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There are times when I find myself transfixed by a shadow on the 

wall, or the splashing of water against a stone. I stare at it, the hours 

pass, the world around me drops away, replaced by worlds being 

created and destroyed by my imagination. A way to focus the mind. 

ST:VOY s03e26, sample featured in Dom&Roland’s ‘Imagination’ 
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CHAPTER 1 

Introduction to Part A – Protein translation studied 

by ribosome profiling 
 

In the study of a large organism such as the human, the cell provides a convenient unit. An 

adult human consists of many cells (in the order of approximately 1014, that is: a hundred 

million millions) and in many ways all these cells share many commonalities. In 

multicellular organisms such as the human, these cells are ordered into larger macro-

structures which form tissues, organs and body parts. It should be obvious that the cells 

across the body have different characteristics, properties and presentations, which allow the 

different tissues, organs and body parts to develop. Indeed, among the cells in a large 

organism different specialized populations of cells can be identified, which gives rise to a 

classification of cell types. Cells of the same cell type share certain phenotypic and/or 

morphological traits, which set them apart from other cell types†. What gives cells their 

phenotype, morphology, behavior? An important constituent of the cell, and major 

determinant of its properties, are proteins. 

 

Proteins as determinant of cellular phenotype 

Protein is a class of biomolecule that is built up from simpler building blocks, the amino 

acids. The amino acids are joined (polymerized) into long strings. To get a sense of scale: 

the median length of the human protein is about 300 amino acids. There are 20 standard 

amino acids, plus a few uncommon amino acids. The different physiochemical properties of 

the amino acids ultimately determine the physiochemical properties of the protein, and 

thereby its functions and capabilities. Of great importance is the order of the amino acids in 

the protein. Thus, for a protein of median length there are 20300 theoretical different proteins 

possible (=~10390, a number much greater than the number of proteins which will ever be 

generated in the lifetime of the universe across all living cells). However, the vast majority 

of these theoretical combinations would yield non-functional proteins, and if they were to 

be generated in a cell, the cell would readily get rid of them (by the proteasome, a structure 

composed of other proteins!). Nevertheless it should be clear that even with “only” 20 

primary building blocks there is substantial room for diversity in the physiochemical 

properties of a protein. And this diversity is readily observed in the different functions that 

different proteins can have: through enzymatic activity proteins can convert catalyze a great 

spectrum of metabolic reactions, or act on other proteins, polymerize other biomolecules 

(such as DNA and RNA, thereby allowing cells to be self-replicating), and have structural 

                                                 
† In my view this is a dazzling feat considering the fact that all cells in the body, with its many cell types, originate 

from a single cell 
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functions important for the formation of extra-cellular matrix, or larger components of the 

human body such as hair and bone‡. 

 

The genetic code as blueprint for proteins 

The exact sequence of amino acids in a protein is ultimately determined by the genome of 

the cell, recorded in its DNA (see also Figure 1). The blueprint of a protein is stored in the 

genome in a unit referred to as a gene. Human cells which are diploid have two copies of 

most genes, a consequence of the merging of two gametes (sperm/egg cell) at the 

conception of a new human. The two copies are in stark contrast with the many copies that 

can exist of a protein in a cell at a given time (>1000 protein copies per cell for some 

abundant proteins). This amplification of expression is achieved by a two-step process. The 

first step is transcription, where the DNA is expressed in the form of RNA, a 

macromolecule sharing many physiochemical properties with DNA.  

 

However, unlike DNA, it can be moved out of the nucleus, into the cells' cytoplasm. It is 

                                                 
‡ Outside the scope of this thesis are post-translational modifications, which further diversify the range of 

functional proteins which a cell has at its disposal 

Figure 1: Central dogma of biology  

A cell's genetic information is stored in its DNA. By replication of its DNA it can copy its hereditary content and 

spread this over two daughter cells, allowing cells to multiply. When genes come to “expression” the flow of 

genetic information follows two steps: (1) transcription, in which RNA is transcribed from the DNA and (2) 

translation, where the RNA is translated into protein.  
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there that the second process takes place: translation. At this step the messenger RNA 

(mRNA) serves as template for the protein, and the order of the bases in the mRNA will 

dictate the order in which the amino acids will be placed in the protein. The translational 

machinery responsible for translation of mRNA into protein consists of many parts. The 

most voluminous parts are the ribosomes, themselves composed of two major subunits 

(small and large ribosomal subunits), which are again built up from smaller parts 

(ribosomal RNA and ribosomal proteins). The ribosomes assemble on the mRNA which 

they will translate, and thread over it, reading its sequence while simultaneously building an 

amino acid chain, which folds up into a protein co-translationally. Of importance here is 

that while transcription of DNA into mRNA occurs into a similar alphabet (4 symbols in 

both DNA and RNA), translation of mRNA into protein has to be more complex, indicated 

by the existence of 20 standard amino acids, the symbols in the alphabet in the protein 

sequence. Indeed, to specify one of the 20 amino acids, 3 mRNA nucleotides (the symbols 

in RNA) are used. A unit of such 3 nucleotides is referred to as a codon. The mapping of 

codons to amino acids is determined by transfer-RNAs (tRNAs), specialized molecules that 

carry an anti-codon and an amino acid moiety. They are used by ribosomes to supply the 

amino acids for the growing chain. The ribosome binds the tRNAs and checks whether the 

anti-codon of the tRNA matches with the codon in the mRNA. A proper match will cause 

the ribosome to catalyze the transfer of the amino acid from the charged tRNA to the 

growing amino acid chain. After the incorporation, elongation factors (eEF-2 in human 

cells) move the ribosome one codon downstream on the mRNA, so that it will face the next 

codon, and the translation of mRNA can continue (for a comprehensive introduction to and 

overview of translation, see (Lehninger et al., 2005), chapter 27). 

 

There are some consequences of a two-step process for the expression of genes into 

proteins. First, amplification is possible, both at the step of transcription (many mRNA 

molecules can be generated from a single gene) and the translation step (many protein 

molecules can be generated from a single mRNA molecule). Secondly, it allows for more 

opportunities of regulation of expression, as each step can be controlled. Thirdly, since the 

mRNA molecules are free to diffuse in the cytoplasm, in contrast to the DNA which is 

constrained to the nucleus, translation of the mRNAs can be localized to specific 

subcellular compartments (organelles) in the cell, which happens for example with many 

mitochondrially-localized proteins. 

 

Studying gene expression; from DNA to RNA to protein 

The study of gene expression, from DNA to RNA and RNA to protein, has been, and still 

is, of great importance for the understanding of the functioning of cells. Developments in 

the mid-90s paved the way to profile abundances of RNA molecules using microarrays, a 

technology that became immensely popular and transformed how molecular biology 

research was done. More recently, a technique with very different technical foundations 
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known as high-throughput sequencing or deep-sequencing is enabling researchers to get 

insight in the abundances of RNA (or DNA) in their samples (see also Box 1 and Figure 2). 

Exhaustive, genome-wide (or transcriptome-wide) techniques profiling the DNA and/or 

RNA of a sample are intrinsically easier than techniques that attempt to exhaustively profile 

the proteins in a sample. In my view, two reasons are at the core of this difference: first, the 

alphabet of proteins has 20 common symbols, while RNA and DNA have only 4 common 

symbols. Secondly, molecular tools are available to reverse transcribe RNA into DNA, and 

to replicate DNA (i.e. make two identical DNA molecules from a single template). These 

molecular tools, together with clever chemistry, open the possibility for the profiling 

techniques: to amplify RNA or DNA, and to attach a signal to its replication (such as the 

release of a fluorophore). Naturally, this pushed exhaustive, genome-wide techniques 

towards the profiling of the transcriptome (the mRNA), while exhaustive profiling of a 

cells' proteins (the proteome) remained difficult or impossible. The current state of the art 

techniques to measure protein levels by mass spectrometry are orders of magnitudes less 

sensitive than techniques that profile transcript levels. 

 

Box 1 – A few words on sequencing 

Deep sequencing and next-generation sequencing are two terms that are often interchangeably used to 

refer to current state-of-the-art DNA sequencing techniques with high throughput. While next-

generation sequencing is a catch-all term to refer to modern sequencing techniques, deep sequencing 

in fact refers to the sequencing of a DNA sequence at high coverage, i.e. having repeatedly sequenced 

the same sequence at least a couple of times. Deep sequencing is valuable and necessary in order to 

sequence novel genomes (e.g. bacterial genomes) or to confidently determine single nucleotide 

polymorphisms (SNPs) or mutations in samples. The state-of-the-art methods are in contrast with the 

conventional chain termination method of sequencing (“Sanger sequencing”) which is low-throughput 

and labor intensive. Next-generation sequencing methods are both qualitative (they determine the 

order and identity of nucleotides of DNA fragments in the sample with high fidelity) and quantitative 

(they allow the concentration of a DNA fragment in a sample to be measured). Several next-

generation sequencing technologies have been developed and/or refined over the past decade, 

however here I discuss only Illumina (sometimes referred to as “Solexa”) sequencing, which is the 

technique used throughout this thesis. Advantages of Illumina sequencing are high throughput 

generation of data, at relative low costs. Furthermore its popularity and “network effects” amongst 

users have made reagents, kits and other experimental materials adapted to Illumina sequencing 

ubiquitous and cost-effective. 

The sequencing reaction requires a sample containing a so-called “library”: fragmented DNA 

molecules which contain special sequences (adapter sequences) at their termini. Upon loading of the 

sample onto the flowcell (a disposable but integral part of the Illumina platform) the molecules in the 

library attach themselves to the bottom of the flowcell by binding of the adapter sequences to 

molecules that form a “lawn” at the surface of the flowcell. After attachment of the DNA molecules 

to the flowcell, the DNA molecules are multiplied by “bridge amplification”, a special twist on PCR 

that keeps the amplified DNA molecules attached to the flowcell and physically close to the original 

DNA molecule (see Figure 2). The bridge amplification is possible due to the presence of adapters on 

the DNA molecules in the library and the surface of the flowcell. After bridge amplification, many 
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(~1000) identical DNA molecules are clustered together on the flowcell. Finally this allows the 

sequencing reaction, which takes place by a final round of synthesis of a new DNA strand. The 

reaction takes place in rounds, in which distinct dye-labeled versions of the four nucleotides are 

added. Incorporation of the nucleotides can be registered by a high-resolution microscope. At this 

point all molecules in the cluster (~1000 molecules) emit the same color, which shows that the bridge 

amplification serves as a signal amplification step allowing the microscope to detect nucleotide 

incorporation. Image processing is used to identify the clusters and determine the identity of the 

nucleotide that was incorporated at each cluster by the color that was emitted. The unincorporated 

nucleotides are washed away and new dye-labeled nucleotides are added. The process repeats in 

many more cycles to identify the order of the next nucleotides, on nucleotide per cycle. The high-

throughput nature of Illumina sequencing stems from the fact that DNA molecules are small, and a 

large number of clusters can be generated on a flowcell (in the order of a million per square 

millimeter). A comprehensive review of Illumina sequencing and other next-generation sequencing 

techniques can be found in (Metzker, 2010). Since Illumina (and other next-generation sequencing 

techniques) sequence the bases in DNA, transcriptome profiling (where RNA instead of DNA 

sequences are determined and quantified) requires some extra experimental procedures. The key step 

is “reverse transcription” where RNA is generated back into DNA by a reverse transcriptase enzyme 

(first isolated from retroviruses). 

 
Other essential experimental steps include adapter ligation (for attachment of the sequences to the 

flowcell and to allow bridge amplification) and usually PCR amplification (to multiply the material in 

cases where too few molecules are present in the sample to saturate the flowcell), but they are 

common in all sequencing library preparation protocols, and not unique to transcriptome profiling. 

Finally, ribosome profiling, the central technique in this thesis, is an adaptation of transcriptome 

profiling, where not the full transcriptome is profiled but only those RNA fragments which are 

occupied by ribosomes. These ribosome protected fragments (RPFs) are extracted by digestion of 

unprotected RNA, sedimentation of the monosomes (single ribosomes plus RPF) and separation and 

isolation of the RPF, after which a sequencing library of the RPFs can be made analogously to 

transcriptome profiling. 

 

Ribosome profiling has emerged as a technique to investigate the level of translational 

regulation in a fashion similar to transcriptome profiling. The experimental protocol (Figure 

3) generates ribosome protected fragments (RPFs) by digestion of unoccupied mRNA and 

isolation of the remaining fragments, which correspond to the mRNA positions occupied by 

ribosomes. As a quantitative technique, it allows for the measurement of translation rate of 

Figure 2: Illumina sequencing  

Diagram of bridge amplification and cluster formation. A library with DNA fragments (grey) harboring 

special adapter sequences (green and brown) is dispersed over the flowcell's surface (white). The 

surface of the flowcell contains molecules to which the DNA fragments can attach. Important is that 

both ends of the DNA fragments can attach to the surface, allowing “bridging” of the fragments. 

Performing several rounds of polymerase chain reaction (PCR) amplification causes dense clusters 

of DNA fragments with identical sequence to be formed. 
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a gene, an important factor in determining translational 

regulation. In contrast, proteome profiling by e.g. mass 

spectrometry measure the actual levels of protein, 

which are determined by both the translation 

(production) rate and the rate of degradation of the 

protein. As such, ribosome profiling does not provide 

an alternative to proteome profiling, but rather the two 

augment each other, as ribosome profiling provides insight in the translational process. 

Ribosome profiling led to the identification of several translational programs (programs 

where translation of mRNAs is differentially regulated) (Gonzalez et al., 2014; Stumpf et 

al., 2013). Furthermore, open reading frames upstream of the canonical protein-coding open 

reading frame in an mRNA (uORFs) have been identified as regulatory components of 

mRNA translation by attracting ribosomes (Ingolia et al., 2011). Ribosome profiling has 

fully opened the door to investigate the level of translational regulation in cancer and 

tumorigenesis. Research on the level of transcriptional regulation has been fruitful in this 

area, as cells exhibit distinct patterns of gene expression when they are or become 

malignant. These transcriptional changes have been a cornerstone in cancer research and a 

starting point for understanding of cellular processes that underlie tumorigenesis, 

development of biomarkers and providing handles for therapeutics. The level of 

translational regulation has remained largely unexplored. Ribosome profiling allows us to 

close this gap in understanding, and investigate whether cancer cells exploit levels of 

translational regulation to facilitate their growth and replication, escape of cell death and 

other hallmarks of cancer (Hanahan and Weinberg, 2011). Would there be, for instance, key 

proteins that act as proto-oncogenes or tumor suppressors whose translation is altered to 

give cancer cells a proliferative advantage? 

 

  

Figure 3: Summary of the 

ribosomal profiling protocol 

Cyclohexamide is added to cells to 

block movement of ribosomes on 

the mRNA and prevent drop-off. 

The ribosomes and mRNA 

molecules are isolated together. 

mRNA regions that are unoccupied 

by ribosomes are vulnerable to 

digestion by RNAse, but ribosome-

protected mRNA regions are not. 

Thus, when treated with RNAse I, 

single ribosomes occupying short 

fragments of mRNA are obtained. 

These so-called monosomes are 

isolated together with the short 

mRNA fragments (named ribosome 

protected fragments or RPFs). 

Finally, the RPFs are isolated from 

which a library for deep-sequencing 

is constructed. 

Figure adapted from (Guo et al., 

2010). 
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miRNAs as potent regulators of gene expression at the mRNA level 

miRNAs are small RNA molecules acting on other RNAs by sequence complementarity as 

post-transcriptional regulators of gene expression. Their discovery (Lee et al., 1993) was an 

overture to the discovery of a completely novel level of gene regulation, as most mRNAs 

were found to be regulated by miRNAs (Friedman et al., 2009). Their mode of gene 

repression was initially thought to involve repression of translation of the mRNA without 

decreasing the abundances of the mRNAs (Wightman et al., 1993). However, 

transcriptome-wide analyses enabled by microarrays later indicated that the mechanism of 

action of miRNAs is through decreasing mRNA abundances (Giraldez et al., 2006; Lim et 

al., 2005; Rehwinkel et al., 2006). Ribosome profiling has also been employed to 

distinguish the mode of gene repression elicited by miRNAs (Guo et al., 2010) and again 

indicated that mRNA destabilization is the major consequence of miRNA-mediated 

repression. Work of Bazzini et al. showed that temporal effects may be important in the 

interpretation of the ribosome profiling data, as the authors claimed that translational 

repression precedes transcriptional destabilization for miRNA miR-430 in zebrafish 

(Bazzini et al., 2012). While delineation of the order of events following miRNA-mRNA 

hybridization is important, a phase of translational repression is to be expected and the 

impact of the short duration of this phase on final protein output (and thus gene expression) 

is unsure†. 

 

Mechanisms for regulation of translation 

Upstream open reading frames (uORFs) have already been identified as potent regulators of 

translation of the downstream canonical protein-coding ORF (Calvo et al., 2009). The 

observation that they attract ribosomes and yield RPFs by ribosome profiling is an 

interesting observation that opens the possibility to further investigate the regulation of (and 

by) uORFs. The uORFs reduce translational rate of downstream ORF by detracting 

ribosomes, which when occupying uORFs require shunting or reinitation to translate the 

downstream ORF (Ryabova and Hohn, 2000). Another mechanism of translational 

regulation is the association of the translation initiation complex (eIF4) with the mRNA, 

that is required to load the pre-initiation complex, of which the small ribosomal subunit is a 

major part, onto the mRNA. The initiation complexes consist of many subunits of which 

many are known to be regulated by post-translational modifications such as 

phosphorylations. Furthermore the initiation steps depend on several factors that are present 

in the mRNA, such as the capped 5' guanine, sequence elements in the 5'-region of the 

mRNA (the 5'TOP sequence (Avni et al., 1997)) and structural elements in the mRNA (e.g. 

IRESs (Pelletier and Sonenberg, 1988)). Also RNA-binding proteins (RBPs) are known to 

regulate the translational activities of mRNAs (Ascano et al., 2012). It is clear that cells 

                                                 
† postscriptum: We have investigated whether patterns of miRNA-mediated translational repression could be 

identified in the ribosome profiling datasets we have generated, but found no indications consistent with 

translational repression elicited by miRNAs. The topic of miRNAs is therefore not recurring in this thesis. 
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have developed regulatory mechanisms to control translation of mRNAs. Ribosome 

profiling provides the most direct method to investigate these mechanisms, and is to some 

extent capable of distinguishing between the mechanisms of regulation that act on mRNAs. 

 

Regulation of amino-acid and translational machinery components 

Besides regulation of mRNA translation by differential initiation rates, we expect that 

translational efficiencies will also depend on amino acid availabilities, as amino acids form 

essential components of proteins. Ribosomes depend on tRNAs charged with amino acids 

to elongate the peptide chain and progress translation of the mRNAs. When amino acid 

availabilities fluctuate, activated-tRNA availabilities may also fluctuate. Note that other 

components such as the tRNA levels themselves and activity levels of the aminoacyl-

transferase proteins (that catalyze the activation of the tRNA) will elicit indistinguishable 

responses. Nevertheless, if ribosome profiling is able to provide a view of regulation at the 

amino acid and/or tRNA level, it would be another valuable tool in the study of cancer cells 

and tumorigenesis. Metabolic rewiring and differential requirements of amino acids of 

cancers has been long known (Broome, 1963) and this observation is becoming 

increasingly of interest as therapeutic window (Vander Heiden, 2011). We hypothesize that 

ribosome profiling will accelerate the discovery of therapeutic opportunities by pinpointing 

metabolic rewiring and resulting differential nutrient requirements. 

 

Inferring ribosome dimensions from ribosome profiling data 

Important in the interpretation of ribosome profiling data to detect differential amino acid 

(or tRNA) availabilities are the dimensions of the ribosome. Initial data of ribosome 

profiling (Ingolia et al., 2009) shows that RPFs are around 30nt. in size, and the RPFs are 

predominantly abundant 12 nt. upstream of initiation START codons and show periodic 

abundance downstream of this position. From these observations the relative positions of 

tRNA binding pockets within the RPFs can be determined (Figure 4). Thus, owing to the 

nucleotide resolution of the data, ribosome profiling yields a snapshot of which ribosomal 

pockets are occupying which codons, in the population of ribosomes in a sample. The 

chapters in this part of the thesis build on these observations in order to analyze differential 

activated tRNA availabilities in samples, possibly caused by metabolic rewiring. Several 

key issues will be addressed: can ribosome profiling be used to investigate the metabolic 

state of cells in a sample? If it is technically possible to infer differences in metabolic state, 

can ribosome profiling be used to uncover novel molecular targets or biomarkers for cancer 

therapies? 
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rRNA contamination in ribosome profiling data hampers its sensitivity 

The ribosome profiling protocol involves RNA digestion in order to obtain RPFs and map 

ribosomal positions with nucleotide resolution. Because the ribosomes themselves are 

complexes of protein and ribosomal RNA (rRNA), they are also prone to RNA digestion. 

This causes certain rRNA fragments to become a common and highly abundant 

contaminant in current ribosome profiling datasets (see Figure 5). The high abundance of 

this contamination can reduce the sensitivity of the obtained data because it limits the 

amount of useful reads that the dataset contains (the RPFs, derived from mRNA fragments). 

However, mapping of the contaminating rRNA fragments on a structure of the ribosome 

reveals that the most abundant rRNA fragments are derived from the exterior of the 

ribosome (Figures 5c and 5d). Indeed, within the contaminating reads the sequence 

diversity is small, which may prove useful to counteract the contaminating reads. 

 

Outline of part A 

This part of the thesis explores control of translation using ribosome profiling, a technique 

which maps the positions of ribosomes on mRNAs with nucleotide resolution. Chapter 2 

highlights the consequences of a mitochondrial tRNA mutation on translation and ribosome 

progression. Using a cellular system where a mitochondrial mutation is introduced 

independent of the nuclear genetic background we show that mitochondria harboring a 

tRNA-Trp5556G>A mutation yield more ribosomes stalling with Trp codons in their A-site, 

indicating the reduced availability of the tRNA. Chapter 3 extends the concept of 

differential availabilities of tRNAs further upstream by investigation of the consequences of 

differential amino acid availabilities. Furthermore, it takes ribosome profiling to a clinical 

Figure 4: Schematic overview of 

the translational machinery 

Ribosomes comprise a small and 

large subunit, each consisting of 

several RNA and protein subunits. 

Together they protect a chunk of 

mRNA of about 30nt. (not faithfully 

shown in figure), known as the 

ribosome protected fragment (RPF). 

In order to translate mRNA into 

protein, the ribosomes use activated 

tRNAs, that deliver amino acid 

moieties. The structure of the large 

ribosomal subunit has three distinct 

pockets, or tRNA binding sites. The 

A-site (green) allows tRNAs to enter  

the ribosome. When the anti-codon of the tRNA matches the codon in the mRNA, the ribosome moves 

3nt (one codon) over the mRNA, and by doing so moves the tRNA into the P-site (blue). This is also 

accompanied with the conjugation of the amino acid onto the growing peptide chain. The tRNA in the 

P-site carries the peptide chain. As the cycle repeats, the tRNA occupying the P-site is moved to the 

E-site (red), which allows exit of the tRNA from the ribosome. 
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Figure 5: Contamination issues common in ribosome profiling data  

Because ribosomes are large macromolecues themselves comprised of RNA, they are vulnerable 

to RNAse I digestion. Some of the RNA content of ribosomal RNA (rRNA) ends up as contaminant 

in the deep-sequencing libraries. Shown here is a meta-analysis of a replicate of the published 

dataset with GEO ID GSM1047584. (a) From the total number of reads, over two-thirds were found 

to be rRNA contamination. Other contaminants (size marker, adapter sequence) are also abundant 

but not as pervasive as rRNA. The contamination limits the fraction of data which is informative 

(actual RPFs of mRNA), in this case to approx. 5% of the raw data. (b) The structure of the nuclear-

encoded ribosome of Saccharomyces cerevisiae. Only ribosomal RNA is shown. The large subunit 

has carbon atoms shown in orange, the small subunit has carbon atoms shown in blue. PDB 

entries used: 3IZE and 3IZF. (c, d) Occurrence of rRNA fragment as contaminant in the ribosomal 

profiling sample. Dark blue indicates that the rRNA has not been found in the raw data. Bright red 

indicates the most abundant contaminating rRNA fragments. Orientation of the structure in (c) is as 

in (b). 



1 

INTRODUCTION TO PART A – PROTEIN TRANSLATION STUDIED BY RIBOSOME PROFILING 

A 19 

setting in order to pinpoint differential nutrient availabilities, by performing ribosome 

profiling on kidney tumor samples. In chapter 4 the level of translational regulation during 

mitosis is investigated. Again ribosome profiling is used, and coupled to RNA sequencing 

data, to determine translational efficiencies of mRNAs. Furthermore, the tools we 

developed thus far are used to identify differential amino acid and/or tRNA availabilities. 
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Abstract 

 

Mitochondria are essential cellular organelles for generation of energy and their 

dysfunction may cause diabetes, Parkinson’s disease and multi-systemic failure marked by 

failure to thrive, gastrointestinal problems, lactic acidosis and early lethality. Disease-

associated mitochondrial mutations often affect components of the mitochondrial 

translation machinery. Here we perform ribosome profiling to measure mitochondrial 

translation at nucleotide resolution. Using a protocol optimized for the retrieval of 

mitochondrial ribosome protected fragments (RPFs) we show that the size distribution of 

wild-type mitochondrial RPFs follows a bimodal distribution peaking at 27 and 33 

nucleotides, which is distinct from the 30-nucleotide peak of nuclear RPFs. Their cross-

correlation suggests generation of mitochondrial RPFs during ribosome progression. In 

contrast, RPFs from patient-derived mitochondria mutated in tRNA-Tryptophan are 

centered on tryptophan codons and reduced downstream, indicating ribosome stalling. 

Intriguingly, long RPFs are enriched in mutated mitochondria, suggesting they characterize 

stalled ribosomes. Our findings provide the first model for translation in wild-type and 

disease-triggering mitochondria. 
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Introduction 

 

The primary function of the mitochondrion is ATP production via the oxidative 

phosphorylation pathway (Smits et al., 2010). The human mitochondrial genome contains 

37 genes of which 13 are protein-coding. These genes are essential for normal energy 

production function of the mitochondria but also other processes such as cell signaling and 

cell death (Koc and Koc; Suen et al., 2008). The mitochondria harbor their own ribosomes, 

which are structurally more similar to bacterial ribosomes than the cytosolic ribosomes 

(Sharma, 2003). However, the protein-synthesizing system of mitochondria and the 

template mRNAs contain unique features not observed in prokaryotes or the eukaryotic cell 

cytosol, including arginine codons AGG and AGA, which are unassigned while UGA stop 

codon codes for tryptophan; both AUG and AUA serve as START codons; messenger 

RNAs (mRNAs) essentially lack untranslated regions, are uncapped and contain a poly(A) 

tail, and mitochondria use a simplified decoding mechanism that allows translation of all 

codons with only 22 tRNAs (Smits et al., 2010). Because of their function in the oxidative 

phosphorylation pathway, mitochondria are recognized for their role in the production of 

reactive oxygen species (ROS) and nitric oxide (Navarro and Boveris, 2007). The 

production of ROS may also be associated with aging since mitochondria increase 

production of ROS during human lifespan (Lin and Beal, 2006). Interestingly, mutations in 

mitochondrial translation machinery, such as their tRNAs, are the source of various human 

diseases, typically causing multi-systemic disorders and early fatality (Scharfe, 2009). 

 

To characterize mitochondrial translation we used ribosome profiling, a deep sequencing-

based technology that allows quantitative analysis of translation at nucleotide resolution 

(Ingolia et al., 2009, 2012). Ribosome profiling maps the positions of ribosomes on 

transcripts by nuclease footprinting, generating nuclease-protected mRNA fragments bound 

to ribosomes that are converted into a DNA library suitable for deep sequencing. We 

observed a poor capacity of the established ribosome profiling protocol to capture 

mitochondrial ribosome protected fragments (RPFs) and developed a suitable method for 

this purpose. We then used the adapted protocol to show that the mitochondrial 

tRNA(Trp)5556G>A mutation induces strong ribosome stalling. 

 

 

Results 

 

Mitochondrial RPFs are poorly captured by current protocols 

The abundance of RPFs was demonstrated to correlate with the level of translation of a 

gene (Ingolia et al., 2009). Figure 1a shows the translational efficiency (TE; normalized 

abundance measured by ribosome profiling divided by normalized abundance measured by 

RNA sequencing) of nuclear- and mitochondrial-encoded genes. Curiously, all 
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mitochondrial transcripts (marked green) showed a high level of signal in the RNA-seq 

while having a very low amount of reads in the ribosome profiling data compared with the 

bulk of the nuclear transcripts, which had TE values centered on the norm and up to 

fourfold difference in the vast majority of the cases, resulting in relatively low TE values 

for mitochondrial genes. A similar observation was seen when we used several recently 

published ribosome profiling data sets (Liu et al., 2013; Shalgi, 2013) (see Supplemental 

Fig. S1 and Supplemental Table S1). In contrast, histone genes, which are not 

polyadenylated and therefore are poorly retrieved during mRNA sequencing, showed as 

expected relatively extremely high TE values (marked red in Fig. 1a). Two potential 

explanations can clarify the low detection level of mitochondrial genes in the ribosome 

profiling data.  

 

Figure 1: A modified ribosomal profiling protocol improves detection of mitochondrial 

translation.  

(a) A plot showing the TE as a function of mRNA abundance in a standard ribosomal profiling 

protocol. Mitochondrial and histone genes (in green and red, respectively) appear as outside groups. 

(b) Western blots showing the abundance of mitochondrial (mtRPL11) and cytosolic (RPL10a, RPL7 

and RPS6) ribosomal proteins in different sucrose gradient fractions after RNAse I treatment. (c) 

Size distribution of RPFs in the standard ribosome profiling. The upper panel shows all reads, the 

lower panel shows nuclear-encoded genes (red) and mitochondrially encoded genes (green) 

separately. (d) Overview of our modified ribosome profiling protocol. (e) Size distribution of RPFs 

obtained by our modified ribosome profiling. (f) Same as in (a) for modified protocol. Marked 

improvement in the detection of TE in mitochondrial genes is observed. 
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First, mitochondrial genes might be translated at a remarkably different rate compared with 

the cytosolic mRNAs. Alternatively, the ribosome profiling protocol does not efficiently 

capture mitochondrial RPFs as a result of either a distinct size of the mitochondrial 

ribosomes or a distinct size of RPFs protected by the mitochondrial ribosomes, compared to 

the nuclear-ribosomes. As mitochondrial ribosomes are very different from the nuclear 

ones, and mitochondrial proteins are produced in high rate, inefficient capturing of 

mitochondrial RPFs the RP protocol seems more likely. Therefore, we first determined the 

fractions where mitochondrial monosomes localize after RNAse I treatment and sucrose 

gradient sedimentation, and indeed this analysis indicated altered sedimentation (Fig. 1b). 

