Prevention of knee osteoarthritis in overweight females; the first preventive randomized controlled trial in osteoarthritis

J. Runhaar¹, PhD; M. van Middelkoop¹, PhD; M. Reijman², PhD; S. Willemsen³, PhD; E.H. Oei⁴, PhD, MD; D. Vroegindeweij⁵, PhD, MD; G. van Osch², PhD; B. Koes¹, PhD; S.M.A. Bierma-Zeinstra¹,², PhD.

Erasmus MC University Medical Center Rotterdam, ¹Department of General Practice, ²Department of Orthopaedics, ³Department of Biostatistics, ⁴Department of Radiology. ⁵Maasstad Hospital, Department of Radiology, Rotterdam, The Netherlands

Corresponding author:

J. Runhaar, room NA 1906
PO-box 2040, 3000 CA Rotterdam, the Netherlands
T: +31(0) 10 7044192; F: +31(0) 10 7044766; j.runhaar@erasmusmc.nl

Funding source: This study was funded by ZonMw, The Netherlands Organisation for Health Research and Development and by a program grant of the Dutch Arthritis Foundation for their center of excellence “Osteoarthritis in primary care”.

Conflict of interest: All authors declare no conflicts of interest.

Authors’ contributions: All had access to the data and contributed to the writing of the present manuscript.

Article type: Clinical Research Study

Keywords: knee osteoarthritis; prevention; randomized controlled trial; overweight; weight loss; glucosamine

Running head: Prevention of knee osteoarthritis
Abstract

Background: With accumulating knowledge on osteoarthritis development, the next step is to focus on possibilities for primary prevention.

Methods: In a 2x2 factorial design, the effects of a diet and exercise program and of oral glucosamine sulphate (double blind and placebo-controlled) on the incidence of knee osteoarthritis were evaluated in a high-risk group of 407 middle-aged women with a BMI ≥ 27 kg/m\(^2\) without clinical signs of knee osteoarthritis at baseline (ISRCTN 42823086). Primary outcome was the incidence of knee osteoarthritis, defined as Kellgren & Lawrence grade ≥ 2, joint space narrowing of ≥ 1.0 mm or clinical knee osteoarthritis (clinical and radiographic American College of Rheumatology-criteria) after 2.5 years.

Results: After 2.5 years, only 10% of all subjects were lost to follow-up and 17% of all knees showed incident knee osteoarthritis. Accounting for the significant interaction between the interventions, no significant main effect of either intervention was found. Independently, both interventions alone showed indications of reduced knee osteoarthritis incidence (OR 0.69; 95% CI: 0.39 - 1.21 for the diet and exercise program and 0.60; 95% CI: 0.31 - 1.12 for the glucosamine intervention). These effects were neutralized in subjects receiving both interventions (OR 0.97; 95% CI: 0.55 - 1.71).

Conclusions: No significant main effects of the diet and exercise program and of glucosamine sulphate were found on incident knee osteoarthritis. Nevertheless, this trial provides valuable insights for future trial design for preventive osteoarthritis studies.
Introduction

According to the World Health Organisation, more than 10% of people aged 60 and over suffer from osteoarthritis worldwide. Thereby it is the most common joint disease in this age range. Over the last decades, numerous longitudinal studies on risk factors for onset of osteoarthritis have been performed. These studies have led to the identification of a wide variety of risk factors; mainly focusing on knee osteoarthritis. With this accumulated knowledge, primary prevention should be considered. Several studies indicate that weight loss in overweight or obese individuals could prevent knee osteoarthritis. In an observational cohort, it was calculated that if women with a body mass index (BMI) ≥ 25 kg/m² would reduce their BMI with 2 units (~ 5 kg), the risk for developing knee osteoarthritis would be reduced substantially (OR = 0.41). The direct effects of weight reduction (primary prevention) on subsequent knee osteoarthritis development have never been studied.

Glucosamine has been studied for the treatment of osteoarthritis patients, but no efficacy has been proven in studies with adequate allocation concealment or in investigator led studies. Literature suggests larger effects of glucosamine over placebo when used in an early phase of the disease and especially in the knee joint. Glucosamine has never been tested for its preventive effects. Since all forms of oral glucosamine have shown to produce no side effects over placebo, even after long-term use, investigation of the preventive effect of glucosamine on incident knee osteoarthritis seems safe and worthwhile.

