these cysts. However, the mean amount of total 
and tumor circulating cfDNA did not differ between the high risk (n=10) 
and low risk (n=20) samples: 44,463±39,228 vs 33,021±20,004 pg/μl for 
ALU115 (p=0.10) and 27,254±24,2682 vs 22,118±13,774 pg/μl for ALU247 
(p=0.18), respectively (Figure 1B). Furthermore, no significant differences 
in ALU247/ALU115 ratio between high risk and low risk cysts (0.63±0.07 
vs 0.66±0.06, p=0.34) was seen. Overall, ratios were higher than in serum, 

Total LGD HGD

Number of patients 30 20 10

Age, years      

 Range 19-85 19-79 52-85

 Mean (SD) 59.5 (15.3) 54.7 (15.4) 69.2 (10)

Gender      

 Male 10 (33.3%) 3 (15%) 7 (70%)

 Female 20 (66.7%) 17 (85%) 3 (30%)

Diagnosis      

 IPMN 17 (56.7%) 8 (40%) 9 (90%)

 MCN 13 (43.3%) 12 (60%) 1 (10%)

Disease location (%)      

 Pancreas head 6 (20%) 2 (10%) 4 (40%)

 Pancreas corpus 5 (16.7%) 3 (15%) 2 (20%)

 Pancreas tail 18 (60%) 15 (75%) 3 (30%)

 Unknown 1 (3.3) 0 (0%) 1 (10%)

Table 2: Patient characteristics of the cyst fluid samples
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with some samples reaching almost 1. Thus, the nature of cyst fluid makes 
it a less suitable compartment to determine necrotic/apoptotic cfDNA 
ratios. 

DISCUSSION

Measurement of necrotic cell-derived long cfDNA fragments in serum has 
been suggested for the early detection of tumors. However, usefulness of 
this tool in pancreatic diseases has so far not been shown, and we were 
unable to find increased levels of necrotic cell-derived cfDNA in sera from 
pancreatic cancer patients. As pancreatic cancer can derive from PCN, we 
speculated that cyst fluid would present the ideal biological fluid to detect 
premalignant lesions. Indeed, total levels of cfDNA observed in cyst fluid 
were almost 1000 fold higher as compared to sera. Nevertheless, we did 
not observe differences in cfDNA length between high risk and low risk 
cysts. While the apoptotic process reduces DNA to 180-200 bp fragments, 
incomplete cleaving of the DNA may result of the presence of multimers 
of these fragments, which can subsequently also be detected by ALU247 
primers. This background ‘noise’ of 180 bp multimers accounts for the fact 
that a signal is detected in the ALU247 PCR in samples were no necrotic 
cfDNA is expected (i.e. healthy serum), and detection of tumor-derived, 
necrotic DNA depends on a relative increase in the abundance of long 
cfDNA, and hence a shift in DNA integrity (ALU247/ALU115 ratio). It is 
conceivable that pancreatic tumor cells produce too little necrotic cfDNA to 
be detected above background levels. Additionally, in cyst fluid, high levels 
of total cfDNA levels present may preclude detection of additional long 
cfDNA fragments. 

We acknowledge several limitations to our study. Of the cystic fluid 
samples selected for this pilot study, 15 of 30 were obtained after resection, 
with ischemic damage potentially causing necrosis. However, subanalysis 
of the re-resection and post-resection obtained samples did not show 
significant differences in total cfDNA levels or ALU247/ALU115 ratios (not 
shown). 

A second limitation is the low number of high risk cyst fluid samples in our 
analysis. The mucinous nature of the fluid prevented accurate analysis in 
~25% of cases. As mucinous cysts show a higher malignant potential, it 
is not surprising that many of the excluded samples were high risk. sThis 
means that the intrinsic nature of high risk cyst fluid makes them less 
suitable for this type of analysis. 
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In conclusion, despite favorable reports for early tumor detection and 
the application of pure cyst fluid analysis, our data suggest that cfDNA 
integrity is of no additional use to discriminate low from high risk 
pancreatic cysts. This technique therefore does not provide further 
guidance in the management of patients with asymptomatic pancreatic 
cysts.
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SUPPLEMENTARY MATERIAL AND METHODS

To digest proteins that might confound results, both cyst fluid and serum 
were mixed with a buffer containing 25 ml/l Tween 20, 50 mmol/l Tris, 1 
mmol/l EDTA, and 0.8 mg/ml proteinase K in a 1:1 ratio. Subsequently, the 
mix was incubated at 50°C for 20 minutes, followed by heat inactivation 
at 95°C for 5 minutes. Next, the samples were centrifuged at 10,000g for 5 
minutes and 0.2 µl of the supernatant was used in the qPCR reaction. This 
protocol was also described earlier [13]. 

To measure the absolute concentration of DNA in the samples, we 
constructed a calibration curve using genomic DNA derived from Huh7 
cell lines at a concentration ranging from 2.97 pg/µl up to 297 ng/µl. The 
absolute concentration was measured (in the most concentrated sample) 
using the Nanodrop (Thermo Scientific). This was subsequently used in 
a serial dilution and used as a template in triplicate on each qPCR-plate 
measured. The same serial dilutions were used to produce standard curves 
for all qPCR runs. 

For the qPCR reaction of the ALU repeats, previously published primers 
were used: ALU115 forward, CCTGAGGTCAGGAGTTCGAG; ALU115 reverse, 
CCCGAGTAGCTGGGATTACA; ALU247 forward, GTGGCTCACGCCTGTAATC; 
ALU247 reverse CAGGCTGGAGTGCAGTGG[14]. The ALU115 primers are 
designed to amplify both the shorter and the longer fragments, and are 
therefore indicative of total circulating cfDNA (including DNA released 
from both apoptotic and necrotic cells) whereas the ALU247 primers only 
amplify the longer DNA fragments, and thus detect of tumor DNA. The 
total volume of the qPCR reaction mix was 25 µl, consisting of 12.5 µl SYBR 
Green (Life technologies), 2.5 µl 10 µM forward and reverse primer, 9.8 µl 
Microbial DNA-Free Water (Qiagen), and 0.2 µl template. 

The qPCR was run at 95°C for 10 minutes, and subsequently at 95°C for 30 
seconds, 64°C for 30 seconds and 72°C for 30 seconds for 40 cycles using 
the StepOnePlus™ Real-Time PCR System (Life technologies). ALU repeat 
expression levels were measured in duplicate. The genomic DNA used for 
the calibration curve and negative controls were measured in triplicate. 

Analysis
Using the data obtained from the serial diluted genomic DNA, we 
constructed a calibration curve on each plate measured using the Graphpad 
Prism 5. From this, we derived the intercept and slope of the curve using a 
nonlinear regression model and recalculated the absolute concentration of 
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the samples from measured Ct values using the following formula:

Absolute concentration = 10^((Ct-intercept)/slope)
Finally, to obtain ALU247/115 ratios, the absolute concentration of ALU247 
was divided by the absolute concentration ALU115 measured in the 
samples. Mean differences were analysed using Mann-Whitney U test. A 
p-value of <0.05 was considered statistically significant. 
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Chapter 5 ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease, 
unusually resistant against therapy. It is generally felt that stratification of 
patients for personalized medicine is the way forward. Here, we report that 
a subpopulation of PDACs shows strong activation of the mTOR signaling 
cassette. Moreover, we show that inhibition of mTOR in pancreatic cancer 
cell lines showing high levels of mTOR signaling is associated with cancer 
cell death. Finally, we show using fine needle biopsies the existence of 
a subpopulation of PDAC patients with high activation of the mTOR 
signaling cassette and provide evidence that inhibition of mTOR might be 
clinically useful for this group. Thus, our results define an unrecognized 
subpopulation of PDACs, characterized by high activation of mTOR and 
show that identification of this specific patient group in the early phase of 
diagnosis is feasible.



95

mTOR is a 
promising  
therapeutical 
target in a 
subpopulation 
of pancreatic 
adenocarci-
noma 

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of 
cancer related death in the world and more than 260,000 people die of 
this disease every year worldwide [1]. Due to local invasion of vasculature 
or distant metastasis, only 15-20% of patients are surgical candidates at 
presentation. Of those operated, the 5-year survival is only 10-15% and 
adjuvant therapy only improves disease free survival from 5.5% to 16.5% 
at 5 years but has no impact on survival [2]. The median survival after 
diagnosis of locally advanced unresectable disease is 4-6 months, and 
2-4 months for patients presenting with metastatic disease [3,4]. PDAC is 
among the most chemoresistant cancers and advancements in traditional 
chemotherapeutics have been especially disappointing as many targeted 
therapies have failed to show any benefit. Current palliative therapy is 
limited to patients with optimal performance score (WHO 0-1) with only 4 
months survival benefit in patients with metastatic disease (FOLFIRINOX) 
[5]. Research efforts are focused on early detection, and multimodality 
treatment with surgery and chemoradiation. Personalized medicine-based 
therapy might be another approach to achieve significant long term benefit 
in patients with PDAC [6]. 

PDAC is a heterogeneous disease with different pathways affected in 
different patients. Next generation sequencing and microarray analysis 
have revealed a set of 12 core cellular signaling pathways and processes 
that were genetically altered in 67-100% of PDAC tumors. These genetic 
alterations involve pathways such as apoptosis, KRAS, Hedgehog, WNT/
Notch, TGF-beta, and DNA repair pathways [7]. Mutations in the KRAS 
gene along with activation of EGFR and loss of telomeres are required 
for the initiation of PDAC [8, 9, 10]. The progression of PDAC requires the 
constitutive activation of Ras/mammalian target of Rapamycin (mTOR) 
or Ras/MEK/ERK pathways [11, 12, 13]. In PDAC, levels of phospho S6 
(pS6), the activated form of a downstream protein of the mTOR pathway 
involved in translation initiation, are markedly increased [14,15,16]. 
Moreover, mTOR pathway activation is shown in pancreatic cancer cell 
lines, tumor xenografts, human pancreatic tumors, and in a number of 
other human tumors [17, 18, 19]. Previous studies have shown mTOR 
pathway activation in PDACs, approximated between 25%-75% [14, 19].
The mTOR pathway consists of two protein complexes, in which mTOR, 
raptor and mLST8 proteins constitute to form the mTOR Complex 1 
(mTORC1) and mTOR, rictor and Sin1 proteins forming mTOR complex 2 
(mTORC2). In cellular growth and associated proliferation, mTORC1 plays 
a vital role by integrating signals from nutrients and energy status. It 
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regulates several processes like ribosome biogenesis, protein synthesis, 
metabolism and autophagy [20]. mTORC2 plays a role in cytoskeletal 
organization through protein kinase C and paxillin [21]. Rapamycin, and its 
synthetic derivatives (rapalogs), can inhibit the mTOR pathway by binding 
to FK-binding protein-12, which in turn binds to the mTOR protein, and 
subsequently preventing the assembly of mTORC1 [22]. Prolonged use of 
rapalogs has shown to disrupt mTORC2 as well [23]. Several clinical trials 
involving rapalogs showed clinical benefit in only a minority of pancreatic 
cancer patients, however none of the studies involved a sensitivity assay 
of the tumor to rapamycin or rapalogs [17, 24]. In view of the molecular 
heterogeneity of PDAC, the activity of the Ras/mTOR pathway, and 
incidental benefit of rapalog treatment in PDAC, we hypothesize that a 
subpopulation of PDAC patients sensitive for rapalog treatment could be 
identified using ex vivo biopsies. Hence, the mTOR axis can be a promising 
target to be included in treatment protocols for PDAC using rapamycin or 
rapalogs in a subpopulation of patients.