Second, we also examined the size of RPFs in mitochondrial- and nuclear-encoded genes. 

Figure 1c shows that while nuclear genes feature the expected enrichment of 30-nt long 

RPFs, the size distribution of mitochondrial RPFs is clearly larger and seems truncated. As 

the ribosome profiling protocol we used included a selection step for fragments sized 27–

33 nt, this result suggests that most of the mitochondrial RPFs may have a different size and 

thus are vastly excluded during this selection step. 

 

Improving retrieval of mitochondrial RPFs 

We modified the ribosome profiling protocol to collect more mitochondrial ribosomes in 

the sucrose gradient and relaxed the size of RPFs cutoff to 25–36 during size excision of 

adapter ligated reads (Fig. 1d). Indeed, Fig. 1e demonstrates that this protocol results in 

RPFs whose global size distribution coincides with the expected expansion in fragments 

cutoff. Moreover, it also shows that while nuclear RPFs showed a peak at 30 nt as expected, 

a much broader distribution of the mitochondrial RPFs with a bimodal size peaking at 27 

and 33 nt was observed. Last, Fig. 1f shows that our modified ribosome profiling protocol 

indeed improved the apparent TE of mitochondrial mRNAs to levels comparable to the 

nuclear-encoded mRNAs without compromising the quality of libraries. As shown in Fig. 

2a, the reproducibility between RP samples is high (R2 0.91), comparable to RNA-seq data 

(Fig. 2b). The data shows periodicity (Fig. 2c) and the modifications in the protocol do not 

lead to increase of ribosomal RNA contamination (Fig. 2d). Lastly, as a characteristic of 

ribosome profiling data, the vast majority of reads originate from CDSs and a steep increase 

in RPF density is observed at the START codons, and similarly, a steep decrease is 

observed at the STOP codons (Fig. 2e). 

 

Mitochondrial RPF length shows bimodality 

The apparent bimodal distribution of mitochondrial RPFs length, peaking at 27 and 33 nt, 

may indicate alternative mitochondrial ribosome configurations or different positioning on 

mRNA. To examine this point we divided the mitochondrial RPFs into short (24–29 nt) and 

long (31–36 nt) fragments and measured their distribution over the mitochondrial 

transcripts. Figure 3a shows an overall similar pattern of distribution between the two types 

of mitochondrial-RPFs, both were distributed similarly along the transcripts, though some 
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positions were reproducibly slightly more enriched with one type of fragment.  

Figure 2: Reproducibility and quality control of modified ribosome profiling protocol. 

(a) Correlation between ribosome profiling data set replicates in the modified ribosome profiling 

protocol. (b) Correlation between RNAseq data sets in the modified ribosome profiling samples. (c) 

In-frame RPF abundance for nuclear-encoded genes in two modified ribosome profiling replicate 

samples. Error bars indicate standard deviations across the genes with at least 100 RPFs (n=5579 

for sample #1 and n=7108 for sample #2). (d) Abundances of mRNA and contamination in the 

conventional and modified ribosome profiling protocol samples. (e) Coverage around START and 

STOP codons in modified ribosome profiling sample #1. 
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Additionally, analyzing the orientation of mitochondrial-RPFs with respect to the START 

codon, we found no apparent periodicity difference between the short and long fragments 

(Fig. 3b). These results may indicate that the two mitochondrial-RPF types are either 

generated from the same ribosome during the translation process, or from two types of 

related ribosomes both engaged in active translation of the mitochondrial genes. 

Interestingly, if the first is the case, a global correlation between the positions of the two 

types of RPFs should exist. We therefore compared the correlation between the distribution 

of reads with exactly 27 and 33 nt in length and found two preferential relationships (Fig. 

3c). The peak at -6 indicates an overhang of 6 nt at the 5′ end, while the peak at 0 indicates 

alignment of the 5′ ends and thus an overhang of 6 nt at the 3′ end. Though not entirely 

excluding the existence of two separate mitochondrial ribosome types, this result strongly 

supports the hypothesis that the two RPF types are generated from one mitochondrial 

ribosome during its progression in a manner depicted in Fig. 3d. We envision that during 

progression the mitochondrial ribosome encompasses additional 6 nt. 

 

tRNA(Trp)5556G>A mutation causes ribosome stalling 

Next, to learn more about the protein translation process in mitochondria and relate it to 

mitochondria malfunction, we utilized trans-mitochondrial cybrids, rho(0) cells that lack 

mitochondrial DNA and fused with patient-derived mitochondria (Smits, 2010). We 

performed our ribosomal profiling on cybrids containing either wild-type (wt) or the 

Figure 3: Size distribution of mitochondrial RPFs suggests mechanism of action. 

(a) The normalized abundance of short and long RPFs along the 13 protein-coding mitochondrial 

genes. (b) Normalized frame abundance of short and long RPFs on all mitochondrial protein coding 

genes. Error bars indicate s.d. across the mitochondrial protein-coding genes. (c) Correlation 

between the 27 nt length (short) and 33 nt length (long) mitochondrial RPFs averaged over all 

mitochondrial protein-coding genes (n=13) in the control sample #1. Error bars indicate s.d.’s. (d) A 

schematic model showing how the long and short fragments might be produced during 

mitochondrial ribosome procession. 
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naturally occurring pathogenic mutant mitochondria at tRNA(Trp)5556G>A, as this was 

shown to cause impairment of mitochondria function and reduce mitochondrial protein 

translation (Smits, 2010). Although mitochondria-targeted TagYFP expression showed no 

major abnormalities in terms of number of mitochondria between wt and mutant 

mitochondria (Supplemental Fig. S2a), mitochondrial activity assays (Table 1) and 

acidification of medium (Supplemental Fig. S2b) indicated reduced functionality, consistent 

with reported OXPHOS defects (Smits, 2010). The mutation was verified using tRNA 

sequences retrieved in the ribosome profiling and purity was >99% (Supplemental Fig. S5).  
 

Intriguingly and most importantly, our ribosomal profiling method revealed a distinct 

distribution pattern of mitochondrial RPFs between wt and tRNA(Trp)5556G>A mitochondria 

(Fig. 4a). In particular, peaks of the tRNA(Trp)5556G>A mitochondria typically tended to be 

centered on tryptophan codons. Data analysis confirmed increased abundance of RPFs with 

the mitochondrial-tryptophan codons TGA and TGG (Fig. 4b). Moreover, RPF alignment 

analysis indicated that the tryptophan codons are centered in the middle of the RPFs, 

positions 15–18, implying stalling of the ribosome when encountering tryptophan codons. 

This effect was specific to mitochondrial tryptophan codons, as it was not observed in other 

codons (for example, the mitochondrial phenylalanine codon) or in nuclear-encoded 

tryptophan codons (Fig. 4c). Data from biological replicates showed that this was 

reproducible (Supplemental Fig. S3a). qRT–PCR measurements indicated comparable 

expression levels of the mutated tRNA(Trp)5556G>A and tRNA(Trp)wt in wt and 

tRNA(Trp)5556G>A mutant mitochondria (Fig. 4d, upper panel). Moreover, immune-

precipitation analysis of mitochondrial ribosomes showed comparable enrichment levels 

(Fig. 4d, lower panel). This indicates that the 5556G>A mutation in mitochondrial 

tRNA(Trp) does not lead to rapid degradation and does not affect loading into the 

ribosomes. However, despite the dramatic changes observed in the distribution pattern of 

mitochondrial RPFs, the TE was not affected in the tRNA(Trp)5556G>A sample (Fig. 4e). 

Altogether, our observations indicate that the expression of tRNA(Trp)5556G>A enforces 

relocation of mitochondrial ribosomes to tryptophan codons. 

  tRNA(Trp)5556G>A Control 

CI-Q 11.9 316.7 µU mU−1 CS 

CI-D 17.9 501.7 µU mU−1 CS 

CII 334.4 746.3 µU mU−1 CS 

CIII 161.7 895.0 µU mU−1 CS 

COX 43.4 333.4 µU mU−1 CS 

SCC 122.8 406.1 µU mU−1 CS 

CS 1000 1000.0 µU mU−1 CS 

Table 1: Enzymatic activity of respiratory complexes I–V in the 

tRNA(Trp)
5556G>A

 mutant cybrid and control cells.  
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Next, we asked whether the relocation of ribosomes to tryptophan codons in the 

tRNA(Trp)5556G>A mitochondria is a result of stalling, and therefore impacts on the 

downstream translation process. We aligned the first tryptophan of each mitochondrial 

transcript and plotted RPF density. Compared with wt mitochondria, tRNA(Trp)5556G>A 

mitochondria manifested increased abundance of RPFs centered at the first tryptophan 

codons of mRNAs, and reduced abundance of RPFs downstream of it (Fig. 5a). This trait 

indicates stalling of the ribosome at tryptophan. To support global ribosome stalling, we 

aligned all mitochondrial transcripts and plotted RPF density along the transcripts. Figure 

5b shows a cumulative density of RPFs and clearly indicates a significant reduction in RPF 

density at the 3′ half of the transcripts in the tRNA(Trp)5556G>A mitochondria compared with 

tRNA(Trp)wt. Furthermore, this global effect was observed at the level of the individual 

transcripts. Figure 5c presents two examples (MT-ND3 and MT-ND5) of the change in 

Figure 4: tRNA(Trp)
5556G>A

 causes mitochondria malfunctioning and an increase of RPFs at 

tryptophan codons.  

(a) Screenshots from the UCSC genome browser showing RPFs of MT-CO2 gene in wt and 

tRNA(Trp)
5556G>A

 mutant cybrids. (b) Differential codon abundance in the tRNA(Trp)
5556G>A

 mutant 

cybrids compared with control wt. (c). The tRNA(Trp)
5556G>A

 mutant cybrid (red line) shows increased 

RPF density with respect to wt controls (gray line) centered at tryptophan codon but not at a 

phenylalanine codons, nor at nuclear encoded codons (right panels). (d) Quantitative reverse 

transcriptase PCR (qRT–PCR) of tRNA(TRP) and control tRNA(GLU) from total RNA extracts from 

cybrids with either (Trp)
5556G>A

 mutant or wt mitochondria (upper panel). Extracts from cybrids were 

immunoprecipitated by anti-mt-RPL11 or control IgG antibodies. Immunoprecipitated RNAs were 

detected by qRT–PCR using primers for mt-tRNA(TRP) and mt-tRNA(GLU) (lower panel). Mean 

values and s.d.’s were calculated from three independent experiments. (e) Log-transformed 

translational efficiencies in the (Trp)
5556G>A

 mutant versus the wt control. Mitochondrially encoded 

genes are highlighted in green. 
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RPF density along mitochondrial genes in tRNA(Trp)5556G>A mutant and wild-type 

mitochondria. The change in RPF density generally showed good correlation with the 

appearance of tryptophan codons along the mitochondrial transcripts (green dashed lines in 

Fig. 5c and Supplemental Fig. S4), while the tryptophan-less MT-ND4L transcript showed 

a similar RPF pattern in control and mutant mitochondria. Thus, our results demonstrate the 

general effect of tRNA(Trp)5556G>A mutation on mitochondrial translation, pausing 

ribosomes at tryptophan codons and altering ribosomal density on mitochondrial mRNAs. 

 

Last, the stalling of ribosomes in the tRNA(Trp)5556G>A mutant mitochondria presented us 

with the possibility to examine the RPFs generated during ribosome progression. In 

particular, whether stalled ribosomes preferentially produce a certain type of RPFs. As 

tryptophan codons are enriched at the center of the RPFs in the tRNA(Trp)5556G>A mutant 

mitochondria, our model (Fig. 3d) predicts accumulation of long RPFs. Figure 5d shows 

that ribosomes from cybrids with tRNA(Trp)5556G>A mitochondria produce longer RPFs 

than cells with wt mitochondria. This phenomenon was reproduced in biological replicates 

Figure 5: tRNA(Trp)
5556G>A

 stalls ribosomes at tryptophan codons and causes a change in 

RPF size distribution.  

(a) RPF density from the 5′ end of transcripts up to the first tryptophan codon occurrence averaged 

over the 13 protein-coding mitochondrial transcripts. (b) Cumulative RPF density normalized over 

the 13 protein-coding mitochondrial transcripts. (c) Example of the cumulative density of RPF 

density along the mitochondrial genes MT-ND4L (having no Trp codons), MT-ND3 and MT-ND5, in 

wt and tRNA(Trp)
5556G>A

 mutant cybrids. (d) The relative abundance of RPF length in control and 

tRNA(Trp)
5556G>A

 mutant cybrids. 
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(Supplemental Fig. S3b). A very moderate increase in cytosolic RPFs was observed too, 

perhaps due to metabolic changes the cells experience in the presence of dysfunctional 

mitochondria. Altogether, our results show, for the first time at a nucleotide resolution, how 

a mutation in tRNA disturbs translation, and how this information can be used to decipher 

ribosome progression.  

 

 

Discussion 

 

Impaired mitochondrial protein translation affects organismal development, function and 

ageing, and is a cause for early mortality in humans. Precise measurement of protein 

translation in the mitochondria is therefore crucial in understanding why malfunctioning 

occurs. Distinct characteristics of mitochondrial and cytosolic translation machineries 

however hampered faithful translation measurements using ribosomal profiling. By 

including several modifications to the ribosomal profiling protocol we show that efficient 

capturing of cytosolic and mitochondrial ribosomes RPFs in a single experiment is 

possible. 

Our adapted protocol provides a useful new tool for mitochondrial research. It allowed us to 

show that a genetic disorder caused by a mutated tRNA(Trp)5556G>A leads to stalling of 

ribosomes on mitochondrial genes. The stalled positions are strongly enriched for 

tryptophan codons, and inversely tryptophan codons show a large increase in RPFs with 

respect to wt mitochondria. Furthermore, mitochondria expressing tRNA(Trp)5556G>A 

showed an increase of ribosomes at the 5′ half of transcripts, and a decrease at the 3′ half. 

Thus, the point mutation in the mitochondrial-tRNA encoding for tryptophan has a vast 

effect on ribosome progression and rate of translation along the transcripts. We did not 

detect any prominent change in the translation in the cytosol, indicating limited effect to the 

mitochondria. Intriguingly, not all mitochondrial tryptophan codons induced stalling (Fig. 

5c and Supplemental Fig. S4), suggesting that other factors, such as mRNA structure, 

modification and composition, might influence the usage of mutated tRNA by 

mitochondrial ribosomes. 

Our findings also infer, for the first time, mitochondrial ribosome progression from 

sequencing-based data analyses. Mitochondrial ribosomes display a bi-modal size 

distribution of RPFs, peaking at 27 and 33 nt, in contrast to the single peak at 30 nt 

observed from cytosolic ribosomes. This observation suggests a parallel between 

mitochondrial and bacterial ribosomes, since a similar observation was recently made for 

the latter (O’Connor et al., 2013). Altogether, the distribution of mitochondrial RPFs, their 

relative position with respect to mRNA, and changes due to a disease-causing tRNA 

mutation, suggest a model for ribosome movement (Fig. 3d) and stalling (Fig. 6). 
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Materials and methods 

 

RNA sequencing 

RNA was isolated using Trizol reagent (Invitrogen). RNASeq libraries were prepared using 

the TruSeq RNA Sample Prep Kit v2 (Illumina) following the manufacturer’s instructions. 

In brief, RNA was fragmented, then first-strand cDNA was prepared using the kit-supplied 

1st Strand Master Mix and Superscript III (Life Technologies) followed by second strand 

cDNA synthesis. Libraries were amplified by PCR for 12 cycles and sequenced on a HiSeq 

2000 System (Illumina). 

 

Alignment of raw data 

5′ and 3′ adapters were clipped from ribosome profiling reads prior to alignment. rRNA and 

tRNA fragments were cleaned by aligning to databases of rRNA and tRNA (compiled from 

Ensembl (http://dec2011.archive.ensembl.org/index.html) categories ‘rRNA’, 

‘rRNA_pseudogene’ and ‘Mt_rRNA’ and the genomic tRNA database (Chan and Lowe, 

2009) for hg19 respectively) in two alignment steps and removing reads with one or more 

hits. Cleaned data was aligned to hg19 using Tophat (Trapnell et al., 2009) and splice 

junctions of the transcriptome that was assembled by merging Ensembl, Refseq and Broad 

novel transcripts (Cabili, 2011) using the gffread utility supplied with the cufflinks package 

(Trapnell, 2012). Only primary alignments (that is, not having SAM flag 0x256) with 

Figure 6: Model for ribosome stalling.  

Schematic model for ribosome stalling at codons translated by affected tRNAs, explaining the 

unbalanced generation of long RPFs in mutant mitochondria. 
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mapping quality ≥10 were kept. 

 

Size distribution analysis 

Valid alignments were assigned to genes using htseq-count† and only reads unambiguously 

assigned to a gene were counted. The gene-wise read density over the read sizes was 

averaged across genes with at least 100 reads. 

 

Periodicity analysis 

Coding sequence (CDS) regions were extracted from Ensembl and the 5′ ends of reads were 

offset 12 nucleotides in the 5′ direction to match the P-site location of ribosomes (that is, 

the currently ‘read’ codon). If reads aligned unambiguously to a single gene and 

unambiguously to a single frame of one or more transcripts of that gene they were assigned 

to that frame. 

 

TE analysis 

Genewise readcounts (in CDS for ribosome profiling data; over all exons for RNAseq data) 

were obtained using htseq-count (in ‘union’ mode, the default) and Ensembl annotations. 

Translational efficiencies were calculated as the normalized ratios (by total read counts) of 

RNAseq and ribosome profiling data over the mitochondrial genes. TMM normalization 

was applied to RNAseq and ribosome profiling data using the R package ‘edgeR’ 

(Robinson et al., 2010). 

 

Correlation of short and long RPFs 

Abundances of RPFs of 27 and 33 nt in length per mitochondrial protein coding transcript 

were used to calculate cross-correlation. The cross-correlation values were adjusted by 

multiplying with the length of the transcript. The normalized cross-correlation was 

averaged over the 13 transcripts. 

 

Codon enrichment 

RPFs assigned uniquely to the CDS of a mitochondrial gene were used to determine codon 

enrichment. For each RPF the current P-site was estimated by adjusting 17 nt from the 5′ 

end of the RPF. Only P-sites which were in-frame with the CDS were counted. The total 

number of each of the 64 codon occurrences was counted in the control and mutant sample, 

and the relative frequencies were calculated. From this, the differences between mutant and 

control were calculated. 

 

Cell culture and western blotting 

BJ primary fibroblast and cybrid cells were cultured in DMEM supplemented with 10% 

heat-inactivated fetal calf serum (FCS) in 5% CO2 at 37 °C. Cell extracts were separated on 

                                                 
† http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html 
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10% SDS–PAGE gels and transferred to Immobilon-P membranes (Milipore). Antibodies 

used were mt-RPL11 (Cell Signaling, 1:1,000), RPL10a (Santa Cruz, 1:1,000), RPL7 

(Abcam, 1:1,000) and RPS6 (Cell Signaling, 1:1,000). Validation and homoplasmy of the 

cybrids harboring the tRNA(Trp)5556G>A mutation were verified by tRNA sequences 

obtained in the ribosome profiling protocol (see Supplemental Fig. S6, which also shows 

full-length images of immunoblots). 

 

Ribosome profiling 

Approximately 30 × 106 cells were treated with chloramphenicol (100 µg ml−1) for 15 min 

and cycloheximide (100 µg ml−1) for 5 min. Cells were lysed in buffer B (20 mM Tris–HCl, 

pH 7.8, 100 mM KCl, 10 mM MgCl2, 1% Triton X-100, 2 mM DTT, 100 µg ml−1 

chloramphenicol, 100 µg ml−1 cycloheximide, 1 × Complete protease inhibitor). Lysates 

were centrifuged at 1300g and the supernatant was treated with 2 U µl−1 of RNase I 

(Ambion) for 40 min at room temperature. Lysates were fractionated on a linear sucrose 

gradient (7–47%) using the SW-41Ti rotor at 36,000 r.p.m. (221632.5g) for 2 h. Fractions 

enriched in mito-monosomes and cytosolic monosomes were identified by western blotting, 

pooled and treated with proteinase K (Roche) in 1% SDS. Released RPFs were purified 

using Trizol reagent (Invitrogen) following the manufacturer’s instructions. Libraries for 

deep sequencing were prepared as described previously (Loayza-Puch, 2013). In brief, 

digested fragments between 25–36 nucleotides were gel-purified and dephosphorylated 

using T4 polynucleotide kinase (New England Biolabs) for 5 h at 37 °C in buffer containing 

100 mM MES-NaOH, pH 5.5, 10 mM MgCl2, 10 mM β-mercaptoethanol and 300 mM 

NaCl. 3′ adaptor was added with T4 RNA ligase 1 (New England Biolabs) for 2.5 h at 

37 °C. Ligation products were 5′-phosphorylated with T4 polynucleotide kinase for 30 min 

at 37 °C. 5′ adaptor was added with T4 RNA ligase 1 for 2 h at 37 °C. All the sequencing 

experiments were performed on a HiSeq 2000 System (Illumina). 

 

Mitoribosome–tRNA complex inmunoprecipitation 

Cybrid cells were fixed with 1% formaldehyde for 10 min at 37 °C, quenched with 2.5 M 

glycine for 5 min and washed with 1 × PBS. Cell pellets were resuspended in lysis buffer 

(150 mM NaCl, 50 mM Tris, 0.5% Sodium deoxycholate, 0.2% SDS, 1% NP-40) 

supplemented with RNAseOUT (Invitrogen) and Complete protease inhibitors (Roche). 

Protein-G beads were washed and pre-incubated with mt-RPL11 antibody (Cell Signaling) 

(1:100) for 1 h at room temperature. Extracts and beads were incubated at 4 °C for 1 h. 

Beads were washed thrice with 1 × PBS, 0.1% SDS, 0.5% NP-40 and twice with 5 × PBS, 

0.1% SDS, 0.5% NP-40. RNA was reverse crosslinked in the presence of proteinase K 

(Roche) at 65° for 3 h. RNA was purified using Trizol reagent (Invitrogen). 

 

Primer sequences 

mt-tRNA(TRP) forward: 
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5′-GAAATTTAGGTTAAATACAGACCAAGA-3′; 

mt-tRNA(TRP) reverse: 

5′-GAAATTAAGTATTGCAACTTACTGAGG-3′; 

mt-tRNA(GLU) forward: 

5′-ACAACGATGGTTTTTCATATCATT-3′; 

mt-tRNA(GLU) forward: 

5′-TTCTCGCACGGACTACAACC-3′; 

Gapdh forward: 

5′-ACCCAGAAGACTGTGGATGG-3′; 

Gapdh reverse: 

5′-TCTAGACGGCAGGTCAGGTC-3′ 
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Supplemental figures and tables 

 
Supplemental Figure S1: Translational efficiency (TE) versus abundance (measured by RNAseq) 

in two recently published datasets from (Liu et al., 2013) and (Shalgi, 2013).  

Since the data from Liu et al. was supplied without matching RNAseq of the samples, we used RNA 

sequencing data from matching cell line and control condition from (Xiao et al., 2009). GEO sample 

identifiers of the used data are given in Supplemental Table S1. For the data from Liu et al. the same 

pipeline was used as the data described in the article. For the data from Shalgi et al. an adapted version 

of the protocol was used using the Mus Musculus NCBIM37 reference sequence for alignment and 

Ensembl v67 annotations for analysis.  
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Supplemental Figure S2: Impact of tRNA(Trp)
5556G>A

 on phenotype.  

(a) Immunofluorescence microscopy of Cybrids with wt and tRNA(Trp)
5556G>A

 mutated mitochondria 

transfected with a mitochondria-targeted YFP vector. The scales measure 6.45 and 7.81 micrometer 

respectively. (b) Image of wells containing control and tRNA(Trp)
5556G>A

 mutant cells. 
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Supplemental Figure S3: Analysis of RP-sequencing data on an independent biological replicate 

pair of control and tRNA(Trp)
5556G>A

 mutant cybrids. 

(a) Normalized RPF density plot at tryptophan codon regions in the control and tRNA(Trp)
5556G>A

 mutant 

sample, analogous to Fig. 3e. (b) RPF length analysis analogous to Fig. 4D. 
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Supplemental Figure S4: Cumulative density plots for all 13 mitochondrial protein-coding genes in the 

wild-type (gray line) and tRNA(Trp)
5556G>A

 mutant cybrid (red line) samples. Dashed lines indicate the 

positions of TGA (light green) and TGG (dark green) codons. 



2 

RIBOSOME PROFILING REVEALS FEATURES OF NORMAL AND 

DISEASE-ASSOCIATED MITOCHONDRIAL TRANSLATION 

 

A 41 

Supplemental Figure S5: Genotyping of the control and mutant cells based on reads covering the 

mitochondrial tRNA(Trp)
5556G>A

 gene mutation. Y-axis shows the fraction of occurrence of each 

nucleotide for the positions 5549-5559. 
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Supplemental Figure S6: Full western blots from Fig. 1b. 

 

Supplemental Table S1: Datasets used in the analysis of Supplemental Figure S1. 

  Sample SRA ID GEO ID RP/RNAseq 

Liu et al. HEK293_CON_Rep1 SRR619082 N/A RP 

  HEK293_CON_Rep2 SRR619083 N/A RP 

Xiao et al. Control-KD SRR029285 GSM417716 RNAseq 

Shalgi et al. 3T3-Control-RNAseq SRR649749 GSM794848 RNAseq 

  3T3-Control-Riboseq SRR649752 GSM794854 RP 

  
3T3-Control-Riboseq-
rep2 SRR649755 GSM794857 RP 
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Abstract 

 

Tumor growth and metabolic adaptation may restrict the availability of certain amino-acids 

for protein synthesis. Such information can be utilized for diagnosis and therapy; however, 

genetic and environmental conditions mandate a tailored detection system for measuring 

restrictive amino-acids in each tumor. Here, we harnessed ribosome profiling to sense 

restrictive amino-acids, and developed diricore, a procedure for differential ribosome 

measurements of codon reading. We first demonstrate diricore’s functionality and 

constraints using metabolic inhibitors and nutrient deprivation assays. Then, we uncovered 

leucine restrictions following TGF-beta, ascribing a role for its transporter. Finally, we 

applied diricore to kidney cancer and discovered restrictive proline. Interestingly, proline 

deficiency was linked to high level of PYCR1, a key enzyme in proline production, 

suggesting a compensatory mechanism allowing tumor expansion. Indeed, PYCR1 is 

induced by shortage of proline precursors, and its suppression attenuates kidney cancer cell 

proliferation when proline is limiting, thus demonstrating the potential therapeutic 

application of diricore.  
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Introduction 

 

The identification of amino acid biosynthesis deficiencies in cancer cells, as determined by 

gene expression studies, has already led to one innovative cancer therapeutic treatment. 

Pioneering research conducted more than five decades ago paved the way for the idea that 

certain cancers may be auxotrophic for a particular amino acid, and that amino acid 

deprivation can sensitize these tumors to conventional cancer therapy. So far, this was put 

to practice by targeting the amino acid asparagine in acute lymphoblastic leukemia (ALL), 

a common type of leukemia in children and young adults. Lack of the biosynthesis enzyme 

asparagine synthetase (ASNS) in ALL, but not in most other cell types in the body, causes 

their addiction to extracellular supply of asparagine (reviewed in (Richards and Kilberg, 

2006)). The combination of chemotherapy regiments with a PEGylated form of L-

asparaginase treatment (an enzyme that deaminates asparagine to aspartic acid and 

ammonia) led to a remarkable increase in cure-rates of leukemia from 5% to about 90% 

(Offman et al., 2011). PEGylation is used to protect protein-drugs from autoimmune 

reactivity and to increase sustained circulation in the blood.  

 

Similar to L-asparaginase, recent reports have indicated the dependency of certain tumors 

to other amino acids. Lack of expression of either ASS1 (argininosuccinate synthase) or 

ASL (argininosuccinate lyase), two enzymes that convert citrulline to arginine, has been 

noted in several types of cancer (e.g. human melanoma and hepatocellular carcinoma 

(Delage et al., 2010; Phillips et al., 2013)). Indeed, arginine deprivation in cancer cell lines 

and tumor models suggested increased cell death that correlates with ASS1 expression, and 

augmentation of chemo-sensitivity (for recent reference (Liu et al., 2014)). Moreover, 

clinical trials showed that tumor response to arginine deprivation, using PEGylated arginine 

deaminase (ADI-PEG20), seems effective and specific to ASS1-deficient tumors (Feun and 

Savaraj, 2006; Takaku et al., 1992). In addition to asparagine and arginine, it has recently 

been shown that certain types of cancer cells depend on glycine, glutamine, leucine and 

serine metabolism to proliferate and survive (Jain et al., 2012; Maddocks et al., 2013; 

Sheen et al., 2011; Son et al., 2013).  

 

Though gene expression analysis in cancer cells has already been successfully exploited to 

identify deficiencies in amino acid production in cancer, progress was limited in recent 

years. An essential limiting aspect is that amino acid demand depends on many genetic and 

environmental factors of the growing tumor in the organism. Most influential factors are 

extracellular free amino acid levels, alterations in cellular amino acid uptake, production 

and catabolism, the use of amino acid for energy, as well as tRNA levels and their 

availability for protein synthesis. Therefore, to identify restrictive amino acids of a growing 

tumor, a novel measurement way is required. With this type of information, better diagnosis 

and assignment of new combinations of therapies can be developed and adapted for each 
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patient. Moreover, new tumor-restrictive amino acids can be discovered. 

 

In contrast to gene expression regulation at the transcriptome level, systematic exploration 

of the modulation of mRNA translation significantly lagged behind due to the lack of 

genomic techniques that probe this regulatory layer. This has been changed in the past five 

years with the development of a deep-sequencing based technique called ribosome profiling 

(Ribo-Seq) (Ingolia et al., 2009). Ribo-Seq allows the study of changes in rate of protein 

translation on a truly global scale. It maps the positions of ribosomes on transcripts by 

nuclease footprinting, generating nuclease-protected ribosome-bound mRNA fragments 

(RPFs) that are converted into a DNA library suitable for deep sequencing. The prime 

utility of Ribo-Seq is transcriptome-wide determination of translation rates. In this way 

Ribo-Seq was used in recent years to explore key functions of translation programs in 

microRNA-mediating gene suppression, mTOR inhibition, heat shock response, and p53 

and senescent induction (Bazzini et al., 2014; Hsieh et al., 2012; Ingolia, 2014; Liu et al., 

2013; Loayza-Puch et al., 2013; Thoreen et al., 2012). Thus, Ribo-Seq is a powerful 

technology that can uncover cellular regulatory translational programs. 

