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Influenza A and B viruses
Influenza viruses that belong to the family of Orthomyxoviridae, which consists of 
six genera: Isavirus, Thogoto virus and influenza virus A, B, C and D. Influenza viruses 
have a diameter of 80-120nm and are distinguished bases on their surface glycopro-
teins, membrane channel proteins and their genome size [1]. Influenza A viruses are 
further classified based on the antigenic properties of their surface glycoproteins: 
hemagglutinin (HA) and neuraminidase (NA). Thus far, 18 HA subtypes (H1-H18) and 
11 NA subtypes (N1-N11) have been identified [2-5]. Although influenza B viruses 
are not subdivided into subtypes, two genetically and antigenically distinct lineages 
can be discriminated based on the HA surface glycoprotein, namely the B/Yamaga-
ta lineage and the B/Victoria lineage [6]. The nomenclature of influenza viruses is 
based on the type / host of origin (except human) / isolation site (geographically) / 
strain number / year of isolation and is followed by the description of the antigen-
ic subtype, e.g. A/Chicken/Netherlands/1/2003 (H7N7) or B/Netherlands/455/2011 
(B/Victoria lineage).

Figure 1 Schematic overview of an influenza A virus particle and gene segments

Structure and proteins of influenza A and B viruses
Influenza virus particles are enveloped and have a single stranded negative sense 
RNA genome that is divided over eight separate gene segments (Figure 1). The          
influenza A genome encodes for 17 proteins, the influenza B genome encodes for 11 
proteins [2, 7] an overview of these differences in protein expression can be found in 
table 1. The eight RNA gene segments are encapsidated by nucleoproteins (NP), and 
are associated with the polymerase basic protein 1 (PB1) and PB2 and polymerase 
acidic protein (PA), which together form the ribonuleoprotein (RNP) complex [8, 9]. 
The polymerase proteins initiate replication of the viral RNA (vRNA) and transcription 
into messenger RNA (mRNA) [2, 8]. The viral envelope is a lipid bilayer derived from
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Table 1 Molecular differences between influenza A and B viruses

RNA 
segment

Influenza A1 Influenza B2

FunctionProtein Length (AA) Protein Length (AA)

1 PB2 759 PB2 770 Component of RNA polymerase; 
Cap-binding

2

PB1 757 PB1 752 Catalytical subunit of RNA polymerase; 
Role RNA chain elongation

PB1-F2* 873
Pro-apoptotic activity, regulate innate 
immune responses, interact with PB1 to 
regulate polymerase activity

PB1-N40* 718

N-terminally truncated version PB1; 
interacts with polymerase complex 
subunits, balance PB1 and PB1-F2  
expression, exact function unknown

3

PA 716 PA 726 Component of RNA polymerase; 
Cap-snatching endonuclease subunit

PA-X* 613 Modulates host gene expression,  
negative virulence regulator

PA-N155* 568 N-terminally truncated version PA; 
function unknown

PA-N182* 535 N-terminally truncated version PA; 
function unknown

4 HA 550 HA 584
Surface glycoprotein; receptor binding 
and membrane fusion; antigenic  
determinant

5 NP 498 NP 560 Encapsidation of viral genomic RNA; 
RNA synthesis, nuclear import vRNA

6 NA 454 NA 486
Surface glycoprotein; neuraminidase  
activity, release novel virus particles 
after budding; antigenic determinant

NB* 100 Ion channel activity; function unknown

7

M1§ 252 M1 248 Role viral assembly, budding

M2† 97 BM2Δ 109 Ion channel activity; essential for  
uncoating, role virus budding

M42†3 99
M2 isoform with alternative  
ectodomain, ion channel activity;  
functionally complement/replace M2

8

NS1§ 230 NS1§ 281 Regulation viral RNA polymerase com-
plex, interfere with antiviral state cell

NS2/NEP† 121 NS2/
NEP† 122 Role nuclear export RNP, regulate  

transcription and replication 

NS3†3 174

NS1 isoform with an internal  
deletion; function unknown, possible 
role host adaptation and overcoming 
the species barrier

1 On basis of A/PuertoRico/8/1934; 2 On bases of B/Lee/1940; 3 Depending on the isolate
* Alternate ORF; Δ Additional ORF, § Unspliced mRNA; † Spliced mRNA
Adapted from [2, 7], additional information from [10-13]. 
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the host membrane and its inner surface is lined by matrix protein 1 (M1) which 
has an important role in viral assembly and budding [13-15]. Two major surface  
glycoprotein, HA and NA, are located on the outer surface of the viral envelope. 
HA protein is initially synthesized as a polypeptide precursor (HA0) which requires 
proteolytic cleavage by host cell proteases into HA1 and HA2 in order to become 
functionally active [16]. HA1 mainly forms the globular head region of the HA protein 
and encompasses the receptor-binding pocket, needed for attachment of the virus 
particle to the host cell [17, 18]. The HA2 represents the trans membrane (envelope) 
stem region of the HA protein and is essential for pH-dependent fusion of the viral 
envelope with the endosomal vesicle [19-21]. NA on the other hand has an impor- 
tant role in viral release from infected cells as it acts as a receptor-destroying enzyme 
that cleaves host cell sialic acid residues [22]. Matrix protein 2 (M2) is the result of 
alternative splicing of the matrix mRNA in case of influenza A viruses, whereas the 
M gene segment of influenza B viruses encompasses an additional open reading 
frame (ORF) directly subsequent of the M1 ORF that encodes for the BM2 protein 
[2, 7]. Both M2 proteins function as a transmembrane (envelope) ion channel [10, 
23]. Although the M2 proteins of influenza A and B viruses are comparable in their  
function they differ in their respective size. Also the influenza A virus M2 channel 
pore is lined with hydrophobic amino acids while influenza B virus BM2 channel 
pores are lined with polar serines. As a result, only influenza A viruses are inhibited 
by the antiviral drug amantadine [10]. In addition, the M2 protein of influenza A  
viruses was described to have a role in virus budding [13]. A minority of the influenza 
A viruses express an additional ion channel protein called M42 which also results 
from alternative splicing of the matrix mRNA. The M42 protein represents an iso-
form of the M2 protein that encompasses an alternative ectodomain and was shown 
to functionally complement or replace the M2 protein and was demonstrated to  
support viral replication [24]. The expression of the highly conserved NB protein,  
encoded by an additional ORF in the NA gene segment, is unique for influenza B 
viruses. Since this protein shows ion channel activity it was long thought that the NB 
protein was a functional analogue of the influenza A virus M2 ion channel protein 
(reviewed in [11]). This theory was challenged by a study that demonstrated that 
NB ion channel activity was not essential for influenza B virus replication in vitro 
[25]. The true function of the NB protein remains to be established [11]. Besides 
the expression of structural proteins, several nonstructural proteins are expressed.  
Nonstructural protein 1 (NS1) is a multifunctional protein that mainly antagonizes 
the hosts innate immune response (further explained in the Escape from Innate  
Immunity paragraph) but is also demonstrated to have a role in regulating viral  
replication [26, 27]. The NS2 protein, also known as the nuclear export protein (NEP), 
results from alternative splicing of NS mRNA in both influenza A and B viruses and 
has a role in the nuclear export of RNP complexes, in regulating transcription and 
replication and might also aid efficient release of budding virions and host adap-
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tation [28]. A limited number of influenza A viruses encode an additional splice 
site that gives rise to a third NS protein, namely NS3. Although its exact function  
remains to be established it is speculated that NS3 has a role in host adaptation and  
overcoming the species barrier [29]. PB1-F2 is a nonstructural protein that is  
expressed via an alternative ORF of the PB1 gene segment by influenza A viruses 
only and most likely has a role in promoting apoptosis of virus infected cells [30, 
31]. Furthermore, PB1-F2 was also demonstrated to regulate innate immune  
responses [32, 33] and when localized in the nucleus PB1-F2 can interact with 
PB1 where it regulates the polymerase activity [34]. Leaky ribosomal scanning of  
influenza A virus PB1 mRNA results in a N-terminally truncated version of PB1,  
namely PB1-N40, which interacts with polymerase complex subunits like PB2.  
Although its exact function is currently unknown, it is speculated that it balances  
the expression of PB1 and PB1-F2 [35]. PA-X is also expressed via an alternate ORF  
of the PA gene segment by influenza A viruses only and modulates the gene  
expression in the host cell acting as a negative virulence regulator [36, 37]. In  
addition, leaky ribosomal scanning of the influenza A virus PA mRNA results in two 
N-terminally truncated versions of PA, namely PA-N155 and PA-N182. Although a 
recent study demonstrated that their expression attenuates viral replication in vitro 
and reduces the pathogenicity in mice, their exact function is still unknown [38].

Influenza virus replication cycle
Influenza virus replication is initiated by attachment of the virus HA to sialic acids 
on the surface of the host cell membrane (Figure 2) [18]. Human influenza A viruses  
normally prefer binding to α-2,6-linked sialic acids, mainly present in the human 
upper respiratory tract (URT), whereas avian influenza A viruses prefer α-2,3-linked  
sialic acids which are more abundantly present in the human lower respiratory  
tract (LRT) [39-42]. Influenza B viruses of the B/Victoria lineage have both  
α-2,3- and α-2,6-linked sialic acid binding capacities, whereas B/Yamagata viruses  
predominantly bind to α-2,6-linked sialic acids [43, 44]. After the initial binding, the 
influenza virion enters the host cell via receptor mediated endocytosis [45]. The low 
pH in the endosome triggers conformational changes in HA2 and thereby initiates 
fusion of the viral and endosomal membranes [19-21]. The M2 ion channel facil-
itates the influx of H+ ions into the virion, which results in uncoating of the virus 
particle and the release of RNPs into the cytosol (Figure 2) [10, 46, 47]. Although the 
exact moment of endosomal membrane fusion is unknown for influenza B viruses, 
it was speculated that influenza B virus RNPs might be released in the early endo-
some whereas influenza A virus RNPs are released in the late endosome [48]. The 
RNPs are then transported into the nucleus [49]. Here, the polymerase proteins drive  
replication of the vRNA and transcription into mRNA (Figure 2). The newly  
transcribed vRNAs are assembled into RNPs, which are chaperoned by M1 in order 
to be transported into the cytoplasm towards the apical membrane where the they 
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Figure 2 Influenza virus replication cycle

are packed into newly formed virus particles [47, 50]. The mRNA is also exported 
out of the nucleus into the cytosol where it is translated into new viral proteins. 
Most of these viral proteins are produced in the cytosol, although the membrane 
bound proteins are translated by ribosomes bound to the endoplasmic reticulum 
(ER) membrane [51]. These are subsequently transported via the golgi apparatus, 
where post translational modifications are made, to the cells’ cytosolic membrane 
where novel virus particles are assembled (Figure 2) [52]. Here, the M1 protein has  
accumulated under the host cell membrane and serves an important role in viral 
assembly as it interacts with both the viral envelope and the RNP complexes. M1 
also initiates the membrane to bud outwards until the cell membrane fuses at the 
bottom of the novel virion to close it (Figure 2) [13-15]. Enzymatic activity of the NA 
mediates the actual release of the virions from the cell as it prevents binding of the 
newly formed virus particles to the host cell by cleaving the sialic acids on the cell 
surface [22].

Natural hosts of influenza viruses
Influenza A viruses
Influenza A viruses have a large animal reservoir. Aquatic birds are the natural  
reservoir for all influenza A subtypes except for the recently discovered H17N10 
and H18N11 viruses which have only be detected in bats [3-5, 53, 54]. Of interest 
serological evidence indicates that bats may also harbor other influenza A virus  
subtypes [55]. Avian influenza A viruses are occasionally transmitted to mammals. 
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Influenza A virus infections have been observed in pigs (Sus domesticus), horses 
(Equus ferus caballus), dogs (Canis lupus familiaris), marine mammals (seals and 
whales), domestic cats (Felis catus), tigers (Panthera tigris), leopards (Panthera  
pardus) and many more [56-60]. The H5N1 subtype alone has been shown to  
naturally infect over 150 species including a large variety of birds [61]. Avian  
influenza viruses occasionally cross the species barrier into the human population 
(see also Influenza viruses epidemics and pandemics paragraph).

Influenza B viruses
In contrast to influenza A viruses, there is no clear evidence that influenza B viruses 
continuously circulate among animals. However, influenza B viruses were isolated 
from dogs, harbor seals (Phoca vitulina) and grey seals (Halichoerus grypus), indi-
cating that influenza B viruses are able to infect these species [62, 63]. In addition, 
there is serological evidence for infection of influenza B viruses of various animal 
species that live in close proximity to humans, including dogs, guinea pigs (Cavia  
porcellus), pigs, horses, ruminants, Bornean orangutans (Pongo pygmaeus), Western 
common chimpanzees (Pan troglodytes verus), Western lowland gorillas (Gorilla gorilla  
gorilla) and zoo birds [64]. Of interest, influenza B virus-specific antibodies have also 
been detected in various species of wild pinnipeds; Caspian seals (Phoca caspica), 
grey seals (Halichoerus grypus), harbor seals (Phoca vitulina), South American fur 
seals (Arctocephalus australis), but not in harbor porpoises (Phocoena phocoena) 
[64]. The results of these studies indicate that influenza B viruses are able to occa-
sionally infect various species of animals, but there is no epidemiological evidence 
for a role of these species as reservoir of influenza B viruses that could spill over to 
humans, like influenza A viruses in wild birds.

Influenza viruses epidemics and pandemics
Seasonal epidemics
Influenza viruses infections are one of the leading causes of respiratory tract  
infections in humans [2], causing an estimated 3-5 million severe clinical infections 
and resulting in 250,000-500,000 fatal cases annually [65, 66]. Seasonal influenza 
epidemics are caused by influenza A viruses of the H3N2 (A/H3N2) and H1N1 (A/
H1N1) subtype, and influenza B viruses [65]. Annual recurrence of these viruses is  
attributed to their ability to evade recognition by virus-specific neutralizing  
antibodies induced after previous infections or vaccinations by accumulating  
mutations mainly in the HA glycoprotein, a process known as antigenic drift (Figure  
3) (see also the Escaping the humoral immune response paragraph) [67-70].  
Clinical signs after infection include nasal obstruction, cough, fever, sore throat, 
myalgia and headache but complications like severe pneumonia do occur,  
especially among children younger than 2 years of age, adults over 65 years of age and 
the immunocompromised [65]. Early beliefs were that influenza B viruses cause less  
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severe disease than influenza A viruses, although hospitalization rates, morbidity or 
mortality (excluding influenza A virus pandemics) did not support this [71]. Influenza 
B virus infections are now generally considered less severe than those caused by  
A/H3N2 viruses, but more severe than A/H1N1 infections [72-78]. 
On the other hand, influenza viruses of an antigenically distinct (novel) subtype 
can be introduced into the human population a process better known as antigenic 
shift (Figure 3). When such an antigenically-distinct virus is transmitted efficiently 
from human-to-human, it may cause a pandemic influenza outbreak, since neutral-
izing antibodies to this virus are absent in the population at large [79]. In the last  
century four major pandemic outbreaks have emerged, of which at least three were 
the result of genetic reassortment between animal and human influenza A viruses  
(Figure 4) [80-87].

Figure 3 Antigenic drift and shift to escape immunity 
The gradual accumulation of mutations, mainly in the highly variable globular head region of HA, causes the  
influenza A and B viruses to escape recognition by virus neutralizing antibodies and allows it to cause seasonal  
epidemic outbreaks. This phenomenon is called antigenic drift. The introduction of a novel influenza A virus  
subtype into the human population is called antigenic shift and may cause a pandemic outbreak in the naïve human  
population when the virus is efficiently transmitted from human-to-human, since antibodies directed against the 
novel subtype are absent. Past pandemic outbreaks were caused by exchange (reassortment) of gene segments  
between two or more influenza strains, e.g., avian and human. However, studies in ferrets suggest that avian  
influenza viruses, like H5N1, could be directly transmitted from animal reservoirs into the human population,  
requiring only a small number of adaptive mutations [88] as indicated by the dotted line in this figure. 
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Spanish A/H1N1 pandemic (1918)
In 1918, in a matter of months, an influenza A virus of the H1N1 subtype spread 
worldwide, killing 25-50 million people [80, 89] with an unusual high attack rate 
among previously healthy young adults [90, 91]. This outbreak became known 
as the “Spanish Flu”. For long it was speculated that the 1918 A/H1N1 pandemic  
resulted from an avian A/H1N1 virus that had directly crossed the species barrier 
into the human population [92]. However, more recent studies suggest that this virus  
resulted from multiple reassortment events between avian, swine and human  
influenza viruses [81, 82, 93]. Following the initial pandemic the A/H1N1 virus  
continued circulating in the human population, causing seasonal epidemics for  
almost four decades (Figure 4).

Asian A/H2N2 pandemic (1957)
The A/H1N1 virus was eventually replaced in 1957, when a novel influenza A virus 
of the H2N2 subtype emerged. The “Asian Flu” pandemic was responsible for an 
estimated 2-3 million deaths worldwide [94]. The A/H2N2 virus was the result of 
a reassortment event that gave rise to a virus that had obtained the PB1, HA and 
NA gene segments from an avian A/H2N2 virus and the remaining gene segments  
originated from the human A/H1N1 virus that circulated prior to 1957 (Figure 4) [83, 
95, 96]. This virus continued to circulated epidemically for another 11 years.

Hong Kong A/H3N2 pandemic (1968)
In 1968, the A/H2N2 virus was replaced by an influenza A virus of the H3N2 subtype, 
which caused the “Hong Kong Flu” pandemic [97]. The A/H3N2 virus resulted from 
a reassortment event between an avian H3N? virus and the previously circulating 
human A/H2N2 virus, the PB1 and HA gene segments were obtained from the avian 
influenza virus (Figure 4) [83, 95, 98]. This pandemic was considerably milder as the 
previous two pandemics with an estimate death toll of 1 million worldwide [94]. The 
A/H3N2 has seasonally circulated in the human population ever since.  

Re-emergence of A/H1N1 (1977)
In 1977, an A/H1N1 virus started to circulate in the human population which was 
genetically very similar to viruses that had circulated in the early 1950s, which 
makes it plausible that this virus was accidentally released from a laboratory or live- 
attenuated vaccine trail (Figure 4) [99-101]. Fortunately this did not lead to  
another pandemic outbreak. This A/H1N1 virus seasonally co-circulated with the 
 A/H3N2 virus until 2009.
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Figure 4 Reassortment events of pandemic influenza A viruses
The 1918 A/H1N1 virus possibly originated from multiple reassortment events between avian, swine and human 
viruses. This A/H1N1 virus continued to circulate, causing seasonal epidemics, until 1957 when a novel A/H2N2 virus  
emerged after a reassortment event with an avian A/H2N2 virus. This virus circulated until 1968, when it reassorted  
with an avian A/H3N? virus. The novel A/H3N2 virus caused seasonal epidemics ever since. A/H1N1 was  
reintroduced in the human population in 1977 and co-circulated with A/H3N2 viruses until 2009 when it was replaced 
by H1N1pdm09, which originated after multiple reassortment events between avian, swine and human viruses. 

Swine A/H1N1 pandemic (2009)
The first pandemic outbreak of the 21th century occurred in 2009, when an novel  
influenza A virus of the H1N1 subtype (H1N1pdm09) emerged in Mexico and  
replaced the previously circulating A/H1N1 virus. This virus was the result of  
multiple reassortment events between avian (H1N1; PB2, PA), classical swine 
(H1N1; HA, NP and NS), Eurasian swine (H1N1; NA and M) and human (H3N2; PB1)  
influenza A viruses (Figure 4) [84, 86, 87]. The pandemic was considered  
relatively mild in terms of morbidity and mortality, with an estimated 0,15 – 0,57 
million deaths worldwide [102]. The H1N1pdm09 virus preferentially affected young 
adults, whereas people over 65 years of age generally experienced a relatively 
mild infection. This was partially contributed to the presence of antibodies in the 
elderly population which cross-reacted with the 2009 H1N1pdm09 virus, as it was  
antigenically similar to a H1N1 virus that circulated prior to 1957 [103]. As from 2009, 
the H1N1pdm09 co-circulates with the A/H3N2 subtype in the human population.
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Pandemic threats
It was estimated that if nowadays a pandemic influenza virus were to emerge with 
a similar severity as the 1918 A/H1N1 strain global mortality would rise to 51-81 
million [89]. Therefore influenza viruses that cross the species barrier into the  
human population are closely monitored [104]. Avian influenza A viruses of various 
subtypes, including H5N1, H5N6, H6N1, H7N2, H7N3, H7N7, H7N9, H9N2, H10N7 
and H10N8, have occasionally infected humans during the last two decades [105, 
106]. Also, viruses of swine origin, like a swine reassorted variant of the H3N2 virus 
(H3N2v), has been reported to occasionally infect humans [107]. Fortunately, most 
zoonotic transmissions occur without sustained human-to-human transmission. 
In 1999 two isolated human cases of influenza A/H9N2 virus infections were  
reported in Hong Kong, displaying mild symptoms only [108, 109]. A study by  
Sorrel et al demonstrated that influenza A viruses of the H9N2 subtype could result in  
airborne transmission between ferrets, whose respiratory tract closely resembles 
that of humans, if the A/H9N2 virus were to reassort with a human A/H3N2 virus 
[110]. Studies have demonstrated that pigs (and quails) could serve as a mixing  
vessel for emerging reassorted influenza A viruses [85, 111, 112]. As both avian  
A/H9N2 and human A/H3N2 viruses were found to circulate in pigs, such a  
reassortment event might occur resulting in the emergence of an A/H9N2 variant 
capable of airborne transmission between humans [113-115]. 
Larger is the impact of highly pathogenic avian influenza A/H5N1 viruses which have 
been transmitted on a regular basis from infected poultry to man since the first case 
was identified in 1997 in Hong Kong [116]. Since 2003, over 844 human cases have 
been reported from 16 countries, most of them suffering from severe pneumonia 
progressing to acute respiratory distress syndrome (ARDS), resulting in a case fatality 
of 50% [104, 117-120]. The reported case fatality rate most likely is an overestimate, 
since subclinical infections and mild cases are not reported [121]. So far, sustained 
human-to-human transmission has not been observed, although clusters of human 
cases have been reported [122-124]. Furthermore, recent studies have shown that, 
in principle, transmission of highly pathogenic A/H5N1 viruses amongst mammals 
is possible and that only a limited number of adaptive mutations are required for  
airborne transmission, emphasizing the pandemic potential of these viruses [88, 
125, 126]. 
During an outbreak of highly pathogenic avian influenza A virus of the H7N7  
subtype in the Netherlands in 2003, 89 human cases were reported of which one 
had a fatal outcome [127, 128]. A zoonotic transmission of A/H7N7 virus subtype was  
previously reported in the United Kingdom in 1996 [129]. Other avian viruses of the 
H7 subtype have been reported to sporadically infect humans, including viruses of 
the H7N2 [130-132] and H7N3 subtypes [133-136]. 
An avian influenza A virus of the H7N9 subtype that has emerged recently poses 
a more serious pandemic threat. Over 677 human laboratory-confirmed cases, of 
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which 275 had a fatal outcome, have been reported since the first human case was 
reported in China in February 2013 [104]. Most hospitalized patients develop severe 
viral pneumonia and ARDS [137-140]. A/H7N9 virus infections are more frequent-
ly observed in the winter months, and seem to have a similar seasonality as the  
seasonal human influenza viruses [141]. The A/H7N9 virus most likely resulted from 
multiple reassortment events between three avian viruses [138, 142, 143]. The  
pandemic potential of this A/H7N9 virus is further underlined by the presence of the 
Q226L substitution in the HA [138, 144]. This mutation is associated with binding 
to α-2,6-linked sialic acids found in the human URT [145] and with airborne trans- 
mission of the avian A/H5N1 virus in ferrets [88]. In case of the A/H7N9 virus only  
limited airborne transmission has been observed between ferrets [145-149].  
Although a number of human A/H7N9 clusters were reported, this has not led to 
sustained human-to-human transmission of the A/H7N9 virus so far [150-153]. The 
report of an A/H7N9 patient who was co-infected with a seasonal human A/H3N2 
virus underscores the rational that the A/H7N9 virus might further adapt to humans 
by acquisition of gene segments from human seasonal influenza A viruses through 
genetic reassortment [81, 83, 84, 86, 87, 154, 155].

Influenza B viruses are epidemic but not pandemic
The earliest influenza B virus isolate originates from the 1940s, well before the  
emergence of two antigenically distinct influenza B lineages [67, 156, 157].  
Currently, two influenza B lineages are distinguished on basis of their HA glyco- 
protein; the B/Victoria lineage (named after the B/Victoria/2/1987 strain) and the  
B/Yamagata lineage (named after the B/Yamagata/16/1988 strain) [6, 67, 70, 158]. 
It is thought that the two lineages diverged in the 1970s, when the B/Victoria  
lineage gradually emerged in China [157, 158]. The insulated state of China in the 
1970s may have delayed the global spread of the B/Victoria lineage. Consequently,  
B/Yamagata was the major circulating lineage until B/Victoria made a global  
appearance in the mid-1980s [158]. Viruses of both influenza B lineages co- 
circulate with seasonal A/H3N2 and A/H1N1 viruses ever since [65]. The incidence of  
infections with influenza B viruses can vary drastically between influenza seasons 
[159]. Between 1985 and 2000 the influenza seasons were always dominated by 
a single influenza B virus lineage, B/Victoria in the late 80s and B/Yamagata in the 
90s, but since 2001 both lineages have been co-circulating in most influenza seasons 
both in the northern and southern hemisphere [70, 159, 160]. However, there is 
no conclusive evidence for continuous circulation of influenza B viruses in animal  
species. Consequently, this limits the potential for zoonotic transmission of  
antigenically distinct influenza B viruses and thereby the risk of pandemic outbreaks. 
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Immunity to influenza viruses
Without lifelong protection against seasonal influenza virus infections and the 
threat of possible future pandemics, it is of great importance to have insight in how  
immunity against influenza infections is formed and how influenza viruses manage 
to evade these immune responses. In contrast to immunity to influenza A viruses, 
immune responses to influenza B viruses are poorly studied. Hence, most of our 
knowledge about immunity to influenza viruses is bases on studies with influenza A 
viruses.  

Innate immunity
The primary targets for influenza viruses are the epithelial cells that line the  
respiratory tract and which initiate an antiviral immune response upon detection of 
the virus. The first line of defense is formed by the innate immune system, which 
is quick but lacks specificity and memory. Innate immunity is formed by physical  
barriers (e.g., mucus and collectins) and innate cellular immune responses [7, 161]. 

Sensing of influenza virus infection by receptors of the innate immune system 
Influenza virus infection results in the recognition of pathogen-associated molecular  
patterns (PAMPs) by pattern recognition receptors (PRRs) that initiate antiviral  
signaling cascades, resulting in the production of interferons (IFNs), cytokines and  
chemokines [162]. Three main categories of PRRs are involved in recognition of an  
influenza infection and the induction of an IFN response: Toll like receptors (TLRs),  
retinoic acid inducible gene-I (RIG-I) receptors and nucleotide oligomerization domain 
(NOD)-like receptor family pyrin domain containing 3 (NLRP3) [163-165]. 
The TLRs are the first receptors to recognize the influenza virus infection. TLR7 is an  
intracellular receptor that recognizes single stranded viral RNA (ssRNA) after the  
ribonucleoprotein complex has been degraded inside acidified endosomes [166, 
167]. TLR3 is another intracellular receptor that recognizes double stranded viral RNA  
(dsRNA) [168]. Other TLR receptors likely to sense an influenza virus infection are TLR2 and 
TLR4, which are present on the cell surface and recognize viral surface glycoproteins like  
influenza HA and NA [165, 169-171]. At a later stage of infection, newly produced  
uncapped, 5’-triphosphates bearing viral RNAs are recognized by RIG-I receptors in  
the cytoplasm [172-175]. NLRP3 is part of the NLRP3 inflammasome and is activated  
by dsRNA which subsequently activates caspase I, resulting in the proteolytic  
maturation of IL-1β and IL-18 [176]. 
The signaling cascade of all activated TLRs, except for TLR3, starts with the activation 
of MyD88, which subsequently can activate tumor necrosis factor (TNF) receptor  
associated factor 6 (TRAF6), either directly or via IL-1R-associated kinase-1 (IRAK 1), 
eventually leading to the activation of mitogen-activated kinases (MAPKs) and nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB). TLR3 signaling cascade 
starts with the activation of TRIF (TIR-domain-containing adapter inducing interferon-β) 
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eventually activating NF-κB and interferon regulatory factor 3 (IRF3). TLR4 can also signal 
via the TRIF dependent pathway by formation of a TRAM-TRIF complex. 
Activation of RIG-I receptor by binding of viral 5’-triphosphates RNA or viral dsRNA to 
the repressor domain (RD) of RIG-I results in conformational changes exposing the 
caspase activation and recruitment domains (CARDs). These domains are ubiquitinated 
by IFN-inducible E3 ubiquitin ligase, tripartite motif 25 (TRIM25) [177]. RIG-I can then  
associate with mitochondrial antiviral signaling adaptor (MAVS; also known as  
IPS-1, VISA or Cardif), starting a signaling cascade that leads to the activation of IRF3 and  
NF-κB. The signaling cascades via TLRs and RIG-I receptors have been extensively studied 
(Figure 5) [26, 175, 178, 179]. 
All these pathways eventually result in the transcription of proinflammatory  
cytokines, chemokines and IFNs that activate the antiviral response and the recruitment of 
neutrophils, activation of macrophages and maturation of dendritic cells (DCs) [162]. So 
far, three IFN types have been identified [180]. Type I IFNs include IFN-α and IFN-β which 
have an important role in limiting viral replication [181, 182]. Type I interferons secreted 
by infected cells act on IFN-α/β receptors (IFN-α/βR) of the same cell or neighboring 
cells, activating an antiviral signaling cascade that involves phosphorylation of tyrosine 
kinase 2 (Tyk2) and Janus kinase 1 (Jak1), also called, “just another kinase 1”, which 
then phosphorylate signal transducer and activators of transcription (STAT) 1 and STAT2.  
Phosphorylated STAT1 and 2 combine with IRF9 to form ISGF3 (IFN-stimulated gene  
factor-3 transcription factor complex) which is responsible for the transcription of >300 
genes that encode for e.g., antiviral proteins (Table 2) that establish an antiviral state 
in the cell that limits viral replication (Figure 6) [179]. IFN-β acts through a positive  
feedback loop on the IFN-β receptor which activates IFN stimulated gene factor 3 
(ISGF3), resulting in the expression of IRF-7. IRF-7 is phosphorylated in the presence of 
a viral infection and induces the expression of both IFN-α and IFN-β [183]. IFN-γ is the 
main type II IFN and contributes to the establishment of an effective adaptive cytotoxic 
T cell (CTL) response against the influenza virus infection. It regulates virus-specific CTL 
homeostasis in secondary lymph nodes and subsequent trafficking of CTLs to the site of 
infection [196]. Furthermore, IFN-γ plays an important role in memory CTL responses 
[197]. Type III IFNs, like IFN-λ, also control influenza A infections in the lung [198].  
  

Table 2 IFN-induced antiviral proteins and their function
Protein Function Reference
MxA (Myxovirus  
resistance gene A)

Inhibits viral replication by interfering with the viral 
ribonucleoprotein structure [184-186]

PKR (Protein kinase R) Limits viral replication by blocking general translation [187, 188]
OAS  
(2’–5’oligoadenylate synthe-
tase)

Stops viral replication by means of activating RNAseL 
which results in degradation of viral and cellular RNA 
and eventually apoptosis of the virus infected cell

[189, 190]

ISG15 (IFN-stimulated gene 15) Regulates a number of IFN-stimulated proteins [191]
Viperin Inhibits viral release by interfering with viral budding [192]
Tetherin Inhibits formation of influenza virus particles [193, 194]
IFITMs Restrict viral entry [195]
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Figure 5 The RIG-I signaling pathway and inhibition by influenza A viruses 
By-products of viral replication are 5’-triphosphates ssRNA and dsRNA which can bind to the RIG-1 receptor, leading 
to conformational changes, causing exposure of the CARDS which are ubiqutinated by TRIM25. Subsequently, RIG-1 
associates with MAVS and thereby starts a signaling cascade leading to activation of transcription factors IRF3, NF-κB 
and ATF-2/JunC, resulting in the transcription of IFN-β mRNA. Indicated in red are sites at which the influenza A virus 
interferes with this pathway, as explained in the text. (Figure adapted from [26]).
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Figure 6 The type I IFN signaling pathway and inhibition by influenza A viruses 
IFN-β produced by influenza virus-infected cells binds IFN receptors causing the phosphorylation of Tyk2 and Jak1. 
This is followed by binding and phosphorylation of STAT1 and STAT2 which subsequently form a complex with 
IRF9. This ISGF-3 complex acts as a transcription factor for >300 genes, several of which display an antiviral effect 
(see text). The expressed protein PKR is activated upon recognition of viral dsRNA, leading to inhibition of protein  
synthesis, including viral proteins. PKR is inhibited by the cellular protein P58IPK, however P58IPK activity is  
downregulated by binding cellular hsp40. The IRF7 protein is phosphorylated in the presence of influenza A virus, 
leading to activation of a positive feedback loop, causing the transcription of IFN-α and IFN-β. Indicated in red are 
mechanisms of the influenza A virus to interfere with this pathway, these interfering mechanisms are explained more 
extensively in the text. (Figure adapted from [26]).
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Macrophages 
During homeostasis, alveolar macrophages exhibit a relatively quiescent state, 
producing only low levels of cytokines, and suppress the induction of innate and 
adaptive immunity [199, 200]. CCL2, produced by infected epithelial cells during 
the initial phase of the influenza virus infection, attracts alveolar macrophages and 
monocytes via their CCR2 receptor [201-203]. Activated macrophages enhance their 
pro-inflammatory cytokine response, including IL-6 and TNF-α [204, 205]. Alveolar 
macrophages have a direct role in limiting viral spread by phagocytosis of apop- 
totic infected cells [171, 206, 207] and by phagocyte-mediated opsonophagocytosis 
of influenza virus particles [208]. They are also involved in regulating the adaptive 
immune response. Depletion of alveolar macrophages prior to influenza virus infec-
tion led to a reduction of antibody titers and reduced numbers of virus-specific CTLs 
post-infection [207]. In contrast to these beneficial effects, alveolar macrophages 
also pose a negative effect, since their activation also results in the production of 
nitric oxide synthase 2 (NOS2) and TNF-α which contribute to the severe pathology 
that can be the result of an influenza virus infection [201, 209, 210].

Natural Killer cells
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system. 
They are able to lyse infected cells in a MHC class I independent manner via a direct 
or indirect mechanism of recognition. The sialylated NKp44 and NKp46 receptors are 
bound by the HA proteins expressed on the surface of influenza virus-infected cells 
[211]. This results in direct lysis of the infected cell [212, 213]. It was shown that 
mice lacking the NKp46 receptor equivalent, NCR-1, displayed increased morbidity 
and mortality following influenza A infection [214]. NK cells with their CD16 receptor 
(FcγRIII) can bind to the Fc portion of antibodies bound to influenza virus-infected 
cells and mediate lysis of these cells. This process is known as antibody-dependent 
cell cytotoxicity (ADCC) [215-217]. 

Dendritic Cells
Dendritic cells (DCs) are professional antigen presenting cells (APCs) which form 
an important bridge between the innate and the adaptive immune system. During 
an infection, DCs initiate adaptive immune responses by the presentation of viral 
antigens to naïve and memory T and B lymphocytes (Figure 7) [199, 218, 219]. At 
steady state conditions, DCs constantly survey the lungs for invading pathogens 
or foreign material [220]. Once the lungs are infected with an influenza virus, the 
DCs can acquire the antigens via two distinct mechanisms. The first route is by  
direct infection of DCs by the influenza virus [221, 222]. Proteasomes in the cytosol  
degrade viral proteins into small peptides which are transported to the endoplasmic 
reticulum (ER) via TAP (transporter of antigen processing), where they are loaded to 
MHC class I molecules. These MHC class I peptide complexes are then transported 
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via the Golgi complex onto the cell membrane where they can be recognized by  
influenza virus-specific CD8+ cytotoxic T cells (CTLs) (Figure 8) [218, 223]. The second 
mechanism of antigen acquisition by DCs is through phagocytosis of virus particles 
or apoptotic epithelial cells [218, 224-226]. Viral proteins are then degraded into 
smaller peptides in endosomes/lysosomes and presented on the cell surface in MHC 
class II peptide complexes which can be recognized by CD4+ T helper cells. T helper 
cells assist B cells to proliferate and mature into antibody-producing plasma cells. Via 
this route of antigen acquisition, DCs can also present epitopes to CD8+ T cells. This is 
also known as cross-presentation. For presentation of viral antigens to virus-specific 
T cells, activated DCs migrate to the draining lymph nodes [220, 227-229]. 