MATERIAL AND METHODS

Cell lines 
Pancreatic cancer cell lines BxPC3, Su86.86, HPAF, and HS700T were 
cultured as confluent monolayers in RPMI-1640 (Gibco) with penicillin and 
streptomycin (invitrogen) and 7.5% Fetal Calf Serum (FCS) (Sigma-Aldrich) 
using routine procedures (5% CO2, at 370C). Capan-1 was cultured using 
IMDM (Gibco) supplemented with 20% FCS. The cell lines were a kind 
gift of the department of surgery of the Erasmus MC. The cell lines were 
authenticated by means of a STR-analysis. 

Patients and specimens
Appropriate ethical approval was obtained for all procedures involving 
patients or patient material. We included 64 slides of 39 formalin fixed 
paraffin embedded (FFPE) specimens from pancreatic surgery with 
a histologically confirmed PDAC or neuroendocrine tumor. The tissue 
blocks were collected from a prospectively maintained pathology tissue 
bank at the Erasmus MC. Specimens were sectioned at 5 µm (Microm 
HM325 Microtome), incubated at 370C overnight, and stored until used for 
immunohistochemistry staining. 

Endoscopic ultrasound guided fine needle aspiration biopsies (EUS-
FNABs) were obtained from patients suspected for pancreatic cancer (or 
with a pancreatic mass lesion). All patients provided written informed 
consent. The EUS-FNABs were obtained from the endoscopy department 
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and transported to the laboratory in RPMI-1640 medium with 10% FCS. 
The biopsy was washed three times with PBS containing penicillin and 
streptomycin (Invitrogen). Single cell suspensions were prepared using 0.5 
mg/ml collagenase IV (Sigma-Aldrich) and pushed through a 100 µm cell 
strainer (BD Falcon). The cells were suspended in RPMI-1640 (Gibco) and 
counted using a slide with counting grids (Kova Glasstic® Slide 10, Hycor 
Biomedical ltd., Penicuik, UK). 

Immunohistochemistry
Tissue sections were deparaffinized in xylene for 5 minutes and rehydrated 
using ethanol. The endogenous peroxidase activity was blocked with 
methanol and 3% H2O2 followed by tap water immersion for 5 minutes. 
Antigen retrieval was performed by boiling in preheated buffer 10 mM 
citrate buffer pH 7.6 for 10 min at 200W in a microwave. Next, slides were 
blocked by 10% goat serum in phosphate-buffered saline tween pH 7.4 
for 1 hour at room temperature. Primary antibodies rabbit monoclonal 
anti-pS6 (1:250, Cell Signaling Technology, Beverly, MA, USA) was added 
and incubated at 4°C overnight. Envision goat anti-rabbit-horseradish 
peroxidase (DAKO, Denmark) was used as secondary antibody [25]. WKU 
and VN scored the slides independently in a blinded manner. Five high 
power fields were counted for each slide. The percentage of cells that 
stained positive (immunoreactivity above background) in the area was 
quantified. The pS6 level was scored as follows: a score of 0 for less than 
3%, a score of 1 between 3% and 10%, a score of 2 between 10% and 50%, 
and a score of 3 for more than 50% of positively stained cells (scoring 
system developed by KB). Pictures were taken using the Zeiss Axioskop20 
microscope, Nikon Digital Sight DS-U1 camera and NIS-Elements 3.00 
program. 

Cell viability assay
To assess the effect of rapamycin on pancreatic cancer cell lines we used 
a MTT-assay. In short, 10,000 cells from each cell line were incubated with 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The 
purple formazan is measured at 490 nm and 595 nm using a microplate 
reader (Model 680XR Bio-Rad) at 72 hours. The functional viability of 
cells was calculated using the mean OD in sample well divided by the 
mean OD in the control well x 100%. To show the correlation of increasing 
concentration of rapamycin with cytotoxicity in pancreatic cancer, we 
used a linear regression to reject the null hypothesis where changes in 
rapamycin concentration are not associated with increased cell death. The 
p-value is considered significant when p<0.01.
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Western blot
Western blotting was performed according to standard fluorescent 
Odyssey immunoblotting (LI-COR Biosciences, Lincoln, NE, USA). 
Antibodies specific for p-S6 and light chain 3 (LC3A/B-I and II)(all 1:1000, 
Cell Signaling Technology) were used. To ascertain equal loading and 
normalization of the protein for quantification, beta-actin (1:2000, Santa 
Cruz) was used. The secondary antibodies used for detection were goat 
anti-rabbit and rabbit anti-mouse (1:5000, LI-COR Biosciences). Transfer 
membranes were transferred to 50 ml sterile light-protecting centrifuge 
tubes (Greiner bio-one), incubated with secondary antibodies and washed. 
Fluorescence Odyssey system (LI-COR Biosciences, Lincoln, NE, USA) 
was used to visualize and quantify protein expression. Semi quantitative 
expression data were determined by Odyssey 3.0 software and normalized 
using beta-actin for reference gene protein expression [25]. 

Flow cytometry
To assess pS6 expression levels, we analyzed pancreatic cancer cell lines 
and single cell suspensions prepared from EUS-FNABs as described above, 
using flow cytometry. 

The pancreatic cancer cell lines were washed with 0.1% sodium chloride 
(Sigma-Aldrich) in PBS and trypsinized with 0.05% trypsin EDTA (Invitrogen). 
A minimum of 100,000 cells were used for each assay. The cells were 
divided in the following three conditions during 2 hours: blank unstained 
cells, RPMI-1640 only (to measure basal pS6 levels), and RPMI-1640 with 
0.1 µM rapamycin (to measure inhibition of pS6). The same conditions were 
applied to single cell suspensions from EUS-FNABs. 

Cell permeabilisation was done with a permeabilisation buffer (0.5% 
saponine, 1% FCS, 0.02% EDTA in PBS). The cells were stained using 
cytokeratin 8/18 mouse mAb (CK8/18; 1:100; Cell Signaling Technology) 
and secondary labeled with anti-Mouse IgG eFluor® 660 (1:100; eBioscience, 
Ltd., UK) to mark epithelial cells. CK8/18 has been shown to be expressed 
as much as 100% in PDAC [26]. Finally, we stained the samples with V450 
Mouse anti-pS6 (1:50; BD Biosciences, Breda, Netherlands). Data was 
analyzed using FlowJo (v 7.6.5, Treestar, Ashland, OR). Mean Fluorescence 
Intensity (MFI) was calculated using the geometric mean of the CK8/18+ 
population. Mean values were compared using a student T-test.
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RESULTS

A subpopulation of PDACs is characterized by strong activation of the 
mTOR signaling cassette
To study activation of the mTOR pathway in pancreatic cancer, we 
performed an immunohistochemical staining of a set of FFPE specimens 
that contains 42 normal acinar regions, 42 normal ductal epithelium, 15 
PanIN lesions, 7 neuroendocrine tumors, and 39 PDAC regions for the 
levels of pS6 (Figure 1). The proportion of tissue expressing pS6 is 50% in 
normal ducts, 67% in PanIN lesions, and 82% in adenocarcinoma regions 
(Figure 1). Normal acinar regions show high levels of pS6, while normal 
duct epithelium exhibits much lower pS6 levels overall (Figure 2A). Since it 
has been shown that the mTOR pathway is deregulated in neuroendocrine 
tumors (NET), we used NETs as positive controls [27] (Figure 2B). 
Differences in pS6 staining were observed between various patients with 
PDAC, especially differential staining of dysplastic ducts and stroma 
can be pronounced (compare Figure 2C with Figure 2D). The variability 
in pS6 levels was also seen in various PanIN lesions (Supplementary 
Figures 1A and 1B). Thus, substantial variation in the activation of mTOR 
pathway exists and our results demonstrate the presence of a subgroup of 
pancreatic adenocarcinoma that is characterized by very strong activation 
of the mTOR signaling cassette.

Figure 1. Graph presenting proportion of pS6 levels in various histological 
conditions. Normal acinar regions were adjacent to PDAC regions. Normal duct 
represents the fraction of positive ductal epithelium in normal regions. PanIN 
lesions were also evaluated based on the positive staining of abnormal epithelium. 
The proportion of samples staining positive for pS6 increases from normal ductal 
epithelium to PDAC. NETs were used as positive control and had similar distribution 
to PDACs. The scoring system is described in the materials and methods section. 
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Rapamycin-dependent cytotoxicity in pancreatic cancer cell lines 
correlates with the level of mTOR-dependent signaling 
A logical question arising from our discovery of a mTOR hyperactivated 
subset of PDAC is whether cancer survival is dependent on activation 
of this signaling cassette in such cancers. To this end, we compared 
pancreatic cancer cell lines exhibiting different levels of mTOR activation 
for their sensitivity to the mTOR inhibitor. We determined pS6 levels in 
BxPC3, Su86.86, HS700T, HPAF, and Capan-1 and its inhibition after 2, 

Figure 2A. Representative normal region adjacent of PDAC stained for pS6 
Normal duct epithelium (ND) score 0, which was found in 50% of the cases. Normal 
acinar region (NA) score 3 (20x).

Figure 2B. Representative image of a Pancreatic Neuroendocrine Tumor (NET), 
score 3 (10x). NETs were stained as positive controls as it has been shown that 
activation of the mTOR pathway, mediated by IGF-1, is necessary for proliferation in 
pancreatic NETs [45]. 

Figure 2C. Representative adenocarcinoma region, score 0 (10x). Staining less 
than 3% of the adenocarcinoma was observed. 

Figure 2D. Representative adenocarcinoma region, score 3 (10x).

Chapter 5



101

6, and 18 hours incubation with 0.1 µM rapamycin. BxPC3 and SU86.86 
are most sensitive to rapamycin with a decrease of pS6 expression up 
to 655 and 355-fold (p<0.01) in Western blot respectively (Figure 3), 
and thus, display most mTOR signaling activity. Rapamycin induced 
decrease of pS6 expression was less pronounced in Capan-1, HPAF, and 
HS700T cells, with up to a 10-fold decrease after 2 hours (Figure 3), and 
therefore, these cell lines are characterized by a substantial lower degree 
of rapamycin sensitivity. The level of rapamycin-sensitive mTOR activity 
correlated well with the cytotoxic effects of rapamycin. In BxPC3 (Figure 4A) 
and SU86.86 (Figure 4B) 12.5 nM rapamycin decreases cell viability to 
69%(±10.0%) and 75%(±4.0%), respectively. In contrast, HS700T, HPAF, 
and Capan-1 pancreatic cancer cells show much less pronounced mTOR 
activation. Accordingly, Capan-1 (Figure 4C) and HPAF (Figure 4D) show 

Figure 3. Western blot analysis and quantification of phosphorylated S6 in BxPC3, SU86.86, 
HS700T, HPAF, and Capan-1. The cell lines were exposed to increasing duration of 0.1 µM 
rapamycin. Lysates were subjected to pS6 antibodies and subsequently quantified and 
normalized against beta-actin. Higher basal expression of pS6 is seen in BxPC3 and SU86.86 
compared to HS700T. In BxPC3, rapamycin inhibits phosphorylation of S6 by 30, 392, and 655-
fold after 2, 6, and 18 hours respectively with rapamycin. Similarly, in SU86.86 this effect is 106, 
132, and 355-fold in the same conditions. HS700T is less rapamycin-sensitive as seen by a less 
pronounced decrease of pS6 expression (11, 15, and 20-fold decrease). The inhibition of pS6 levels 
in HPAF and Capan-1 were also lower, exhibiting a 8, 17, and 29-fold decrease in HPAF, and a 8, 
48, 82-fold decrease in Capan-1. Experiment was performed in duplicate, one representative blot 
is shown. 
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no response to rapamycin, exhibiting cell viabilities of 113.4%(±6.0%) 
and 131.4%(±18.4%) at 200 nM concentration. HS700T cells shows 
80.8%(±1.9%) cell viability in the presence of 12.5 nM rapamycin and 
more than 50 nM rapamycin is needed to obtain a comparable decrease 
in cell viability as in BxPC3 cells (Figure 4E). Thus, high activation of 
mTOR shows a correlation with increased sensitivity to mTOR inhibition 
in pancreatic cancer. To illustrate the correlation between pS6 inhibition 
and cell viability we plotted both parameters for all cell lines. The mean 
pS6 inhibition after 2 hours incubation with 0.1 µM rapamycin of both 
responsive and non-responsive cell lines (derived from western blot) was 
plotted against the percentage of cell viability as measured by MTT-assay 
with the same concentration of rapamycin (Figure 5). Sensitivity to mTOR 
inhibition is correlated with decreased cell viability for the rapamycin 
responsive cell lines but not for the rapamycin unresponsive cell lines. 

