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Abstract

In this paper, we introduce a new Bayesian approach to explain some market
anomalies during financial crises and subsequent recovery. We assume that the
earnings shock of an asset follows a random walk model with and without drift
to incorporate the impact of financial crises. We further assume the earning
shock follows an exponential family distribution to take care of symmetric as
well as asymmetric information. By using this model setting, we develop some
properties on the expected earnings shock and its volatility, and establish prop-
erties of investor behavior on the stock price and its volatility during financial
crises and subsequent recovery. Thereafter, we develop properties to explain
excess volatility, short-term underreaction, long-term overreaction, and their
magnitude effects during financial crises and subsequent recovery.

KEYWORDS: Bayesian model; representative and conservative heuristics; ex-
cess volatility; underreaction; overreaction; magnitude effects; financial crises.
JEL classifications: C11, G01, G11.
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1 Introduction

There are several papers that have modeled bubbles and crashes. For example, Abreu

and Brunnermeier (2003) use the idea of sequential awareness to develop a theory

in which arbitrageurs compete with each other to beat the gun in a stock market.

Matsushima (2013) extends their work and shows that rational arbitrageurs are willing

to ride the bubble even with incomplete information. He also proves that the bubble

can persist for a long period as the unique nash equilibrium outcome. In this paper,

we examine the problem of bubbles and crashes by using an alternative perspective,

by modeling investor behaviors to ride a bubble during bull and bear markets. The

paper will discuss the traditional and behavioral theory for investment.

Explaining market anomalies, such as market excess volatility, overreaction, and

underreaction, is one of the most important issues in finance. Classical theorists of

market rationality, for example, Fama and French (1996) hypothesize that overre-

action and underreaction can be explained by the efficient market paradigm. On

the other hand, behaviorial economists such as Barberis, Shleifer, and Vishny (BSV)

(1998) combine psychological phenomena with finance theories to explain market

anomalies, such as the overreaction and underreaction phenomena.

There are several basic assumptions for the traditional asset-pricing model. Vi-

olating the assumptions could result in deviating from the traditional asset-pricing

theory in a typical behavioral model. For example, BSV assume that investors adopt

conservative and representative heuristics, and the earnings announcements satisfy

a random walk following either a trending regime or a mean-reverting regime. This

could be used to explain underreaction and overreaction phenomena. In addition,

Gervais and Odean (2001) argue that insider traders put higher weights on a secu-

rity’s dividend if they successfully predict their past performance and use the Bayes

rule to update their prediction.

It has been observed that investors are too conservative and too slow to vary their

prior beliefs when new information arrives. For example, assuming that conserva-

tive investors might not pay great attention to the latest earnings announcements,

Edwards (1968) develops a Bayesian model that put a lower weight on useful sta-

tistical evidence and put greater weight on investors’ priors. Nonetheless, Tversky
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and Kahneman (1971), Kahneman and Tversky (1973), and others use the concept of

representative heuristics, namely the bias individuals believe population parameters

to be “represented” in the latest data, in their experimental studies.

Assuming that people overemphasize the strength of the evidence and de-emphasize

its weight when they update their beliefs, Griffin and Tversky (1992) develop a model

by combining both conservatism and representativeness. BSV further develop a

Bayesian model to explain investors’ behavioral biases by using both conservatism

and representativeness heuristics in making decisions. Lam, Liu, and Wong (LLW)

(2010, 2012) extend their work by introducing a pseudo-Bayesian approach.

In this paper, we modify LLW’s pseudo-Bayesian approach by assuming that the

earnings shock of an asset follows a random walk model with and without drift to

incorporate the impact of financial crises. We also assume earning shocks follow an

exponential family distribution to accommodate symmetric as well as asymmetric

information. By using this model setting, we establish properties on the expected

earnings shock and investor behavior during financial crises and subsequent recovery.

Thereafter, we establish new results to explain some market anomalies, including

excess volatility, short-term underreaction, long-term overreaction, and their magni-

tude effects during financial crises and subsequent recovery. For example, the theory

developed in this paper infers that excess volatility is proportional to the variance

of the earnings shock in the long run, excess volatility increases when the discount

rate drops, and conservative (representative) heuristics will decrease (increase) excess

volatility.

For short-term underreaction, long-term overreaction, and their magnitude effects,

we show that there exist both short-term underreaction and long-term overreaction

by using underreaction and/or event approaches. We find that the expected momen-

tum and contrarian profits are positive when the trading period is long enough. In

addition, the momentum profit and its magnitude effect are higher in the shorter

period, and the contrarian profit and its magnitude effect are higher in the longer pe-

riod. Moreover, the representative (conservative) heuristic will lead to the contrarian

(momentum) profit.

We also show that the representative (conservative) heuristic has to overpower

3



the conservative (representative) heuristic to obtain a contrarian (momentum) profit.

Furthermore, both momentum and contrarian profits are shown to be sensitive to the

discount rate, such that the smaller is the discount rate, the larger are the momentum

and contrarian profits. We also find that the expected momentum and contrarian

profits are positive when the trading period is long enough. All the above findings

hold regardless of the symmetric/asymmetric information on the signs of the earnings

shock, and hold during financial crises and during the recovery of the economy. We

explain this phenomenon in the Conclusion.