 

Beyond measurement of protein synthesis rates, a second and not less important utility of 

Ribo-Seq is emerging from the fact that it maps ribosome positions at a nucleotide 

resolution. This allows global analysis of changes related to codon usage (Ingolia et al., 

2009). Our realization of this feature evolved when we interrogated protein translation of 

human mitochondria (Rooijers et al., 2013). We adapted the Ribo-Seq protocol specifically 

to examine mitochondrial translation and used it to demonstrate the effect of mitochondrial 

tRNA mutations on ribosome progression. A strong and reproducible ribosome pausing 

precisely at the codons corresponding to the affected tRNA was observed. Beyond the 

biological significance of these findings, these experiments indicated the capability of 

Ribo-Seq to identify tRNA availability shortages for protein synthesis without any prior 

genetic knowledge. In other words, by examination of differential ribosome occupancy of 

normal and patient-derived mitochondria by Ribo-Seq one can pinpoint the causal disease 

agent. In a similar way, Ishimura R et al., have recently unmasked the disease potential of 

mutations in nuclear-encoded tRNA genes (Ishimura et al., 2014). However, whether the 

Ribo-Seq approach can be applied to global identification of amino acid deficiencies was 

not yet explored. 

 

Here, we hypothesized that Ribo-Seq could be utilized for defining amino acid deficiencies 

in cancer, and developed diricore a tool for this purpose. We validated, evaluated and 

investigated the functionality of this tool to detect restrictive amino acids in a variety of cell 

lines and conditions. Moreover, we applied diricore to cancer samples and explored amino 

acid deficiencies in kidney tumors. 
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Results 

 

Differential ribosome codon reading method 

In previous work we used ribosome profiling (Ribo-Seq) to map changes in translation of 

wild type and disease-triggering mutant mitochondria (Rooijers et al., 2013). A 

mitochondrial disease-promoting tryptophan (Trp)-tRNA mutation elicited specific pausing 

of mitochondrial ribosomes at tryptophan codons. Consequently, ribosome occupancy was 

increased at mitochondrial tryptophan codons, resulting in enrichment of ribosome-

protected fragments (RPFs) covering these sites. We therefore hypothesized that also in the 

cytosol, global occupancy measurements of ribosome positions could be utilized as a 

cellular detector of alterations in the availability of amino acid for protein synthesis. To 

examine this issue we constructed a protocol to measure differential ribosome codon 

reading (diricore) (Figure 1a). In particular, we performed two complementary analyses: 

One, subsequence analysis; where we examined the codons at 9, 12 and 15 nucleotides (nt) 

from the 5’-ends of RPFs. And two, RPF density analysis; where we analyzed every 

instance of a codon throughout the transcriptome to examine the local RPF 5’-end density 

surrounding that codon. While the latter makes use of all RPFs, subsequence analysis takes 

into account only those that are in frame with the coding sequence. The positions 9, 12 and 

15 from the 5’-end of the RPFs correspond to the E (exit), P (peptide bond), and A (tRNA 

recruitment and reading codon) sites of the ribosome respectively (Bazzini et al., 2014; Guo 

et al., 2010; Ingolia et al., 2009). 

 

Extent and sensitivity of diricore 

To validate our approach we first examined a dataset of Ribo-Seq performed on yeast 

treated with 3-Amino-1,2,4-triazole (3-AT), an inhibitor of histidine synthesis (Guydosh 

and Green, 2014), and measured the occupancy of all codons at the different positions. As 

expected, this resulted in a strong signal in the two histidine-codons at the reading codon 

(position 15 of RPFs, Figure 1b, left panel). Moreover, examination of histidine codons, but 

not control phenylalanine, showed a vast increase of 5’-ends of RPFs mainly at position 15 

nt upstream of the codon (Figure 1b, right panels). Second, we tested harringtonine 

treatment, an agent that immobilizes initiating ribosomes and depletes elongating ones 

(Fresno et al., 1976; Ingolia et al., 2011), in the human SUM1315 breast cancer cell line. As 

expected, we obtained a clear increased signal at methionines, but only at the initiator ATG 

codon (Figure 1c). Here, however, the signal was detected at position 12, corresponding to 

ribosomes arresting with the initiation codon at the P-site and in line with harringtonine’s 

function in blocking elongation. As a final proof-of-principle we analysed the response of 

cancer cells to L-asparaginase, a currently used therapeutic agent that targets asparagine in 

acute lymphoblastic leukemia (ALL) (Richards and Kilberg, 2006), by diricore. We 

revealed a specific signal at asparagine codons in cells treated with L-asparaginase (Figure 

1d), indicative of asparagine shortage of the treated cells. 
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Figure 1: Ribosome positions as readout for amino acid availability for protein synthesis. 

(a) Scheme of the protocol we used for differential ribosome codon reading (diricore). In 

subsequence analysis (left) subsequences (in the case where the RPF is aligned to the CDS these 

subsequences are mRNA codons) are counted, normalized, averaged and compared between 

conditions. In RPF density analysis (right) the density of RPF 5'-ends is measured, normalized, 

averaged and compared between conditions. (b) Diricore analysis of data obtained from (Guydosh 

and Green, 2014) of yeast cells treated with 3-Amino-1,2,4-triazole (3-AT), an inhibitor of His 

production, shows signal at His codons by increased occurrence of His codons in the 15
th
 nt. from 

the 5’end of the RPFs (left panel), and corresponding increased density of RPFs 15 nt. upstream of 

His codons (right panels). (c) Diricore analysis of SUM1315 cells treated with harringtonine, an 

inhibitor of initiation of translation (Fresno et al., 1976; Ingolia et al., 2011), reveals a strong and 

specific signal at the initiator Met at position 12 of RPFs. (d) Diricore analysis of the PC3 cells 

treated for 48hrs with L-asparaginase reveals a specific signal at asparagine codons at position 15 

in RPFs. (e) Diricore analysis of MCF10A cells either treated with Torin1 (an inhibitor of mTOR 

(Thoreen et al., 2009)) for 2 hours, or deprived of nutrients for 2 hours, or deprived of leucine for 24 

hours. Left panels show subsequence analyses, and right panels RPF density analyses of the 

initiator-ATG and all other ATG codons (marked “START” and “Others”, respectively). 
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Next, we wished to evaluate diricore in other biological settings. The kinase mTOR 

complex is a cellular amino acid sensing hub (Efeyan and Sabatini, 2013; Kim and Guan, 

2011). Nutrient deprivation of the human non-transformed MCF10A epithelial cell line 

leads to rapid mTOR inhibition, global reduction in ribosomal protein translation, and acute 

suppression of initiation of protein synthesis that is followed by the induction of autophagy 

(Supplemental Figure S1). A similar principle response is obtained by treatment with 

Torin1, a specific inhibitor of mTOR (Thoreen et al., 2012). Moreover, also deprivation of 

leucine, a key amino acid of the mTOR sensing machinery, is known to provoke such 

global responses (Efeyan and Sabatini, 2013). We therefore tested whether amino acid 

deprivation, either global or specific, would lead to ribosome pausing and specific signals 

in diricore. We used Torin1 as control since it causes a halt of translation without any 

shortage of amino acids. Figure 1e, top panel shows that no specific diricore signal was 

provoked by 2 hours Torin1 treatment. A very similar diricore profile was observed by 2 

hours nutrient deprivation (Figure 1e, middle panel). However, here we observe a strong 

depletion of RPFs 12 nt. upstream of the initiator-ATG codon. We attribute this depletion 

to the strong halt of translation initiation following treatment. Lastly, 24 hours leucine 

deprivation also triggered a diricore signal of initiator-ATG codon depletion at position 12, 

accompanied by no specific signal at other codons (Figure 1e lower panels). Thus, as all 

treatments were demonstrated to globally impact protein synthesis, our results correlate the 

strong depletion of the initiator-ATG codon in diricore with global inhibition of the protein 

translation machinery. Moreover, these results also suggest that strong global translation 

inhibition puts constrains on the identification of codon-specific signals, as no specific 

signal in the coding sequence was observed neither when essential amino acids or only 

leucine were acutely deprived. 

 

To further test diricore we used basal and luminal breast cancer cell lines and deprived 

them from glutamine. It has been recently demonstrated that while basal breast cancer cell 

lines are highly sensitive to a glutamine deprivation treatment, luminal breast cancer cell 

lines are relatively resistant (Singh et al., 2012). Indeed, glutamine deprivation greatly 

affected the survival of the basal MDA-MB-231 and Hs587T cell lines, while it only mildly 

affected T47D and MCF7 luminal cells (Figure 1f). As previously reported (Leprivier et al., 

2013), the resistance of the luminal cells to glutamine deprivation was associated with 

sustained control of translation elongation by maintaining the inhibitory phosphorylation on 

Threonine 56 of the key elongation factor eEF2 (Figure 1g). In contrast, the basal cell lines 

Figure 1 (cont.) 

(f) Normalized cell growth of luminal (T47D and MCF7, blue shades) and basal (MDA-MB-231 and 

Hs578t, red shades) breast cancer cell lines at different concentration of glutamine. Measurements 

were taken 48hrs after plating. (g) Immunoblot analysis of indicated breast cancer cells grown in 

complete media or under glutamine starvation for the indicated times. (h) Diricore analysis of 

luminal (blue shades) and basal (red shades) breast cancer cell lines deprived of glutamine for 48 

hrs. 



3 

 

A 50 

do not exhibit this inhibitory phosphorylation, allowing translation elongation to proceed. 

This suggested to us that glutamine deprivation would greatly impact global translation in 

the basal cells, preventing detection of specific signals by diricore, while luminal cells will 

respond in a more mild and specific way. We therefore treated the basal and luminal cell 

lines with a culture medium deprived of glutamine, profiled ribosomes, and analyzed RPFs 

by diricore. In line with our assumption, diricore revealed great reduction of the initiator-

ATG codon at position 12 in the basal cells (indicating acute translational inhibitory 

response), while very little signal was observed at this position in the luminal cell lines 

(Figure 1h upper panels). In contrast, we observed diricore signals at glutamine codons 

clearly appearing only in the luminal cells (Figure 1h middle panels). As control we used 

two cysteine codons, which showed no specific signal in any of the conditions (Figure 1h 

lower panels). Thus, our observations here support the use of diricore analysis of the 

initiator-ATG codon to estimate global changes in protein translation processes, and also 

indicate that diricore-signals of specific codons within the coding sequence appear in 

conditions where strong global inhibition of translation has not (yet) occurred. 

 

Diricore uncovers restrictive amino acids following TGF-beta treatment 

Following diricore development and validation, we searched for apparent changes in a 

number of cell treatments, including TGF-beta, an inducer of epithelial to mesenchymal 

transition (EMT). Interestingly, 48 hours TGF-beta treatment of MCF10A cells resulted in 

a strong EMT signature (Supplemental Figure S2a) while simultaneously causing increased 

leucine occupancies at the reading codon (position 15) and decreased occupancies in 

position 12 (Figure 2a top panel). We used three biological replicates to strengthen our 

confidence and allow statistical analysis to be performed. This indicated a highly significant 

effect of TGF-beta on RPF density at leucine codons (adjusted p-value < 0.001). In line 

with our observation so far, we observed no decrease in diricore-signal at position 12 of the 

initiator-ATG (Figure 2a bottom panel), indicating that TGF-beta treatment did not elicit 

global inhibitory effects on protein translation, likely permitting diricore-signals at specific 

codons to be detected. We corroborated this result with in vivo protein incorporation assays 

(Liu et al., 2012), which consistently revealed no significant change in global protein 

synthesis rate following TGF-beta treatment, while control Torin1 treatment reduced it as 

expected (Figure 2b). Additionally, by western blotting we did not observe a reduction in 

phosphorylated 4E-BP1, a downstream key translation initiation factor of mTOR activity, 

in contrast to the marked expected effect of Torin1 (Supplemental Figure S2b). Our data so 

far suggest that TGF-beta treatment of MCF10A cells provokes leucine-codon signals in 

diricore, which may indicate mild leucine limitations for protein synthesis. Our analysis of 

the diricore signals of the initiator-ATG suggests that even though leucine is a signaling 

molecule that is required for mTOR activation (Efeyan and Sabatini, 2013), the presumed 

leucine limitation following TGF-beta treatment did not affect global translation, permitting 

its detection by diricore. 
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Figure 2: Diricore links regulation of leucine transporter levels to TGF-beta signaling. 

(a) Diricore analysis of MCF-10A cells treated with TGF-beta vs. untreated controls, in biological 

triplicates. Top panels show subsequence analysis of codons at the 12
th
 and 15

th
 positions of RPFs. 

Bottom panels show 5’ RPF density analyses at leucine and phenylalanine codons (left) and 

methionine codons, split out by initiator codon (right). Asterisks at the subsequence plot indicate 

statistical significance for deviating occupancy of codons of a particular amino acid, compared to 

the controls. Statistical significance was determined by a linear mixed model in which the amino 

acids constitute the fixed effects and codons constitute random effects. A separate model for each 

position (12 or 15 in this plot) is fit. Significance thresholds are: * p < 0.05, ** p < 0.01 and 

*** p < 0.001 and are adjusted for multiple testing. (b) OP-Puro incorporation in MCF10A cells 

treated either with TGF-beta for 48 hours, Torin-1 for two hours, or left untreated, assessed by flow 

cytometry. (c) MCF10A cells were treated as in panel (a), and subjected to tRNA aminoacylation 

analysis (Zaborske et al., 2009) for the indicated tRNAs. Error bars represent standard deviations. 

n=3, and '*' indicates p<0.01 by a two-tailed Student t-test. (d) Ribo-Seq-based expression analysis 

of the indicated genes shows suppression of SLC3A2, an essential component of the leucine 

transporter in the cell. ACTB is shown as negative control for differential expression, while SNAI2 

expression is shown as positive control for TGF-beta-induced EMT. 
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To unravel the chain of events causing the leucine signal, we initially examined changes in 

gene expression, as a dramatic increase in the amount of leucine codons following TGF-

beta treatment may indicate increase in demand. However, no indication for increased 

leucine demand was obtained when we either inspected it by RNAseq (Supplemental 

Figure S2c) or when a correlation was made between the fraction of leucine codons and 

TGF-beta-induced translation efficiency changes (Supplemental Figure S2d). Then, we 

examined the total levels of Leu-tRNAs, but observed no change either (Supplemental 

Figure S2e). We proceeded to examine the tRNA-aminoacylation levels (Zaborske et al., 

2009). This analysis indicated a significant increase of non-aminoacylated levels of all 

tested Leu-tRNAs, but not of the controls (Asp-tRNA and Val-tRNA) upon treatment 

(Figure 2c). This pinpoints to cellular limitation in leucine availability for translation 

following TGF-beta treatment.  

 

To uncover the molecular mechanisms leading to TGF-beta-induced limitation in leucine 

we examined the expression levels of genes related to its cellular uptake, synthesis, and 

tRNA aminoacylation. Figure 2d shows that while TGF-beta induced no change in the level 

of LARS (the only cytosolic Leu-tRNA synthetase), the level of SLC3A2 (also known as 

CD98, the major leucine transporter) was down ~2 fold. We used snail2 (SNAI2), a key 

TGF-beta target, and beta-Actin (ActB) as positive and negative controls, respectively. 

Using flow cytometry analysis we validated SLC3A2 down-regulation following TGF-beta 

treatment at the level of the protein (Figure 2e). If the leucine amino acid transporter is 

involved in generating the leucine diricore signal, reduced cellular uptake of leucine is 

predicted. Indeed, the uptake of leucine, but not control aspartic acid, was reduced in 

MCF10A treated with TGF-beta (Figure 2f). Thus, reduced SLC3A2 leucine-transporter 

level coincides with the increase in diricore signal at leucine codons following TGF-beta 

treatment. 

 

Next, we postulated that if TGF-beta affects the uptake of leucine, artificially increasing the 

cellular uptake of leucine should weaken the diricore signal in a specific manner. To 

examine this assumption we reduced restraints in leucine transportation by adding to the 

medium esterified-leucine (eLeu, a leucine analogue that can cross cellular membranes and 

be used for protein synthesis, (Thiele and Lipsky, 1990)). We therefore induced MCF10A 

cells with TGF-beta for 48 hours in the presence of eLeucine or control vehicle and first 

Figure 2 (cont.) 

(e) SLC3A2 expression determined by FACS in control and 48h TGF-beta-treated MCF10A cells. (f) 

Uptake of [
3
H]-Leu and control [

3
H]-Asp measured in MCF10A cells that were treated as in panel (a). 

Error bars display standard deviations; n = 3;∗ indicates p < 0.05 by two-tailed Student’s t test. (g) 

Diricore analysis of MCF10A cells treated with TGF-beta and esterified leucine (eLeu) or control 

vehicle. Left panels show subsequence shifts while right panels show RPF density differences, 

where in red the response to TGF-beta and in blue the response to TGF-beta and eLeu is shown. 
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tested Leu-tRNA aminoacylation. Supplemental Figure S2f shows the expected increase in 

Leu-tRNA-aminoacylation following TGF-beta, and reveals a significant attenuation of this 

effect by eLeucine. We use Val-tRNA aminoacylation as control, and this remained 

unaffected. Then we used the same cell populations, profiled ribosomes, and examined 

RPFs by diricore. Figure 2g shows that while mock-treated cells elicited the expected 

leucine diricore signal at position 15, the addition of eLeucine abrogated this signal in a 

specific manner. Furthermore, we monitored the global cellular response to TGF-beta by 

examining SNAI2 and SLC3A2 expression levels. This indicated comparable changes in 

both eLeucine and control conditions (Supplemental Figures S2g and S2h). These results 

strongly support the notion that TGF-beta affects leucine uptake in MCF10A cells. 

Moreover, our observations thus far underscore the robustness of diricore to unravel 

biological events occurring following changes in cellular states. 

 

Down-regulation of SLC3A2 is required for the leucine-diricore signal following TGF-

beta treatment 

Next, we questioned whether SLC3A2 is causal to the diricore signals following TGF-beta 

treatment using SLC3A2 knockdown and over-expression tools. We first knocked down 

SLC3A2 and confirmed suppression of expression and functionality by qRT-PCR (Figure 

3a) and flow cytometry (Figure 3b). We confirmed that the knockdown led to reduced 

uptake of leucine (Figure 3c). Furthermore, tRNA-aminoacylation assays showed a 

significant increase in non-aminoacylated Leu-tRNAs, but not in control Asp- and arginine 

(Arg)-tRNAs, following SLC3A2 knockdown, suggesting a specific effect of SLC3A2 on 

Leu-tRNAs (Figure 3d). Finally, diricore analysis identified a signal at leucine codons 

elicited by SLC3A2 siRNAs, which was comparable to TGF-beta in control siRNAs 

transfected cells (Figure 3e). In contrast, the major TGF-beta target, SNAI2, was not 

induced by SLC3A2 knockdown (Supplemental Figure S3a), indicating that the leucine-

diricore signal in the SLC3A2 siRNA-transfected cells was not due to aberrant activation of 

TGF-beta signaling. To further examine the role of reduced SLC3A2 expression in TGF-

beta-induced leucine stalling, we stably over-expressed SLC3A2. We validated the over-

expression by FACS (Supplemental Figure S3b). TGF-beta treatment in SLC3A2 over-

expressing cells still causes down-regulation of SLC3A2, but its levels are comparable to 

non-overexpressing untreated cells (compare blue and dark green lines in Supplemental 

Figure S3b). We found that SLC3A2 over-expression stimulated leucine uptake 

(Supplemental Figure S3c) and prevented the decrease in aminoacylation of Leu-tRNA 

following TGF-beta treatment (Supplemental Figure S3d). SLC3A2 over-expression did 

not alter TGF-beta-induced EMT as indicated by SNAI2 induction (Supplemental Figure 

S3e). Finally, diricore analysis showed that SLC3A2 over-expression attenuated the signal 

at leucine codons (Supplemental Figures S3f). Taken together, using diricore we uncovered 

a causal key role of SLC3A2 in limiting intracellular levels of leucine following TGF-beta 

treatment. 
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Diricore uncovers Proline deficiency in kidney cancer 

Following the application of diricore to cell lines, we examined whether diricore could also 

detect restrictive amino acids in cancer. We therefore obtained fresh clear cell renal cell 

carcinoma (ccRCC) kidney tumor samples, and sampled two normal and four tumor tissues 

for Ribo-Seq (Supplemental Figure S4a). Quality control of the Ribo-Seq data indicated 

high and comparable quality of all samples (determined by the percentage of mapped reads 

to coding sequences, frame of RPFs, and the high correlation within the two normal 

samples, Supplemental Figure S4b). Furthermore, gene expression analysis verified high 

expression of the ccRCC marker genes: EGFR, vimentin (VIM) and CAIX (CA9) in all 

tumor tissues (The Cancer Genome Atlas Research Network, 2013) (Supplemental Figure 

S4c).  

Figure 3: SLC3A2 partially mediates the differential ribosomal leucine occupancy elicited by 

TGF-beta 

(a) SLC3A2 expression as determined by qRT-PCR analysis in MCF10A cells transfected with 

siRNAs against SLC3A2 or a control siRNA. Expressions were normalized to GAPDH. (b) SLC3A2 

expression as determined by flow cytometry analysis in MCF10A cells transfected with siRNAs 

against SLC3A2 or a control siRNA. (c) The uptake of [
3
H]-Leu measured in MCF10A cells 

transfected with SLC3A2 or control siRNA in either TGF-beta-treated or control condition. (d) 

Aminoacylation of indicated tRNAs in MCF10A cells treated as in panel (c). (e) RPF 5’-end density 

analysis of MCF10A cells treated as in panel (c). 
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Next, we performed diricore analysis comparing each of the normal and tumor tissues to 

both normal tissues. While no signal was detected between the two normal tissues 

(Supplemental Figure S4d), the comparisons of each of the tumor tissue to either normal 

revealed two consistent signals (Figure 4a). We identified a strong peak in methionine 

codons at position 12, which correspond to the P site of the ribosome, as well as a signal in 

proline codons at both positions 12 and 15, corresponding to ribosome’s P and A sites 

respectively. Importantly, all tumor-versus-control samples showed these two signals, 

indicating first that diricore is a robust technology, and second, that at least for this tumor 

common signals are detected from samples retrieved from different regions of the tumor 

and normal tissues. Intriguingly, the strong signal in methionine was solely originating 

from the initiator-ATG codon and was not observed in other ATG codons, indicating an 

alteration in translation initiation rather than methionine (Met)-tRNA levels (see Figure 4a 

right panels). As also the position of the peak is at the P-site, and not the A-site where the 

specific tRNA enters the ribosome, we propose that increased translation initiation rate in 

the tumor is the underling mechanism. To inspect this issue in more depth, we examined the 

phosphorylation level of 4E-BP1, a member of a family of translation initiation repressors 

that by binding to the eukaryotic translation initiation factor 4E (eIF4E) limits the 

recruitment of 40S ribosomal subunit to the ribosome. Phosphorylation at threonines 37/46 

commonly occurs in cancer cells resulting in the inhibition of 4E-BP1 translation-

suppressive function and induction of translation initiation (Zoncu et al., 2011). By 

immunohistochemistry (IHC) analysis with specific anti-phosphorylated 4E-BP1 antibodies 

(phospho-Thr 37/46) we observed a strong elevation in p4E-BP1 level in the tumor 

compared to the normal tissue (Figure 4b). Altogether, diricore identified a signal at the 

initiator methionine codon that in all likelihood is a result of enhanced global translation 

initiation in the tumor.  

 

In contrast to the initiator-ATG, the signal in proline codons appeared at both positions 15 

and 12 (P and A sites), suggesting limiting availability of proline (Pro)-tRNA for protein 

synthesis (Figure 4a right panels). In line with this conclusion, the tumor tissue showed 

increased non-aminoacylated Pro-tRNA levels compared to the normal tissue (Figure 4c) 

while Leu-tRNA controls did not show changes. Surprisingly, gene expression analysis of 

the proline metabolic enzymes showed vast up-regulation in the expression of PYCR1, a 

mitochondrially-localized protein that catalyzes the last step in the proline synthesis 

pathway, while the proline catabolic enzymes PRODH2 and ALDH4A1 were strongly 

down-regulated (Figure 4d and Supplemental Figure 4c). While loss of PRODH2 

expression is common to the vast majority, if not all, of kidney tumors (Dalgliesh et al., 

2010), PYCR1 over-expression is infrequently observed (around 4% of tumors have high 

PYCR1; Figure 4e). We confirmed up-regulation of PYCR1 in this tumor by IHC (Figure 
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4b, bottom panel). The proline signal in diricore and the activation of the proline 

production pathway indicate a regulatory compensatory attempt mechanism in the kidney 

cancer cells to shortage of proline for protein synthesis. 

 

Proline deficiency in the tumors can be a result of increased proline demand or decreased in 

proline production, for example due to lack of proline precursors in the proline metabolic 

pathway. To investigate this point we first measured codon demand differences caused by 

Figure 4: Diricore detects limitations in proline availability in ccRCC. 

(a) Diricore analysis of ccRCC tumor samples (4 replicates) vs. normal tissue. Statistical significance 

is indicated in the subsequence analysis as in Figure 2a. Right panels show RPF density at ATG 

codons (top), proline codons (middle) and leucine codons (bottom, negative control). (b) IHC 

performed on a section containing tumor and normal tissues (T and N, respectively) using 

hematoxylin and eosin (top), anti-p4E-BP1 threonine 37/46 (middle) and anti-PYCR1 (bottom) 

antibodies. (c) Tumor and normal kidney tissue were subjected to Pro-tRNA aminoacylation analysis 

(left panel). Leu-tRNAs (right panel) are used as control. (d) Scheme and summary of gene 

expression changes observed in the data in the metabolic pathway from glutamine to proline, 

common to all tumor samples. Presented in detail in Supplemental Figure S4c. In particular, 

activation of PYCR1 and down regulation of PRODH2 and ALDH4A1 were noted. (e) Expression 

analysis of PYCR1 in a panel of ccRCC tumor and normal tissue samples (dataset GSE17895 

(Dalgliesh et al., 2010)). (f) PYCR1 levels as determined by qRT-PCR in response to glutamine 

starvation in A498 cells. (g) As in panel (f), A498 cells were depleted from glutamine, and then 

supplemented with proline in the indicated concentrations. PYCR1 levels were measured by qRT-

PCR. 
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gene-expression changes, by calculating the relative number of proline codons in 

transcriptomes of the normal and tumor sections by RNASeq. Supplemental Figure S4e 

shows that no global increase in proline demand is observed in the tumors. Moreover, no 

increase in proline demand was detected, even when we restricted our analysis to the genes 

whose expression significantly changed (up or down) in the tumor compared to the normal 

tissue (Supplemental Figure S4f). To take into account any changes at the translational 

level that might introduce a codon demand, we analyzed how translational efficiencies 

relate to the fraction of proline codons per gene, but observed no correlation (Supplemental 

Figure S4g). This further indicated that no changes in proline demand were underlying our 

observations. Second, we investigated the regulatory events leading to PYCR1 activation, 

rationalizing that this can be a clue to the proline deficiency. Particularly, we asked whether 

limiting amount of glutamine, the precursor of proline (see Figure 4d), or low proline 

levels, are causal to activation of PYCR1. For this purpose we selected a ccRCC cell line 

(A498) with moderate levels of PYCR1 (Supplemental Figure S4h), depleted glutamine for 

24 hours, and measured the relative level of PYCR1 by q-RT-PCR. This analysis revealed a 

strong and significant activation of PYCR1 expression when glutamine level was reduced 

(Figure 4f). Moreover, when glutamine deprivation was extended to 48 hours, PYCR1 

activation was further increased suggesting a dynamic control (Figure 4f). To examine the 

role of proline in this effect, we added proline to the glutamine-depleted cells but observed 

no reduction in the elevated levels of PYCR1 (Figure 4g). Thus, these results do not support 

an auto-regulatory circuit between proline levels and PYCR1, but rather indicate that 

PYCR1 responds to reduced levels of a precursor substrate in the metabolic pathway from 

glutamine to proline. Altogether, these results suggest that the proline deficiency in 

PYCR1-high ccRCC tumors is a result of shortage in building blocks for proline rather than 

increase in proline demand. 

 

Interestingly, when we examined a second ccRCC tumor by diricore, a clear signal was 

identified in the initiator-ATG, which resembled the signal observed in the first tumor, but 

no signal was observed at proline codons (Supplemental Figure S4i). Also in the second 

tumor, the signal in the initiator-ATG was in line with a global activation of translation 

initiation, as measured by IHC with anti-p4E-BP1 Threonine 37/46 antibodies 

(Supplemental Figure S4j). In contrast, the lack of proline signal suggested to us that this 

second tumor did not experience deficiency in proline availability. Indeed, examining the 

levels of aminoacylation of Pro-tRNA and Leu-tRNAs showed no increase in uncharged 

tRNAs (Supplemental Figure S4k), supporting the conclusion that this tumor has sufficient 

level of proline supply for protein synthesis. Interestingly, examining the proline production 

pathway of this tumor revealed no up-regulation of PYCR1 or any other related genes 

(Supplemental Figure S4l), suggesting that this tumor had sufficient precursors for proline 

production. 
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Interference with the proline auto-regulator circuit attenuates proliferation of ccRCC 

cell lines 

Thus far, by examining two ccRCC tumors using diricore we identified proline deficiency 

and linked it to shortage in proline production that induces the expression of the proline-

producing enzyme PYCR1. To expand on this, we examined whether interference with the 

proline/PYCR1 regulatory pathway can affect cellular proliferation. For this purpose we 

used 786-O, a ccRCC cell line expressing relatively high levels of PYCR1 (Supplemental 

Figure S4h). We used RNA interference to knockdown PYCR1, and cultured cells in a 

medium with dialyzed serum, either containing or lacking proline to mimic proline 

shortage. Figure 5a shows potent PYCR1 knockdown in all tested conditions. Figure 5b 

demonstrates that cells with PYCR1 knockdown present the expected increased level of 

non-aminoacylated Pro-tRNAs, and that the addition of proline attenuated this effect. Last, 

we measured the effect of these treatments on cell proliferation. Figure 5c shows that 

knocking down PYCR1 inhibited the proliferation of the 786-O kidney cancer cell line 

when incubated in a medium lacking proline. Moreover, this proliferation inhibition by 

PYCR1 knockdown was almost completely negated when proline was added to the 

medium. Altogether, these results indicate that at least in the case of kidney cancer cells 

with high PYCR1 expression, interfering with the intracellular proline production by 

knocking down PYCR1 attenuates cellular proliferation when proline availability is 

limiting (Figure 5d). In more general terms, our observations indicate that diricore 

examination of human tumors can identify novel amino acid deficiencies, which can lead to 

the exploration of novel regulatory pathways, and can be used to investigate novel cancer 

treatment strategies.  