The objective of the present study was to evaluate the effect of a tailored diet and exercise program, aimed to reduce weight, and of oral crystalline glucosamine sulphate on
incidence of knee osteoarthritis in a high risk group of overweight women between 50 and 60 years, free of clinical knee osteoarthritis at baseline.

Method

The PROOF study (PRevention of knee Osteoarthritis in Overweight Females, ISRCTN 42823086) was approved by the Medical Ethics Committee of Erasmus MC University Medical Centre in 2005. The manuscript has been written according to the CONSORT Statement guidelines. Additional extensive method sections are provided in the Appendix.

Setting and Participants Women aged 50 to 60, with a BMI ≥ 27 kg/m², free of knee osteoarthritis (clinical American College of Rheumatology (ACR)-criteria), not treated for knee complaints or using walking-aids, free of MRI-contraindications, without rheumatic diseases, master the Dutch language and not using glucosamine were recruited through their general practitioner (Appendix). All women eligible and willing to participate were invited for baseline measurements (July 2006 – May 2009).

Physical Examination At baseline and after 2.5 years follow-up, body weight and height were measured and both hands were examined for Heberden’s nodes.

Radiography Semi-flexed posterior-anterior knee radiographs were taken at baseline and follow-up according to the MTP protocol and scored using the Kellgren & Lawrence (K&L) criteria. Minimal joint space width was measured by visual reading for each tibiofemoral compartment. Medial knee alignment angle was assessed for all knees (Appendix).

Questionnaires At baseline and every 6 months, participants filled in questions on the number of days with knee pain, activity level (SQUASH), co-interventions, and quality of life (EuroQol...
At baseline, 12 months and 30 months, knee complaints, Knee injury and Osteoarthritis Outcome Score (KOOS) questionnaire, menopausal status, and co-morbidities were additionally assessed.

Randomization After informed consent procedure according to the declaration of Helsinki and subsequent baseline measurements, subjects were randomized using consecutive case numbers. For the diet and exercise program, subjects were randomized 1:1 using block randomisation with block size 20. A research assistant, not involved in the trial, provided a sealed envelope that was opened by the subject in the presence of the researcher. Allocation to glucosamine or placebo (double-blind) was also done one-on-one using a blocked randomization list with block size 20 (see below).

Home Visits Every 6 months a home visit was planned to measure body weight, check the questionnaire for missing data, provide the participant with a new batch of study drugs, and retrieve the remainder of the previous batch for objective compliance calculation.

Diet and Exercise Program A detailed description of the diet and exercise program is given elsewhere. In short, subjects in the intervention group were referred to a local dietician who set goals regarding nutritional habits and physical activity patterns in agreement with the participant, using Motivational Interviewing techniques. Thereafter a tailor made strategy and an individual planning were composed to achieve these goals. Additionally, subjects were invited to join a weekly physical exercise class (12 to 15 participants) of one hour for twenty weeks, supervised by a local physical therapist. A variety of low impact sports and exercises, such as Nordic walking, aqua jogging and dancing, were offered in order to regain pleasure in
physical activity and find activities for long-term continuation. The control group was not
offered an intervention.

Crystalline Glucosamine Sulphate versus Placebo When designing this trial, high drop-out
rates in the control group of the diet and exercise program were feared. To prevent this, the
glucosamine sulphate vs. placebo intervention was introduced, in order to provide all subjects
with an intervention and hopefully avoid high drop-out rates. Subjects and research staff were
blinded for allocation throughout the study. All study drugs were provided in identical
packaging by Rottapharm Madaus, who was not involved in study design, data collection, or
statistical analyses. Subjects were asked to consume one sachet (1500 mg powder) per day for
the total follow-up period.

Outcome Measures Predefined primary outcome was the difference between groups on the
incidence of knee osteoarthritis, defined as incidence of either K&L ≥ 2, clinical knee
osteoarthritis (clinical and radiographic ACR-criteria \(^{15}\)) or joint space narrowing of ≥ 1.0 mm in
the medial or lateral compartment. Secondary outcomes were quality of life, Western Ontario
and McMaster Universities Osteoarthritis Index (WOMAC) pain and WOMAC function scores
(calculated from KOOS, ranging 0-100 with 0 being no pain/no functional limitations), weight
loss, occurrence of osteoarthritis MRI features, and increase in bone and cartilage degeneration
markers. Given the complexity of the MRI and degeneration marker evaluations, these
outcomes will not be presented here.