Figure 7 Induction of humoral and cellular immunity 
Induction of immune responses after a primary influenza virus infection is indicated by solid arrows. The more 
rapid activation of virus-specific memory cell populations upon secondary encounter with an influenza A virus are  
indicated by dotted arrows.
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Adaptive immunity
The second line of defense against influenza virus infection is the adaptive  
immune response. Overall, this highly specific response is relatively slow upon first  
encounter with a pathogen. However, as a result of the formation of immunological  
memory, the response is faster and stronger after a second encounter with the 
same pathogen. The adaptive immune response consists of humoral (virus-specific  
antibodies) and cellular (virus-specific CD4+ and CD8+ T cells) immunity. 

Humoral immunity 
Influenza virus infection induces the production of influenza virus-specific  
antibodies by B cells [230-233]. In particular, antibodies directed to the viral HA and NA  
correlate with protective immunity. 
Antibodies directed to the trimeric globular head of HA can afford sterilizing  
immunity to influenza virus infection. By binding to the HA receptor binding site  
located in this region they can block virus attachment to host cells and/or block  
receptor-mediated endocytosis [234-236]. However, most antibodies directed 
against HA are influenza virus strain-specific and fail to neutralize intrasubtypic 
drift variants and viruses of other subtypes [79, 237-240]. This is mainly due to the 
high variability in the HA globular head (see also the Escaping the Humoral Immune  
Response paragraph). Of interest, humoral immunity elicited after an influenza  
virus infection does provide long-lasting antibody mediated protection against 
strains that resemble the infected strain. This was exemplified during the pandemic 
of 2009 caused by an influenza A virus of the H1N1 subtype. Elderly people that were 
exposed to influenza A/H1N1 virus in the 1950s had antibodies which cross-reacted 
with the pandemic strain and were relatively spared from contracting infections and 
developing disease [103, 240-242]. Recently, broadly reacting antibodies directed 
against the conserved stem region of HA have been identified for influenza A [243-
251] and B viruses [252, 253]. 
Antibodies to the other major glycoprotein, the viral NA, interfere with the last phase 
of the viral replication cycle and also exert protective immunity. Unlike HA-specific 
antibodies, NA-specific antibodies do not neutralize the virus. However, by inhibiting 
the enzymatic activity of NA, these antibodies limit the viral spread and thus shorten 
severity and duration of illness [254-258]. Furthermore, NA-specific antibodies may 
also contribute to clearance of virus-infected cells by facilitating ADCC [215].
In addition to HA and NA, influenza virus particles contain the minor glyco- 
protein M2. A protective effect of M2-specific antibodies was first demonstrated in 
mice after passive transfer of M2-specific monoclonal antibodies [259, 260]. M2- 
specific antibodies facilitate ADCC [217, 261, 262]. Since the M2 protein is highly  
conserved between various influenza A virus subtypes and the two influenza B  
lineages, M2-specific antibodies are likely to afford heterosubtypic immunity [263-
270]. 
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After infection, antibodies are also induced against other viral proteins, including 
NP [271]. Since NP is highly conserved between influenza A or B viruses, these  
antibodies could potentially contribute to heterosubtypic immunity. Although 
NP-specific antibodies are non-neutralizing, it was shown in mice that they  
contribute to protective immunity [272, 273]. However, their mode of action is  
poorly understood, but may include ADCC of infected cells and opsonisation of NP, 
resulting in improved T cell responses [274, 275].
After primary infection with influenza virus, serum antibodies of the IgM, IgA and 
IgG isotypes are induced, whereas after secondary responses, IgM responses are 
not observed [276]. IgM antibodies can neutralize the virus, but also activate the 
complement system [277, 278]. In humans, virus-specific serum IgA responses seem 
indicative for recent infection with influenza virus [279, 280]. Virus specific IgG  
antibodies correlate with long-lived protection, provided that the antibodies 
match the strains causing the infection [281-283]. In addition to serum antibodies,  
influenza virus infection also induces local mucosal sIgA antibody responses that  
protect airway epithelial cells from infection [282, 284, 285].
Young infants may be protected from influenza virus infection by maternal  
antibodies, when they match the incoming virus [286-290].

Cellular immunity 
Influenza virus infection induces a cellular immune response, including virus- 
specific CD4+ T cells and CD8+ T cells. These cells play an important role in regulation 
of the immune response and viral clearance respectively.

CD4+ T cells
CD4+ T cells are activated after recognition of viral epitopes associated with 
MHC class II molecules and interaction with co-stimulatory molecules on APCs.  
Depending on the cytokine milieu, activation of naïve CD4+ T cells can result in the 
differentiation into CD4+ T helper 1 (Th1) or Th2 cells, which can be distinguished 
based on their cytokine expression profiles [291]. Th2 cells produce IL-4, IL-5 and 
IL-13 and promote the activation and differentiation of B cells, resulting in antibody 
production [292-294]. The antibody response is strengthened by the induction of 
antibody class switching and somatic hypermutations affecting the variable region 
of the antibody, resulting in affinity maturation of the influenza-specific antibodies 
[295-298]. Th1 cells produce IFN-γ and IL-2 and are mainly involved in promoting 
CTL responses [299, 300], and are essential for the induction of memory CD8+  T 
cells [301-303]. Memory CD4+  T cells, induced after a primary influenza A virus  
infection, contribute to faster control of subsequent influenza A virus infections 
[304]. Lung-resident memory CD4+ T cells in particular have an important role in 
protection against secondary influenza A virus infections [305]. In addition to  
helper function, CD4+ T cells also display cytolytic activity [306, 307]. It was 
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shown that these cells play a role in protective immunity against influenza A virus  
infections in humans [308], including in heterosubtypic immunity [309]. The role of 
CD4+ T cells in influenza B virus infections is less well studied. 

CD8+ T cells
Naïve CD8+ T cells are activated after recognition of viral epitopes associated with 
MHC class I molecules on APCs in the draining lymph nodes, and subsequently  
differentiate into CTLs. These CTLs migrate to the site of infection where they  
recognize and eliminate influenza virus infected cells and thereby prevent the  
production and spread of progeny virus [310]. Human influenza virus-specific CTLs 
are mainly directed against epitopes of the highly conserved internal viral proteins, 
like M1, NP, PA and PB2. Therefore, CTLs display a high degree of cross-reactivity with 
influenza A viruses of various subtypes [311-317]. T cell receptor (TCR) activation 
by a specific epitope-MHC class I complex results in a lytic response, mediated by 
the release of perforin and granzymes causing apoptosis of the infected cell [318-
320]. Furthermore, proinflammatory cytokines are produced, like TNF-α, which also  
inhibit virus replication and enhance lytic activity [318, 321-324]. Also, FasL  
expression is upregulated which promotes apoptosis of infected cells [320].  
After infection, a pool of long-lived antigen-specific central memory and effector  
memory CD8+ T cells is formed, which form the basis for more rapid and stronger recall  
responses upon secondary infections [325-334]. 
Much of the current knowledge about the protective role of CD8+ T cells in influenza 
A virus infections has been obtained from mouse studies which showed that CD8+ 

T cells contribute to homo- and heterosubtypic immunity [335-342]. Evidence that 
CTLs protect against influenza in humans is sparse. A recent study indicated the pres-
ence of heterosubtypic memory CD4+ and CD8+ T cells against the 2009 pandemic 
A/H1N1 virus in naïve individuals [343]. The presence of these cells correlated with 
protection against severe disease caused by a 2009 pandemic A/H1N1 virus infec-
tion [344]. It was shown that the extent of lytic activity of PBMC inversely correlated 
with the extent of virus shedding after experimental infection of subjects that lacked 
antibodies to the live attenuated strain used for infection [345]. More circumstantial 
evidence for a protective role of CD8+ T cells in heterosubtypic influenza infections 
in humans comes from epidemiological studies. People who had a symptomatic  
influenza A infection with the A/H1N1 strain prior to the 1957 pandemic were  
partially protected from infection with the pandemic A/H2N2 strain [346, 347]. 
A similar trend was found in isolated infections with the A/H5N1 [348]. Little is 
known about the role of CD8+ T cells in influenza B virus infections. It remains to be  
established whether influenza B virus-specific CTLs are able to cross-react  
between viruses of the two influenza B lineages. 
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Regulatory T cells and Th17 cells
In addition to the activation of virus-specific CD4+ T cells and CD8+ T cells, 
two other cell types are activated, namely forkhead box P3 (FOXP3)+  

regulatory T cells (Tregs) and T helper 17 (Th17) cells. Tregs play an important role in  
balancing the immune response during infection. They control CD4+ T  
helper cell and CTL responses in order to prevent immunopathology of infected  
tissues [324, 349, 350]. Th17 cells produce IL-6 which inhibits the effects of Tregs and 
therefore promote T helper responses [349]. Furthermore, Th17 cells have a role 
during influenza infections in counteracting secondary bacterial infections, e.g. S. 
aureus pneumonia. Influenza A virus infections may promote secondary bacterial 
pneumonia by suppressing Th17 cells in an type I IFN-dependent manner [351].

Evasion of the antiviral immune response by influenza viruses
Immune pressure on influenza viruses forces them to adopt strategies to evade 
immunity. Binding of influenza viral proteins to various components of the  
innate immune system leads to their inhibition (Figures 5 and 6) [26], whereas a  
combination of immune pressure in the human population and the high mutation 
rate of influenza viruses leads to the generation of new virus strains that escape 
the existing adaptive humoral and cellular immune responses (Figures 3 and 8). As  
immune responses to influenza B viruses are less well studied than immune  
responses against influenza A viruses, most of our knowledge about viral  
evasion strategies described here is based on studies that used influenza A viruses.  
Individual evasion strategies adopted by influenza B viruses are indicted.

Escape from innate immunity
Upon infection, innate antiviral immune response are first induced. Viral RNA of 
both influenza A and B viruses are encapsidated by NP to reduce the formation of  
dsRNA which could otherwise lead to activation of RIG-I signaling. Since most PRRs are  
located inside the cytoplasm, the nuclear replication strategy of the influenza  
viruses prevents the recognition of viral RNA by cytosolic PRR. However, the innate 
IFN response is initiated much faster upon an influenza B virus infection than after  
influenza A virus infection [352]. Although the exact moment of endosomal  
membrane fusion and the subsequent release of the viral ribonucloproteins (vRNPs) 
into the cytosol is unknown for influenza B viruses, it was speculated that influenza 
B virus vRNPs might be released in the early endosomes, whereas influenza A virus 
vRNP complexes are released in the late endosomes [48], resulting a more rapid 
activation of the innate immune system. The late release of vRNP complexes into 
the cytosol by influenza A viruses and thereby the delay in activation of the innate 
immune system might be explained as an immune evasion strategy. 
Influenza viral proteins can contribute directly to antagonizing the antiviral innate  
immune response, especially the NS1 protein. Cells infected with genetically  
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modified influenza viruses with a non-functional NS1 gene displayed stronger 
IFN responses than cells infected with wild type virus. Viruses with a NS1 defect 
also display reduced virulence after infection of mice and pigs [353-359]. NS1  
inhibits RIG-I receptor signaling by various means. One way the influenza A virus NS1  
protein (A/NS1) antagonizes the IFN response is by binding to viral ssRNA and dsRNA in  
order to prevent RIG-I and PKR activation [173, 360]. Influenza B virus NS1 protein  
(B/NS1) is able to partially antagonize the IFN response by binding to dsRNA and 
thereby inhibiting PKR activation [361-363]. Whether B/NS1 can also bind ssRNA 
is currently unknown. More downstream of the RIG-I signaling pathway, A/NS1  
prevents oligomerization of TRIM25 by interacting with the coiled coil domain, 
and so inhibits TRIM25-mediated RIG-I CARD ubiquitination which is essential for  
downstream signaling [364], a function currently unknown for B/NS1. Activation 
and nuclear translocation of IRF-3, NF-κB and ATF-2/c-Jun is also prevented by  
A/NS1 [365-368]. Hereby A/NS1 limits RIG-I mediated transcriptional activation of 
the IFN-β promoter [369, 370]. So far, B/NS1 has only been shown to inhibit nuclear  
translocation of IRF-3 [371]. A/NS1 also alters host cell gene expression by  
binding to CPSF30 (cleavage and polyadenylation specificity factor); it prevents  
polyadenylation of the 3’ end of host pre-mRNA [372-374]. Furthermore, A/NS1  
limits gene expression in general, interfering with the mRNA export machinery  
[375, 376]. Both functions are unknown for B/NS1. Another function unique for  
the A/NS1 protein is its ability to activate phosphatidylinositol 3-kinase (PI3K) in  
order to prevent premature apoptosis during viral propagation [377]. 
NS1 is not the only viral protein that restrains the innate immune system. As for 
the other viral proteins (PB2, PB1-F2, PA-X and NP) which have been described to 
have a role in viral evasion of the innate immune response only the cap-snatching  
mechanism of the polymerase complex has also been described for influenza B  
viruses [378, 379]. Cap-snatching of host mRNAs reduces host cell gene expression 
including that of IFN-β [380-384]. 
Both influenza A virus PB2 (especially variants containing an aspartic acid at position 
9) and PB1-F2 (only variants containing a serine at position 66) limit the production 
of IFN-β through association with MAVS [32, 33, 385-387]. 
The recently discovered PA-X viral protein is able to repress cellular gene expression, 
especially those genes involved in regulating the initiation of the cellular immune 
response [36].
As described above, influenza virus infection leads to the production of antiviral PKR 
(Table 2). In order for PKR to limit viral replication, it first needs to be activated by  
viral dsRNA. PKR activation is under tight regulation of the cellular p58IPK protein 
which inhibits PKR activity, but is inactive when it forms a complex with heatshock 
protein 40 (hsp40) [388, 389]. Binding of influenza A virus NP to the p58IPK-hsp40 
complex releases p58IPK, and thereby NP inhibits the effects of PKR [390]. In contrast, 
the influenza A and B virus M2 protein, which also binds the p58IPK-hsp40 complex, 
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inhibits p58IPK release and thereby limits protein synthesis which eventually leads to 
host cell apoptosis, possibly enhancing viral particle release (figure 6) [391]. 
In addition to limiting the production of type I IFNs, influenza A virus also disturbs 
type I IFN receptor signaling. Influenza A virus infection induces the expression of 
SOCS (suppressor of cytokine signaling) proteins which inhibit IFN α/β receptor  
signaling on the level of JAK/STAT activation [392, 393]. 
Besides interfering with innate signaling, influenza A viruses are also able to  
counteract cells of the innate immune system. For example, influenza A virus  
infection of monocytes impairs their ability to differentiate into mature DCs [394].  
Furthermore, it was shown that A/NS1 can inhibit DC maturation, and so indirectly 
limit the induction of virus-specific CD8+ T cell responses [395]. The NK response 
elicited during an infection is also evaded by the influenza A virus [396]. The gradual 
mutation of glycosylation sites of influenza virus HA proteins leads to reduced NK 
recognition of the HA on virus-infected cells [397]. Downregulation of the ζ chain 
of NKp46 receptors by free HA proteins results in impaired signaling and thereby 
decreased cytotoxicity of NK cells [398]. Furthermore, influenza A virus can directly 
infect and kill NK cells [399]. 

Escaping the humoral immune response 
Various mechanisms contribute to immune evasion of influenza viruses from the  
humoral immune response. Due to the lack of proofreading activity, the  
transcription of viral RNA by the viral RNA polymerase is error prone and results in  
mis-incorporation of nucleotides. As a result, quasi species of viruses are formed 
with random mutations in the genome. The nucleotide substitution rate for both  
influenza B lineages is estimated around 2.0 x 103 substitutions per site per year 
and is considerably lower than the estimates for seasonal A/H3N2 (5.5 x 103) and  
A/H1N1 (4.0 x 103) viruses [67, 70, 400, 401]. Under the selective pressure of  
antibodies that are present in the human population, induced after influenza virus 
infections and/or vaccination, variants are positively selected from the quasi species 
that have accumulated amino acid substitutions in the antigenic sites of HA that are 
recognized by virus-neutralizing antibodies. This antigenic drift allows the virus to 
evade recognition by antibodies and to cause recurrent influenza epidemics yearly 
(Figure 3) [68, 69, 79, 400]. 
The introduction of an influenza A virus of a novel antigenically distinct subtype 
into the human population (antigenic shift) may cause a pandemic outbreak when  
successful human-to-human transmission is established, since neutralizing  
antibodies against the new virus strain are absent in the population at large  
(Figure 3) [79]. Introduction of antigenically distinct viruses can occur after zoonotic  
transmission of influenza A viruses only, as influenza B viruses lack an animal  
reservoir. However, in most cases, pandemics were caused by viruses that had  
exchanged gene segments between human and avian or swine influenza A  
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viruses [86, 402]. For re-assortment to take place, cells need to be infected with two  
influenza A viruses simultaneously [155]. Since epithelial cells of the swine  
respiratory tract have receptors for both avian and human influenza A viruses, this 
species can serve as a mixing vessel for the emergence of re-assorted influenza A  
viruses [85, 111, 403-405]. Of interest, functionally important and conserved  
sequences in the surface proteins, like the fusion peptide, are inaccessible for  
antibody recognition, since they are buried inside the protein [406]. Similar  
strategies to evade antibody recognition are shared by other viruses, like human 
immunodeficiency virus (HIV) [407, 408].

Escaping the cellular immune response 
Viruses have adopted various strategies to evade recognition by virus- 
specific T cells. For example, viruses with a large DNA genome (e.g. herpes viruses) can  
encode proteins that interfere with various steps in the antigen processing and  
presentation pathways [409]. Most RNA viruses, including influenza viruses, have  
relatively small genomes and limited coding capacity. Thus far only the PA-X protein 
has been described to down-regulate MHC class I expression [36]. Influenza A viruses 
also evade recognition by T cells through their high mutation rates and the selective  
pressure exerted by virus specific T cells. 
Relatively more non-synonymous mutations are observed in the CTL epitope regions 
of influenza A virus NP than in the rest of the protein, indicating that CTL epitopes 
are under selective pressure [410]. However, amino acid substitutions flanking an 
epitope may also affect antigen presentation by changing the cleavage motifs used 
by the proteasome, alter trimming of the N- and C-terminal sequence by cytosolic 
or ER resident proteases or impair the translocation via TAP (Figure 8) [411-414] as 
was demonstrated for several chronic infectious diseases, namely for HIV [415-417], 
Hepatitis C Virus (HCV) [418] and Epstein-Barr Virus (EBV) [419, 420]. So far, it is  
unknown whether this CTL evasion mechanism is utilized by viruses that cause acute 
infections like influenza viruses.
Amino acid substitutions inside CTL epitopes may affect presentation of the  
epitope in different ways. Amino acid substitutions at an anchor residue may result in  
complete loss of the epitope, since it may no longer bind to its corresponding 
MHC class I molecule (Figure 8) [421-425]. Mutations at TCR contact residues 
can affect recognition by specific T cells, since the epitope no longer matches the  
specificity of the TCR (Figure 8) [422, 423, 426, 427]. These types of mutations have 
been observed in escape mutants of viruses that chronically infect their host, like HIV 
[428-435], HCV [436], EBV [437, 438] and Lymphocytic Choriomenigitis Virus (LCMV) 
[439]. Both types of amino acid substitutions also have been observed during the 
evolution of seasonal influenza A/H3N2 viruses [422, 424, 425]. An example of a  
mutation at an anchor residue is the R384G substitution in the HLA B*2705  
restricted influenza A virus NP383–391 epitope [424]. This substitution considerably  
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Figure 8 MHC class I presentation of influenza virus epitopes and viral escape
This figure represents a virus-infected cell and the presentation of viral epitopes by MHC class I molecules. The virus 
can escape recognition by virus specific CTLs by: (1) Mutations in TCR contact residues of CTL epitopes in order to 
prevent recognition of the epitope MHC class I complex by specific CTLs, or (2) mutating the anchor residues of the 
CTL epitope which prevents binding of the epitope to MHC class I molecules. Furthermore, mutations outside the 
CTL epitope may affect antigen processing by the proteasome or transport via the TAP respectively (3 and 4).

affected the human virus-specific CTL response in vitro [421]. It is remarkable that 
this mutation reached fixation rapidly, despite the fact that it is recognized by a  
minority of human subjects only. This could be explained by strong intra-host  
advantages and founder effects in a theoretical model [440].
An example of amino acid variation at TCR residues includes that observed in the 
HLA-B*3501 restricted influenza A virus NP418–426 epitope [426, 427]. Variation in this 
epitope displays signs of antigenic drift [441], and dictates the specificity of the CTL 
response to this epitope and also forms an explanation for cross reactivity of CTL 
against contemporary viruses with historic strains [442]. 
Of interest, functional constraints may limit variation in CTL epitopes. For  
example, the R384G mutation in the NP383–391 epitope was detrimental to viral fitness 
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and was only tolerated in the presence of functionally compensatory co-mutations 
[443, 444]. Other influenza A CTL epitopes remain highly conserved even between  
different subtypes of influenza A viruses, like the HLA-A*0201 / HLA-C*0801  
restricted M158-66 epitope [445-447]. The conservation of this epitope remains 
high despite the immunodominant nature of the epitope [313, 448] and the high  
prevalence of the HLA-A*0201 allele in the human population [449]. Mutations at 
the TCR contact or anchor residues are simply not tolerated without loss of viral 
fitness [410, 450], most likely because of a highly conserved nuclear export signal 
that overlaps with the M158-66 epitope [451, 452]. The virus’ inability to mutate this 
epitope is remarkable, especially since its origin in currently circulating seasonal  
A/H3N2 viruses can be traced back all the way to great pandemic of the 1918s  
(Figure 4) [81-83, 86, 91, 101, 453, 454]. At present, it is unknown if influenza  
viruses can also accumulate extra-epitopic mutations in order to prevent efficient  
processing and presentation of these highly conserved epitopes. 
Of interest, amino acid variation in the HA of influenza A/H3N2 viruses was also  
associated with escape from recognition by CD4+ T cells, but not with escape from 
recognition by antibodies [455]. 
Thus far, no studies were performed to assess whether influenza B viruses are  
capable of escaping the influenza B virus-specific CD4+ T cell and CTL responses. 

Influenza vaccines
To prevent severe disease and mortality, annual vaccination of individuals at high risk 
for influenza is recommended [65].

Current influenza vaccines 
Trivalent versus quadrivalent vaccines
Trivalent seasonal influenza vaccines have been the gold standard for many years. 
These vaccines contain components of two influenza A strains (seasonal influenza 
A/H3N2 and A/H1N1 strain) and one influenza B strain (B/Yamagata or B/Victoria 
lineage) [456]. Unfortunately, antibodies directed against a virus of one influenza 
B lineage poorly cross-react with viruses of the opposing influenza B lineage [457, 
458]. Since only one influenza B virus lineage is included, vaccine effectiveness is 
reduced in case the epidemic strain is of the opposing lineage [457, 459, 460]. The 
increased co-circulation of both influenza B lineages in the last decade has led to 
more frequent mismatches between the vaccine strain and the most dominant  
circulating influenza B lineage [70, 159, 457, 461-463]. Notably, in the ten  
seasons between 2001-2002 and 2010-2011, the B lineage selected for the seasonal  
trivalent influenza vaccine only matched the dominant circulating B lineage 5 times 
in the US and Europe [159, 461]. Frequent mismatches were also observed for the  
southern hemisphere. In Australia 7 out of 13 and in New Zealand 8 out of 13  
seasons (2001 to 2013) were (partially) mismatched [70]. To address the  
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problem of two co-circulating antigenically distinct influenza B lineages, quadrivalent  
vaccines, containing components of both influenza B lineages, have become  
available in some countries [456, 464, 465]. Clinical trials thus far have shown that 
quadrivalent vaccines are comparable to trivalent vaccines regarding safety and  
immunogenicity [466-475]. Recommendations for virus strains used for next years’ 
quadrivalent vaccines can be found on the WHO website [456]. The benefits of using 
a quadrivalent vaccine over a trivalent vaccine are obvious, as they elicit antibody 
responses against viruses of both lineages [466-469], they eliminate the risk that 
the incorrect influenza B lineage is selected for inclusion in the vaccine. However, 
unforeseen antigenic drift within either influenza B lineage or the two influenza A 
virus strains may still affect vaccine effectiveness. 

Inactivated versus live attenuated vaccines
Currently used seasonal influenza vaccines are predominantly inactivated vaccine 
preparations that aim at the induction of strain-specific antibodies that match 
the epidemic strains [476, 477]. As described above, antigenic drift of influenza  
viruses allows the seasonal viruses to escape the neutralizing activity of antibodies 
induced by previous infections or vaccination. Therefore, the vaccine fails to afford 
life-long protection and needs to be updated almost annually [478]. Furthermore, the  
production of the vaccine takes several months, so the  recommendation for the  
vaccine strains of the upcoming influenza season is made months in advance [478]. 
In most influenza seasons, the predicted vaccine strains match the epidemic strains. 
Occasionally however, a predicted influenza vaccine strain does not match the  
circulating strain, resulting in suboptimal protection afforded by the vaccine [479-
481]. In the event of an emerging pandemic outbreak, the time needed to produce 
and distribute a pandemic influenza vaccine is also a major drawback [482-484].  
Seasonal influenza vaccines do not afford protection against pandemic strains of  
novel subtypes, since the vaccine-induced antibodies do not cross-react and 
cross-reactive T cell responses are not induced. Currently-used inactivated vaccines 
may even interfere with the induction of cell-mediated immunity otherwise induced 
by natural infections, especially in young children that are still immunologically naïve 
to influenza viruses. In this way, inactivated vaccines can hamper the development 
of heterosubtypic immunity [485-490]. 
Alternatively, cold-adapted live attenuated seasonal influenza vaccines are 
used [491-494]. The advantage of live attenuated vaccines is that they also elicit  
cellular immune responses [495, 496] and mucosal immunity [493]. In addition live  
attenuated seasonal influenza vaccines have been shown to be more  
effective in preventing influenza virus infections in young children as compared to  
inactivated vaccines [497, 498]. Also quadrivalent live attenuated influenza vaccines are  
available [499]. Unfortunately, the administration of live attenuated influenza  
vaccines is restricted for certain high-risk groups [464, 500].
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Novel vaccine strategies
Ideally, seasonal vaccines are used that induce broad-protective immunity against 
drift variants and potentially pandemic viruses of novel subtypes. The development 
of vaccines that induce broadly neutralizing antibodies and preferably long-lasting 
heterosubtypic CTL responses is desirable. 
Current influenza vaccines may benefit from adjuvants that aim to induce stronger 
T cell responses. Although adjuvants that are currently available, like aluminium 
salts (Al(OH)3 and AlPO3) and oil-in-water adjuvants (e.g. MF59 and ASO3) enhance  
antibody responses they lack the ability to induce broad-reactive CTL responses 
[501-505]. Unfortunately, the ASO3-adjuvanted 2009 pandemic A/H1N1 vaccine was 
associated with an increased risk of narcolepsy in children [506].
Since viral proteins like NP and M1 are highly conserved, they are likely targets for 
the induction of cross-reactive T cell responses [507]. Induction of efficient CTL  
responses depends on effective endogenous antigen processing and presentation 
by MHC class I. This requires effective delivery of viral proteins into the cytosol.  
Several cytosolic delivery vaccine candidates are under investigation, including DNA 
vaccines, recombinant viral vectors, ISCOMS and virosomes, some of which already 
have made it into clinical trials [508-516]. 
Also, the induction of cross-reactive antibodies has attracted attention in recent  
years; antibodies directed against the more conserved stem region of the HA  
molecule are of special interest. In contrast to the subtype-specific antibodies  
induced against the globular head of HA, these HA stem-specific antibodies  
display broad-neutralizing activity against multiple influenza virus subtypes [243, 
244, 252]. Using this stem region as an immunogen, broadly protective antibody  
responses could be induced [247, 517-519]. Another broad-protective vaccine  
approach targets the highly conserved HA0 cleavage site of influenza B viruses  
[520]. 
Other vaccine strategies aim at the induction of antibody responses to the more  
conserved M2 surface protein. The ectodomain of the M2 protein is highly  
conserved and antibodies induced against this region afford protection against  
challenge infection [266, 269, 270, 521, 522]. The mode of action is not  
neutralization per se, since M2 is a minor antigen on virus particles. However, since 
it is also expressed on the surface of infected cells, ADCC is probably responsible for 
the protective effect of these antibodies [268]. 
Recently, live attenuated influenza vaccines have been developed by disrupting 
NS1 activity through deletion or truncation of the NS1 gene [356, 358, 359, 367, 
523-525]. Hence, the virus is unable to interfere with the innate immune response,  
leading to stronger immune responses after vaccination.
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Outline of this thesis
In this thesis, the role of human CD8+ cytotoxic T lymphocytes (CTLs) in the formation 
of long-lasting broad protective heterosubtypic immunity was assessed.

Although the role of CTLs and their target epitopes has been intensively studied 
for influenza A virus infections, strikingly little is known about the role of CTLs in 
(cross-) protective immunity against influenza B viruses. This is of special interest  
because influenza B virus neutralizing antibodies poorly cross-react with viruses of the  
opposing lineage. Up to now only a handful of influenza B virus CTL epitopes have 
been described in literature, but possible cross-reactivity of these CTLs has not been 
studied. To assess the cross-reactivity of influenza B virus-specific polyclonal CTLs, 
obtained from healthy study subjects, with intra-lineage drift variants and viruses 
of the opposing lineage we determined their interferon gamma (IFN-γ) response 
and lytic activity after stimulation with cells infected with the opposing lineage. In 
chapter 2 we demonstrate for the first time that CTLs directed to viruses of the  
B/Victroia lineage cross-react with viruses of the B/Yamagata lineage and vice versa. 
In chapter 3, we assessed the cross-reactivity of human CTLs specific for  
seasonal influenza A viruses with the newly emerging A/H7N9 virus. Seasonal  
influenza A H3N2, H1N1 and H1N1pdm09 virus-specific polyclonal CD8+ T cells,  
obtained from healthy study subjects, displayed a strong IFN-γ response and lytic 
activity to A/H7N9 virus-infected target cells. The level of recognition was similar 
to that of seasonal human influenza A virus infected target cells. It was concluded 
that CTLs specific for seasonal influenza A viruses are cross-reactive with the novel  
A/H7N9 virus. Thus, pre-existing CTL immunity to seasonal influenza A viruses in 
the human population may provide a certain level of protection against potentially  
pandemic heterosubtypic influenza A viruses, like A/H7N9.
However, the longevity of these (cross-reactive) influenza virus-specific CTL  
responses is largely unknown. In chapter 4 we used peripheral blood mono- 
nuclear cells (PBMCs), obtained from healthy blood donors between 1999 and 
2012, to assess the longevity of the influenza A virus-specific CTLs. We were able to  
demonstrate that influenza A virus-specific CTLs are long-lived and that the various 
subsets were relatively stable over the years. Furthermore, intercurrent influenza 
A virus infections transiently increased the frequency of functional distinct subsets 
of influenza A virus-specific CTLs, in particular the effector, effector memory and 
effector memory RA subsets. These subsets decreased in the contraction phase to 
“baseline” levels. Since the majority of these CTLs are cross-reactive they are likely 
to provide protective immunity against an antigenically distinct influenza A virus (like  
A/H7N9) even in the absence of a recent seasonal influenza A virus infection.
Although the internal proteins against which most CTLs are directed are  
generally more conserved than the antigenic sites of neutralizing antibodies, CTL 
epitopes have previously been shown to be variable under specific CTL immune 
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pressure. However, some influenza A virus CTL epitopes are highly conserved  
between different subtypes of influenza A viruses. They do not allow mutations in 
their T cell receptor contact or MHC class I anchor residues without loss of viral 
fitness. In chapter 5, we investigate the role of extra-epitopic amino acid mutations 
in the CTL escape of the otherwise fully conserved HLA-A*0201 restricted M158-66 
(GILGFVFTL) epitope. We were able to demonstrate that naturally acquired amino 
acid substitutions in extra-epitopic positions of the human seasonal A/H3N2 virus 
resulted in a delay and reduced activation of M158-66-specific CTLs when compared to 
stimulation with cells infected with an avian A/H5N1 virus in which these amino acid 
substitutions were absent. We are the first to demonstrated that naturally occurring  
extra-epitopic substitutions in human influenza A viruses play a role in evading the  
virus-specific CTL response. The absence of these substitutions in the 2009  
influenza A virus pandemic might have contributed to an overall less severe  
disease outcome for individuals carrying the HLA-A*0201 allele. 
Based on these and other studies we conclude that CTLs contribute to protective 
immunity against severe influenza A virus infection especially in the absence of a  
protective antibody response for example during a pandemic outbreak. Seasonal  
inactivated influenza vaccines fail to induce an antibody response that cross- 
reacts with potentially pandemic viruses like A/H5N1 and A/H7N9. In addition 
these vaccines induce a broadly-reactive CTL response inefficiently. They may even  
hamper the induction of cross-reactive CTLs that would have otherwise been induced 
by natural influenza A virus infections. In chapter 6, we have tested an novel adjuvant,  
G3/DT, for its ability to induce CTL responses after vaccination with a traditional  
trivalent inactivated influenza vaccine in a mouse model. The adjuvant strongly  
enhanced the virus-specific antibody response to all three vaccine strains and in  
addition promoted the induction of a virus-specific CD8+ T cell response. The  
induction of these CTLs correlated with protection against a lethal infection with  
an antigenically distinct influenza A virus. 

