
A new proof of the Lagrange multiplier rule
Jan Brinkhuis and Vladimir Protassov

Abstract. We present an elementary self-contained proof for the Lagrange multiplier rule. It does not refer

to any substantial preparations and it is only based on the observation that a certain limit is positive. At the

end of this note, the power of the Lagrange multiplier rule is analyzed.

Keywords. Lagrange multiplier rule; penalty function.

We prove the following.

Theorem (the Lagrange multiplier rule). Assume that G is a set in Rn and that fi, 0 ≤ i ≤ m
are continuously differentiable functions on G. Let x̂ be an interior point of G that is a minimizer

of f0(x) on the set of of points in G for which fi(x) = 0, 1 ≤ i ≤ m. Then the set of derivatives

f ′i(x̂), 0 ≤ i ≤ m, the n-dimensional row vectors of the partial derivatives of the fi, 0 ≤ i ≤ m in x̂,

is linearly dependent.

The given formulation of the conclusion of the rule is equivalent to the following one, which is more

familiar: if the derivatives f ′i(x̂), 1 ≤ i ≤ m are linearly independent, then x̂ is a stationary point of

the function f0(x)+λ1f1(x)+· · ·+λmfm(x) for suitable numbers (Lagrange multipliers) λi, 1 ≤ i ≤ m.

The existing proofs of the multiplier rule in the literature require effort. Either they refer to substan-

tial preparations or they contain technical arguments. Such preparations are the implicit function

theorem ([1],[2]), the inverse function theorem (of which the multiplier rule is an immediate con-

sequence [3]), the tangent space theorem ([4], [5]), the Brouwer fixed-point theorem ([6]) or the

Ekeland variational principle ([7]). Technical arguments are needed to establish inequalities and

estimates ([8]). Then the resulting proofs are elementary but they tend to be relatively long and

involved ([9], 10]). The new proof given in the present note requires essentially no effort: it is not

only elementary, but also simple, short and insightful. Its novelty consists in the easy observations

that a certain limit is positive and that this implies that boundary points are excluded as minimizers

of a certain penalty function. The remainder of the proof is obvious. All elementary proofs for the

multiplier rule, including the one given in this note, make use of the theorem that a continuous

function assumes its minimal value over a closed ball.

Proof. By contraposition.

• Preparations. Assume that x̂ is an interior point ofG that is a solution of the system of equations

fi(x) = 0, 1 ≤ i ≤ m for which f ′i(x̂), 0 ≤ i ≤ m are linearly independent. We will show that x̂

is not a minimum of the function f0(x) on the set of x ∈ G for which fi(x) = 0, 1 ≤ i ≤ m.

Without loss of generality it is assumed that f0(x̂) = 0, x̂ = 0 and n = m + 1—the latter can

be achieved by adding if necessary constraints aix = 0, i ∈ I, chosen in such a way that the set
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ai, i ∈ I completes the linearly independent set f ′i(0), 0 ≤ i ≤ m to a basis of the space (Rn)T

of n-dimensional row vectors. Define F (x) = (f0(x), . . . , fm(x))T for x ∈ Rn. Then F (0) = 0,

F ′(x) is the n × n-matrix that has as rows the derivatives f ′i(x), 0 ≤ i ≤ m = n − 1, F ′ is

continuous and

F (x) = F ′(0)x+ o(|x|)(x→ 0) (1)

(‘Landau little o’)—as the fi, 0 ≤ i ≤ m are continuously differentiable and F (0) = 0. The

assumption that f ′i(0), 0 ≤ i ≤ m = n−1 are linearly independent means that the n×n-matrix

F ′(0) has rank m+ 1 = n, so F ′(0) is invertible. Choose for each k ∈ N a minimizer xk of the

penalty function

pk(x) = |F (x) + (1/k2, 0, . . . , 0)T | (2)

on the closed ball |x| ≤ 1/k, where | · | is the Euclidean norm.

• Exclusion of boundary minimizers for the penalty function. We consider the limit

L = lim
x→0

|F (x) + (|x|2, 0, . . . , 0)T | − |(|x|2, 0, . . . , 0)T |
|F ′(0)x|

. (3)

Here we recall that F ′(0) is invertible. Note that

lim
x→0
|x|2/|F ′(0)x| = 0.

Therefore,

L = lim
x→0
|F (x)|/|F ′(0)x| = 1 > 0, (4)

using (1) and the invertibility of F ′(0). It follows from (3) and (4) that for k sufficiently large

and for each point x̄ on the sphere |x| = 1/k, one has

|F (x̄) + (|x̄|2, 0, . . . , 0)T | > |(|x̄|2, 0, . . . , 0)T |,

that is, the penalty function pk, given by (2), takes a larger value in x̄ than in 0—here we use

also F (0) = 0. Therefore, boundary points of the ball |x| ≤ 1/k cannot be minimizers of the

penalty function pk, given by (2), on this ball. That is, xk is an interior point of this ball,

|xk| < 1/k.

• Conclusion of the proof. Moreover, for k sufficiently large, |xk| < 1/k implies that the matrix

F ′(xk) is invertible as F ′(0) is invertible and F ′ is continuous. From this, and as the minimizer

xk is an interior point of the closed ball |x| ≤ 1/k, it is obvious that

F (xk) + (1/k2, 0, . . . , 0)T = 0. (5)

Indeed, otherwise a local decrease of the penalty function pk, given by (2), would be possible.

Here is a precise analytic verification. The stationarity vector equation

0 =
d

dx
|F (x) + (1/k2, 0, . . . , 0)T |2|x=xk

= 2(F (xk)T + (1/k2, 0, . . . , 0))F ′(xk)
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holds as the minimizer xk is interior. Here we use that the minimizers of a nonnegative valued

function do not change if the objective function is squared and that |v|2 = vT v for a column

vector v. This gives (5) as F ′(xk) is invertible. That is, by the definition of F ,

f0(xk) = −1/k2 < 0 = f0(0), fi(xk) = 0, 1 ≤ i ≤ m.

It follows that x̂ = 0 is not a minimizer of the function f0(x) on the set of points in G for which

fi(x) = 0, 1 ≤ i ≤ m. This concludes the proof of the theorem.

Comment on the power of the rule. The power of the rule lies in the reversal of the natural order

of two main tasks, elimination and differentiation. The natural order would be to eliminate m of the

variables x1, . . . , xn, using the equality constraints fi(x) = 0, 1 ≤ i ≤ m, substitute into the objective

function f0(x), and then put the partial derivatives of the resulting expression in n − m variables

equal to zero. The elimination task is often a nonlinear problem that is difficult or even impossible.

Differentiating first gives the following statement, which is a reformulation of the conclusion of the

theorem: all solutions h ∈ Rn of the system of linear equations

f ′i(x̂)h = 0, 1 ≤ i ≤ m (6)

satisfy

f ′0(x̂)h = 0,

provided the vectors f ′i(x̂), 1 ≤ i ≤ m are linearly independent. The remaining elimination task is

now just a linear problem. It is easy to eliminate m of the n variables h1, . . . , hn using the system of

linear equations (6). Then one can substitute in f ′0(x̂)h. Finally one should put the coefficients of the

resulting expression in n−m variables equal to zero. This completes elimination without multipliers.

In particular, multipliers are not essential to the power of the rule, but merely provide a convenient

way to carry out the linear elimination task. See Ch 3 of [4] for more details on the power of the rule.
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