Sample Size The study was powered to show an incidence reduction from 20% in the diet and
exercise program control group and in the placebo group to 10% in the diet and exercise
program intervention and the glucosamine group (Appendix). No interaction between the
interventions was assumed. Based on our previous 2-year osteoarthritis trial, we accounted for 10% lost to follow-up. Therefore, two groups of 200 subjects would be appropriate (one-sided testing, alpha = 0.05, beta = 0.80).

Statistical Analysis Intention To Treat (ITT) analyses on all available data of all knees of all randomized participants served as primary analyses. The interaction between both interventions was determined using Generalized Estimating Equations (GEE), adjusted for confounding variables. Next, the effects of the diet and exercise program and the glucosamine vs. placebo intervention were determined using GEE, adjusted for confounding variables. In case of a significant interaction between the interventions, these analyses will be performed over four groups, with subjects in the diet and exercise program control group receiving placebo as reference (Appendix).

For the pre-defined Per Protocol (PP) analyses, the ITT analyses were rerun, between those subjects compliant to the diet and exercise program (≥ 6 dietary consultations and ≥ 7 exercise classes) and those randomized to the control group and, separately, in those with an objective compliance calculation ≥ 75%. A sensitivity analysis excluding all knees fulfilling one of the criteria of the primary outcome at baseline was performed, and all analyses were repeated on subject level. All analyses were performed using PASW statistics version 20.0 (SPSS Inc., Chicago, IL).

Available secondary outcomes were analysed using a linear mixed model estimated by restricted maximum likelihood (SAS 9.2, SAS Institute Inc., Cary, NC). A p-value < 0.05 was defined as statistically significant for all analyses. Randomization code for glucosamine vs. placebo intervention was broken after all analyses were completed.
Results

In total, 6691 women were contacted by fifty general practitioners. Eventually, 407 women were invited for baseline measurements and were randomised (24.8% to the diet and exercise program intervention/placebo group and 25.1% to each of the other groups, see Figure 1). Mean age was 55.7 ± 3.2 years and mean BMI was 32.4 ± 4.3 kg/m² (Table 1). After 2.5 years, forty-one women (10.1%) were lost to follow-up. Of these, thirty-six women were unwilling; two withdrew because of side effects; one was unattainable; two died in the course of the study. One woman died shortly after study ending (all deaths not related to study drugs).

Joint space narrowing (ICC 0.67 – 0.76) was found medially in 5% and laterally in 6% of all knees. Incidence of K&L-grade ≥ 2 was found in 4% of all knees (kappa 0.6). Six per cent of all knees showed incident clinical osteoarthritis. Combined into the primary outcome, 135 knees (17%) showed incident knee osteoarthritis (in 28% of all women). Despite the fact that all included subjects were free of clinical knee osteoarthritis at initial screening, 3.9% of all knees fulfilled the ACR criteria at baseline and 6.6% showed K&L-grade 2 after detailed assessment of the radiographs. Multivariately, only K&L grade was associated with the primary outcome.

Intention To Treat Analyses The ITT analyses showed a significant interaction (p = 0.04). Hence, the effects of one intervention depended on the allocation of the other intervention and four groups had to be analysed separately (Table 2).

Diet and Exercise Program 28% of the 203 women randomized to the diet and exercise program were compliant (equally distributed over placebo and glucosamine groups). Compliant women had a mean weight reduction of 1.4 ± 5.2 kg at follow-up versus 0.0 ± 6.7 kg in the
control group. At 6 and 12 months, the number of participants fulfilling the predefined target of
5 kg or 5% weight reduction was significantly higher in the intervention group (14% vs. 6% at 6
months, \(p = 0.01 \); 17% vs. 10% at 12 months, \(p = 0.04 \)). Eventually, 63 women (15%) met this
target at 30 months. Detailed effects of the diet and exercise program can be found elsewhere
PP analyses showed a significant interaction with the glucosamine vs. placebo
intervention (\(p = 0.01 \)). Incidence of knee osteoarthritis was found in 19%, 13%, 9% and 23% of
the knees of subjects randomized to the control group with placebo, with glucosamine, subjects
compliant to the diet and exercise program with placebo and those with glucosamine,
respectively (Table 3).