Collectively, the results presented in this thesis illustrate that potentially cross- 
reactive CTLs are long-lived in human subjects. Moreover, CTLs directed against 
the highly conserved immunodominant M158-66 epitope might even respond 
more strongly to avian influenza A viruses deprived of extra-epitopic CTL escape  
substitutions. Adjuvants that aim to induce these cross-reactive CTL responses  
after vaccination with traditional influenza vaccines may reduce disease severity  
in case of an emerging pandemic with an antigenically distinct influenza virus.  
Potential implications of these studies are discussed in chapter 7.
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Abstract
Influenza B viruses fall in two antigenically distinct lineages (B/Victoria/2/1987 
and B/Yamagata/16/1988 lineage) that co-circulate with influenza A viruses of the 
H3N2 and H1N1 subtype during seasonal epidemics. Infections with influenza B  
viruses contribute considerably to morbidity and mortality in the human population.  
Influenza B virus neutralizing antibodies, elicited by natural infections or vaccination, 
poorly cross-react with viruses of the opposing influenza B lineage. Therefore, there 
is an increased interest in identifying other correlates of protection which could 
aid the development of broadly-protective vaccines. BLAST analysis revealed high  
sequence identity of all viral proteins. With two online epitope prediction  
algorithms, putative conserved epitopes relevant for study subjects used in the  
present study, were predicted. The cross-reactivity of influenza B virus-specific  
polyclonal CD8+ T lymphocyte populations, obtained from HLA-typed healthy study 
subjects, with intra-lineage drift variants and viruses of the opposing lineage was 
determined by assessing their in vitro interferon gamma (IFN-γ) response and lytic 
activity. Here, we show for the first time, to the best of our knowledge, that CTLs di-
rected to viruses of the B/Victoria lineage cross-react with viruses of the B/Yamagata 
lineage and vice versa. 
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Introduction
Influenza A viruses of the H1N1 and H3N2 subtypes and influenza B viruses cause 
annual outbreaks of respiratory tract disease in humans [65]. Seasonal recurrence 
of these viruses is a result of selection of variants that evade recognition by virus 
neutralizing antibodies induced by previous infections or vaccination (antigenic 
drift) [67-69]. In contrast to influenza A viruses, influenza B viruses are not further  
subdivided in antigenically distinct subtypes. Also the host range of influenza B  
viruses is more limited [526] than that of influenza A viruses, which infect a wide 
range of animal species and for which aquatic birds constitute a major reservoir of 
most subtypes [527]. Since animal influenza A viruses of various subtypes have been 
shown to be able to cross the species barrier and can cause pandemic outbreaks, 
they continue to pose a threat for public health [138, 528].
Although no subtypes of influenza B viruses have been identified, two  
antigenically distinct lineages are distinguished based on their hemagglutinin (HA); 
the B/Victoria/2/1987 (B/Vic) and B/Yamagata/16/1988 (B/Yam) lineages [6]. The  
B/Yam-lineage was the dominant lineage until the mid-1980s when B/Vic made 
a global appearance after its earlier detection in the 1970s in China [158].  
Viruses of both influenza B lineages co-circulated with influenza A/H3N2 and A/H1N1  
viruses during various seasonal epidemics [159, 529, 530]. However, the relative  
contribution of these types and subtypes of influenza virus to the respective  
epidemics varies over the years. Influenza B viruses can be the major cause of  
seasonal epidemics or almost be completely absent [6, 73, 159, 463].
Overall, influenza A/H3N2 virus infections are associated with highest disease  
severity, however infections with influenza B virus contribute considerably to  
morbidity and mortality in the human population [73-75, 159, 531]. Although  
influenza B viruses cause disease in all age groups, the burden of influenza B virus 
infections is highest among children and young adults [159, 463, 532]. To prevent  
severe disease and mortality, annual vaccination of individuals at high risk for  
influenza is recommended [65]. For many years trivalent seasonal influenza vaccines 
have been used. These vaccines contain components of three strains that match 
circulating influenza viruses antigenically, influenza A/H3N2 and A/H1N1 and one 
influenza B strain of either the B/Yam or B/Vic -lineage [533]. These vaccines aim 
at eliciting virus neutralizing strain-specific antibody responses. Unfortunately,  
antibodies directed against a virus of one lineage of influenza B poorly cross- 
react with viruses of the opposing influenza B lineage [457, 458]. The  
time-consuming process of vaccine production requires recommendation  
of vaccine strains months in advance of the upcoming influenza season [478].  
Since only one strain of influenza B virus is included in most current trivalent  
seasonal influenza vaccines, vaccine effectiveness is reduced in case the  
epidemic strain is of the opposing lineage [457, 459, 460]. The increased co-circulation 
of both influenza B lineages in the last decade has led to more frequent mismatches  
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between the vaccine strain and the most dominant circulating influenza B lineage [159, 
457, 461-463]. To address this problem, quadrivalent influenza vaccines, containing  
components of both influenza B lineages, have become available in some  
countries [464, 465, 533]. However, vaccine effectiveness may still be reduced in  
case of unforeseen antigenic drift within either influenza B lineage [457]. This  
spurred an increased interest in identifying other correlates of protection, which 
could be relevant for future developments of broadly-protective vaccines [528]. 
Of interest, antibodies cross-reactive with viruses of both the B/Yam and B/Vic  
lineage have been demonstrated, but they contribute to a limited extent to the  
overall antibody repertoire [252]. In the present paper we investigate the  
cross-reactivity of influenza B virus-specific CD8+ cytotoxic T lymphocytes (CTLs).  
The main function of CTLs is to detect and eliminate virus infected cells, thereby  
restricting viral replication and accelerate viral clearance [344, 528].  
Numerous studies have demonstrated that influenza A virus-specific CTLs  
contribute to heterosubtypic immunity against antigenically distinct influenza A  
virus strains. Influenza A virus-specific CTLs are predominantly directed to more  
conserved internal proteins [311, 315-317, 534-537] and their contribution to 
cross-protective immunity has been demonstrated in various animal models 
[337-339, 538-540]. Although in vivo evidence for the role of CTLs in protective  
heterosubtypic immunity in humans is limited [344-347], several in vitro studies 
have demonstrated that human CTLs directed to seasonal influenza A viruses cross- 
react with possible pandemic influenza A viruses, including avian influenza viruses 
of the H5N1 and H7N9 subtype and swine origin vH3N2 viruses [316, 317, 535-537, 
541]. Also after influenza B virus infections, virus-specific CTLs are induced [542-
544], but it is unknown to what extent human CTLs directed to an influenza B virus of 
one lineage can cross-react with viruses of the opposing lineage. Here, we show for 
the first time, to the best of our knowledge, that polyclonal CD8+ T cells directed to  
influenza B viruses of the B/Vic-lineage can cross-react with viruses of the  
B/Yam-lineage and vice versa, although the antigen-specificity of these cross- 
reactive CD8+ T cells was not defined. Furthermore by using the prototypic  
viruses of both lineages (B/Victoria/2/1987 and B/Yamagata/16/1988) and more  
recent descendants (B/Netherlands/455/2011 and B/Netherlands/712/2011  
respectively) we showed that these CD8+ T cells also recognize intra-lineage drift 
variants. 

Materials and Methods
Cells
PBMCs were obtained from nine HLA-typed healthy blood donors (18-64 years of 
age) (Sanquin Bloodbank, Rotterdam, the Netherlands) by means of lymphoprep 
(Axis-Shield PoC, Oslo, Norway) gradient centrifugation and were subsequently  
cryopreserved at -135°C. Study subjects were divided into three groups based on 
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their HLA class I alleles (Table 2). The use of PBMCs for scientific research was  
approved by the Sanquin Bloodbank after informed consent was obtained from the 
blood donors.

Viruses
Prototypic influenza viruses B/Victoria/2/1987 (Kindly provided by Vicki Gregory, 
WHO Collaborating Centre for Influenza, National Institute for Medical Research, 
London) and B/Yamagata/16/1988 as well as the two more recent viruses  
B/Netherlands/455/2011 and B/Netherlands/712/2011 belonging to either lineage 
respectively, were propagated in Madin Darby Canine Kidney (MDCK) cells at 37°C. 
Culture supernatants were clarified by low-speed centrifugation and subsequently 
concentrated by ultracentrifugation after which their infectious-virus titers were  
determined as described previously [545] using 96 wells plates (Greiner Bio-One). 

Sequence analysis
Sequences of the eight gene segments of the above described viruses were obtained 
as described previously [546] using segment specific primers. Nucleotide sequences 
of the HA gene segments were used for phylogeny and amino acid sequences of all 
gene segments were used to determine the amino acid sequence identity and for 
epitope prediction analysis as described below. 

Phylogeny
Besides the above mentioned viruses an additional 47 human influenza B viruses, 
either used as vaccine strain or of which the lineage was previously confirmed by 
means of hemagglutination inhibition assay [457, 461, 533, 547, 548] and of which 
the complete HA nucleotide sequences was available from the National Center for 
Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/genomes/FLU) 
or the Global Initiative on Sharing Avian Influenza Data (GISAID; http://gisaid.org)  
influenza database, were selected for phylogenetic analysis. Previously published 
HA accession numbers are provided in the supplementary data (Table S1). Nucle-
otide sequences of the HA gene segment of all 51 human influenza B viruses were 
aligned using the Clustal W program running within the BioEdit software package, 
version 7.2.5 [549] and manually edited to maintain the correct reading frame.  
Nucleotides before the start codon and after the stop codon were removed. The  
nucleotide sequence alignment was used to determine the best-fit models of  
nucleotide substitution by jModelTest version 2.1.4 [550, 551]. The preferred ML- 
optimized model of nucleotide substitution, based on the Akaike information  
criterion, was TPM1uf+I+Γ4: Kimura 3-parameter model (K81) [552] with unequal 
base frequencies (uf), the proportion of invariant sites (I) and the gamma  
distribution of among-site rate variation with four categories estimated from the 
empirical data (Γ4). ML phylogenetic trees were inferred using the selected model 
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of nucleotide substitution and the PhyML package, version 3.1 [553], performing a 
full heuristic search and subtree pruning and regrafting searches. The reliability of 
all phylogenetic groupings of each tree was determined through a nonparametric  
bootstrap resampling analysis with PhyML: 1,000 replicates of ML trees were  
analyzed by applying the TPM1uf+I+Γ4 model of nucleotide substitution. A detailed 
HA tree, including bootstrap values, is shown in figure 1. Trees were visualized 
through the FigTree program, version 1.4.0 (http://tree.bio.ed.ac.uk/software/fig-
tree/).

Amino acid sequence identity
BLAST analysis (http://blast.ncbi.nlm.nih.gov) was used to determine the amino 
acid sequence identity of all viral proteins of influenza B viruses used in this study, 
namely B/Victoria/2/1987, B/Yamagata/16/1988, B/Netherlands/455/2011 and  
B/Netherlands/712/2011 (Table 1). 

Immunoinformatic analysis 
Epitopes restricted for the HLA-alleles of the study subjects were predicted based 
on the amino acid sequence of all internal proteins for B/Victoria/2/1987 and  
B/Yamagata/16/1988. For robustness we used two online programs, namely  
Syfpeithi (http://www.syfpeithi.de) and Immuneepitope (http://tools.immuneep-
itope.org/mhci). In the Syfpeithi program, the MHC (HLA) type of the study  
subjects was selected in combination with prediction of epitopes of all possible 
lengths (all mers). The program indicated that putative epitopes are among the top 
2% of all top-scoring possibilities. An additional cut-off was set at a score of ≥19 
since all known influenza A epitopes for these HLA-alleles scored 19 or higher. For 
the Immuneepitope program we also selected the HLA-alleles of the study subjects 
in combination with all possible epitope lengths. The program indicated that most 
putative epitopes have an ANN IC50 (nM) score of ≤500 so this was used as a cut-off 
value. Predicted amino acid sequences of putative epitopes are available on request.

Peptides
The HLA-B*0801 restricted putative epitopes predicted by Immuneepitope and 
Syfpeithi and present in viruses of both lineages, were ordered as synthetic  
immunograde peptides (>85% purity) (Eurogentec, Seraing, Belgium), in  
addition to previously in vitro confirmed HLA-B*0801 restricted influenza B  
epitopes NP263-271 ADRGLLRDI and NP413-421 ALKCKGFHV [544].
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In vitro expansion of influenza B virus-specific CD8+ T cells
PBMCs obtained from HLA-typed healthy blood donors were stimulated with  
B/Victoria/2/1987 or B/Yamagata/16/1988 at a multiplicity of infection (MOI) of 3, as 
described previously [313]. Polyclonal CD8+ T cells were isolated from the expanded 
PBMC cultures 8 to 9 days after stimulation by means of CD8+ magnetically  
activated cell sorting (MACS) bead sorting according to the manufacturer’s  
instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). These polyclonal CD8+ T 
cells were used as effector cells in IFN-γ ELISpot and lytic assays (see below). 

Target cells
HLA-matched BLCLs were prepared as described previously [513]. The cells (106) 
were incubated with or without 10µM peptide for one hour (hr) at 37°C and  
subsequently washed and resuspended in RPMI 1640 medium (Lonza, Basel,  
Switzerland) containing antibiotics and 10% fetal bovine serum (Sigma-Aldrich,  
Zwijndrecht, The Netherlands) (R10F medium). Virus-infected target cells 
were prepared by inoculating BLCLs at an MOI of 3 with B/Victoria/2/1987,  
B/Yamagata/16/1988, B/Netherlands/455/2011 or B/Netherlands/712/2011 or left 
untreated (negative control). After one hr, cells were washed and resuspended in  
R10F medium and cultured for 16 to 18 hr at 37°C before being used for the  
stimulation of T cells in IFN-γ ELISpot assays or as target cells in the CTL assays (see 
below). 

IFN-γ ELISpot assay
The IFN-γ responses of in vitro-expanded polyclonal CD8+ T cells were determined 
by ELISpot assays, which were performed according to the manafacturer’s  
recommendations (Mabtech, Nacka Strand, Sweden). In brief, 10,000 in vitro- 
expanded polyclonal CD8+ T cells were used as effector cells and incubated overnight 
(o/n) with 30,000 peptide-loaded, virus-infected or untreated HLA class I-matched 
target cells, in triplicate. The average number of spots was determined using an  
ELISpot reader and image analysis software (Aelvis, Sanquin Reagents, Amsterdam, 
The Netherlands). 

CTL assay
To examine the lytic capacity of the in vitro-expanded polyclonal CD8+ T cells a CTL  
assay was used with CFSE-labeled target cells. In brief, 5x106 HLA class I-matched BLCLs 
were incubated with 0,6µM CFSE (Sigma-Aldrich, Zwijndrecht, The Netherlands) for 
5 min at 37°C. These cells were subsequently inoculated with B/Victoria/2/1987, 
B/Yamagata/16/1988, B/Netherlands/455/2011 or B/Netherlands/712/2011 at an 
MOI of 3 for 16 to 18 hr. The infected and CFSE-labeled BLCLs were used as target 
cells and cocultured with the in vitro-expanded polyclonal CD8+ effector T cells in 
E:T ratios of 5, 2.5 and 1.25. After a 3 hr incubation period dead cells were stained 
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with ToPro3 (Invitrogen, Breda, The Netherlands) for 10 minutes at 37°C. Lysis in the  
target cell population was determined by flow cytometry using BD FACSDiva  
software (Becton Dickinson B.V., Breda, The Netherlands). Experiments were  
performed in triplicate. Percentage lysis was calculated by the following formula: 
100-(100*(viable target cells in sample in presence of effector cells / viable target 
cells in absence of effector cells)).

Results
Virus characterization
Phylogenetic analysis was performed to confirm the lineage of the influenza B  
viruses used in the present study. A data set comprising the HA nucleotide sequences 
of 51 influenza B viruses isolated between 1987 and 2013 was used to determine the 
lineage of influenza viruses B/Netherlands/455/2011 and B/Netherlands/712/2011. 
An Maximum likelihood (ML) phylogenetic tree was inferred to study the nucleotide 
evolution of the HA gene segment of the influenza B Yamagata and Victoria lineage. 

Figure 1 Phylogenetic maximum likelihood tree of the HA gene segment of human influenza B viruses.
The phylogenetic ML tree was inferred from 51 HA nucleotide sequences of both influenza B virus lineages.  
Bootstrap values of 1,000 replicates of ML trees are shown as percentages (values <70% are omitted). Scale bars 
roughly represent 1% of nucleotide substitutions between close relatives. Bold underlined sequences were used  
in the present study.
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As expected, both prototypic strains B/Victoria/2/1987 and B/Yamagata/16/1988 
are located near the base of the respective lineage. Based on this ML phylogenetic 
tree, it was concluded that the B/Netherlands/455/2011 virus belongs to the B/Vic 
lineage while B/Netherlands/712/2011 belongs to the B/Yam lineage (Fig 1). 

High amino acid sequence identity between both influenza B lineages
The percentage amino acid sequence identity of influenza A viral proteins has proven 
to be a good predictor for cross-reactivity of virus specific T cells with influenza A 
virus of various subtypes [536]. Therefore, we wished to compare the overall amino 
acid sequence identity between the influenza B viruses used in the present study. 
BLAST analysis revealed that the sequence identity of all viral proteins was  
remarkably high (≥86% up to 100%) (Table 1).

Table 1 Percentage amino acid sequence identity between internal proteins of the  
influenza B viruses used in this study

Virus Gene 
segment

Identity (%)
B/Victoria/ 

02/1987
B/Netherlands/ 

712/2011
B/Netherlands/ 

455/2011
B/Yamagata/16/1988 PB2 99 99 99

PB1 99 99 99
PA 98 99 98
HA 95 96 95
NP 98 99 99
NA 97 95 94
NB 90 91 90
M1 100 99 100
BM2 93 98 96
NS1 99 94 93
NS2 100 98 98

B/Victoria/02/1987 PB2 99 99
PB1 99 99
PA 98 98
HA 94 97
NP 98 98
NA 93 93
NB 87 86
M1 99 100
BM2 91 89
NS1 94 93
NS2 98 98

B/Netherlands/712/2011 PB2 99
PB1 99
PA 99
HA 93
NP 99
NA 94
NB 93
M1 99
BM2 96
NS1 97
NS2 98
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Prediction of conserved CD8+ T cell epitopes 
CD8+ T cell epitope prediction tools Syfpeithi and Immuneepitope were used to  
predict the presence of putative conserved CD8+ T cell epitopes in influenza B viral 
proteins. Since the amino acid sequence identity between the respective strains was 
very high, this analysis was performed with the prototypic strains B/Victoria/2/1987 
and B/Yamagata/16/1988 only. Epitope predictions were performed for the HLA- 
alleles that corresponded with those of the study subjects (Table 2). Syfpeithi 
and Immuneepitope predict a large number of putative epitopes in viral internal  
proteins of both B/Victoria/2/1987 and B/Yamagata/16/1988 (Fig S1). Due to 
the large difference in the number of epitopes predicted by both programs we  
considered an epitope a putative epitope when predicted by both programs. In addition 
to be a putative conserved epitope, the epitope needed to be present in both  
viruses (Fig 2). As shown in figure 2, most of the epitopes predicted by both  
programs were present in both virus strains. Only a small proportion of the predicted 
epitopes was unique for one of the two viruses. This data suggest that the majority 
of CTL epitopes are conserved between the two lineages of influenza B.

To test the robustness of these prediction algorithms we wished to establish in  
vitro the reactivity influenza B virus-specific CD8+ T cells with the predicted  
epitopes. HLA-B*0801 restricted putative epitopes were selected since the 
HLA-B*0801 was previously shown to be dominant in stimulating influenza B  
virus-specific CTLs [554] and the HLA-B*0801 allele is present in all the study  
subjects (Table 2). The HLA-B*0801 allele also gives us the opportunity to use three 
previously described peptides, namely NP263-271(ADRGLLRDI), NP413-421(ALKCKGFHV) 
and NP30-38(RPIIRPATL) [544], of which only the NP30-38 epitope was predicted by our 
prediction algorithms. One study subject of each HLA-group (Table 2; 6888, 8801 and 
6877) was selected from which in vitro-expanded polyclonal CD8+ T cells specific for 
B/Yamagata/16/1988 were tested for their reactivity with the predicted HLA-B*0801 
restricted epitopes using peptide-loaded HLA class I-matched B lymphoblastoid cell 
lines (BLCLs). To this end, we determined the IFN-γ production of the polyclonal 
CD8+ T cells in an enzyme-linked immunosorbent spot (ELISpot) assay. Although 

Table 2 HLA-A and HLA-B haplotypes of the study subjects 
Group Donor HLA-A and –B haplotypes
I 8904 HLA-A*0101, A*0201, B*0801, B*3501

6888
1578

II 7482 HLA-A*0101, A*0201, B*0801, B*2705
2501
8801

III 6877 HLA-A*0101, A*0301, B*0801, B*3501
9465
5891
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donor 6877 responded to the NP30-38 and M145-52 we did not observe a significant 
response to any of the other predicted or previously identified epitopes by donor 
6877, 6888 and 8801 while all donors had a high response to BLCLs infected with the  
homologous virus (data not shown). These results clearly indicate that the  
prediction algorithms are not very reliable and therefore putative epitopes with  
other HLA restrictions were not tested. 

Figure 2 Epitopes predicted by Syfpeithi and Immuneepitope.
Syfpeithi and Immuneepitope algorithms were used to predict putative epitopes. Only epitopes predicted by both 
algorithms were considered to increase the fidelity of the prediction. Bars represent the total number of putative 
epitopes for B/Victoria/2/1987 (V) or B/Yamagata/16/1988 (Y). Black bars represent the number of putative  
conserved epitopes present in both viruses while the white bars represents the number of putative epitopes present 
in one virus only.

Cross-reactivity of influenza B virus-specific CD8+ T cells assessed by ELISpot
Next, we determined the extent of cross-reactivity of influenza B virus- 
specific CD8+ T cells with intra-lineage drifted variants and viruses of the opposing 
lineage. To this end, polyclonal CD8+ T cells derived from B/Victoria/2/1987 or  
B/Yamagata/16/1988 virus stimulated peripheral blood mononuclear cell (PBMC) 
cultures were re-stimulated with HLA class I-matched BLCLs infected with the  
prototypic viruses (B/Victoria/2/1987 and B/Yamagata/16/1988) and the more  
recent viruses (B/Netherlands/455/2011 and B/Netherlands/712/2011 respectively).  
Activation of the polyclonal CD8+ T cells was assessed by measuring the number of 
IFN-γ producing cells per 10,000 CD8+ T cells with the ELISpot assay (Fig 3). 
The reactivity of B/Victoria/2/1987 virus-specific CD8+ T cells is shown in figure 3A. 
These cells of all study subjects responded to reactivation with the homologous  
B/Victoria/2/1987 virus, although two study subjects (7482 and 2501) were low  
responders. A similar response was observed after re-stimulation with the intra- 
lineage drift variant B/Netherlands/455/2011. In addition,  after stimulation with a 
virus of the opposing lineage B/Yamagata/16/1988 or B/Netherlands/712/2011 a 
cross-reactive response was observed that did not substantially differ in magnitude 
from the response to viruses of the B/Vic lineage, in most subjects. In figure 3B, the 
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Figure 3 Cross-reactivity of virus-specific polyclonal CD8+ T cells assessed by IFN-γ ELISpot.
B/Victoria/2/1987 virus-specific polyclonal CD8+ T cells (A) or B/Yamagata/16/1988 virus-specific polyclonal CD8+ T 
cells (B) of 9 study subjects were cocultured with HLA-matched BLCLs infected with B/Victoria/2/1987 (black bars). 
B/Netherlands/455/2011 (black hatched bars), B/Yamagata/16/1988 (grey bars) or B/Netherlands712/2011 (grey 
hatched bars). The number of IFN-γ-producing cells per 10,000 polyclonal CD8+ T cells was determined by ELISpot 
assay. Experiments were performed in triplicate. The error bars indicated standard deviations of the triplicates.  
Uninfected BLCLs were used as negative controls (white bars). Identification number of the respective study subject 
is indicated in the left upper corner of each graph. 
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response of B/Yamagata/16/1988 virus-specific CD8+ T cells is shown. Again, all study 
subjects responded to the re-stimulation with HLA-matched BLCLs infected with the 
homologous virus strain and also after stimulation with the intra-lineage drift variant  
B/Netherlands/712/1988. In addition, a cross-reactive response was observed  
after stimulation with HLA-matched BLCLs infected with both viruses of the opposing  
B/Vic lineage (B/Victoria/2/1987 and B/Netherlands/712/2011), which was similar in 
magnitude compared to the response to viruses of B/Yam lineage. 

Cross-reactivity of influenza B virus-specific CD8+ T cells assessed by lytic activity
Next, we wished to assess the cross-reactive lytic capacity of these polyclonal 
CD8+ T cell populations. Based on the IFN-γ ELISpot results, we selected a strong- 
responder from each HLA-group of study subjects (6888, 8801 and 9465) to test the 
lytic capacity of the CD8+ T cells. To this end, in vitro expanded B/Victoria/2/1987 
or B/Yamagata/16/1988 virus-specific polyclonal CD8+ T cells were incubated  
with carboxyfluorescein succinimidyl ester (CFSE)-labeled HLA-matched BLCLs  
infected with B/Victoria/2/1987, B/Yamagata/16/1988, B/Netherlands/455/2011 or  
B/Netherlands/712/2011. The gating strategy used for flowcytometry to detect lytic 
activity of the CD8+ T cells is shown in figure 4 A and B. 
B/Victoria/2/1987 virus-specific CD8+ T cells displayed lytic capacity against cells 
infected with the homologous virus and the B/Netherlands/455/2011 virus  
of the same lineage in a effector-to-target cell (E:T) ratio dependent fashion. In 
addition, cells infected with the heterologous viruses B/Yamagata/16/1988 and  
B/Netherlands/712/2011 of the opposing lineage were lysed as well (Fig 4C). A  
similar pattern of reciprocal lytic activity was observed for the B/Yamagata/16/1988 
virus-specific CD8+ T cells (Fig 4D). These results confirmed the cross-reactive nature 
of influenza B virus-specific CD8+ T cells observed in the ELISpot assay.

Discussion
Influenza B viruses display less antigenic drift than influenza A viruses [67, 157, 
555], yet they evade recognition by virus neutralizing antibodies present in the 
human population efficiently. This necessitates regular updates of the influenza B  
component of seasonal influenza vaccines. The circulation of influenza B viruses  
belonging to two antigenically distinct lineages further complicates the production 
of efficacious influenza vaccines. Inactivated influenza vaccines typically aim at the 
induction of virus neutralizing antibodies directed to the variable globular head  
region of the HA molecules of the respective influenza viruses. Consequently, there 
is interest in protective immune responses directed to more conserved proteins 
or regions thereof. Understanding humoral and cell-mediated immune responses 
to these conserved proteins may aid the development of more universal vaccines. 
Here, we assessed the cross-reactivity of influenza B virus-specific CD8+ T cells with 
viruses of the opposing lineage. It was concluded that influenza B virus-specific CD8+ 
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T cells display a high degree of cross-reactivity with intra-lineage drift variants and 
viruses of the opposing lineage.

Although it was beyond the scope of this study to identify novel influenza B  
epitopes, we were interested whether predicted putative CTL epitopes were  
conserved between both influenza B lineages. The amino acid sequence identity of 
all viral proteins was very high between both lineages, which already suggested the 
existence of cross-reactive T cell epitopes, as was also demonstrated for influenza A 
viruses [536]. For the in silico prediction of epitopes we excluded proteins encoded 
by the HA and NA gene segments, since these proteins undergo antigenic drift after  
positive selection by antibodies. Furthermore, it has been shown for influenza A  
viruses that these envelope proteins are minor targets for CTL responses [317]. 
Two epitope prediction algorithms that are publically available, Syfpeithi and  
Immuneepitope, were used in order to predict putative epitopes with the highest  
possible fidelity. A large number of putative epitopes was predicted by both  
programs, of which most were present in viruses of both lineages. However, the  
total number of epitopes predicted by both programs varied widely. The performance 
 of these algorithms is not completely clear and most likely also false positives have 
been predicted and false negative were omitted [556, 557]. Indeed, out of six in  
vitro confirmed influenza B epitopes described previously [542-544] that  
corresponded to the HLA-alleles investigated in our study, only the NP30-38  
RPIIRPATL epitope (HLA-B*0801 restricted) was predicted by both prediction  
programs. Other epitopes were solely predicted by Immuneepitope (NP85-94  
KLGEFYNQMM and NP85-93 KLGEFYNQM (HLA-A*0201 restricted)) or Syfpeithi  
(NP413-421 ALKCKGFHV (HLA-B*0801 restricted)) and two epitopes (NP263-271  
ADRGLLRDI (HLA-B*0801 restricted) and NP82-94 MVVKLGEFYNQMM (HLA-A*0201 
restricted)) were not predicted at all. Since these programs predict epitopes based 
on binding affinity of the epitope with the selected HLA-allele they do not take into 
account other possible factors that might play a role, such as the dissociation rate of 
the epitope [558], folding of the MHC class I molecules [559] or antigen processing 
[528]. To further test the robustness of the prediction algorithms we determined 
the reactivity of polyclonal influenza B virus-specific polyclonal CD8+ T cells of three 
study subjects with the HLA-B*0801 restricted putative epitopes. We were unable 
to confirm any of the predicted epitopes, which included three previously described 
HLA-B*0801 restricted epitopes (NP30-38, NP263-271 and NP413-422). The lack of response 
to these previous described epitopes may be explained by mis-match of the HLA-C 
alleles of our study subjects. Since the HLA-C alleles of our study subjects was not 
defined and Robbins et al did not exclude the HLA-Cw7 allele as the presenting MHC 
class I molecule it is possible that these epitopes are restricted by HLA-Cw7 instead 
of HLA-B*0801 [544]. This might also explain why only one study subject responded 
to the NP30-38 epitope (data not shown). Alternatively, differences in HLA make up
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Figure 4 Cross-reactivity of virus-specific polyclonal CD8+ T cells assessed by lytic activity.
B/Victoria/2/1987 (C) and B/Yamagata/16/1988 (D) virus-specific polyclonal CD8+ T cells from study subjects 6888, 
8801 and 9465 were isolated after stimulation of PBMCs with the respective virus. Lytic activity against HLA-matched 
CFSE-labeled BLCLs infected with B/Victoria/2/1987 (solid squares), B/Netherlands/455/2011 (open squares),  
B/Yamagata/16/1988 (solid circles) and B/Netherlands/712/2011 (open circles) was assessed. Uninfected BLCLs 
were used as negative controls (open triangles). Experiments were performed in triplicate. The error bars represent 
standard deviations of the triplicates. An example of the gating strategies used for determining the extent of specific 
lysis are shown for E:T ratio 0 (A) and E:T ratio 5 (B) using FlowJo software. 
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may have influenced immunodominance patterns [313]. Thus results obtained 
with epitope prediction algorithms should be interpreted with caution, which is in  
agreement with previous studies [556]. Therefore, viral vectors expressing a single  
influenza B viral protein and/or overlapping peptide pools are considered more  
useful than in silico predictions for the identification of CD8+ T cell epitopes and  
establishing their immunodominance patterns. 

The extent of cross-reactivity of influenza B virus-specific polyclonal CD8+ T cells was 
tested with two independent assays, the IFN-γ ELISpot and CTL assay. In both assays, 
B/Vic and B/Yam-specific CD8+ T cell populations displayed a high degree of cross- 
reactivity with drifted intra-lineage variants and across lineages, confirming that  
influenza B viruses indeed contain cross-reactive CTL epitopes. Differences in  
magnitude of the influenza B virus-specific CD8+ T cell responses between study  
subjects may reflect differences in HLA class I makeup [313] and/or differences in  
the history of influenza infections. 
Most likely, also subjects with alternative HLA-alleles will mount cross-reactive CD8+ 
T cell responses, considering the high level of sequence identity. Thus in theory,  
infection with any influenza B virus will induce a cross-reactive influenza B virus- 
specific CD8+ T cell response. These cross-reactive CD8+ T cells may afford some  
degree of protection against a subsequent infection with an antigenically distinct  
influenza B virus, to which antibodies induced by previous infection will not be  
protective. Indeed it was demonstrated during the pandemic of 2009, that in the 
absence of virus neutralizing antibodies the frequency of influenza A virus-specific 
CD8+ T cells correlated with a favorable disease outcome [344]. 

To address the problem of two co-circulating antigenically distinct influenza B  
lineages, quadrivalent seasonal influenza vaccines have become available that  
contain components of both influenza B lineages [464, 465, 533]. Since quadrivalent  
vaccines elicit antibody responses against viruses of both lineages [466-469], 
they eliminate the risk that the incorrect B lineage is selected for inclusion in the  
vaccine. However, unforeseen antigenic drift within either influenza B lineage  
may affect vaccine effectiveness, although not as dramatic as a mismatch of lineage 
[457]. 
Vaccines that would induce cross-reactive T cell mediated immunity may offer  
another layer of protective immunity that is less sensitive to antigenic drift or  
circulation of an opposing lineage of influenza B virus. In particular the use of live 
attenuated influenza vaccines have been shown to induce virus-specific CD8+ T 
cells, in contrast to inactivated vaccines [495, 560]. Of interest, the viral proteins 
of live attenuated vaccines currently in use also display a high degree of sequence  
identity with recent circulating strains (93-100% for B/Ann Arbor/1/66, data not 
shown), which supports the notion that these vaccines may also induce CD8+ T  
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cell responses that cross-react with epidemic strains of the opposing lineage. 

In conclusion, the present study shows for the first time, to the best of our  
knowledge, that human influenza B virus-specific CD8+ T cells are highly cross- 
reactive with influenza B viruses of the opposing lineage. Although quadrivalent  
influenza vaccines will be more commonly used in the near future, the induction 
of cross-reactive virus-specific T cell responses may be a promising approach to  
broaden the protective efficacy of influenza vaccines, against both influenza A 
and B viruses. The induction of virus-specific CTL responses may be achieved 
with live attenuated influenza vaccines, especially in children [560]. However, the  
administration of live attenuated influenza vaccines is restricted for certain  
high-risk groups [464, 500]. The induction of virus-specific CD8+ T cell responses  
may also be achieved for example by the use of specific adjuvants [561-563] or  
novel antigen delivery systems [509, 510, 512, 513, 564].
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Table S1 Previously published HA accession numbers of influenza B viruses used for 
phylogeny from the NCBI and GISAID influenza database
Yamagata lineage NCBI* GISAID† Victoria lineage NCBI* GISAID†

B/Hubei-Wujiagang/158/2009 CY115383 B/Singapore/616/2008 EPI_ISL28576
B/Florida/4/2006 KF009552 B/Philippines/1617/2010 EPI_ISL83789
B/Bangladesh/3333/2007 CY115255 B/Brisbane/33/2008 FJ766843
B/Wisconsin/1/2010 CY115183 B/Bangladesh/5945/2009 CY115359
B/Texas/6/2011 KC813979 B/HongKong/259/2010 CY115191
B/Stockholm/12/2011 EPI_ISL90776  B/Nevada/3/2011 KC813804
B/Massachusetts/2/2012 KC892118 B/Texas/2/2013 KF216858
B/Estonia/55669/2011 EPI_ISL90663 B/Hongkong/330/2001 CY018709
B/Malaysia/412/2012 EPI_ISL128746 B/Townsville/2/2008 CY153146
B/Wellington/3/20121 EPI_ISL134527 B/Hubei/songzi/51/2008 EPI_ISL28271
B/Brisbane/36/2012 EPI_ISL134485 B/Bangladesh/4008/2008 EPI_ISL28247
B/Sichuan-Anyue/139/2011 EPI_ISL90803 B/Malaysia/2506/2004 CY040449
B/Brisbane/3/2007 CY155898 B/Sydney/12/2008 CY153026
B/Jiangsu/10/2003 CY033844 B/Brisbane/32/2002 CY018701
B/Christchurch/2/2007 CY155890 B/Hongkong/1434/2002 CY018685
B/Johannesburg/1197/2007 EPI_ISL20652 B/Hongkong/1351/2002 CY018861
B/Jilin/20/2003 CY033828 B/Beijing/1/87 X53098
B/Johannesburg/5/99 CY018613
B/Harbin/7/94 CY040441
B/Georgia/2/98 CY018405
B/Arizona/1/2012 KC892020
B/Iowa/1/2012 KC892010
B/Utah/1/2012 KC891940
B/Utah/2/2012 JX827494
B/Washington/1/2012 CY115183
B/NewMexico/04/2012 KF216453
B/Yokohama/82/2012 EPI_ISL133555
B/Yamanashi/166/98
B/Shizuoka/15/01 CY019515
B/Panama/45/90 CY018349
* National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/genomes/FLU)
† Global Initiative on Sharing Avian Influenza Data (GISAID; http://gisaid.org)

Figure S1 Absolute number of putative epitopes predicted by Sypeithi or Immuneepitope.
Syfpeithi (white bars) and Immuneepitope (black bars) algorithms were used to predict putative epitopes in  
B/Victoria/2/1987 (V) and B/Yamagata/16/1988 (Y) viruses for the indicated viral proteins (X-axis). Number of  
epitopes predicted by either program is indicated on the Y-axis). Epitopes predicted by both algorithms are shown in 
figure 2 and epitope sequences are available on request. 
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Abstract
In February 2013 zoonotic transmission of a novel influenza A virus of the H7N9 
subtype was reported in China. Although at present no sustained human-to-human 
transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. 
Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of this 
virus are virtually absent in the human population, there is interest in identifying  
other correlates of protection, such as cross-reactive CD8+ T cells (cytotoxic T  
lymphocytes (CTLs)) elicited during seasonal influenza A virus infections. These  
virus-specific CD8+ T cells are known to recognize conserved internal proteins of  
influenza A viruses predominantly, but it is unknown to what extent they cross- 
react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity 
of seasonal H3N2, H1N1 and pandemic H1N1 influenza A virus-specific polyclonal 
CD8+ T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The 
cross-reactivity of CD8+ T cells to H7N9 variants of known influenza A epitopes and 
H7N9 virus infected cells was determined by their IFN-γ response and lytic activity. 
It was concluded that, apart from recognition of individual H7N9 variant epitopes, 
CD8+ T cells to seasonal influenza viruses display considerable cross-reactivity with 
the novel H7N9 virus. The presence of these cross-reactive CD8+ T cells may afford 
some protection against infection with this new virus. 
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Introduction
Influenza viruses are an important cause of respiratory tract infections. Occasionally, 
animal influenza viruses cross the species barrier and infect humans after zoonotic 
transmission. In the past two decades several avian influenza A viruses have infected 
humans, like those of the H9N2 subtype [109], the H7N7 subtype [127, 128] and 
the H5N1 subtype [116-120, 565]. In 2009, H1N1 influenza A viruses of swine origin 
(H1N1pdm09) caused a pandemic outbreak and these viruses continue to circulate 
in the human population [84]. 
In February 2013 the first human cases of infection with a novel avian influenza A  
virus of the H7N9 subtype were reported in China. To date (September 2013), 
135 laboratory confirmed cases have been reported of which 44 had a fatal out-
come [566]. Especially older male individuals seem to be at risk to develop severe  
disease upon infection [567-570]. Most hospitalized patients developed severe viral  
pneumonia and acute respiratory distress syndrome (ARDS) [137-140]. 
Influenza A viruses with hemagglutinin and neuraminidase of the subtypes H7 
and N9 respectively, circulate in wild bird species [571, 572]. The newly emerged 
H7N9 virus is most likely the result of multiple reassortment events of at least three  
avian viruses [138, 142, 143]. Although the H7N9 virus has been classified as a low  
pathogenic virus based on the intravenous pathogenicity index (IVPI) in chickens 
and the absence of a multi-basic cleavage site in the hemagglutinin (HA), it is quite  
pathogenic in humans [138]. This virus also replicates efficiently in the airways of 
other mammalian species, including mice, ferrets and cynomolgus macaques [145, 
146]. It is more pathogenic than seasonal influenza A H3N2 (sH3N2) viruses or  
pandemic 2009 H1N1 (pH1N1) viruses and after intratracheal inoculation causes  
fatal disease in ferrets [573]. The high pathogenicity in mammals correlates with 
the presence of known pathogenicity markers. Several human isolates of the H7N9 
virus contain the E627K substitution in PB2, which allows avian influenza viruses  
to replicate at lower temperatures [574]. A deletion of 5 amino acids in the  
neuraminidase (NA) of H7N9 virus is associated with enhanced virus replication 
[138]. The presence of the Q226L substitution in the HA [138, 144] is associated 
with binding to alpha (2,6)-linked sialic acids found in the human upper respiratory 
tract [145] and has been associated with airborne transmission of avian H5N1 virus 
in ferrets [88]. In case of the novel H7N9 virus, only limited transmission between 
ferrets was observed [145-148]. Acquisition of gene segments from human influenza 
A viruses by the avian influenza H7N9 virus through genetic reassortment may lead 
to further adaptation to humans [81, 83, 84, 86, 87, 155, 528]. The detection of 
a H7N9 patient that was co-infected with a sH3N2 virus underscores this possible  
scenario [154]. Although at present no sustained human-to-human transmission of 
the H7N9 virus has been reported [150], the pandemic potential of H7N9 virus should 
be considered seriously. Especially since virus neutralizing antibodies directed to the 
HA globular head domain of this virus are virtually absent in the human population 
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[139], though low concentrations of stalk-region specific antibodies might be present 
[244, 251]. 
On the other hand, virus-specific CD8+ T cells (cytotoxic T lymphocytes (CTL)),  
induced after infection with seasonal influenza A viruses, are mainly directed to the 
conserved internal proteins of influenza A viruses [311, 312, 314-317, 410, 450, 528, 
534, 535]. The presence of these cross-reactive CD8+ T cells may afford a certain  
degree of heterosubtypic immunity against infection with novel H7N9 viruses.  
Using various combinations of influenza A virus subtypes for primary and secondary  
infection, this type of immunity and the contribution of virus-specific CD8+ T cells 
was demonstrated in various animal models [337-339, 538-540]. Evidence for  
heterosubtypic immunity and the role of CD8+ T cells in humans is limited [344-347], 
though the presence of CD8+ T cells cross-reactive with avian H5N1 and swine-origin 
triple reassortant A H3N2 (vH3N2) viruses has been demonstrated [316, 317, 535, 
541]. It is unknown to what extent CD8+ T cells elicited by a seasonal or 2009 pH1N1 
influenza A virus infection cross-react with the novel H7N9 virus. Here we show that 
polyclonal CD8+ T cell populations specific for seasonal H1N1 (sH1N1), sH3N2 or 
pH1N1 virus cross-react with the H7N9 virus by determining their interferon γ (IFN-γ) 
response upon in vitro stimulation with the novel H7N9 virus and their lytic activity 
towards H7N9 virus infected human leukocyte antigen (HLA)-matched target cells. 
The pre-existing cross-reactive CD8+ T cells may afford some level of protection and 
may reduce morbidity and mortality caused by infections with the novel H7N9 virus.