2 Assumptions and the Model Specification

2.1 Earnings Announcements

The pioneer work of BSV considers a model of market sentiment, in which a repre-

sentative investor believes that the earnings announcement, Nt, of the asset at time

t follows a random walk model, such that:

Nt = Nt−1 + et , (1)

where et is an earnings shock at time t. Applying the cost-of-capital model (Wong

and Chan, 2004), the price, P, of an asset at time t follows:

Pt = Et

[
Nt+1

1 + r
+

Nt+2

(1 + r)2
+ · · ·

]
=

Nt

r
+

1 + r

r
×
[
Et[et+1]

1 + r
+

Et[et+2]

(1 + r)2
+ · · ·

]
, (2)

in which r is the positive discount rate and Et[·] is the conditional expectation, given
the information set Ωt. We assume that et is Ωt-measurable. Thus, both P and N

are Ωt-measurable.

In this paper we extend the theory by assuming that the earnings announcement,

Nt, follows the following random walk model with/without drifts to capture the

impact of a financial crises:

Nt =

{
δ0 + Nt−1 + et, t0 ≤ t < t1 ;

δ1 + Nt−1 + et, t1 ≤ t < t2 ;
(3)
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in which δ0 < 0 and δ1 > 0. In equation (??), we consider an economy with two differ-

ent states: economic conditions under financial crises and conditions under recovery.

We assume that the earnings announcement, Nt, follows a random walk model with

negative drift, δ0, when financial crises starts at time t0, and a random walk with

positive drift, δ1, when the economy starts to recover from time t1.

BSV assume that the earnings shock is independent and follows a Bernoulli distri-

bution with equal probability on e0 or −e0. LLW relax this assumption to allow the

earnings shock to follow a normal distribution. In this paper, we relax the assumption

by assuming that the earnings shock follows an exponential family distribution:

et ∼ f(yt) = exp {(etθ − b(θ))/a(ϕ) + c(et;ϕ)} , (4)

where θ is the canonical parameter, a(> 0), b, and c are known functions, and ϕ is the

dispersion parameter. The dispersion parameter is assumed to be a constant, either

known, or considered as a nuisance parameter.

We note the advantage of using the exponential family distribution is that it is one

of the most commonly used continuous distributions, including the normal, gamma,

and other distributions, and so, it can fit into situations with symmetric as well as

asymmetric distributions. This relaxation is very important because it is well known

that market information could be asymmetric. A bear market will be more sensitive

to bad news, while a bull market is more sensitive to good news. There are many

findings and studies1 in the literature supporting the use of the random walk model

with drifts for earnings announcement.

One may wonder why investors could foresee when (t0) a crisis would start and

when (t1) the crisis would end, when the economy would start recovering, and when

(t2) the recovery would end. It is impossible for any investor to know the exact

dates of t0, t1, and t2. However, there are many well-known cycles, for example, the

Lunar cycle, January effect, Kitchin cycle, presidential election cycle, Juglar cycle,

Kondratieff cycle, and other cycles.2 Some smart investors may be able to predict

1See, for example, Thompson and Wong (1996), Chaudhuri and Wu (2003), Ayers, Li, and Yeung
(2011) and the references cited therein.

2See, for example, Wong and McAleer (2009) and the references cited therein for more informa-
tion.
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the cycles well, and so they may be able to predict the intervals into which t0, t1, and

t2 fall.

In addition, we note that t0, t1, and t2 may not be the true dates of the turning

points of the cycles. However, if many investors believe that the market will crash at

t0, they might start selling their stocks and eventually cause the market to crash. This

self-fulfilling nature leads to the formation of speculative bubbles (see, for example,

Froot, Scharfstein, and Stein (1992)). In addition, Brunnermeier (2001) notes that

this episode is an example of herding behavior that is irrational and driven by emotion-

greed in the bubbles, fear in financial crashes, and individual investors join the crowd

of others in a rush to move in or out of the market.

2.2 Pseudo-Bayesian Model

In order to estimate the unknown mean, µ, of the earnings shock, one could use a

vague priorP0(µ) ∝ 1 and the likelihood function L(e1, e2, · · · , et|µ) =
t∏

i=1

L
(
et−i+1|µ

)
in the standard and rational Bayesian approach. This leads to obtain the posterior

distribution of µ conditional on {e1, e2, · · · , et}, such that P
(
µ | e1, e2, · · · , et

)
∝

t∏
i=1

L
(
et−i+1 | µ

)
.3

Using this standard Bayesian approach will derive the theory to support the tra-

ditional efficient market hypothesis and the rational expectation asset-pricing theory

(Friedman, 1979). In this situation, any structural irrationally inducing financial

anomalies would disappear. However, it is well known that the rational expectations

theory is violated empirically (see, for example, Blume and Easley (1982)). In order

to circumvent the limitation of the traditional Bayesian model, Slovic (1972) suggests

assigning different weights to different observations. If weights ω := (ω1, ω2, · · · , ωt),