Figure 4. Graphs depicting the effect of rapamycin on cell viability in pancreatic cancer 
cell lines. BxPC3 (A), SU86.86 (B), Capan-1 (C), HPAF (D), and HS700T (E) were treated with 
increasing doses of rapamycin for 72 hours. Mean values are averages from 3 independent 
experiments performed in triplicate.
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Rapamycin induces autophagy in rapamycin sensitive pancreatic cancer 
cell lines
Subsequently, we were interested in the molecular mechanism of cytotoxicity 
in mTOR-proficient pancreatic cancer cell lines. In the canonical response 
to rapamycin, induction of autophagy and apoptosis are considered the 
major effectors here. To assess the role of autophagy and apoptosis in 
rapamycin induced decrease of cell viability of pancreatic cancer cell lines, 
we performed Western blot analysis on LC3A/B-I and II. The expression of 
LC3A/B-II increased 2.4 fold in both BxPC3 and SU86.86, after 18 hours 
incubation with rapamycin (Figure 6). In contrast to BxPC3 and SU86.86, 
we did not observe a significant increase of LC3A/B-II in HS700T, HPAF, or 
Capan-1 (Figure 6). These results support a role for hyperactivated mTOR 
for maintaining survival in a subpopulation of PDAC.

Sensitivity to rapamycin in pancreatic cancer cell lines can be measured 
using flow cytometry
We have shown in Western blot that rapamycin reduces phosphorylation 
of S6 in pancreatic cancer cell lines. To translate this into an ex vivo 
sensitivity assay, to a protocol useful for personalized medicine in clinical 
practice, we measured phosphorylation of S6 in pancreatic cancer cell lines 

Figure 5. Scatter plot showing the correlation of pS6 levels and predicted cytotoxicity. On 
the x-axis is the fold pS6 inhibition (retrieved from western blot with 2 hours 0.1 µM rapamycin) 
and cell viability on the y-axis (retrieved from MTT-assay with 0.1 µM rapamycin). A non-linear 
regression curve was fitted through the available datapoints indicating that higher inhibition of 
pS6 levels correlate with higher rapamycin-dependent cytotoxicity. Responsive cell lines (BxPC3 
and SU86.86) are in the higher range of pS6 inhibition, corresponding with lower cell viabilities. 
In contrast, lower pS6 inhibition in cell lines correspond to better survival of pancreatic cancer 
cells(Capan-1 and HPAF). HS700T however, exhibit declining cell viability without proper mTOR 
inhibition, most likely due to off-target effects. 



104

using flow cytometry. Rapamycin resulted in an absolute reduction of CK 
8/18+ pS6+ cells by more than 40% in BxPC3 (Figure 7A) and SU86.86 
(Supplementary Figure 2). In contrast, there was a minimal reduction 
of less than 1% within the CK8/18+pS6+ population in the rapamycin-
unresponsive cell lines; HS700T (Figure 7B), Capan-1 (Supplementary 
Figure 3A), and HPAF (Supplementary Figure 3B). We observed the same 
effect of rapamycin on the amount of pS6 per cell as shown in Figure 7C. 
Thus, flow cytometry is in principle useful for determining the sensitivity of 
pancreatic cancer cells to mTOR inhibition.

The mTOR pathway is activated in a subfraction of EUS-FNABs from 
pancreatic cancer patients and is potently inhibited by rapamycin
Finally, we determined ex vivo mTOR pathway activation in biopsies 
obtained through endoscopic ultrasonography in patients suspected for 
pancreatic cancer. Two hours of incubation with 0.1 µM rapamycin inhibited 

Figure 6. Western blot analysis and quantification of autophagy marker LC3A/B in BxPC3, 
SU86.86, HS700T, HPAF, and Capan-1. The cell lines were treated with increasing duration of 0.1 
µM rapamycin. Next, we prepared lysates and these were subjected to LC3A/B antibodies. The 
expression of LC3A/B-II increases during prolonged incubation with rapamycin in rapamycin-
sensitive cell lines. We quantified the expression of LC3A/B-II, normalized against beta-actin, as 
indicator of autophagy. 
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pS6 levels in CK8/18+ cells in two out of nine samples (22%). In those two 
samples we identified as ‘potential responders’, rapamycin led to a relative 
reduction of more than 90% (94.2% and 98.4%) in the amount of pS6 
expressing cells. Figure 8 depicts two representative scatter plots and 
histograms of a patient with high levels of pS6 and response to rapamycin 
treatment (Figure 8A) and a patient with no response to rapamycin 
(Figure 8B). To measure the phosphorylation of S6 per cell, the pS6 MFI 
of CK8/18+ cells was calculated. Potential responders (n=2) showed a 
mean reduction in MFI of 81.3% (±2.7%), while the average MFI change in 
non-responders (n=7) was 8.8% (±6.1%) (p<0.01) (Figure 8C). Thus, EUS-
FNAB and flow cytometry are useful for identifying potential responders to 
rapamycin therapy.

Figure 7. Flow cytometry scatter plots and corresponding overlay histograms of a responsive cell line 
– BxPC3 (A) and a non-responsive cell line – HS700T (B). In accordance with our western blot data, 
BxPC3 display higher basal mTOR activation in the CK8/18+ population (64.0%). This CK8/18+pS6+ 
population was effectively reduced after 2 hours incubation with 0.1 µM rapamycin to 11.1%. In contrast, 
basal mTOR activation in HS700T was markedly lower (3.48%) and the effect of rapamycin on the 
CK8/18+pS6+ population was therefore diminished. The overlay graphs are a representation of the 
count (y-axis), in the CK8/18+ population (marked by the red box), within the pS6-channel (x-axis). 



106

DISCUSSION

Our ex vivo analysis on EUS guided FNABs of patients shows that 22% 
of PDAC patients potentially benefits from treatment with rapalogs. This 
number is in accordance to what was observed in a preclinical setting in 
mice, where rapamycin induced regression in 4 out of 17 xenografts (23.5%) 
[14]. However, the presence of feedback loops after mTOR inhibition 
can induce therapy resistance in these patients [28]. Consequently, the 
question remains whether these patients can be treated with rapalog 
monotherapy or whether rapalog will be part of a treatment protocol. In the 
coming years it will become clear whether strategies involving combination 
therapy with second generation mTOR inhibitors which inhibit mTORC1 
and mTORC2 [29], dual mTOR/PI3K inhibitors which block the PI3K/Akt 
feedback activation [30], or the addition of JAK2/STAT5 inhibitors [31] will 
prove beneficial in PDAC.

Pancreatic cancer is a heterogeneous disease, with various different 
mutations in individual genes among a diversity of pathways [7]. The 
idea of tumor heterogeneity in pancreatic cancer is a concept that has 
been established decades ago [32]. In our immunohistochemistry data 
we confirmed heterogeneity in terms of mTOR activation. During tumor 
genesis we observe a gradual increase in mTOR activation from normal 

Figure 7C. Graphical overview of the mean fluorescence intensity (MFI) of all cell lines incubated 
with and without 0.1 µM rapamycin during 2 hours. The MFI change in rapamycin-sensitive cell 
lines was 57.7% and 51.9% for BxPC3 and SU86.86, respectively. In HS700T the change in MFI was 
0.8%. Capan-1 and HPAF exhibited reductions of 9.8% and 13.0%, respectively. The MFI was calculat-
ed within the CK8/18+ population only.
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ducts, to PanIN lesion, and finally in PDAC. This heterogeneity is also 
observed between PDACs, which makes selection of patients necessary to 
avoid futile treatment. Moreover, we also observed high mTOR activation 
in normal acinar region. However, the normal acinar regions were taken 
adjacent to adenocarcinoma so it is debatable whether morphological 
normal areas are actually normal, considering the yet unknown origin of 
PDAC [33]. 

The data from the western blot and MTT-assay show increased 
cytotoxicity in pancreatic cancer cell lines with hyperactivated mTOR 
pathway after the addition of rapamycin. Both responsive cell lines (BxPC3 
and SU86.86) show significant correlation of increasing dose of rapamycin 
with cytotoxicity (p≤0.001). In comparison, unresponsive cell lines do not 
show a clear threshold effect but rather a dose response effect as can be 

Figure 8. Representative flow cytometry scatter plots and corresponding overlay histograms of 
a potential responder (A) and non-responder (B). The potential responder exhibited activation in 
the mTOR pathway which responded to rapamycin. The non-responder showed no change in the 
CK8/18+pS6+ population after treatment with rapamycin. The overlay graphs are a representation of 
the count (y-axis), in the CK8/18+ population (marked by the red box), within the pS6-channel (x-axis).
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observed in HS700T(most likely due to off-target effects).To further study 
the mechanism behind increased cytotoxicity, we analyzed autophagy 
(type 2 cell death) in our pancreatic cancer cell lines. Interestingly, we 
observed that rapamycin only induced autophagy in rapamycin sensitive 
pancreatic cancer cell lines. In contrast, some pancreatic cancer cell lines 
(HPAF, Capan-1, and HS700T) seem unsensitive to rapamycin, which is 
also reflected in a lower degree of pS6 inhibition and failure to induce 
autophagy. Rapamycin has been shown to induce autophagy pancreatic 
cancer cell lines before [34]. In this context however, autophagy was most 
likely activated due to the antitumor effect of rapamycin rather than a 
protective response [34, 35]. Whether autophagy in cancer is a prosurvival 
process or part of antitumor effects is still point of discussion. Yang et 
al. found that in the case of pancreatic cancer, autophagy is needed for 
tumorigenic growth [36]. Therefore, they recommend trials in PDAC using 
drugs targeting autophagy, such as chloroquine. 