Materials and Methods
Cells
Peripheral blood mononuclear cells (PBMCs) were obtained from 6 HLA-typed 
healthy blood donors (35-50 years of age), between 2008 and 2013 (Sanquin  
Bloodbank, Rotterdam, the Netherlands). Lymphoprep (Axis-Shield PoC, Oslo, Norway)  
gradient centrifugation was used to isolate PBMCs which were subsequently  
cryopreserved at -135°C.  Donors were selected based on their HLA class I alleles  
for which functionally confirmed influenza A HLA class I epitopes have been  
identified and had the following HLA-haplotypes: subject 1 and 2: HLA-A*0101, 
A*0201, B*0801, B*3501; subject 3 and 4: HLA-A*0101, A*0201, B*0801, B*2705; 
subject 5 and 6: HLA-A*0101, A*0301, B*0801, B*3501. The use of PBMCs for  
scientific research was approved by the Sanquin Bloodbank after informed consent 
was obtained from the blood donors. 

Peptides 
Amino acid sequences of confirmed influenza A HLA class I epitopes were aligned 
with their H7N9 analogues from human isolates between February 2013 and April 
22th 2013 (Table 1). Sequences were obtained from the influenza resource data-
base (http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=-
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database). In addition, conservation of these epitope sequences in the prototype 
viruses used in the present study: sH3N2 (A/Netherlands/348/07), sH1N1 (A/Neth-
erlands/26/07) and pH1N1 (A/Netherlands/602/09) was determined (Table 1). The 
H7N9 variant epitopes, of which the HLA restriction was compatible with the HLA-
type of the study subjects, were ordered as synthetic immunograde peptides (>85% 
purity) (Eurogentec, Seraing, Belgium). 

   

Table 1 Variant amino acid sequences of known CD8+ T cell epitopes in the influenza A 
H7N9 virus a

Amino acid sequence b

HLA Epitope
Influenza A 
virus sH3N2 sH1N1 pH1N1 H7N9 Refs 

A*3 M1 13-21 SIIPSGPLK --V------ --V------ --------- --------- [575]
M1 27-35 RLEDVFAGK --------- ---S----- --------- --------- [576]

A*0201 M1 58-66 GILGFVFTL --------- --------- --------- --------- [312, 
577]

M1 59-68 ILGFVFTLTV ---------- ---------- ---------- ---------- [577]
B*35 M1 128-135 ASCMGLIY -------- -------- -------- -------- [578]
B*44 M2 7-15 VETPIRNEW --------- --------- ----T-S—- ----T-TG- [315]
A*0201 NA 213-221 CVNGSCFTV INGTCTVVM --------I --------- VCPVVFTDG [579]
A*01 NP 44-52 CTELKLSDY --------H ------N-- --------- --------N [580]
A*6801 NP 91-99 KTGGPIYKR -------R- --------- -------R- -------R- [581]
B*1402 NP 146-154 TTYQRTRAL A-------- --------- A-------- A-------- [582]
B*2705 NP 174-184 RRSGAAGAAVK ----------- ----------- ----------- ----------- [541]
A*3 NP 188-198 TMVMELVRMIK ------I--V- ---L--I---- -IA---I---- ------I---- [575]
A*03 NP 265-273 ILRGSVAHK --------- --------- --------- --------- [580]
B*44 NP 338-346 FEDLRVLSF -----L--- ------S-- ------S-- ------S-- [583]
B*3701 NP 339-347 EDLRVLSFI ----L---- -----S--- -----S--- -----S--- [584, 

585]
B*44 NP 379-387 LELRSRYWA -----G--- --------- --------- --------- [583]
B*0801 NP 380-388 ELRSRYWAI ----G---- --------- --------- --------- [586]
B*2702 NP 381-388 LRSRYWAI ---G---- -------- -------- -------- [587]
B*2705 NP 383-391 SRYWAIRTR -G------- --------- --------- --------- [588]
B*35 NP418-426 LPFEKSTVM -------I- ---D-A-I- ----RA--- ----RA-I- [441]
A*0201 NS1 122-130 AIMDKNIIL ---E---M- --------- ---E---V- --V----T- [589]

NS1 123-132 IMDKNIILKA --E---M--- ---------- --E---V--- -V----T--- [589]
B*44 NS1 158-166 GEISPLPSL --------F --------F --------- --------- [583]
A*01 PB1 591-599 VSDGGPNLY --------- --------- --------- --------- [580]
a The A/Anhui/1/13 (H7N9) sequence was unavailable at the time of ordering the peptides. All epitopes, except LPFEKSTVM 
(H7N9 LPFERARIM), were conserved between the H7N9 viruses present in the database at April 22th and the A/Anhui/1/13 
virus used in this study.
b Peptides used in the present study are shaded and were selected based on variation in the H7N9 sequence and correspon-
dence to the HLA alleles of the study subjects. Synthetic immunograde peptides were ordered with >85% purity. The dashes 
indicate identity with the amino acids in the influenza A virus sequences.
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Viruses
Influenza virus A/Anhui/1/2013 (H7N9) was isolated from a fatal human case  
(Anhui province, People’s Republic of China) and was kindly provided through 
the WHO Pandemic Influenza Preparedness (PIP) framework and subsequently  
passaged once in Madin Darby Canine Kidney (MDCK) cells. Prototypic seasonal 
influenza A viruses A/Netherlands/348/07 (sH3N2), A/Netherlands/26/07 (sH1N1) 
and A/Netherlands/602/09 (pH1N1) were propagated in MDCK cells. Culture  
supernatants were clarified by low speed centrifugation and subsequently purified  
by ultra centrifugation through a sucrose gradient. Their infectious virus titers  
were determined as described previously [545].

Amino acid sequence identity
Amino acid sequence identity of the viral proteins of influenza viruses A/Anhui/1/2013 
(H7N9) and the prototype sH3N2, sH1N1 and pH1N1 was determined using BLAST 
analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Table 2). The consensus sequence 
of A/Anhui/1/2013 was obtained from the GISAID database (http://platform.gisaid.
org) and the consensus sequence of the influenza virus A/Anhui/1/2013 preparation 
used in the present study was confirmed by sequence analysis [147]. 

In vitro expansion of influenza A virus-specific CD8+ T cells
PBMCs obtained from HLA-typed study subjects were stimulated with sH3N2, 
sH1N1 and pH1N1 viruses at a multiplicity of infection (MOI) of three as described  
previously [313]. Eight days after stimulation, polyclonal CD8+ T cells were isolated  
from the expanded PBMC cultures by means of CD8+ magnetically activated cell  
sorting (MACS) bead sorting according to the manufacturer’s recommendation 
(Miltenyi Biotec, Bergisch Gladbach, Germany) and subsequently used as effector 
cells in IFN-γ ELISpot and lytic assays (see below). 

Table 2 Percent amino acid sequence 
identity with A/Anhui/1/2013 (H7N9)

% Identity
Gene segment sH3N2 sH1N1 pH1N1
PB2 94 94 97
PB1 97 95 96
PA 94 95 96
HA 47 41 41
NP 91 92 93
NA 45 43 45
M1 91 91 92
M2 82 78 89
NS1 76 80 78
NS2 93 90 88
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Target cells
HLA-matched B-Lymphoblastoid cell lines (BLCLs) were prepared as described  
previously [513]. 106 cells were incubated with or without 100µM peptide for 16 
hours at 37°C and subsequently washed and resuspended in RPMI1640 medium  
(Lonza, Basel, Switzerland) containing antibiotics and 10% fetal bovine serum  
(Sigma-Aldrich, Zwijndrecht, The Netherlands) (R10F medium). Virus-infected  
target cells were prepared by inoculating BLCLs at a MOI of three with sH3N2, sH1N1, 
pH1N1 or H7N9 virus. After one hour, cells were washed and resuspended in R10F 
medium and cultured for 16-18 hours at 37°C before being used for the stimulation 
of T cells or as target cells.

IFN-γ ELISpot assay
IFN-γ responses of in vitro-expanded polyclonal CD8+ T cells were determined by 
enzyme-linked immunospot (ELISpot) assays, which were performed according  
to the manufacturer’s instructions (Mabtech, Nacka Strand, Sweden). In brief, 
10,000 or 5,000 in vitro expanded polyclonal CD8+ T cells were used as effector 
cells and incubated for 16-18 hours with 30,000 peptide-loaded, virus-infected or  
untreated HLA class I-matched target cells, in triplicate. The average number of 
spots was determined using an ELISpot reader and image analysis software (Aelvis,  
Sanquin Reagents, Amsterdam, The Netherlands).

CTL assay
The lytic capacity of the in vitro expanded polyclonal CD8+ T cells was deter-
mined using a CTL assay with Carboxyfluorescein Succinimidyl Ester (CFSE) labeled  
target cells. In brief, 5.106 cells of HLA class I-matched BLCLs were incubated with 
0,6µM CFSE (Sigma-Aldrich, Zwijndrecht, The Netherlands) for five minutes at 37°C.  
Subsequently these cells were inoculated with sH3N2, sH1N1, pH1N1 or H7N9 virus 
at a MOI of three for 16-18 hours. The infected and CFSE-labeled BLCL target cells 
were co-cultured with the in vitro expanded polyclonal CD8+ T cells effector cells in 
effector:target (E:T) ratios of 5, 2.5 and 1.25. After a three hour incubation period 
cells were fixed using Cytofix/Cytoperm (BD Biosciences, Breda, The Netherlands) 
and lysis in the target cell population was determined by flow cytometry using BD 
FACSDiva software (Becton Dickinson B.V., Breda, The Netherlands). Experiments 
were performed in triplicate.

Statistical analysis
The data were analyzed using an independent T test and differences were  
considered significant at p<0.05. 
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Results 
Comparison of amino acid sequences of CD8+ T cell epitopes
Amino acid sequences of 24 confirmed influenza A virus HLA class I epitopes were 
compared with their influenza A H7N9 virus analogues. As shown in Table 1 most 
epitopes (>50%) were fully conserved in H7N9 viruses. Based on these results, 
four variant H7N9 epitopes that were conserved in our prototypic sH3N2, sH1N1  
and/or pH1N1 viruses (Table 1) and were compatible with the HLA-type of the study 
subjects under investigation were further tested for cross-recognition in the ELISpot 
assay. All epitopes, except NP418-426, were conserved among H7N9 viruses available in 
the influenza resource database (April 22th 2013) and the A/Anhui/1/13 (H7N9) virus 
used in this study.

Cross-recognition of influenza A(H7N9) analogues of known influenza A HLA class I 
epitopes
In vitro expanded CD8+ T cell preparations specific for sH3N2, sH1N1 and pH1N1  
influenza viruses were tested for their cross-reactivity with the selected H7N9  
variant epitopes listed in table 1 using peptide-loaded HLA-matched BLCLs. 
Virus-specific CD8+ T cell obtained from study subjects 1 and 2 (HLA-A*0101, 
A*0201, B*0801, B*3501) displayed strong reactivity with the homologous epitopes, 
except for epitope NS123-132 (IMDKNIILKA) (Fig. 1A and B). The H7N9 variant of the 
NP418-426 (LPFERATIM) epitope was recognized by sH3N2 specific CD8+ T cells derived 
from subject 1, although the IFN-γ response was lower than the response to the  
homologous epitope (LPFEKSTIM) (Fig. 1A). None of the other H7N9 variant  
epitopes were recognized by virus specific CD8+ T cells of these HLA-A*0101, A*0201, 
B*0801, B*3501 study subjects. Virus-specific CD8+ T cells obtained from study sub-
jects 3 and 4 (HLA-A*0101, A*0201, B*0801, B*2705) displayed a minor response 
to homologous epitopes NS122-130 and NS123-132 (Fig. 1C and D). This is in agreement 
with the subdominant nature of the response to these epitopes in these subjects 
(data not shown). CD8+ T cells from both subjects did not display any response to the  
H7N9 variant of the NS122-130 and NS123-132 epitopes (Fig. 1C and D). Although  
CD8+ T cells of these two subjects displayed reactivity with homologous NP44-52  
epitope, they did not respond to the H7N9 variant of this epitope (CTELKLSDN).   
Virus-specific CD8+ T cells from study subjects 5 and 6 (HLA-A*0101, A*0301, 
B*0801, B*3501) displayed a strong response to the homologous sH3N2 variant 
of the NP418-426 epitope (Fig. 1E and F). Some minor cross-reactivity with the H7N9  
variant (LPFERATIM) was observed with CD8+ T cells derived from subject 5 (Fig. 1E). 
As for the other subjects, no cross reactivity was observed with the H7N9 variant of 
NP44-52 (CTELKLSDN) epitope with CD8+ T cells obtained from subject 5. 
Overall, the extent of cross-reactivity of influenza virus-specific CD8+ T cells against 
individual H7N9 variant epitopes was low and dependent on study subjects and  
peptides tested. 
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Figure 1 Epitope-specific IFN-γ production by seasonal influenza virus-specific CD8+ T cells after stimulation with 
peptide-loaded BLCLs.
Polyclonal CD8+ T cells were isolated from PBMCs in vitro stimulated with sH3N2, sH1N1 or pH1N1 as indicated. No 
pH1N1 in vitro stimulation was performed for subject 6 since these PBMCs were isolated in 2008 prior to the 2009 
pandemic outbreak. Polyclonal CD8+ T cells were subsequently stimulated with peptide-loaded and untreated HLA 
class I matched BLCLs. Stimulation with homologous peptides is indicated by black bars, with H7N9 variant peptides  
by grey bars and control cells without peptide by white bars. The number of IFN-γ producing cells per 10,000  
polyclonal CD8+ T cells was determined by ELISpot assay. The results represent the average of triplicate wells.  
Peptides were selected based on the variation in the H7N9 sequence and their compatibility with the HLA-haplo-
types of our study subjects. The error bars indicate standard deviations of results from the triplicate wells.

CD8+ T cells cross-react with influenza A H7N9 virus infected cells
Since more than 50% of previously identified influenza HLA class I epitopes were 
present in the H7N9 virus we wished to compare the overall amino acid sequence 
identity between the H7N9 virus and the prototypic sH3N2, sH1N1 and pH1N1  
viruses used in the present study. BLAST analysis revealed that the sequence  
identity of most viral proteins, was high (>76%), except for the hemagglutinin and  
neuraminidase (Table 2). 
Since the sequence identity between seasonal influenza viruses used in this study 
and H7N9 virus is high, we wished to determine the cross-reactivity of polyclonal 
CD8+ T cells specific for sH3N2, sH1N1 or pH1N1 viruses with H7N9 virus. To this 
end, in vitro expanded seasonal influenza virus-specific polyclonal CD8+ T cells were 
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Figure 2 Virus-specific IFN-γ production by polyclonal CD8+ T cells after stimulation with BLCLs infected with 
homologous or H7N9 virus.
Seasonal influenza virus-specific polyclonal CD8+ T cells were isolated from PBMCs stimulated with sH3N2 (A, D, 
G, J, M, P), sH1N1 (B, E, H, K, N, Q) or pH1N1 (C, F, I, L, O). PBMCs of subject 6 were not stimulated in vitro with 
pH1N1 since they were isolated prior to the pH1N1 outbreak. The CD8+ T cells were subsequently co-cultured with 
BLCLs infected with homologous virus (sH3N2, sH1N1 or pH1N1) (black bars) or the heterologous novel H7N9 virus 
(grey bars). The number of IFN-γ producing cells per 5,000 polyclonal CD8+ T cells was determined by ELISpot assay.  
Uninfected BLCLs were used as negative controls (white bars). Experiments were performed in triplicate. The  
symbols in figure R, S and T represent the average of triplicates for each individual subject and the horizontal bars 
represent the average response of all study subjects combined.
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stimulated with HLA class-I matched BLCLs infected with the homologous seasonal 
influenza A virus or H7N9 virus (A/Anhui/1/2013). The number of IFN-γ-producing 
cells per 5,000 CD8+ T cells was determined in an IFN-γ ELISpot assay (Figure 2). 
Study subject 1 showed a high response to homologous seasonal influenza viruses 
(sH3N2, sH1N1 and pH1N1) but also after stimulation with H7N9 virus infected cells 
(Figure 2A, B and C). Although the frequency of seasonal influenza virus specific CD8+ 
T cells derived from subject 2 was lower than that of subject 1, these T cells also 
cross-reacted with H7N9 virus infected cells (Figure 2D, E and F).Subjects 3 and 4 
responded both to the homologous viruses and H7N9 virus (Figure 2G, H, I, J, K and 
L). Subjects 5 and 6 (which lack the HLA-A*0201 allele) showed the lowest response 
to stimulation with homologous viruses. However, virus specific CD8+ T cells of these 
two subjects also displayed cross-reactivity with H7N9 virus (Figure 2M, N, O, P and 
Q).
Thus, although the frequency of virus-specific IFN-γ producing T cells varied between 
the study subjects, these cells cross-reacted with the H7N9 virus. This was indepen-
dent of the sH3N2, sH1N1 or pH1N1 virus used for the in vitro expansion of the poly-
clonal CD8+ T cells (Figure 2). The average number of spots tended to be higher after 
re-stimulation with H7N9 virus compared to re-stimulations with the homologous 
viruses, although this difference was not statistically significant (Figure 2R, S and T). 

Cross-recognition of CD8+ T cells with influenza A H7N9 virus assessed by lytic  
activity
Based on the IFN-γ ELISpot results, we selected high-responding study subjects 
from each HLA-group to test the lytic capacity of the CD8+ T cells against HLA class-I 
matched BLCLs infected with the homologous or H7N9 virus.  To this end, polyclonal 
CD8+ T cells derived from sH3N2, sH1N1 or pH1N1 virus stimulated PBMC cultures 
from study subjects 1, 3 and 5 were incubated with CFSE-labeled BLCLs infected with 
the sH3N2, sH1N1, pH1N1 or H7N9 virus. 
CD8+ T cells from subject 1 obtained after sH3N2, sH1N1 and pH1N1 virus  
stimulation not only displayed lytic activity to the respective homologous viruses, 
but also displayed similar or even stronger lytic activity to H7N9 virus infected cells 
as was observed for sH1N1 virus-specific CD8+ T cells (Figure 3A, B and C). A similar 
trend was observed for virus-specific CD8+ T cells obtained from subject 3. Again, 
the lytic activity to H7N9 virus infected cells exceeded that of cells infected with 
the homologous viruses to various extents (Figure 3D, E and F). Virus-specific CD8+ 
T cells of subject 5 displayed minor lytic activity to target cells infected with the  
respective homologous viruses. Again the lytic activity to target cells infected  
with H7N9 virus exceeded that of cells infected with the homologous viruses  
and uninfected control cells (Figure 3G, H and I). The background lytic activity of  
T cells derived from subjects 1 and 5 was high, which may be related to bystander  
proliferation of EBV-specific T cells.
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Figure 3 Lytic activity of virus-specific polyclonal CD8+ T cells against BLCLs infected with the homologous or 
H7N9 virus.
Seasonal influenza virus-specific polyclonal CD8+ T cells from study subject 1, 3 and 5 were isolated after stimulation 
with sH3N2 (A, D, G), sH1N1 (B, E, H) or pH1N1 (C, F, I) virus, as indicated. Lytic activity against CFSE labled BLCLs  
infected with the homologous virus (sH3N2, sH1N1 or pH1N1) (closed squares) or the heterologous novel 
H7N9 virus (open squares) was assessed even as lytic background activity against uninfected cells (open circles).  
Experiments were performed in triplicate. The error bars indicate standard deviations for the triplicates.

Discussion
Here we assessed the cross-reactivity of seasonal influenza A virus-specific CD8+ 

T cells with the newly emerging H7N9 virus. This study showed that a significant  
proportion of the polyclonal CD8+ T cells specific for sH3N2 (A/Netherlands/384/07), 
sH1N1 (A/Netherlands/26/07) and pH1N1 (A/Netherlands/602/09) are cross-react 
with the novel H7N9 virus (A/Anhui/1/2013). 
Comparison of epitope sequences revealed that the majority of the currently 
known HLA class I epitopes is conserved in the novel H7N9 viruses. Several studies 
have shown that the conservation of these HLA class I epitopes is responsible for  
cross-reactivity of influenza A virus-specific CD8+ T cells with influenza A viruses of 
another subtype [311, 314, 316, 317, 535]. However, variation in some of the known 
epitopes was observed. We demonstrated that there is very little cross-reactivity 
of seasonal influenza A virus-specific CD8+ T cells with four individual H7N9 variant  
epitopes, although CD8+ T cells of subject 1 displayed some cross-reactivity with 
the H7N9 NP418-426 (HLA-B*35 restricted) epitope (Figure 1A). The magnitude of the  
response to individual peptides varied between study subjects (Figure 1). These  
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differences may reflect differences in HLA class I make-up [313] and/or differences in 
the history of influenza A virus infections.
Although it has been suggested that the novel H7N9 virus is poorly immunogenic  
based on the in silico predictions of T cell epitopes in HA [590], we clearly  
demonstrate that the presence of most conserved HLA class I epitopes in the  
novel H7N9 virus contributes to the high cross-reactivity of the polyclonal CD8+ T 
cell populations with the H7N9 virus (Figure 2 and 3). The low IFN-γ response of 
study subject 5 and 6 (A*0101, A*0301, B*0801, B*3501) to stimulation with the  
homologous seasonal influenza viruses and the H7N9 virus (Figure 2) might be  
attributed to the absence of the HLA-A*0201 allele, which is required for a  
dominant CD8+ T cell response to the  conserved and M158-66 epitope [313]. All 
study subjects displayed equal or greater cross-reactive responses to H7N9 virus  
compared to those against the homologous viruses (Figure 2 and 3), which could 
not be attributed to differences in infection rate (data not shown). These results  
correspond with previous assessments of cross-reactive CD8+ T cells with avian  
influenza A viruses of the H5N1 subtype [316]. The strong reactivity to avian  
influenza A viruses might be the result of differences in antigen processing in  
infected cells, allowing more peptides to be liberated and presented from viral  
proteins of avian viruses than from those of human influenza viruses. It can be  
hypothesized that since these avian viruses have not circulated in the human  
population extensively, they did not yet have a chance to acquire mechanisms  
to escape from human epitope processing [417, 528, 591-595].
Although we have studied the cross-reactivity of CD8+ T cells of study subjects with 
selected HLA-types, it is likely that individuals with other HLA-types will also possess 
cross-reactive CD8+ T cells. The conservation of HLA class I epitopes restricted by 
other HLA-alleles (Table 1) and the high amino acid sequence identity between the 
seasonal influenza viruses and the H7N9 virus underscores this (Table 2). 

Cross-reactive influenza A virus-specific CD8+ T cells are found in those  
individuals who experienced an influenza A virus infection at least once. In contrast, a  
seroprevalence study indicated that a large proportion of children under the  
age of four years had not experienced an influenza A virus infection and therefore  
may not have developed virus-specific T cell responses [287]. This age group may  
therefore be at higher risk of developing severe disease during a pandemic outbreak 
than adults. This was indeed the case during the 2009 H1N1 pandemic [103] and  
the localized outbreaks of the H5N1 subtype [348] and the vH3N2 subtype [596, 
597]. However, in case of the novel H7N9 virus mainly older (male) individuals were 
at risk for developing severe disease [567-570]. The reason for this discrepancy is  
unknown at present. It has been suggested that differences in cell-mediated  
immunity between different age groups are the basis for this predilection [598].  
Elderly people who had experienced a H1N1 infection before 1957 were  
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serologically protected during the 2009 pandemic outbreak and the following years, 
whereas many unprotected individuals, including children, suffered from a pH1N1 
infection in recent years [103, 599]. Recent influenza A virus infections in children 
and young adults most likely boosted their cellular immune responses, which may 
afford some protection to infection with viruses of novel subtypes including those 
of the H7N9 subtype [598]. Others have suggested that pre-existing immunity  
consisting of low levels of weakly heterosubtypic antibodies may result in antibody 
dependent enhancement (ADE) of the infection [569]. Instead of neutralizing the 
virus, these antibodies would enhance uptake of the virus and thus promote its  
replication. It cannot be excluded that other confounding factors may have  
contributed to the predilection of H7N9 disease for older individuals. Elderly  
people are more likely to suffer from underlying diseases [600] and are known to 
have altered T cell-immunity which is likely to influence the outcome of an influenza 
A infection [601, 602].  

It is difficult to predict to what extent pre-existing influenza A virus-specific CD8+ 
T cells will afford protection against novel pandemic influenza viruses. Several  
animal studies have shown that virus-specific CD8+  T cells contribute to hetero- 
subtypic immunity [337-339, 538-540]. However, evidence for heterosubtypic  
protection by CD8+  T cells in humans is sparse [343, 345]. Epidemiologic studies 
showed that individuals who had experienced a seasonal H1N1 infection prior to  
the 1957 H2N2 pandemic were partially protected [346, 347] which could be  
attributed to cross-reactive T cells and/or antibodies to e.g. the stalk region of HA. 
A similar trend was observed in isolated H5N1 infections [348]. However, recent  
studies performed during the 2009 H1N1 pandemic revealed better insight into 
the protective role of CD8+ T cells during an infection with an antigenically distinct  
influenza virus in serologically naïve humans. It was shown that patients developed 
less severe illness when they had a high frequency of pre-existing virus-specific CD8+ 
T cells before the onset of the pandemic [344]. Another study showed that infected 
patients developed strong and rapid cross-reactive recall T cell responses which in 
most cases coincided with disappearance of clinical symptoms [603].

In conclusion, we have demonstrated that cross-reactive CD8+ T cells are  
present in the human population that can cross-react with the newly emerging  
H7N9 influenza virus and that may afford some protection in the absence of  
virus neutralizing antibodies. Cross-reactive CD8+ T cells will not establish sterile  
immunity, they will however contribute to a more rapid clearance of the H7N9  
virus infection. Immunity afforded by the presence of cross-reactive CD8+ T cells may 
not only reduce the severity of disease caused by H7N9 virus infection, it may also  
contribute to reduction of virus spread in the population, since infected individuals  
may be infectious for a shorter period of time. Induction of cross-reactive virus- 
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specific T cell responses may a promising approach for the development of universal 
influenza vaccines that can elicit broadly protective immunity against influenza A 
viruses of various subtypes. 
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Abstract
Animal and human studies have demonstrated the importance of influenza A  
virus (IAV)-specific CD8+ cytotoxic T lymphocytes (CTLs) in heterosubtypic cross- 
protective immunity. Using peripheral blood mononuclear cells obtained  
intermittently from healthy HLA-typed blood donors between 1999 and 2012, we 
were able to demonstrate that IAV-specific CTLs are long-lived. Intercurrent IAV  
infections transiently increase the frequency of functionally distinct subsets of 
IAV-specific CTLs, in particular effector and effector memory T cells. 
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Annually, influenza A virus (IAV) infections cause excess mortality and morbidity 
in the human population. Neutralizing antibodies (nAbs) induced by IAV infection 
or vaccination are mainly directed to the globular head of the hemagglutinin (HA) 
[68]. Lifelong protection by these nAbs is hampered by continuous antigenic drift in 
this region of the HA molecule [68, 79] and the introduction of antigenically distinct  
(pandemic) IAVs into a serologically naïve population [79]. However, IAV- 
specific T cells induced by infection with seasonal IAV contribute to protective  
immunity against these novel viruses. IAV-specific CD8+ cytotoxic T lymphocytes 
(CTLs) are predominantly directed against more conserved internal proteins and are 
therefore cross-reactive and provide protection against antigenically distinct IAVs 
[344, 528, 536] . However, the longevity of the IAV-specific human CTL response 
is largely unknown. Studies in mice showed that CTLs induced by IAV infection are 
relatively long lived [540, 604]. Here, we investigate the longevity of the human 
IAV-specific CD8+ T-cell response using uniquely biobanked samples obtained from 
HLA-typed healthy study subjects.

Methods
Peripheral blood mononuclear cells (PBMCs) were obtained intermittently from  
nine HLA-typed healthy blood donors (18-64 years of age) between 1999 and 
2012 (Sanquin Bloodbank, Rotterdam, the Netherlands) and cryopreserved  
(Supplementary Table 1) [536]. For most time points, blood plasma was obtained 
and stored at -20°C. Plasma samples were used to assess if reinfections had likely  
occurred between 1998-2012 by virus neutralization (VN) assay [605] using 17  
representative H1N1 and H3N2 IAV strains that circulated in the Netherlands in 
these years. The use of PBMCs and plasma for scientific research was approved by 
the Sanquin Bloodbank after informed consent was obtained from the blood donors.
PBMCs were stimulated with influenza A/H3N2 virus Resvir-9 (a reassortant 
strain containing the hemagglutinin, nucleoprotein and neuraminidase of IAV  
A/Nanchang/933/95 and all other genes of IAV A/Puerto Rico/8/34) to assess the  
frequency of IAV-specific CD8+ T cells by CD69 and intracellular interferon  
(IFN)-γ staining (ICS) as described previously and shown in figure 1A [486].  
Staphylococcus enterotoxin B (SEB) (Sigma-Aldrich, Zwijndrecht, The Netherlands)  
was used as positive control to confirm functional integrity of the cells after  
thawing, a strong response was detected with PBMC of all donors (data not 
shown). The frequency of IAV-specific CD8+ T cells was also determined by staining 
with HLA-peptide  oligomers (dextramers, Dm) using a cocktail of R-phycoerythrin  
(PE)-labeled Dms for highly conserved IAV CTL epitopes corresponding to the HLA 
haplotypes of the blood donors (Supplementary Table 1): HLA-A*0101-PB1591-599 
(VSDGGPNLY), HLA-A*0201-M158-66(GILGFVFTL), HLA-A*0301-NP265-273(ILRGSVAHK), 
HLA-B*0801-NP380-388(ELRSRYWAI), HLA-B*2705-NP174-184(RRSGAAGAAVK) (Immudex, 
Copenhagen, Denmark). Briefly, 2x106 cells were washed extensively with phosphate 
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Figure 1 Defining influenza A virus-specific CD8+ T cells using flow cytometry.
A, The frequency of IAV-specific CD8+ T cells was determined after stimulating peripheral blood mononuclear cells 
with IAV H3N2. Fluorochrome-labeled antibodies were used to identify the CD8+ T-cell population expressing CD3, 
interferon γ, and CD69. Background values of nonstimulated control cells were subtracted. B, In addition, the  
frequency of IAV-specific CD8+ T cells was determined using Dextramer (Dm) staining (red gate). Various T-cells 
subsets were further assessed on the basis of expression of CD45RA, CD28, CCR7, and CD27. Owing to the low 
frequency of CD8+Dm+ T cells, the gating strategy was based on the whole CD3+CD8+ T-cell population (blue gate). 
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buffered saline containing 5% fetal bovine serum (Sigma-Aldrich) and incubated for 
10 minutes at room temperature with the Dm mixture. CD8+Dm+ cells were further 
functionally phenotyped as naïve cells (CD45RA+CD28+CCR7+CD27+), effector cells 
(CD45RA-CD28-CCR7-CD27-), effector memory T cells (TEM) (CD45RA-CD28+CCR7-),  
effector memory RA T cells (TEMRA) (CD45RA+CD28-CCR7-) and central memory T cells 
(TCM) (CD45RA- CD28+CCR7+) using fluorochrome-labeled antibodies directed to the 
respective CD antigens (BD Biosciences, Breda, The Netherlands and eBiosciences, 
Vienna, Austria) (Figure 1B). Remaining cells were defined as “other” and consist of 
cell subsets which have not been defined previously e.g. CD45RA-CD28-CCR7-CD27+ 
or CD45RA-CD28-CCR7+CD27+. 

Results
Based on the Dm staining, donors 4564, 7482, 5878, 6358 and 5891 display an  
increase in number of IAV-specific CD8+ T cells at one time point (Figure 2A, B, C, 
E and I). Expansion of effector T-cell, TEM and TEMRA populations mainly accounted  
for this increase, which is typically observed after a recent infection [332]. For 
three of these donors (4564, 5878 and 6358) the increase in IAV-specific CD8+ T-cell  
numbers coincided with an antibody response directed against contemporary IAV 
strains (H3N2 and/or H1N1), suggesting that IAV-infection was responsible for the 
increase in IAV-specific CTLs (Figure 2A, C and E). However, donor 5891 did not  
seroconvert, despite an increase in IAV-specific CTL numbers (Figure 2I). Of note, 
since the PBMCs and corresponding plasma sample were obtained early in 2010, a 
possible seroconversion later that year could not be excluded (Supplementary Table 
1). Unfortunately, for donor 7482 no plasma sample was available for the year 2008, 
which precluded correlating T-cell and antibody responses (Figure 2B). 
A subsequent decrease in the frequency of IAV-specific CD8+ T cells was found in  
donors 4564, 7482, 5878 and 6358 (Figure 2A, B, C and E) which was accompanied 
with a contraction of the effector T cell, TEM and TEMRA subsets. In years following 
the contraction phase, small numbers of TEM, TEMRA and TCM persisted in these study 
subjects. 
As shown by Dm-staining and ICS, the frequency of IAV-specific CD8+ T cells remained 
relatively stable over the years in the other 4 donors (8801, 6888, 8904 and 6877), 
although VN antibody testing indicated a possible IAV infection for donor 6888 in 
1998/99, this did not correspond with a conclusive increase in IAV-specific CD8+ T 
cells (Figure 2D, F, G and H)
In most cases (4564, 7482, 8801, 6358, 6888, 8904 and 6877) the results obtained  
with Dm-staining and ICS correlated well. For donors 5878 and 5891 the  
correlation was less obvious. Since we used a cocktail of selected Dms to stain  
influenza virus-specific CD8+ T cells, it is likely that CD8+ T cells with specificity for 
other (unknown) epitopes were not detected, so the use of a Dm cocktail may have 
underestimated the number of IAV-specific CD8+ T cells, especially in case of donors 
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8801 and 6877. 
 