LLW propose the following weighted likelihood function:

Lω(e1, e2, · · · , et|µ) =
t∏

i=1

L
(
et−i+1|µ

)ωi . (5)

3Readers may refer to Matsumura, Tsui, and Wong (1990) and the references therein cites for
more information about the standard and rational Bayesian approaches. We also note that besides
using the Bayesian approach, there are alternative approaches that could be used to measure in-
vestors’ belief; for example, one could use subjective weighting function, as in Levy and Wiener
(1998).
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2.3 Weight Assignment

Assigning general weights on observations enables incorporation of one’s prior beliefs

into the sample data to examine the price formation process. Brav and Heaton

(2002) suggest setting the first half of the weights to one and the second half to

zero. LLW suggest using the weighted likelihood function stated in equation (??)

and assume investors placing the weight ωi on the ith most recent observation, et−i,

with 0 ≤ ωi ≤ 1. In this paper, we assume that investors assign the following weights:

0 ≤ ω1 ≤ · · · ≤ ωm0 = ωm0+1 = · · · = ωn0 = 1 ≥ ωn0+1 ≥ · · · ≥ 0, (6)

for 1 ≤ m0 < n0. We note that investors are under the influence of both conservative

and representative heuristics if they use weights shown in equation (??), conservatism

is obtained when setting m0 > 0, while representativeness is obtained by setting

n0 < ∞. Investors will only have conservative heuristics if n0 = ∞, and they will

only have representative heuristics if m0 = 0. In addition, if n0 = ∞ and m0 = 0,

then all weights will be unity. In this situation, investors will have no behavioral bias.

Thus, investors with heuristics shown in equation (??) could represent all other types

of investors. Thus, we only study investors with heuristics as shown in equation (??)

in this paper.

3 Basic Properties under the Pseudo-Bayesian Ap-

proach

Under the model discussed in Section ??, we first obtain the following theorem for

the stock price and return:

Theorem 1 Applying the pseudo-Bayesian approach with a vague prior, if Nt

follows the random walk model stated in equation (??) and the likelihood Lω(µ) follows

the equation stated in equation (??), for any k ≥ 1, then

Et[et+k] =
ωte1 + · · ·+ ω1et

st
:= dt and σ2

t =
σ2
est∑t

i=1 ω
2
i

, (7)

where st = Σt
i=1ωi, Et[et+k] is the predictive mean of the future earning shock, et+k,

and σ2
t is the posterior variance of µ given {e1, e2, · · · , et}.
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We provide a proof of Theorem ?? in the Appendix. LLW develop the results of the

rational expectations pricing model in equation (??) when the random walk model is

given in equation (??), whereas FLSW extend LLW’s work by developing the results

of the rational expectations pricing model when the random walk model is given in

equation (??). The authors assume that the earnings shock is normally distributed.

In this paper, by applying Theorem ?? and assuming the earnings shock, yt, follows

an exponential family distribution, as stated in equation (??), we extend FLSW’s

work to relax the normality assumption and obtain the following theorem:

Theorem 2 Under the assumptions stated in Theorem ?? and using the rational

expectations pricing model, as stated in equation (??),

a. if {Nt} follows equation (??), then

Et

[
Pt+k

(1 + r)k

]
=

Nt

r(1 + r)k
+

[(1 + k)r + 1]dt
r2(1 + r)k

, and (8)

b. if {Nt} follows equation (??), then

Et

[
Pt+k

(1 + r)k

]
=

Nt

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+

δ0
r2(1+r)bt−2

[
(r + 1)bt−k−2([k + 2− at]r + 1)− 1

]
+ δ1

(r+1)ct−2r2

(
(r + 1)ct−bt − 1

)
, t < t0 ≤ t+ k < t1

(bt−at)δ0
r(1+r)k

+ δ1
r2(1+r)ct−2

[
(r + 1)ct−k−2([k + 2− bt]r + 1)− 1

]
, t < t0, t1 ≤ t+ k < t2

(bt−at)δ0+(ct−bt)δ1
r(1+r)k

, t < t0, t2 ≤ t+ k
δ0

r2(1+r)bt−2

[
(r + 1)bt−k−2([k + 1]r + 1)− 1

]
+ δ1

(r+1)ct−2r2

(
(r + 1)ct−bt − 1

)
, t0 ≤ t < t+ k < t1

δ0(bt−1)

r(1+r)k
+ δ1

(r+1)ct−2r2

(
(r + 1)ct−k−2([k + 2− bt]r + 1)− 1

)
, t0 ≤ t < t1 ≤ t+ k < t2

δ0(bt−1)+δ1(ct−bt)

r(1+r)k
, t0 ≤ t < t1, t2 ≤ t+ k

δ1
(r+1)ct−2r2

(
(r + 1)ct−2−k([k + 1]r + 1)− 1

)
, t1 ≤ t < t+ k < t2

δ1(ct−1)

r(1+r)k
, t1 ≤ t < t2 ≤ t+ k

(9)

where Pt is the price at time t, at = max{⌈t0 − t⌉ , 0}, bt = max{⌈t1 − t⌉ , 0},
ct = max{⌈t2 − t⌉ , 0}, and dt =

ωte1+···+ω1et
st

.