Using flow cytometry, we show that the responsiveness of a tumor for 
rapamycin can be quantitatively assessed. Our pancreatic cancer cell 
line data indicate that hyperactivation of the mTOR pathway in PDAC 
can be potently inhibited by tolerable concentrations of rapamycin. 
Hyperactivation of the mTOR pathway is also seen in patients with the 
Peutz-Jeghers syndrome where mutations in LKB1 can lead to inactivation 
of the LKB1/AMPK/TSC axis and thereby activating mTORC1, and 

Figure 8C. Graph depicting changes in MFI in potential responders and non-responders. Single cell 
suspensions from EUS-FNABs were measured using flow cytometry. Each sample was incubated 
without and with 0.1 µM rapamycin for 2 hours. We selected the CK8/18+ population and calculated 
the MFI in each condition. Two samples displayed a substantial reduction in MFI by an average of 
81.3%. Seven samples were classified as non-responders due to the minimal change in MFI after 
treatment with rapamycin.
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eventually leading to the development of tumors [37]. Interestingly, 3-35% 
of PDACs have been shown to have loss of LKB1 expression in multiple 
studies [38, 39] and most likely subsequent mTOR activation. To further 
support the rationale of the use of mTOR inhibitors, Klümpen et al. reported 
successful use of a rapalog (everolimus) in the treatment of a patient with 
advanced pancreatic cancer suffering from Peutz-Jeghers syndrome [40], 
supporting the need for individualized treatment. The question remains 
how to obtain tumor samples for stratification, and we believe EUS guided 
FNAB could be helpful in this situation. Phenotyping of these EUS-
FNABs using flow cytometry shows that the determination of rapamycin 
sensitivity in clinical setting is possible, paving the way for personalized 
medicine. 

Our study has some limitations pertaining the translation into an in vivo 
situation. We could not directly correlate our flow cytometry data of EUS-
FNABs with immunohistochemical staining of the same samples due to 
insufficient material. Furthermore, in our sensitivity assays of EUS-FNABs, 
we did not include measurements of cell viability. Therefore, solely blocking 
the mTOR pathway in a patient might not be sufficient to combat the 
tumor, regardless of sensitivity towards rapamycin or rapalogs. 

The results of our study suggest that it is possible to identify a 
subpopulation of pancreatic cancer patients with mTOR activation that 
are eligible for treatment with rapalogs. The lack of this test in previous 
studies with rapalogs might be an explanation for the disappointing results; 
only 20% would have been sensitive to rapalog treatment. Similarly, some 
pancreatic cancer cell lines seem totally resistant to mTOR inhibition, which 
may explain the failure of rapamycin therapy in unselected pancreatic 
cancer patients. Consistent with previous literature, we found an activation 
of the mTOR pathway in cell lines, resection specimens, and EUS-FNABs 
of PDAC [19, 41]. This activation in pancreatic cancer cell lines and EUS-
FNABs was effectively blocked by rapamycin in western blot and flow 
cytometry analysis. Furthermore, inhibition of pS6 levels by rapamycin are 
a good predictor of later cytotoxicity of the drug or its analogues. Targeting 
mTOR using rapalogs has recently shown to be efficacious in several 
neoplastic diseases such as pancreatic neuroendocrine tumors [42], 
hormone receptor positive breast cancer [43], and renal cell carcinoma 
after the failure of treatment with sunitinib or sorafenib [44]. 

We conclude that tumor tissue obtained in a minimal invasive way 
by means of endoscopic ultrasound guided fine-needle biopsy in 
chemotherapy naive PDAC patients can be used ex vivo to identify a 
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subpopulation of approximately 22% of patients that are potentially 
responsive to rapalog treatment. Such selection of patients for targeted 
treatment avoids futile treatment and potentially improves the outcome of 
existing chemotherapeutic regimens. Given our findings, future research 
should aim for combining ex vivo drug sensitivity analysis using pS6 flow 
cytometry analysis as biomarker for therapeutic effect with in vivo patient 
responses to therapy. 
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Supplementary Material

Supplementary Figure 1. Immunohistochemical staining of PanIN lesions. The variability of pS6 
expression is also seen in premalignant lesions. PanIN lesions with a score 0 (S1A)(10x) and 
PanIN lesions with a score of 3 (S1B)(20x).
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Supplementary Figure 2. Scatter plot of flow cytometry analysis and corresponding overlay 
histogram of SU86.86 with and without rapamycin. As seen in BxPC3 (figure 6A), basal mTOR 
activation is high. Consistently, rapamycin led to a marked reduction of the CK8/18+pS6+ 
population from 57.7% to 13.8% in SU86.86. This effect of rapamycin can also be observed in the 
corresponding histogram. The overlay graphs are a representation of the count (y-axis), in the 
CK8/18+ population (marked by the red box), within the pS6-channel (x-axis).
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Supplementary Figure 3. Flow cytometry scatter plot of other rapamycin insensitive cell lines 
Capan-1 (A) and HPAF (B). In Capan-1 and HPAF we observed similar absolute reductions of 0.21% 
in the CK8/18+pS6+ population after the addition of 0.1 µM rapamycin. The overlay graphs are a 
representation of the count (y-axis), in the CK8/18+ population (marked by the red box), within the 
pS6-channel (x-axis).
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Chapter 6 To the Editor: We read with interest the review from Gerich et al. in which 
they presented an excellent overview supporting the use of medical 
marijuana for gastrointestinal disorders (1). They report on 5 currently 
published randomized controlled trials performed for marijuana in 
gastrointestinal disease, using either dronabinol, a tablet containing >95% 
Δ9-tetrahydrocannabinol (THC), or smoked marijuana, and conclude that 
marijuana could be a promising modifier of gastrointestinal symptoms. 
The molecular mechanisms through which marijuana modulates 
gastrointestinal disease remain obscure from this paper. Gerich et al refer 
to in vitro studies showing inhibition of tumor necrosis factor-α (TNF-α)-
induced interleukin-8 (IL-8) release in epithelial cells after activation of 
the cannabinoid receptor (CB) 2, suggesting that intestinal inflammatory 
responses may be dampened by CB2 mediated alterations in pro-and anti-
inflammatory cytokine profiles. However, we now have strong indication 
that this mechanism, i.e. modulation of cytokine profiles, is not likely to 
contribute to the effect of THC in vivo. 

Recently, a phase II randomized double blinded placebo controlled 
study was conducted using Namisol® (a tablet containing pure, natural 
THC [dronabinol])(2), in chronic pancreatitis (CP) patients to relief pain 
(clinicaltrials.gov: NCT01551511), with CP patients randomized to receive 
either Namisol® or placebo for 50-52 days. While the primary study 
outcomes on pain remain to be reported, here we report one of the 
secondary outcomes, which was to investigate cytokine profiles after 
ingestion of Namisol®. Plasma samples were collected before start of 
study treatment, and after Namisol® or placebo treatment. Cytokine 
levels were measured by enzyme-linked immunosorbent assay (ELISA). 
We demonstrate that while baseline levels of the pro-inflammatory 
cytokine TNF-α were significantly increased in CP patients as compared 
to healthy controls (p=0.0012), use of the CB1 and CB2 agonist Namisol® 
did not modify these levels, i.e., no differences were observed in TNF-α 
levels between patients receiving Namisol® or placebo (Figure 1A). 
Similarly, levels of IL-8, which were not significantly increased in CP 
patients compared to healthy controls, were not changed after Namisol® 
administration (Figure 1B). Similar results were observed for levels of 
the anti-inflammatory cytokine IL-10 (data not shown). Positive plasma 
THC levels in patients receiving Namisol® were confirmed by liquid 
chromatography-tandem mass spectometry (ABL BV, Assen) (Figure 1C), and 
did not correlate with cytokine levels. Thus, activation of the CB1 and CB2 
receptors by Namisol® (THC) does not seem to affect levels of the pro- and 
anti-inflammatory cytokines TNF-α, IL-8, and IL-10 in vivo, in this subset 
of patients with chronic pancreatitis. Possible anti-inflammatory effects 
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of medical marijuana may stem from other cannabinoids or mechanisms 
of immunoregulation, such as apoptosis or inhibition of immune cell 
proliferation, are currently under investigation. Further research using 
cannabinoids or selective CB receptor agonists or antagonists are needed 
to elucidate the mechanisms by which the compounds exert their various 
effects in different gastrointestinal disorders.

Figure 1. Levels of TNF-α and IL-8 are unchanged upon Namisol® intake, while THC plasma levels 
are increased. 
TNF-α (A) and IL-8 (B) in healthy controls and chronic pancreatitis (CP) patients at baseline and 
three hours after Namisol® intake at day 52 of the placebo randomised control trial. THC plasma 
levels (C) at baseline and 3 hours after Namisol® intake. 
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Chapter 8 PART 1: IDENTIFICATION OF HIGH RISK PANCREATIC 
CYSTS 

Diseases of the pancreas, such as chronic pancreatitis (CP) and pancreatic 
cysts pose a common health problem. In addition to harboring their own 
pathogenic features and clinical challenges, these diseases have the 
associated disadvantage of conferring an increased risk for development 
of pancreatic cancer (Figure 1). The incidence of CP is estimated to be 
around 12/100,000, and may lead to pooled relative risk for pancreatic 
cancer of 13.3, and in the cases of hereditary pancreatitis even 60 [1,2]. 
In addition, the prevalence of asymptomatic pancreatic cysts may be as 
high as 2%, and is increasing with age. Pancreatic cystic neoplasms (PCN), 
which encompass more than 50% of all pancreatic cysts, are considered 
pre-malignant lesions, which can progress to pancreatic cancer and 
therefore are often resected as a preventative measure. However, in truth, 
only solid pseudopapillary neoplasm (SPN), mucinous cystic neoplasms 
(MCN) and intraductal papillary mucinous neoplasms (IPMN) show a high 
tendency to transform, whereas serous cystic adenomas (SCAs) are benign 
[3]. Thus, there is an urgent need to find accurate, reliable, non-invasive 
markers, which can distinguish these high risk and low risk cysts, and aid 
clinical decision making. While several markers have been suggested, and 
some are implemented in the clinic (see General Introduction, Chapter 1), 
the rate of unnecessary surgery is still too high, leading to unnecessary 
risks to patients. In the first part of this thesis, we aimed validate some 
of the biomarkers suggested in the literature, in order to find a clinically 
implementable tool contributing to an improved risk assessment. 

In Chapter 2 of this thesis, we first set out to make an inventory of the 
pancreatic resections performed in our institute, and to determine whether 
these resections were justified. We found that there was an increasing 
incidence of pancreatic cyst resections, most likely due to improved 
imaging techniques available. The Sendai guidelines (which were updated 
in 2012 from their previous version of 2006 [4]) suggest surgical resection 
of all MCN in surgically fit patients. In addition, resection is recommended 
for main duct-IPMN in all surgically fit patients, with resection of side 
branch-IPMN recommended when ‘worrisome features’ and ‘high-risk 
stigmata’ are present. Thus, a correct diagnosis between mucinous and 
non-mucinous cysts is required in order to follow these guidelines. While 
in our tertiary referral center, pre-operative diagnosis of mucinous cysts 
was relatively good, and improved over time, non-mucinous cysts were 
only correctly diagnosed in 54% of cases. This suggests that patients 
with benign cysts are still undergoing unnecessary surgery. One can 
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imagine that in centers with a lower patient load and less experience in the 
required diagnostic imaging procedures, these numbers might be even 
higher. We therefore investigated whether diagnostic accuracy between 
mucinous and non-mucinous PCN could be improved by assessment 
of mucinous background in cytological preparations from endoscopic 
ultrasound-fine needle aspirates (EUS-FNA). Indeed, while measurement 
of the commonly used marker carcinoembryonic antigen (CEA) resulted 
in a sensitivity of 39%, specificity of 96.7% and overall accuracy of 63.4%, 
adding mucinous background information to this analysis improved these 
to a 75% sensitivity, a 79.1% specificity and overall accuracy of 76.8%. In 
our cohort, implementation of mucinous background could have prevented 
misdiagnosis in several cases, thus showing the benefit of implementing 
this analysis. Other markers to distinguish mucinous from non-mucinous 
cysts have also been suggested. For example, the measurement of glucose 
in cyst fluid showed a sensitivity of 100%, but a specificity of only 33% and 
requires an additional test [5]. Thus, the evaluation of mucus in the cyst 
fluid during cytology, which is non-labor intensive and does not infer extra 
costs, may be one of the most easily implementable assets.