Oral Glucosamine Sulphate versus Placebo A total of 291 adverse events were reported by a
total of 118 women, equally divided between glucosamine and placebo group (\(\chi^2 \) test: \(p =
0.23 \)). All reported serious adverse events (26 by 25 women) were classified as not related to
study drug and also equally divided between groups (\(\chi^2 \) test: \(p = 0.26 \)). After study ending,
17% of the women in the placebo group and 15% of the women in the glucosamine group were
convinced they had received glucosamine. The majority of all women (52% in the placebo group
and 46% in the glucosamine group) were convinced they received placebo (\(\chi^2 \) test: \(p = 0.24 \)).
None of the involved researchers or participants were unblinded during the trial. In total, 250
women were compliant (66% of the placebo group, 57% of the glucosamine group).
PP analyses showed no interaction between both interventions (\(p = 0.17 \)). Incidence of
knee osteoarthritis occurred in 20% of the knees of the women compliant to the placebo (21%
in control group and 18% in the diet and exercise program intervention group) and in 21% (17%
in control group and 24% in the diet and exercise program intervention group) of the knees of women compliant to glucosamine (adjusted OR 0.99 [0.61–1.63]).

Secondary outcome Secondary outcomes are represented in Appendix Figures 1-4. There was only a statistically significant difference between the diet and exercise program intervention and control group on actual weight loss (p = 0.04). Detailed analyses showed a significant difference in weight loss at 6 months (p < 0.01) and 12 months (p = 0.01). Also in PP analyses, only the effect of the diet and exercise program on actual weight loss was statistically significant in favour of the intervention group (p = 0.01), with statistically significant differences in weight loss at 6 months (p < 0.01), 12 months (p < 0.01), 18 months (p = 0.02), and 24 months (p = 0.04).

Sensitivity analysis When excluding all knees fulfilling one of the items of the primary outcome at baseline, the interaction between both interventions was borderline significant in the ITT analyses (p = 0.10) and statistically significant in the PP analysis for the diet and exercise program (p = 0.03). See Appendix Tables 1 and 2. In the sensitivity analyses at subject level, the interaction between both interventions was also borderline significant in ITT analyses (p = 0.12) and statistically significant in PP analyses for the diet and exercise program (p < 0.01). See Appendix Table 3 and 4.

Discussion

This study presents the first ever preventive randomized trial on osteoarthritis worldwide. The diet and exercise program and the glucosamine sulphate intervention showed no significant main effects on the incidence of knee osteoarthritis after 2.5 years. However, due
to the unexpected significant interaction, these analyses were slightly underpowered. The fact that the interaction became even stronger in subjects compliant to the diet and exercise program, was found in sensitivity analyses, and at subject level, indicates a true interaction between the interventions.

This preventive randomised trial focused on subjects with high risk of developing knee osteoarthritis and used a combined outcome measure to make a trial in such a slowly progressing disease feasible over a relative short time period. This combination of radiographic and clinical measures of knee osteoarthritis into the primary outcome improves the ability to determine the preventive effects of the studied interventions, although one misses the detailed insight in the development of the disease. Explorative evaluation of the separate items of the primary outcome confirmed the pattern found in the main analyses, but longer follow-up is needed to statistically test these outcomes separately given the naturally slow disease development.

Although we found no significant main effects of the diet and exercise program and the glucosamine vs. placebo intervention on primary outcomes, the interaction between the interventions did show several interesting results. Where glucosamine sulphate reduced osteoarthritis incidence numbers in the group not undergoing the diet and exercise program (13% vs. 19%; adjusted OR 0.59 [0.31 – 1.12]), osteoarthritis incidence was increased in the glucosamine sulphate group within the diet and exercise program intervention group (20 vs. 15%; adjusted OR 1.44 [0.83 – 2.48]). On the other hand, the diet and exercise program reduced the incidence numbers within the placebo group (15% vs. 19%; adjusted OR 0.69 [0.39 – 1.21]), but showed an increased OR within the glucosamine sulphate group (20% vs. 13%;
adjusted OR 1.63 [0.89 – 3.01]). Taking only subject compliant to the diet and exercise program into account, the effects became even stronger (9% vs. 19%; adjusted OR 0.35 [0.11 – 1.10] within placebo group and 23% vs. 13%; adjusted OR 2.17 [0.95 – 4.96] within the glucosamine sulphate group). Although tested in subjects with established knee osteoarthritis, results from Messier et al. 26 might give some suggestion for the mechanism behind this interaction. Messier and co-workers found that after a 6 months exercise period, subjects randomized to a combination of glucosamine/chondroitin decreased in knee flexion strength, whereas subjects receiving placebo significantly improved their strength 26. These results suggest that glucosamine might interfere with processes of repair and growth after physical exercise. On the other hand, a 12 week training program combined with glucosamine sulphate did not show a difference in knee extension strength over the placebo group in knee osteoarthritis patients 27. The more sensitive and explorative measures of the MRI and biomarkers, which are being assessed within the present study, might provide more detailed information on the underlying mechanism.