 

 

Discussion 

 

We constructed and successfully evaluated diricore as a broad and sensitive novel method 

for detecting deficiencies in amino acid availabilities for protein synthesis. Diricore allows 

systematic and sensitive detection of cellular amino acid deficiencies by comparing global 

ribosome positions between any biological sample and a suitable control. Particularly, we 

demonstrated here that in conditions where global protein synthesis is not acutely affected, 

diricore can potentially sense critical changes in extracellular free amino acid levels, detect 

signals originating from alterations in cellular amino acid uptake and amino acid 

production, tRNA levels and their availability for protein synthesis, as well as differential 

metabolic rewiring. Sensing amino acid deficiencies in a growing tumor is likely to be 

beneficial for cancer diagnosis and can be explored for therapy. Using diricore we detected 

deficiencies in proline in kidney cancer, and linked it to tumors with high expression level 

of PYCR1, a key enzyme in the proline-producing pathway. By measuring the impact of 

PYCR1 inhibition in a proline-restrictive environment, our experiments provide evidence 
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for the potential of diricore in diagnosing tumor-specific requirements.  

 

The expanding toolbox of ribosome profiling (Ribo-Seq)  

Our findings here expand the utility of Ribo-Seq. Since its invention (Ingolia et al., 2009), 

Ribo-Seq was extensively used to explore protein translation programs at a genomic scale. 

Here, Ribo-Seq was utilized as a cellular biological sensor for amino acid deficiencies. We 

compared ribosome positioning of test and a control conditions by two different ways, 

“subsequence” and “RPF density”. These two analyses complement each other, as their 

sensitivity and robustness are different with respect to different aspects of the ribosome 

profiling data. Comparing subsequences (e.g. codons protected by ribosome’s E, P and A 

sites) is a measurement of directly interpretable signal. Furthermore, much of the available 

data can be used, since usually thousands of genes will have many reads in their coding 

sequence, thus allowing a reasonable gene-wise cutoff to be set. Then, a distribution over 

Figure 5: High levels of PYCR1 or sufficient proline are required to sustain proliferation of a 

ccRCC cell line with high PYCR1 levels. 

(a) PYCR1 levels as determined by qRT-PCR upon knockdown of PYCR1 in 786-O cells, expressing 

high levels of PYCR1 (Supplemental Figure S4h). (b) Pro-tRNA aminoacylation analysis was 

performed on 786-O ccRCC cells subjected to proline deprivation and treated with either PYCR1 or 

control siRNAs. (c) Proliferation assay by cell counting, 72h after treatment. Treatments were as in 

panel (b). (d) A scheme showing how negative effects of decreased levels of proline on proliferation 

can be negated by high PYCR1 expression. Also indicated is the therapeutic window to inhibit cellular 

proliferation and tumor growth in cells experiencing shortage of proline for protein synthesis, by 

reduction of their high PYCR1 expression. 
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the different codons can be taken over many coding sequences of genes, yielding a robust 

signal. However, this method can use only in-frame reads (without resorting to modeling of 

overhang due to incomplete RNase digestion), which can range from >90% in high-quality 

samples to <50% in lower quality samples. In contrast, plotting RPF densities in windows 

surrounding codons gives visual insight into how RPFs are (differentially) distributed 

surrounding a codon of interest (most interestingly upstream of the codon). This gives 

additional insights that are not readily obtained from the subsequence analysis. Moreover, 

RPF density analysis is relatively insensitive to incomplete digestion of RPFs, even if the 

degree of digestion is different between samples. However, only when many windows are 

overlapped and averaged over, the true (differential) distribution becomes apparent. 

Furthermore, the distribution within a single window is only well estimated if many RPFs 

are present within that window, thus requiring a cutoff on which windows to average over. 

This cutoff is generally more stringent than a gene-wise cutoff, and thus less RPFs 

contribute to the signal, reducing the sensitivity compared to the subsequence analysis. This 

becomes readily apparent in low-quality datasets where few RPFs covering coding 

sequences are obtained, which limits the number of windows to average over. 

 

Diricore signals at the initiator-ATG as a measure of alterations in global protein 

synthesis  

By using defined inhibitors of protein production, such as Torin1, nutrient and leucine 

deprivation, we uncovered a correlation between global reduction in initiation of translation 

and strong reduction in diricore signal at position 12 of the initiator-ATG (Figure 1e). In 

contrast, treatment with harringtonine, which blocks ribosome elongation, resulted in a 

strong increase in diricore signal at position 12 of the initiator-ATG (Figure 1c). Thus, 

diricore can pinpoint global alterations in protein translation rates, but its interpretation 

must be taken with care as similar diricore signals result from different processes, for 

example an increased diricore signal at position 12 of the initiator-ATG may result from 

either accelerating initiation of protein synthesis or blocking of translation elongation. 

Nevertheless, we used this feature of diricore to indicate increase in global initiation of 

protein synthesis of tumors (Figure 4a). Our experiments also uncover a limitation of 

diricore. Acute global inhibition of protein translation overshadows specific amino acids 

signals (for example in Figure 1h). However, for the purpose of uncovering amino acid 

deficiencies in cancer, this feature is not predicted to be restrictive as tumor growth is 

associated with increase in protein translation. Supporting this notion is our analysis of 

kidney tumors, which was successful in uncovering at least one restrictive amino acid. 

 

SLC3A2 and TGF-beta 

Following TGF-beta treatment and induction of EMT, diricore has identified shortage in 

leucine. At least part of this effect can be explained by reduced expression of the leucine 

transporter SLC3A2 (also called CD98, which together with SLC7A5 forms the large 
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neutral amino acid transporter LAT1), triggering a reduction in cellular uptake rate of 

leucine. The mechanism of SLC3A2 inhibition by TGF-beta and its breadth need to be yet 

resolved. Nevertheless, leucine is an important regulator of mTOR (Jewell and Guan, 

2013), and SLC3A2 expression is up-regulated in a wide variety of cancers and correlates 

with poor prognosis (Cantor and Ginsberg, 2012). How exactly SLC3A2 contributes to 

tumorigenesis is unclear. In particular, whether the regulation of leucine uptake following 

TGF-beta bears functional consequences to the EMT process and cancer remains to be 

explored. However, the elucidation of the causal events leading to reduced leucine uptake 

following TGF-beta treatment corroborates the finding of leucine deficiency following 

TGF-beta-induced EMT by diricore. 

 

Sensing amino acid deficiencies for cancer diagnosis 

At present, one amino acid deprivation treatment is put to practice in ALL using L-

asparaginase, and clinical trials are preformed to assess whether arginine deprivation-based 

treatments can sensitize tumors to conventional and/or targeted therapies. We envision that 

diricore measurements will be able to provide the opportunity to expand the use of L-

asparaginase beyond ALL to other tumor types, and also assign individual cases to arginine 

deprivation treatments for a better outcome. Stratifying patients for such therapy will 

require testing diricore in a large cohort of various types of tumors. Our findings that 

defined proline deficiency in kidney cancer are important as pioneering case in this area. It 

has been recently shown that proline generates systematic biases in Ribo-Seq (Artieri and 

Fraser, 2014). However, as diricore bases its analysis on the comparison between two 

different samples, any systematic bias in Ribo-Seq is normalized. Second, the proline-

diricore signal in kidney tumor samples did not correlate with the induction of translation, 

as both analyzed tumors activated translation (as indicated the initiator-ATG diricore 

analysis, and confirmed by p4E-BP1 staining) but only one of the analyzed tumors showed 

a proline deficiency signature. Last, examining states of cells with strong difference in 

global translation rates also showed no proline signal (e.g. Torin1 and nutrient starvation 

treatments, Figure 1e). Altogether, indicating that the proline signature in the kidney tumor 

samples is not due to Ribo-Seq biases or changes in global translation rates.  

 

The link between proline deficiency and elevated levels of PYCR1 indicated a regulatory 

mechanism for proline production to permit sustained growth of the tumor. This 

information may pave the way for a novel type of therapy. Suppression of PYCR1 

expression, for example by PEGylated-PRODH treatment (Proline Dehydrogenase 1; which 

catalyzes the first step in proline degradation) or through RNA interference tools, may 

greatly sensitize tumors marked with high PYCR1 and proline deficiencies. In kidney 

cancer only a small subset of about 4% of the tumors has high PYCR1 expression. 

However, PYCR1 is observed to be over-expressed in other cancers (e.g. invasive breast 

carcinoma), suggesting that such a treatment scheme can be beneficial in these types of 
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tumors as well. Intriguingly, Possemato et al have identified PYCR1 in a functional 

genomic test designed to screen for targets that negatively affect in vivo tumorigenesis of 

human breast cancer cell lines (Possemato et al., 2011). This suggests to us that proline 

deficiency may impact on the growing tumor following transplantation in mice. A 

combined shortage of proline for protein synthesis with reduced ability to produce proline 

may restrict growth of the tumor cells in vivo. Here too, screening a cohort of breast cancer 

tumors with diricore should allow the assessment of proline deficiency and its correlation 

with PYCR1 levels. Altogether, diricore is opening new avenues for tumor diagnosis and 

the discovery of novel amino acid deficiencies in cancer. 

 

 

Material and methods 

 

Cell culture 

MCF10A cells were cultured in DMEM/F12 1:1 medium supplemented with 5% horse 

serum, EGF (10 ng/ml), insulin (10 µg/ml), cholera toxin (100 ng/ml), and hydrocortisone 

(500 ng/ml) in 5% CO2 at 37°C. Small interfering RNAs (siRNAs) against SLC3A2 were 

purchased from Life Technologies (Grand Island, NY, USA). MCF10a cells were 

transfected using Dharmafect I reagent (Dharmacon) following the manufacturer's 

instructions. For inhibition of mTOR and nutrient starvation experiments, MCF10a cells 

were treated either with 250 nM of Torin 1 (Tocris Bioscience, Bristol, UK) or with EBSS 

medium (Sigma) for 2 hours, respectively. For TGFβ1 treatment, MCF10a cells were 

treated with human recombinant TGFβ1 (10ng/ml) for 48 hours (R&D Systems). 

 

Ribosome profiling (Ribo-Seq) 

Libraries from cultured cells were prepared as described previously (Loayza-Puch et al., 

2013). For ribosome profiling from tissue, samples were snap frozen after surgical removal 

and lysed mechanically using a tissue homogenizer in the presence of ice- cold lysis buffer 

(20 mM Tris-HCl, pH 7.8, 100 mM KCl, 10 mM MgCl2, 1% Triton X-100, 2 mM DTT, 

100 µg/ml cycloheximide, 1X EDTA-free Complete protease inhibitors). Lysates were 

centrifuged at 5,000 rpm and the supernatant was digested with 2 U/µl of RNase I (Life 

Technologies, Grand Island, NY, USA) for 45 min at room temperature. Resulting 

monosomes were purified, RNA was isolated, and RP libraries were prepared as described 

previously. Primers and linkers used in the preparation of libraries are listed in Table S1. 

 

tRNA aminoacylation 

Cells were harvested in cold PBS, centrifuged, and cell pellets were resuspended in 

0.3 M NaOAc/HOAc (pH 4.5). Total RNA was isolated using acetate-saturated 

phenol/CHCl3 (pH 4.5). Precipitated RNA was resuspended in 10 mM NaOAc/HOAc (pH 

4.5). Samples were split in two, one half (2 µg) was oxidized with 50 mM NaIO4 in 100 
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mM NaOAc/HOAc (pH 4.5) for 30 min and the other half (2 µg) was incubated in 50 

mM NaCl in 100 mM NaOAc/HOAc (pH 4.5) for 30 min. Samples were quenched with 

glucose 100 mM for 5 minutes at room temperature, purified in G50 columns (GE 

Healthcare), and then precipitated with ethanol. tRNAs were deacylated in 50 mM Tris-HCl 

(pH 9) for 30 min at 37 °C. RNA was precipitated and then was ligated to 3’adaptor using 

T4 RNA ligase 2 (NEB) for 2 hours at 37 °C. Relative aminoacylation levels were 

calculated by qRT-PCR using tRNA specific primers (Table S1). 

 

Measurement of protein synthesis 

2x105 MCF10a cells were treated with OP-Puro (50 µM, Medchem Source) for 1 hour, cells 

were washed twice with PBS and then fixed in 1% paraformaldehyde in PBS for 15 min on 

ice. Cells were washed with cold PBS and permeabilized in 0.1% Triton-X in PBS 

supplemented with 2% fetal calf serum (FCS) for 5 min at room temperature. The azide-

alkyne cycloaddition was performed using the Click-iT Cell Reaction Buffer Kit (Life 

Technologies) and azide conjugated to Alexa Fluor 488 at 5 µM final concentration. Cells 

were incubated for 30 min at room temperature, then cells were washed three times in PBS 

with 2% FCS and analysed by FACS. 

 

Leucine and aspartic acid uptake 

Cells were plated in 12-well plates (1x105 cells/well). When the cells reached 80% 

confluence, they were washed twice in PBS and incubated for 5 min either in sodium-free 

uptake buffer (4.8 mM KCl, 1.3 mM CaCl2, 1.2 mM MgSO4, 25 mM HEPES, 1.2 mM 

KH2PO4, 5.6 mM glucose, pH 7.4) for Leu or in PBS for Asp. 

Cells were incubated for 5 min with either [3H] L-leucine or [3H] L-Aspartic acid. Uptake 

was finished by washing the cells three times with ice-cold uptake solution or PBS. Cells 

were solubilized in 0.1 N NaOH, and radioactivity was counted by liquid scintillation. 

 

Northern blot 

4 µg of total RNA was separated on a 10% denaturing polyacrylamide gel and transferred 

onto a nylon membrane (Hybond-N+; Amersham Biosciences). The membrane was UV-

crosslinked, dried, and hybridized using radiolabeled RNA probes in NorthernMax buffer 

(Ambion). Riboprobes were synthesized using the miRNA probe construction kit (Ambion) 

following the manufacturer’s instructions. Oligonucleotide sequences are listed in Table S1. 

 

Real time PCR 

1 µg of total RNA was reverse transcribed using the SuperScript III first-strand synthesis 

system (Life Technologies) following the manufacturer’s instructions. Real time PCR was 

performed using the SensiFAST SYBR real time PCR kit (Bioline). Primers used in this 

study are listed in Table S1. 
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Deep sequencing data preprocessing and alignment 

Adapter sequences were trimmed from raw RP data using cutadapt (Martin, 2011). 

Sequences shorter than 20bp after adapter trimming were discarded. rRNA and tRNA 

sequences were filtered by alignment to indices of rRNA and tRNA sequences respectively, 

using bowtie2 (Langmead and Salzberg, 2012) and default parameters. A rRNA index was 

constructed from GENCODE v19 annotations, transcript types "rRNA", "Mt_rRNA" and 

"rRNA_pseudogene", supplemented with UCSC repeats of class "rRNA" (table "rmsk"). 

The tRNA index was constructed from sequences obtained from GtRNAdb (Chan and 

Lowe, 2009) at 5th of September 2012. The remaining (unmapped) reads were aligned to 

GRCh37/hg19 using TopHat2 (Kim et al., 2013) and GENCODE v19/BASIC (Harrow et 

al., 2012) transcript coordinates (parameters “-N 2 -m 1 --no-novel-juncs --no-novel-index -

-no-coverage-search --segment-length 25”). In subsequent analyses, only primary 

alignments with mapping quality of 10 or greater were considered. RP and RNAseq data 

followed the same pipeline, with the exception of adapter trimming, which was only 

performed on RP data. Data presented in this manuscript is available with GEO accession 

number GSE59821. 

 

Subsequence analysis 

In summary, subsequence shift analysis compares RPF codon occupancy frequencies 

between samples, in a gene-level normalized manner (to exclude gene expression 

differences as cause for differences in observed codon frequencies).  

Specifically, gene IDs and reading frames were assigned to RPFs, using GENCODE 

v19/BASIC. RPFs not within a valid CDS (taking into account the 15nt. 5'-overhang of 

RPFs), RPFs with ambiguous gene ID and RPFs with ambiguous reading frame 

(determined by the aligned position of 5'-end of the RPF) were excluded. The remaining 

RPFs were used to count, for the different positions (12 and 15nt. from 5'-end), the 

frequencies of all codons, for all genes in the transcriptome. Within-gene frequencies were 

calculated by dividing the observed counts by the total counts for that gene. Normalized 

codon frequencies were averaged over all genes that had at least n counts in both the 

condition and control samples (n is 100 for all figures). Shifts were calculated from these 

normalized and averaged frequencies per codon as: (condition – reference) / reference. I.e. 

per codon shifts were calculated relative to the control. To test for significant differential 

codon occupancy at the amino acid level, we used the subsequence shifts between control 

and conditions over the replicates. We used a linear mixed model (R package 'lme4') with 

fixed effects over the 20 amino acids and random effects over the codons. This supplied us 

with t-values and p-values. We used Benjamini-Hochberg multiple testing correction (R 

function ‘p.adjust’, method “fdr”) to extract adjusted p-values. 

 

RPF density analysis 

Codon-regions of 61 nucleotides (nt) width around designated codons along the 



3 

SENSING AMINO ACID DEFICIENCIES THROUGH DIFFERENTIAL RIBOSOME CODON OCCUPANCIES 

A 65 

transcriptome (as annotated by GENCODE v19/BASIC) were identified (using transcript 

coordinates; i.e. codon-regions were all supported by exons). Overlapping transcript 

annotations were used, and overlapping regions were retained, but regions with identical 

genomic coordinates were collapsed. Codon-regions that could not be extended to 61 nt 

(due to being near the 5' or 3' ends of transcripts) were discarded. 

5' ends of RPFs were counted for each codon-region. For a comparison between two 

samples, only codon-regions where the total number of counts was at least 100 in both 

samples were taken into consideration. For each sample and each codon-region, the 

normalized 5' end RPF density was calculated by dividing over the total number of counts 

within that region, and multiplying by the width of the codon-region, so the average density 

within each codon region equaled 1. The normalized densities were convolved using a 

rectangular window of width 3 and height 1/3. The mean density over the codon-regions 

was taken and the difference in the mean densities between the samples yielded to the 

density shift. 

 

Normalized abundances and translational efficiencies 

Gene-wise counts were performed using annotations from GENCODE v19/BASIC and 

HTSeq. Counts were normalized by correction for the total library sizes using trimmed-

mean of M-values (TMM) normalization, supplied by the R-package ‘edgeR’. Translational 

efficiencies were calculated as the ratio of (normalized abundance determined by RP) / 

(normalized abundance determined by RNAseq). 

 

GSEA 

To obtain a RankedList as input for GSEA (Subramanian et al., 2005), gene-wise counts 

(generated using GENCODE v19/BASIC and HTseq) were normalized using edgeR's 

(Robinson et al., 2010) TMM normalization. Predictive fold-changes were obtained using 

edgeR's predFC routine with a prior count of 3. Ensembl/GENCODE gene IDs were 

converted to Entrez gene IDs using a look-up table obtained from Ensembl MartView. 

Fold-changes of genes that mapped to a single Entrez gene ID were averaged. In GSEA, the 

predictive fold-changes were used a scores. The gene sets analyzed contained all 

MSigDB/C2 (v4.0) gene sets. Default settings were used, with the exception that 10000 

permutations were used to estimate the significance of enrichments. 

 

Codon demand calculations 

Codon demand was calculated by calculation of the absolute abundances of each codon in 

the transcriptome, as determined by RNAseq. Reads per gene ID were counted using 

GENCODE v19/BASIC annotations and HTSeq. Gene-wise abundances were normalized 

by the total library sizes. Per-gene isoform abundances were estimated using MISO (Katz et 

al., 2010). The total numbers of codons present per transcript were calculated using the 

CDS annotations. Shifts in codon demand were calculated relative to the reference, i.e. the 
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shifts were calculated as (condition - reference) / reference. 

 

Processing of yeast data 

Yeast ribosome profiling data of cells treated with 3-AT (Guydosh and Green, 2014) was 

obtained from GEO (samples GSM1279568 and GSM1279579). Adapter sequences were 

trimmed using cutadapt (Martin, 2011). Sequences shorter than 20bp after adapter trimming 

were discarded. rRNA and tRNA sequences were filtered by alignment to indices of rRNA 

and tRNA sequences respectively. A rRNA index was constructed from Ensembl 

annotations (EF4.69), transcript type “rRNA”). Similarly, a tRNA index was constructed 

from Ensembl annotations (EF4.69), transcript type “tRNA”). Remaining (unmapped) reads 

were aligned to the yeast genome (EF4.69) using corresponding Ensembl transcript 

annotations and TopHat2 (Kim et al., 2013) (using parameters “-N 2 -m 1 --no-novel-juncs 

--no-novel-index --no-coverage-search --segment-length 25”). In subsequent analyses, only 

primary alignments with mapping quality of 10 or greater were considered. 
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Supplemental figures 

 

 
Supplemental Figure S1: Suppression of initiation of protein synthesis upon nutrient starvation 

and Torin1 treatment. 

(a) Immunoblots from MCF10A cells that were treated either with DMSO (control), 250 nM Torin 1, or 

starved for nutrients for 2h. CDK4 is used as loading control. (b) Changes in translational efficiencies of 

ribosomal proteins in response to Torin 1 and nutrient starvation. 

 



3 

SENSING AMINO ACID DEFICIENCIES THROUGH DIFFERENTIAL RIBOSOME CODON OCCUPANCIES 

A 71 

Supplemental Figure S2: Transcriptional and translational response of MCF10A cells to TGF-

beta treatment. 

(a) The human non-transformed epithelial MCF10A cells were treated with TGF-beta for 48 hours. 

Global gene expression analysis verifies TGF-beta pathway induction and reveals expression patterns 

indicative of epithelial-to-mesenchymal transition (EMT). (b) Western blot analysis of the indicated 

mTOR target proteins. (c) Codon demand analysis based on transcriptome profiling data (measured by 

RNA-seq) from one replicate of Figure 2a. (d) Gene-wise translational efficiency changes upon TGF-
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beta treatment calculated from one replicate of Figure 2a, plotted against the gene-wise fraction of 

leucine codons. RNA-seq of the control condition was used to determine the most abundant isoform per 

gene, which was used to calculate the fraction of leucine codons per gene. (e) Northern blot analysis for 

the indicated tRNAs of MCF10A cells treated as in Figure 2a. (f) tRNA aminoacylation assay on 

MCF10A cells treated with TGF-beta and either esterified-leucine (e-Leu) or control vehicle. (g) Ribo-

Seq-based expression analysis of SNAI2 in MCF10A cells either untreated, TGF-beta treated or TGF-

beta and eLeu treated. (h) Relative expression of SLC3A2 in MCF10A cells treated as in panel (g), 

determined by Ribo-Seq. 

 
Supplemental Figure S3: SLC3A2 knockdown and over-expression reveal role in TGF-beta-

induced ribosomal stalling on leucine codons. 

(a) Relative levels of SNAI2 mRNA, a major target of TGF-beta signaling, as determined by qRT-PCR in 

cells treated as in Figure 3c. Expression is normalized to GAPDH mRNA. (b) SLC3A2 expression 

determined by FACS of stable control and SLC3A2-expressing polyclonal MCF10A populations, in 

either control or 48h TGF-beta treated conditions. (c) [
3
H]-Leu uptake analysis of the same MCF10A 

populations and conditions as in panel (b). (d) Aminoacylation assay of the indicated tRNAs in the same 

MCF10A populations and conditions as in panel (b). (e) Relative levels of SNAI2 mRNA as determined 

by qRT-PCR in the same MCF10A populations and conditions as in panel (b). Expression is normalized 

to GAPDH mRNA. (f) RPF density analysis of the same MCF10A populations and conditions as in panel 

(b) at leucine and threonine (negative control) codons. 

NB: For panels (c), (d), and (e), error bars represent SD; n = 3; ∗∗p < 0.01, ∗p < 0.05 by two-tailed 

Student’s t test. 
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Supplemental Figure S4: Quality control on ccRCC tumor sample #1 and data generated from a 

second ccRCC tumor sample. 

(a) Left: overall presentation of clear cell renal cell carcinoma (ccRCC). Arrows indicate regions where 

the samples of Figure 4a were taken. Right: Representative microscopic images of tumor sections 

stained with hematoxylin and eosin (H&E). Pathological analysis confirmed a clear cell renal cell 

carcinoma (ccRCC). (b) Expression correlation between normal tissues (left) and RPF periodicity 

analysis of the Ribo-Seq data obtained from normal and tumor tissues (right). (c) Gene expression 

analysis by Ribo-Seq confirms high level of EGFR, VIM, and CA9 in the tumor samples compared with 

the normal tissues, as was reported for renal cell carcinomas (The Cancer Genome Atlas Research 

Network, 2013). Changes in gene expression levels of the proline metabolic pathway are shown in 

support of Figure 4d. (d) Diricore analysis comparing the two normal tissue samples. (e) Codon demand 

analysis based on transcriptome profiling data of the samples of Figure 4a (measured by RNA-seq). (f) 

Proline content (y-axis) of genes either up-regulated, down-regulated or annotated to be extracellular. 

Differential expression was determined by RNA-seq comparing tumor samples to normal tissue 

samples, using the R package 'edgeR' and an FDR of 0.05 as cutoff. (g) Gene-wise translational 

efficiency changes comparing a representative tumor sample to a normal tissue sample of Figure 4a, 

plotted against the gene-wise fraction of proline codons. RNA-seq of the pooled normal tissue samples 
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was used to determine the most abundant isoform per gene, which was used to calculate the fraction of 

proline codons per gene. (h) qRT-PCR analysis of the relative expression of PYCR1 in 786-O and A498 

ccRCC cell lines, normalized to GAPDH. (i) Diricore analysis of a second ccRCC tumor. (j) IHC analysis 

of p4E-BP1 threonine 37/46 and PYCR1 on samples of a second ccRCC tumor (samples from panel (i)) 

as in Figure 4b. (k) Aminoacylation assay of the indicated tRNAs in the samples of the second ccRCC 

tumor (panel (i)). (l) Gene expression as determined by Ribo-Seq in the second ccRCC tumor (panel (i)) 

of ccRCC marker genes (left) and genes in the proline metabolic pathway (right). 

 

Supplemental Table 1: Oligos used in this chapter. 

qRT-PCR 

Target gene Forward primer Reverse primer 

GAPDH ACCCAGAAGACTGTGGATGG TCTAGACGGCAGGTCAGGTC 

SLC3A2 CGTGGTTCTCCACTCAGGTT GTTAGTCCCCGCAATCAAGA 

SNAI2 GGGGAGAAGCCTTTTTCTTG TCCTCATGTTTGTGCAGGAG 

PYCR1 CATGACCAACACTCCAGTCG CCTTGGAAGTCCCATCTTCA 

tRNA-‐Leu (AAG) GGTAGCGTGGCCGAGCGGTCTA GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Leu (CAA) GTCAGGATGGCCGAGTGGTCTA GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Leu (CAG) GTCAGGATGGCCGAGCGGTCTA GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Leu (TAA) ACCAGAATGGCCGAGTGGTTAA GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Leu (TAG) GGTAGCGTGGCCGAGTGGTCTA GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Val (AAC) GTTTCCGTAGTGTAGTGGTCA GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Val (CAC) GTTTCCGTAGTGTAGCGGTTATC GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Val (TAC) GGTTCCATAGTGTAGTGGTTAT GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Leu (GTC) TCCTCGTTAGTATAGTGGTGAG GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Arg (ACG) GGGCCAGTGGCGCAATGGATAAC GCCTTGGCACCCGAGAATTCCA 

tRNA-‐Arg (CCG) GGCCGCGTGGCCTAATGGATAA GCCTTGGCACCCGAGAATTCCA 

t-‐RNA-‐Pro (AGG) GGCTCGTTGGTCTAGGGGTATG GCCTTGGCACCCGAGAATTCCA 

t-‐RNA-‐Pro (TGG) CAGAACTATAGGAATTGAACCTA GCCTTGGCACCCGAGAATTCCA 

Ribosome profiling libraries 

5' RNA Adaptor GUUCAGAGUUCUACAGUCCGACGAUC 

RNA 3'Adapter /5rApp/TGGAATTCTCGGGTGCCAAGG/3ddC/ 

Reverse transcription 
Primer GCCTTGGCACCCGAGAATTCCA 

PCR Primer AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 

Index 1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

Index 8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 
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Introduction 

 

Mitosis is a crucial step in cellular reproduction at which the replicated DNA is divided 

equally in order to be deposited in two daughter cells. Even though mitosis is generally the 

shortest phase of the mammalian cell cycle, it is accompanied by drastic changes to the 

cellular organization. Importantly, to segregate the duplicated chromosomes the nuclear 

membrane is broken down, allowing the condensed genetic material to be divided. The 

division of condensed chromosomes is orchestrated after intricate attachment to and 

alignment by a tailored part of the cytoskeleton.  

Because of its obvious involvement in cellular proliferation mitosis has been well studied in 

the context of cancer. Many regulators of the various steps have been long known, such as 

the mitotic cyclins and the anaphase-promoting complex (Peters, 2006). Regulation of 

mRNA translation has also been investigated, and for example phosphorylation of eEF2 

was shown to be modulated during mitosis (Sivan et al., 2007), as well as 4E-BP (Pyronnet 

et al., 2001), thereby putting a halt to cap-dependent translation. Importantly, genes 

involved in the mitotic process have been hypothesized to escape this global repression of 

translation (Pyronnet et al., 2001). In order to study regulation at the translational level, 

ribosome profiling has become the de facto standard technique, as it has shown great 

sensitivity combined with the ability to comprehensively profile the translation of the 

transcriptome of a sample (Ingolia et al., 2009). Using ribosome profiling, several 

translational programs have been uncovered (Gonzalez et al., 2014; Stumpf et al., 2013), 

the speed of translation elongation has been estimated (Ingolia et al., 2011) and recently we 

used ribosome profiling to study the impact of a mitochondrial tRNA mutation on 

translation and ribosome progression (Rooijers et al., 2013). Moreover, we used ribosome 

profiling as a tool to look “further upstream” at metabolic causes that cause differential 

tRNA availabilities (Chapter 3 of this thesis). At its core, the commonly performed 

ribosome profiling protocol is similar to RNA sequencing. However, by isolation of 

ribosomes attached to mRNAs, nuclease digestion to remove unprotected bases and obtain 

monosomes, and isolation of ribosome protected mRNA fragments, before proceeding with 

generation of sequencing libraries, the location of ribosomes on the mRNA can be mapped 

with nucleotide precision (Ingolia et al., 2012). This resolution has been invaluable in 

interpretation of differential ribosome codon occupancies, which allows analysis of 

regulation at the level of tRNAs and further upstream. The obtained ribosome protected 

fragments (RPFs) have an average length of ~30nt, which corresponds with the dimensions 

of ribosomes. As core component of the translational machinery, ribosomes take up 

activated (aminoacylated) tRNAs, match the anti-codon of the tRNA to the codon in the 

mRNA, facilitate the incorporation of the tRNAs' amino acid moiety into the peptide chain, 

and finally ejects the unloaded tRNA. The progression of these steps take place while 

tRNAs move from one of three binding pockets in the ribosome to the next binding pocket, 

until finally being released. The first pocket the tRNA encounters is the A-site, which 
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functions as accepting site in the ribosome for the next (correct) tRNA. Movement to the 

next pocket, the P-site, results in peptidyltransferase activity, and the tRNA in the P-site 

holds the full nascent peptide chain. Finally, the last pocket in the ribosome, the E-site, 

allows exit of the tRNA from the ribosome complex. Uptake of (correct) tRNAs into the 

ribosome is generally the rate-limiting step, and inferring the position of the A-site within 

RPFs allowed for instance identification of reduced tRNA availability (Rooijers et al., 

2013). 