While a better identification of non-mucinous cysts is definitely a step 
in the right direction, a better characterization of the mucinous cysts 
themselves is also warranted. In Chapter 2, we go on to show that only 

Summary 
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discussion 

Figure 1. inter-relationships between pancreatic diseases. Where known, approximate yearly 
incidence rates per 100,000 persons are indicated. Arrow indicates relationship between diseases. 
Figure adapted from Yadav and Lowenfels, Gastroenterology 2013 Jun:144(6):1252-1261.
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35% of the resected mucinous PCN demonstrate malignant transformation 
by histological analysis, suggesting that surgery could have safely been 
postponed or even deferred indefinitely in some of these patients. While 
several studies have shown that the 2006 Sendai guidelines had a low 
positive predictive value, resulting in the resection of many benign cysts, 
the 2012 revision of these guidelines aimed to reduce this false positivity 
rate by stratifying side branch-IPMN in 3 instead of 2 categories – high 
risk, worrisome risk and low risk [6]. Nevertheless, our data show that 
the current Sendai guidelines are still not specific enough, and result in a 
large number of false positives. These results are consistent with others, 
showing that implementation of the new guidelines have not eradicated 
resections of low risk cysts [7,8]. It has even been suggested that the 
guidelines are not safe, in that malignant cysts are sometimes missed [9]. 
We and others [10] show that neither CEA nor the presence of mucin in 
FNA is able to accurately predict malignant transformation of cysts. Thus it 
is clear that additional tumor markers to further identify high risk and low 
risk cysts are urgently needed. 

Several biomarkers for high risk cysts have been suggested, based on DNA, 
RNA or protein alterations, although few have been validated or made it 
into clinical practice [11,12]. One of the most promising novel strategies for 
identification of pathological conditions is the measurement of microRNAs 
(miRs) in bodily fluids [13]. MiRs are very stable and alternatively expressed 
in many tumor types. Serum or tissue miRs have also been suggested 
as potential marker for pancreatic ductal adenocarcinoma [14]. A recent 
publication suggests that the individual measurement of miR-223 in serum 
may distinguish between malignant and non-malignant IPMN with an 
area under the curve (AUC) of 0.834, a sensitivity of 62.0%, a specificity of 
94.1% and an accuracy of 77.7% [15]. Combining several miRNAs may be 
an even more promising approach, as Matthaei et al. showed that a 9 miR 
panel was able to discriminate between high risk and low risk cysts with 
a sensitivity of 89%, a specificity of 100% and an impressive AUC of 1 [16]. 
This being the most promising potential marker panel published to date, we 
aimed to validate the use of these miR measurements in cyst fluid for the 
identification of high risk cysts in Chapter 3. 

We therefore measured 9 individual miRs in 52 low risk cysts and 10 
high risk EUS-FNA obtained cyst fluids, and combined these into 7 
distinctive diffpairs by extracting the Ct value of one miR from the other. 
While expression of none of the individual miRs differed between low 
risk and high risk cysts, expression of one diffpair ([miR106b;miR92a]) 
was significantly decreased in high risk cysts. We next combined these 
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7 diffpairs into a risk profile based on a logistic regression model, 
representing (as described by Matthaei et al.) the need for resection, i.e. 
differentiating between high risk and low risk cysts. In our cohort, this 
risk profile indeed showed significant differences between cysts with 
high or low malignant potential. However, using a cut-off level of 50%, 
specificity of this marker panel was 100%, but sensitivity was a meagre 
10.0%. While dropping the cut-off level improved diagnostic accuracy, we 
concluded that, as it stands, this miR model is not yet suitable for clinical 
implementation. One potential problem with the clinical implementation of 
this miR panel, is that in the logistic regression model, a different weight is 
attributed to each of the individual diffpairs. This relative weight is based 
on the relative differences of the diffpairs between high risk and low risk 
cysts (i.e., the more distinguishing power a diffpair has, the higher its 
weight-factor in the model) – however, these weight-factors are based on 
the differences observed by Matthaei et al, in their cohort, and may not be 
the same in other cohorts. While they were able to validate their model in 
another cohort, we obviously were not. 

We therefore continued our search for suitable biomarkers for malignant 
transformation of pancreatic cysts in Chapter 4. Whereas in Chapter 3 we 
hoped to use RNA as a marker, in Chapter 4 we focused our attention on 
DNA profiles. We wanted to take advantage of one of the tumor hallmarks 
– their tendency to release long fragments of DNA into their surroundings. 
During normal cellular and tissue homeostasis, aged cells will die through a 
carefully coordinated mechanism. During this programmed cell death, cells 
shrink, DNA condenses, the cell membrane starts to show irregular shapes 
(blebbing) and the nucleus collapses (Figure 2) [17]. Cellular components 
are subsequently wrapped up in pieces of the plasma membrane, forming 
apoptotic bodies. These can be taken up by phagocytes, which degrade 
the contents of these apoptotic bodies through lysosomal degradation 
[18,19]. During apoptosis, an internal cascade of enzymatic reactions is 
activated, which help degrade the intracellular components. One of the 
proteins activated by this caspase cascade is DNA fragmentation factor 
(DFF) [20], which cleaves DNA at internucleosomal sites. As DNA is wound 
twice around a nucleosome, with a total length of 146bp, the nucleosomal 
fragments produced by DFF are generally of a uniform size of 180-
200 bp in length. This physiological process of programmed cell death 
prevents cell content from dying cells from spilling into the surrounding 
environment, where they would otherwise elicit an inflammatory response 
[21]. Under pathological conditions, however, cells can also die by necrosis, 
during which cells swell, and intracellular components are released upon 
rupture of the plasma membrane. At this time, long fragments of cellular 
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DNA are released into the system. Pathological conditions during which 
necrosis takes place include cancer, when cells become resistant against 
apoptosis, and employ necrosis when they do die [22,23]. In cancer 
patients, increased levels of long fragments of free circulating cell free DNA 
(cfDNA) were shown to be present in the peripheral blood, and mutational 
analysis showed this DNA to originate from the original tumor. Therefore, 
analysis of the integrity of cfDNA by comparing the ratios of long length to 
short length DNA fragments in serum from cancer patients versus controls 
is thought to be a promising tool in the diagnosis and prediction of cancer 
[24,25]. In Chapter 4, we therefore analysed the integrity of cfDNA in 
serum from patients with pancreatic carcinoma and healthy controls, but 
did not observe any significant differences between sera from patients and 
controls. These results were perhaps not surprising, as previous studies 
were also unable to show necrosis-derived DNA fragments in serum from 

Figure 2. Characteristics of the three major forms of cell death. The macroscopic differences between 
apoptosis, necrosis and autophagy are presented. ER; endoplasmic reticulum. Image adapted from 
Basisboek Medische Celbiologie, with permission from the authors.
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patients with pancreatic cancer [26]. We speculated that the enclosed 
nature of the pancreatic cysts prevents dissemination of released necrotic 
DNA, thereby precluding their detection in the peripheral blood above 
background levels. We therefore decided to analyse 115 bp (apoptotic-cell 
derived) and 247 bp (necrotic cell derived) DNA fragments in pancreatic 
cyst fluids, in the hope to distinguish between low risk and high risk cysts. 
Our results show that DNA levels are almost a thousand fold higher in 
cyst fluids as compared to sera, which appears to confirm the isolated 
compartment of the cyst interior. However, we did not observe an increased 
presence of long DNA fragments in cyst fluid from patients with high risk 
cysts, showing that unfortunately, measurement of DNA integrity is not a 
good diagnostic tool for the detection of high risk pancreatic cysts. As the 
amount of necrosis within a tumor is depend on the tumor size [27], it is 
conceivable that the tumor load of the premalignant lesions is simply not 
large enough to trigger enough necrosis to make this assay a valuable tool 
for pancreatic cancer screening. While these results are disappointing, they 
do indicate that concentrations of DNA, and possibly therefore RNA and 
proteins, are high in pancreatic cysts, suggesting that other markers may 
be found in this compartment to help clinical decision making. 

One challenge we encountered in the course of these studies is that the 
number of low risk cysts outweighs that of the high risk cysts, making 
statistical comparisons challenging. In addition, the mucinous nature of 
the cyst fluid makes their handing difficult and resulted in further loss 
of samples in our analyses. Another impediment in these studies is that 
cyst fluids were collected from patients undergoing EUS-FNA in the 
course of clinical patient care. Thus, there were considerable differences 
in the length of time that passed between the collection of the cyst fluid 
and histological confirmation of malignancy. It is therefore theoretically 
conceivable that malignant features that were not present at time of EUS-
FNA had developed by the time of resection. In such hypothetical cases 
the cysts fluid, now classified as high risk, should have been classified 
as low risk. However, the studies as presented accurately describe the 
clinical practice – it is impossible to predict when a lesion may transform 
and the only possible way to allow for these temporal issues would be 
to subject patients to an EUS-FNAs on a regular basis. Such (bi-)annual 
screening would present a high burden on both patients and the health care 
system, and cost effectiveness studies would need to show whether such 
screenings would be worthwhile. 

Conclusion Part 1
Thus, in part one of this thesis we show that despite the implementation 
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of the revised Sendai guidelines in 2012, unnecessary surgery is still 
performed for benign cysts. While identification of mucinous cysts can be 
improved by including mucinous background reads of cytology smears in 
diagnostic work-up, markers to distinguish high risk mucinous cysts from 
those with low malignant potential are still needed. Cyst fluid may be an 
ideal compartment to detect such biomarkers. However, our analyses show 
that neither a previously described 9-miR panel, nor measurement of DNA 
integrity, is a suitable instrument for high risk cyst diagnosis. 

PART 2: TARGETED TREATMENT OF PANCREATIC 
DISEASE 

Not all pancreatic ductal adenocarcinomas arise as a secondary 
consequence of cysts or pancreatitis – pancreatic intraepithelial neoplasia 
(PanIN) lesions are also a common precursor of PDAC, which develops 
in a stepwise progression from low to high risk. The total incidence of 
pancreatic cancer in the SEER database of the National Cancer Institute 
suggests that around 1.5% of all people will be diagnosed with pancreatic 
cancer at some point in their life. Thus, pancreatic cancer is one of the 
most frequent cancers worldwide. The prognosis for pancreatic cancer is 
poor, with a relative 5-year survival rate of around 25% for PDAC isolated 
in the pancreas. However, upon lymph node involvement and widespread 
metastasis, the 5-year survival drops to a dramatic 9.9% and 2.3%, 
respectively [28]. Unfortunately, >90% cases are detected when the cancer 
has already spread to regional or distant sites, making the overall 5-year 
survival rate around 5%. Until better markers and early diagnostic tools are 
found, the question remains: how best to treat these patients?