For implementation reasons, a very pragmatic design was chosen for the diet and exercise program. Nevertheless, the intervention had a significant effect on the actual weight loss during the first year of follow-up and activity levels were higher in the intervention group throughout the total follow-up period. Thus, despite the relatively low compliance figures, similar to other physical exercise and diet interventions in overweight and obese individuals 28, and a short duration, the current diet and exercise program succeeded in a low level change in lifestyle, also in the ITT population. Contrary to daily practice, the control group was relatively active. Nearly 90% of all subjects stated to have a preference for the intervention group at
baseline. For ethical reasons, the control group was not actively refrained from any interventions on weight loss. After 2.5 years, 18% of all women randomized to the control group fulfilled the criterion of losing 5 kg or 5% of baseline body weight. Therefore, the effects of the diet and exercise program found on incident knee osteoarthritis may have been underestimated.

In conclusion, we showed no significant main effects of the diet and exercise program or the glucosamine vs. placebo intervention on incidence of knee osteoarthritis over 2.5 years. These analyses, however, were hampered by an unexpected significant interaction between the two interventions. The current trial provides many new insights in the possibilities for prevention of knee osteoarthritis within a high-risk group of middle-aged, overweight women. The low dropout rate of 10% strengthens results of this first attempt to prevent osteoarthritis in subject at high risk. The indications for preventive effects of the two interventions separately and their interaction needs further elaboration.

Acknowledgments

Authors would like to acknowledge ZonMw for their financial support and the Dutch Arthritis Foundation for the program grant for their center of excellence “Osteoarthritis in primary care”.

References

27. Petersen SG, Beyer N, Hansen M et al. Nonsteroidal anti-inflammatory drug or glucosamine reduced pain and improved muscle strength with resistance training in a

Table 1. Distribution and mean (SD) of prognostic variables among the randomized intervention arms at baseline.

<table>
<thead>
<tr>
<th>Diet & Exercise Program</th>
<th>Control group</th>
<th>Intervention group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo</td>
<td>Glucosamine</td>
</tr>
<tr>
<td>N - subjects</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>55.7 (3.3)</td>
<td>55.7 (3.1)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>32.6 (4.3)</td>
<td>32.4 (4.6)</td>
</tr>
<tr>
<td>Heberden’s nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uni-lateral</td>
<td>15%</td>
<td>16%</td>
</tr>
<tr>
<td>bi-lateral</td>
<td>10%</td>
<td>14%</td>
</tr>
<tr>
<td>Postmenopausal status</td>
<td>70%</td>
<td>68%</td>
</tr>
<tr>
<td>EuroQol, 0 – 1*</td>
<td>0.90 (0.12)</td>
<td>0.88 (0.13)</td>
</tr>
<tr>
<td>Physical activity**</td>
<td>6992 ± 3807</td>
<td>7210 ± 3827</td>
</tr>
<tr>
<td>WOMAC, 0 – 100***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>5.1 (8.5)</td>
<td>7.1 (11.7)</td>
</tr>
<tr>
<td>Function</td>
<td>5.3 (8.7)</td>
<td>7.1 (12.2)</td>
</tr>
<tr>
<td>N – knees</td>
<td>204</td>
<td>204</td>
</tr>
<tr>
<td>K&L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grade 0</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>grade ≥ 1</td>
<td>46%</td>
<td>53%</td>
</tr>
<tr>
<td>Minimal JSW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>medial, mm</td>
<td>4.4 (0.8)</td>
<td>4.4 (0.8)</td>
</tr>
<tr>
<td>lateral, mm</td>
<td>5.9 (1.1)</td>
<td>5.8 ± 0.9</td>
</tr>
<tr>
<td>Varus alignment</td>
<td>46%</td>
<td>38%</td>
</tr>
<tr>
<td>Mild symptoms</td>
<td>29%</td>
<td>30%</td>
</tr>
<tr>
<td>History of knee injury</td>
<td>14%</td>
<td>12%</td>
</tr>
</tbody>
</table>

* Higher scores represent higher quality of life. ** measured using SQUASH. *** Higher scores represent more pain/worse function. JSW: joint space width
Table 2. Odds ratios from Intention To Treat analyses for the four randomized groups on incidence of knee OA.