From Theorem ??, the current earnings announcement depends on the predictive

mean of the future earning shocks, the current earnings announcement, the risk-free

interest rate, the duration of the economic recovery or downturn, and the recovery

rate of the economy or the deteriorating rate under financial crises.
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4 Inference on Market Volatility

According to Theorem ??, whichever proess the random walk {Nt} follows, we

have Et[Pt+k] = Nt/r + [r(1 + k) + 1]dt/r
2 + ck, where ck may vary, as described

in Theorem 2. For Pt, we obtain Pt = Nt/r + (r + 1)dt/r
2 + c0 and Pt+1 =

Nt+1/r + (r + 1)dt+1/r
2 + c1, where c0 and c1 are constants, and may differ in value.

Consequently, for the 1-period return Rt,t+1 = Pt+1 − Pt:

Rt,t+1 =
1 + r

r2

[(
ωt+1

st+1

− ωt

st

)
e1 + · · ·+

(
ω2

st+1

− ω1

st

)
et

]
+

(
1

r
+

1 + r

r2
ω1

st+1

)
et+1

+c1 − c0.

From this result, we obtain the following theorem that may be used to draw inferences

regarding market volatility:

Theorem 3 Under the assumptions stated in Theorem ??:

a. if st → ∞, then market volatility Var(Rt,t+1) → σ2
e/r

2;

b. if there is severe behavioral bias, that is, st → s∞ < ∞, then the market volatility

Var(Rt,t+1) becomes:[ 1

r2
+ 2

1

r

1 + r

r2
s1
s∞

]
σ2
y +

(1 + r)2

r4
1

s2∞
A∞σ2

e , (10)

where A∞ = ω2
1 +

∑∞
t=1(ωt+1 − ωt)

2.

In addition, applying Theorem ?? enables us to obtain some interesting observa-

tions on excess volatility, as stated in the following property:

Property 4 Under the assumptions stated in Theorem ??, we have:

a. Excess volatility is proportional to the variance of the earnings shock in the long

run;

b. If the discount rate and/or investors’ anticipated return, r, increases, then the

excess volatility will be reduced;

c. Conservative (representative) heuristics will decrease (increase) excess volatility;
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d. Parts a to c hold regardless of the symmetric/asymmetric information on the

signs of the earnings shock;

e. Parts a to c hold during financial crises and during recovery.

Property ??a could be obtained by applying Part a of Theorem ??. One could

obtain Property ??b by conducting simple computations. We provide some remarks

for Properties ??c and ??d as follows: If investors adopt a conservative heuristic,

then they will choose a positive integer, m0, and assign the following weights: 0 ≤
ω1 < · · · < ωm0 = ωm0+1 = · · · = 1. This leads to st → ∞, and excess volatility

Var(Rt,t+1) → σ2
e/r

2. On the other hand, if investors select a representative heuristic,

they will choose a positive integer, n0, and assign weights 1 = ω1 = · · · = ωn0 >

ωn0+1 > · · · ≥ 0. In this situation, if the behavioral biases are severe, then the ωi are

close to 0 for any i > n0 and st → s∞ < ∞. Thus, the excess volatility will appear in

the form of equation (??) and can be larger than that in the conservative heuristic

case.

For the third case, investors adopt both conservative and representative heuristics,

and so they will choose both m0 and n0, such that 1 ≤ m0 ≤ n0, and assign the

following weights: 0 ≤ ω1 < · · · < ωm0 = ωm0+1 = · · · = ωn0 = 1 > ωn0+1 > · · · ≥ 0.

Their market volatility will be larger than in the conservative heuristic case, but

smaller than in the representative heuristic case. If the ωi are very close to zero for

any i, with n0 < i and i < m0, then st → s∞ < ∞, and consequently, the excess

volatility will also appear in the form of equation (??). In this situation, the excess

volatility will be greater than σ2
e/r

2. However, when compared with the representative

heuristic, as 0 ≤ ω1 < 1, the terms A∞ and s1/s∞ will be smaller than those in the

representative heuristic case, and so will reduce the excess volatility. We will discuss

Properties ??e and 4f in the Conclusion.

5 Inferences on Underreaction and Overreaction

In order to examine the underreaction and overreaction phenomena, we define the

lag-one autocovariance, γk
1 , of the k-period return as γk

1 = Cov(Rt,t+k,Rt,t−k), where
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Rt,t+k is the k-period return and Rt,t−k is the k-period return from time t−k to time

t. The lag-one autocorrelation, ρk1, of the k-period return is given as:

ρk1 =
Cov(Rt,t+k,Rt,t−k)√
Var(Rt,t+k)Var(Rt,t−k)

. (11)

As underreaction (overreaction) is associated with positive (negative) autocorre-

lation, this leads to the following definition:

Definition 1 An asset displays:

a. a short-term underreaction if ρk1 > 0 for sufficiently small k;

b. a long-term overreaction if ρk1 < 0 for sufficiently large k;

where ρk1 is defined in equation (??).