Treatment of pancreatic cancer is currently based on 5 standard 
options: surgery, radiation therapy, chemotherapy, chemoradiation 
therapy and targeted therapy. In addition, pain treatment is often 
performed. Chemotherapy consists of an arsenal of antimetabolites (e.g. 
5-Fluorouracil, Gemitabine), DNA crosslinking agents (e.g. Mitomycin C) 
and anti-microtubule agents (e.g. Paclitaxel). These chemotherapeutics 
target all proliferating cells, including normal cells. Recent decades 
have seen the development of targeted therapies for many cancers, 
including PDAC. Targeted therapy options, where specific molecules that 
are important for cancer cell growth and survival are inhibited, include 
Sunitinib, a multi-receptor tyrosine kinase (RTK) inhibitor and Erlotinib, 
an EGFR inhibitor, which also inhibits other RTKs in PDAC [29]. Another 
targeted therapeutic approved for PDAC treatment is Everolimus, a 
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specific inhibitor of the mTOR pathway. The mTOR pathway controls many 
cellular processes, and enhanced activity of this pathway has been shown 
in many tumors, including PDAC [30–32]. Activation of mTOR through 
receptor activation by growth factors is a multi-step process. First, receptor 
activation leading to activity of phosphatylidinositol-3(OH) kinase results 
in activity of Akt. Akt subsequently phosphorylates the tuberous sclerosis 
complex (TSC1/2), thereby inactivating its ability to switch on the GTPase 
activity of Rheb. Rheb is therefore unable to hydrolyze its bound GTP to 
GDP, becomes activated and activates mTOR. This kinase then activates 
p70S6 kinase, which phosphorylates the ribosomal protein S6. Activity 
of the mTOR-S6 pathway is important for protein synthesis and cell 
growth and mediates development of pancreatic cancer [33]. Inactivation 
of mTOR can occur upon nutrient deficiency and is mediated through 
AMP-activated protein kinase (AMPK). This process causes autophagy, 
whereby the cell tries to outlive temporary nutrient shortage by recycling 
cellular components but which, on prolonged duration, leads to cell death 
(Figure 2). Chemical activation of AMPK by Metformin has therefor been 
suggested as potential treatment for cancer (Figure 3) [34]. Interestingly, 
in patients with diabetes mellitus, the use of insulin has been associated 
with an increased risk, while using metformin is associated with a lower 
risk of developing pancreatic cancer [35]. This is consistent with the finding 
that the Insulin-like Growth Factor I (IGF-1) receptor is overexpressed in 
pancreatic cancer [36].Thus, targeting mTOR with small molecule inhibitors 
appears a promising approach in the treatment of PDAC. Nevertheless, 
clinical trials with Everolimus in PDAC have so far been disappointing, 
with only a small groups of patients benefitting from the use of this mTOR 
inhibitor [37,38]. However, pancreatic cancer is a heterogenic disease, 
with different patients showing activation of different intracellular growth 
pathways [30]. Studies with targeted therapy in other cancers have shown 
that effectiveness of treatment may depend on the signaling pathways 
activated in tumors [39]. We therefore hypothesized that effectiveness of 
mTOR-inhibitor treatment would depend on mTOR activity status in the 
tumor. 

In Chapter 5, we investigated whether molecular response to mTOR 
inhibition could be used as an in vitro tool to predict cell death in 
response to treatment. We first showed that some, but not all PDAC 
patients show a strong activation of the mTOR pathway, as determined 
by S6 phosphorylation. While over-activation of mTOR in cancer can be 
caused by mutations in the TSC genes, a more common cause of mTOR 
upregulation is inactivating mutations in the cell cycle control gene TP53 
[40]. However, over-activation of mTOR in pancreatic cancer can also be a 
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direct result of oncogenic Ras-ERK signaling, in which case dual inhibition 
of ERK and mTOR is more effective than only inhibiting the downstream 
partner mTOR [41]. Indeed, KRAS PTEN tumors were shown to be much 
more sensitive to mTOR inhibitor treatment than KRAS TP53 driven 
tumors [42]. Thus, different tumors may depend on different oncogenic 
signaling pathways, which in turn may determine the cells’ sensitivity 
to inhibitors of these pathways. Importantly, most tumors, including 
PDAC, have multiple mutations interacting with similar pathways, and 
downstream mutations may hamper the effectiveness up upstream 
inhibitors [43]. As not all mutations are a priori known in PDAC patients, it 
would be useful to have an in vitro test to determine the potential response 
of patients to mTOR inhibitor treatments. We analyzed different pancreatic 
cancer cell lines for the presence of S6 phosphorylation by Western blot 

Figure 3. mTOR signaling in pancreatic cancer. mTOR signaling is involved in inflammation – a 
positive trigger for PDAC development – as well as protein synthesis and cell growth. Inhibition of 
mTOR, either directly (through Rapamycin analogues) or indirectly (through Metformin-induced AMPK 
activation) may inhibit inflammation and tumor development in PDAC. Figure adapted from Yue et al, 
Cancer Prev Res 2014;7:388-397 
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analysis, and their sensitivity to Rapamycin treatment by cell killing assays. 
We showed that while all 5 cell lines tested showed high constitutive S6 
phosphorylation patterns, S6 phosphorylation was drastically decreased 
upon Rapamycin treatment in only 2 of these cell lines, while the remaining 
three were more resistant. Interestingly, resistance as determined by 
S6 phosphorylation corresponded to resistance of these cell lines to 
Rapamycin-induced cell death, thereby opening up the possibility that 
in vitro analysis of phospho-S6 reduction by mTOR inhibitors might be a 
proxy for their cytotoxic effect. We went on to show that this reduction in 
S6 phosphorylation could be quantifiably measured by flow cytometric 
analysis – a huge benefit, as this subsequently allowed the analysis of 
S6 phosphorylation in individual cell populations rather than all cells 
combined. We were subsequently able to determine S6 phosphorylation 
specifically in epithelial cells present in EUS-FNA from pancreatic cancer 
patients. While constitutive S6 phosphorylation varied between patients, 
we demonstrated that in vitro treatment of cells with Rapamycin reduced 
S6 phosphorylation in 2 out of 9 patients. We concluded that measurement 
of sensitivity of the mTOR-S6 pathway to Rapamycin may be a promising 
new in vitro tool to predict response of pancreatic cancer patients to mTOR 
inhibitor treatment. 

Our results suggest that the use of mTOR modulators is a promising 
strategy for pancreatic cancer, at least in a subset of patients. While 
direct growth inhibition is most likely the main mechanism for tumor 
eradication, inhibition of mTOR mediated pro-inflammatory processes 
may be another (Figure 3). One of the risk factors for pancreatic cancer 
development is chronic pancreatitis – a finding attributed to the fact that 
ongoing inflammation causes DNA damage through the release of reactive 
oxygen species and pro-inflammatory mediators [44,45]. It is therefore 
conceivable that inhibition of the pro-inflammatory signaling in CP patients 
may reduce their risk to develop cancer. In the last two chapters of this 
thesis, we investigated the potential anti-inflammatory properties of 
medicinal marijuana, which was investigated in a clinical trial for pain relief 
in CP patients. 

While cannabis has been used in the clinic for many centuries, its main 
purpose has been to reduce nausea and combat anorexia and pain. 
However, immune cells express high levels of the cannabinoid receptor 
CB2, which suggests that one of the effects of cannabis might be the 
modulation of the immune system. Indeed, a link between cannabis use 
and susceptibility to bacterial infections in mice and men suggest that THC 
may have an immune-depressing effect [46]. In addition, THC treatment 
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was shown to alleviate acute pancreatitis in a mouse model [47]. While 
the exact mechanisms of CB2-mediated anti-inflammatory actions remain 
obscure, it is becoming clear that THC may have a direct effect on T-cells 
[48], by inhibiting mixed lymphocyte reactions and CD3-stimulated T-cell 
proliferation as well as suppressing CD8 T-cell cytolytic activity [49,50]. In 
Chapter 6, we investigated the cytokine profiles in sera from CP patients 
taking part in a clinical trial investigating the pain-alleviating capabilities of 
medicinal cannabis in CP. Patients were asked to ingest Namisol®, a 98% 
pure THC preparation, for 52 consecutive days, and blood was obtained 
at day 0, 15 and 52. We showed that levels of the pro-inflammatory 
cytokine tumor necrosis factor α (TNFα) were significantly elevated in 
CP patients prior to the start of the trial as compared to healthy controls. 
However, treatment with Namisol® did not reduce these TNFα levels when 
compared to placebo-treated patients. Furthermore, no differences were 
observed in either levels of pro-inflammatory interleukin 8 (IL-8) or the 
anti-inflammatory IL-10 between patients receiving Namisol® or placebo. 
Thus, these data showed that THC does not have a direct effect on cytokine 
levels in patients with CP.

To gain further insight into the potential anti-inflammatory properties of 
THC, we went on to investigate the intracellular, molecular consequences 
of THC on immune cells in Chapter 7. We started off by making a profile 
of the kinomic changes occurring in vivo in healthy subjects upon THC 
intake. This approach allows the unbiased analysis of kinomic activity 
towards 1024 described kinome substrates in one sample, thereby allowing 
identification of novel signaling links without a priori assumption of the 
pathways involved in the biological system tested. As we were interested 
in THC effects in the context of an inflammatory setting, we stimulated 
peripheral blood mononuclear cells (PBMCs) with the immune trigger 
lipopolysaccharide (LPS) prior to kinome analysis. Our data showed that 
THC lowered several signaling pathways in LPS-stimulated PBMCs, 
including ERK activity, Akt-S6 activity, Calcium signaling and Wnt 
signaling. Most noticeably however, was a downregulation of innate stress/
inflammatory signaling, including JNK and p38 activity, without an effect 
on NFκB. We confirmed that these changes were indeed induced by a 
direct effect of THC on PBMCs, by demonstrating that in vivo treatment 
of PBMCs with THC also reduced activity of these pathways in LPS-
stimulated PBMCs. LPS is a membrane component of Gramm-negative 
bacteria, and as such stimulates mainly the innate immune system (which 
is the first line of defense against bacterial infections) [51]. Some reports 
have suggested that T-cells may express the LPS sensor TLR4 as well, 
making it difficult to attribute the kinomic changes directly to individual 
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innate or adaptive immune cell compartments [52]. However, comparison 
of LPS and T-cell specific (αCD3/CD28 stimulated) signaling in PBMCs 
showed large differences between these two: whereas LPS induced a 
strong p38 phosphorylation and limited S6 activity, αCD3/CD28 triggered 
a massive S6 phosphorylation, and almost no p38 signaling. Analysis 
of individual cell subsets confirmed the innate immune function of LPS 
by showing that it did not activate S6 phosphorylation in T-cells. In 
subsequent experiments, we therefore used CD3/CD28 in order to show 
that THC also reduced S6 phosphorylation in activated T-cells. In light 
of the anti-inflammatory signaling observed in healthy individuals, we 
subsequently investigated mTOR-S6 signaling in patients taking medicinal 
cannabis for symptoms of pain. Again, we showed that phosphorylation 
of S6 was reduced within 1 to 5 hours after THC intake, in both T-cell and 
monocytes. However, we also demonstrated that prolonged treatment with 
THC increased basal S6 levels in innate and adaptive immune cells in two 
patients. 