Discussion
Although PBMC and/or plasma samples were not available for each donor and every 
year, these data indicate for the first time that the human IAV-specific CD8+ T-cell 
immunity persists for a prolonged period of time. Although indication of recent  
infections were not found for all donors tested (7482, 8801, 8904, 6877 and 5891), 
it is likely that all subjects experienced multiple infections with A/H1N1 and A/H3N2 
IAV since childhood [287]. The various CD8+ T-cell subsets are relatively stable over 
the years. However, IAV infection may induce a transient increase in the frequency 
of IAV-specific CD8+ T cells, which can mainly be attributed to an increase of effector 
T cell, TEM and TEMRA subsets. Of interest, the proportion of these subsets decrease 
in the contraction phase. The proportion of IAV-specific CD8+ T cells as detected 
by Dm-staining and ICS is small, but comparable to that of memory T cells against  
other viruses causing acute infections [606, 607]. Only during chronic virus  
infections larger virus-specific T-cell populations may be observed [608]. Of note, 
none of our study subjects experienced an acute IAV infection at the sampling time 
points, as illness in the two weeks prior to blood donation is an exclusion criteria.  
The contraction of IAV-specific CD8+ T-cell response occurs rapidly within one to  
two weeks post clinical onset as was demonstrated in patients acutely infected with 
the 2009 pandemic H1N1 virus [603] and similar contraction of CD8+ T cells was 
demonstrated after vaccination with live attenuated yellow fever (YFV-17D) and 
smallpox (Dryvax) vaccines [607]. The real number of persisting TCM may be higher  
than shown in figure 2, since these cells preferentially reside in the lymphnodes  
rather than in peripheral blood [332].  

Collectively, we demonstrated that adult subjects possess IAV-specific CD8+ T cells 
and that the presence of this cell-mediated immunity in the blood is long-lived. Since 
the majority of these T cells are highly cross-reactive, they will respond to infection 
with antigenically related and unrelated IAVs. The presence of these cells correlated 
with protection against severe disease caused by IAV, as was shown recently [344]. 
Thus, repeated boosting of IAV-specific cross-reactive CD8+ T-cell responses, for  
example by the use of live attenuated vaccines or alternative T-cell antigen  
delivery systems, may be a venue to induce broadly protective immunity against  
future pandemic influenza viruses. 

Acknowledgements
We thank R.D. de Vries for excellent technical advice and assistance. 



83

Ch
ap

te
r 4

Human IAV-specific CTL response is long-lived

Figure 2 Phenotyping influenza A virus (IAV)-specific CD8+ T cells.
The frequency of IAV-specific CD8+ T cells was determined in peripheral blood mononuclear cells (PBMCs) obtained 
from healthy blood donors in the indicated years. Bars indicate the frequency of Dextramer (Dm)-expressing CD8+ T 
cells (left Y-axis). Based on the expression of CD45RA, CD28, CCR7, and CD27, the IAV-specific CD8+Dm+ T cells were 
further subdivided into various T-cell subsets to determine the proportion of naïve T cells, effector T cells, effector 
memory T cells (TEM), effector memory RA T cells (TEMRA), and central memory T cells (TCM). Cells not belonging to any 
of these subsets were defined as “other”. The red line indicate the frequency of IAV-specific CD8+ T-cell population 
expressing interferon γ (IFN-γ) and CD69, as determined by intracellular IFN-γ staining, after stimulation with infec-
tious IAV (right Y-axis). Above each graph, the year of isolation is indicated for the IAV that circulated during influenza 
season preceding the time point of PBMC collection and against which antibody responses were detected by a virus 
neutralization assay. NA, plasma sample was not available for that time point. -, no seroconversion against an IAV 
strain circulating in the preceding influenza season was detected.
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Abstract
Natural influenza A virus infections elicit both virus-specific antibody and CD4+ 
and CD8+ T cell responses. Influenza A virus-specific CD8+ cytotoxic T lymphocytes 
(CTLs) contribute to clearance of influenza virus infections. Viral CTL epitopes 
can display variation, allowing influenza A viruses to evade from recognition by  
epitope-specific CTLs. Due to functional constraints, some epitopes, like the  
immunodominant HLA-A*0201 restricted matrix protein 1 (M1)58-66 epitope, are 
highly conserved between influenza A viruses regardless of their subtype or host 
species of origin. We hypothesized that human influenza A viruses evade recognition 
of this epitope by impairing antigen processing and presentation by extra-epitopic  
amino acid substitutions. Activation of specific T cells was used as an indication for  
antigen presentation. Here, we show that the M158-66 epitope in the M1 protein 
derived from human influenza A virus was poorly recognized compared to the M1 
protein derived from avian influenza A virus. Furthermore, we demonstrated that 
naturally occurring variation at extra-epitopic amino acid residues affect CD8+ T 
cell recognition of the M158-66 epitope. These data indicate that human influenza A  
viruses can impair recognition by M158-66-specific CTLs, while retaining the conserved 
amino acid sequence of the epitope, which may represent a yet unknown immune 
evasion strategy for influenza A viruses. This difference in recognition may have  
implications for the viral replication kinetics in HLA-A*0201 individuals and spread 
of influenza A viruses in the human population. The findings may aid the rational 
design of universal influenza vaccines that aim at the induction of cross-reactive  
virus-specific CTL responses.

Importance
Influenza viruses are an important cause of acute respiratory tract infections. Natural 
influenza A virus infections elicit both humoral and cellular immunity. CD8+ cytotoxic 
T lymphocytes (CTLs) are directed predominantly against conserved internal proteins 
and confer cross-protection, even against influenza A viruses of various subtypes. In 
some CTL epitopes mutations occur that allow influenza A viruses to evade from 
recognition by CTLs. However, the immunodominant HLA-A*0201 restricted M158-66 
epitope does not tolerate mutations without loss of viral fitness. Here, we describe 
naturally occurring variations in amino acid residues outside the M158-66 epitope that 
influence the recognition of the epitope. These results provide novel insights in the 
epidemiology of influenza A viruses and their pathogenicity and may aid rational 
design of vaccines that aim at the induction of CTL responses.
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Introduction
Influenza viruses are among the leading causes of acute respiratory tract infections 
worldwide [65]. Classification of influenza A viruses (IAVs) is based on their surface  
glycoproteins hemagglutinin (HA) and neuraminidase (NA). At present, 18 HA  
(H1-H18) and 11 NA (N1-N11) subtypes have been identified [2, 4]. IAVs of the 
H3N2 and H1N1 subtype together with influenza B viruses cause yearly epidemics 
in the human population [65]. Other IAV subtypes circulate in animal reservoirs like  
aquatic birds and pigs [53], but can occasionally cross the species barrier into the  
human population [609]. Genetic reassortment between animal and human IAVs 
have resulted in the emergence of pandemic strains in the last century [81-84].
Natural influenza virus infections elicit both humoral and cellular immune responses.  
Virus neutralizing antibodies are mainly directed against the highly variable  
globular head of the HA protein and prevent re-infection with the same virus [610].  
However, most antibodies have limited cross-reactivity against influenza viruses of 
another subtype [68, 69] and may afford little protection against the development of 
severe disease caused by infection with antigenically distinct viruses, including those 
of novel subtypes.
Influenza virus-specific CD8+ T cells (cytotoxic T-lymphocytes (CTLs)) on the other 
hand are directed predominantly against more conserved internal proteins [528, 
611] and recognize their epitopes as major histocompatibility (MHC) class I/peptide 
complexes [411]. The recognition of conserved proteins results in a high degree of 
cross-reactivity with antigenically distinct IAVs [316, 528, 536, 611]. Although CTLs 
do not afford sterilizing immunity, they contribute substantially to viral clearance 
and reduce disease severity of infections with influenza viruses including those with 
antigenically distinct HA or NA [344, 612, 613]. However, the high mutation rate 
of influenza viruses and the selective pressure exerted by virus-specific CTLs drive 
the accumulation of amino acid substitutions that are associated with evasion from  
recognition by CTLs specific for some epitopes. Indeed, significantly more non- 
synonymous mutations are observed in CTL epitopes than in the rest of the viral  
nucleoprotein (NP) [410, 614]. Amino acid substitutions in T cell receptor (TCR)  
contact residues have been identified that result in loss of recognition by  
epitope-specific CTLs [422, 528], as has been described for the human leukocyte  
antigen (HLA)-B*3501 restricted NP418-426 epitope [427]. In addition, mutations at 
anchor residues of CTL epitopes have been identified [422, 528], which resulted  
in complete loss of the CTL epitope as has been described for the HLA-B*2705  
restricted NP383-391 epitope [421, 425]. Both types of CTL escape mutations were  
observed during natural evolution of seasonal IAVs (H3N2) [422, 425]. Similar CTL 
evasion strategies have been described for viruses that cause chronic infections, 
like Human Immunodeficiency Virus (HIV) [615], Hepatitis C Virus (HCV) [436],  
Epstein-Barr Virus (EBV) [616] and Lymphocytic Choriomenigitis Virus (LCMV) [439]. 
In contrast, some IAV CTL epitopes are highly conserved even between different 
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Figure 1 Reassortment events of pandemic influenza A viruses
The 1918 A/H1N1 virus possibly originated from multiple reassortment events between avian, swine and human 
viruses. This A/H1N1 virus continued to circulate, causing seasonal epidemics, until 1957 when a novel A/H2N2 virus 
emerged after a reassortment event with an avian A/H2N2 virus. This virus circulated until 1968, when it reassorted 
with an avian A/H3Nx virus, and caused seasonal epidemics ever since. A/H1N1 was reintroduced in the human 
population in 1977 and co-circulated with A/H3N2 viruses until 2009 when it was replaced by H1N1pdm2009, which 
originated after multiple reassortment events between avian, swine and human viruses. Although it is unknown 
whether the M gene segment originated from viruses that were newly introduced into humans or had circulated in 
humans prior to 1918, viruses with this gene segment continued to circulate in the human population in A/H2N2 and 
A/H3N2 viruses until today (blue arrow). Also, the A/H1N1 virus that was reintroduced into the human population 
in 1977 contained the M gene segment of 1918 origin, but this virus was replaced by a virus with a swine derived M 
gene segment during the A/H1N1 pandemic outbreak of 2009 (green arrow).

subtypes of IAV, like the HLA-A*0201 / HLA-C*0801 restricted M158-66 (GILGFVFTL)  
epitope [446, 447]. The matrix protein 1 (M1) of seasonal A/H3N2 viruses  
originates from the 1918 pandemic A/H1N1 virus (Fig. 1) [81-83, 453, 454]. Most 
likely, the selective pressure against the M158-66-epitope is high, considering the  
immunodominant nature of the epitope [448] and the high prevalence of the 
HLA-A*0201 allele in the Caucasian population (>40%) [617]. However, mutations 
at TCR contact or anchor residues were not tolerated in this epitope without loss 
of viral fitness [410, 450], which coincides with the presence of a highly conserved 
nuclear export signal overlapping the M158-66 epitope [451].
We hypothesized that IAVs may have adopted other escape mechanisms for  
highly conserved CTL epitopes, like the M158-66 epitope, based on the observation  
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that avian IAVs of the H5N1 and H7N9 subtype are better recognized by polyclonal  
IAV-specific CTLs than human seasonal IAVs [316, 536]. It is well known that  
amino acid substitutions flanking an epitope can affect antigen presentation by  
changing the cleavage motifs used by the proteasome, alter trimming of the N-  
and C-terminal sequence by cytosolic or endoplasmic reticulum (ER) resident  
proteases or impair the translocation via TAP (transporter associated with antigen  
presentation) [411, 413, 414]. So far, an effect of extra-epitopic mutations on T  
cell recognition has only been demonstrated for CTLs directed to viruses that  
cause chronic infections, including for HIV [615], HCV [418] and EBV [419, 420]. 
Here we investigate if differences in extra-epitopic amino acid residues observed  
between avian and human IAVs could be responsible for differential recognition 
of the M158-66 epitope. It was demonstrated that naturally occurring amino acid  
differences at positions in the region flanking the otherwise fully conserved  
M158-66 epitope affect recognition by M158-66-specific CD8+ T cells. The reduced  
recognition of human IAVs by M158-66-specific CD8+ T cells by extra-epitopic  
amino acid substitutions indicates the existence of an immune evasion strategy  
additional to variation in CTL epitopes and may help the virus to perpetuate in the  
human population in the presence of pre-existing virus-specific CD8+ T cell  
immunity. Furthermore, these results are of interest for the development of  
vaccines that aim at the induction of virus-specific CTL responses.

Materials and Methods
Cells
A HLA-A*0101/A*0201/B*0801/B*2705 B lymphoblastoid cell line (BLCL) was  
prepared as described previously [513]. BLCLs were cultured in RPMI 1640 medium  
(Lonza, Basal, Switzerland) supplemented with 100µg/ml penicillin, 100U/ml  
streptomycin, 2mM L-Glutamine (P/S/G) (Lonza) and 10% fetal bovine serum (FBS) 
(Sigma-Aldrich, Zwijndrecht, The Netherlands) (R10F medium).
The previously described A549-HLA-A*0201+ human lung carcinoma cell line 
[618] was cultured in HAMs-F12 medium (Gibco Life Technologies, Bleiswijk, The  
Netherlands) containing P/S/G, 10% fetal calf serum (FCS) (Hycone) (Sigma) (H10F) 
and in the presence of 1µg/ml puromycin (Invivogen, Toulouse, France). HLA-A*02 
expression was confirmed by staining with anti-HLA-A*02-FITC (BD Biosciences,  
Breda, The Netherlands) and using a FACSCantoII flowcytometer and FACS Diva  
software (Becton Dickinson B.V., Breda, The Netherlands), prior to each experiment.

Peptides
Synthetic immunograde peptides (>85% purity) of the HLA-A*0201 restricted M158-66 
(GILGFVFTL) and the HLA-B*2705 NP383-391 (SRYWAIRTR) epitopes were purchased 
(Eurogentec, Seraing, Belgium). Peptides were dissolved in dimethyl sulfoxide (5 mg/
ml), diluted to 100 µM in RPMI 1640 medium and stored at -20°C until further use.



92

Ch
ap

te
r 5

Extra-epitopic amino acid residues influence IAV CTL recognition

Plasmids
The open reading frame (ORF) of the M1 protein of influenza viruses  
A/Netherlands/018/1994 (H3N2) or A/Vietnam/1194/2004 (H5N1) without 
their stop codons were cloned in frame with the ORF of eGFP into the pEGFP-N1 
plasmid (Becton Dickinson) as described previously [619]. Next, the ORF of the  
NP383-391 (SRYWAIRTR) epitope including 50 N- and C- terminal amino acids (all  
derived from A/PuertoRico/8/1934) was cloned in frame in between the ORFs of 
the M1 and eGFP protein (Fig. 2). Briefly, the NP insert (nucleotide (nt) position 
997 to 1323) was created by PCR amplification of A/PuertoRico/8/1934 derived NP 
cDNA using a forward and reverse primer that encompassed 20 nts of the vector 
and 20 nts of the desired NP insert. These primers were used in the following PCR  
reaction: 10 pmol of each primer, 5 µl of pfu ultra II buffer, 1 µl of pfu ultra II enzyme 
(Agilent Technologies, Amstelveen, The Netherlands), dNTP (10 mM each) (Roche, 
Woerden, The Netherlands), 100 ng A/PuertoRico/8/1934 NP gene segment cDNA 
in a final volume of 50 µl, which was subsequently incubated at 95°C for 3 minutes  
(min), followed by 40 cycles of 95°C for 1 min, 1 min at 45°C and 72°C for 2 
min. PCR products were loaded on a 1% agarose gel and DNA was isolated  
using the min elute gel extraction kit from Qiagen according to the manufacturer’s  
instructions (Qiagen, Venlo, The Netherlands). This purified PCR product now served 
as a ‘megaprimer’. The second PCR was performed as described above, only this 
time 100, 300, and 500 ng of the ‘megaprimer’ was combined with 50 and 100 
ng of vector DNA, and 3 µl quik solution (Agilent). The PCR product was digested 
for 1 hr at 37°C with 20U of DpnI (New England Biolabs, Ipswich, USA). The DpnI  
digested PCR product was transformed using Z-competent XL-10 gold cells (Zymo 
research, Irvine, USA). Plasmid DNA was purified using a Genopure Plasmid Maxi Kit 
(Roche). Reciprocal exchange of the extra-epitopic amino acids in the M1 protein 
at positions 15, 27, 101, 115 and 121 were introduced using the Quikchange multi 
site-directed mutagenesis kit according to the manufacturer’s instructions (Agilent  
Technologies) (Fig. 2). These plasmids were used in the FATT-CTL assay.
A bidirectional reverse genetic system based on influenza virus  
A/Netherlands/178/1995 (H3N2; M), A/Vietnam/1194/2005 (H5N1; M) and  
A/PuertoRico/8/1934 (H1N1; PB2, PB1, PA, HA, NP, NA, NS) were used for the  
generation of recombinant influenza viruses as described previously [410, 620, 621].
Sequences of all recombinant plasmids were confirmed by sequence analysis  
using a Big Dye Terminator v3.1 cycle sequencing kit and a 3130xl genetic analyzer 
(Applied Biosystems, Bleiswijk, The Netherlands) prior to use. 

Viruses
293T cells were transfected with the recombinant bidirectional plasmids (M derived 
from A/Netherlands/178/1995 or A/Vietnam/1194/2005, other gene segments  
derived from A/Puerto Rico/8/1934) as described previously [620]. Culture  
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Figure 2 Amino acid sequences of viral M1-NP-eGFP fusion proteins and expression plasmid map 
The amino acid sequence of the chimeric M1-NP-eGFP fusion construct is shown with the avian IAV  
A/Vietnam/1194/2004 (H5N1) and human IAV A/Netherlands/018/1994 (H3N2) M1 encoding sequences in blue, 
NP in orange and eGFP in green. Linker sequences are shown in gray. The location of the M158-66 (GILGFVFTL) and 
NP383-391 (SRYWAIRTR) epitopes are highlighted in yellow. Amino acid differences studied in this paper are indicated 
in bold red, additional amino acid differences are indicated in bold. The insert was cloned into the pEGFP-N1 vector  
as indicated. The hash marks around the perimeter of the plasmid map indicate 1000 nucleotide increments.

supernatants were harvest after 48 hrs and used for a subsequent inoculation of  
Madin-Darby canine kidney (MDCK) cells [421]. After 3 days, culture supernatants  
were harvested and passed twice in MDCK cells. Culture supernatants  
were clarified by low-speed centrifugation and subsequently purified by  
ultracentrifugation through a sucrose gradient. Sequence analysis was used to 
confirm the sequence of the M gene segments as described above and their  
infectious-virus titers were determined as described previously [545].
Note that the M gene segment of the recombinant virus was derived from an  
alternative A/H3N2 virus (A/Netherlands/178/1995) which differed from the  
A/Netherlands/018/1994 virus at amino acid positions 227 and 239 (A227T and 
A239T). However, we argue that due to the large C-terminal distance (>160 amino 
acids) from the M158-66 epitope these amino acid differences are unlikely to interfere 
with the processing of this epitope.
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T cell clones
CD8+ T cell clones directed against the HLA-A*0201-restricted M158-66 (GILGFVFTL)  
epitope and the HLA-B*2705-restricted NP383-391 (SRYWAIRTR) epitope were  
generated as described previously [425, 622]. 

FATT-CTL assay
The fluorescent antigen-transfected target cell (FATT)-CTL assay was used for the 
detection of lytic activity of the M158-66- and NP383-391-specific CD8+ T cell clones as 
described previously [619]. Briefly, the cell line nucleofector kit V (Lonza), program 
T16, was used to transfect 5x106 BLCLs with 8µg plasmid DNA and incubated in R10F 
for 4 hrs at 37°C. The number of viable eGFP-positive cells was determined after  
TOPRO®-3 iodide (Invitrogen, Breda, The Netherlands) staining using the  
FACSCantoII flowcytometer and FACS Diva software. Quadruples of 1,500 viable  
eGFP-positive target cells were cocultured for another 3.5 hrs with 20,000, 40,000 
or 80,000 M158-66- or NP383-391-specific CD8+ T cells and the number of viable eGFP- 
positive cells was determined as described above. The gating strategy performed 
with FlowJo software (FlowJo, Ashland, USA) is shown in figure 3A. The percentage  
of epitope-specific lysis was then calculated using the following formula:  
100 x [(number of viable eGFP-positive cells in the sample without effector – number 
of viable eGFP-positive cells in the sample with effector)/number of viable eGFP- 
positive cells in the sample without effector].

Kinetics of CD8+ T cell activation in the FATT-CTL assay
BLCLs were transfected and counted as described above. Quadruples of 3,000 viable 
eGFP-positive target cells were cocultured for another 7 hrs with 10,000 or 20,000 
M158-66- or NP383-391-specific CD8+ T cells in the presence of golgistop [4µl/6ml] (BD  
Biosciences) and 0.5µl/100µl CD107a-V450 (BD Biosciences) and subsequently  
stained in phosphate buffered saline (PBS) supplemented with 2% FBS and  
golgistop (P2FG) with CD3-PerCP-Cyanine5.5, CD8-APC (eBiosciences, Vienna, 
Austria), CD137-PECyanine7 (BioLegend, London, United Kingdom), CD69-APC-H7 
(BD Biosciences) and LIVE/DEAD aqua Fixable Dead cell stain (L/D) (Invitrogen). Next, 
cells were fixed using Cytofix (BD Biosciences) and stored in PBS supplemented with 
0.5% BSA and 2mM Ethylenediaminetetraacetic acid (EDTA) (Sigma) at 4°C until they 
were analyzed using a FACSCantoII flowcytometer and FACS Diva software. Gating 
strategy using FlowJo software is shown in figure 4A. BLCLs pulsed with or without 
100µM GILGFVFTL or SRYWAIRTR peptide were used as a positive control (data not 
shown).

IFN-γ ELISpot assay
The interferon gamma (IFN-γ) response of M158-66- or NP383-391-specific CD8+ T cells 
was determined by enzyme-linked immunosorbent spot (ELISpot) assay, which was 
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performed according to the manufacturer’s instructions (Mabtech, Nacka Strand, 
Sweden). In brief, 3,000 transfected viable eGFP-positive BLCLs were incubated 
with 10,000 M158-66- or NP383-391-specific CD8+ T cells for 7 hrs, in quadruplicate. The  
average number of spots was determined using an ELISpot reader and image analysis 
software (Aelvis, Sanquin Reagents, Amsterdam, The Netherlands).

Virus infection and kinetics CD8+ T cell activation
The kinetics of M156-66-specific CD8+ T cells activation after stimulation with  
A549-HLA-A*0201+ cells infected with the avian or human recombinant viruses was 
studied by assessing expression of activation markers CD137, CD69 and CD107a. 
Peptide pulsed A549-HLA-A*0201+ cells were used as a positive control. 
A549-HLA-A*0201+ cells were incubated with or without 100µM GILGFVFTL in 
H10F for 1hr at 37°C in an ultra-low attachment plate (Corning, New York, USA).  
Meanwhile, virus-infected target cells were prepared by inoculating A549-
HLA-A*0201+ cells at a multiplicity of infection (MOI) of 3 with the avian or  
human recombinant virus in ultra-low attachment plates. After 1 hr, cells were 
washed with H10F and cocultured with the M156-66-specific CD8+ T cell clone 
at an E:T ratio of 0.2 in the presence of golgistop [4µl/6ml] and 0.5µl/100µl  
CD107a-V450, in triplicate for each timepoint. Cells were stained each hr from 3  
till 14 hr p.i. and 24 hr p.i. with CD8-FITC (Dako, Glostrup, Denmark), CD137-
PE (Miltenyi Biotec, Bergisch Gladbach, Germany), CD3-PerCP, CD69-APC (BD  
Biosciences) and L/D and subsequently fixed and stored as described above.  
Virus-infected A549-HLA-A*0201+ cells in the absence of the M156-66-specific CD8+ 
T cell clone were simultaneously stained with L/D and subsequently fixed and  
permeabilized with Cytofix and Cytoperm (BD Biosciences) after which the cells were 
stained for 30 min at 4°C with anti-influenza A-FITC (reagent A) (Oxoid, Landsmeer, 
The Netherlands). Cells were analyzed using a FACSCantoII flowcytometer and FACS 
Diva software. Gating strategy using FlowJo software is shown in figure 6A and B.

Sequence Data
To assess the frequency of amino acid variations in the M1 protein at positions 15, 
27, 101, 115 and 121 in avian (all subtypes available 2001-2015), swine (A/H3N2  
1977-2015 and A/H1N1 1930-2015) and human (A/H1N1 1918-1957, A/H2N2  
1957-1968, A/H3N2 1968-2015, A/H1N1 1977-2008 and A/H1N1 2009-2015)  
viruses, all full length M1 amino acid sequences available in the influenza virus  
resource database of the National Center for Biotechnology Information (NCBI;  
http://www.ncbi.nlm.nih.gov/genomes/FLU) at April 11th 2015 were down-
loaded. Due to the large number of avian viruses available we collapsed all  
identical sequences prior to analysis. After excluding sequences with large  
deletions using BioEdit we analyzed the dataset in Ugene 1.16.1  
(http://ugene.unipro.ru; Unipro, Novosibirsk, Russia) to assess the frequency  
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of the avian or human amino acids at positions 15, 27, 101, 115 and 121.  
Viruses were analyzed in Excel to determine whether observed frequencies were 
the result of cluster formation and whether certain mutations became fixed in time. 

Statistical analysis
Data from the FATT-CTL, ELISpot and activation assays were analyzed using the  
independent samples T test to calculate the respective p value between pairs of 
groups. These p values were then analyzed using the Benjamini-Hochberg method 
(a false discovery rate (FDR) of 0.01 was used for all assays) to correct for multiple 
hypothesis testing [623]. Each experiment, with the exception of the IFN-γ ELISpot 
assay, was performed at least twice.

Results
Differences in lytic activity of M158-66-specific CD8+ T cells against M1 proteins  
derived from avian and human influenza A viruses
Viruses were selected based on the previous observation that avian IAV  
A/Vietnam/1194/2004 (H5N1) was better recognized by IAV-specific CTLs than  
human IAV A/Netherlands/018/1994 (H3N2) [316] which may be attributable to a yet 
unidentified, additional CTL escape mechanism utilized by human A/H3N2 viruses.
The M1 genes of both viruses were cloned in frame with the enhanced green  
fluorescent protein (eGFP) gene into an expression plasmid as described previously 
[619]. In addition, a region of NP, encoding the HLA-B*2705 NP383-391 (SRYWAIRTR) 
epitope and 50 N- and C-terminal flanking amino acids, was cloned in frame between 
the M1 and eGFP genes (Fig. 2). The NP383-391 epitope was included as a control since 
CTLs specific for this epitope have similar functional avidity as CTLs directed to the 
M158-66 epitope [448]. These plasmids were used in the FATT-CTL assay to monitor the 
lytic activity by M158-66-specific CD8+ T cells (Fig. 3A), as described previously [619]. 
Lytic activity of the NP383-391-specific CD8+ T cells was used as a control to exclude  
differences in transfection efficiencies and/or protein expression levels. M158-66- 
specific CD8+ T cells lysed significantly more target cells expressing the M1 protein  
derived from avian virus A/Vietnam/1194/2004 (H5N1) than those expressing the  
M1 protein of human virus A/Netherlands/018/1994 (H3N2) (83% and 45%  
respectively at the highest effector:target (E:T) ratio) (Fig. 3B). The lytic activity 
of NP383-391-specific CD8+ T cells to both M1-NP-eGFP fusion proteins was similar 
(70% at the highest E:T ratio) (Fig. 3C). These results demonstrate that the M158-66  
epitope in context of a M1 protein derived from a human IAV is less well recognized 
than its counterpart in the context of a M1 protein derived from an avian IAV. Next, 
we wished to assess whether differences in amino acids flanking the M158-66 epitope 
had contributed to the observed difference in lytic activity of epitope-specific CD8+  
T cells. Although no amino acid differences were found in close proximity to the 
M158-66 epitope, we identified five extra-epitopic (avian-to-human) amino acid  
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substitutions within a 60 amino acid distance of the M158-66 epitope; namely at  
positions I15V (substitution A), K27R (substitution B), K101R (substitution C),  
V115I (substitution D) and T121A (substitution E) (Fig. 2). Reciprocal exchange  
of these extra-epitopic amino acid residues in the M1 protein allowed  
assessment of the effect of these substitutions on recognition by M158-66-specific 
CD8+ T cells. Exchanging the extra-epitopic amino acid residues partially reversed 
the recognition pattern of the M155-66-specific CD8+ T cells. Introducing the five M1 
amino acid residues of the human virus into the M1 protein of the avian virus (AH 
ABCDE) significantly reduced the lytic activity of the M158-66-specific CD8+ T cells from 
83% to 70% at the highest E:T ratio. Introducing the five M1 amino acid residues of 
the avian virus into the M1 protein of the human virus (HA ABCDE) significantly  
improved the lytic activity of M158-66-specific CD8+ T cells from 45% to 56% (Fig. 3B).  
The HA ABCDE exchange did not affect the recognition by the NP383-391-specific 
CD8+ T cells, while the AH ABCDE exchange affected recognition slightly (Fig. 3C). 
The five amino acid differences are unlikely to have altered the CTL response by 
interfering with the splice site, as this would have resulted in a shift of the NP open 
reading frame (ORF) [624], resulting in comparable recognition patterns by both 
CD8+ T cell clones, which was not observed.

Figure 3 Lytic activity of M158-66- and NP383-391-specific 
CD8+ T cells against target cells transfected with various  
M1-NP-eGFP encoding plasmids
A) Gating strategy used to assess the number of viable 
eGFP+ target cells. First dotplot demonstrates a gate for 
the transfected target cells, second gate demonstrates the  
viable cells and the third gate demonstrates the eGFP+ cells. 
B) Percentage lytic activity exerted by the M158-66-specific 
CD8+ T cell clone. C) Percentage lytic activity exerted by 
the NP383-391-specific CD8+ T cell clone. Target cells were  
transfected with chimeric M1-NP-eGFP fusion plasmids 
that encode the M1 protein of the avian A/H5N1 virus (WT  
avian; purple squares), the M1 protein of the human  
A/H3N2 virus (WT human; blue squares), the M1 protein of 
avian A/H5N1 virus with extra-epitopic amino acid residues 
of the human A/H3N2 virus (AH ABCDE; purple circles) 
and the M1 protein of human A/H3N2 virus with extra- 
epitopic amino acid residues of the avian A/H5N1 virus 
(H A ABCDE; blue circles). Data points represent the 
mean and error bars indicate the standard deviation (SD) 
of quadruplicates (n=4). ** Indicates that all groups were 
statistically significantly different from each other after  
correction for multiple hypothesis testing using a false  
discovery rate (FDR) of 0.01. * Indicates that only the  
AH ABCDE group was significantly lower.
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Differential activation of M158-66-specific CD8+ T cells by M1 protein derived from 
avian or human IAV
Next, we investigated activation of M158-66-specific CD8+ T cells after stimulation with 
HLA-A*0201/B*2705 positive EBV transformed B cells expressing the respective  
chimeric M1-NP-eGFP fusion proteins. Upon stimulation, the expression of the  
activation markers CD137, CD69 and CD107a by M158-66- and NP383-391-specific CD8+ 
T cells was determined by flow cytometry (Fig. 4A). Because both the E:T ratio and 
incubation time had to be adapted for this purpose, we also assessed the lytic  
activity of the CD8+ T cells in a FATT-CTL assay under these conditions (Fig. 4). Again, 
only the M158-66-specific CD8+ T cells displayed differential lytic activity against target 
cells expressing the M1 protein derived from avian or human IAV. Once again, the 
reciprocal exchange of the extra-epitopic amino acid residues partially reversed the 
lytic activity pattern (Fig. 4B). The lytic activity of the NP383-391-specific CD8+ T cells to 
the respective M1 proteins was similar for all chimeric M1-NP-eGFP fusion proteins 
(Fig. 4B).
Upon stimulation with the M1 protein derived from avian IAV A/Vietnam/1194/2004 
(H5N1), a significantly higher percentage (approximately 2.5 fold) of M158-66- 
specific CD8+ T cells was positive for the activation markers than after stimulation with 
the M1 protein derived from the human influenza virus A/Netherlands/018/1994 
(H3N2) (CD137: 19% vs 7,6%; CD69: 2,5% vs 1,1% and CD107a: 54% vs 20%  
respectively) (Fig. 4C). Such differences were not observed for the NP383-391-specific 
CD8+ T cells, although CD107a expression was slightly higher after stimulation with 
M1 protein from the avian virus (1.1 fold), but this difference was far smaller than 
that observed for the M158-66-specific CD8+ T cells (Fig. 4D). Again, the reciprocal 
exchange of the extra-epitopic amino acid residues partially reversed the pattern  
of differential activation of the M158-66-specific CD8+ T cells. The introduction of  
extra-epitopic amino acid residues from the human IAV into the M1 protein of 
the avian IAV reduced activation of the M158-66-specific CD8+ T cells and vice versa  
(Fig. 4C). The exchange of amino acid residues in the M1 protein resulted in minor  
differences in activation of the NP383-391-specific CD8+ T cells. Although some of 
these small differences were statistically significant, they did not correlate with the  
activation pattern observed for the M158-66-specific CD8+ T cells (Fig. 4D). In addition 
to assessing the expression of CD107a, a proxy for degranulation and lytic activity, 
we also assessed IFN-γ production by the CD8+ T cells as an alternative functional 
property of CD8+ T cell activation by ELISpot assay. Again, stimulation with the M1 
protein derived from the avian IAV resulted in a significantly higher number of IFN-γ 
producing M158-66-specific CD8+ T cells than after stimulation with the M1 protein 
of human IAV (228 vs 54 IFN-γ+ spots/104 cells) (Fig. 5A). No significant difference 
was observed for the NP383-391-specific CD8+ T cells (Fig. 5B). Thus a good correlation 
was observed between the differential expression of activation markers, including 
CD107a, lytic activity and IFN-γ production by M158-66-specific CD8+ T cells, which was 
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Figure 4 Activation of M158-66- and NP383-391-specific CD8+ T cells after stimulation with target cells  
transfected with various M1-NP-eGFP encoding plasmids
A) Dot plots on top from left to right gate the transfected target cells, the viable cells, the CD3-CD8- cells and finally 
the eGFP+ cells. This gating was used to assess the lytic activity of the CD8+ T cell clone in a FATT-CTL dependent 
manner. Lower dot plots gate the lymphocytes, single cells, viable cells, CD3+CD8+ cells followed by gating for the 
upregulation of activation markers CD137, CD69 or CD107a after stimulation with target cells transfected with the 
M1-NP-eGFP plasmids (colored histograms) or the eGFP only plasmid (gray histogram). B) Percentage lytic activity 
exerted by the M158-66-specific CD8+ T cells (top) and NP383-391-specific CD8+ T cells (bottom). Upregulation of activa-
tion markers CD137, CD69 and CD107a on M158-66-specific CD8+ T cells (C) or the NP383-391-specific CD8+ T cells (D) 
after stimulation with target cells transfected with M1-NP-eGFP plasmids that encode the M1 protein of the avian  
A/H5N1 virus (WT avian; purple squares / purple filled bars), the M1 protein of the human A/H3N2 virus (WT  
human; blue squares / blue filled bars), the avian A/H5N1 M1 protein with extra-epitopic amino acid residues of 
the human A/H3N2 virus (AH ABCDE; purple circles / purple striped bars), the human A/H3N2 M1 protein with 
extra-epitopic amino acid residues of the avian A/H5N1 virus (HA ABCDE; blue circles / blue striped bars) or eGFP 
only (Mock; dashed bar). Data points represent the mean and error bars indicate the standard deviation (SD) of 
quadruplicates (n=4). ** Indicates statistically significant differences between groups after correction for multiple 
hypothesis testing using a FDR of 0.01.
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Figure 5 IFN-γ response by M158-66- and NP383-391-specific  
CD8+ T cells after stimulation with target cells trans- 
fected with various M1-NP-eGFP encoding plasmids
Number of IFN-γ positive spots/104 M158-66-specific CD8+ 
T cells (A) or NP383-391- specific CD8+ T cells (B) after stim-
ulation by target cells transfected with M1-NP-eGFP plas-
mids that encode the M1 protein of the avian A/H5N1 
virus (WT avian; purple bars) or the M1 protein of the 
human A/H3N2 virus (WT human; blue bars) or eGFP only 
(Mock; dashed bar). Data points represent the mean and 
error bars indicate the standard deviation (SD) of qua-
druplicates (n=4). ** Indicates a statistically significant 
difference between groups after correction for multiple 
hypothesis testing using a FDR of 0.01.

dependent on the source of the M1 proteins used for stimulation and their extra- 
epitopic amino acid residues.