Based on the above definition, we establish the following theorem:

Theorem 5 Under the assumptions stated in Theorem ??, if investors possess

weights as stated in equation (??) and if there is severe behavioral bias, then there

exist short-term underreaction and long-term overreaction exhibited as return auto-

correlations. That is, there are positive integers K1 and K2:{
ρk1 > 0 k ≤ K1,
ρk1 < 0 k > K2,

(12)

for large t, where ρk1 is defined in equation (??). In addition, the limiting correlation

coefficients stated in equation (??) are not zero. The results hold regardless of the

symmetric/asymmetric information on the signs of the earnings shock, and during

financial crises and recovery.

The proof of Theorem ?? is given in the Appendix. We note that it is natural that

the results in equation (??) hold for the symmetric as well as asymmetric information

on the signs of the earnings shock and during financial crises and recovery. For

example, during a crash it is generally common for stock prices to fall day after day.

This is exactly what is shown in Theorem ??: that ρk1 > 0 for k ≤ K1 for some

small integers K1; this condition also holds during recovery. On the other hand,

during financial crises, one would expect the market to recover after some time; this
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is shown in Theorem ??: that ρk1 < 0 for k > K2 for some large values K2. Similarly,

during a recovery, one would expect that a recession could arise in the future; this is

also shown in Theorem ??: that ρk1 < 0 for k > K2 for some large values K2. Similar

arguments hold true for the asymmetric information on the signs of the earnings

shock. For example, bad news arriving after bad news will result in a further decline

in stock price. This is shown in Theorem ?? where ρk1 > 0 for k ≤ K1 for small integer

K1.

We now adopt the event approach used by BSV to describe underreaction and

overreaction. It is well known that stock prices can be higher after the company

announces good news rather than bad news. However, stock prices can also lower.

The market is said to be underreacting in the former situation, and overreacting in the

latter situation. We follow the approach used by BSV to quantify such underreaction

and overreaction by defining the difference in expected returns after a string of good

or bad news, as follows:

Ut(s, j) = E{Rt+1|et > µ+ sσe, · · · , et−j+1 > µ+ sσe}

−E{Rt+1|et < µ− sσe, · · · , et−j+1 < µ− sσe}, (13)

where s is the intensity of the content of news and j is the time length of the string

of good or bad news. The term Ut(s, j) (−Ut(s, j)), defined in equation (??) is the

expected profit of a momentum (contrarian) trading strategy that dictates buying

(selling) when there is a string of good news, and selling (buying) when there is a

string of bad news. We can use the sign of Ut(s, j) to measure underreaction and

overreaction, as stated in the following definition:

Definition 2

a. For a sufficiently small j, if Ut(s, j) > 0, then there exists a short-term under-

reaction in price;

b. for a sufficiently large j, if Ut(s, j) < 0, then there exists a long-term overreac-

tion in price.

Using Definition ??, we establish the following theorem:

Theorem 6 Under the assumptions stated in Theorem ??:

12



a. There are short-term underreactions and long-term overreactions in price when

an event approach is used. That is, for a given s > 0 and for large t, there exist

integers J1 and J2 such that:{
Ut(s, j) > 0, j ≤ J1,
Ut(s, j) < 0, j ≥ J2,

(14)

where Ut(s, j) is defined in equation (??).

b. When t → ∞, the expected momentum (contrarian) trading profit, Ut(s, j)

(−Ut(s, j)), is positive for j ≤ J1 (j ≥ J2).

c. In addition, the results in (a) and (b) above hold regardless of the symmet-

ric/asymmetric information on the signs of the earnings shock.

d. The results in (a) and (b) above hold during financial crises and during recovery.

We provide the proof of Theorem ?? in the Appendix. From Theorems ?? and ??

and their proofs, we obtain the following property for underreaction and overreaction:

Property 7 Under the assumptions stated in Theorem ??, we have:

a. There exist short-term underreactions and long-term overreactions in price when

underreaction and/or event approaches are used, and both expected momentum

and contrarian profits are positive when the trading period is long enough.

b. The representative (conservative) heuristic contributes to the contrarian (mo-

mentum) profit.

c. Overreaction (underreaction) occurs after long (short) periods of good or bad

financial performance.

d. The representative (conservative) heuristic has to overpower the conservative

(representative) heuristic to obtain a contrarian (momentum) profit to surface.

e. The larger is the discount rate, the smaller are the momentum and contrarian

profits, and vice-versa.

f. Observations a-e above hold for asymmetric as well as symmetric information

on the signs of the earnings shock, and during financial crises and recovery.
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6 Inference on the Magnitude Effect

If the momentum (contrarian) profit Ut(s, j) (-Ut(s, j)) increases as s or j increases,

profits possess a magnitude effect in s or j. The following theorems state the magni-

tude effect for investors using both conservative and representative heuristics.

