Genetic Determinants of Non-syndromic Hearing Impairment

Genetische determinanten van niet-syndromale slechthorendheid

Regie Lyn Pastor Santos
Printing of this thesis was realized with financial support from the Laboratory of Statistical Genetics (Leal Laboratory), Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas USA.

Genetic Determinants of Non-syndromic Hearing Impairment
Santos, Regie Lyn Pastor
Thesis, Erasmus Medical Center, Erasmus University Rotterdam
With summary in English and Dutch

© Regie Lyn Pastor Santos, 2006

No part of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without written permission from the author. Several chapters are based on published articles, which were reproduced with permission from the co-authors and publishers. Copyright of these articles remains with the publishers.

Cover design and layout: Dennis A. Santos
Printed by RainTree Trading & Publishing Inc., Quezon City, Philippines
Genetic Determinants of Non-syndromic Hearing Impairment

Genetische determinanten van niet-syndromale slechthorendheid

Proefschrift

ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties

De openbare verdediging zal plaatsvinden op donderdag 14 september 2006 om 11 uur

door

Regie Lyn Pastor Santos geboren te Caloocan City, Philippines
PROMOTIECOMMISSIE

Promotor: Prof.dr. C.M. van Duijn

Overige leden: Prof.dr. A. Uitterlinden
 Prof.dr. J.G.G. Borst
 Prof.dr. G. van Camp

Co-promotoren: Prof.dr. S.M. Leal
 Dr. Y.S. Aulchenko
Para kay Mama --

The enemy was cut off,
lost the chance to stare and grope at it.
I felt the knife sear,
though it is not my body
but my genes.
Did we win the DNA lottery?
Only time will tell.
Chapter 1 INTRODUCTION

Chapter 2 NOVEL HEARING IMPAIRMENT LOCI

2.1 A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3. 13

2.2 Localization of a novel autosomal recessive non-syndromic hearing impairment locus DFNB55 to chromosome 4q12-q13.2. 25
Irshad S, Santos RLP, Muhammad D, Lee K, McArthur N, Haque S, Ahmad W, Leal SM.

2.3 The mapping of DFNB62, a new locus for autosomal recessive non-syndromic hearing impairment, to chromosome 12p13.2-p11.23. 34

2.4 Localization of a novel autosomal recessive non-syndromic hearing impairment locus DFNB65 to chromosome 20q13.2-q13.32. 43
Tariq A, Santos RLP, Khan MN, Lee K, Hassan MJ, Ahmad W, Leal SM.

2.5 DFNB68, a novel autosomal recessive non-syndromic hearing impairment locus at chromosomal region 19p13.2. 54

Chapter 3 FUNCTIONAL VARIANTS IN KNOWN HEARING IMPAIRMENT GENES

3.1 Low prevalence of Connexin 26 (GJB2) variants in Pakistani families with autosomal recessive non-syndromic hearing impairment. 67
Santos RL, Wajid M, Pham TL, Hussan J, Ali G, Ahmad W, Leal SM.
3.2 Novel sequence variants in the TMCI gene in Pakistani families with autosomal recessive hearing impairment.

3.3 Novel sequence variants in the TMIE gene in families with autosomal recessive non-syndromic hearing impairment.

Chapter 4 Correlation of Genotype with Audiometric Phenotype

4.1 Hearing impairment in Dutch patients with Connexin 26 (GJB2) and Connexin 30 (GJB6) mutations.
Santos RLP, Aulchenko YS, Huygen PLM, van der Donk KP, de Wijs IJ, Kemperman MH, Admiraal RJ, Kremer H, Hoefsloot LH, Cremers CWRJ.

4.2 Phenotypic characterization of DFNA24: Prelingual progressive sensorineural hearing impairment.
Santos RLP, Haefner FM, Huygen PLM, Linder TE, Schinzel AA, Spillmann T, Leal SM.

Chapter 5 Discussion

Chapter 6 Summary and Conclusions

Samenvatting

Words of Appreciation

Author’s description