 

To investigate the level of translational regulation during mitosis we made use of ribosome 

profiling, combined with RNA-sequencing to identify transcript abundances. We used 

U2OS cells as model system, which when treated with cytotoxic drugs such as nocodazole 

exhibit complete mitotic arrest. We also investigated mitotic arrest using cytotoxic-

independent methods. We show that during mitosis, a strong global repression of 

translational elongation takes place. We also show that ribosomes occupy codons in their 

A-sites differentially, and this is unrelated to the global repression of elongation. Lastly, we 

identify several functional groups of genes that escape the global repression of elongation, 

or are otherwise translationally induced, indicative of the existence of the hypothesized 

translational programs during mitosis. 

 

 

Results 

 

Treatment of U2OS cells with nocodazole leads to alterations in ribosomal codon 

occupancies 

To identify novel regulatory modes of mRNA translation we performed ribosome profiling 

(RP) and transcriptome profiling (RNA-seq) on control and nocodazole-treated U2OS cells 

(Figure 1a). After processing of the sequencing data, we validated the quality and observed 

high correlation between independent biological replicates (Supplemental Figure S1a) and 

good correlation between RP and RNA-seq on the same samples (Supplemental Figure 

S1b). Furthermore, by characterizing the differentially expressed genes upon nocodazole 

treatment we could confirm a transcriptional response typical for a cell population enriched 

for mitotic cells (Figure 1b and 1c). 

 

Due to the nucleotide resolution of the ribosome profiling data (supported by the 

disequilibrium of proportion of reads in the three reading frames, see Supplemental Figure 

S1c) the majority of ribosome protected fragments (RPFs) are in-frame with the CDS of the 

transcript they occupy. Since the dimensions and tRNA-binding pockets (E, P and A-sites) 

at RPFs can be inferred from the data and are well-documented (O’Connor et al., 2013; 

Rooijers et al., 2013) we were able to extract, count and analyze the codons occupied in the 

different ribosomal tRNA-binding sites. We found that when treated with nocodazole, 
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ribosomes occupy several codons differentially, especially at the A- and P-site (Figure 1d). 

These differences were strong enough to robustly discriminate between control and 

nocodazole-treated samples based on the ribosomal codon occupancies alone (Figure 1e). 

Note that these differences are not due to differentially expressed genes since we included 

only genes in our analyses with at least 100 RPFs across all samples, and applied intra-gene 

count normalization of occupied codons prior to averaging over the genes, thereby negating 

any effect of changes in gene expression levels. 

 

To investigate whether the differences in codon occupancies could be contributed by 

differential amino acid availability, we calculated codon occupancy log-fold-differences 

(wrt. the control condition) upon nocodazole treatment and arranged the codons by amino 

acid (Figure 1f). We noticed several amino acids that exhibit significant differential 

occupancy over their corresponding codons at both the A- and P-site, namely alanine, 

arginine, aspartic acid, leucine and proline. To further investigate the behavior of ribosomes 

at the codons coding for these amino acids we generated RPF density profiles in windows 

of 61 nt. surrounding the codons of these amino acids. We found that the RPF density 

profiles were consistently changing in Asp codons GAC and GAT, where RPFs shift from 

being 15nt. upstream in control condition (Figure 1g, blue) to 12nt. in nocodazole treated 

condition (Figure 1g, green). On the other hand, RPF density shifts were inconsistent for 

the codons of the amino acids arginine and proline (see Supplemental Figures S1d and 

S1e). 

 

The RPF density averages at aspartic acid codons suggest that a rate-limiting step is 

imposed in the control condition when aspartic codons occupy the A-sites of ribosomes. 

However, following nocodazole treatment this rate-limiting step seems exchanged for a 

rate-limiting step where the codons occupy the P-site. 

 

Codon occupancy shift is microtubule-disruption independent and unrelated to 

overall RPF positioning 

To test whether the distinct occupancy of codons upon nocodazole treatment is due to the 

enrichment of mitotic cells or a consequence of the interference with microtubules, we 

performed ribosome profiling on samples enriched for mitotic cells by treatments which do 

not cause microtubule disruption. Using S-trityl-L-cysteine (STLC, an Eg5 inhibitor), 

BI2536 (an inhibitor of Plk1) and Taxol (like nocodazole a microtubule toxin), we observed 

a codon occupancy fold-change pattern comparable to nocodazole treatment (Figure 2a) 

and analysis of RPF 5'-end densities at e.g. aspartic acid codons again showed a shift of the 

codon from ribosomal A-site to P-site (Figure 2b). 
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Figure 1: treatment of U2OS cells with nocodazole leads to reproducible changes in 

ribosome codon occupancies. 

(a) Schematic overview of experimental setup. Cells are either treated with nocodazole, or grown 

as untreated controls. Of each treatment, the transcriptome is profiled using both ribosomal 

profiling and RNA sequencing. (b) mRNA levels (y-axis, log scale) determined by RNA sequencing 

for various mitotic marker genes. Solid and dotted lines indicate biological replicates. RPL17, 

RPS16, MRPL10 and MRPS22 are ribosomal protein genes that serve as controls. (c) Expression 

log fold-changes (nocodazole vs. control) of genes in GO term “DNA strand elongation involved in 

DNA replication” for two biological replicates. (d) Heatmap of normalized and intra-gene averaged 

counts of codon frequencies in the inferred ribosomal A-, P- and E-site for control and nocodazole-

treated samples in 3 independent biological replicates. (e) Principal component analysis of 

nocodazole and control samples in 3 independent biological repeats based on the ribosomal codon 

occupancies (see panel (d)). The percentages in the parenthesis indicate the variance explained by 

the first two principal components. 
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Figure 1 (cont.)  

(f) Fold changes of codon occupancies arranged by amino acid. Different colors indicate different 

codons. 3 different independent biological repeats are displayed in 3 different shades. Statistical 

significance of differential occupancy at the amino acid level is determined by a mixed linear model 

with fixed effects over the 20 amino acids and random effects over the codons. Significance 

thresholds are: * p < 0.05, ** p < 0.01 and *** p < 0.001 and are adjusted for multiple testing. (g) 

RPF 5'-end density profiles at the two aspartic acid (Asp) codons, GAC and GAT, in 3 independent 

biological replicates. Blue lines display the density in control samples, green lines display the density 

in nocodazole-treated samples, black lines display the difference between nocodazole and control 

samples. 
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Readily observed in the RP data is a shift of RPFs towards the 5'-end of the CDS in mitotic 

samples, see Figure 2c for ribosomal coverage of GAPDH as an example. We quantified 

this shift transcriptome-wide in Figures 2d and 2e, indicating that this is a widespread and 

microtubule disruption-independent phenomenon. This observation corresponds to an 

inhibition of elongation (Sivan et al., 2007). To test whether the distinct occupancy of 

codons of mitotic cells is caused by a general shift of RPFs to the 5'-ends of CDSs, we 

made use of a published dataset on heatshock-treated 293T cells (Shalgi, 2013). Heatshock 

treatment was shown to cause a similar shift of ribosomes to 5'-ends of CDSs, a 

consequence of reduced availability of protein chaperones (see Figure 2f, analyzed 

analogously to Figures 2d and 2e). However, codon occupancy analysis shows that despite 

a large global shift of ribosomes to 5'-ends of CDSs, heatshock causes very little changes in 

codon occupancy (Figures 2g and 2h). 

 

To further test whether the global shift of ribosomes to 5'-ends of CDSs is related to the 

aspartic acid codons A-to-P-shift, we partitioned CDSs in quartiles and measured RPF 

density at aspartic acid codons in these quartiles. We found that RPFs surrounding aspartic 

codons were distributed independently of the codons' position in the CDS (Supplemental 

Figures S2a and S2b). Specifically, the stalling of ribosomes with Asp codons in their A-

site in the control condition is independent of position in the CDS, as well as the Asp A-to-

P-shift that is observed upon induction of mitosis. 

 

tRNA abundances are modulated in mitotic cells 

Next, we set out to identify the role of tRNA abundance in the differential codon occupancy 

in mitotic cells. While some signals were consistent at all codons coding for the same 

amino acid (e.g. aspartic acid codons GAC and GAT), many amino acids showed signals 

that were reproducible in our biological replicates, but were not consistent across the 

different codons coding for that amino acid (e.g. arginine codons). Consistency might result 

from a differential availability of conjugatable amino acid moieties. Additionally, we 

recognized that for the case of aspartic acid codons the consistency can be derived from the 

two codons being translated by the same tRNA (due to the wobble position). 

 

Profiling of the tRNA abundances in control and mitotic cells was carried out by 

smallRNAseq, where the transcriptome of RNA molecules smaller than approx. 200nt is 

subjected to deep-sequencing. Analysis of the full-length tRNA sequences in this data 

indicated widespread differential expression of tRNAs that was consistent across two 

different treatments (Figure 3a, comparing nocodazole and STLC treatments log-fold 

changes to control). It did not, however, provide an explanation for the differential 

ribosomal codon occupancies. As can be seen in Figure 3a, tRNA-Asp-GTC is relatively 

enriched in both nocodazole and STLC-treated conditions compared to control cells, which 

could explain the ribosomal A-to-P-shift on Asp codons. 
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However, we observed tRNA-Glu-CTC and tRNA-Glu-TTC molecules to be enriched to a 

higher degree, while the codons translated by these tRNAs do not show an A-to-P shift 

(Supplemental Figure S3).  

Figure 2: Codon occupancy shifts are microtuble-disruption independent and unrelated to 

overall RPF positioning. 

(a) Fold changes of codon occupancies arranged by amino acid, as in Figure 1f. Shades indicate 

BI2536-, STLC- and taxol-treatments vs. control, in order of increasing opacity. (b) RPF 5'-end 

density density profiles for aspartic acid codons as in Figure 1g for control and BI2536-, STLC- and 

taxol-treated samples. (c) Genomic view of RPF density on GAPDH in control and nocodazole-, 

BI2536-, STLC- and taxol-treated samples. (d) Transcriptome-wide average of RPF density along 

transcripts for control and nocodazole-treated samples for 3 independent biological replicates. (e) 

Transcriptome-wide average of RPF density, as in panel (d), for control and BI2536-, STLC- and 

taxol-treated samples. (f) Transcriptome-wide average of RPF density, as in panel (d), for control 

and heatshock-treated samples. (g) Fold changes of codon occupancies of heatshock-treated 

sample vs. control, arranged by amino acid, as in Figure 1F. (h) RPF 5'-end density density profiles 

for aspartic acid codons as in Figure 1g for control and heatshock treated samples. 
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Importantly, smallRNA sequencing provided us with a relatively small fraction of reads of 

full-length tRNAs (less than 2% in each sample), while most reads were derived from 

snRNAs, and to a lesser degree from miRNAs and rRNAs. 

 

In order to increase sensitivity of our profiling of tRNA sequences, we adopted a protocol 

where RNA was first size-selected for the range typical for tRNAs (70-100 nt.), followed 

by fragmentation in order to reduce the negative effects that the secondary and tertiary 

structure of tRNAs might have on amplification and sequencing. The dataset we generated 

was strongly enriched for tRNAs (at least 90% of the reads in the data were identified as 

tRNA fragments in each sample) and provided a much greater depth of profiling. 

Furthermore, the mitotic samples again showed good correlation (see Figure 3b). However, 

this dataset also did not show correlation with the differential ribosomal codon occupancies. 

 

Mitosis-induced RPF positioning shift and translational efficiency changes are 

associated, suggesting programs of translational regulation 

Having performed RNAseq alongside RP on two of our replicate nocodazole treatment 

experiments, we were able to uncover levels of translational regulation by analysis of gene-

wise translational efficiencies (TEs). Conventional analysis of TEs (Ingolia et al., 2009; 

Figure 3: tRNA abundances are modulated in mitosis. 

(a) Full-length tRNA abundance log-fold changes as determined by small RNA sequencing, where 

log-fold changes between nocodazole and control samples are plotted on the horizontal axis, and 

log-fold changes between STLC and control samples are plotted on the vertical axis. (b) tRNA 

abundance log-fold changes as determined by deep sequencing protocol tailored to tRNA profiling. 

As in panel (a), nocodazole and control samples are plotted on the horizontal axis, and log-fold 

changes between STLC and control samples are plotted on the vertical axis.  
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Stumpf et al., 2013) involves calculating a ratio of reads obtained by RP to reads obtained 

by RNAseq (both normalized for sequencing depth). We used this definition of TE and 

calculated TE changes upon treatment with nocodazole, compared to control cells. In our 

replicates, the changes in TE show high correlation (Pearsons R 0.69, Figure 4a). 

Furthermore, we quantified the shift of RPFs to the 5'-end by calculating a center-of-mass 

of RPFs per gene (calculated using only the CDS, excluding 15nt from the START codon 

to prevent differential occupancy of the START site alone). This quantity was also found to 

correlate well between the replicates (Pearsons R 0.57, Figure 4b). Importantly, we found 

that both the shift in TE and shift in center of mass correlate with the length of CDS (see 

Supplemental Figure S4a). We adjusted both metrics (change in TE and change in center of 

mass) for CDS length, and after this correction the correlation between the two metrics was 

still apparent (Supplemental Figure S4b). These data indicate that genes that exhibit little 

shift of RPFs towards the 5'-end (i.e. ∆center-of-mass near 0) show a tendency to decrease 

in translational efficiency more strongly than those that have a large shift of RPFs towards 

the 5'-end. We further investigated whether certain functional gene groups show a 

differential change in RPF center of mass. Using the CDS length-controlled center-of-mass 

metric we found GO terms relating to translation and ribosomal subunits to be associated 

with reduced shift in RPF density. For example the term "structural constituent of 

ribosome" (GO:0003735) shows a markedly reduced shift of center of mass, compared to 

the rest of the genes (Figure 4c). Interestingly, genes in this group showed a greater TE in 

nocodazole treated samples compared to the rest of the genes, even when changes in TE 

Figure 4: Analysis of gene-wise RPF positioning and translational efficiency reveals 

translational regulation of ribosomal protein genes and genes involved in the mitotic cell 

cycle. 

(a) Correlation between changes in translational efficiencies (TEs) in two independent sets of 

control and nocodazole-treated sample pairs. (b) Correlation between changes in RPF center of 

mass in two independent sets of control and nocodazole-treated sample pairs. 
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Figure 4 (cont.) (c) Change in center of mass of genes part of GO term “structural constituent of 

ribosome” (in red) and other genes (in gray) for two independent biological replicates. (d) Change in 

TE of genes part of GO term “structural constituent of ribosome” (in red) and other genes (in gray) 

for two independent biological replicates. (e) Change in center of mass of genes part of GO term 

“mitotic cell cycle” (in red) and other genes (in gray) for two independent biological replicates. (f) 

Change in TE of genes part of GO term “mitotic cell cycle” (in red) and other genes (in gray) for two 

independent biological replicates. 
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were controlled for CDS length and changes in center of mass (Figure 4d). Conversely, we 

found genes associated with the term “mitotic cell cycle” (GO:0000278) to be associated 

with an increased shift in center of mass (Figure 4e), while also showing a greater TE in 

nocodazole treated samples (Figure 4f). Finally, we found that the aspartic acid content of 

CDSs of genes had a positive effect on the ∆TE upon nocodazole treatment, however 

observed correlation was weak and the effect size was minimal (Supplemental Figure S4c). 

Furthermore it did not appear to be specific to the aspartic acid codons (GAC and GAT) as 

also glutamic acid (codons GAA and GAG) showed a negative correlation between codon 

content of the CDS and ∆TE, while RPF density analyses did not show any differential 

ribosomal occupancy at these codons.  

 

 

Discussion 

 

Translational processes are controlled during mitosis, most notably elongation as indicated 

by previous work and indicated by our results. Ribosomal profiling displays this effect as a 

shift of ribosomal protected fragments towards the 5'-end of transcripts. It is likely the 

result of reduced rates of elongation compared to the rate of translational initiation. 

Additionally, during mitosis ribosomes display an altered pattern of stalling on certain 

codons. We show (amongst other codons) that ribosomes shift aspartic acid codons from A-

position to P-position. This phenomenon is reproducible and independent of the 

microtubule-disrupting effects of nocodazole, as it is reproduced with non-cytoskeletal 

treatments as well. Note that a stalling with aspartic acid codons in the A-site seems 

predisposed in the control cells, indicating a limitation at the step of charged tRNA-Asp 

interaction with the ribosome, which is abrogated in mitotic cells. We investigated whether 

differential expression levels of the tRNA themselves underlie this differential stalling 

pattern. To that end we profiled tRNA expression levels by two divergent extraction and 

sequencing methods. However, we found that differential expression levels of tRNAs were 

unable to explain the differences in stalling patterns observed in the ribosome profiling 

data. The cause for the A-to-P shift remains elusive, but it seems likely that either a 

differential availability of aspartic acid or a tRNA-specific regulation (e.g. modification) 

plays a role in this phenomenon.  

 

Analysis of translational efficiency (TE) changes during mitosis illustrated the length of the 

CDS as an important confounding variable. The influence of CDS length on the observed 

translational efficiency is likely due to the overall shift of ribosomes towards 5'ends of 

transcripts. It does however highlight the importance of identification of confounding 

variables, since functional analyses (such as analysis of enriched GO terms) will give 

hugely deviating results between uncorrected and corrected metrics (such as TE). After 

correction for CDS length and RPF center of mass shift we found few functional groups 
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associated with significantly different efficiency. The strongest effects are seen at 

ribosomal protein genes. This group of genes is known to be regulated at the translational 

level and is sensitive to activation of mTOR, through alleviation of the inhibitory 

phosphorylation of 4E-BP (Ma and Blenis, 2009; Thoreen et al., 2012). The activation of 

the ribosomal protein mRNAs at the translational levels suggests that mTOR is activated 

during mitosis. A recent report suggests that during mitosis not mTOR but CDK1 is 

responsible for the alleviation of the inhibitory phosphorylation of 4E-BP1 (Shuda et al., 

2015). Another functional group which we found to be translationally induced were genes 

of the term “mitotic cell cycle”. This suggests that translational regulation occurs, but to 

strengthen this observation it would be helpful if the factors conveying this translational 

regulation could be identified. It should also be noted that the effect size is small in 

comparison to the effect on ribosomal protein genes; however this could be a result from 

the relatively late timepoint at which the mitotic samples were taken (16h into mitosis). We 

think our work provides valuable insights in the translational levels of regulation that take 

place during mitosis, and we expect that our observations and data can act as a starting 

point and provide pointers to find novel regulators of the mitotic cell cycle. 

 

 

Materials and methods 

 

Cell culture and enrichment of mitotic cells 

U2OS cells were cultured in DMEM supplemented with 10% heat-inactivated fetal calf 

serum in 5% CO2 at 37°C. Enrichment of mitotic cells by cell cycle arrest was achieved by 

treatment of cells with nocodazole (50 ng/ml), BI2536 (100 nM), S-Trityl-L-cysteine 

(STLC, 20 µM) or taxol (1 µM) for 18 hours. 

 

Preparation of deep-sequencing libraries 

Libraries from cultured cells were prepared as described previously (Loayza-Puch, 2013). 

Lysates were centrifuged at 5,000 rpm and the supernatant was digested with 2 U/µl of 

RNase I (Life Technologies, Grand Island, NY, USA) for 45 min at room temperature. 

Resulting monosomes were purified, RNA was isolated, and RP libraries were prepared as 

described previously. Primers and linkers used in the preparation of libraries are listed in 

Chapter 3, Supplemental Table S1. 

 

Preparation of tRNA sequencing libraries 

For total small RNA-seq libraries, the TruSeq Small RNA Library Preparation Kit 

(Illumina) was used according to the manufacturer's instructions. For the targeted 

sequencing of tRNAs, total RNA was gel-purified on a denaturing 10% polyacrylamide 

urea (7M) gel. A section corresponding to the range of 70-100 nucleotides was excised, 

eluted and ethanol precipitated. RNA was 3′-dephosphorylated using T4 polynucleotide 



4 

 

A 92 

kinase (New England Biolabs Inc. Beverly, MA, USA) for 6 h at 37°C in 2-(N-

morpholino)ethanesulfonic acid (MES) buffer (100 mM MES-NaOH, pH 5.5, 

10 mM MgCl2, 10 mM β-mercaptoethanol, 300 mM NaCl). 3′ adaptors were added with T4 

RNA ligase 1 (New England Biolabs Inc. Beverly, MA, USA) for 2.5 h at 37°C. Ligation 

products were 5′-phosphorylated with T4 polynucleotide kinase for 30 min at 37°C. 

5′ adaptors were added with T4 RNA ligase 1 for 2.5 hrs at 37°C. 

 

Preprocessing and alignment of deep-sequencing data 

Adapter sequences were trimmed from raw RP data using cutadapt (Martin, 2011). 

Sequences shorter than 20bp after adapter trimming were discarded. rRNA and tRNA 

sequences were filtered by alignment to indices of rRNA and tRNA sequences respectively, 

using bowtie2 (Langmead and Salzberg, 2012) and default parameters. The rRNA index 

was constructed from GENCODE v19 annotations, transcript types "rRNA", "Mt_rRNA" 

and "rRNA_pseudogene", supplemented with UCSC repeats of class "rRNA" (table 

"rmsk"). The tRNA index was constructed from sequences obtained from GtRNAdb (Chan 

and Lowe, 2009) at 5th of September 2012. The remaining (unmapped) reads were aligned 

to GRCh37/hg19 using TopHat2 (Kim et al., 2013) and GENCODE v19/BASIC (Harrow et 

al., 2012) transcript coordinates (parameters “-N 2 -m 1 --no-novel-juncs --no-novel-index -

-no-coverage-search --segment-length 25”). In subsequent analyses, only primary 

alignments with mapping quality of 10 or greater were considered. RP and RNAseq data 

followed the same pipeline, with the exception of adapter trimming, which was only 

performed on RP data. 

 

Codon occupancy analysis 

Generally, codon occupancy analysis compares RPF codon occupancy frequencies between 

samples, in a gene-level normalized manner (to exclude gene expression differences as 

cause for differences in observed codon frequencies).  

Specifically, gene IDs and reading frames were assigned to RPFs, using GENCODE 

v19/BASIC. RPFs not within a valid CDS (taking into account the 15nt. 5'-overhang of 

RPFs), RPFs with ambiguous gene ID and RPFs with ambiguous frame were excluded. The 

remaining RPFs were used to count, for the different positions (12 and 15nt. from 5'-end), 

the frequencies of all codons, for all genes in the transcriptome. Within-gene frequencies 

were calculated by dividing the observed counts by the total counts for that gene. 

Normalized codon frequencies were averaged over all genes that had at least n counts in 

both the condition and control samples (n is 100 for all figures). Codon occupancy shifts 

were calculated from these normalized and averaged frequencies per codon as: 

log(normalized occupancy in condition / normalized occupancy in control). 

 

RPF density analysis 

Codon-regions of 61 nucleotides in width around designated codons along the 
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transcriptome (as annotated by GENCODE v19/BASIC) were identified (using transcript 

coordinates; i.e. codon-regions were all supported by exons). Overlapping transcript 

annotations were used, and overlapping regions were retained, but regions with identical 

genomic coordinates were considered redundant and collapsed. Codon-regions that could 

not be extended to 61 nt. (due to being near the 5' or 3' ends of transcripts) were discarded. 

5' ends of RPFs were counted within each codon-region. For a comparison between two 

samples, only codon-regions where the RPF count was at least 50 in both samples, were 

taken into consideration. For each sample and each codon-region, the normalized 5' end 

RPF density was calculated by dividing over the total number of counts within that region, 

and multiplying by the width of the codon-region, making the average density within each 

codon region equal to 1. The normalized densities were convolved using a rectangular 

window of width 3 and height 1/3. The mean density over the codon-regions was taken and 

the difference in the mean densities between the samples yielded to the density shift. 

 

Translational efficiency and center of mass analyses 

For calculation of translational efficiencies, gene-wise counts were performed using 

annotations from GENCODE v19/BASIC and HTSeq, on CDSs only, for both the RNAseq 

and RP data. Counts were normalized by correction for the total library sizes, using the 

trimmed mean of M-values routine found in edgeR (Robinson et al., 2010), and nucleotide 

composition biases in the RNAseq and RP data were corrected prior to calculating 

translational efficiencies by linear regression of abundances using mono- and dinucleotide 

compositions of CDSs of genes as regressors. Translational efficiencies were calculated as 

the ratio of [normalized abundance determined by RP] to [normalized abundance 

determined by RNAseq]. Centers of mass were calculated per gene by taking the 5'-ends of 

RPFs at the CDS (excluding the first 15 nt.) and the following formula: 

Center	of	mass	�	 1�����
�

���
 

where �� is the position of the 5'-end of the i-th RPF minus 15, N is the total number of 

RPFs on the CDS and L is the length of the CDS (minus 15 nt.). For genes that had more 

than one single valid CDS (a CDS annotated by CDS, start_codon and stop_codon features, 

where the sequence of the first codon is a valid start codon and the stop codon is a valid 

stop codon), the longest CDS was chosen, and when tied, the transcript with the least 

number of exons was chosen as representative. For the calculation of TEs, a cutoff of at 

least 25 reads per gene was applied to both the RP and RNAseq data. Similarly, for the 

calculation of RPF centers of mass, a cutoff of at least 25 RPFs per gene was applied. For 

all analyses, cutoffs were applied across all samples/conditions that were compared, thus 

ensuring that the same set of genes was compared. 

 

Differential translational efficiency and center of mass analysis of gene sets 

The gene ontology flat file was obtained from geneontology.org (dd. 15 May 2014). 
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GENCODE/Ensembl gene ID mapping to GO ID was obtained from BioMart. Gene 

annotations were extended upwards in the gene ontology hierarchy, i.e. genes annotated 

with an ontology child term were considered also annotated with any parent term (“is_a” 

was considered the parent-child defining relation in the gene ontology flat file). For the 

different metrics (∆TE, ∆center of mass) statistical significance was tested by considering 

the values for genes annotated with a GO term vs. those not annotated with that term, using 

both the Kolmogorov-Smirnov and Mann-Whitney-U non-parametric tests. We adjusted the 

two-sided p-values for multiple testing using the Benjamini-Hochberg correction (the 

default method in R's p.adjust routine). We tested all replicates individually, and considered 

only GO terms where both test yielded (multiple testing-corrected) p-values < 0.1 in all 

replicates. 

 

Analysis of small RNA and tRNA sequencing libraries 

Adapter sequences were trimmed from raw sequencing data using cutadapt (Martin, 2011), 

requiring an adapter overlap length of at least 6 nt. and an overall matching rate of 20%. 

Sequences shorter than 20bp after adapter trimming were discarded. Trimmed reads were 

aligned using bowtie2 (Langmead and Salzberg, 2012) with parameters '-D 20 -R 3 -L 20 -

N 1 -i C,1 -k 50' to the human genome (build hg19). The reads were assigned features, 

based on tRNA, miRNA, rRNA, snRNA and snoRNA annotations from GENCODE/v19. 

Each read that aligned was allowed to yield multiple alignments. Of these multiple 

alignments, only those with the highest score (sorted by BAM alignment score and BAM 

'NM' tag) were considered. All those high-scoring alignments were considered in order to 

assign a feature to the read. For the paired-end smallRNA sequencing data, alignments for 

reads from both ends were jointly considered, and the alignments of the ends were not 

allowed to be further than 300bp. apart (and were not allowed to be dovetailed). For the 

remaining valid high-quality alignments, annotated features were considered, and reads 

with ambiguous features (i.e. with alignments indicating different features, such as miRNA 

vs. rRNA or different tRNA genes) were considered ambiguous reads and not considered in 

further analyses. 
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Supplemental Figure S1: Quality and reproducibility of sequencing data. 

(a) Correlation between 2 independent biological replicates of RNA sequencing (top panels) and 

ribosome profiling (bottom panels) in control conditions (left panels) and nocodazole-treated conditions 

(right panels). (b) Correlation between ribosome profiling and RNA sequencing data in two independent 

biological replicates. (c) RPF 5'-end reading frame abundance in control and nocodazole-treated 

ribosome profiling samples for 3 independent biological replicates. (d) RPF 5'-end density profiles for 

arginine codons as in Figure 1g. (e) RPF 5'-end density profiles for proline codons as in Figure 1g. 
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Supplemental Figure S2: RPF density at codons positioned along the CDS. 

(a) RPF 5'-end density profiles for aspartic acid codon GAC that are positioned in the four quartiles 

along the CDSs of transcripts. Blue lines display the density in control samples, green lines display the 

density in nocodazole-treated samples, black lines display the difference between nocodazole and 

control samples. (b) RPF 5'-end density profiles as in panel (a), but for aspartic acid codon GAT. 
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Supplemental Figure S3: RPF density at codons coded by tRNAs with altered abundance in 

mitosis. 

RPF 5'-end density profiles at the two glutamic acid (Glu) codons, GAA and GAG, in 3 independent 

biological replicates. Blue lines display the density in control samples, green lines display the density in 

nocodazole-treated samples, black lines display the difference between nocodazole and control 

samples. 
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Supplemental Figure S4: Correlation between translation efficiency changes, changes in RPF 

center of mass and CDS length. 

(a) Correlation between translational efficiency changes upon nocodazole treatment and CDS length 

(top panels) and center of mass changes and CDS length (bottom panels) (b) Correlation between 

translational efficiency changes and RPF center of mass changes after adjusting both metrics for CDS 

length. (c) Correlations between translational efficiency changes and amino acid/codon content of 

genes for amino acids aspartic acid, asparagine, glutamic acid and glycine, in two biological replicates. 

Pearson correlation coefficients are indicated by ρ. In all panels, dark blue straight lines indicate linear 

regressions and blue shading around the linear regressions indicate a 99% confidence interval of the 

linear regression. 
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CHAPTER  5 

Discussion of Part A – Protein translation studied by 

ribosome profiling 
 

The chapters of this part of the thesis describe an exploration of translational processes 

using ribosome profiling. We tailored the protocol and analyses to investigate direct or 

indirect changes in availability of aminoacylated tRNAs, the essential component of the 

translational machinery that delivers amino acids. We expect that our work will provide 

tools that can identify novel molecular targets and biomarkers as well as uncover factors 

that regulate translation. 

 

Translation by mitochondrial ribosomes 

In chapter 2 we uncovered that the conventional ribosome profiling protocol was unable to 

faithfully capture translation by mitochondrial ribosomes. We adapted the ribosome 

profiling protocol and were able to capture translation by mitochondrial ribosomes to the 

same extent as cytosolic ribosomes. Our adapted protocol provided a useful new tool for 

mitochondrial research, as it allowed us to investigate the effects of a genetic disorder, 

caused by a mutation in the mitochondrial tRNA-Trp gene, on translation. This work also 

highlights the importance of distinguishing between true phenomena and technical 

artefacts, in this case the lower apparent translational efficiencies of mitochondrial genes. 