Theorem 8 Under the assumptions stated in Theorem ??, there exists a magni-

tude effect in s for both long-term overreaction and short-term underreaction that was

established in Theorem ??. That is, there exist integers J1 and J2 such that:

a. The momentum (contrarian) profit Ut(s, j) (−Ut(s, j) ) is positive and strictly

increases with s for any sufficiently small (large) t and for any j < J1 (j > J2).

b. The result of the momentum and contrarian profits stated in (a) above hold

regardless of the symmetric/asymmetric information on the signs of the earnings

shock.

c. The result of the momentum and contrarian profits stated in (a) above hold

during financial crises and recovery.

Theorem 9 Under the assumptions stated in Theorem ??:

a. For sufficiently small (large) j, the momentum (contrarian) profit based on j

consecutive good or bad news increases as j decreases (increases).

b. The result of the momentum and contrarian profits stated in (a) above hold

regardless of the symmetric/asymmetric information on the signs of the earnings

shock.

c. The result of the momentum and contrarian profits stated in (a) above hold

during financial crises and recovery.

We give the proof of Theorem ?? in the Appendix. The proof of Theorem ?? can be

easily obtained thereafter. We summarize the results in Theorems ?? and ?? in the

following property on the magnitude effect:

Property 10 Under the assumptions stated in Theorem ??:
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a. There exist positive momentum and contrarian profits with magnitude effect

such that the more does the stock price fluctuates:

i. the higher is the momentum profit and its magnitude effect in a short

period;

ii. the higher is the contrarian profit and its magnitude effect in a long period.

b. There exist positive contrarian profits with magnitude effect such that:

i. the higher is the momentum profit and its magnitude effect if the good/bad

news come in the shorter period of time;

ii. the higher is the contrarian profit and its magnitude effect if the good/bad

news come in the longer period of time.

c. When the stock price fluctuates more, the momentum profit is positive and

monotonic for smaller time periods, while the contrarian profit is positive and

monotonic for longer periods.

d. Findings a to c above hold regardless of the symmetric/asymmetric information

on the signs of the earnings shock, and hold during financial crises and recovery.

7 Concluding Remarks

BSV and others have established Bayesian models to combine psychological phe-

nomena with finance theories to explain market anomalies, such as the overreaction

and underreaction phenomena. In this paper, we modified the Bayesian approach

to explain market anomalies, including excess volatility, short-term underreaction,

long-term overreaction, and their magnitude effects during financial crises and sub-

sequent recovery. It was assumed that: (1) investors exhibit both conservative and

representative heuristics that lead them to underweigh recent observations and past

observations of the earnings shocks of corporations; (2) the earnings shock of an asset

follows a modified random walk model with and without drift, and with an expo-

nential family distribution to incorporate the impact of financial crises; and (3) the
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likelihood function for earning shocks of the stock in a Bayesian paradigm is weighted

by investors’ behavioral biases.

By using this model setting, we establish properties on the expected earnings shock

and it associated volatility. We then established some new results to explain market

anomalies, including excess volatility, short-term underreaction, long-term overreac-

tion, and their magnitude effects during financial crises and subsequent recovery.

We noted that the findings in this paper on excess volatility, short-term under-

reaction, long-term overreaction, and their magnitude effects hold regardless of the

symmetric/asymmetric information on the signs of the earnings shock, and hold dur-

ing financial crises and recovery. One may believe that different market situations

and different shapes of the earnings shock should lead to different results. We have

illustrated this property for overreaction and underreaction after Theorem ??. We

now illustrate this property for excess volatility. One may think that during a market

crash, excess volatility would increase sharply. However, Properties ??d and ??e show

this is not the case.

We note that this does not mean that different market situations and different

shapes of the earnings shock have no effect on excess volatility. These observations

only show that the effects of different market situations and different shapes of the

earnings shock are already reflected in the use of different heuristics. It does have an

effect on excess volatility. For example, when the market is going to crash, investors

realize that they could lose most of their investment if they do not sell their stocks.

This means that investors will emphasize the recent observations more, and so they

select representative heuristics. In this situation, from Property ??c, excess volatility

is increasing. Thus, the theory developed from the model could also be used to explain

the empirical situation.

The theory developed in this paper could be used to explain investor behaviors in

making decisions about financial investments. One may incorporate other informa-

tion, for example, the economic and financial environment (Fong, Lean, and Wong,

2008), the mean-variance rule (Wong and Ma, 2008; Bai, Hui, Wong, and Zitikis,

2012), CAPM statistics (Leung, Ng and Wong, 2012), VaR rule (Ma and Wong,
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2010), portfolio optimization (Bai, Liu, and Wong, 2009), and portfolio diversifica-

tion (Egozcue and Wong, 2010) into the theory developed in the paper to make better

investment decisions.

There are some other theories that explain the behavior of investors. For example,

Levy, Levy, and Solomon (1994, 2000) introduce the concepts of rational informed

identical (RII) investors. They document that RII investors believe that the stock

price may deviate from the fundamental value in the short run but, if it does, it will

eventually converge to the fundamental value. On the other hand, the EMBs believe

that the stock price accurately reflects the stock’s fundamental value.