A differential role of mTOR-S6 signaling in monocytes and T-cells has been 
suggested. While inhibition of mTOR clearly mediates anti-inflammatory 
aspects in T-cells, mTOR is suggested to limit inflammatory responses 
in monocytes. Thus, a decrease in mTOR signaling in monocytes might 
theoretically promote inflammation in patients taking THC. However, in 
light of the limited S6 signaling in monocytes as compared to T-cells, 
and the relative importance of p38 in these cells, it seems more likely 
that the reduction in p38 and S6 phosphorylation immediately following 
THC treatment together elicit an anti-inflammatory effect. Nevertheless, 
our data also suggest that while incidental use of marijuana may reduce 
inflammatory responses, prolonged treatment with THC may increase 
inflammatory signaling in T-cells at least. It would be interesting to 
investigate the long term effect of THC on p38 phosphorylation in innate-
immune cells. Interestingly, there have now been several case studies 
demonstrating that regular cannabis use may lead to acute pancreatitis 
[53–55]. We postulate that an increase in mTOR-S6 pro-inflammatory 
signaling may have contributed to these cases, and argue that caution 
should be taken in the use of medical cannabis. 

Conclusion Part 2
In part 2 of this thesis, we demonstrate that mTOR inhibition as a targeted 
therapy for pancreatic cancer may be of use, but would benefit from in 
vitro screening of those patients who are eligible for this treatment, based 
on a reduction in cellular S6 phosphorylation upon Rapamycin treatment. 
Targeted treatment for chronic pancreatitis may include the use of medical 
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marijuana. We demonstrate that medical cannabis has strong anti-
inflammatory properties directly after intake, as determined by a reduction 
in p38 and mTOR-S6 pro-inflammatory signaling, but that prolonged use 
of cannabis may enhance inflammation, which could potentially contribute 
to tumorigenesis. Thus, caution should be taken when using cannabis for 
medicinal purposes. 
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Chapter 9 DE ALVLEESKLIER

De alvleesklier is een orgaan van ongeveer 14 cm lang en 2 cm dik, dat 
zich achter de maag in de buikholte bevindt. De medische naam van de 
alvleesklier is pancreas. De belangrijkste functies van de alvleesklier zijn 
het produceren van spijsverteringssappen die helpen bij de afbraak van 
voedsel en de aanmaak van hormonen die de suikerspiegels in het bloed 
reguleren. De spijsverteringssappen die worden aangemaakt bevatten 
enzymen die in staat zijn de suikers, vetten en koolhydraten in ons eten 
af te breken. Deze sappen worden aangemaakt in zogenaamde ‘exocriene’ 
cellen, die deze sappen afgeven aan een netwerk van afvoergangen in de 
alvleesklier. Deze eindigen uiteindelijk via de alvleesklierbuis (pancreatic 
duct) in de twaalfvingerige darm, alwaar de spijsverteringssappen zich 

Figuur 1. De alvleesklier (pancreas) bevindt zich achter de maag (stomach) en ligt tegen de milt 
(spleen) aan. Het bestaat uit een kop(head), lichaam (body) en staart (tail). Verteringssappen die in 
de pancreas worden geproduceerd worden afgevoerd naar de twaalfvingerige darm via de ductus 
pancreaticus (pancreatic duct).



175

Nederlandse 
samenvatting

kunnen mengen met het voedsel in ons maag-darm kanaal en hier kunnen 
bijdragen aan de vertering. Dagelijks produceert de alvleesklier ongeveer 
1,2 liter spijsverteringssap. De tweede, endocriene functie van de pancreas 
is het produceren van insuline en glucagon. Deze hormonen worden 
aangemaakt in eilandjes van cellen die in de alvleesklier gelegen zijn, de 
eilandjes van Langerhans. Ten tijde van een overschot aan suiker (glucose) 
in het bloed worden β-cellen in de eilandjes van Langerhans aangezet tot 
de productie van insuline dat via de bloedbaan naar de rest van het lichaam 
wordt getransporteerd, waar het onder andere vet- en spiercellen aanzet 
tot het opnemen van glucose uit het bloed. Wanneer glucose bloedspiegels 
te laag zijn produceren α-cellen in de eilandjes van Langerhans het 
hormoon glucagon, dat lever-, vet- en spiercellen vertelt dat ze glucose 
moeten afgeven aan het bloed. Deze hormoonafgifte zorgt ervoor dat de 
bloedsuikerspiegels gedurende de hele dag constant blijven. 

ZIEKTE VAN DE PANCREAS

Pancreas kanker is een van de meest dodelijke vorm van kanker, en staat 
op de vijfde plek wat betreft kanker-gerelateerde doodsoorzaken in 
Europa. Slechts 5% van de mensen met pancreaskanker overleeft langer 
dan 5 jaar na diagnose. Een belangrijke reden voor deze slechte kans 
is dat pancreaskanker zelf weinig symptomen veroorzaakt, waardoor 
de ziekte vaak pas ontdekt wordt in vergevorderd stadium, als deze 
al is uitgezaaid in het lichaam. Een van de belangrijkste risicofactoren 
voor het ontwikkelen van pancreaskanker is roken of gerookt hebben. 
Daarnaast kan ook het gebruik van alcohol (> 3 glazen per dag) de kans 
op kanker van de alvleesklier aanzienlijk verhogen. Een belangrijke 
reden hiervoor is dat alcohol chronische ontsteking van de pancreas kan 
veroorzaken, wat op zichzelf weer een risicofactor is voor het ontstaan van 
pancreaskanker. Chronische ontstekingsreacties veroorzaken productie 
van toxische stoffen die DNA schade kunnen veroorzaken, waardoor 
cellen oncogene mutaties kunnen oplopen die weer kunnen resulteren 
in een groeivoordeel. Naast chronische pancreatitis zijn er ook andere 
ziekten van de pancreas die kunnen bijdragen aan een verhoogde kans 
op pancreaskanker. Pancreascysten bijvoorbeeld, zijn holtes gevuld met 
vocht in de pancreas die soms kunnen ontaarden in kanker. Hoe vaak 
cysten in de pancreas voorkomen is niet precies bekend, aangezien ze 
niet altijd symptomen veroorzaken, en vaak per toeval ontdekt worden. 
Een groot deel van de cysten in de pancreas zijn goedaardig, en vormen 
geen risico voor de patiënt. Neoplastische pancreascysten daarentegen 
dragen wel een risico met zich mee en deze worden, afhankelijk van 
het risico, operatief verwijderd. Binnen deze groep van cysten kan 
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onderscheid gemaakt worden tussen hoog risico en laag risico cysten. 
Waar intraductale papillaire mucineuze neoplasma (IPMN) en mucineuze 
cystische neoplasma (MCN) premaligne cysten zijn, is de prognose bij 
solide pseudopapillaire tumoren en sereuze cystische adenomas relatief 
goed. Het onderscheid tussen deze typen cysten is echter op basis van 
de huidige beeldvormende technieken niet goed te maken. De klinische 
besluitvorming is erbij gebaat indien hoog risico cysten vroegtijdig zouden 
kunnen worden onderscheiden van de laag risico cysten, om hiermee 
onnodige chirurgische ingrepen met alle potentiële complicaties van 
dien, te voorkomen. In deel 1 van dit proefschrift hebben wij geprobeerd 
moleculaire biomarkers te identificeren die zouden kunnen helpen bij 
de vroegtijdige opsporing van hoog risico cystische laesies. In deel twee 
van dit proefschrift hebben we gekeken naar mogelijke behandeling van 
pancreaskanker met remmers van oncogene signalering, en de rol van deze 
signalering bij behandeling van ontstekingen van de pancreas. 

DEEL 1: IDENTIFICATIE VAN HOOG RISICO 
PANCREASCYSTEN

In Hoofdstuk 2 van dit proefschrift hebben we geïnventariseerd hoeveel 
patiënten in het Erasmus MC zijn geopereerd tussen 2000 en 2014 voor 
de aanwezigheid van een premaligne pancreas cyste, en of deze operaties 
gerechtvaardigd waren. We laten zien dat er een stijgende lijn is in het 
aantal operaties dat werd uitgevoerd in dit tijdsbestek, met slechts 2 
resecties tussen 2000 en 2002 en meer dan 50 operaties tussen 2012 
en 2014. Dit is waarschijnlijk het gevolg van betere beeldvormende 
technieken, waardoor cysten vaker per toeval worden gevonden. Aangezien 
mucineuze cysten vaker uitmonden in pancreas tumoren, zouden volgens 
de richtlijnen alle IPMN en MCN moeten worden verwijderd. Het is dus van 
belang dat mucineuze en nonmucineuze cysten goed van elkaar worden 
onderscheiden. In ons centrum werd de diagnose voor mucineuze laesies 
in bijna alle gevallen goed gesteld vóór de operatie. Van de nonmucineuze 
laesies werd echter bijna de helft gediagnostiseerd als mucineus, en 
verwijderd terwijl dat wellicht (nog) niet nodig was geweest. In sommige 
gevallen wordt voor de diagnose van de laesies een biopt genomen uit de 
cyste, met een holle naald. Het materiaal dat op deze manier verzameld 
wordt, wordt op een glaasje uitgesmeerd en gekleurd, waarbij de 
eventueel aanwezige cellen door een patholoog worden beoordeeld op 
hun maligniteit. In Hoofdstuk 2 laten wij zien dat de aanwezigheid van 
mucine in dit cystevloeistof ook te detecteren is op deze preparaten, en dat 
het scoren van de aanwezigheid van mucine de diagnose voor mucineuze 
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versus non-mucineuze cystes had kunnen verbeteren. Wij raden dan ook 
aan om in de toekomst dergelijke informatie mee te nemen in de diagnose 
van pancreas laesies. 

Hoewel het onderscheid tussen mucineuze en niet-mucineuze cysten 
een stap in de goede richting is, zijn we er hier mee nog zeker niet. 
Mucineuze cysten hebben dan wellicht een grotere kans om te ontaarden 
in een maligniteit, dit gebeurt niet in alle gevallen, en niet altijd even 
snel. Uit histologische analyse van chirurgisch verwijderde laesies 
bleek in Hoofdstuk 2, dat slechts 35% van de gereseceerde cysten ook 
daadwerkelijk kenmerken van maligniteit vertoonden. Deze operaties 
hadden dus naar waarschijnlijkheid uitgesteld kunnen worden of waren 
wellicht niet nodig. Een betere identificatie van hoog risico cysten is dus 
nog steeds nodig. 