While it seems fully plausible that the set of mitochondrial genes yield mRNA transcripts 

that have a distinct translational efficiency, or that mitochondrial ribosomes have a lower 

overall affinity for mRNA than cytosolic ribosomes, the low apparent translational 

efficiency measured with the conventional ribosome protocol was merely due to technical 

artefacts. We showed that stringent size selection of ribosome protected fragments was the 

culprit in capturing mitochondrial ribosomes, which are distinctly larger than their 

cytoplasmic counterparts, and this in turn lowered the apparent translational efficiencies of 

mitochondrial mRNAs. Relieving the stringent size selection allowed us to capture 

ribosome protected fragments from both cytosolic and mitochondrial ribosomes in parallel. 

The data we generated using this adapted protocol indicated that mitochondrial ribosomes 

have affinity for mitochondrial mRNAs to a similar extent as the cytosolic ribosomes for 

nuclear-encoded mRNAs. The established protocol included the stringent size selection in 

order to reduce ribosomal RNA (rRNA) contamination (Ingolia et al., 2009, 2012). We 

initially feared that adaptation of the size selection step would lead to an increased amount 

of contaminating reads. However, the fraction of rRNA contamination was virtually 

unaffected by widening of the size selection window (Chapter 2, Figure 2d). 
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rRNA contamination 

The ribosome profiling protocol involves RNA digestion in order to identify the ribosome 

protected mRNA fragments. However, the ribosomes themselves are complexes of protein 

and ribosomal RNA. The latter is inherently prone to digestion during the ribosome 

profiling protocol, and as a result, many fragments of ribosomal RNA end up contaminating 

the library which ideally contains only ribosome protected mRNA fragments. This 

contamination can severely hamper sensitivity of the obtained data, as the fraction of 

contaminating reads exceed 95% of the raw data, thereby reducing the amount of mRNA 

fragments in the data. In order to reduce rRNA contamination from the data, we made use 

of the observation that specific fragments of the ribosomal RNAs are far more prevalent 

than others, a consequence of their size, propensity to be digested and location wrt. the 

surface of the ribosome. Using hybridization to biotinylated oligonucleotides we were able 

to remove highly abundant target sequences through streptavidin affinity. Using this 

approach we were able to reduce the fraction of contaminating reads to 60% in most data 

sets. 

 

Bimodality of size of mitochondrial-ribosome protected fragments 

Our adapted ribosome profiling protocol increased the window of RPF size selection, and 

allowed for improved detection of mitochondrial RPFs, that had previously fallen outside of 

this size selection window. Surprisingly we noticed that the size of mitochondrial RPFs was 

not unimodal like the size of cytosolic RPFs, which peaked at 29nt., but instead showed a 

bimodal size distribution with peaks at 27 and 33nt. We could not identify any functional 

relevance or consequence of the size of the RPFs, and their distributions along the 

mitochondrial mRNAs was similar. Concurrently, work from colleagues investigating 

translation in bacteria showed a bimodal size distribution of RPFs, which was dependent on 

the location of a signal sequence (the Shine-Dalgarno sequence) with respect to the RPF 

(O’Connor et al., 2013). We investigated whether the bimodal size distribution of 

mitochondrial RPFs in our data could be explained by signal sequences but we were unable 

to identify such an element. Important to notice is that analysis of overrepresented elements 

was hampered by the small size of the mitochondrial protein-coding transcriptome (i.e. the 

cumulative length of mitochondrial mRNAs), reducing the statistical power to find 

significantly overrepresented sequence motifs. Thus, the existence of sequence motifs that 

underlie the bimodal size distribution of mitochondrial RPFs cannot be excluded. 

 

Investigating the consequences of mitochondrial tRNA mutations in genetic disorders 

We used the adapted ribosome profiling protocol to provide a view of translation of 

mitochondrial mRNAs in cells harboring mitochondrial tRNA mutations that occur in 

patients with known genetic disorders. We used a cybrid cell system, where mitochondria 

harboring the mutations were fused with cells lacking mitochondria, allowing us to 

investigate the effects of the mutations free of variability in the nuclear and cytosolic 



5 

DISCUSSION OF PART A – PROTEIN TRANSLATION STUDIED BY RIBOSOME PROFILING 

A 105 

content. We found that a mitochondrial tRNA-Trp5556G>A mutation causes ribosome stalling 

on tryptophan codons, compared to wild-type mitochondria. We show that the mutation 

leads to lower production rates of mitochondrial protein (chapter 2) and this is in line with 

the phenotype of patients with this genetic disorder (Smits, 2010). Since the cells harboring 

this mutation are viable, and ribosomes are found throughout the CDSs of mitochondrial 

mRNAs, it is likely that protein production occurs albeit at a significantly lower rate. This 

implies that the tRNA-Trp5556G>A mutation does not fully impair the function of the tRNA. 

Instead, its availability for translation and uptake by ribosomes is reduced. This might be 

caused by less efficient folding of the tRNA into its three-dimensional structure, or reduced 

efficiency for aminoacylation or chemical modifications that are part of tRNA maturation. 

We also investigated the consequences of several other genetic disorders where mutations 

in mitochondrial tRNAs occur, that lead to a similar disease manifestation and similar 

reduction in mitochondrial protein production rates to what is observed with the tRNA-

Trp5556G>A mutation. However, with other mutations that we profiled (in the mitochondrial 

tRNA genes for tRNA-His and tRNA-Arg) we found that ribosome protected fragments 

were distributed indistinguishable from the ribosomes in the control cells and no stalling of 

ribosomes when encountering the complementary codon was apparent (see Figure 1, 

Rooijers, Loayza-Puch and Agami, unpublished data). In these mutations, which we 

validated by deep-sequencing, a reduced availability of the tRNA for translation does not 

seem to be causal for the disease phenotype. Instead, the disease might be a consequence of 

toxic effects of the tRNA mutations. Alternatively, the tRNA mutations that elicit no effect 

on ribosome progression are passenger mutations, and the causal mutations have been 

missed in analysis of the patient material. 

 

 

Figure 1: RNA sequencing and ribosome profiling performed on control and three 

mitochondrial tRNA mutant cybrid celllines. 

UCSC data session showing RNAseq on one control (blue) and three mitochondrial tRNA mutant 

cybrid celllines (brown: tRNA-His, red: tRNA-Trp and green: tRNA-Arg) in the first four tracks and 

ribosome profiling in the next four tracks (identical coloring scheme). While transcript coverage 

measured by RNAseq is generally comparable between control and mutant celllines, the ribosome 

profiling data shows that the tRNA-Trp mutant exhibits a strongly deviating pattern, indicative of 

ribosomal stalling. 
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Ribosome profiling as sensor for differential amino acid availability 

In chapter 3 the use of ribosome profiling as tool to expose differential amino acid 

availabilities is explored. Our work with mitochondrial tRNA mutants underscores that 

ribosome profiling is able to expose differential availability of tRNA, as a mutation in the 

mitochondrial tRNA-Trp gene leads to ribosomes stalling on complementary (Trp) codons. 

We reasoned that tRNA availability could not only be modulated by mutations that possibly 

alter stability or folding, but also by differential availability of amino acids, or differential 

activity of aminoacyl tRNA synthetases, which catalyze the esterification of amino acids to 

their appropriate tRNA (Figure 2).  

 

A tool that offers insight in amino acid availability would be valuable because it could 

pinpoint specific vulnerabilities of cancers. Furthermore, using ribosome profiling as a 

sensor for amino acid availability would be more relevant than measurements of amino acid 

levels on cell lysate, because ribosome profiling would indicate any differential availability 

that would result from metabolic flux rewiring, independent of the amino acid 

concentration. Measurements on the translational level bypass the need to investigate the 

regulatory levels that appear between amino acid and incorporation into protein, as it can 

directly indicate the incorporation (or lack thereof) of amino acids. 

 

  

Figure 2: Upstream factors involved in differential ribosomal codon occupancies. 

Factors that can alter the availability of activated tRNAs for translation and thereby alter the codon 

occupancies of ribosomes are shown. Note that this scheme focuses factors discussed in this 

thesis, and that other factors (such as mRNA folding or factors acting upon translation elongation) 

are omitted. 
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Translation initiation is tightly controlled upon restriction of nutrient availability 

To validate ribosome profiling as a tool capable of detecting differential amino acid 

availability we starved cells of specific amino acids, and measured a response of ribosome 

stalling using ribosome profiling. For instance, Figure 1d in Chapter 3 displays the response 

of ribosomes upon treatment with L-asparaginase, which reduces the amount of available 

asparagine. Another experimental setup, where a panel of breast cancer celllines was 

starved of glutamine, taught us that not all cells respond in equal ways. We show that 

luminal celllines exhibit ribosome stalling specifically on glutamine codons, while the basal 

type celllines show either no or a marginal response to glutamine starvation. These cells 

instead exhibit a reduced occupancy of ribosomes on the initiation (START) codon, 

indicative of a global reduction of translation initiation. Analysis of phosphorylation of 

eEF2, a key regulator of this process, confirmed that the luminal celllines have a response 

distinct from the basal celllines. Altogether these results reveal a limitation in the approach: 

regulation of translation initiation (and possibly elongation) can mask amino acid-specific 

signals in the ribosome profiling data. Conversely, it shows that ribosome profiling can 

detect global regulation of translation, from which a cell's commitment to proliferate can be 

inferred. 

 

Revealing reduced leucine availability upon TGF-beta treatment, and reduced proline 

availability in kidney tumor 

When treated with TGF-beta, a signaling molecule capable of triggering a wide range of 

responses, MCF10A cells undergo epithelial-to-mesenchymal transition. Using ribosome 

profiling and our analysis protocol, we show that this is accompanied with stalling on all 

leucine codons, indicative of reduced leucine availability. We found a leucine transporter 

gene (SLC3A2) to be transcriptionally attenuated and showed its importance in the uptake 

of leucine. Furthermore we show that attenuation of this gene is at least partially 

responsible for the stalling of ribosomes on leucine codons, and that supplementing the 

growth medium with an esterified leucine, which is cell permeable, reduces the response.  

 

To take our approach to a clinically relevant setting, we performed ribosome profiling on 

tissue samples taken from dissected kidney tumors. One tumor showed elevated transcript 

levels of PYCR1, the prime gene responsible for de novo synthesis of the amino acid 

proline. However, our ribosome profiling data indicated that contrary to what might be 

inferred from the transcriptional activation of PYCR1, these cells showed a ribosomal 

stalling on proline codons. This highlights the power of the ribosome profiling approach to 

amino acid availability, as it shows the net effect of amino acid concentration, metabolic 

fluxes and translational regulation. 

 

Ribosome profiling reveals a distinct redistribution of ribosomes in mitosis 

The final chapter of this part focuses on translational regulation and ribosome redistribution 
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during mitosis. Mitosis is an intriguing part of the cell cycle in which the cell undergoes 

drastic morphological changes, usually followed by cytokinesis during which the cells' 

content is split amongst two daughter cells. Cap-dependent translation initiation has been 

reported to be reduced during mitosis (Fan and Penman, 1970; Pyronnet et al., 2001; Sivan 

et al., 2007) however recent reports suggest that cap-dependent translation is stimulated, 

through alternative, mTOR-independent pathways (Shuda et al., 2015). The regulation of 

translation during this phase has been of interest, and it was hypothesized that a stalling of 

ribosomes protects mRNAs from degradation (Sivan and Elroy-Stein, 2008), as well as the 

idea that several mitosis-specific factors would escape the translational repression. Our data 

shows a strong and reproducible global effect on ribosome positioning wrt. the CDS. A 

strong global shift of RPFs towards the translation START site indicates a reduced 

elongation activity. Interestingly, we see no evidence of reduced translation initiation. A 

remarkable observation is that ribosomes protect different codons preferentially in mitosis, 

and this differential codon occupancy seems independent of the shift of RPFs towards the 

translation START site. This suggests a differential tRNA availability, either directly 

through differential levels of the tRNAs themselves or other upstream factors such as amino 

acid availability or tRNA synthetase activity. We addressed the possibility that differential 

tRNA levels are causal to the differential codon occupancy by deep-sequencing of tRNA in 

control and mitotic cell samples. While we observed differences in the tRNA levels upon 

mitosis, they were unable to explain the differential codon occupancies. 

 

Future perspectives 

Our work has demonstrated the ability of ribosome profiling to identify several mechanisms 

of translational regulation. Global mechanisms such as repression of elongation, for 

instance during mitosis, or repression of initiation, which occurs in certain celllines upon 

nutrient starvation are readily detected using ribosome profiling and appropriate analyses. 

Also regulation of specific components such as tRNAs and amino acids can be detected by 

ribosome profiling. Finally, we show that ribosome profiling is also able to detect 

regulation of specific mRNAs, as demonstrated by the activation of translation of ribosomal 

protein mRNAs during mitosis. We have found that ribosome profiling can be used to 

identify differential regulation of translation, and aid in the identification of factors that 

mediate this differential regulation. Furthermore we show that ribosome profiling on tumor 

sections is feasible and that high-quality data can be obtained, and from this data regulation 

at the level of translation can be inferred. We expect that this in particular will allow the 

identification of metabolic vulnerabilities of tumors and the identification of novel 

molecular targets. In a follow-up study we are currently investigating how nutrient 

requirements of tumor cells differ between growth in vitro and growth in vivo, and amongst 

different tumor cells, in order to exploit these differences and to be able to put a halt to 

growth of the tumor cells specifically. 
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Cover (Part B): “Just do a UCSC screenshot”, Koos Rooijers, 2015 

 

The UCSC genome browser has been a ubiquitous tool in my work for the past 5 years. At 

first I was somewhat repulsed: the '90s look and feel (and page loading times*) did not align 

with my expectations of a tool used in cutting-edge science. However, over time I came to 

appreciate the UCSC browser and learned to deal with its quirks. The available data and its 

currency are unparalleled and make it an incredibly powerful tool. And I guess, over time, I 

even came to terms with using screenshots in publications... 

 

 

                                                 
*
 Did you know that for every view you take in the browser, a new figure is generated based on the position and 

tracks you are currently looking at, at some remote server, which is then transmitted to you? A modern solution 

would send your browser portions of track data and let your browser do the graphing. 



 

B 3 

Contents 
 

 

Part B – Transcription of the non-coding genome 

Chapter 6 Introduction to Part B B 5 

Chapter 7 Genome-wide profiling of p53-regulated enhancer RNAs uncovers a 

subset of enhancers controlled by a lncRNA 

B 9 

Chapter 8 Discussion of Part B B 47 

 

Summary B 49 

Samenvatting B 51 

Curriculum Vitae B 53 

List of publications B 54 

 

Part A – Protein translation studied by ribosome profiling 

Chapter 1 Introduction to Part A A 9 

Chapter 2 Ribosome profiling reveals features of normal and disease-

associated mitochondrial translation 

A 21 

Chapter 3 Sensing amino acid deficiencies through differential ribosome codon 

occupancies 

A 43 

Chapter 4 Specific changes of ribosome distribution over messenger-RNAs 

during mitotic arrest 

A 77 

Chapter 5 Discussion of Part A A 103 

  



 

B 4 

 



6 

INTRODUCTION TO PART B – THE NON-CODING GENOME 

B 5 

CHAPTER  6 

Introduction to Part B – The non-coding genome 
 

Enhancers as functional component in the non-coding genome 

Part A of this thesis centers around the translation of messenger RNA into protein. It hails 

proteins as important components, the major workhorses of the cell. The importance of 

proteins for the functioning of a cell has been long recognized, and hereditary content of a 

cell (its DNA) is often studied in the context of the impact it has on the expressed proteins 

that result from the genetic code. One example is the study of SNPs, variations in the 

genetic code that exist in a population. The impact of SNPs that occur in parts of the 

genome that encode for proteins is more readily discerned, and often considered more 

significant. It is paradoxical that in the human genome only 2% of the genomic code 

actually encodes for protein sequences, and suggestive of functional elements other than 

protein-coding genes that are kept in the genome. Since the energetic costs that are 

associated with replication and maintenance of the genome are significant, dysfunctional or 

“useless” parts of the genome would be lost during evolution. However, within the non-

coding parts of the genome, many conserved regions can be identified. Indeed, other 

functional non-coding elements can be identified in the genome, for instance promoters, 

which regulate the expression of genes (DNA that is transcribed into protein-coding or non-

protein-coding RNA). Another important type of functional non-coding element that 

regulates the expression of genes are enhancers. Their existence and function has been long 

known (Banerji et al., 1981; Benoist and Chambon, 1981; Khoury and Gruss, 1983).  

 

Akin to promoter elements, they form docking sites for transcription factors and 

transcription regulators, which bind to the enhancer through sequence elements or 

chromatin environment, such as histone modifications. In contrast to promoters, they are 

positioned not necessarily close to the target gene whose expression they modulate (see 

Figure 1). Instead, they come in contact with the target gene through looping of the 

chromatin, and because of this they may be located millions of basepairs away from their 

target gene, or even be located at a different chromosome. This poses a difficulty in 

identification of the target enhancers of a particular gene (and vice versa, the target gene(s) 

of an enhancer). Many years of research, and more recently advances in high-throughput 

and deep-sequencing technologies, have allowed for the identification and functional 

impact of these enhancer elements within the genome (Shlyueva et al., 2014). This has led 

to estimates exceeding 300.000 functional enhancers in the human genome (Pennacchio et 

al., 2007), a number far exceeding the number of protein-coding genes in the human 

genome (approx. 22.000), resulting in part from the large degree of tissue-specificity of 

enhancers. Indeed, in different tissues and celltypes, even expression of ubiquitous genes 



6 

 

B 6 

such as housekeeping genes may be driven by different enhancers (de Laat and Duboule, 

2013). 

 

Long non-coding RNAs as functional gene products 

Promoter and enhancer elements act as docking platform for transcription factors and 

chromatin modifiers, which in turn promote transcription of target genes. Genes can be 

further subdivided into two groups: those genes that encode for protein and thus require 

translation and which have long been considered the main component of the genetic 

information, and genes that are transcribed but do not encode for protein, and thus the 

transcribed RNA is the end-product (non-coding RNAs). Some classes of non-coding 

RNAs have been long known: transfer-RNAs (tRNAs) and ribosomal RNAs (rRNAs) are 

important components of the translational machinery. Another class of non-coding RNAs 

are microRNAs (miRNAs), short transcripts which act to decrease expression of certain 

target transcripts through sequence complementarity. The discovery of miRNAs has in turn 

Figure 1: Regulatory capacity of enhancers at distant promoters 

A transcription start site carries a region upstream known as the promoter, commonly 0.5-2kbp. in 

length. In the promoter region the molecular machinery (with RNA polymerase as major 

component) that carries out transcription is recruited. This recruitment is often facilitated by other 

factors (transcription factors, not shown in the figure) that are in turn recruited by auxiliary 

sequences in the DNA itself (transcription factor binding sites). Enhancers are sequences that also 

promote the recruitment of transcription machinery (or activate the start of transcription by the 

machinery (Jonkers and Lis, 2015)) but in contrast to promoter-localized transcription factor binding 

sites, they can be located far away from the transcription start site DNA sequence (>>1000kbp.) 

and instead become physically located close to the transcription start site through DNA looping. 
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led to the discovery of an important level of regulation of gene expression. Another class of 

non-coding genes are those encoding for long non-coding RNAs (lncRNAs), a class 

commonly defined through their transcript size (> 200 nt.) which sets them apart from most 

other non-coding RNAs discovered thus far. As a loosely defined class, they can have a 

wide range of functions. For example lncRNA XIST functions as structural RNA to cover 

the inactive X-chromosome in female cells, and is an important regulator in the inactivation 

of the inactive X-chromosome (Brown et al., 1992). More specifically, lncRNAs may 

function by repression of transcription factors by acting as decoy (Kino et al., 2010), and 

through interaction with other RNAs, chromatin (DNA) and other proteins such as 

transcription factors, they can act at virtually any level of regulation that encompasses the 

cell (Vance and Ponting, 2014). The expression patterns of lncRNAs show high tissue-

specificity, like the use of enhancers (Derrien et al., 2012; Tsoi et al., 2015). Furthermore, 

their expression is often lower than protein-coding genes, hampering their identification. As 

with enhancers, in the area of lncRNA research advances in technologies such as deep-

sequencing have thus also allowed more sensitive detection of the functional and expressed 

elements, catalyzing discoveries in this area and discoveries of new functions of lncRNAs.  

 

In this part of the thesis the non-coding targets of p53, a master regulator of cellular 

processes and cell fate, such as cell cycle progression and apoptosis are explored. As the 

tumor suppressor gene that is found most commonly mutated in cancers, it has been studied 

extensively. Functionally, the protein P53 acts as a transcription factor to regulate 

downstream genes. Through techniques such as ChIP the loci in the genome that are bound 

by P53 have been characterized, although advances in these techniques still improve the 

sensitivity which results in identification of more and more P53 binding sites. Also the 

impact of P53 on transcriptional regulation has been characterized in comprehensive 

fashion, by array transcriptome profiling and in recent years deep-sequencing of RNA. 

However, the impact on transcriptional regulation has mostly been studied with focus on 

the protein-coding genes and transcripts. We hypothesized that P53 also activates many 

non-coding genes that have remained undiscovered because (i) many of the P53 binding 

sites identified by ChIP can not be attributed to activation of protein-coding genes, (ii) a 

transcription factor cannot make the distinction between a protein-coding gene and a 

lncRNA gene and (iii) only recent advances have made detection of lowly abundant and 

novel transcripts such as lncRNAs and enhancer RNAs (eRNAs, products of transcription 

at enhancers and indicators of enhancer activity) possible, thus creating a potential for 

undiscovered P53 targets. We start off by using start-of-the-art technologies and available 

data to identify P53-regulated enhancers and P53-regulated lncRNAs. We then assessed 

whether the P53-regulated lncRNAs could play a role in the activation of the P53-activated 

enhancers that were found to be P53-unbound and identified lncRNA 'LED'. We show that 

LED is a potential tumor suppressor in the p53 pathway, as it can be inactivated by 

hypermethylation. 
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Introduction 

 

For several decades the foundations of molecular biology leaned against the dogma that 

genetic information is stored in protein-coding genes (Crick et al., 1961). Although this 

concept was, and is still, largely true in prokaryotes, where genomes are mainly composed 

of protein-coding genes, it does not hold true for higher eukaryotes, where protein-coding 

sequences occupy less than 3% of the genome. Once considered transcriptionally inactive 

or simply referred to as ‘junk DNA’, the predominant fraction of the genome is in fact 

pervasively transcribed into thousands of different noncoding RNAs (ncRNAs), which can 

further be divided into two groups: small ncRNAs and long noncoding RNAs (lncRNAs). 

In addition, lncRNA genes have been classified based on the epigenetic state of their 

chromatin. For instance, the long intergenic noncoding RNAs (lincRNAs) are known for 

the presence of high histone 3 lysine 4 trimethylation (H3K4me3) at their promoters and 

high H3K36me3 along their transcribed regions, also referred as the K4K36 signature 

(Guttman, 2009). Alternatively, enhancer RNAs (eRNAs) are produced from 

transcriptionally active enhancer regions, which are epigenetically defined by high level of 

H3K4me1, low level of H3K4me3 (Heintzman, 2007; Visel, 2009) and high level of 

histone 3 lysine 27 acetylation (H3K27Ac) and H3K9Ac (Creyghton, 2010). 

 

Importantly, lincRNAs have recently emerged as potent regulators of gene expression. 

Recent publications have shown that lincRNAs are able to form complexes with various 

chromatin modifiers and to specifically direct them to different genomic regions. For 

example, the lincRNA-p21 was shown to interact with and guide the heterogeneous nuclear 

ribonucleoprotein K to repress a subset of p53 target genes (Huarte, 2010). However, 

although lincRNAs can mediate their effect in cis and in trans, eRNAs have been so far 

mainly characterized for their function in cis. Classically expressed as bidirectional 

transcripts from enhancer regions, eRNAs can alter the expression of their neighbouring 

genes through the formation of DNA loops, which help to bridge the interaction between 

enhancers and nearby promoters. Several transcription factors (TFs) were found to be 

important coordinators of eRNA expression (Lam, 2013; Li, 2013; Melo, 2013). An 

interesting case revealed that the tumour-suppressor p53 directly regulates the expression of 

eRNAs upon cellular stresses (Melo, 2013). 

 

P53 function is frequently compromised in tumours, in part as a consequence of somatic 

mutations, which occur in more than 50% of all human cancers (Beckerman and Prives, 

2010). Moreover, it was also shown that p53 is inactivated in various cancers by 

dysregulation of its regulatory pathway, such as the amplification and over-expression of its 

negative regulators MDM2 and MDM4 (Gembarska, 2012; Momand et al., 1998). Upon 

cellular stresses, p53 is activated and acts primarily as a TF to mediate and coordinate a 

complex transcriptional response that regulates hundreds of target genes. Until recently, the 



7 

GENOME-WIDE PROFILING OF P53-REGULATED ENHANCER RNAS 

UNCOVERS A SUBSET OF ENHANCERS CONTROLLED BY A LNCRNA 

B 11 

p53 network was mainly characterized by its impact on protein-coding target genes (Wei, 

2006). However, we now begin to discover and appreciate the great potential of ncRNAs in 

the intricate regulatory network of p53. The recent discoveries that p53 can mediate its 

function in collaboration with diverse lncRNAs, suggest a potential role for this novel 

regulatory layer in disease such as cancer, and therefore urge the importance of an in-depth 

reassessment of the p53 transcriptional response. 

 

Here, by using Global Run-On sequencing (GRO-seq), we mapped p53-responsive 

enhancers bound by p53. Surprisingly, we also found a large group of p53-activated 

enhancers that were not associated with p53. Although motif-search analysis identified the 

p53 signature in the enhancers bound by p53, no single TF was found to govern the 

majority of p53-unbound enhancer groups. However, further analysis revealed that nutlin-

3a-induced Signal transducer and activator of transcription 3 (STAT3), B-cell lymphoma 3-

encoded protein (BCL3), FBJ murine osteosarcoma viral oncogene homolog (FOS) might 

largely contribute to the transcriptional regulation of indirect p53 target genes. Next, we 

assessed whether p53-responsive lncRNAs could play a role in p53-mediated enhancer 

activation. Our data revealed that a prominent p53-induced lncRNA termed LED (LncRNA 

activator of Enhancer Domains) is required for p53-induced cell cycle arrest and is involved 

in the activation of a subset of p53-bound and unbound enhancers by inducing an 

epigenetic change. Strikingly, promoter-associated hypermethylation of LED was 

uncovered in several cancer cell lines and human tumours with preference to p53 wild-type 

(WT) status, suggesting its implication in tumorigenesis. Altogether, we propose that LED 

is an important regulator and a potential tumour suppressor of the p53 pathway. 

 

 

Results 

 

Genome-wide identification of p53-regulated eRNAs 

To detect active enhancers, we relied on the observation that eRNA production marks 

enhancer activity. Using GRO-seq of MCF-7 cells treated with nutlin-3a, a specific 

activator of p53, we obtained a genome-wide quantitative snapshot of transcriptional 

activity. As expected, the activation of CDKN1A/p21, and many other known target genes 

of p53, was readily apparent (Fig. 1a). Moreover, also several previously described p53-

induced eRNAs could be confirmed (Fig. 1a) (Melo, 2013). We proceeded to generate a 

global view of the putative p53-regulated enhancers in MCF-7 cells. By taking the union of 

the enhancer domains defined by the Broad chromatin segmentation (Ernst, 2011), we 

selected only regions showing RNA polymerase II (RNAPII) and p300 binding in MCF-7 

cells (using publicly available chromatin immunoprecipitation sequencing (ChIP-seq) data 

(Nikulenkov, 2012)) and excluded those having annotated transcripts on both strands, as 

well as those having transcription start sites. The remaining regions were extended by 1 kb 
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for the purpose of read counting and used in conjunction with the aforementioned GRO-seq 

data (Fig. 1b). This analysis resulted in the detection of 50,502 putative enhancers of which 

6,270 were regulated (at least one direction) by nutlin-3a treatment, and referred here as 

p53-regulated enhancer regions or p53RERs. 

 

Since p53 mainly functions as an activator of transcription (Wang et al., 2009), the vast 

majority (72%) of the differentially expressed eRNAs showed induction upon nutlin-3a 

treatment, and activated enhancers were more often bound by p53 than the repressed 

enhancers (Fig. 1c). Using ENCODE ChIP-seq data obtained from MCF-7 cells, the 

presence of enhancer-specific histone modifications was confirmed (Fig. 1d). Moreover, on 

average, nutlin-3a-induced enhancers are positioned closer to p53-regulated canonical 

genes (median 41 kb), than to non-regulated genes (median 161 kb; Fig. 1e). This 

observation is in agreement with the notion that eRNAs are potent regulators of 

neighbouring target genes (Lam, 2013; Li, 2013; Melo, 2013). In support of a role for 

nutlin-3a-regulated enhancer regions within the p53 pathway, the gene ontology analysis on 

neighbouring genes revealed enrichment for genes involved in DNA damage 

response/signal transduction by p53 (GO term 0030330, P=1.6e−3). Moreover, a de novo 

motif analysis using HOMER (Heinz, 2010) confirmed the presence of a p53 response 

element at p53-bound enhancer regions (p53BERs; Fig. 1f). 

 

Next we reanalysed published p53 ChIP-seq data (Nikulenkov, 2012) to identify which of 

the p53RERs were direct targets of p53 (hereafter referred to as p53BERs). The enhancers 

in the remaining subset of p53RERs were considered p53-free enhancer regions, or 

p53FERs, as no enrichment for p53 or any known TF signature was found. Intriguingly, 

activation of p53BERs and p53FERs was different, as we observed a faster transcription 

Figure 1 (next page): Identification of p53-regulated enhancer RNAs (p53RERs). 

(a) GRO-Seq snapshot showing the induction of CDKN1A/p21 transcription upon 12 h nutlin-3a 

treatment (upper scheme). Display of nutlin-3a-induced bidirectional transcription at p53-bound and 

unbound enhancers (lower schemes). Binding of p300, presence of H3K27 acetylation and 

chromatin states in nine cell lines are also presented. (b) Diagram showing the outline of the 

algorithm to identify enhancers using chromatin segmentation data, and ChIP-Seq and GRO-Seq 

data. (c) Venn diagram showing the number of retrieved regions at the steps of the enhancer 

identification algorithm. (d) Boxplot showing the abundance of several enhancer marks at different 

regions (grey: 5,000 random non-repeat regions; red: promoters of the 5,000 most abundant genes 

as identified by GRO-seq in the nutlin-3a-treated condition; orange: all putative enhancer regions 

showing bidirectional transcription; blue: subset of the putative enhancers showing significant 

induction upon nutlin-3a treatment (induced p53RERs); dark blue: subset of the induced p53RERs 

having a p53 peak within 1 kb (p53BERs). (e) Boxplot showing the distances between enhancer 

region and the nearest annotated gene induced upon nutlin-3a treatment, for induced p53RERs (UP 

Enhancers) and nutlin-3a unresponsive enhancers (nonUP enhancers). (f) Motif identified in 

induced p53BERs using HOMER. (g) Normalized density of transcription downstream of the point of 

bidirectional transcription for p53BERs (red), p53FERs (dark grey) and uninduced enhancers (light 

grey). The lines indicate the median across all regions. The boxplot in the inset shows the distance 

from the point of bidirectional transcription to the 75% quantile of read density. 
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Figure 1 (cont.) 