Wong and Li (1999), Wong (2007), and others extend stochastic dominance theory

to obtain some properties for risk averters and risk seekers. Based on the empirical

study on momentum profit, Fong, Wong, and Lean (2005) conclude that risk averters

prefer to invest in winner portfolios, while Sriboonchitta, Wong, Dhompongsa, and

Nguyen (2009) find that risk seekers prefer to invest in loser portfolios. This finding

could explain why the momentum profit could still exist after discovery. In addition,

Qiao, Clark, and Wong (2012) examine the Taiwan spot and futures markets, and

conclude that risk averters prefer to invest in the spot market, whereas risk seekers

prefer to invest in the futures market. Hoang, Wong, and Zhu (2015) find that the

preference of risk-averse and risk-seeking investors are different in the investment of

portfolios with and without gold.

Finally, we note that there are several directions to extend the theory developed

in this paper. One area of extension is to develop test statistics for the findings

obtained in the paper for different types of investors. Recently, Fabozzi et al. (2013)

have introduced statistics to test for the magnitude effect of the overreaction and

underreaction hypotheses. Bai et al. (2015) have developed tests to compare the

preferences of assets for risk averters and risk seekers. Bai et al. (2011) have developed

tests to compare the preferences of assets for investors with S-shaped and reversed S-

shaped utility functions. One could incorporate their ideas to develop some statistics

to test the findings obtained in the paper for different types of preferences of assets

and utility functions.
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Appendix

Proof of Theorem ??:

Given that:

P
(
µ | e1, · · · , et

)
∝

t∏
i=1

L
(
et−i+1 | µ

)ωi =
t∏

i=1

exp
{ωi(et−i+1θ − b(θ))

a(ϕ)
+ ωic(et;ϕ)

}
,

(15)

the log-likelihood function is:

l(e, θ) =
t∑

i=1

{ωi(et−i+1θ − b(θ))

a(ϕ)
+ ωic(et;ϕ)

}
. (16)

Consequently, it follows that:

∂l(e, θ)

∂θ
=

t∑
i=1

{ωi(et−i+1 − b′(θ))

a(ϕ)

}
,

∂2l(e, θ)

∂θ2
=

t∑
i=1

−b′′(θ)

a(ϕ)
.

As E(∂l(e,θ)
∂θ

) = 0 and −E(∂
2l(e,θ)
∂θ2

) = E(∂l(e,θ)
∂θ

2
), we can prove Theorem ?? through

simple calculations.

Proof of Theorem ??:

Given that:

Rt,t+1 =
1 + r

r2

[(ωt+1

st+1

− ωt

st

)
e1 + · · ·+

( ω2

st+1

− ω1

st

)
et

]
+
(1
r
+

1 + r

r2
ω1

st+1

)
et+1

+c1 − c0 ,

we have:

Var(Rt,t+1) =
(1 + r

r2

)2
[(ωt+1

st+1

− ωt

st

)2

+ · · ·+
( ω2

st+1

− ω1

st

)2
]
σ2
e +

(1
r
+

1 + r

r2
ω1

st+1

)2

σ2
e

=
( 1

r2
+

1

r

1 + r

r2
ω1

st+1

)
σ2
e

+
(1 + r

r2

)2
[( ω1

st+1

)2

+
(ωt+1

st+1

− ωt

st

)2

+ · · ·+
( ω2

st+1

− ω1

st

)2
]
σ2
e . (17)
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For the case with st → ∞, as ωi ≤ 1 for every i, we obtain ωi

st
→ 0. As a result, in

this case, Var(Rt,t+1) → 1
r2
σ2
e .

When st → s∞ < ∞, the result stated in Theorem ?? can be obtained directly

from equation (??).

Proof of Theorem ??:

Applying Theorem ??, we obtain:

Pt+k =
Nt+k

r
+

(r + 1)dt+k

r2
+ c+k ,

Pt−k =
Nt−k

r
+

(r + 1)dt−k

r2
+ c−k ,

where c+k and c−k are constants and may differ, as stated in Theorem ??. As a result,

we obtain the following for the k-period return:

Rt,t+k =
(1
r
+

(r + 1)ωk

r2st+k

)
et+1 + · · ·+

(1
r
+

(r + 1)ω1

r2st+k

)
et+k

+
r + 1

r2

[(ωt+k

st+k

− ωt

st

)
e1 + · · ·

(ωk+1

st+k

− ω1

st

)
et

]
+ c+k − c0 ,

Rt,t−k =
(1
r
+

(r + 1)ωk+2

r2st

)
yt−k+1 + · · ·+

(1
r
+

(r + 1)ω1

r2st

)
et

+
r + 1

r2

[(ωt

st
− ωt−k

st−k

)
e1 + · · ·

(ωk+1

st
− ω1

st−k

)
et−k

]
+ c0 − c−k .

As ei are independent and identically distributed, we obtain:

Cov(Rt,t+k,Rt,t−k) =

[(ωt+k

st+k

− ωt

st

)(ωt

st
− ωt−k

st−k

)
+ · · ·+

(ω2k+1

st+k

− ωk+1

st

)(ωk+1

st
− ω1

st−k

)]
×
(r + 1

r2

)2

σ2
e .