Er zijn al verschillende moleculaire biomarkers voorgesteld om het 
onderscheid tussen hoog risico en laag risico pancreas laesies te kunnen 
maken, maar tot nu toe is nog geen van deze markers in de kliniek in 
gebruik genomen, aangezien validatie van deze markers in andere studies 
nog niet is uitgevoerd. In Hoofdstuk 3 hebben wij gekeken of een eerder 
gepubliceerde biomarker ook in ons eigen patiënten cohort in staat zou zijn 
om hoog en laag risico pancreascysten van elkaar te onderscheiden. Hierbij 
maakten we gebruik van het feit dat cellen in staat zijn om kleine stukjes 
RNA los te laten in hun omgeving. Deze RNA moleculen, de zogenaamde 
microRNAs (miRs) reguleren in een cel welke eiwitten vanuit het 
genomisch DNA worden aangemaakt. Ieder celtype maakt een specifieke 
set miRs aan, en ook tumor cellen hebben een voor hun kenmerkend 
miR patroon. Deze miRs kunnen door cellen worden losgelaten, en zijn 
dan te meten in lichaamsvloeistoffen zoals serum, maar ook pancreas 
cystevloeistof. Wij hebben een panel van 9 van deze miRs gemeten in 
cystevloeistof afkomstig uit hoog risico en laag risico cysten, en vonden 
dat de relatieve hoeveelheden van deze miRs inderdaad verschilden tussen 
de verschillende risico klassen. Echter, in tegenstelling tot wat eerder 
beschreven was in andere pancreas cyste cohorten, vonden wij dat het 
onderscheidend vermogen van deze test niet gevoelig genoeg was om met 
voldoende zekerheid te kunnen zeggen of een pancreascyste kwaadaardig 
was of niet. Derhalve raden wij deze assay dan ook niet aan als klinische 
bepaling waarop het behandelplan van pancreas laesies kan worden 
aangepast.

In Hoofdstuk 4 hebben wij een nog niet eerder voor pancreas cystevloeistof 
beschreven biomarker getest, ditmaal gebaseerd op de integriteit van DNA 
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dat door tumor cellen wordt losgelaten. Wanneer cellen in het lichaam 
doodgaan, gebeurt dit normaliter volgens een nauwkeurig gereguleerd 
proces, waarbij het genomisch DNA in kleine stukjes wordt geknipt, 
die vervolgens vrij kunnen komen in het lichaam. Bij niet-fysiologische 
celdood, die onder andere optreedt bij tumor cellen, wordt het DNA niet 
op deze nauwgezette methode afgebroken, en komen dus langere DNA 
fragmenten vrij uit de stervende cel. De ratio tussen lange en korte DNA 
fragmenten (de DNA integriteit) in het serum, kan bij sommige vormen 
van kanker dan ook worden aangewend om vast te stellen dat er zich een 
tumor in het lichaam bevind. In hoofdstuk 4 hebben wij de lange en korte 
DNA fragmenten in het bloedserum van gezonde mensen en patiënten met 
pancreaskanker gemeten, maar wij konden geen verschil aantonen in de 
DNA integriteit tussen deze twee groepen. Mogelijkerwijs is de pancreas 
tumor te klein om het DNA wat er uit vrij komt op te pikken in het perifere 
bloed, of kunnen de lange DNA fragmenten niet uit de cyste treden naar 
de bloedbaan. We hebben daarom ook de DNA integriteit gemeten in het 
cystevloeistof van patiënten met pancreascysten. We vonden dat de totale 
concentratie van DNA in dit vloeistof tot wel 1000 maal hoger was dan de 
concentratie DNA in het perifere bloed, wat erop duidt dat het binnenste 
van een cyste inderdaad een afgesloten compartiment is. Helaas konden 
we echter geen verschil aantonen in de mate van DNA integriteit tussen 
hoog risico en laag risico cysten, en hebben wij moeten concluderen dat 
DNA integriteit geen goede marker is om kwaadaardige pancreascysten 
vroegtijdig op te sporen. 

DEEL 2: GERICHTE THERAPIE VAN 
PANCREASAANDOENINGEN 

Aangezien het opsporen en diagnosticeren van pancreas maligniteiten 
nog steeds problematisch is, hebben we in Hoofdstuk 5 onze aandacht 
gericht op de mogelijke behandeling van pancreas kanker. Er zijn meerdere 
therapeutica beschikbaar in het arsenaal van de behandelende arts, 
maar tot nu toe is de overlevingsduur van pancreaskanker patiënten 
nog steeds beperkt, en nieuwe therapieën zouden welkom zijn. Het 
wordt steeds duidelijker dat niet alle pancreas tumoren op elkaar lijken, 
en dat intracellulaire processen die betrokken zijn bij de celdeling en 
metastasering, bij deze tumoren kunnen verschillen. Er wordt dan 
ook steeds meer ingezet op ‘personalized medicine’ – een individuele 
benadering van de behandeling, gebaseerd op de kenmerken van de tumor 
in een patiënt. Dergelijke kenmerken komen voort uit het feit dat niet alle 
tumoren ontstaan uit dezelfde oncogene mutaties, en dat de intracellulaire 
signaleringsmoleculen die geactiveerd worden binnen in de cel, per tumor 
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kunnen verschillen. Remmers van dergelijke signaleringsroutes worden in 
rap tempo ontwikkeld, en hun mogelijke toepassing in de kliniek wordt nu 
in klinische trials getest. Een van de signaal transductie route remmers die 
getest is in pancreastumoren is rapamycine. Dit medicijn remt de activiteit 
van het enzym mTOR, wat betrokken is bij celgroei en eiwitsynthese. 
Klinische trials met rapamycine in pancreaskanker zijn tot nu toe echter 
nog niet succesvol gebleken. In Hoofdstuk 5 tonen wij aan dat er een 
groot verschil bestaat in de mate van mTOR activatie in verschillende 
pancreastumoren, en dat er bovendien een verschil is in de mate waarin 
dit enzym door rapamycine geremd wordt. We tonen aan dat een in vitro 
test waarin we kijken naar de hoeveelheid remming van mTOR voorspelt 
hoeveel remming van de cel overleving er plaatsvindt. Deze resultaten 
geven een mogelijke verklaring voor het falen van rapamycine in klinische 
trials – immers niet alle tumoren hebben evenveel actief mTOR en niet 
in alle tumorcellen wordt mTOR evenveel geremd door rapamycine. Ons 
onderzoek suggereert echter dat we met behulp van een eenvoudige test 
zouden kunnen onderzoeken of een patiënt baat heeft bij het gebruik van 
rapamycine, en dat dit medicijn dus mogelijk een goede aanvulling zou 
kunnen zijn in een subpopulatie van pancreaskanker patiënten. 

Naast een rol in celdeling bij kanker, speelt mTOR ook een belangrijke 
rol in inflammatie, doordat het immuun cellen (met name T-cellen) kan 
aanzetten tot deling. Zoals eerder vermeld, geeft chronische ontsteking van 
de pancreas een verhoogd risico op het ontwikkelen van pancreaskanker. 
Chronische pancreatitis (CP) wordt gekenmerkt door klachten van pijn 
in de bovenbuik, misselijkheid, gewichtsverlies en vettige ontlasting. 
Afgezien van chirurgische verwijdering van de pancreas is er geen 
genezende behandeling mogelijk van deze ziekte, en is men gelimiteerd 
tot pijnbestrijding. Een mogelijke methode om eetlust op te wekken 
alsmede pijn te bestrijden is het gebruik van medicinale cannabis. Naast 
de psychotropische effecten van THC, het werkzame bestanddeel van 
cannabis, wordt ook gespeculeerd dat THC een direct effect heeft op 
het immuun systeem. In Hoofdstuk 6 onderzochten wij de cytokine 
profielen in het serum van CP patiënten die deel namen aan een klinische 
trial waarin pijn verlichtende effecten van medicinale cannabis werden 
bestudeerd. Patiënten werden gevraagd Namisol®, een preparaat van 
98% THC, in te nemen gedurende 52 opeenvolgende dagen, en bloed werd 
afgenomen op dag 0, 15 en 52. Wij toonden aan dat de niveaus van de pro-
inflammatoire cytokine tumornecrosefactor α (TNFα) significant verhoogd 
zijn in CP patiënten ten opzichte van gezonde controles op dag 0. Echter, 
behandeling met Namisol® veranderde deze TNFα spiegels niet meer dan 
in patiënten behandeld met placebo. Bovendien werden er geen verschillen 
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waargenomen in spiegels van het pro-inflammatoire interleukine 8 (IL-8) 
of het anti-inflammatoire IL-10 tussen patiënten die Namisol® of placebo 
kregen. Dus, uit deze gegevens lijkt dat THC geen direct effect heeft op 
cytokine spiegels in patiënten met CP.

Om meer inzicht te krijgen in de mogelijke anti-inflammatoire 
eigenschappen van THC, hebben wij naar de intracellulaire effecten 
van THC op immuuncellen gekeken in Hoofdstuk 7. Allereerst zijn wij 
begonnen met het in kaart brengen van veranderingen in het zogenaamde 
kinoom profiel, waarin signaleringsroutes middels 1024 kinase substraten 
werden geanalyseerd. Hiermee onderzochten wij de in vivo veranderingen 
na inname van THC in gezonde proefpersonen. Omdat wij met name 
geïnteresseerd waren in de effecten van THC in het kader van een 
inflammatoire omgeving, stimuleerden wij perifere bloed mononucleaire 
cellen (PBMC’s) met een immuun activator, lipopolysaccharide (LPS) 
voorafgaand aan de kinoom analyse. Onze data liet zien dat THC de 
activiteit van verschillende signaaltransductieroutes in LPS gestimuleerde 
PBMC’s verlaagde, waaronder ERK, Akt-S6, calcium signalering en 
Wnt-signalering. Opvallend was de remming van stress/inflammatoire 
signaleringroutes, zoals JNK en p38, zonder dat er een effect was op 
NFκB. Wij bevestigden dat deze veranderingen werden veroorzaakt 
door een direct effect van THC op PBMC’s, door aan te tonen dat in vitro 
stimulatie van PBMC’s met THC ook verminderde activiteit van deze 
signaleringsroutes in LPS-gestimuleerde PBMC’s liet zien. In het kader van 
de anti-inflammatoire signalering die wij hebben waargenomen in gezonde 
proefpersonen, onderzochten we vervolgens mTOR-S6 signalering in 
patiënten die medicinale cannabis kregen vanwege pijnklachten. Hierin 
tonen wij nogmaals aan dat fosforylering van S6 werd verlaagd binnen 
1 tot 5 uur na inname van THC in zowel T-cellen als monocyten. Maar 
wij toonden tevens aan dat langdurige behandeling met THC kan leiden 
tot verhoogde basale niveaus van S6 in het aangeboren en adaptieve 
immuuncompartiment van twee patiënten. 

Deze gegevens suggereren een duale rol van mTOR-S6 signalering in 
monocyten en T-cellen. Hoewel het duidelijk is dat remming van mTOR 
een anti-inflammatoire effect heeft in T-cellen, is er gesuggereerd dat 
mTOR in monocyten inflammatie tegengaat. Zo zou een afname van 
mTOR signalering in monocyten theoretisch juist een ontsteking kunnen 
bevorderen in patiënten die THC innemen. Echter, gezien de beperkte 
S6 signalering in monocyten in vergelijking met T-cellen en het relatieve 
belang van p38 in deze cellen, lijkt het waarschijnlijk dat de afname van 
p38 en S6 fosforylering na THC behandeling samen het anti-inflammatoir 
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effect bewerkstelligen. Desalniettemin suggereren onze gegevens ook dat, 
ondanks dat het incidenteel gebruik van marihuana ontstekingsreacties 
kan verminderen, langdurige behandeling met THC inflammatoire 
signaleringsroutes in T-cellen kan verhogen.

Al met al laat het werk beschreven in dit proefschrift zien dat zowel 
behandeling alsook diagnose van (pre-)maligne afwijkingen in de 
pancreas verbetering behoefd en dat het mogelijk is dit middels moderne 
experimentele technieken te onderzoeken. Ook is echter duidelijk dat 
dergelijke nieuwe benaderingen niet onmiddellijk een pasklaar resultaat 
opleveren, maar dat er nog veel werk zal moeten gebeuren.
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