(h) Schematic representation of p53-regulated enhancers (p53RERs). P53 can directly bind to 

enhancers (p53BERs) or regulated intermediate factors (for example, lncRNAs or TFs) to indirectly 

influence another subset of enhancers (p53FERs). 
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drop-off for the first group compared with the second (Fig. 1g and Supplementary Fig. 1a). 

Although we did not further investigate this difference, we suggest that it reflects a 

secondary (p53-indirect) and, thus, differentially regulated wave of transcription 

(Supplementary Fig. 1b). Therefore, we hypothesized that activation of p53FERs could be 

mediated by a combination of several different factors (Fig. 1h). Indeed, the analysis of TF-

binding sites (using the ENCODE Uniform TFBS data) showed that while several TFBSs 

were enriched in induced p53RERs, with respect to all enhancers, no TFBS was specifically 

enriched in the p53-free enhancer group (Supplementary Fig. 1c). However, further 

analysis revealed that among these potential regulators, three (STAT3, BCL3 and FOS) 

were regulated by nutlin-3a (Supplementary Fig. 1d,e). Intersection between their binding 

sites and p53FERs revealed that STAT3, BCL3 and FOS may directly regulate 55% of 

these enhancer regions (Supplementary Fig. 1f). Interestingly, despite their significant 

contribution, the transcriptional regulation of a large number of p53FERs remains elusive. 

An additional or complementary possibility is that the transcriptional activation of 

enhancers is mediated by p53-dependent lncRNAs, as lncRNAs were recently shown to be 

able to associate with and modulate regulatory elements (Vance, 2014; Yang, 2013). 

 

LED is required for the p53 transcriptional response 

We therefore set to identify relevant lncRNAs by profiling the transcriptome of nutlin-3a-

treated MCF-7 cells. Using RNA-sequencing (RNA-seq) in combination with an annotation 

catalogue comprised of Ensembl, Refseq and the Broad Linc Catalog (Cabili, 2011), we 

identified 194 nutlin-3a-responsive lncRNA genes (Fig. 2a and Supplementary data 1). We 

then reasoned that the most upregulated transcripts might have a greater biological 

importance, and consequently selected the top three most activated lncRNAs (that is, RP3-

510D11.2, loc643401 and linc00086 (hereinafter referred to as LED)) for further 

characterization (Fig. 2b). Interestingly, these three lncRNAs were also recently identified, 

Figure 2 (next page): Novel p53-regulated lncRNA LED. 

(a) Outline of pipeline for identification of p53-regulated lncRNAs. MCF-7 cells were treated with 

8 µM nutlin-3a for 12 h and subjected to RNA sequencing (RNA-seq). (b) Display of genomic 

location and RNA-seq data showing the nutlin-3a induction of selected lncRNAs in MCF-7 cells. 

Values are represented by RPM (reads per million). (c) Stress-dependent regulation of selected 

lncRNAs upon nutlin-3a (8 µM) and ionizing radiation (IR; 10 Gy) treatment in MCF-7 cells 

measured by quantitative reverse transcription–PCR (qRT–PCR). Values are represented by fold 

induction (n=3; ***P<0.005, **P<0.01, *P<0.05, two-tailed Student’s t-test). (d) P53-dependent 

regulation of validated lncRNAs in MCF-7 cells transfected with a control (Ctrl) or p53 siRNA in the 

presence or absence of nutlin-3a. Values are represented by fold induction (n=3; **P<0.01, 

*P<0.05, two-tailed Student’s t-test). (e) Schematic representation of p53 response element (p53 

RE) in LED gene body. Chromatin immunoprecipitation performed in nutlin-3a-treated MCF-7 cells 

using IgG or p53 antibodies followed by qPCR in the p53 RE region. Values represent the 

percentage of input (n=3; *P<0.05, two-tailed Student’s t-test). (f) MCF-7 cells were co-transfected 

with an empty or LED (exon 2) p53BS pGL3-basic vector and either a Ctrl or p53-targeting siRNA. 

The relative luciferase activities (Firefly/Renilla) were normalized to the Ctrl reaction (empty pGL3-

basic vector; n=3; ***P<0.005, **P<0.01, two-tailed Student’s t-test). (g) qRT–PCR measuring 

relative LED RNA levels in MCF-7 cells transfected with a Ctrl or two independent LED siRNAs 

(LED-kd; n=3; ***P<0.005, *P<0.05, two-tailed Student’s t-test).  
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Figure 2 (cont.) 

(h) Relative cell cycle variation (LED-kd minus control-kd) of MCF-7 cells transfected with a Ctrl or 

two independent LED siRNAs, treated with nutlin-3a for 12 h. To capture cycling cells in G2/M, 

cells were treated with nocodazole for 24 h, before flow cytometric analysis (n=3; **P<0.01, 

*P<0.05, two-tailed Student’s t-test). (i) Immunostaining detection of the mitotic marker phospho-

histone H3 ser10 (P-H3) and 4,6-diamidino-2-phenylindole (DAPI) staining in MCF-7 cells treated 

as in h and using a siRNA targeting p21 (p21kd) as a positive Ctrl. Scale bar, 25 µM. (j) 

Quantification of the marker P-H3 from i indicating the percentage of mitotic cells (n=3; *P<0.05, 

two-tailed Student’s t-test). 
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but not functionally assessed, in two genome-wide studies performed in HCT-116 and Cal-

51 cancer cell lines (Allen, 2014; Rashi-Elkeles, 2014). Validation confirmed that the 

selected lncRNAs were induced in MCF-7 cells upon both nutlin-3a and ionizing radiation 

treatment (Fig. 2c). Similar results were also obtained in ZR-75-1 and MALM-3M cell lines 

(Supplementary Fig. 2a). Next, we determined whether these lncRNAs were regulated by 

p53. As expected, we observed that p53 depletion decreased both the basal and nutlin-3a-

induced levels of all tested lncRNAs (Fig. 2d). Moreover, we demonstrated the direct 

binding of p53 at each lncRNA locus by using publicly available p53 ChIP-seq data and 

ChIP-quantitative PCR (qPCR; Fig. 2e and Supplementary Fig. 2b). Using a luciferase 

reporter, we also showed the p53-dependent promoter activity of the p53 response element 

found in LED exon 2 (Fig. 2f). Altogether, these results demonstrate that our selected 

lncRNAs are bona fide p53 targets. 

 

Next, we assessed whether the depletion of our selected p53-induced lncRNAs 

phenotypically influenced the p53 transcriptional response using short interfering RNAs  

(siRNAs). Among the investigated candidates, only LED significantly influenced the G1 

checkpoint arrest following nutlin-3a treatment, as shown by flow cytometry (Fig. 2g,h). To 

corroborate this finding, we first evaluated cellular entry into mitosis using phospho-H3 

(ser10) staining. Cells treated with siRNAs targeting LED showed a significant increase of 

phospho-H3 (ser10) compared with cells transfected with a non-targeting siRNA (Fig. 2i,j). 

Furthermore, cell proliferation assays confirmed this observation, as LED-suppressed cells 

proliferated more following nutlin-3a treatment in comparison with control-transfected cells 

(Supplementary Fig. 2c,d). Thus, the induction of LED lncRNA is required for efficient 

sustenance of p53 transcriptional response. 

 

To investigate the mechanism by which LED impacts the p53 transcriptional response, we 

performed gene expression analysis by RNA-seq following knockdown of LED in MCF-7 

cells treated 12 h with nutlin-3a. A total of 1,983 genes were responsive to LED depletion 

(FDR less than 1%), of which 1,340 were upregulated and 643 downregulated (Fig. 3a). 

Interestingly, LED knockdowns significantly reduced the levels of the cell-cycle regulator 

p21 (FDR of 2.7e-8; Fig. 3b), without influencing p53 levels (FDR of 0.12). We further 

validated this observation by showing the LED-dependent regulation of p21 at both the 

mRNA (Fig. 3c) and protein levels (Fig. 3d). Similar results were also obtained in ZR-75-1 

and MALM-3M cell lines (Supplementary Fig. 3). Altogether, our results indicate that LED 

is required for an efficient p53-dependent checkpoint by maintaining high levels of p21.  
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LED associates with and regulates enhancer domains 

Next, to investigate whether LED, a bona fide lncRNA of ~5 kb, exerts its function in the 

nucleus or in the cytoplasm, we examined its subcellular localization (Fig. 4a,b and 

Supplementary Fig. 4a,b). As LED is partially located in the nucleus, we set out to assess 

its putative interaction with chromatin. We performed chromatin isolation by RNA 

purification technique (ChIRP, (Chu et al., 2011) using anti-sense oligos to LED (odd and 

even) or the bacterial β-galactosidase (lacZ) and confirmed the specific enrichment for 

LED, but not glyceraldehyde 3-phosphate dehydrogenase RNA (Supplementary Fig. 4c). 

Then, we sequenced the DNA fragments co-purified in the two pools, aligned reads to the 

Figure 3: LED is required for the 

proper p53 transcriptional 

response.  

(a) RNA sequencing heatmap 

showing a subset of genes 

differentially expressed upon LED 

knockdown in MCF-7 cells treated 

12 h with nutlin-3a (only the subset 

with absolute fold-change>30% and 

FDR<5% is shown). (b) Barplot 

derived from the RNA-sequencing 

showing the normalized p21 mRNA 

levels in control and LED 

knockdown conditions. (c) Relative 

mRNA levels of p21 upon 

transfection of a control or two 

independent LED siRNAs (LED-kd), 

measured by qRT–PCR in MCF-7 

cells treated with Nutlin-3a for 12h 

(n=3; *P<0.05, two-tailed Student’s 

t-test). (d) Western blot showing 

p53 and p21 protein levels in MCF-

7 cells transfected with a control or 

two independent LED siRNAs 

(LED-kd) and treated with nutlin-3a 

for 12 h. Detection of CDK4 protein 

levels is also displayed. 
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genome and processed them using peak calling software in a pipeline developed for ChIRP-

seq data. Overlap of the peaks from the odd and even purifications indicated LED binding 

in 1,698 putative sites (Supplementary data 2). To investigate the nature of the genomic 

features present at LED-associated domains, we made use of chromatin state annotations 

previously defined by Ernst and colleagues (Ernst, 2011). Intriguingly, although LED-

associated sites were present in all chromatin states, significant enrichment was observed in 

strong enhancer regions (Fig. 4c and Supplementary Fig. 4d). Moreover, intersection with 

the GRO-Seq data revealed that a subgroup of LED-bound enhancers was sensitive to 

nutlin-3a (Fig. 4d). Interestingly, further analysis showed that this subgroup was partially 

overlapping with p53, STAT3, BCL3 and FOS (Supplementary Fig. 4e). This observation 

suggests LED as a co-factor in the nutlin-3a-dependent regulation of enhancers.  

 

To assess the regulatory potential of LED on enhancers, we first selected a subset of LED-

associated enhancer domains (Supplementary Fig. 4f). Then, we reasserted that bound 

enhancers harbour hallmarks of active enhancers (Birney, 2007; Heintzman, 2007, 2009) 

(Supplementary Fig. 4g). Furthermore, we performed ChIP for H3K4me1 and H3K4me3, 

to confirm the relative deposition of these histone modifications in our cell system (Fig. 

4e). Next, we tested a selected group of LED-associated enhancers for eRNA production by 

quantitative reverse transcription–PCR; after DNase-treatment of RNA isolated from MCF-

7 cells incubated with or without nutlin-3a. As previously observed with the GRO-Seq, this 

analysis confirmed the nutlin-3a-dependent transcriptional induction of eRNAs at all tested 

LED-associated enhancers (Fig. 4f). This nutlin-3a induction of eRNAs was specific, as the 

abundance of a control, LED-unbound, FOXC1 enhancer (FOXC1e) RNAs remained 

unaffected. Strikingly, RNA interference-mediated LED knockdown reduced the level of 

activation of these putative eRNAs (Fig. 4g), indicating direct regulation of eRNA 

production by LED. Intriguingly, we noticed among the LED-associated enhancers a 

prominent peak located within the first intron of p21. We further validated the association 

of LED to p21 enhancer (p21e) domain using ChIRP-qPCR (Supplementary Fig. 4  h). To 

evaluate the enhancing potential of p21e, we cloned a 1.2-kb fragment into a pGL3-

promoter luciferase reporter vector. As expected from an enhancer domain, p21e activated 

the luciferase gene in an orientation-independent manner (Fig. 4h). A detailed analysis of 

p21e 1.2 kb fragment revealed the presence of a p53 response element overlapping LED-

binding site (Supplementary Fig. 4i). Thus, we suggested that both LED and p53 may 

participate in regulating p21e enhancing activity. Indeed, we demonstrated that LED or p53 

knockdown decreases the enhancing activity of both sense and antisense p21e luciferase 

reporters (Fig. 4i). Using northern blotting and RNAPII ChIP experiments, we further 

supported the presence of an antisense eRNA at p21e locus and its regulation by nutlin-3a 

and LED (Fig. 4j,k and Supplementary Fig. 4j). Last, we examined whether p21e could 

interact with distant promoters by DNA looping, using circular chromosome conformation 

capture (4C) experiments. This analysis failed to reveal long-distance enhancer–promoter 
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interactions, suggesting that p21e acts within its functional domain on the p21 promoter 

(Supplementary Fig. 4k). Collectively, these results demonstrate that LED associates with 

chromatin regions marked as enhancers and regulates the production of eRNAs. 

 

To further delineate the mode of action by which LED regulates enhancers, we 

hypothesized that LED controls enhancer activity by remodelling the epigenetic state of 

enhancer domains. To investigate this possibility, we assessed whether LED influences the 

deposition of active enhancer histone marks, such as H3K27ac and H3K9ac. ChIP analyses 

revealed that the levels of H3K9ac, but not H3K27ac, were decreased at p21 enhancer 

domain upon LED knockdown (Fig. 4l and Supplementary Fig. 4l). Similar results were 

also obtained with another LED-associated enhancer (Supplementary Fig. 4m). 

Interestingly, in concomitance with H3K9ac reduction, we also noticed a lower p53-binding 

affinity at distal and proximal enhancers located upstream of p21 transcription start site 

(Supplementary Fig. 4n,o). These results indicate that LED may influence the production of 

eRNAs, by influencing the deposition of H3K9ac at specific enhancer loci. In addition or as 

a consequence of its influence on H3K9ac, LED may influence the binding of TFs at or in 

the vicinity of enhancer domains. 

 

LED is inactivated by promoter hypermethylation in cancer 

Gene expression comparison analysis suggests not only that LED is activated by p53, but 

also that its function is intimately linked to the transcriptional response of p53. We 

therefore examined whether LED is inactivated in cancer. Inspection of the LED promoter 

sequence identified a large CpG island region (Fig. 5a). As CpG islands are often subject to 

hypermethylation and silencing, we asked whether LED promoter hypermethylation leads 

to a reduced LED expression in cancers. We first measured the methylation status of LED 

CpG islands in 135 cancer cell lines covering a wide range of cancers. Notably, we find 

LED promoter methylation in ~44% (59/135) of all tested cell lines, with a large proportion 

in leukaemia (Supplementary Fig. 5a–c). Moreover, we observed a strong preference for 

methylation in p53 WT cell lines (60%; 29/48) as compared with p53 mutants (34%; 30/87, 

P=0.004 (χ2); Fig. 5a, Table 1). Most importantly, we then assessed and validated the 

transcriptional silencing of LED by its promoter-associated hypermethylation on several 

cancer cell lines. As expected, there was a significant anti-correlation between LED 

expression and its methylation status (Fig. 5b and Supplementary Fig. 5d,e). Also, 

treatment of LED-promoter-hypermethylated cell lines with the DNA-demethylating agent 

5-Azacytidine resulted in LED re-expression (Fig. 5c). Moreover, we observed that 

methylation-dependent inactivation of LED may delay or reduce the induction of p21 

mRNA, as compared with unmethylated cell lines (Supplementary Fig. 5f). Finally, we 
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Figure 4: LED binds preferentially to enhancers and regulates enhancer RNA production from 

p53RERs. 

(a) LED subcellular localization in MCF-7 cells treated with nutlin-3a. U2 and S14 genes were used as 

controls (Ctrl) for nuclear and cytoplasmic fraction, respectively. (b) Northern blot analysis showing 

LED transcript in MCF-7 cells incubated or not with nutlin-3a. U6 was used as a loading Ctrl. (c) 

Enrichment of LED ChIRP peaks in genomic features defined by ENCODE. (d) Bar graph showing 

the fraction of induced p53RERs of all found putative enhancer regions (left) and of all LED-bound 

enhancer regions (right). The enrichment of induced p53RERs in the LED-bound fraction is significant 

with P=0.0011 (hypergeometric distribution). (e) Quantification of H3K4me1 and H3K4me3 at LED-

associated p53RERs by ChIP-qPCR in MCF-7 cells. Values were corrected to total H3 and MDM2 

promoter was used as a Ctrl. Mean±s.d. are shown. (f) Nutlin-3a regulation of LED-associated 

p53RERs expression in MCF-7 cells. FOXC1e was used as a negative Ctrl (n=3; ***P<0.005, 

**P<0.01, *P<0.05, two-tailed Student’s t-test). (g) LED-dependent regulation of p53RERs upon 

nutlin-3a treatment in MCF-7 cells transfected with a Ctrl or LED siRNA. FOXC1e was used as a 

negative Ctrl (n=3; ***P<0.005, **P<0.01, *P<0.05, two-tailed Student’s t-test). (h) MCF-7 cells were 

transfected with an empty, p21e-sense or p21e-antisense reporter construct. The firefly/renilla 

luciferase activities were normalized to the Ctrl reaction (n=3; ***P<0.005, two-tailed Student’s t-test).  
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evaluated the prevalence of LED-promoter hypermethylation in various human tumours. 

Using methylation-specific PCR, we observed LED-promoter hypermethylation in various 

tumour types, most prominently reaching 22% of all samples in acute lymphocytic 

leukaemia (ALL; Fig. 5d and Table 2).  

 

 

 

Methylation TP53 WT TP53 mut 

Methylated 29 (60%) 30 (34%) 

Unmethylated 19 (40%) 57 (66%) 

Total (135) 48 87 
 

 

 

Tumour type Methylation Total % 

Acute lymphocytic leukaemia 21 95 22 

Cutaneous lymphomas 1 6 16 

Folicular lymphomas 1 10 10 

Melanomas 4 46 9 

Acute myeloid leukaemia 1 13 8 

Chronic lymphocytic leukaemia 1 33 3 
 

 

 

 

Figure 4 (cont.) 

(i) MCF-7 cells were co-transfected with an empty, p21e-sense or p21e-antisense pGL3-promoter 

vector and either a Ctrl, LED siRNA or p53 siRNA. The relative luciferase activities were normalized 

to the Ctrl reaction (empty vector) and subsequently to the Ctrl siRNA (n=3; ***P<0.005, *P<0.05, 

two-tailed Student’s t-test). (j) Northern blot analysis showing p21e antisense transcript in MCF-7 

cells treated or not with nutlin-3a. 18S was used as a loading Ctrl. (k) Quantification of RNAPII 

binding at p21e and FOXC1e regions by ChIP-qPCR. MCF-7 cells were transfected with a Ctrl or 

LED siRNA and treated with nutlin-3a (n=3; *P<0.05, two-tailed Student’s t-test). (l) Quantification of 

H3K9Ac at p21e and FOXC1e regions by ChIP-qPCR. MCF-7 cells were transfected with a Ctrl or 

LED siRNA and treated with nutlin-3a. Values were normalized to total H3 (n=3; **P<0.01, two-

tailed Student’s t-test). 

Table 2: Frequency of LED promoter 

associated-hypermethylation (M) in 

cancer patients. 

Table 1: Association of LED CpG island 

hypermethylation with TP53 mutational 

status in human cancer cell lines. 
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Discussion 

 

Coordination of gene expression components within response programmes is a delicate task 

crucial for the maintenance of cellular homeostasis. One key player for such coordination is 

the tumour-suppressor p53, which organizes the implementation of an appropriate cellular 

Figure 5: DNA methylation-associated silencing of LED in lymphoproliferative tumours. 

(a) Schematic representation of LED genomic loci and CpG island. Bisulfite genomic sequencing 

analysis of LED CpG island in human lymphoproliferative cancer cell lines and normal lymphocytes 

as tissue control (Ctrl). Location of bisulfite genomic sequencing PCR primers (black arrows), CpG 

dinucleotides (vertical lines) and the transcriptional start site (grey arrow) are shown. Ten single 

clones are represented for each sample. Presence of unmethylated or methylated CpGs is 

indicated by white or black squares, respectively. (b) LED expression levels in methylated or 

unmethylated human lymphoproliferative cell lines and in normal lymphocytes (NLs) as Ctrl. Values 

were determined by quantitative reverse transcription–PCR (qRT–PCR) in triplicates and are 

expressed as mean±s.e.m. (n=2–4). (c) Restored LED expression after treatment with DNA 

demethylating agent 5-aza-2′-deoxycytidine (AZA) in LED CpG island methylated cell lines. Values 

were determined in triplicates by qRT–PCR and are expressed as mean±s.e.m (n=3). (d) 

Methylation-specific PCR analyses for LED methylation in primary leukaemias. The presence of a 

band under the U lane indicates unmethylated alleles, whereas the presence of a band under the M 

lane indicates methylated alleles. Normal lymphocytes and in vitro methylated DNA (IVD) are 

shown as negative and positive Ctrls for methylated alleles, respectively. 
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response to stress cues such as DNA damage and emerging oncogenes. With the discovery 

that the genome is pervasively transcribed (Core et al., 2008), it is likely that novel p53-

sensitive transcripts and regulatory networks will be uncovered. Although many target 

promoters of p53 are well-established, little is known about the role of this master tumour 

suppressor as enhancer factor. 

eRNAs were recently suggested as transcriptional regulators (Hah et al., 2013; Melo, 2013). 

Moreover, eRNA level emerges as robust readout for determining enhancer activity, as it 

correlates with the expression levels of neighbouring target genes. The GRO-seq is a very 

powerful technique that can be used to globally measure newly synthesized eRNAs and to 

infer enhancer activity in a genome-wide manner. Here we used GRO-seq to map and 

quantify eRNAs induced by the p53 inducer nutlin-3a, and identified hundreds of regulated 

enhancer domains. Although many enhancers are direct targets of p53, most nutlin-3a-

regulated enhancer domains were not bound by this TF. Thus, it is likely that those 

enhancers are bound and influenced by factors regulated by p53. In this respect, 

bioinformatics analyses revealed three TFs (STAT3, BCL3 and FOS) with potential 

regulatory impact on p53-free enhancer regions. However, despite the potential combined 

influence of these three TFs on approximately 55% of p53FERs, the regulation of a large 

fraction remains unexplained. In search of novel p53FER regulators, we discovered LED, a 

lncRNA induced by p53, and subsequently demonstrated its involvement in the regulation 

of p53-sensitive enhancers, including both p53BERs and p53FERs. In support of our 

finding, two recent studies reported that not only TFs but also trans-acting lncRNAs are 

present at transcriptional regulatory regions (Vance, 2014; Yang, 2013). For instance, the 

lncRNA Paupar was found to interact with the TF PAX6 at enhancer domains in order to 

modulate the expression of genes involved in neural stem cell fate. Thus, for the first time, 

we demonstrate the contribution of a p53-induced lncRNA, termed LED, in the regulation 

of enhancer-derived transcripts. 

 

LED is a direct transcriptional target of p53. Suppression of LED expression attenuated the 

activation of target enhancer domains, as demonstrated by reduced eRNA production and 

by a lower H3K9 acetylation. We found that LED was associated with different genomic 

loci and especially enriched at enhancer domains producing eRNAs. Notably, a subgroup of 

these enhancers is regulated by p53. Moreover, some, but not all, LED-bound enhancers 

were concomitantly bound by p53. Despite this observation, all tested LED-bound p53-

induced eRNAs responded to siRNA-mediated LED depletion. This suggests that LED is a 

p53-induced factor that contributes to both the direct and indirect p53 transcriptional 

response. 

 

How exactly does LED trigger enhancer activation? Modulation of the chromatin 

epigenetic state plays an important role in the regulation of gene expression. Thus far, 

several studies have put forward the idea that lncRNAs are important epigenetic regulators. 
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For example, the lncRNA HOTAIR represses gene expression by interacting with and 

guiding the polycomb repressive complex 2 to target promoters, where it contributes to 

chromatin compaction by catalysing the methylation of histone H3 at lysine 27 (Gupta, 

2010). Alternatively, ribonucleoprotein complexes such as HOTTIP:MLL/WDR5 activate 

gene expression by promoting the deposition of an active mark (H3K4me3) on promoters 

(Wang, 2011b). Here we complement these observations by showing that LED is essential 

for the acetylation of H3K9 at bound enhancers, a modification associated with active gene 

transcription. Moreover, the p21 locus analysis also revealed the potential implication of 

LED in the epigenetic regulation of nearby contacted enhancers. This finding is consistent 

with the fact that LED is required for proper p53 binding at p21 upstream enhancers, as 

well as for RNAPII loading and eRNA transcription at bound enhancers. Moreover, 

genome-wide deposition of H3K9 acetylation was previously reported to be enriched at 

regulatory elements such as promoters, enhancers and repetitive sequences (Ernst, 2011). 

Consequently, active transcriptional programmes may primarily be epigenetically governed 

by the action of a subset of activating lncRNAs. However, whether LED influences the 

epigenetic features of regulatory elements before the TF-binding dysregulation, remains to 

be elucidated. 

 

P53 is one of the most commonly inactivated gene in human cancer, with somatic 

mutations occurring in approximately half of all human cancers (Hollstein et al., 1991). In 

addition, alterations in the p53 pathway often represent an alternative route to attenuate the 

function of WT p53 in tumour (Leveille, 2011; Voorhoeve, 2006). Here we demonstrate 

that LED lncRNA is largely silenced in p53 WT primary human ALL. Although our DNA 

methylation analysis mainly focused on ALL tumours, it is likely that LED inactivation 

also occurs in other p53 WT tumours, such as on breast, liver and prostate. Nevertheless, 

this important observation pinpoints the dysregulation of lncRNAs as a potent mechanism 

in tumorigenesis. In support of this concept, other lncRNAs have been linked with cancer. 

For example, the oncogenic lncRNA HOTAIR is highly expressed in breast tumours and 

promotes cancer metastasis by guiding polycomb repressive complex 2 to specific genomic 

loci (Gupta, 2010). The lncRNA ANRIL and SChLAP1 are overexpressed in prostate 

cancers and antagonize the tumour-suppressive activity of INK4a/b and SWI/SNF complex, 

respectively (Prensner, 2013; Yap, 2010). Finally, tumour-suppressive lncRNAs such as 

GAS5 have been shown to be downregulated in cancer (Mourtada-Maarabouni et al., 2009). 

 

Collectively, our results highlight a novel tumour suppressive mechanism involving a p53-

induced lncRNA acting on enhancers (Fig. 6). The existence of a crosstalk between 

different lncRNA species uncovers an emerging regulatory network with potential 

considerable impacts in cancer development. 
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Methods 

 

Analysis of GRO-seq data and determination of enhancer regions 

GRO-seq protocol was performed as previously described (Wang, 2011a). Briefly, MCF-7 

cells were incubated with or without 8 µM nutlin-3a for 12 h and 5 million nuclei were 

isolated for each condition. rRNA reads were removed from the data by alignment to a 

rRNA index compiled from Ensembl annotations (‘rRNA’, ‘rRNA_pseudogene’ and 

‘Mt_rRNA’) using bowtie2 (v.2.0.6, parameters ‘--seed 42 --end-to-end -N1 -L20 -i C,1 -

D5 -R5’) and keeping the unmapped reads. GRO-seq data were aligned to hg19 (including 

unassembled contigs) using bowtie2 (v. 2.0.6) with parameters ‘--seed 42 --sensitive’. 

Alignments with mapping quality lower than 10 and non-primary alignments were not 

considered in further analyses. Broad ChromHMM data for nine cell lines (Ernst, 2011) 

were used to screen putative enhancer regions. Along each chromosome, positions that 

were marked as enhancer regions (feature IDs 4, 5, 6 and 7) in at least one cell line were 

merged into regions. Transcription start sites, as annotated by RefSeq (obtained from the 

UCSC database server, 9 August 2012) and GENCODE v19/BASIC were extended by 

1,000 bases and used to blacklist positions (that is, those positions were excluded as 

Figure 6: Schematic representation of LED function in normal and cancer cells. 

P53-bound enhancer regions (p53BERs), p53-free enhancer regions (p53FERs) and H3K9 

acetylation are displayed. 
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putative enhancer regions). Each merged region was tested for the presence of p300 and 

Pol2 as determined by ENCODE in MCF-7 cells (accessions GSM822295 and 

GSM1010800 (Johnson et al., 2007; Lee, 2012)) and each region without p300 and Pol2 

peak was removed. The remaining regions were considered putative enhancer regions with 

enhancer marks. GRO-seq counts were obtained for each region, after extending each 

region by 1 kb. Regions having detectable transcription on both strands were considered 

putative enhancer regions with bidirectional transcription and used for downstream 

analyses. edgeR (Robinson et al., 2010) was used to determine statistical significance of 

differential expression of the enhancer regions (separately for each strand). 

 

Generation of omnibus annotation 

Ensembl annotations (v37.65), RefSeq gene annotations (obtained from UCSC database 

server 9 August 2012) and the Broad Linc RNA catalogue (Cabili, 2011) were merged in a 

single GTF (annotation file) using the gffread utility supplied with the Cufflinks package 

(v. 1.3.0), using parameters ‘-M -K -F -G’. This essentially collapses overlapping 

exons/transcripts so as to create an omnibus with low degree of redundancy yet high 

coverage of known and novel transcripts. 

 

Analysis of RNA-seq data 

RNA-seq samples were processed according to Illumina’s protocol. Raw RNA-seq data 

were aligned using TopHat2 (v. 2.0.3) (Trapnell et al., 2009), using parameters ‘-m1 -p4 -

F0.0 --segment-length 21 --segment-mismatches 1’ and an exon annotation GTF file that 

was generated as described before. Reads with mapping quality less than 10 and non-

primary alignments were discarded. Remaining reads were counted using HTSeq-count 

(http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html), per gene ID. 