<table>
<thead>
<tr>
<th>Group</th>
<th>N (knees)</th>
<th>Incident knee OA</th>
<th>OR *</th>
<th>95% CI</th>
<th>OR **</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP control / placebo</td>
<td>204</td>
<td>19%</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEP control / glucosamine</td>
<td>204</td>
<td>13%</td>
<td>0.610</td>
<td>0.328 – 1.135</td>
<td>0.591</td>
<td>0.313 – 1.118</td>
</tr>
<tr>
<td>DEP intervention / placebo</td>
<td>202</td>
<td>15%</td>
<td>0.695</td>
<td>0.396 – 1.213</td>
<td>0.685</td>
<td>0.389 – 1.208</td>
</tr>
<tr>
<td>DEP intervention / glucosamine</td>
<td>204</td>
<td>20%</td>
<td>1.010</td>
<td>0.579 – 1.763</td>
<td>0.972</td>
<td>0.553 – 1.710</td>
</tr>
</tbody>
</table>

* unadjusted odds ratio. ** odds ratio adjusted for baseline KL grade (0 vs. ≥ 1). DEP: diet and exercise program, OR: odds ratio, CI: confidence interval.

Table 3. Odds ratios from Per Protocol analyses on incidence of knee OA.

<table>
<thead>
<tr>
<th>Group</th>
<th>N (knees)</th>
<th>Incident knee OA</th>
<th>OR *</th>
<th>95% CI</th>
<th>OR **</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP control / placebo</td>
<td>204</td>
<td>19%</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEP control / glucosamine</td>
<td>204</td>
<td>13%</td>
<td>0.610</td>
<td>0.328 – 1.135</td>
<td>0.590</td>
<td>0.310 – 1.122</td>
</tr>
<tr>
<td>Compliant to DEP / placebo</td>
<td>58</td>
<td>9%</td>
<td>0.341</td>
<td>0.109 – 1.063</td>
<td>0.349</td>
<td>0.110 – 1.105</td>
</tr>
<tr>
<td>Compliant to DEP / glucosamine</td>
<td>56</td>
<td>23%</td>
<td>1.220</td>
<td>0.567 – 2.628</td>
<td>1.277</td>
<td>0.594 – 2.747</td>
</tr>
</tbody>
</table>

* unadjusted odds ratio. ** odds ratio adjusted for baseline KL grade (0 vs. ≥ 1). DEP: diet and exercise program, OR: odds ratio, CI: confidence interval.
Additional method section

Setting and Participants Fifty general practitioners in the region of Rotterdam, The Netherlands, sent study information and a reply-card to all registered women between 50 and 60 years without major co-morbidities. Interested women with a reported BMI ≥ 27 kg/m² were contacted by phone to check all inclusion criteria.

Besides age and BMI-related inclusion criteria, subjects had to be free of knee OA according to the clinical American College of Rheumatology (ACR)-criteria, not under treatment for knee complaints, free of MRI contraindications, free of rheumatic diseases, not using walking-aids, master the Dutch language and not using oral glucosamine for the last 6 months.

Radiography Semi-flexed posterior-anterior knee radiographs were taken at baseline and follow-up according to the MTP protocol. A trained researcher (MR), blinded for clinical outcomes and treatment assignment, scored all radiographs (baseline and follow-up images at once with known sequence) using the Kellgren & Lawrence (K&L) criteria. A random subset of 20% of the radiographs was scored by a second blinded researcher (JR) to determine inter-observer variability. Minimal joint space width was measured by visual reading with the use of a digital ruler for each tibiofemoral compartment, using the average score of two researchers blinded for clinical outcomes and baseline measurements (JR and BdV). Scores with a difference between both readers ≥ 2.0 mm were re-evaluated during a consensus meeting. Medial knee alignment angle was assessed by digitally determining the angle between the line from the center of the tibial spines through the center of the femoral shaft at approximately 10 cm from the joint margin and the matching line through the tibia.

Sample Size The study was powered to show an incidence reduction from 20% in the diet and exercise program control group and in the placebo group to 10% in the diet and exercise program intervention and the glucosamine group. These numbers were based on a twelve year follow-up study with an overall incidence of K&L ≥ 2 of 39.1% in subject with a BMI ≥ 26.4 kg/m². In the present age group, this number was 1.6 fold higher, suggesting an incidence of 13% over 2.5 years. The primary outcome combined incidence of K&L grade ≥ 2, ACR criteria and JSN. Since there is only moderate overlap between these measures, a 20% incidence in the control group seemed reasonable. No interaction between the interventions was assumed. Based on rates in our previous 2-year OA trial, we accounted for 10% lost to follow-up. Therefore, two groups of 200 subjects would be appropriate (one-sided testing, alpha = 0.05, beta = 0.80).