When the investor has severe behavioral biases, that is st → s∞ < ∞, the sign of(
ω2k+i

st+k
− ωk+i

st

)(
ωk+i

st
− ωi

st−k

)
, i = 1, · · · , t − k, is determined by the sign of (ω2k+i −

ωk+i)(ωk+i −ωi). If investors possess both conservative and representative heuristics,

then they assign weights as 0 ≤ ω1 < · · · < ωm0 = ωm0+1 = · · · = ωn0 = 1 > ωn0+1 >

· · · ≥ 0 for 1 ≤ m0 ≤ n0.

When k is small, the sign of (ω2k+i −ωk+i) is the same as that of (ωk+i − ωi). For

instance, when i = 1, 2k + 1 < n0, (ω2k+1 − ωk+1) > 0, and (ωk+1 − ω1) > 0 hold
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simultaneously. In addition, we have (ωt+k − ωt) < 0 and (ωt − ωt−k) < 0. Thus, we

obtain Cov
(
Rt,t+k,Rt,t−k

)
> 0 for k < K1, where K1 is a constant.

Similarly, when k is large, the sign of (ω2k+i − ωk+i) will generally be opposite

to that of (ωk+i − ωi). For instance, if m0 < k + 1 < n0 and 2k + 1 > n0, then

(ω2k+1 − ωk+1) < 0 and (ωk+1 − ω1) > 0 hold simultaneously. On the other hand,

when t − k > n0, though (ωt+k − ωt) < 0 and (ωt − ωt−k) < 0 still hold, this term

is negligible. Recall the assumption that st → s∞ < ∞, which infers that ωt → 0.

Thus, we obtain Cov
(
Rt,t+k,Rt,t−k

)
< 0 for k > K2, where K2 is a constant.

Proof of Theorem ??:

Let Z = et−µ
σe

,D1(s) = E
(
Z |Z > s

)
, and D2(s) = E

(
Z |Z < −s

)
. Applying

Lemma 1 in LLW, we have:

E
[
Rt+1|et > µ+ sσe, · · · , et−j+1 > µ+ sσe

]
=

1 + r

r2
σe

[ Kt

stst+1

+∆(t, j)D1(s)
]
+ c1 − c0 ,

E
[
Rt+1|et < µ− sσe, · · · , et−j+1 < µ− sσe

]
=

1 + r

r2
σe

[ Kt

stst+1

+∆(t, j)D2(s)
]
+ c1 − c0 ,

where Kt =
µ
σe
[ r
r+1

]stst+1 and ∆(t, j) =
sj+1−s1
st+1

− sj
st
. Consequently, we obtain:

Ut(s, j) =
1 + r

r2
σe∆(t, j)

(
D1(s)− D2(s)

)
.

Obviously, D1(s) > 0 and D2(s) < 0. As a result, the sign of Ut(s, j) depends on the

sign of ∆(t, j) =
sj+1−s1
st+1

− sj
st
. As st → s∞ < ∞, when t is sufficiently large, the sign

of ∆(t, j) is determined by the sign of sj+1− s1− sj = ωj −ω1. When j is very small,

the conservative heuristic guarantees that ω1 < ωj, so that Ut(s, j) > 0 for j < J1.

On the other hand, when j is large enough, ωj can be arbitrarily small because of the

assumption that st → s∞ < ∞. Consequently, we have ω1 > ωj, so that Ut(s, j) < 0

for j > J2.

Proof of Theorem ??:

Let h(s) = µ+ sσe and g(s) = µ− sσe, so that:

D1(s) =

∫∞
h(s)

yf(y)dy∫∞
h(s)

f(y)dy · σe

− µ

σe

,

D2(s) =

∫ g(s)

0
yf(y)dy∫ g(s)

0
f(y)dy · σe

− µ

σe

.
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This leads to

D ′
1(s) =

f(h(s))h′(s)
[ ∫∞

h(s)
yf(y)dy − h(s)

∫∞
h(s)

f(y)dy
]

( ∫∞
h(s)

f(y)dy
)2 · σe

=
f(h(s))h′(s)

∫∞
h(s)

f(y)dy
(
ξ − h(s)

)( ∫∞
h(s)

f(y)dy
)2 · σe

,

where h(s) < ξ < ∞, and the last equation follows from applying the mean value

theorem of integrals. Thus, we have D ′
1(s) > 0.

By using a similar argument, we obtain:

D ′
2(s) =

f(g(s))g′(s)
[
g(s)

∫ g(s)

0
f(y)dy −

∫ g(s)

0
yf(y)dy

]
( ∫ g(s)

0
f(y)dy

)2 · σe

=
f(g(s))g′(s)

∫ g(s)

0
f(y)dy

(
g(s)− ζ

)( ∫ g(s)

0
f(y)dy

)2 · σe

,

where 0 < ζ < g(s). We note that g′(s) = −σe < 0, so that D ′
2(s) < 0. Conse-

quently, based on this result, and by using an argument similar to that in Theorem

??, Theorem ?? is obtained.
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