The M1 protein context determines the kinetics of M158-66-specific CD8+ T cell  
activation after stimulation with virus-infected cells
Finally, we wished to assess whether recognition of cells, infected with IAVs  
carrying either of the respective M1 proteins, could lead to differential activation 
of M158-66-specific CD8+ T cells. To this end, isogenic recombinant viruses, contain-
ing the matrix (M) gene segment of avian virus A/Vietnam/1194/2004 (H5N1) or  
human virus A/Netherlands/178/1995 (H3N2), were used to infect A549-
HLA-A*0201+ target cells. Two hours post inoculation (p.i.) these infected target 
cells were incubated with the M158-66-specific CD8+ T cells and the kinetics of CD137, 
CD69 and CD107a expression was assessed (Fig. 6A).
As shown in figure 6, stimulation with virus containing the M gene segment of  
human influenza virus A/Netherlands/178/1995 (H3N2) resulted in delayed  
activation of M158-66-specific CD8+ T cells compared to stimulation with virus  
containing the M gene segment of avian influenza virus A/Vietnam/1194/2004 
(H5N1). One of the earliest markers of T cell activation was expression of the  
degranulation marker CD107a. Upon stimulation with peptide-pulsed A549-
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Figure 6 Activation kinetics of M158-66-specific CD8+ T cells after stimulation with cells infected with isogenic  
influenza A viruses with gene segment 7 of human or avian influenza A viruses
A) Gating strategy used to assess the upregulation of activation markers on M158-66-specific CD8+ T cells. Dot plots 
gate the lymphocytes, single cells, viable cells, CD3+CD8+ cells followed by gating for the upregulation of activation 
markers CD137, CD69 or CD107a. B) Gating strategy used to determine infection efficiency of the target cells. Dot 
plots gate the target cells, the viable cells and finally the influenza A virus+ cells. Expression of activation markers 
CD137 (C), CD69 (D) and CD107a (E) by M158-66-specific CD8+ T cells after stimulation with A549-HLA-A*0201+ cells 
infected with recombinant virus A/PuertoRico/8/1934 with gene segment 7 of avian virus A/Vietnam/1194/2004 
(H5N1) (WT avian; purple squares) or human virus A/Netherlands/178/1995 (H3N2) (WT human; blue squares) 
or pulsed with M158-66 peptide (GILGFVFTL; yellow triangles) or untreated (MOCK; green circles). F) Percentage  
infected A549-HLA-A*0201+ cells at each time point (without T cells). X-axis represent hours post infection. A549-
HLA-A*0201+ cells were infected/peptide pulsed for 1 hr and then used to stimulate M158-66-specific CD8+ T cells. 
Data points represent the mean and error bars indicate the standard deviation (SD) of triplicates (n=3). * Indicates 
statistically significant differences between avian and human derived viruses after correction for multiple hypothesis 
testing using a FDR of 0.01. 
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HLA*A0201+ cells, M158-66-specific CD8+ T cells degranulated almost immediately.  
After stimulation with virus-infected cells, CD107a expression was detected as  
early as 9 hours p.i.. Similar observations were made for CD137 and CD69,  
although CD137 expression started at a later time point than CD69 and CD107a. 
In any case, the proportion of CD8+ T cells that became activated and expressed  
either activation marker was significantly higher after stimulation with the virus  
containing the M gene segment of avian A/H5N1 at every time point p.i. (highest fold  
difference for CD137 at 14 hours p.i. (1.8 fold), for CD107a and CD69 at 10 hours p.i. 
1.7 and 1.2 fold respectively) (Fig. 6C,D,E). The replication kinetics of both viruses was 
very similar and resulted in equal numbers of infected target cells, which excluded  
infection rates as the cause of the differences in the kinetics of CD8+ T cell activation 
(Fig. 6B,F). These results clearly indicate that extra-epitopic amino acid residues of 
the M158-66 epitope affect the recognition of viruses containing the M gene segment 
of the seasonal A/H3N2 virus by M158-66-specific CTLs.

Evolution of extra-epitopic amino acid residues of the M158-66 epitope
In order to link immunologic observations with the epidemiology of IAVs that  
circulated in the human population we examined the origin of gene segment 7, 
which encodes the M1 protein, and the evolution of amino acid residues outside the 
M158-66 epitope. The M1 protein in the human population originates from the 1918 
pandemic virus (Fig. 1) [81-83, 453, 454]. Of interest, the extra-epitopic substitutions 
described in this paper were present in most human IAVs isolated since 1918 and 
were maintained over 100 years of viral evolution in the human population (Fig. 7; 
Table 1). The only exception was the V115I substitution which was not observed in 
the only 1918 virus sequence (A/BrevigMission/1/1918) available in the influenza 
virus resource database (Fig. 7; Table 1). Interestingly, the H1N1 IAVs that caused the 
pandemic in 2009 (H1N1pdm09) and that replaced the old seasonal H1N1 viruses 
possess a M1 protein of avian/swine signature (Fig. 1; Fig. 7; Table 1).
The extra-epitopic amino acid residues of human IAVs were occasionally observed 
in avian and swine IAVs, although they were mainly present in isolation. The avian 
variants of these extra-epitopic amino acid residues were observed with a higher  
frequency in both avian and swine IAVs (Fig. 7; Table 1). Avian variants of these  
extra-epitopic amino acid residues were rarely observed in human IAVs (Fig. 7; Table 
1). The arginine residue at position 27 (present in human viruses) was the exception 
as it was also observed with a high frequency in avian and swine viruses (77,4% and 
99,6% respectively) (Fig. 7; Table 1).
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Figure 7 Frequency amino acid variations region flanking M158-66
Frequency of amino acid variations at positions 15, 27, 101, 115 and 121 in the M1 protein of avian, swine and 
human influenza A viruses isolated in the indicated time period. Frequencies were based on the total number of M1 
protein sequences present in the the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.
nih.gov/genomes/FLU) database at April 11th 2015.
Pie charts represent frequency of avian (purple) and human (blue) amino acid residues based on the variations 
observed in figure 2. Frequency of other amino acid residues at these positions are indicated in orange. Frequen-
cies of the preferred human IAV amino acid residues are indicated in the pie charts. * Only one 1918 sequence  
(A/BrevigMission/1/1918 ) could be obtained from the NCBI database, which was the only virus in this group  
containing the 115V residue, the following H1N1 viruses from this group were from the 1930s. A more detailed  
overview of the frequencies of the respective amino acid variations at these positions can be found in Table 1.

Discussion
In the present study, we demonstrated that extra-epitopic amino acid residues  
affect CD8+ T cell recognition of the highly conserved immunodominant HLA-A*0201 
restricted M158-66 IAV epitope. Naturally occurring amino acid variation at positions 
outside the epitope contributed to the observed differences in epitope recognition  
of avian and human IAVs. The origin from which the M1 protein was derived,  
an avian or human IAV, determined the kinetics of CD8+ T cell activation after  
stimulation with virus-infected cells. Recognition of the M1 protein derived from 
human IAV delayed and impaired the activation and reduced lytic activity of the 
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Table 1 Frequency amino acid difference region flanking M158-66 epitope
Virus† 15* 27* 95* 101* 115* 121*

Species Serotype Year Total aa % # aa % # aa % # aa % # aa % # aa % #
Avian Mix 2001 

- 
2015

990 I 62,7 621 R 77,4 766 R 78,8 780 K 58 574 V 98,5 975 T 94,8 939
V 36,1 357 K 22,1 219 K 20,6 204 R 41,6 412 I 0,8 8 A 4,9 49
T 0,6 6 X 0,2 2 X 0,4 4 X 0,2 2 M 0,3 3 P 0,1 1
X 0,2 2 T 0,1 1 T 0,1 1 T 0,1 1 L 0,1 1 N 0,1 1
Y 0,1 1 G 0,1 1 S 0,1 1 G 0,1 1 G 0,1 1
F 0,1 1 S 0,1 1 F 0,1 1
L 0,1 1

Swine A/H3N2 1977
- 

2015
1495 I 67,9 1015 R 99,8 1492 R 78,8 780 K 67,2 1004 V 97,2 1453 T 67,1 1003

V 31,8 475 K 0,2 3 K 20,6 204 R 32,8 491 I 2,7 40 A 32,9 492
T 0,1 2 X 0,4 4 X 0,1 1
L 0,1 2 T 0,1 1 T 0,1 1
X 0,06 1 S 0,1 1

Swine A/H1N1 1930
-

2015
2429 I 70 1700 R 99,4 2415 R 68,3 1658 K 68 1652 V 99 2405 T 68,8 1670

V 29,8 724 K 0,6 14 K 31,7 771 R 31,9 776 I 1 24 A 31,2 758
T 0,2 4 N 0,04 1 P 0,04 1
M 0,04 1

Human A/H1N1 1918
-

1957
72 V 76,4 55 R 98,6 71 R 63,9 46 R 100 72 I 98,6 71 A 100 72

I 23,6 17 K 1,4 1 K 36,1 26 V¶ 1,4 1
Human A/H2N2 1957

-
1968

125 V 96 120 R 100 125 R 100 125 R 100 125 I 99,2 124 A 100 125
I 4 5 V 0,8 1

Human A/H3N2 1968
-

2015
7728 V 99,4 7682 R 100 7728 K§ 89,9 6944 R 99,7 7705 I 99,7 7701 A 99,8 7709

I 0,6 45 R 10,1 783 K 0,3 21 V 0,3 25 T 0,2 19
X 0,01 1 X 0,01 1 T 0,03 2 X 0,01 1

M 0,01 1
Human A/H1N1 1977

-
2008

1527 V 52,3 798 R 100 1527 R 98,8 1509 R 99,9 1526 I 99,4 1518 A 99,8 1524
I 47,7 728 K 1,2 18 K 0,1 1 V 0,5 8 T 0,2 3
A 0,1 1 M 0,1 1

Human A/H1N1 2009
-

2015
7474 I 99,8 7461 R 100 7474 R 99,8 7460 K 94,5 7063 V 94,5 7064 T 94,5 7063

V 0,1 10 K 0,2 14 R 5,5 410 I 5,4 406 A 5,5 411
T 0,03 2 E 0,01 1 M 0,1 4
M 0,01 1

† All amino acid sequences present in the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/
genomes/FLU) database at April 11th 2015.
* Position in the M1 amino acid sequence; Year = years of isolation that were present in the database; aa = amino acid;  
% = frequency; # = absolute number of viruses.
Indicated in bold are the amino acids present in the avian H5N1 (A/Vietnam/1194/04) and human H3N2 (A/Netherlands/018/1994) 
used in the present study.
§ the 95K mutation was introduced in 1997 and rapidly fixated in human seasonal A/H3N2 viruses in the following years; ¶ Only 
one 1918 sequence (A/BrevigMission/1/1918 ) could be obtained from the NCBI database, which was the only virus in this group 
containing the 115V residue, the following H1N1 viruses from this group were from the 1930s.
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M158-66-specific CD8+ T cells compared to recognition of M1 protein derived from an 
avian IAV. This difference in recognition may have implications for virus clearance  
in HLA-A*0201 individuals and spread of the IAVs in the human population. The  
differential recognition of the M158-66 epitope may explain in part previously  
described differences in recognition of human seasonal A/H3N2 virus, avian  
A/H5N1 and A/H7N9 viruses [316, 536].

Although, it is not fully clear what the selective pressure is for the preferred use of 
the amino acid residues under investigation, it is tempting to speculate that eva-
sion from recognition by M158-66-specific CD8+ T cells plays a role. It has been sug- 
gested that the immunodominance of the epitope serves as a stealth strategy and that  
impaired function of M158-66-specific CD8+ T cells explained the virus capacity to 
evade recognition by these T cells [625]. However, this is a matter of debate [626] 
also because HLA-A*0201 positive individuals display stronger CTL responses after 
IAV infection [313].

Most likely, extra-epitopic amino acid residues affect the processing and  
presentation of the M158-66 epitope. Differences in translocation by TAP [413, 414, 
627] or trimming of peptides by ER resident proteases like ER amino peptidase 1 or 
2 [628], may not have contributed, because TAP typically transports peptides of 8-16 
amino acids long [414] and the amino acid substitutions under investigation are too 
distantly located from the epitope to be able to have an effect on these processes.  
More likely, earlier steps in the antigen processing pathway are involved, like  
degradation by the proteasome [629]. However, because the constitutive  
proteasome potentially cleaves inside the epitope sequence [630], alternative  
proteases like the immunoproteasome [631] or non-proteasomal proteases [632], 
like tripeptidypeptidase (TPPII) [633, 634], are more likely candidates.
Based on these studies we hypothesize that the difference in extra-epitopic amino 
acid residues either change the cleavage pattern of the M1 protein and/or define  
which protease processes the M1 protein, which will eventually determine the  
extent of M158-66 epitope presentation.

It has been shown that amino acid residues flanking a mouse CTL epitope altered 
recognition of IAV [591, 594, 595, 635, 636]. However, these findings were obtained 
with artificially introduced mutations. In the present study, we show for the first time 
that naturally occurring variation at positions outside the epitope influences antigen 
processing resulting in differential CD8+ T cell recognition of human and avian IAVs. 
Of note, mutations flanking CTL epitopes affecting CD8+ T cell recognition have been 
observed in viruses causing chronic infections [418, 419, 615]. In most cases, these 
mutations were located in close proximity to the epitope (within 10 amino acids). In 
contrast, the extra-epitopic variation in amino acid residues observed in the present 
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study were more distant from the epitope (over 30 amino acids), and to the best of 
our knowledge this has not been observed previously. Since the reciprocal exchange 
of the five extra-epitopic amino acid residues described in this study only partly  
reverse the CD8+ T cell recognition patterns between the M1 protein of the avian 
and human IAV, it cannot be excluded that other substitutions more distant from the 
M158-66 epitope, e.g. at positions 137, 166, 167, 168, 207, 218, 224, 230 and 232 (Fig. 
2), also contribute to antigen processing and thus to differential recognition.

Analysis of the extra-epitopic residues in all M1 protein amino acid sequences of  
avian human and swine IAVs available in the influenza virus resource database 
[http://www.ncbi.nlm.nih.gov/genomes/FLU] revealed that 15V, 27R, 101R, 115I  
and 121A were the preferred residues in human IAVs (Fig. 7; Table 1). Residues 15I, 
101K, 115V and 121T, were preferred in avian IAVs. However, residue 27K was a  
minor variant in avian and swine IAVs (Fig. 7; Table 1). It would be of interest to 
determine the minimal set of amino acid residues that are responsible for the  
observed differences in recognition. Of note, within the 60 amino acid distance  
from the M158-66 epitope the R95K substitution was rapidly fixed in human A/H3N2  
viruses after its initial introduction in 1997 (Table 1). Its rapid fixation suggests 
that this substitution might also contribute to evasion from recognition by M158-66- 
specific CD8+ T cells. It has been hypothesized that the preferred avian or human 
IAV amino acid residues at position 115 and 121 of the M1 protein reflect viral host 
adaptation [453]. However, as the H1N1pdm09 contained a M1 protein with the 
preferred avian/swine amino acid residue at these positions this might not be the 
case (Fig. 1; Fig. 7; Table 1) [84]. Evasion from recognition by M158-66-specific CTLs, as 
demonstrated in the present study, may provide an alternative explanation. It would 
therefore be of interest to monitor acquisition of these preferred human amino-acid 
residues in the M1 amino acid sequence of H1N1pdm09 IAVs.

The pandemic of 2009 demonstrated that the frequency of pre-existing IAV-specific 
CD8+ T cells inversely correlated with disease severity [344, 612]. Compared to the 
pandemics of 1918, 1957 and 1968, the pandemic of 2009 was generally considered 
milder [94, 102]. Especially in the elderly morbidity and mortality was relatively low 
[102]. This was attributed to the presence of antibodies in this age group induced by 
infection with A/H1N1 viruses that circulated prior to 1957 and that are antigenically 
related to the H1N1pdm09 virus [103, 241]. In contrast to previous pandemic viruses 
which possess a M1 protein of human signature, the H1N1pdm09 virus possessed 
a M1 protein of avian/swine signature (Fig. 1; Fig. 7; Table 1). Consequently, our 
data suggest that in previously infected HLA-A*0201 positive individuals, the 2009 
pandemic viruses were better recognized by preexisting M158-66-specific CD8+ T cells, 
which also contributed to protective immunity.
The continuous pandemic threat posed by avian IAVs of various subtypes and the 
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emergence of drift variants of seasonal IAVs underscores the need for vaccines that 
could induce broad protective immunity, so called universal vaccines. IAV-specific 
CD8+ T cells are predominantly directed to conserved epitopes, including M158-66, and 
are considered an important correlate of cross-protective immunity [316, 344, 528, 
536, 611-613]. Therefore, universal influenza vaccines should aim at the induction of 
virus-specific CTL responses. Although the extent of exerting antiviral activity of the 
M158-66-specific CD8+ T cells during subsequent influenza virus infections will depend 
on the origin of the virus (avian or human), the present study suggests that for the 
efficient induction of CTL responses proteins of avian IAVs may be advantageous over 
those derived from human IAVs. This may also apply to live attenuated influenza 
vaccines that are known to induce CTL responses [495, 560]. These responses may 
be improved with the use of viral proteins originating from avian IAVs. Alternatively, 
vaccine approaches that circumvent the antigen processing pathways are of interest 
[627, 637].

Collectively, we have demonstrated that the conserved M158-66 epitope is  
differentially recognized by epitope-specific CD8+ T cells depending on the origin  
of the M1 protein. Extra-epitopic amino acid residues are responsible for the  
differential recognition, which indicates that differences in antigen processing and 
presentation are at the basis of these observations. In the context of a M1 protein 
of human signature the epitope is relatively poorly recognized compared to the M1 
protein of avian viruses. It can be speculated that the possession of a M1 protein  
of human signature offers the virus an advantage by impairing recognition by  
specific CD8+ T cells. Consequently, these viruses may replicate better in HLA-A*0201  
positive individuals. Since HLA-A*0201 has a high prevalence in the human  
population, this also may impact the spread of the virus in the human population. 
In addition, our findings may have implications for the development of vaccines that 
aim at the induction of virus-specific CTL responses.
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Abstract
Vaccines used against seasonal influenza are poorly effective against influenza A  
viruses of novel subtypes that may have pandemic potential. Furthermore,  
pre(pandemic) influenza vaccines are poorly immunogenic, which can be overcome 
by the use of adjuvants. A limited number of adjuvants has been approved for use 
in humans, however there is a need for alternative safe and effective adjuvants 
that can enhance the immunogenicity of influenza vaccines and that promote the  
induction of broad-protective T cell responses. Here we evaluated a novel nano- 
particle, G3, as an adjuvant for a seasonal trivalent inactivated influenza vaccine in 
a mouse model. The G3 adjuvant was formulated with or without steviol glycosides  
(DT, for diterpenoid). The use of both formulations enhanced the virus-specific  
antibody response to all three vaccine strains considerably. The adjuvants were well 
tolerated without any signs of discomfort. To assess the protective potential of the 
vaccine-induced immune responses, an antigenically distinct influenza virus strain,  
A/Puerto Rico/8/34 (A/PR/8/34), was used for challenge infection. The vaccine- 
induced antibodies did not cross-react with strain A/PR/8/34 in HI and VN assays.  
However, mice immunized with the G3/DT-adjuvanted vaccine were partially  
protected against A/PR/8/34 infection, which correlated with the induction of  
anamnestic virus-specific CD8+ T cell responses, which were not observed with the 
use of G3 without DT. Both formulations induced maturation of human dendritic 
cells and promoted antigen presentation to a similar extent. In conclusion, G3/DT is 
a promising adjuvant formulation that not only potentiates the antibody response 
induced by influenza vaccines, but also induces T cell immunity which could afford 
broader protection against antigenically distinct influenza viruses. 
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Introduction
Influenza virus infections cause excess morbidity and mortality in the human  
population [65]. For the prevention of severe disease and mortality it is recom- 
mended to vaccinate high-risk groups against influenza annually. Commonly,  
inactivated trivalent influenza vaccines are used that elicit strain-specific antibodies 
[476, 493]. However, these vaccines fail to afford life-long protection, mainly due to 
antigenic drift of influenza viruses [68, 69, 79, 400]. Influenza vaccine strains need to 
be updated almost annually, in order to match circulating influenza strains as closely 
as possible [478]. A mismatch of vaccine strains may lead to reduced effectiveness 
of influenza vaccines [479, 480]. Furthermore, the emergence of an antigenically  
distinct influenza virus of a novel subtype, may trigger an influenza pandemic  
to which inactivated seasonal influenza vaccines afford little protection [79].  
Ideally, vaccine formulations are used that not only induce neutralizing antibodies  
to seasonal influenza viruses but also induce more broadly protective immune  
responses. 
Strain-specific virus neutralizing antibodies are mainly directed to the variable  
globular head region of the viral hemagglutinin (HA) [68, 236], although cross- 
reactive antibodies have been identified [244, 251, 254, 257, 266]. In addition,  
virus-specific CD4+ T cells and CD8+ cytotoxic T lymphocytes (CTLs) contribute to  
protective immunity. CTLs, which are directed to conserved internal proteins  
predominantly, contribute to heterosubtypic immunity [311, 315-317, 337-339, 534-
536, 538, 539, 638, 639]. The main function of CTLs is to recognize and eliminate 
virus infected cells, thus restricting virus replication and accelerating viral clearance.  
The existence of cross-reactive CTLs induced by previous infections and their  
role in protection against heterologous influenza virus strains in humans was  
demonstrated in several studies [316, 317, 344-346, 535, 536, 541]. Currently used 
inactivated influenza vaccines inefficiently elicit cross-reactive CTL responses [495, 
640], which may be related to their inability to deliver proteins into the cytosol of 
antigen presenting cells (APCs) for endogenous antigen processing and MHC class I  
presentation. Therefore, there is considerable interest in adjuvants and  
antigen delivery systems that not only improve antibody responses of current  
(inactivated) influenza vaccines, but that also induce cross-reactive CTLs. It has been  
demonstrated that immune stimulating complex (ISCOM) based vaccines induce 
strong antibody responses as well as virus-specific CTL responses both in animal 
models and humans [275, 276, 513, 514, 641-645], whereas current adjuvants, 
like aluminum salts (Al(OH)3 and AlPO3) and oil-in-water adjuvants (e.g. MF59, 
ASO3 and Freund’s adjuvant) enhance antibody responses, but fail to induce CTL  
responses [501-503, 641]. Most likely, ISCOMs facilitate delivery of viral proteins  
into the cytosol of APCs where protein degradation and liberation of antigenic  
peptides by the proteasome takes place [622, 646].
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In the present study, we evaluated G3, a novel nanoparticle adjuvant as an  
alternative for ISCOMs. In contrast to ISCOMs, G3 lacks the phospholipid component,  
is easy to produce, allows incorporating molecules of various kinds, like additional  
adjuvant components or antigens, and further reduces possible side effects  
associated with the use of ISCOMs. In this study, the G3 adjuvant was formulated 
with or without steviol glycosides (deterpenoids (DT); G3/DT), which are known 
for their ability to promote lymphocyte responses [647]. We evaluated these novel 
G3 adjuvants for their capacity to enhance the immunogenicity of a commercially  
available seasonal trivalent inactivated split virion influenza vaccine in a mouse  
model. It was concluded that G3/DT is a versatile adjuvant system that not only  
enhances the antibody responses, but that also induces cross-reactive virus- 
specific CD8+ T cell responses. 

Materials and Methods
Adjuvants
G3 formulations were prepared with quillaja saponins isolated from the bark of 
Quillaja saponaria Molina and supplied as QS21 (Desert King CF, USA). In contrast 
to the preparation of conventional 40nm ISCOM particles, G3 is produced without 
phosphatidylcholine, resulting in a smaller spherical particle size of 20nm (data not 
shown). The G3/DT adjuvant preparation differs from the G3 preparation by the  
incorporation of DT. DT was isolated from a water extraction of Rebaudiana Bertoni 
(Prodalysa, Concón, Chile) from which steviol glycosides were purified by membrane 
purification carried out with ultrafiltration and nanofiltration membranes and water 
eluted ion exchange to obtain a purity of >95%. The molar ratio quillaja saponin  
(a triterpen) and DT was 2:1. The adjuvant dose for immunization of mice was 5µg G3 
or G3/DT based on quillaja saponin content.

Vaccine preparation
A commercially available seasonal trivalent split virion vaccine of the 2012/2013 
influenza season (VAXIGRIP®) (2012/2013, Sanofi Pasteur MSD, Brussels, Belgium) 
was used in the present study and contained components of the vaccine strains: 
NYMC X-179A derived from strain A/California/7/2009 (H1N1pdm09), IVR-165  
derived from strain A/Victoria/361/2011 (H3N2) and NYMC BX-39 derived from  
B/Hubei-Wujiang/158/2009, a B/Wisconsin/1/2010 like virus. The vaccine dose  
used in mice contained 5µg hemagglutinin of each vaccine strain.

Influenza virus
Influenza viruses A/PR/8/34 (H1N1), X181 (derived from A/California/7/2009),  
IVR-165 and NYMC BX-39 were propagated in embryonated chicken eggs as  
described previously [338]. Infectious virus titers were determined in Madin-Darby 
Canine Kidney (MDCK) cells as described previously [545]. 
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Immunization and inoculation of mice
Specified pathogen free, 6-8 weeks old female C57BL/6J mice were purchased 
from Charles River (Sulzfeld, Germany). Mice received two subcutaneous (s.c.)  
immunizations in the dorsal neck region in a total volume of 200µl with an  
interval of four weeks. Mice (n=7-14 per group) received 5µg HA of each of the  
vaccine strains in the trivalent split virion vaccine with 5µg G3/DT (Group 1), G3 
(Group 2) or without adjuvant (Group 3). Control mice received phosphate buffered 
saline (PBS) with 5µg G3/DT (Group 4), G3 (Group 5) or without adjuvant (Group 6 
and 7). Four weeks after the second immunization mice were inoculated intranasally 
(i.n.) with a lethal dose (5.104 TCID50) of influenza virus A/PR/8/34 in a volume of 
50µl (Group 1 - 6). Group 7 received 50µl of PBS i.n. (Table 1). Clinical signs, including 
weight loss, were monitored after vaccination and during the infection. Mice were 
euthanized on day 4 (n=8 for group 1-6, n=4 for group 7) and day 6 post inoculation 
(p.i.) (n=6 for group 1-6, n=3 for group 7) or when they displayed weight loss of >25% 
(humane endpoint, mice were scored as dead). Mice were bled via orbital puncture 
and lungs and spleens were resected. Blood was collected via submandibular bleed  
just before the first and second vaccination and before challenge infection. All  
biotechnical procedures were performed under anesthesia with 4% isoflurane in O2. 
Animals were housed in individually ventilated cages (IVC-units) and had access to 
food and water ad libitum. An independent animal ethics committee (DEC consult) 
approved the experimental protocol before start of the experiment. 

Serology
Serum samples were obtained before and twenty-eight days after the first and  
twenty-eight days after the second vaccination as well as on day 4 or 6 p.i. and were 
stored at -20°C until use. Sera were tested for the presence of antibodies to either  
influenza virus A/PR/8/34, IVR-165, X181 or BX-39 using a hemagglutination  
inhibition (HI) assay as described previously [648]. Post infection ferret sera, raised 
against the influenza viruses mentioned above were used as positive controls. In 
addition sera were tested for the presence of virus-neutralizing antibodies specif-
ic for A/PR/8/34 using a micro virus-neutralization (VN) assay using 96 wells plates  
(Greiner Bio-One) as described previously [605].

Table 1 Experimental groups and design of the study
Experimental group Vaccination A/PR/8/34 challenge

Split virion vaccine Adjuvant G3/DT Adjuvant G3
1 + + ‒ +
2 + ‒ + +
3 + ‒ ‒ +
4 ‒ + ‒ +
5 ‒ ‒ + +
6 ‒ ‒ ‒ +
7 ‒ ‒ ‒ ‒
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Lung virus titers
Lungs were snap frozen on dry ice with ethanol and stored at -80°C. Lungs were 
homogenized using a FastPrep-24® (MP Biomedicals, Eindhoven, The Nether-
lands) in transport medium (MEM with Hanks’ balanced salt solution (Lonza, Basel,  
Switzerland) containing 0,5% lactalbumin enzymatic hydrolysate (Sigma-Aldrich, 
Zwijndrecht, The Netherlands), 200 U/ml penicillin (Lonza), 200 µg/ml streptomycin  
(Lonza), 250 µg/ml gentamycin (Life technologies, Bleiswijk, The Netherlands), 100 
U/ml polymyxin B sulfate (Sigma-Aldrich), 50 U/ml nystatin (Sigma-Aldrich) and 
10% glycerol (Sigma-Aldrich)) and centrifuged briefly. Quadruplicate ten-fold serial  
dilutions of the lung samples were used to determine the virus titers in a confluent 
layer of MDCK cells in 96 wells plates (Greiner Bio-One) as described previously [545]. 

Detection of virus-specific CD8+ T cells by dextramer (Dm)-staining
Single-cell splenocyte suspensions were prepared as described previously [338]. 
Splenocytes were washed with 5% FBS in PBS and stained for flow cytometry with  
fluorchrome-labelled monoclonal antibodies (mAbs) specific for selected cell  
differentiation markers: CD3e-PerCP, CD8b.2-FITC (BD Pharmingen, Breda, The  
Netherlands) and H-2Db dextramers with the NP366-374 epitope (ASNENMETM) 
(APC-labeled) or the PA224-233 epitope (SSLENFRAYV) (PE-labeled) (Immudex,  
Copenhagen, Denmark) and LIVE/DEAD aqua Fixable Dead Cell stain (L/D)  
(Invitrogen, Breda, The Netherlands). After extensive washing cells were analyzed 
using a FACSCantoII flowcytometer and FACS Diva software (BD Biosciences, Breda, 
The Netherlands)

Peptides and intracellular interferon gamma (IFN-γ) staining
Splenocytes were cultured in the absence or presence of 5µM peptide NP366-374 
(ASNENMETM) or PA224-233 (SSLENFRAYV) (immunograde >85% purity) (Eurogentec, 
Maastricht, The Netherlands) and were subsequently stained with CD3e-PerCP,  
CD8b.2-FITC, L/D and IFN-γ-PacificBlue (Biolegend, London, United Kingdom) as  
described previously [487]. Cells were analyzed using a FACSCantoII flowcytometer 
and FACS Diva software.

Human monocyte-derived DCs collection and in vitro maturation
Peripheral blood mononuclear cells (PBMCs) from three healthy blood donors  
(18 to 64 years of age) (Sanquin Bloodbank, Rotterdam, The Netherlands) were  
isolated and cultured for 6 days to obtain immature human DCs as described  
previously [649]. Subsequently these cells were stimulated o/n at 37°C with PBS 
(negative control), G3 [20µg/ml], G3/DT [20µg/ml] or LPS [1µg/ml] (positive  
control) (Sigma-Aldrich). After stimulation, cells were stained for CD80-FITC,  
CD83-APC and CD86-PE (BD Pharmingen) or CD11c-APC, HLA-DR-PerCP (BD  
Biosciences) and 2β-microglobulin-PE (BD Pharmingen) and expression was  
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determined by flow cytometry using a FACSCantoII flowcytometer and FlowJo  
software (FlowJo, Ashland, USA). Experiments were performed in quadruplicate. 
Culture supernatants from the above mentioned DC-stimulations were used to  
assess the concentrations of TNF-α, IFN-γ, IL12p70, IL1-β, IL-6, IL-4 and IL-10 
via enzyme-linked immunosorbent assay (ELISA) using Ready-Set-Go ELISA-kits  
(eBioscience, Vienna, Austria). 

Antigen presentation by human monocyte-derived DCs and BLCLs
Influenza virus-specific CD8+ T cell clones directed against the HLA-A*0201 restricted 
M158-66 GILGFVFTL epitope and the HLA-B*2705 restricted NP174-184 RRSGAAGAAVK 
epitope were generated as described previously [425]. 
Immature human DCs of an HLA-typed healthy blood donor were obtained as  
described above. HLA-typed immature human DCs or B lymphoblastoid cell lines 
(BLCLs) were incubated o/n at 37°C with vaccine [40µl/ml] only or in combination 
with G3 [20µg/ml] or G3/DT [20µg/ml]. Negative controls were incubated with 
PBS, G3 or G3/DT only and positive controls were incubated with 100µM peptide  
(GILGFVFTL or RRSGAAGAAVK) (Eurogentec) or infected with A/PR/8/34 (MOI 3). The 
DCs and BLCLs were used as target cells for the stimulation of influenza virus-specific  
CD8+ T cell clones. IFN-γ responses of in vitro stimulated CD8+ T cell clones were  
determined by ELISpot assay as well as intracellular staining (ICS) for IFN-γ. 
The IFN-γ ELISpot assay was performed according to manufacturer’s instructions 
(Mabtech Nacka Strand, Sweden) with an effector-to-target (E:T) ratio of 1:3 in  
duplicate as described previously [536].
For the ICS, cells of the respective CD8+ T cell clones were stimulated with targets 
cells (E:T of 1:5) in duplicate for 6hr at 37°C in the presence of Golgistop. Cells  
were stored o/n at 4°C and subsequently stained with fluorchrome-labeled mAbs 
CD3-PerCP (BD Bioscience), CD8-FITC (Dako, Glostrup, Denkmark) and L/D in the 
presence of Golgistop, fixed and permeabilized using Cytofix and Cytoperm and 
stained with IFN-γ-PE (BD Pharmingen). Cells were analyzed with a FACSCantoII  
flowcytometer and FACS Diva software.

Statistical analysis
Data for weight loss, lung virus titers, dextramer staining and IFN-γ staining between 
pairs of groups were analyzed using the Mann-Whitney U test. Time to death were 
compared using the Kaplan-Meier curves and the log-rank test. Differences were 
considered significant at p<0.05. 
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Results
G3 and G3/DT enhance the vaccine-induced antibody response 
Upon vaccination none of the mice displayed any signs of discomfort. Limited weight 
loss (<2%) was observed during two days post vaccination in some mice randomly 
distributed over the experimental groups, including those that received PBS only 
(data not shown). 
All mice that received the trivalent inactivated influenza vaccine, with or without  
adjuvant developed HI antibody titers against the three vaccine strains  
(A/California/7/2009, A/Victoria/361/2011 and B/Hubei-Wujiang/158/2009) after  
the first vaccination (Figure 1A, B and C). However, for all vaccine strains the  
geometric mean titers (GMTs) of mice that received the vaccine with adjuvant  
G3/DT or G3 (group 1 and 2, respectively) were significantly higher than those of 
mice that received the unadjuvanted vaccine (group 3). Four weeks after the second 
vaccination the GMTs against the vaccine strains increased in the mice of group 3. 