Statistical Analysis Intention To Treat (ITT) analyses on all available data of all knees of all randomized
participants served as primary analyses. First, the univariate association between known prognostic variables (age, K&L grade (≥1 vs. 0), varus alignment (<178° versus ≥178°), mild knee symptoms ('Did you experience knee pain in the past 12 months'), BMI, a history of knee injury, Heberden’s nodes, and postmenopausal status) and the primary outcome was determined using Generalized Estimating Equations (GEE), with the association between two knees within one person taken into account. Variables with a p-value < 0.2 were analysed multivariately. Variables with a p-value <0.05 in the multivariate model were adopted as confounders. Second, the interaction between both interventions was determined using GEE, adjusted for the confounding variables.

Third, the effects of diet and exercise program DEP and GSvP—the glucosamine vs. placebo intervention were determined using GEE, adjusted for the confounding variables. In case of a significant interaction between the interventions, these analyses will be performed over four groups, with subjects in the diet and exercise program DEP-control group receiving placebo as reference group.

For the pre-defined Per Protocol (PP) analyses, the latter two ITT analyses were rerun, between those subjects compliant to DEP—the diet and exercise program (≥ 6 dietary consultations and ≥ 7 attended physical exercise classes) and those randomized to the DEP-control group and, separately, in those with an objective compliance calculation ≥ 75% of the study drug throughout the study period. A sensitivity analysis excluding all knees fulfilling one of the criteria of the primary outcome at baseline was performed, and finally all analyses were repeated on a subject level. All analyses were performed using PASW statistics version 20.0 (SPSS Inc., Chicago, IL).

Available secondary outcomes were analysed using a linear mixed model estimated by restricted maximum likelihood (REML) to test effects of both interventions and their interaction over the follow-up period (SAS 9.2, SAS Institute Inc., Cary, NC). A p-value < 0.05 was defined as statistically significant for all analyses. Randomization code for GSvP-glucosamine vs. placebo intervention was broken after all analyses were completed.

References

Appendix Figure 1. Mean quality of life (EuroQol) scores within randomized intervention groups.

Appendix Figure 2. Mean WOMAC pain scores (range 0 – 100; higher scores mean more pain) within randomized intervention groups.
Appendix Figure 3. Mean WOMAC function scores (range 0 – 100; higher scores mean less function) within randomized intervention groups.

Appendix Figure 4. Actual weight loss (negative values represent weight gain from baseline) within randomized intervention groups.
Appendix Table 1. Odds ratios from sensitivity analyses (Intention To Treat), excluding knees already fulfilling one of the criteria of the primary outcome on baseline.

<table>
<thead>
<tr>
<th>N (knees)</th>
<th>Incident knee OA</th>
<th>OR *</th>
<th>95% CI</th>
<th>OR **</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP control / placebo</td>
<td>186</td>
<td>16%</td>
<td>1 (reference)</td>
<td>1</td>
<td>(reference)</td>
</tr>
<tr>
<td>DEP control / glucosamine</td>
<td>186</td>
<td>12%</td>
<td>0.73</td>
<td>0.37 – 1.45</td>
<td>0.72</td>
</tr>
<tr>
<td>DEP intervention / placebo</td>
<td>179</td>
<td>13%</td>
<td>0.71</td>
<td>0.38 – 1.35</td>
<td>0.71</td>
</tr>
<tr>
<td>DEP intervention / glucosamine</td>
<td>179</td>
<td>18%</td>
<td>1.15</td>
<td>0.61 – 2.17</td>
<td>1.12</td>
</tr>
</tbody>
</table>

* unadjusted odds ratio. ** odds ratio adjusted for baseline KL grade (0 vs. ≥ 1). DEP: diet and exercise program, OA: osteoarthritis, OR: odds ratio, CI: confidence interval.

Appendix Table 2. Odds ratios from sensitivity analyses (Per Protocol for DEP), excluding knees already fulfilling one of the criteria of the primary outcome on baseline.