Statistical analysis of the differential expression of genes was performed using edgeR 

(Robinson et al., 2010). Genes with False Discovery Rate (FDR) for differential expression 

lower than 0.01 were considered significant. 

 

Analysis of p53 ChIP data 

p53 ChIP-seq data obtained from MCF-7 cells upon untreated and p53-stimulated 

conditions were obtained from SRA project SRP007261. Alignment was done using 

bowtie2 (v. 2.0.6) with parameters ‘--seed 42 --sensitive’ to hg19 (including unassembled 

contigs). Only primary alignments with quality of at least ten were kept. Peaks were called 

by MACS (v. 2.0.10.20130501) using default parameters. Peaks with a fold-change (w.r.t. 

input) lower than 3.0 or a -log10(q-value) lower than 2.0 were discarded. 

 

Sequence motif enrichment analysis 

For enhancer regions the midpoint of bidirectional transcription was established, after 

pooling the GRO-seq data of the nutlin-3a-treated replicates. Two hundred bases of DNA 
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around the midpoint of bidirectional transcription were extracted. For the analysis of 

sequence enrichment of BERs and FERs, the backgrounds were enhancers with 

bidirectional transcription that had an FDR for differential expression of 0.75 or greater (for 

both strands). In addition, for FERs the background contained only enhancers that had no 

p53 peak within 1 kb. HOMER (Heinz, 2010) was used to search for overrepresented 

sequence motifs, using parameters ‘-nogo -nlen 4 -len 18 -S 5 -mis 2’. 

 

Constructs 

p21e domain sense and antisense were PCR amplified using gDNA derived from MCF-7 

cell lines and subsequently cloned (Nhe1/Xho1) into pGL3-promoter luciferase reporter 

vector. All primers used are listed in Supplementary table 1. 

 

Cell culture and transfection 

MCF-7 cells were cultured in DMEM containing 10% FBS, penicillin and streptomycin at 

37 °C and 5% CO2. Identification and validation of lncRNA regulated by nutlin-3a were 

carried out by treating MCF-7 cells with 2–8 µM of nutlin-3a for a period of 4–12 h. To 

induce a p53 stress-response, cells were also treated with 10 Gy of ionizing radiation for 

12 h. RNA interference experiments were performed using Dharmafect transfection 

reagent-1 and between 20 and 60 nM of siRNA. For epigenetic study, cells were treated 

with 2 µM 5-aza-2′-deoxycytidine (A3656, Sigma) for 72 h. 

 

Protein analysis 

Whole-cell lysates were prepared as previously described (Leveille, 2011). Protein 

detection was performed using primary antibodies detecting p53 (DO1, Santa Cruz, 

1:1,000), p21 (Sc-397, Santa Cruz, 1:1,000), CDK4 (Sc-260, Santa Cruz, 1:1,000), 

phospho-histone H3 (ser 10) (9701, Cell Signaling, 1:100). Proteins were visualized using 

adequate secondary antibody (Dako) and ECL reagents (GE Healthcare). 

 

Quantitative real-time PCR 

RNA isolation and cDNA preparation were carried out as previously described (Melo, 

2013). Real-time qPCR analysis was performed using the LightCycler 480 SYBR Green I 

Master mix (Roche). The glyceraldehyde 3-phosphate dehydrogenase was used as an 

internal control. 

 

Flow cytometry 

Control or nutlin-3a-treated cells were arrested in mitosis using 250 ng ml−1 of nocodazole 

for 24–36 h. Cells were then trypsinized, washed and resuspended in PBS containing 0.6% 

NP-40, 50 mg ml−1 RNaseA and 50 mg ml−1 propidium iodide for 10 min. Cell cycle 

profiles were captured using FACSCalibur (BD Biosciences) and analysed with the Flowjo 

software. 
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Immunofluorescence 

Cells were first plated at a density of 3 × 105 cells per well and concomitantly reverse 

transfected with a control siRNA or siRNAs against LED or p21. After 24 h, cells were 

trypsinized and seeded on microscope coverslips coated with polylysine. Next, cells were 

fixed with 3% formaldehyde and subsequently permeabilized with PBS-Triton X-100 

(0.3%) solution. After blocking 1 h with 2% PBS-Milk, cells were successively incubated 

with the primary antibody phospho-histone H3 (ser 10) and the Alexa Fluor 488 Dye-

conjugated secondary antibody. Images were captured using an AxioCam MRc CCD 

camera (Carl Zeiss Microimaging). 

 

RNA fluorescence in situ hybridization 

MCF-7 cells treated with nutlin-3a (8 µM) and non-treated controls were grown on 

coverslips in six-well plates overnight. The media were aspirated and cells washed 3 × in 

cold PBS. Fixation solution (5 ml of 10 × PBS, 5 ml of 37% formaldehyde (100% formalin) 

and 40 ml of Diethylpyrocarbonate (DEPC) treated H2O) was added and cells were 

incubated for 20 min at 4 °C. Cells were washed 3 × in cold PBS and 70% cold ethanol was 

used to permeabilize cells at 4 °C for 24 h. Cells were washed with cold PBS and left in 

hybridization buffer (1 g of dextran sulfate, 7 ml of DEPC water, 1 ml of formamide and 

1 ml of 20 × SSC buffer) for 1 h. A measure of 50 ng of stellaris probe were used in 

hybridization buffer and cells were kept incubating for 48 h at 37 °C. After washing with 

wash SSC buffer, coverslips were covered with Draq5 during 20 min for nuclear staining, 

washed with cold PBS and mounted using antifade buffer (850 µl of DEPC H2O, 100 µl of 

20 × SSC, 40 µl of 10% glucose, 10 µl of Tris). Images were captured in a Zeiss confocal 

microscope. 

 

ChIRP 

ChIRP was performed as previously described (Chu et al., 2012). ChIRP probes (48 × 40-

mer) targeting LED and lacZ were designed at http://www.singlemoleculefish.com

/designer.html. Probes antisense to LED were divided into two sets (odd and even). The 

input and odd and even probe samples were sequenced individually. After clipping of 

adapters from the obtained reads, data were aligned to hg19 using bowtie2 (v. 2.0.6) using 

parameters ‘--seed 42 -N 1 -p 2’. Reads with mapping quality less than 10 and non-primary 

alignments were excluded from further analysis. Peak detection was run using MACS (v. 

2.0.10.20130501 (Zhang, 2008)) using parameters ‘-g hs -B -p 0.1’. Peaks with a −log10(q-

value) ≥5 and an enrichment ≥4 with respect to the input were kept, and peaks found in the 

odd and even samples were intersected. Overlapping peaks in both samples that had a 

position-wise Pearson correlation of abundance ≥0.2 and at least 25 reads in both samples 

were merged. From the resulting set of peaks, plasmid contaminants were discarded 

(Supplementary Table 2). 
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ChIP 

MCF-7 (5 × 106) cells were first transfected with a control or specific siRNAs. Next, cells 

were fixed with 1% formaldehyde for 8 min at room temperature and subsequently 

quenched with 125 mM glycine for 5 min on ice. The cells were pelleted 10 min at 470 g 

and re-suspended in 300 µl of cold lysis buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA 

and 1% SDS) supplemented with protease inhibitor cocktail (Roche). The suspension was 

sonicated 20 min (30 s on/off at maximum power) and further diluted with 800 µl of 

dilution buffer (10 mM Tris-HCl, pH 7.5, 140 mM NaCl, 1 mM EDTA, 0,5 mM EGTA and 

1% Triton X-100) supplemented with protease inhibitor cocktail. The lysate was 

centrifuged for 10 min at maximum speed and the soluble fraction (chromatin) was 

transferred to a new tube. For each ChIP reaction, 100 µl of chromatin preparation was 

diluted with 300 µl of dilution buffer and incubated on an end-to-end rotator with 2–10 µg 

of antibody at 4 °C overnight. Then, 30 µl of protein A/G beads, previously blocked 1 h 

with PBS/BSA (0.1%) solution, was add to each ChIP reaction and incubated 2–3 h at 4 °C. 

The immune-purified chromatin was washed 2 × 5 min with the dilution buffer and 1 × with 

TE (50 mM Tris-HCl pH 8.0 and 10 mM EDTA) and finally eluted in 300 µl elution buffer 

(20 mM Tris-HCl pH 7.5, 5 mM EDTA, 50 mM NaCl and 1% SDS) at 65 °C overnight. 

Eluted chromatin was purified using QIAquick PCR purification kit (Qiagen) and subjected 

to real-time PCR analysis. Antibodies and amounts used in this study were as follows: pol2 

(8 µg, CTD4H8, Upstate), H3K9ac (3 µl, ab4441, Abcam), H3K27ac (3 µl, ab4729, 

Abcam), H3K4me1 (6 µl, ab8895, Abcam), H3K4me3 (3 µl, MC315, Upstate), histone H3 

(5 µl, 2650, Cell Signaling). 

 

Chromosome conformation capture on chip (4C) 

4C templates preparation and analysis were performed as previously described (Splinter, 

2011). Briefly, 107 of MCF-7 cells were harvested and crosslinked with formaldehyde 2% 

for 10 min at room temperature, and neutralized with 125 M glycine. After washing with 

PBS, cells were lysed in 150 mM NaCl, 50 mM Tris-HCl (ph 7.5), 5 mM EDTA, 0.5% 

NP40, 1% Triton X-100 and nuclei were recovered by spinning 8 min at 600 g. Nuclei were 

digested overnight with 400 U DpnII (NEB) and Csp6I (NEB) and re-ligated in 7 ml with 

100 U of T4 DNA ligase (Roche) overnight at 16 °C. Purified DNA circles were digested 

with 50 U of DpnII (Csp6I circles) and Csp6I (DpnII circles) overnight at 37 °C, followed 

by heat inactivation and ligation in 14 ml with 200 U of T4 DNA ligase. The 4C template 

was then purified and used for PCR amplification. 

 

DNA methylation analysis 

The Methyl Primer Express v1.0 software was used to identify the CpG islands and design-

specific primers for the methylation analysis (Supplementary table 1). DNA methylation 

status was established by bisulfite genomic sequencing of multiple clones or methylation-

specific PCRs in DNA samples previously treated with sodium bisulfite (EZ DNA 
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methylation Gold kit, Zymo Research). The Illumina 450 K methylation array was used to 

anlyse the methylation status in multiple human cancer cell lines. For epigenetic drug 

treatments, cells were treated with 1 µM 5-aza-2′-deoxycytidine (Sigma) for 72 h. 
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Supplementary Figure 1. Identification of p53-regulated enhancer RNAs (p53RERs). 

(a) GRO-seq read densities centered at the point of bidirectional transcription for p53BERs (upper 

panel) and p53FERs (lower panel). (b) Boxplot showing publically available p53 ChIP-seq coverage for 

p53BERs, p53FERs and uninduced enhancers regions. P-values are for the 2-sided Mann-Whitney-U 

test. (c) Top 15 transcription factor enrichments. Top to bottom: p53RERs vs all bidirectional enhancers, 

p53BERs vs. p53RERs, p53BERs vs. all bidirectional, p53FERs vs. p53RERs, nutlin-3a-insensitive vs. 

all bidirectional (as negative control). Note that in the last two panels the significance is indicated by 

uncorrected p-value, while in the other panels the FDR is used. (d) Genome browser representation of 

STAT3, FOS and BCL3 activation upon nutlin-3a treatment in MCF-7 cells, shown by both RNA-seq and 

GRO-seq. (e) Relative mRNA levels of STAT3, FOS and BCL3 upon nutlin-3a (8 µM) treatment in MCF-

7 cells. Values were determined by qRT-PCR (Mean ± SD are shown). (f) Venn diagram showing the 

number of p53-responsive enhancers (from the total of 4522, see Fig. 1c in the main text) that have 

binding of transcription factors BCL3, FOS, STAT3 and p53. The binding positions of BCL3, FOS and 

STAT3, as determined by ChIP-seq, were obtained from ENCODE data (wgEncodeReg TFBS 

Clustered V3). 
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Supplementary Figure 2. Novel stress-regulated lncRNA LED. 

(a) LED expression levels in MALME-3M, ZR-75-1 and MCF-7 cells upon 12h nutlin-3a treatment (8 

µM). Values were determined by qRT-PCR (n=3; p-values were calculated with a two-tailed student’s t- 

test. **p<0.01, ***p<0.005). (b) P53 or IgG ChIP in MCF-7 cells treated with or without nutlin-3a (8 µM) 

and RITA (1µM) treatments. The binding of p53 within LED gene body is displayed. (c) Schematic 

representation of cell proliferation assay in MCF-7 treated with 2 pulses of nutlin-3a and transfected with 

a control or LED siRNA. (n=3; p-values were calculated with a two-tailed student’s t-test. ***p<0.005). 

(d) Colony formation assay using the same condition as in (c). 
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Supplementary Figure 3. The lncRNA LED influences p21 levels. 

LED and p21 expression levels in ZR-75-1 and MALME-3M cell lines upon transfection of a control 

(Ctrl) or LED siRNA (LED-kd). The cells were treated 12h with nutlin-3a (8 µM) and expression levels 

were measured by qRT-PCR (Mean ± SD are shown). 
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Supplementary Figure 4. LED binds preferentially to enhancers and regulates enhancer RNA 

production from p53RERs. 

(a) H3K4 trimethylation and H3K36 trimethylation (K4K36 signature) at LED gene locus for several cell 

lines, as determined by the ENCODE consortium. (b) RNA Fluorescence in situ hybridization (FISH), 

with probes against LED in MCF-7 cells incubated with or without nutlin-3a. (c) ChIRP enrichment for 

LED RNA using LED-ODD, LED-EVEN and LACZ probes. GAPDH was used as a control (mean ± SD). 

(d) Distribution of the ENCODE features over the genome (left panel) and LED ChIRP peaks in the 

different ENCODE features (right panel). (e) Intersection of LED-bound p53FERs with BCL3, FOS and 

STAT3 transcription factors. (f) ChIRP sequencing data, showing LED association to a subset of 

enhancer domains. Values are represented by RPM (reads per million). Star (*) indicates the significant 

binding site. (g) Levels of several histone marks (H3K27Ac, H3K4me1, H3K4me3 and H3K9Ac), p300 

and RNAPII in different cell lines in the loci (+/- 5kb) of selected LED-induced enhancers, as determined 

by the ENCODE consortium. (h) DNA ChIRP-qPCR enrichment for p21e, but not for FOXC1e or 

GAPDH, using ODD and EVEN LED-tiling probes in MCF-7 cells. Values are represented as 

percentage of input. Mean ± SD are shown. (i) Genome browser depicting the overlapping LED-binding 

site (ChIRP) with a p53BS (ChIP) at p21 intronic enhancer (p21e). (j) Genome browser session showing 

p21 enhancer domain (p21e) and the putative p21 enhancer RNA transcription start site (red arrow). 

Control and nutlin-3a-treated MCF-7 cells GRO-seq tracks are shown as well as the “+” strand 

nucleotide sequence. (k) Domainograms (de Wit et al., 2008) visualizing significance of interactions at 

different window sizes (viewpoints) for p21 enhancer domain with surrounding chromosomal regions in 

MCF-7 cells. Color ranges (see scale bar) reflect different levels of significance, from black (low 

significance, P=1x10
-2
) to yellow (high significance, P=1x10

-8
). To account for the fact that the majority 

of the data are very close to the viewpoint, we set the data range of the vertical axis to the 98% quantile 

value for the analyzed region. Values are represented by intensity of 4C signal. Schematic 

representation of p21 gene with the location of the bait used for the 4C experiments is also shown. (l) 

ChIP-qPCR for total H3 and H3K27Ac at p21 enhancer domain (p21e) in control and nutlin-3a-treated 

MCF-7 cells transfected with a control or LED siRNAs (LED-kd). Values represent the percentage of 

input and were normalized to total H3. Mean ± SD are shown. (m) ChIP-qPCR for total H3 and H3K9Ac 
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at RP11-3P17.4e in nutlin-3a-treated MCF-7 cells transfected with a control or LED siRNA (LED-kd). 

Values represent the percentage of input and were normalized to total H3. Mean ± SD are shown. (n) 

ChIP-qPCR for total H3 and H3K9Ac at p21 distal (dist.), proximal (prox.) and intronic (p21e) enhancers 

in nutlin-3a-treated MCF-7 cells transfected with a control or LED siRNA (LED-kd). Values represent the 

percentage of input and were normalized to total H3. Mean ± SD are shown. (o) ChIP-qPCR for p53 at 

p21 distal (dist.), proximal (prox.) and intronic (p21e) enhancers in nutlin-3atreated MCF-7 cells 

transfected with a control or LED siRNA (LED-kd). Values represent the percentage of input. Mean ± 

SD are shown. 
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Supplementary Figure 5. DNA methylation-associated silencing of LED in colon and gastric 

cancers. 

(a) DNA methylation-associated silencing of LED in several cancer cell lines. Methylation was measured 

in different LED regions represented by TSS (transcription start site: -158, -155, -141, -136, -46, -30, 

+549, +683). Presence of unmethylated or methylated CpGs is indicated by green or red, respectively. 

Methylation is considered when both CpGs at (-155, -141, -136) and at (+549,+683) are methylated or 

when all the CpGs are methylated. Indication of TP53 status (W-wild type ; M-mutant) and gender (M-

male ; F- female) are represented. (b, c) LED methylation in normal lymphocytes by gender- female (b) 

and male (c) and analysed as in (a). (d) Schematic representation of LED genomic loci and CpG island. 

Bisulfite genomic sequencing analysis of LED CpG island in human solid cancer cell lines and normal 

colon as tissue control. Location of bisulfite genomic sequencing PCR primers (black arrows), CpG 

dinucleotides (vertical lines) and the transcriptional start site (grey arrow) are shown. Ten single clones 

are represented for each sample. Presence of unmethylated or methylated CpGs is indicated by white 

or black squares, respectively. (e) LED expression levels in methylated or unmethylated human solid 

cancer cell lines and in normal colon (NC) as control. Values were determined by qRT-PCR in 

triplicates. (f) LED and p21 expression levels in SW-48, ZR-75-1 and MCF-7 cells upon 2h, 4h and 8h of 

nutlin- 3a treatment (8 µM). Values were determined by qRT-PCR and normalized to the untreated 

amples. Mean ± SD are shown. 

 

NB: Supplementary tables have been omitted for brevity and can be found online, using 

identifier doi:10.1038/ncomms7520 
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CHAPTER 8 

Discussion of Part B – The non-coding genome 
 

The discovery that the human is pervasively transcribed (Djebali et al., 2012), with over 

60% of the human genome being expressed as RNA, while only 2% of the genome is 

protein-coding poses a paradox. It breaks the dogma of the protein-coding genes being the 

primary product of the genome and its transcription. P53 has been characterized as 

important transcription factor, directly inducing expression of hundreds of target protein-

coding genes. On the other hand, little has been known about its role in the induction of 

non-coding genes and enhancers. Our work identifies several hundred enhancers directly 

activated by P53 by combining ChIP-seq and GROseq data. Furthermore, we found 

thousands of enhancers activated that were not found to be P53-bound. These may 

constitute secondary targets. Furthermore, using transcriptome profiling by RNAseq we 

identified about 200 lncRNAs induced by activation of P53. We focused our attention on 

LED, a lncRNA strongly induced upon P53 activation and important for the full activation 

of cell-cycle arrest normally induced by activation of P53, as indicated by FACS profiles 

upon the knockdown of LED. 

 

We found LED to be localized predominantly in the nucleus, and knockdown of LED and 

subsequent transcriptome profiling by RNAseq showed a pattern of differentially expressed 

genes further indicating a role of LED in control of cell cycle. A prominent gene that was 

down-regulated upon LED knockdown was p21, a master cell cycle regulator and important 

direct target of P53. Interestingly, using ChIRP to identify the localization of LED in the 

chromatin we identified a binding of LED in the gene of p21. Specifically, LED binds an 

enhancer region within the p21 gene. We showed that this enhancer was a bona fide 

enhancer, able to activate transcription in an orientation-independent manner. Furthermore, 

the enhancers' activity was sensitive to knockdown of LED. 

 

Our findings provide an interesting example of how the different levels of regulation and 

non-coding and coding genes are integrated: a transcription factor activating a lncRNA, 

which in turn activates an enhancer which in turn is important for the full activation of a 

protein-coding gene. As technological advances are made, we get tools to investigate these 

levels of regulation and transcription more sensitively. It seems therefore likely that more 

examples where proteins, mRNAs, lncRNAs and enhancers integrate will be found. 

 

Our use of state-of-the-art techniques such as GROseq, ChIRP, RNAseq and ChIPseq 

allowed us to get a high-quality view with unprecedented sensitivity at the transcription 

induced by P53. But this does not mean the picture of P53's transcriptional landscape is 
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now complete. Instead, improvements to technologies, experimental and computational 

procedures will continue to incrementally improve our understanding of the targets of P53. 

An exciting new technique is CRISPR-Cas9, which allows high-throughput genome editing 

(Sander and Joung, 2014). While current high-throughput techniques mostly focus on 

detection of transcription (such as GROseq, RNAseq), CRISPR-Cas9 allows functional 

interrogation of genes or loci by modulation of the transcription or gene product. 

Combining a system to systematically modulate transcription with identified transcripts that 

are differentially expressed upon P53 activation or with loci that are found to be bound by 

P53 allows the identification of novel functional P53-regulated elements, in a manner that 

is independent of the transcriptional activity of these elements.  

 

 

References 

Djebali, S., Davis, C.A., Merkel, A., Dobin, A., 

Lassmann, T., Mortazavi, A., Tanzer, A., 

Lagarde, J., Lin, W., Schlesinger, F., et al. 

(2012). Landscape of transcription in human 

cells. Nature 489, 101–108. 

Sander, J.D., and Joung, J.K. (2014). 

CRISPR-Cas systems for editing, regulating 

and targeting genomes. Nat Biotech 32, 347–

355. 

  



… 

SUMMARY 

B 49 

Summary 
 

The genetic code of a cell is kept in its DNA. However, a vast number of functions of a cell 

are carried out by proteins. Through gene expression the genetic code can be expressed and 

give rise to proteins. The expression of genes into proteins follows two steps: transcription 

of DNA into RNA and translation of (messenger-)RNA into proteins. This thesis concerns 

these two steps in gene expression, which are very different from a molecular point-of-

view. 

 

Part A – Protein translation studied by ribosome profiling 

Protein coding genes give rise to proteins via an intermediate messenger molecule: 

messenger-RNA (mRNA). The mRNA is translated into proteins by ribosomes. Recent 

advances in technology have made it possible to take a snapshot of the positions of 

ribosomes on mRNA molecules, by a protocol called “ribosome profiling”. It is 

comprehensive and high-throughput: a single snapshot reveals the positions of millions of 

ribosomes on the mRNA in a sample. Ribosome profiling has paved the way to investigate 

regulation at the level of mRNA translation in a global manner (i.e. measuring a large part 

of the expressed genes simultaneously). In this work, we extend the purpose of ribosome 

profiling by making use of the positional data (i.e. the location of ribosomes within the 

mRNAs) that is obtained. First we show the impact of a mitochondrial transfer-RNA 

(tRNA) mutation on ribosome progression. tRNAs form essential components of the 

translational machinery by delivering amino acids (the protein building blocks for proteins) 

to the ribosomes. While ribosomes seem to be able to use the tRNA in question for 

translation, as indicated by the presence of full-length protein, they spend more time 

waiting for the tRNA, suggestive of stalling. We also investigate the impact of other factors 

that are required for activation of tRNAs, such as the levels of amino acids. We show that 

under certain conditions ribosome profiling can be used to identify amino acid levels 

restrictive for growth of cancer cells. Furthermore, using tumor samples we identify a 

ccRCC kidney tumor with ribosomal stalling patterns suggestive of proline deficiency. 

From this tumor data, we were able to untangle some of the metabolic rewiring upon 

proline deficiencies, and identify a molecular target (the gene PYCR1). We further used 

ribosomal profiling to investigate the regulation of translation during mitosis, the part of the 

cell cycle in which the (by then duplicated) DNA content is separated into two equal parts. 

Interestingly, ribosome profiling data shows that ribosomes undergo strong major changes 

in their mRNA occupancies. First, ribosomes tend to occupy mRNAs more on the 5'-end. 

Second, ribosomes show a differential tendency to occupy certain codons in the mRNAs.  

 

Because ribosome profiling has been pivotal in the work in this part of the thesis, we have 

made improvements to the experimental part of the protocol, and increased data quality. For 

example in the reduction of ribosomal RNA (rRNA) contamination, an unfortunately 
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pervasive and abundant contaminant in the data, we have made substantial improvements. 

Using subtractive hybridization we were able to strongly reduce the amount of 

contamination in the raw data, and this proved essential when working with e.g. live tissue 

samples. 

 

Part B – Transcription of the non-coding genome 

Proteins are an important product of gene expression. Yet, most of the genetic code does 

not encode for proteins. As protein-coding genes come to expression as mRNA to be 

further translated into protein (the focus of part A), it is puzzling that a large fraction of the 

genome (approx. 60%) comes to expression as RNA but does not serve as template to be 

translated into protein. The function of this expression is largely unclear. Part B of this 

thesis investigates these “non-coding” genes and RNAs in the context of cancer. 

Transcription factor P53 is of paramount importance in the stress-induced arrest of the cell 

cycle. Using ChIP-seq we investigate which regions of the genome are bound by P53, and 

using RNA-seq and GRO-seq we identify which genes are differentially expressed upon 

activation of P53. Using these techniques we unravel novel parts of the transcriptional 

program of P53 that lead to expression of non-coding genes. We show that the major cell 

cycle regulator p21 which is induced by P53 requires the activation of one such non-coding 

gene.  
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Samenvatting 
 

De genetische code van een cel ligt vast in het DNA. Toch worden een groot aantal functies 

van een cel uitgevoerd door eiwitten. De genetische code wordt via gen-expressie omgezet 

tot eiwitten. Die expressie volgt twee stappen: transcriptie van DNA in RNA, en translatie 

van (messenger-)RNA in eiwit. Deze dissertatie betreft deze twee stappen van gen-

expressie, al zijn ze zeer verschillend vanuit moleculair oogpunt. 

 

Deel A – Translatie van mRNA onderzocht met behulp van ribosome profiling 

Eiwit-coderende genen komen tot expressie als eiwit via een tussenstap: transcriptie van 

een gen in messenger-RNA (mRNA). Het mRNA wordt in eiwit vertaald door ribosomen. 

Recent werk en technologische vooruitgang hebben het mogelijk gemaakt om een 

momentopname te maken van de posities van ribosomen op het mRNA, met een techniek 

die “ribosome profiling” wordt genoemd. Het is een veelomvattende techniek: in een 

momentopname van een monster is het mogelijk de posities van miljoenen ribosomen op 

mRNAs tegelijk te registreren. Ribosome profiling heeft het mogelijk gemaakt om 

translatie van mRNA tot eiwit op een globale manier waar te nemen (d.w.z. de translatie 

van een groot deel van de mRNAs kan in één keer in kaart worden gebracht). In dit deel 

van de dissertatie vergroten we de mogelijkheden van ribosome profiling, door analyses uit 

te voeren van de posities die de ribosomen op de mRNAs innemen. Eerst kijken we naar de 

impact van een mutatie in een mitochondriaal transfer-RNA (tRNA, een component van de 

moleculaire machines die mRNA vertalen, en verantwoordelijk is voor de aanvoer van 

aminozuren, de bouwstenen van eiwitten). We zien dat hoewel de ribosomen het tRNA nog 

wel kunnen gebruiken voor eiwitproductie, ze meer tijd besteden op het codon wat vertaald 

wordt door het tRNA. We kijken verder naar de impact van factoren die de hoeveelheid 

beschikbaar tRNA veranderen, zoals aminozuurniveaus, op translatie door ribosomen en 

hun positionering op mRNAs. We vonden dat onder bepaalde omstandigheden cellulaire 

aminozuurtekorten op te sporen zijn met behulp van ribosome profiling en adequate 

analyses. Door analyse van niertumorsamples vonden we een tumor waar de ribosomale 

positities een patroon lieten zien wat duidde op tekort aan proline. Met de data van deze 

tumor hebben we een moleculaire schakel kunnen vinden die mogelijk van therapeutisch 

belang is (het gen PYCR1). We hebben ribosome profiling verder gebruikt om te kijken 

naar regulatie van eiwittranslatie tijdens de mitose – het deel van de celcyclus waar het 

DNA (wat op dat moment al vermenigvuldigd is) opgesplitst wordt in twee gelijke delen. 

Curieus genoeg laat ribosome profiling data zien dat tijdens de mitose ribosomen sterke 

algemene veranderingen in hun positionering ondergaan. Ten eerste komen ze dichter bij 

het 5'-einde te zitten (het “begin” van het mRNA molecuul), en ten tweede zijn ribosomen 

in andere verhoudingen aanwezig op bepaalde codons van het mRNA. 

 

Omdat ribosome profiling zo centraal staat in dit werk, hebben we gaandeweg 
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verbeteringen gemaakt aan het protocol, om zo de kwaliteit van de data te verbeteren. 

Bijvoorbeeld door de hoeveelheid ribosomaal RNA (rRNA, een onfortuinlijke en zeer sterk 

aanwezige contaminatie) te reduceren. Met behulp van een hybridisatietechniek zijn we 

succesvol geweest in het terugbrengen van de fractie van rRNA in onze monsters, hetgeen 

de gevoeligheid van de analyses heeft bevorderd. Mede hierdoor hebben we bruikbare data 

uit bijvoorbeeld vers-weefsel monsters kunnen krijgen. 

 

Deel B – Transcriptie van het niet-coderende genoom 

Eiwitten vormen een belangrijk product van gen-expressie, maar slechts een klein deel van 

het genoom bepaalt ook echt de volgorde van aminozuren in een eiwit. Eiwit-coderende 

genen komen tot expressie als mRNA om verder te worden vertaald in eiwit door 

ribosomen (de focus van deel A). Maar daarnaast komt een groot deel van het genoom (ca. 

60%) tot expressie als RNA, om vervolgens niet verder vertaald te worden tot eiwit. De 

functie hiervan is voor een groot deel nog onduidelijk. Deel B van deze dissertatie betreft 

deze niet-eiwitcoderende genen en RNA moleculen in de context van kanker. 

Transcriptiefactor P53 is van monumentaal belang bij het remmen van de celcyclus in het 

geval van DNA-schade of cellulaire stress. Met behulp van moderne technieken als ChIP-

seq onderzoeken we waar in het DNA de transcriptiefactor P53 bindt. Verder gebruiken we 

RNA-seq en GRO-seq om te onderzoeken welke genen meer of minder tot expressie komen 

wanneer P53 wordt geactiveerd. Met behulp van deze technieken kunnen we een beter 

beeld schetsen van het niet-eiwitcoderende gen-regulatieprogramma van P53. We laten zien 

dat een van deze niet-eiwitcoderende genen benodigd is voor activatie van p21, een van de 

belangrijkste genen die door P53 wordt geactiveerd om de celcyclus te remmen.
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