Figure 1 Geometric mean serum antibodies titers after immunization.
Serum antibody titers against vaccine stains A/California/7/2009 (A), A/Victoria/361/2011 (B) and  
B/Hubei-Wujiang/158/2009 (C) and the A/PR/8/34 challenge stain (D) were determined before immunization  
(T=0), 28 days after the first immunization and 28 days after the second immunization (day of challenge with  
A/PR/8/34) and day of euthanasia (4 and 6 days after challenge) by HI assay. (*) and (**) indicates that the difference 
in antibody titers in mice immunized with the split virion vaccine adjuvanted with G3 or G3/DT and split virion only 
was statistically significant (p<0.05 and p<0.01 respectively). The only significant difference between the split virion 
immunized mice with the G3 adjuvant versus the split virion immunized mice adjuvanted with the G3/DT adjuvant 
was observed in the A/Victoria/361/2011 strain at day 62 (*; p<0.05).
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Although the GMTs of group 1 and 2 that received the G3/DT and the G3 adjuvanted 
vaccine respectively, did not increase after the second vaccination, they remained 
significantly higher than the GMTs of group 3 (no adjuvant) (p<0.01). No differences 
in GMTs were detected between group 1 and 2, except for antibody titers against  
A/Victoria/361/2011 on day 56, which were higher in mice of group 2 (p<0.05). No 
HI antibodies were detected in any of the control mice (groups 4, 5, 6 and 7). In none 
of the mice, vaccine-induced antibodies were detected that cross-reacted with the 
influenza virus strain A/PR/8/34 that was used for challenge infection of the mice 
(Figure 1D). This was confirmed with a VN assay (data not shown). 

G3/DT improves the protective efficacy of the split virion vaccine against an antigen-
ically distinct influenza virus
Four weeks after the second vaccination mice were inoculated with a lethal dose of 
influenza A/PR/8/34, except for control group 7. All groups displayed similar weight 
loss, starting at day 2 p.i. until day 4 p.i. (Figure 2A). From day 5 p.i. onwards, mice 
vaccinated with the G3/DT-adjuvanted vaccine (group 1) started to gain weight, 
while mice of the other groups continued to lose weight up to day 6 p.i. From day 5  
onwards, the body weight of mice from group 1 remained significantly higher  
compared to that of mice from group 2 and 3 that received the G3-adjuvanted and 
unadjuvanted  vaccine respectively, (p<0.01).
All mice from group 1 survived until day 6 p.i. while only 20% and 0% of the mice 
survived of group 2 and group 3 respectively (p<0.01) (Figure 2B). 

Figure 2 Outcome of inoculation with influenza virus A/PR/8/34
Mice immunized with split virion adjuvanted with G3/DT (group 1; black circles), with G3 (group 2; black squares) or 
unadjuvanted (group 3; black triangles) and their controls G3/DT only (group 4; open circles), G3 only (group 5; open 
squares) and PBS (group 6; open triangles) as well as unchallenged mice (group 7; grey diamonds) were weighted 
daily and mean weight loss was calculated (A). (**) indicates a significant increase in mean bodyweight in group 
1 at day 5 and 6 post inoculation (p<0.01) compared to all other groups. Animals were euthanized according to  
pre-set humane endpoints and were recorded as dead to calculate the cumulative survival after A/PR/8/34  
challenge (B). (**) indicates a significantly higher survival rate of the mice vaccinated with the G3/DT adjuvanted 
split virion vaccine (p<0.01).
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Figure 3 Virus titers in the lungs after A/PR/8/34 virus inoculation
Mean and range of lung virus titers of each group at day 4 and 6 post inoculation (p.i.) were determined. The  
different groups are indicated underneath the figure. Dotted line (- - -) indicates the detection limit. Statistically  
significant differences are indicated (**; p<0.01). 

G3/DT adjuvanted vaccine-induced immunity restricts virus replication
Lung virus titers were assessed on day 4 and 6 p.i. (Figure 3). On day 4 p.i. mice 
of group 1 (106,4 TCID50) and 2 (106,2 TCID50) (G3/DT or G3-adjuvanted vaccine  
respectively) had significantly lower virus titers compared to their PBS control groups 
4 (107,5 TCID50; p<0.01) and 5 (107,1 TCID50; p<0.01), while no statistically significant 
difference was detected between the unadjuvanted group 3 (106,9 TCID50) and the 
PBS control group 6 (107,4 TCID50). No statistically significant difference was detected 
between group 1 and 2. Group 2 (G3 adjuvanted vaccine) had a significantly lower  
mean titer than group 3 (unadjuvanted vaccine) (p<0.01). The most remarkable  
difference in lung virus titers was observed on day 6 p.i.: The mean virus titer of 
group 1 (G3/DT adjuvanted vaccine) was 101,8 TCID50, which was significantly lower 
than that of control group 4 (106,3 TCID50), but also than that of group 2 (105,9 TCID50) 
and 3 (106,6 TCID50) (p<0.01). A smaller but significant reduction in lung virus titer was 
also observed between group 2 and group 3 (p<0.01). 
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Detection of virus-specific CD8+  T cells by Dm-staining in the G3/DT adjuvanted  
vaccine group only
Since HI antibodies against A/PR/8/34 were undetectable in all mice at day of  
inoculation (Figure 1D), we wished to investigate whether virus-specific CD8+ T 
cells had contributed to the protection observed in mice that received the G3/DT- 
adjuvanted vaccine. Dextramer-staining was used to measure the frequency of CD8+ 
T cells specific for the NP366-374 and the PA224-233 epitope on day 6 p.i. (Figure 4). Both 
epitopes are present in the A/PR/8/34 backbone of the influenza A vaccine strains 
and the A/PR/8/34 virus used for challenge infection. The mean frequencies of  
NP366-374 and PA224-233 specific CD8+ T cells were significantly higher in mice of group 1  
that received the G3/DT adjuvanted vaccine (7.5% and 3.0%, respectively) than 
in mice of group 4 (G3/DT adjuvant only) (1.2% and 2.1%, respectively; p<0.01).  
These frequencies also exceeded those observed in mice of group 2 (G3 adjuvanted 
vaccine) (NP366-374 1.7% and PA224-233 2.2%; p<0.05) and those observed in group 3 
(unadjuvanted vaccine) (NP366-374 1.4% and PA224-233 2.3%; p<0.01). A small but signifi-
cant difference (p<0.05) was observed for NP366-374 between group 3 and group 6 (no 
vaccination) (1.0%). 

Figure 4 Dextramer staining of virus-specific CD8+ T 
cell splenocytes. 
The mean and range of the proportion of Dm-NPASM

+ 
cells (A) and Dm-PASSL

+ cells (B) in the CD3+CD8+ T cell 
population was determined on day 6 p.i.. Statistically 
significant differences are indicated (**; p<0.01).
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Detection of virus-specific CD8+ T cells by intracellular IFN-γ staining in the G3/DT 
adjuvanted vaccine group only
To determine the frequency of NP366-371 and PA224-233 specific CD8+ T cells, intracellular 
IFN-γ staining was performed. To this end, splenocytes obtained on day 6 p.i. were 
stimulated with synthetic peptides NP366-371 and PA224-233 and the percentage of IFN-γ 
positive cells was measured (Figure 5). The highest response was observed for the 
NP366-371 peptide in group 1 (G3/DT adjuvanted vaccine) (22.2%; p<0.01). In none of 
the other groups a NP366-371 peptide-specific CD8+ T cell response could be detected. 
In none of the groups a significant CD8+ T cells response to the PA224-233 epitope was 
observed. 

Both G3 and G3/DT have a similar effects on maturation of human monocyte- 
derived DCs
In vivo results clearly showed that both G3 and G3/DT promoted antibody  
responses after vaccination with inactivated split virion vaccine, but only G3/DT 
was able to induce CD8+ T cell responses. Since the mechanism underlying this  
discrepancy is unknown we wished to address this in vitro. Since ISCOM adjuvants 
are known to have an effect on maturation and the cytokine response of APCs [650, 
651] we determined the effect of G3 and G3/DT on the maturation of immature 

Figure 5 Intracellular IFN-γ staining of CD3+CD8+ T cell splenocytes
Mouse splenocytes were stimulated either with the ASNENMETM or SSLENFRAYV influenza peptides or mock  
stimulated as a negative control. Frequency of CD3+CD8+ splenocytes specific for influenza peptides NP366-374  
(ASNENMETM) and PA224-233 (SSLENFRAYV) were determined by intracellular IFN-γ staining. Statistically significant 
differences between groups are indicated (**; p<0.01). 
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human DCs (Figure 6A). Both G3 and G3/DT enhanced the levels of CD83, a DC  
maturation marker, in vitro. Both adjuvants also equally enhanced the expression of 
HLA class I and II molecules on the DCs surface. Neither G3 or G3/DT affected the 
expression of T cell co-stimulatory markers CD80 and CD86 on the surface of human 
DCs. In addition cytokine production by DCs stimulated with G3 or G3/DT was similar 
(data not shown). 

Both G3 and G3/DT are able to enhance antigen presentation
Next, we tested if G3/DT could improve antigen presentation and activation of CD8+ 
T cells in vitro. To this end, in vitro immature HLA-typed human DCs and HLA-typed 
BLCLs were incubated with split virion vaccine with or without G3 or G3/DT and 
subsequently their ability to activate CD8+ T cell clones specific for influenza M158-66 

or NP174-184 epitopes was determined. As shown by ELISpot (Figure 6B, C, D) and ICS 
(Figure 6E, F) G3 and G3/DT promoted the activation of the influenza virus-specific T 
cell clones in the presence of the split virion vaccine that in the absence of adjuvant 
failed to activate virus-specific CD8+ T cells efficiently.

Discussion
In the present study, it was demonstrated that the G3/DT adjuvant improved the  
antibody response to a trivalent inactivated split virion vaccine in mice and  
promoted virus-specific CD8+ T cell responses. Furthermore, G3/DT improved the 
protective efficacy of the vaccine against a lethal infection with the antigenically  
distinct influenza virus A/PR/8/34. Since the unadjuvanted vaccine and the vaccine 
adjuvanted with G3 only failed to induce protective immunity, the addition of DT 
was pivotal for the vaccine-induced protection. However, both the G3 and G3/DT  
adjuvant promoted the induction of vaccine-induced antibody responses. These 
antibodies did not cross-react with the challenge virus strain A/PR/8/34 in HI and 
VN assays, which explains the failure to induce sterile immunity and the inability 
to protect mice from weight loss after infection with A/PR/8/34. However, mice 
that received the G3/DT-adjuvanted vaccine started to gain weight and displayed 
100% survival. The mean lung virus titer of mice that received the G3/DT-adjuvanted  
vaccine was significantly reduced on day 6 p.i. compared to the other groups. This 
accelerated clearance of infection in the G3/DT-adjuvanted vaccine group might be 
attributed to the presence of cross-reactive T cell immunity. Indeed the kinetics of 
virus replication resembled that of mice in which cross-protective T cell responses  
were induced by primary influenza virus infection [338, 339]. The induction of  
influenza A virus-specific CD8+ T lymphocytes in mice that received the G3/DT- 
adjuvanted vaccine was confirmed and was not detectable in mice of any of the 
other groups. The mechanism underlying the induction of virus-specific CD8+ T cell 
responses by the addition of G3/DT remains unclear. Human instead of mouse DCs 
were used to unravel the underlying mechanism because the use of human DCs
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Figure 6 Effect of G3 and G3/DT on the maturation of human DCs and antigen presentation
A) Maturation of human HLA-un-typed DCs. DCs were unstimulated (grey curve) or treated with G3 (—), G3/DT (···) 
and LPS (- - -) and the surface expression of CD11c, CD83, CD80, CD86, HLA class I and II molecules was monitored. 
Results representative for three human subjects are shown. Numbers in the upper right corner of each histogram 
indicate how many of the three subjects display this particular result. In case of CD86 two out of the three subjects 
showed no difference in CD86 expression when DCs were stimulated with G3 or G3/DT whereas in one subject CD86 
increased after G3 and G3/DT stimulation. Experiments were performed in quadruplicate. 
Antigen presentation by human HLA-typed DCs (B, C, E) and BLCLs (D, F) after stimulation with split virion vaccine 
adjuvanted with G3, G3/DT or without adjuvant and their ability to stimulate CD8+ T cell clones directed against the 
HLA-A*0201 restricted M158-66 GILGFVFTL epitope (B) or the HLA-B*2705 restricted NP174-184 RRSGAAGAAVK epitope 
(C, D, E, F) was determined in an IFN-γ ELISpot assay (B, C, D) and by ICS of IFN-γ (E, F). Experiments were performed 
in duplicate. 
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not only allowed studying DC activation, but also antigen processing and presenta-
tion using influenza virus-specific T cell clones. Furthermore, it was shown previously 
that CD80 and CD86 expression in human and mouse DCs upon stimulation with an 
adjuvant, resembled each other [649]. Both G3 and G3/DT promoted the activation 
of virus-specific T cells in vitro. Most likely, both adjuvant preparations are able to 
introduce viral proteins into the cytosol of APCs, induce maturation of DCs and up-
regulate MHC class I and II expression. The addition of DT in combination with the 
vaccine dose used in vivo may have tipped the balance in favor of inducing influenza 
virus-specific T cell immunity, which may have not been reflected properly in the in 
vitro experiments.

Although inactivated trivalent influenza vaccines are safe and able to elicit sufficient 
virus strain-specific neutralizing antibody responses, they fail to induce broadly  
protective T lymphocyte responses efficiently [476, 495, 640, 652, 653]. Their use 
even may prevent induction of cross-protective T cell immunity in naïve subjects  
otherwise induced by natural influenza virus infections [485]. Therefore,  
currently used inactivated influenza vaccines could benefit from the use of  
adjuvants, like G3/DT, in order to induce more broadly protective immune responses. 

It should be realized that the influenza A virus vaccine strains share their back-bone 
genes with those of the challenge virus A/PR/8/34, which contributes to cross- 
reactivity of the T cell response and a favorable outcome of the challenge infection. 
However, T cell responses to the epitopes NP366-371 and PA224-233 also contribute to  
heterosubtypic immunity as was shown previously [337, 339]. Furthermore, it is  
likely that CTL responses against other conserved epitopes were elicited after  
vaccination with the G3/DT-adjuvanted vaccine, which are likely to have contributed 
to protective immunity. 
Further research is needed to establish the exact mechanism that enables G3/DT  
but not G3 to induce virus-specific T cell responses in vivo and to confirm that  
G3/DT-adjuvanted split virion influenza vaccines also elicit cross-reactive T cell  
responses in humans.
Since mice that received the G3-adjuvanted vaccine without the DT component were 
not protected, although these mice developed similar strong antibody responses  
as mice in the G3/DT vaccine group, it is unlikely that antibodies to HA, NA or any 
other viral proteins contributed to the protection observed in the latter group.  
Although it has been shown that antibodies to A/H1N1 viruses that circulated  
before 1957 can cross-react with H1N1pdm09 viruses and vice versa [599, 654,  
655], we were unable to detect vaccine (containing the H1N1pdm09 component)- 
induced antibodies that cross-reacted with the A/PR/8/34 challenge virus by HI 
or VN assays. Both the G3 and G3/DT adjuvant greatly enhanced the antibody  
response to all vaccine strains after a single immunization. Since a subsequent  
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immunization did not have a pronounced booster effect, a single dose of the  
adjuvanted vaccine may be sufficient to induce protective antibody responses,  
provided that the vaccine is matching the strain causing the infection antigenically.  
This is especially relevant in case of an emerging pandemic, when the timely  
availability of sufficient vaccine doses is desired [482, 484, 656-658]. Furthermore, it 
has been demonstrated that more than one immunization with possibly a high dose 
of a pandemic vaccine is required for the induction of protective immunity [484, 657, 
658]. The G3 and G3/DT adjuvant may allow substantial antigen dose sparing. In the 
present study a dose of 5µg HA was sufficient to induce potent antibody responses.

In conclusion, G3/DT is a promising adjuvant formulation that not only potentiates  
the antibody response induced by influenza vaccines, but that also induces T cell 
immunity which could afford broader protection against antigenically distinct  
influenza viruses. These properties are not only desirable for protection against 
matching and antigenically mismatched seasonal influenza viruses, they may also 
contribute to protective immunity against influenza A viruses of alternative subtypes, 
which continue to pose a pandemic threat [88, 125, 147, 148]. Further (clinical)  
evaluation of G3 and G3/DT-adjuvanted influenza vaccines seems therefore  
warranted. 
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Influenza virus infections are an important cause of respiratory tract disease in  
humans [2]. Seasonal influenza viruses cause an estimated 3-5 million severe clinical 
infections and result in 250,000-500,000 fatal cases annually [65, 66]. In general, the 
majority of these severe cases are caused by A/H3N2 viruses followed by influenza  
B and A/H1N1 virus infections [72-78]. Continuous antigenic drift enables these  
viruses to escape from recognition by virus-specific antibodies elicited after natural 
influenza virus infection or vaccination [67-70]. These antibodies also provide little to 
no protection in case of a pandemic outbreak with an antigenically distinct influenza 
virus of a novel subtype, like A/H5N1 or A/H7N9 [116, 139, 659]. This underscores 
the importance of increasing our knowledge of other correlates of protection that 
contribute to broadly protective immunity. 
This thesis focuses on the role of CD8+ cytotoxic T lymphocytes (CTLs) in the cross- 
reactive immune response. In chapter 2 we determined the cross-reactivity of  
influenza B virus-specific CD8+ T cells with intra-lineage drift variants and with viruses 
of the opposing lineage. The cross-reactivity of virus-specific CD8+ T cells, induced 
after infection with seasonal influenza A viruses, with the newly emerging A/H7N9 
virus was assessed in chapter 3. In addition, the longevity of these cross-reactive 
CTL responses was determined (Chapter 4). In chapter 5 extra-epitopic amino acid 
substitutions were defined which play a role in evading recognition of the highly 
conserved M158-66 CD8+ T cell epitope. Finally, in chapter 6, the potential of a novel 
adjuvant, G3/DT, to promote CD8+ T cell responses after vaccination with a seasonal 
split virion vaccine was tested. 

Heterosubtypic CD8+ T cell responses in humans
In the absence of pre-existing antibody immunity, in the case of antigenic drift or 
shift, CD8+ T cells form an important second line of protection against severe illness  
and even mortality as they are essential for viral clearance [344-347, 612, 613]. It 
is well known that influenza virus-specific CD8+ T cells are mainly directed against 
epitopes of more conserved internal proteins of influenza viruses, like the NP 
and M1 protein [311, 314, 315, 344, 534, 612, 660]. The protective role of CD8+ 
T cells in influenza virus infections has been extensively studied in mice and other  
animal models, which demonstrated that CD8+ T cells contribute to homo- and  
heterosubtypic immunity [335-341, 538-540, 661, 662]. Human influenza A  
virus-specific CD8+ T cells, induced after seasonal influenza A virus infections, 
have been shown to cross-react with swine origin triple-reassortant influenza A 
H3N2 virus (vH3N2), the 2009 pandemic H1N1 virus (H1N1pdm09) and the avian 
H5N1, H5N2 and H1N1 viruses in vitro [316, 317, 535, 541, 660]. These studies  
focused on the cross-reactive potential of seasonally induced CD8+ T cells between  
antigenically distinct influenza A virus strains while the role of CTLs in influenza B  
virus infections remained largely unknown. In chapter 2 of this thesis, it was  
demonstrated that human influenza B virus-specific CD8+ T cells, induced by  
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previous infections with seasonal influenza B viruses, displayed a high degree of 
cross-reactivity with intra-lineage drift variants and influenza B viruses belonging 
to the opposing lineage. The specificity of these cross-reactive CTLs remains largely  
unknown. Only a handful of NP derived, HLA-A*0201 and HLA-B*0801 restricted,  
influenza B virus CD8+ T cell epitopes have been identified based on epitope  
prediction studies [542-544, 559]. Although we established that all these epitopes 
are highly conserved between both influenza B lineages, we could not confirm the 
functionality of the previously described HLA-B*0801 restricted epitopes in our  
study subjects. Nevertheless, it is tempting to speculate that cross-reactive CD8+ T 
cells, induced by seasonal influenza B virus infections, may afford some degree of 
protection against a subsequent infection with an antigenically distinct influenza B  
virus. Thus far, no data is available to confirm that cross-reactive influenza B  
virus-specific CTLs reduce severity of disease caused by influenza B virus of the  
opposing lineage. 
In chapter 3 we demonstrated that seasonal H3N2 (sH3N2), sH1N1 and H1N1pdm09 
influenza A virus-specific human CD8+  T cells display considerable cross-reactivity 
with the newly emerging avian A/H7N9 virus that causes frequent outbreaks among 
humans in China since 2013. Thus, humans who were previously infected with  
seasonal influenza A viruses possess influenza virus-specific CD8+ T cells that cross- 
react with the heterosubtypic A/H7N9 virus and may afford a certain degree of  
protection against severe disease in case this A/H7N9 virus would become  
pandemic. Fortunately, most individuals will have encountered at least one seasonal  
influenza A virus infection by the age of six [287]. However, a recent study  
demonstrated that the strength of a cross-reactive CTL response against the novel  
A/H7N9 virus also depends on the ability to present conserved influenza A virus  
epitopes, which is determined by the HLA class I make-up of an individual and varies 
between ethnicities. Based on these results it was predicted that an average of 37% 
of the human population should have pre-existing CTLs that can cross-react with 
the A/H7N9 virus with the highest prevalence in the Caucasian population (57%) 
[537]. Also, all of the healthy study subjects investigated in chapter 3 possess at least 
2-3 of these preferred HLA class I alleles, which explains their robust CTL response 
to the A/H7N9 virus. The protective nature of the cross-reactive influenza A virus- 
specific CTLs, induced after a previous infection with an antigenically distinct  
influenza A virus, was demonstrated in mice where these cells protected them 
from a lethal A/H7N9 challenge [662, 663]. An early CTL response was recently  
correlated to a more rapid recovery of A/H7N9 virus infected patients [613].  
Although it is tempting to speculate that these patients benefited from a rapid  
recall response of heterosubtypic CTLs, the presence and frequency of these  
cross-reactive CTLs before the patients were infected with the A/H7N9 virus was 
not established, an increase in CD8+ T cells as a result of proliferation of previously 
naïve CTLs could therefore not be excluded. Also, a faster recall CTL response was  
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observed in patients infected with the H1N1pdm09 virus [344, 603]. Furthermore, 
current laboratory-confirmed A/H7N9 cases are greatly skewed towards severe  
cases in predominant elderly patients, therefore it is likely that we currently  
overlook the true protective effect of the heterosubtypic CTL response, as mild  
infections might not be reported. Recent studies have demonstrated that 6.3% to 
14.9% of the poultry workers living in A/H7N9 endemic areas are seropositive for  
antibodies against the emerging A/H7N9 virus, suggesting that subclinical infections 
do occur [664, 665]. It is tempting to speculate that these asymptomatic poultry 
workers might have benefited from a robust heterosubtypic recall CTL response that 
protected them from sever disease. 

Importance of a long-lived human influenza A virus-specific CD8+ T cell response 
in preventing severe disease during a pandemic outbreak
Currently, little is known about the longevity of these cross-reactive influenza A  
virus-specific CTL populations in humans. Although the longevity of the CTL response 
in humans was never properly established, it was previously suggested that these  
virus-specific memory CTL responses might wane over time, based on the  
observation that the T cell population with lytic capacity rapidly declined after an 
influenza virus infection [666]. However, this is in contrast with studies in mice which 
demonstrated that influenza A virus-specific T cell memory can be maintained for 
life [604]. The decline of the lytic CTL population in humans could also be attributed 
to the reduced lytic capacity exerted by memory CTLs. In chapter 4, we investigated 
the longevity of the human influenza A virus-specific CD8+ T cell populations, using 
unique PBMC samples obtained from HLA-typed healthy study subjects collected 
between 1999 and 2012. We demonstrated that human influenza A virus-specific  
CTL responses are long-lived and that intercurrent influenza A virus infections  
temporally increase in the frequency of influenza A virus-specific effector T cells, 
effector memory T cells (TEM) and effector memory RA T cells (TEMRA). The proportion 
of these subsets decreases in the contraction phase after which small numbers of 
TEM, TEMRA and central memory T cells (TCM) persist in the following years. Although 
the proportion of influenza A virus-specific CD8+ T cells was small, it is comparable 
to the proportion of memory CD8+ T cells detected after other acute viral infections 
[343, 606-608, 667]. Also, it is likely that we have underestimated the real number 
of persisting memory CD8+ T cells, since these cells preferentially reside in the lymph 
nodes and/or in the lung rather than in peripheral blood [332, 334, 668-671]. Lung 
resident memory CD8+ T cells resemble an effector-like phenotype in order to rapidly 
respond to a secondary infection, while lymph node resident memory CD8+ T cells, 
mostly of TCM phenotype, rapidly expand for a sufficient recall response [672-674]. 
Yet, this does not answer the question whether the low frequencies of influenza 
A virus-specific CTLs found in the peripheral blood of our healthy study subjects 
can be correlated to the prevention of severe disease in case of an infection with 
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an antigenically distinct influenza A virus. It was previously suggested that a LAIV  
induced arbitrary threshold level of ≥100 SFU/106 PBMC is required for effective T 
cell mediated protection against clinical influenza virus infection in children [675]. 
Furthermore, the 2009 pandemic H1N1 outbreak enabled an unique opportunity 
to study the role of human pre-existing CTLs in heterosubtypic immunity against 
the antigenically novel H1N1pdm09 virus. Two independent studies demonstrated 
that a low baseline of pre-existing CTL populations in the peripheral blood, similar to 
the low baseline found in our study subjects, correlated with reduced viral shedding 
and a lower symptom score after infection with the H1N1pdm09 virus [344, 612].  
Together these studies indicate that low levels of pre-existing influenza A virus  
specific CTLs in the peripheral blood are long-lived and could be predictive for the 
severity of an antigenically distinct influenza A virus infection. 

Novel escape mechanism to evade recognition of a highly conserved CD8+ T cell 
epitope
The high mutation rate of influenza viruses and the selective immune pressure  
exerted by virus-specific CTLs drive the accumulation of amino acid substitutions  
inside epitopes that are associated with evasion from recognition by these  
epitope-specific CTLs. Indeed, significantly more non-synonymous mutations are  
observed in CTL epitopes than in the rest of the viral nucleoprotein (NP), indicating 
that these epitopes are subjected to positive selection [410, 676]. Various studies 
have identified amino acid substitutions in T cell receptor (TCR) contact residues 
[422, 423, 426, 427, 441, 442] or at anchor residues [421-425, 440] that resulted 
in loss of recognition by epitope-specific CTLs. However, some influenza A virus 
CTL epitopes are highly conserved. One of these highly conserved epitopes is the 
HLA-A*0201 / HLA-C*0801 restricted matrix protein 1 (M1)58-66 (GILGFVFTL) epitope 
[445-447]. Mutations to escape the M158-66-specific CTL response are to be expected, 
considering the high selective pressure exerted on the M158-66 epitope as a result of 
its immunodominant nature when presented by the HLA-A*0201 molecule [448], 
which has a prevalence of >40% in the Caucasian population [617]. Although the 
M1 protein of seasonal A/H3N2 viruses has circulated in the human population for 
almost 100 years (Chapter 5 Figure 1) [81-83, 86, 91, 101, 453, 454], viruses were 
unable to acquire mutations at TCR contact or anchor residues as these mutations 
were not tolerated without loss of viral fitness [410, 450]. 
A recent study demonstrated that the M158-66 epitope was abundantly expressed on 
the surface of virus infected HLA-A*0201 positive cells, which corresponds with the 
immunodominant nature of this epitope [625]. However, Keskin et al. suggest that 
the high expression of the M158-66 epitope in combination with the low functional 
avidity exerted by their M158-66-specific T cell line represents a decoy mechanism 
by which influenza A viruses try to prevent recognition of epitopes with a higher T 
cell avidity. They conclude that the conservation of this particular epitope is not the 
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result of functional constraints but merely represents an immune-evasion strategy 
by which influenza A viruses prevent the generation of more potent CTLs against 
other HLA-A*0201 restricted epitopes. However, the authors did not take in account 
that the M158-66 epitope largely overlaps with a highly conserved and functionally 
important nuclear export signal of the M1 protein, which could well explain why no 
CTL-escape mutations are found in nature [451, 452]. Furthermore, previous studies 
have demonstrated that M158-66-specific CTLs have the highest functional avidity of 
all conserved epitopes tested [448]. The low functional avidity observed by Keskin et 
al. might have been a result of how the M158-66-specific T cell line was obtained after 
stimulation with peptides, which may have selected for M158-66-specific T cells of low 
functional avidity [677]. Also, the authors fail to demonstrate that CTLs directed to 
other influenza HLA-A*0201 restricted epitopes have a higher functional avidity, or 
that these epitopes are more abundantly expressed on the influenza A virus infected 
cell surface in the absence of the M158-66 epitope. Furthermore, in contrast to what 
the authors claim, the overall CTL response is smaller in HLA-A*0201- subjects as 
compared to HLA-A*0201+ subjects, as was demonstrated in groups of blood donors 
with matched HLA class I alleles [313].
Since several studies have clearly demonstrated that the M158-66 peptide represents a 
functional epitope, in which conventional CTL escape mutations in the anchor or TCR 
contact residues are not tolerated due to functional constrains, we hypothesize that 
influenza A viruses might utilize other escape mechanism(s) to evade CTL recognition 
of conserved epitopes like this one. In chapter 5, we demonstrated that the M158-66 
epitope was less efficiently recognized by M158-66-specific CTLs when the M1 protein 
was derived from a human influenza A virus than when the M1 protein was derived 
from an avian influenza A virus. This indicates that human influenza A viruses have 
developed a strategy to evade the human M158-66-specific CTL response. Naturally 
occurring variations at extra-epitopic amino acid residues in a human influenza A 
virus were shown to delay and impair the activation and reduce lytic activity of the 
M158-66-specific CD8+ T cells, while retaining the conserved amino acid sequence of 
the epitope. Reciprocal exchange of the extra-epitopic amino acid residues between  
avian and human influenza A viruses partially reversed the CTL recognition  
pattern. We hypothesize that the difference in extra-epitopic amino acid residues 
either change the cleavage pattern of the M1 protein and/or define which protease  
processes the M1 protein, which will eventually determine the extent of M158-66  
epitope presentation. This additional immune evasion strategy may help the  
influenza A virus to perpetuate in the human population in the presence of  
pre-existing virus-specific CTL immunity. 

Lack of CTL evasion may have contributed to lower severity of the 2009 pandemic
Compared to the pandemics of 1918, 1957 and 1968, the pandemic of 2009 was 
generally considered milder [80, 89, 94, 102, 678]. Especially in the elderly, normally 
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at high risk for severe influenza A virus infections, the morbidity and mortality was 
relatively low [102]. The lower susceptibility of the elderly population to the 2009 
pandemic influenza virus was attributed to cross-protective antibodies that they had 
acquired during a previous infection with an antigenically related A/H1N1 virus that 
circulated prior to 1957 [103, 240, 241]. Independent studies demonstrated that 
a higher prevalence of pre-existing cross-reactive CTLs directed against the 2009  
pandemic influenza virus was inversely correlated with disease severity [344, 612, 
660]. These studies did not take into account potential differential recognition of  
pandemic influenza viruses [345-347]. However, the extra-epitopic amino acid  
residues that were associated with evasion from the pre-existing M158-66-specific  
CTL response were absent in the M1 protein of the 2009 pandemic influenza virus  
(Chapter 5). This was in contrast to the influenza viruses that caused the more  
severe pandemics of 1918, 1957 and 1968, as these viruses contained these  
extra-epitopic amino acid residues. Consequently, the data presented in chapter 5 
suggests that in previously infected HLA-A*0201+ individuals, the 2009 pandemic  
viruses were better recognized by pre-existing M158-66-specific CD8+ T cells, than  
the viruses that caused the pandemics of 1918, 1957 and 1968. Additionally, the 
high prevalence of the HLA-A*0201 allele in the human population may have further 
limited the spread of the virus in the human population. 
Based on the findings in chapter 5 it is tempting to postulate that studies like these 
will help to predict the severity of the next major influenza pandemic, as screening 
for the presence or absence epitopic and extra-epitopic mutations that may hamper 
the presentation of these CTL epitopes potentially correlates with the strength of the 
pre-existing CTL response in the population. 

Development of a broadly-protective influenza vaccine
The use of vaccines that elicit heterosubtypic immunity can offer some protection  
in case of seasonal antigenic drift or an emerging influenza pandemic. Current  
seasonal influenza vaccines contain two influenza A virus strains (A/H3N2 and  
A/H1N1) and one or two influenza B virus strains (B/Yamagata and/or B/Victoria  
lineage) [456]. The effectiveness of these vaccines relies on the induction of 
strain-specific antibodies that match the epidemic strains [476, 477]. However, 
continuous antigenic drift of seasonal influenza viruses prevents current vaccines 
to afford life-long protection [67-70] and necessitates an almost annual update of 
the influenza vaccine strains. Recommendations for vaccine strains of the upcoming  
influenza season are made months in advance due to the lengthy process of  
vaccine production [478]. Unforeseen antigenic drift among circulating influenza A 
and B viruses may affect vaccine effectiveness [479-481], as was recently the case 
for the A/H3N2 component of the 2014/2015 influenza vaccine used in the Northern  
hemisphere [679-681]. Furthermore, antibodies elicited after natural seasonal  
influenza virus infection or seasonal vaccination provide little to no protection in 
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case of the emergence of an antigenically distinct influenza virus of a novel subtype,  
like A/H5N1 or A/H7N9 [79]. This underscores the importance of inducing  
broad-protective heterosubtypic immune response after vaccination. An ideal  
influenza vaccine elicits homo- and heterosubtypic immune responses after a single 
administration with a low antigen dose and is safe to use in all risk groups. 
Findings in this thesis highlight the importance of cross-reactive CD8+ T cell  
responses in preventing severe disease in case of antigenic mismatch (Chapter 2) 
or against a potentially pandemic virus (Chapter 3). Vaccines that induce cross- 
reactive CD8+ T cell-mediated immunity may offer another layer of long-lasting 
protection (Chapter 4) which is less sensitive to antigenic drift or shift. It has been  
demonstrated that live attenuated influenza vaccines can induce virus-specific  
CD8+ T cells to some extent, in contrast to the more frequently used whole  
inactivated, split virion or subunit influenza vaccines [343, 476, 495, 560, 640, 
652, 653]. Mouse models have indeed demonstrated that multiple doses of live  
attenuated influenza vaccines, and not inactivated or subunit influenza vaccines,  
can induce long-lived broad-protective immune responses [682-685]. It was  
recently confirmed in humans that humoral and cellular immune responses  
induced by a live attenuated influenza vaccine can be maintained for at least  
one year after immunization [686]. Longevity of these responses is likely to  
depend on the timing and route of immunization [671, 686-688]. The ability of live  
attenuated influenza vaccines to induce cross-reactive CD8+  T cells in humans 
seems to be mostly limited to young children, possibly due to their naïve infection 
status [495, 560]. This indicates that vaccine immunogenicity could be improved.  
Internal proteins (backbone) of current live attenuated vaccines are derived from 
a cold adapted human influenza strain, namely A/Ann Arbor/6/60 [689, 690].  
However, proteins derived from human influenza viruses are likely to possess  
mutations that hamper the presentation of CTL epitopes. This is in contrast to  
proteins derived from avian influenza viruses as they did not experience the neces-
sity to evade the human CTL response (Chapter 5). Indeed, the A/Ann Arbor/6/60  
influenza strain encompasses all human amino acid substitutions that were  
associated with evasion from the M158-66-specific CTL response, with exception of the 
amino acid residue at position 15. Whether the use of an avian backbone enhances 
the elicited broad-protective CTL response in humans remains to be established. 
Although live attenuated vaccines are potentially more efficient in eliciting  
broad-reactive CTL responses, their administration is restricted in certain high-risk 
groups [464, 500]. Therefore, it would be of interest to develop inactivated influenza 
vaccine preparations that are able to induce CTL responses. 
In chapter 6 we tested whether a novel adjuvant (G3/DT) had the capacity to  
enhance the immunogenicity of a commercially available seasonal trivalent  
inactivated split virion influenza vaccine. It was demonstrated that G3/DT is a  
versatile adjuvant that significantly improved vaccine immunogenicity by  
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enhancing its antibody response and promoting the induction of virus-specific CD8+ 
T cells. Mice that received the G3/DT-adjuvanted vaccine started to gain weight  
and displayed 100% survival after a lethal challenge with an antigenically distinct 
influenza virus. Also, their mean lung virus titers were significantly reduced by  
day 6 post infection. This was in contrast to mice that received an unadjuvanted 
vaccine. Since it was demonstrated in vitro that the elicited antibody response did 
not cross-react with the influenza virus used for the challenge, it was concluded that 
the protective effect was attributed to the induced influenza A virus-specific CTL  
response. These results demonstrate that the use of the G3/DT adjuvant in  
combination with inactivated vaccine formulations, like split virion and whole  
inactivated vaccines, would broaden the elicited immune response by inducing 
cross-reactive CTL responses. In addition, the G3/DT adjuvant may allow substantial 
antigen dose sparing as it strongly enhanced the elicited antibody response after a 
single vaccine dose. This is of special interest in case of an emerging pandemic, when 
the initial availability of sufficient vaccine doses might be limited, especially when 
the vaccines immunogenicity is low and would otherwise require multiple high dose 
immunizations in order to induce a protective immune response [482, 484, 656-
658]. However, before these new vaccine strategies can be used in humans, they first 
need to be tested in clinical trials. 
CD8+ T cells have an important role in the protection against severe disease,  
especially in case of a pandemic outbreak, but are unable to afford sterile immunity 
[344-347, 612, 613]. Broader-reactive antibodies, directed against the stem region  
of the HA protein, have been identified for influenza A and B viruses [243-245, 
248, 250-253, 691, 692] and current efforts are being made to develop universal  
influenza vaccines able to elicit these antibodies [246, 247, 249, 518, 519, 693-695]. 
Combining the induction of broad-reactive antibodies with the ability to induce  
an effective heterosubtypic CTL response may eventually result in the ultimate  
broadly-protective influenza vaccine which generates long-lasting protection  
against both seasonal and potentially pandemic influenza viruses. 