<table>
<thead>
<tr>
<th>N (knees)</th>
<th>Incident knee OA</th>
<th>OR *</th>
<th>95% CI</th>
<th>OR **</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP control / placebo</td>
<td>186</td>
<td>16%</td>
<td>1 (reference)</td>
<td>1</td>
<td>(reference)</td>
</tr>
<tr>
<td>DEP control / glucosamine</td>
<td>186</td>
<td>12%</td>
<td>0.73</td>
<td>0.37 – 1.45</td>
<td>0.71</td>
</tr>
<tr>
<td>DEP intervention / placebo</td>
<td>56</td>
<td>9%</td>
<td>0.45</td>
<td>0.14 – 1.43</td>
<td>0.45</td>
</tr>
<tr>
<td>DEP intervention / glucosamine</td>
<td>48</td>
<td>23%</td>
<td>1.52</td>
<td>0.68 – 3.41</td>
<td>1.63</td>
</tr>
</tbody>
</table>

* unadjusted odds ratio. ** odds ratio adjusted for baseline KL grade (0 vs. ≥ 1). DEP: diet and exercise program, OA: osteoarthritis, OR: odds ratio, CI: confidence interval.
Appendix Table 3. Odds ratios from sensitivity analyses (Intention To Treat) at subject level.

<table>
<thead>
<tr>
<th>N</th>
<th>Incident</th>
<th>OR</th>
<th>95% CI</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>knee OA *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEP control / placebo</td>
<td>102</td>
<td>29%</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
<td></td>
</tr>
<tr>
<td>DEP control / glucosamine</td>
<td>102</td>
<td>21%</td>
<td>0.58</td>
<td>0.30 – 1.13</td>
<td>0.64</td>
</tr>
<tr>
<td>DEP intervention / placebo</td>
<td>101</td>
<td>28%</td>
<td>0.83</td>
<td>0.44 – 1.56</td>
<td>0.89</td>
</tr>
<tr>
<td>DEP intervention / glucosamine</td>
<td>102</td>
<td>32%</td>
<td>1.04</td>
<td>0.56 – 1.93</td>
<td>1.20</td>
</tr>
</tbody>
</table>

* defined as primary outcome in one or both knees. | unadjusted odds ratio. | odds ratio adjusted for baseline KL grade, varus alignment, and mild symptoms all defined as in 0 vs. ≥ 1 knee, and baseline BMI. DEP: diet and exercise program, OA: osteoarthritis, OR: odds ratio, CI: confidence interval.

Appendix Table 4. Odds ratios from sensitivity analyses (Per Protocol for DEP) at subject level.

<table>
<thead>
<tr>
<th>N</th>
<th>Incident</th>
<th>OR</th>
<th>95% CI</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>knee OA *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEP control / placebo</td>
<td>102</td>
<td>29%</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
<td></td>
</tr>
<tr>
<td>DEP control / glucosamine</td>
<td>102</td>
<td>21%</td>
<td>0.58</td>
<td>0.30 – 1.13</td>
<td>0.65</td>
</tr>
<tr>
<td>DEP intervention / placebo</td>
<td>29</td>
<td>14%</td>
<td>0.31</td>
<td>0.10 – 0.96</td>
<td>0.31</td>
</tr>
<tr>
<td>DEP intervention / glucosamine</td>
<td>28</td>
<td>39%</td>
<td>1.44</td>
<td>0.58 – 3.57</td>
<td>2.21</td>
</tr>
</tbody>
</table>

* defined as primary outcome in one or both knees. | unadjusted odds ratio. | odds ratio adjusted for baseline KL grade, varus alignment, and mild symptoms all defined as in 0 vs. ≥ 1 knee, and baseline BMI. DEP: diet and exercise program, OA: osteoarthritis, OR: odds ratio, CI: confidence interval.
50 general practitioners contacted all women between 50 and 60 years registered at their practice (6691 women)

3094 women (46%) returned the reply-card to the research institute

1358 women (44%) were not interested in participating

1738 women (56%) were interested in participating

847 women (49%) were excluded because BMI, based on reported body weight and height, was < 27.0

889 women (51%) with BMI = 27.0 were send additional information

After screening on all in- and exclusion criteria by phone, 407 women (46%) were eligible and were invited for baseline measurements

Randomization

DEP + Placebo (N = 101)

8 women lost to follow-up after 2.5 years (1 died, 7 unwilling)

DEP + Glucosamine (N = 102)

9 women lost to follow-up after 2.5 years (1 unattainable, 8 unwilling)

Control + Placebo (N = 102)

10 women lost to follow-up after 2.5 years (2 side-effects, 8 unwilling)

Control + Glucosamine (N = 102)

14 women lost to follow-up after 2.5 years (1 died, 13 unwilling)