Concluding remarks
The work described in this thesis provides new insights in the cross-protective  
immunity exerted by influenza A and B virus-specific CTLs and the results of these 
studies were discussed in the light of potential antigenic mismatches of seasonal 
influenza vaccines and current pandemic threats. Increased knowledge about the 
protective role of influenza virus-specific CTLs aids the development of universal 
influenza vaccines that in addition to broad-protective antibodies also elicit robust 
CTL responses. Furthermore, a better understanding of how CTLs contribute to  
heterosubtypic immunity may enable a more accurate prediction of the severity of 
the next emerging pandemic virus and possibly indicate which ethnicities will be 
most at risk of developing severe disease based on their HLA-profile and thus their 
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ability to present conserved CTL epitopes. A question that remains unanswered  
is why cross-reactive CTLs, seem to have offered so little protection during the  
devastating influenza pandemic of 1918? Especially since historical documentation 
and serological studies indicated that influenza virus infections resulted in frequent 
epidemics and pandemics prior to 1918, with the “Russian” influenza pandemic 
just 30 years earlier (1889-1892) [696-700]. Therefore, a large proportion of the 
1918 population, with the possible exception of isolated countries/communities, 
would have encountered a previous influenza virus infection that resulted in the  
development of pre-existing cellular immunity. Furthermore, the presence of  
conserved CTL epitopes in the viral protein sequences of the 1918 influenza virus  
[537] and the ability of H1N1pdm09 influenza virus NP418-426-specific CTLs to  
cross-react with the 1918 influenza virus [442] suggests pre-existing CTLs might  
indeed have had a potentially protective effect against severe infection with the 
1918 influenza virus. 
The suggestion that the pre-existing influenza virus-specific CD8+ T cells are often 
short-lived and were therefore unavailable at the moment the 1918 influenza virus 
emerged [701], can be dismissed as we were able to demonstrate the longevity of 
influenza virus-specific CD8+ T cells in healthy individuals (Chapter 4). 
On the other hand, the strength of the cross-reactive CTL response may have varied  
between ethnicities, as genetic variations in HLA class I make-up influences the  
ability to present conserved influenza virus epitopes [537]. This would make some 
ethnic populations, like the Alaskan Natives and the Australian Aboriginals, more  
vulnerable for severe influenza virus infections, which is consistent with a high  
morbidity- and mortality-rates observed in these populations during the pandemic 
of 1918 [702] and 2009 [703, 704], although a combination of factors were likely to 
have influenced the disease severity in these populations [703, 704]. 
Others suggested that the pre-existing influenza virus-specific CTL response by itself 
was not able to cope with the extreme virulence of the 1918 pandemic virus and the 
rapid appearance of clinical disease [702]. 
An additional hypothesis that was not previously mentioned is possible immune  
suppression as a result of a recent measles virus infection [705-708]. Measles  
epidemics were frequently reported at the end of the 19th and in the early 20th  
century [709-713], including a large measles outbreak in the US military camps in 
the winter of 1917-1918 [709, 714]. The elderly population would have experienced  
measles in their childhood and pre-existing immunity would have protected 
them from contracting a measles virus infection in the years prior to the 1918  
influenza pandemic. However, children and young adults who had not been  
previously infected would have been immunologically susceptible to a measles  
virus infection in the years preceding the 1918 influenza pandemic. Recent studies 
have demonstrated that the measles virus infects memory T lymphocytes, resulting 
in apoptosis and a prolonged state of immune suppression up to three years after 
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the initial measles virus infection [705-708]. Influenza virus-specific CTL responses  
were likely suppressed in young individuals who had endured a measles virus  
infection in the years prior to the 1918 influenza pandemic, making them more  
susceptible to a severe influenza virus infection. The combination of recovering 
from immunosuppression and an infection with an unexpected highly virulent virus 
might have contributed to severe inflammatory related pathology in a mechanism 
better known as the immune reconstitution inflammatory syndrome (IRIS) [696, 
713, 715, 716]. Whether recent measles virus infections indeed lead to immunosup-
pression of the influenza virus-specific T lymphocyte response, resulting in a higher  
susceptibility to severe influenza virus infections and potential IRIS remains to be  
established. However, if this proved to be the case, people who have endured  
a recent measles virus infection would be at high risk of developing a severe  
influenza virus infection in case of an emerging pandemic. Fortunately, measles  
vaccines are widely available and have greatly reduced the prevalence of measles 
worldwide[708, 717, 718].
Collectively, the results obtained in the present studies confirm the cross-protective 
potential of CD8+ T cells against developing a severe influenza virus infection. These 
results will aid the development of novel vaccine strategies and help policy makers 
to assess which individuals are most at risk for developing severe complications and 
therefore will be most in need for (limited) medical supplies, including antivirals, 
antibiotics and the first limited batches of pandemic vaccines that become available.





CHAPTER 8:
References
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Influenzavirussen, ook wel griepvirussen genoemd, zijn een van de belangrijkste  
veroorzakers van luchtweginfecties bij mensen. Influenzavirussen worden 
onderverdeeld in vier verschillende types: A, B, C en D. De meeste influenzavirus- 
infecties bij mensen worden veroorzaakt door types A en B, dit zijn ook de  
influenzavirussen die worden besproken in dit proefschrift. Influenzavirussen  
kunnen verder van elkaar worden onderscheiden op basis van twee eiwitten aan 
de buitenzijde van het virusdeeltje, namelijk het hemagglutinine (HA) eiwit en het  
neuraminidase (NA) eiwit. Voor influenza A-virussen bestaan 18 verschillende HA 
eiwitten (H1-H18) en 11 verschillende NA eiwitten (N1-N11). De combinatie van deze 
twee eiwitten bepaalt tot welk subtype het influenza A-virus hoort, bijvoorbeeld  
A/H1N1, A/H3N2, A/H5N1 of A/H7N9. Bij influenza B-virussen worden geen  
subtypes onderscheiden. Door de genetische evolutie van de oppervlakte-eiwitten 
weer te geven in een (stam)boom, ook wel fylogenetische boom genoemd, kunnen 
er twee lijnen van influenza B-virussen worden onderscheiden, de B/Victoria-lijn en 
de B/Yamagata-lijn.
Influenzavirusinfecties komen vooral voor in de wintermaanden en zijn een jaarlijks  
terugkomend fenomeen, daarom worden deze influenzavirusinfecties ook wel 
de seizoensgriep genoemd. De seizoensgriep wordt veroorzaakt door influenza  
A-virussen van het A/H1N1- en A/H3N2-subtype en door influenza B-virussen van de 
B/Yamagata- en de B/Victoria-lijn. Het algemene ziektebeeld van deze seizoensgriep  
duurt ongeveer een week en gaat gepaard met klinische verschijnselen zoals  
verkoudheid, koorts, hoesten, spierpijn en hoofdpijn. De Wereldgezondheids- 
organisatie (World Health Organization; WHO) schat dat er jaarlijks drie tot vijf  
miljoen mensen een ernstige influenzavirusinfectie doormaken die gepaard kan gaan 
met een longontsteking; voor ongeveer 250.000-500.000 mensen is deze infectie 
fataal. 

Het immuunsysteem speelt een belangrijke rol bij het detecteren en het opruimen  
van ziekteverwekkers zoals het influenzavirus. Gedurende een influenzavirus- 
infectie wordt specifieke afweer opgebouwd in de vorm van B-lymfocyten  
(B-cellen) en T-lymfocytes (T-cellen). B-cellen produceren antilichamen die onder 
andere gericht zijn tegen eiwitten aan de buitenzijde van het virusdeeltje, het HA 
en het NA eiwit. Antilichamen die gericht zijn tegen het HA kunnen voorkomen dat 
het virus een cel kan infecteren. Deze antilichamen worden ook wel neutraliserende  
antilichamen genoemd. De meeste van deze antilichamen zijn specifiek gericht  
tegen één subtype van het influenzavirus en zijn dus niet in staat andere subtypes te 
herkennen, laat staan te neutraliseren. Bovendien veranderen de HA en NA eiwitten 
langzaam, waardoor neutraliserende antilichamen die in het verleden zijn opgewekt 
tijdens een infectie met een bepaald subtype, niet in staat zijn een recente variant 
van ditzelfde subtype te herkennen. Dit proces van langzame verandering van de 
oppervlakte-eiwitten wordt ook wel antigenetische drift genoemd en resulteert in 
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jaarlijkse griepepidemieën. 
Naast de productie van antilichamen door B-cellen, bestaat er ook cellulaire  
immuniteit die wordt gevormd door T-cellen. De virus-specifieke cytotoxische T- 
cellen, die worden besproken in dit proefschrift, zijn in staat geïnfecteerde cellen  
te herkennen en te elimineren. Tijdens de replicatiecyclus van het influenza- 
virus worden in geïnfecteerde cellen nieuwe virale eiwitten geproduceerd. Een 
deel van deze eiwitten wordt gebruikt om nieuwe virusdeeltjes te vormen, terwijl  
een ander deel in de cel wordt afgebroken tot kleine stukjes viraal eiwit, de  
zogenaamde peptiden. Een aantal van deze peptiden wordt gepresenteerd aan 
de buitenkant van de cel door middel van het Human Leucocyte Antigen (HLA).  
Wanneer een cytotoxische T-cel de combinatie van een virus-peptide (ook wel  
epitoop genoemd) en HLA herkent, doodt hij de geïnfecteerde cel om zo  
de productie van nieuwe virusdeeltjes te beperken. In tegenstelling tot de  
oppervlakte-eiwitten zijn de interne eiwitten, en dus ook de epitopen die door  
T-cellen worden herkend, sterk geconserveerd tussen de verschillende subtypes 
van het influenza A-virus. In het verleden is aangetoond dat cytotoxische T-cellen, 
die gericht zijn tegen een bepaald influenza A-virus subtype (Bijv. A/H3N2), in staat  
zijn om cellen die geïnfecteerd zijn met een ander subtype (Bijv. A/H1N1 of  
A/H5N1) te herkennen. Echter, tot op heden was het onbekend of deze kruis- 
herkenning ook plaats vindt tussen de twee lijnen van het influenza B-virus.
In hoofdstuk 2 wordt beschreven dat humane cytotoxische T-cellen, gericht tegen 
en gestimuleerd met een influenza B-virus van de B/Yamagata-lijn, in staat zijn om 
cellen geïnfecteerd met een influenza B-virus van de B/Victoria-lijn te herkennen 
en te doden, en omgekeerd. Het is dus goed mogelijk dat mensen die geïnfecteerd 
zijn met de ene lijn van het influenza B-virus een zekere mate van T-cel immuniteit 
hebben verworven die bescherming zou kunnen bieden tijdens een infectie met een 
virus van de andere influenza B-lijn. 

Naast de jaarlijkse griepepidemieën wordt er zo nu en dan een influenza A-virus 
van een “nieuw” subtype geïntroduceerd in de humane populatie. De overdracht 
van een nieuw influenzavirus subtype afkomstig uit dieren (Bijv. vogels of varkens) 
op de mens wordt ook wel antigenetische shift genoemd. Het merendeel van de 
humane bevolking heeft echter geen antilichamen die gericht zijn tegen dit nieuwe  
subtype en zal onbeschermd zijn tegen infectie met dit nieuwe influenzavirus.  
Hierdoor zou het virus, als het overdraagbaar wordt van mens-op-mens, een nieuwe 
influenzapandemie kunnen veroorzaken. In de afgelopen eeuw hebben er vier van 
dit soort pandemieën plaats gevonden: in 1918 (Spaanse griep), 1957 (Aziatische 
griep), 1968 (Hong Kong griep) en zeer recentelijk in 2009 (Mexicaanse griep). 
De meeste slachtoffers vielen tijdens de Spaanse grieppandemie; in een jaar tijd  
stierven er wereldwijd tussen de 25 en 50 miljoen mensen aan de gevolgen van een 
infectie met dit nieuwe influenza A-virus subtype. 
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De meest recente pandemische dreiging komt uit China, waar sinds 2013 een  
vogelgriepvirus van het A/H7N9-subtype regelmatig infecties in mensen  
veroorzaakt. Tot nu toe zijn er 677 mensen geïnfecteerd, waarvan er 275 zijn 
overleden. Vooralsnog zijn deze virussen niet in staat om zich effectief van  
mens-op-mens te verspreiden, maar gevreesd wordt dat het virus zich in de  
toekomst weet aan te passen waardoor overdracht van mens-op-mens wel  
mogelijk wordt. Door het gebrek aan A/H7N9-specifieke antilichamen in de humane 
populatie, zullen mensen in hoge mate vatbaar zijn voor een infectie met dit virus. 
Het was echter onbekend of humane cytotoxische T-cellen, opgewekt tijdens een 
infectie met de A/H1N1 of A/H3N2 seizoens-influenzavirussen, wel in staat zouden 
zijn om A/H7N9 virus-geïnfecteerde cellen te herkennen en te elimineren. In het 
3de hoofdstuk van dit proefschrift wordt aangetoond dat een groot aantal bekende 
influenza A-virus epitopen aanwezig is in het A/H7N9 influenzavirus. Daarnaast  
zijn humane cytotoxische T-cellen, gericht tegen en gestimuleerd met humane  
influenza A-virussen van het A/H1N1- en A/H3N2-subtype, in staat zijn om A/H7N9 
virus-geïnfecteerde cellen te herkennen en te elimineren. Mensen die recentelijk  
een A/H1N1 of A/H3N2 infectie hebben doorgemaakt beschikken hoogst  
waarschijnlijk over T-cel immuniteit die een zekere mate van bescherming zou  
kunnen bieden tegen infecties met A/H7N9-virussen. 

Een recente studie heeft aangetoond dat bestaande T-cel immuniteit in mensen 
kon worden gecorreleerd met een milder ziektebeeld tijdens de influenzapandemie 
van 2009. Het was echter niet bekend of mensen die over deze T-cel immuniteit  
beschikten recentelijk een seizoensgriep hadden doorgemaakt of dat deze  
cytotoxische T-cellen langere tijd aanwezig bleven in het lichaam. Het onderzoek 
beschreven in hoofdstuk 4 laat zien dat influenzavirus-specifieke cytotoxische T- 
cellen gedurende een lange periode kunnen worden aangetoond in het bloed van 
gezonde mensen. In de periode 1999 tot 2012 is er met een zekere regelmaat bloed 
van gezonde HLA-getypeerde vrijwilligers afgenomen. Door het plasma van deze  
gezonde vrijwilligers te controleren op de aanwezigheid van antilichamen gericht  
tegen influenza A-virussen die circuleerden tussen 1999 en 2012, kon worden  
bepaald of de vrijwilligers in deze periode een influenza A-virusinfectie hadden 
doorgemaakt. Hoewel het percentage influenzavirus-specifieke cytotoxische T- 
cellen verhoogd was in de periode na een influenzavirusinfectie, bleek deze snel  
terug te keren naar een vast laag percentage cytotoxische T-cellen, maar ze  
verdwenen nooit helemaal. Deze basis hoeveelheid bestond vooral uit een speciale  
selectie van geheugen T-cellen die erom bekend staan dat ze snel geactiveerd 
worden en/of vermenigvuldigen op het moment dat een persoon opnieuw een  
influenzavirusinfectie doormaakt. Hierdoor wordt het aannemelijk dat niet alleen 
personen die recent een seizoensgriep hebben doorgemaakt een zekere mate van 
T-cel immuniteit bezitten die kan kruis-reageren met een mogelijk pandemisch virus, 
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maar dat deze immuniteit ook aanwezig is in personen die gedurende een langere 
periode geen influenza A-virusinfectie hebben doorgemaakt. 

Het is bekend dat influenza A-virussen in staat zijn te ontsnappen aan herkenning 
door influenzavirus-specifieke T-cellen door de betreffende epitopen te veranderen, 
ook wel muteren genoemd. Door deze veranderingen kan het epitoop niet meer 
aan het HLA binden, waardoor het epitoop niet meer gepresenteerd wordt op  
het celoppervlak van de geïnfecteerde cel; een andere mogelijkheid is dat de  
verandering ervoor zorgt dat het epitoop onherkenbaar wordt voor de epitoop- 
specifieke T-cellen. Hierdoor probeert het virus te voorkomen dat de geïnfecteerde 
cel wordt gedood voordat er nieuwe virusdeeltjes zijn geproduceerd. 
Echter, niet alle epitopen zijn in staat te muteren. In sommige epitopen gaan  
mutaties ten koste van de functionaliteit van het eiwit waardoor de virussen niet 
meer optimaal kunnen repliceren. Het behoud van het epitoop weegt dan zwaarder 
dan het niet herkend worden door de cytotoxische T-cellen. Het influenza A-virus 
matrix 1 (M1) eiwit bevat een dergelijk geconserveerd epitoop, genaamd M158-66.  
Het is bekend dat mensen die het zogenaamde HLA-A*0201 tot expressie  
brengen (>40% van de blanke bevolking), dit epitoop aan het immuunsysteem  
presenteren en een sterke cytotoxische T-cel respons ontwikkelen tegen dit  
epitoop. Functionele beperkingen voorkomen dat het influenza A-virus het M158-66  
epitoop kan veranderen, waardoor het niet lijkt te kunnen ontsnappen aan de  
specifieke cytotoxische T-cel respons. Toch blijkt uit onderzoek dat beschreven  
staat in hoofdstuk 5, dat het M1 eiwit afkomstig van een influenzavirus van het  
A/H5N1-subtype (een vogelgriepvirus) beter herkend wordt door M158-66-specifieke 
cytotoxische T-cellen dan een M1 eiwit dat afkomstig was van het humane A/H3N2 
influenzavirus. Hoewel het epitoop zelf geconserveerd is tussen beide varianten  
van het M1 eiwit, bleek dat buiten het M158-66 epitoop een aantal kleine verschillen 
in de aminozuursequentie (de bouwstenen van een eiwit) voorkwamen. Door de 
aminozuren van het A/H5N1 M1 eiwit te introduceren in het A/H3N2 M1 eiwit, en 
omgekeerd, kon het verschil in herkenning door de M158-66-specifieke cytotoxische 
T-cellen deels worden omgedraaid. Humane influenza A-virussen lijken dus wel  
degelijk een strategie te hebben ontwikkeld om de presentatie van dit geconserveerd 
M158-66 epitoop te beperken, zonder het epitoop zelf te veranderen. Hierdoor worden 
cellen, die geïnfecteerd zijn met het humane A/H3N2 influenzavirus, minder goed 
herkend door M158-66-specifieke cytotoxische T-cellen, waardoor deze influenza- 
virussen langer kunnen “overleven” in de humane populatie. Mogelijk beïnvloeden  
aminozuren buiten het epitoop hoe het eiwit wordt afgebroken, waarbij de  
aminozuren op deze posities in humane virussen ervoor zorgen dat het M158-66  
epitoop minder efficiënt wordt vrijgemaakt en dus in verminderde mate wordt  
gepresenteerd aan de buitenzijde van de geïnfecteerde cel. Opvallend is dat het  
influenza A-virus dat de relatief milde Mexicaanse grieppandemie veroorzaakte, een 
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M1 eiwit bevatte dat afkomstig was uit varkens. De aminozuren buiten het epitoop, 
die in deze studie worden geassocieerd met een verminderde herkenning door 
M158-66-specifieke cytotoxische T-cellen, waren niet aanwezig in het pandemische  
griepvirus van 2009 Dit is in tegenstelling tot de influenza A-virussen die de  
pandemieën van 1918, 1957 en 1968 veroorzaakten, waar deze aminozuren wel 
aanwezig waren. Mogelijk waren HLA-A*0201 positieve personen hierdoor beter 
beschermd tegen een ernstig ziektebeeld na infectie met het pandemische griep 
virus van 2009. 

Het onderzoek dat beschreven staat in hoofdstuk 2 tot en met 5 toont aan dat  
cytotoxische T-cellen, in tegenstelling tot de meeste antilichamen, wel een bijdrage  
leveren aan kruis-beschermende immuniteit. Huidige griepvaccins zijn echter  
voornamelijk gericht op het induceren van antilichamen die specifiek gericht 
zijn tegen de influenzavirussen die op dat moment circuleren. Door continue  
antigenetische drift in deze seizoens-influenzavirussen moet het vaccin bijna jaarlijks 
worden aangepast om bescherming te kunnen blijven bieden tegen deze nieuwe  
varianten. Omdat de productie van een nieuw influenzavaccin een langdurig  
proces is, wordt ruim een half jaar voor het nieuwe griepseizoen bepaald welke  
virusstammen er in het nieuwe griepvaccin gebruikt zullen worden. In het geval van 
onverwacht snelle antigenetische drift van zowel influenza A- als B-virussen zal dit 
vaccin minder goed beschermen. In het geval van een nieuwe influenzapandemie  
zullen deze vaccins helemaal niet werken. Bovendien kan het in een pandemische  
situatie nog maanden duren voordat er voldoende effectieve vaccins op de markt 
komen. Idealiter zouden griepvaccins gericht tegen de seizoensgriep ook in  
staat moeten zijn een bredere immuun respons op te wekken die kruis-bescherming 
biedt in het geval van onverwacht snelle antigenetische drift of tegen een mogelijk  
pandemisch influenzavirus. In hoofdstuk 6 werd onderzocht of het toevoegen van 
een adjuvans, een hulpstof die aan een vaccin kan worden toegevoegd om de  
immuunrespons te versterken, in staat is om de immuunrespons ook te verbreden.  
In deze studie werden muizen twee keer gevaccineerd met het standaard  
geïnactiveerde griepvaccin, al dan niet in combinatie met het nieuwe G3/DT  
adjuvans. Uit deze studie bleek dat alleen muizen die gevaccineerd waren 
met een vaccin dat was gecombineerd met het G3/DT adjuvans tot op zekere  
hoogte beschermd waren tegen een influenzavirus stam die niet in het vaccin  
vertegenwoordigd was. Deze kruis-bescherming kon worden toegeschreven aan de 
door G3/DT geïnduceerde cytotoxische T-cel respons, die afwezig was in muizen die 
enkel met het griepvaccin zelf werden gevaccineerd. 

Samenvattend, tonen de studies beschreven in dit proefschrift aan dat virus- 
specifieke cytotoxische T cellen kruis-reageren met verschillende influenza A- of  
B-virussen en een bijdrage leveren aan kruis-beschermende immuniteit. Deze 
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T-cel-gemedieerde immuniteit zou de ernst van een ziekte veroorzaakt door 
een nieuw influenzavirus kunnen reduceren, zoals ook beschreven is voor het  
pandemische griepvirus van 2009. Overigens worden potentieel pandemische  
influenza A-virussen van aviaire oorsprong beter herkend door M158-66-specifieke 
T-cellen dan humane influenza A-virussen. Verschillen in aminozuren buiten het  
epitoop waren hier verantwoordelijk voor en wijzen op een adaptatiestrategie van 
humane influenzavirussen om te ontsnappen aan herkenning door deze M158-66- 
specifieke T-cellen. Het gebruik van vaccins die niet alleen gericht zijn op de inductie 
van virus-specifieke antilichamen, maar ook op het induceren van virus-specifieke 
cytotoxische T-cellen, verdient de voorkeur. Het toevoegen van bepaalde adjuvantia, 
zoals G3/DT, aan bestaande vaccinpreparaten zou de inductie van virus-specifieke 
T-cellen bevorderen. Dergelijke vaccins zouden niet alleen in staat zijn bescherming  
te bieden tegen de jaarlijkse griepvirussen, maar ook tegen varianten met  
onvoorspelbare antigenetische drift en potentieel pandemische influenzavirussen 
van nieuwe subtypes.
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-Time flies when you are having fun-

Nu ik aanbeland ben bij waarschijnlijk het meest gelezen hoofdstuk 
van mijn proefschrift, en me probeer te herinneren of ik niemand ben 
vergeten te bedanken, vraag ik me ergens toch af hoe de afgelopen 
jaren zo snel voorbij hebben kunnen gaan? Natuurlijk waren er de 
nodige frustraties als er weer eens iets niet zo ging als gepland of 
gehoopt, maar gelukkig had ik altijd collega’s, vrienden en familie 
die mij nieuwe energie gaven om het nogmaals te proberen en die  
allemaal ook even enthousiast waren als dit alles resulteerde in een 
mooi paper. Ik heb dankzij jullie allemaal een ontzettend leuke en 
leerzame tijd gehad, BEDANKT! Natuurlijk zijn er een aantal mensen 
die ik in het bijzonder wil bedanken, mocht je er niet bijstaan wees 
dan niet getreurd, ook jou ben ik ontzettend dankbaar!

Om te beginnen wil ik graag mijn promotoren bedanken.
Guus, bij mijn sollicitatie wist je nog niet helemaal zeker of T cellen  
helemaal mijn “ding” zou zijn, maar jouw enthousiasme voor T  
cellen bleek al snel zeer aanstekelijk. Je eindeloze stroom aan 
ideeën en enthousiaste doch pragmatische instelling (je weet precies  
hoeveel ballen je in een kerstboom moet hangen) hebben geresulteerd  
in proefschrift waarvan alle papers zijn geaccepteerd! Ik ben je  
dankbaar voor alle vrijheid dit je mij op het lab hebt gegeven en feit 
dat de deur altijd open stond op het moment dat ik sturing nodig 
had of om de haalbaarheid van de ideeën te bespreken. Daarnaast  
heb ik veel kunnen leren van je (soms onleesbare) correcties bij  
manuscripten. Je levendige verhalen en de barbeques bij jou thuis 
maakten het daarnaast ook nog eens erg gezellig!
Ab, tijdens mijn sollicitatie vroeg je alleen naar de dingen die ik niet 
wist, je begrijpt dat mijn verbazing des ter groter was toen ik een 
paar uur later gebeld werd dat ik als OIO in de groep van Guus kon 
beginnen. Bedankt voor het in mij gestelde vertrouwen en de uitdaging 
om mijn promotie onderzoek in het Viroscience lab te mogen uitvoeren! 

Dan mijn paranimfen, Tiny en Miranda, dank dat jullie mij op deze dag 
willen bijstaan!
Tiny, na ongeveer een jaartje de Flu II groep te hebben gewerkt 
mochten wij samen aan de slag en ik had me geen beter labmaatje 
kunnen wensen. Je energie en enthousiasme maakte het samen werken 
erg productief en gezellig. Daarnaast heb ik ontzettend veel van je 
kunnen leren. Bedankt voor al je hulp en je flexibiliteit maar vooral 
voor alle gezelligheid en bemoedigende woorden! Het matrix paper 
was er zonder jouw hulp nooit gekomen!
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Miranda, toen ik op de afdeling kwam werken had ik mijn bureau niet 
voor het uitkiezen, maar wat een gelukt dat hij naast die van jou 
stond! (of was het nou pech?) Bedankt voor alle gezelligheid op de 
late uurtjes, de lol en wijntjes bij het bedenken en testen van onze 
Sinterkerst outfits en alle tips en tricks die je op ieder willekeurig 
moment deelt, maar natuurlijk ook voor de vaste logeer plek in  
Rotterdam (inclusief de lekkere ontbijtjes) na het zoveelste feestje!

Ook wil ik alle andere (oud)leden van de Flu II groep bedanken.
Joost, mijn altijd vrolijke Redbull-maatje, bedankt voor alle gezellige 
brainstormsessies en goede adviezen! En niet te vergeten je hulp bij 
het opstarten van het Matrix project en H7N9 paper. Rogier, bedankt 
voor alle tips bij het plannen en uitvoeren van de muizenstudies en 
het beantwoorden van mijn 1001 vragen ;-). Marine, thank you for your 
help and I wish you and your family all the best. Stella and YingYing,  
without you two there wouldn’t have been an influenza B paper,  
thank you for all your help! Nella, bedankt voor het mij introduceren in 
de wereld van de viruskweek en natuurlijk de kloneer tips. Gerrie, be-
dankt voor het helpen buffelen op het MLIII en de gezelligheid. Ruud, 
bedankt voor alle hulp bij het (uit)zoeken van de juiste virus stammen 
en de droge opmerkingen. Heidi, we hebben dan wel niet samen aan 
een project gewerkt, maar dat maakte het er in het lab niet minder 
gezellig op! Gelukkig waren onze koffie en swirll dates gemakkelijk om 
te zetten in gezellige pizza-avondjes! Rory, FACS-maatje, bedankt 
voor het bijbrengen van alle tips en tricks van het compenseren! (Ik 
kom nog wel een keer een lesje “Dilligeren” volgen). Arwen, heel veel 
succes met de rest van je promotie! (en natuurlijk ook met het fi-
etsen). Lidewij, zullen we een boekje ruilen? Mark, vervelen staat niet 
in je woordenboek niets dan knallen en gezelligheid met jou.

Kirsty, smizebuddy, je hebt Tyra’s uitspraak “Chase your dreams, 
work to the extreme” wel heel letterlijk genomen ;-), maar ik ben 
blij dat we samen hebben kunnen werken aan ons side-project. Ik 
heb grote bewondering voor je doorzettingsvermogen en efficiënte 
manier van werken. Door onze overlappende interesses op het lab en  
daarbuiten was er altijd wel iets om over te kletsen. Bedankt voor je 
enthousiasme en alle gezelligheid binnen en buiten het lab en ik hoop 
jou en Keng snel te kunnen opzoeken in Australië. 

Graag wil ik nog een paar andere mensen bedanken die op wat voor 
manier ook hebben geholpen bij de totstandkoming van dit proefschrift 
en/of de fijne samenwerkingen.
Ron (voor je kritische blik op onze manuscripten), David (voor alle hulp 
bij de statistiek en het bewijzen dat het niet moeilijk of saai hoeft te 
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zijn, maar wel een beetje vies ;-) ), Werner, Monique V en Gijs (voor 
het altijd een beroep kunnen doen op jullie FACS expertise), Monique 
S en Theo (voor al jullie adviezen op het lab), Dennis, Vincent en 
Geert (voor het lesje muizen prikken en de hulp/uitleg bij secties), 
de wildlife groep (voor het delen van hun expertise op het gebied van  
de pathologie), de dames van het secretariaat Maria S (wat zit je 
haar mooi!), Simone S en Loubna (omdat jullie altijd alles voor elkaar 
weten te krijgen), Bobby en Maria D (voor de fijne samenwerkingen), 
Hans (voor alle (spoed)bestellingen), Robert (voor de afwas, de liters 
PBS en de roti-rollen), Wim (voor de hulp bij uitzoeken van het PB).

Ook wil ik de (oud)leden van de Flu I-hMPV groep bedanken: Sander  H 
(met jou is elke dag een (sexy) vrijdag), Eefje (als ik later door mijn  
boekje blader denk ik meteen aan die van jou (blz 60)), Ben (Wir  
vermissen Deine Backkünste sehr!), Kim (nooit gedacht dat ik met jou  
op huwelijksreis zou gaan ;-) ), Marjolein P (Succes met je promotie),  
Ramona (Sie können jederzeit starten mit eine DJ-Karriere), Stefan V 
(zonder jou hadden we niet van die gave filmpjes), Stefan N, Mathilde, 
Josanne, Oanh, Jonneke, Sander B, Bjorn, Bernadette, Pascal B en 
Pascal L.

Marion, Bart, Anouk, Suzan, Chantal en alle andere vrijwillers, bedankt  
dat ik dankzij jullie ook een hele andere kant van de Viroscience  
afdeling heb kunnen leren kennen. Jullie inzet, planning en organisatie 
kunsten rondom de Dutch Mobile labs in de strijdt tegen de Ebola 
epidemie was indrukwekkend! Bedankt dat ik hiervan deel heb kunnen 
uitmaken!

En natuurlijk Petra D, Joyce en Sarah (voor de gezelligheid in de wandel- 
gangen), Do (are you sure that you dont live on the 17th floor?), alle 
leden van de sinterkerstcommissies (voor de mooie feestjes), Brooke, 
Marco G, Laura, Lennert en Wesley J (die bewijzen dat het op de 16de 
ook best gezellig kan zijn), Judy (want eigenlijk ben je ook gewoon 
deel van onze afdeling), Dirk (nog een kleintje dan?), Jurre en Emma 
(we will always have Paris!).

Gelukkig zijn er ook genoeg dingen te beleven buiten het lab, daarom 
wil ik ook de volgende mensen bedanken:
Ilse, Simone P en Saskia, bedankt voor alle gezellige etentjes en het 
delen van de ups-en-downs van het promoveren! Wanneer gaan we 
voor een etentje naar Houston?

De dames van het vrouwengenootschap wil ik graag bedanken voor alle 
gezelligheid en de heerlijke kookkunsten en in het bijzonder Marjolein K 
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(voor de leuke weekendjes in Bennekom), Petra H, Rosa, Quirien, Fransje 
en Andrea (voor de VRIMIBOs), Joke (voor het organiseren van de 
nodige kledingruils) en Louise (voor het regelmatig komen buurten 
op de 17de).

Mijn oud huisgenoten: Lotte, bedankt voor alle gezelligheid op onze 
(natte) roadtrip door Australië. Maartje, met jou is het nooit saai! En 
natuurlijk bedankt voor het nalezen van de Nederlandse samenvatting.
Mayke, Karen, Lisette en Marina, ondanks de afstand waardoor we 
elkaar wellicht minder zien als we zouden willen is het elke keer als 
ik jullie zie als van ouds gezellig! Bedankt voor jullie jaren lange 
vriendschap! 
Marco W en Kariene omdat jullie deur altijd open staat voor een biertje 
en gezelligheid!

Afijn, ik wil de familie van de Sandt bedanken voor hun belangstelling  
en interesse in mijn onderzoek en natuurlijk voor alle gezellige  
familiedagen/weekenden. Is groep 14 inmiddels al teruggekeerd?

Mijn schoonfamilie, Gabi, Eddy, Wilco en Nora, van af de eerste 
dag dat ik bij jullie over de vloer kwam voelde ik me thuis, bedankt 
voor jullie goede zorgen en de betrokkenheid en interesse in mijn  
onderzoek!

Coen en Luuk, wat een geluk dat we alle drie dezelfde kant op zijn 
verhuisd, met maar een half uurtje hier vandaan zijn jullie altijd 
dichtbij! Ondanks alle drukke schema’s weten we toch altijd wel  
ergens tijd te vinden voor een gezellig etentje. Wat ben ik blij 
met twee van zulke kanjers als broer(tje)s! En mijn altijd vrolijke 
schoonzusje Anne, bedankt voor alle gezelligheid die je mee brengt!

En natuurlijk pap en mam, zonder jullie steun en vertrouwen was ik 
nooit zo ver gekomen, bedankt dat jullie altijd het beste met ons voor 
hebben!

Lieve Wesley, ik heb jou voor het laatst bewaard… Hoe kan ik jou 
nou in een paar woorden bedanken? Je onvoorwaardelijke support 
en liefde zijn van onschatbare waarde! Je goede zorgen, voedzame 
maaltijden en het altijd wel even willen luisteren naar een presentatie 
of naar wat ik nu weer op het lab had uitgespookt maakte dat ik met 
veel plezier kon promoveren, maar ook dat het fijn was om weer thuis  
te zijn. Met twee nieuwe studies en een nieuwe baan waar je zo  
enthousiast over verteld en hard voor werkt ben ik ontzetten trots op 
je! Misschien dat ik nu eens wat vaker voor jou moeten gaan koken ;-)
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