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Abstract

‘Critical vaccination coverages’ are vaccination allocations that result in an effective reproduction

ratio of one. In a population with interacting subpopulations there are many different critical vaccination

coverages. To find the most efficient critical vaccination coverage, we define the following optimization

problem: minimize the required amount of vaccines to obtain an effective reproduction ratio of exactly

one. We prove that this optimization problem is equivalent to the problem of maximizing the proportion

of susceptibles that escape infection during an epidemic (i.e., maximizing the herd effect).

We propose an efficient general algorithm to solve these optimization problems based on Perron-

Frobenius theory. We study two special cases that provide further insight into these optimization prob-

lems. First, we derive an explicit analytic solution for the case of two interacting populations. Second,

we derive an efficient algorithm for the case of multiple populations that interact according to separable

mixing. In this algorithm the subpopulations are ordered by their ratio of population size to reproduc-

tion ratio. Allocating vaccines based on this priority order results in an optimal allocation. We apply

our solutions in a case study for pre-pandemic vaccination in the initial phase of an influenza pandemic

where the entire population is susceptible to the new influenza virus. The results show that for the

optimal allocation the critical vaccination coverage is achieved for a much smaller amount of vaccines as

compared to allocations proposed previously.
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1 Introduction

In infectious disease epidemiology the potential of an infectious agent to cause an epidemic is often expressed

in terms of the reproduction ratio and the final size. The final size is the eventual number of people that

have become infected. The reproduction ratio, denoted by R, is considered to be one of the most impor-

tant parameters in infectious disease epidemiology and has received considerable attention (cf. Diekmann,

Heesterbeek, & Britton, 2012). The effectiveness of a control strategy against the infectious agent is often

expressed as the capability of the strategy to reduce the reproduction ratio or the final size. Several studies

focus on the minimization of R under a capacity constraint on the available resources (e.g. Goldstein et al.,

2009; Wallinga, van Boven, & Lipsitch, 2010) or on the threshold criterion R = 1 (e.g. Britton, Becker, et

al., 2000; Hill & Longini Jr, 2003). R is rather tractable and hence the above papers typically use analytical

methods based on matrix algebra. In contrast, applying analytical methods to minimizing the final size is

more difficult, as the final size is implicitly defined. Therefore, numerical evaluation (e.g. Arino, Brauer, Van

Den Driessche, Watmough, & Wu, 2008; Keeling & Shattock, 2012; Yuan, Alderson, Stromberg, & Carlson,

2015) or simulation (e.g. Andradóttir, Chiu, Goldsman, & Lee, 2014; Cooper, Pitman, Edmunds, & Gay,

2006; Ferguson et al., 2005) are typically used to analyze the final size.

There is no obvious connection between minimization of the reproduction ratio R and minimization of

the final size. It is not clear how an intervention that minimizes R affects the final size and vice versa.

Tildesley and Keeling (2009) even show that the reproduction ratio within a population is a bad predictor

for the final size when populations interact. The relation between R and the final size has been studied for a

single population and a one-to-one relation can be derived (Ma & Earn, 2006). However, this relation does

not extend to multiple populations.

A first step in analyzing the relation between R and the final size for multiple populations is made by

Andreasen (2011) for the case without infection control. The initial population is then completely susceptible

and the reproduction ratio R equals the basic reproduction ratio R0. Andreasen (2011) shows that an

epidemic occurs only for R0 > 1, implying that the final size equation has an interior solution in that case.

In case R0 ≤ 1 only the boundary solution exists, corresponding to no outbreak. We build upon Andreasen

(2011) by including vaccination in a completely susceptible population and assuming that the disease is

introduced after vaccination. In a vaccinated population the final size is determined by the direct effect

of vaccination and the indirect effect. This latter effect is also known as the herd effect. The direct effect

is measured as the proportion of the people that are protected from infection by vaccination, whereas the

indirect herd effect is measured as the proportion of the people that are not exposed to infection and thus
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escape infection without being vaccinated. The herd effect can be influenced by the vaccine allocation and

is therefore the most interesting.

We are interested in finding vaccine allocations that maximize the herd effect and we define the following

optimization problem: maximize the overall herd effect. This problem is difficult to solve (Keeling & Ross,

2015). We show that formulating the equivalent optimization problem in terms of R enables to solve the

problem. We show analytically that the herd effect in a set of populations can only be maximized for a

vaccination allocation that results in R = 1. In previous work we already showed that this holds for a

single population (Duijzer, van Jaarsveld, Wallinga, & Dekker, 2015), we extend this in the current paper to

interacting populations. We define a second optimization problem: minimize the required amount of vaccines

to obtain R = 1. We prove that the two optimization problems are equivalent. This allows us to propose a

solution method based on Perron-Frobenius Theory (Meyer, 2000). We then consider two special cases: the

case of separable mixing and the case of n = 2 populations. The case of separable mixing is often studied

and assumes that upon transmission from one individual to another the two individuals involved influence

transmission independently (Diekmann et al., 2012). For these two special cases we are able to characterize

the optimal solution completely. The algorithm for separable mixing provides especially interesting insights:

we show that vaccinating according to a very simple priority ordering based on population size and disease

parameters results in the optimal allocation. We illustrate our approach to find the optimal allocation in

a case study for pre-pandemic vaccination in the initial phase of an impending influenza pandemic. The

results show that the amount of required vaccines to attain R = 1 can differ substantially if we compare the

optimal allocation with proposed allocations in literature.

The remainder of this paper is structured as follows. In Section 2 we formulate the problem: The herd

effect and the reproduction ratio R are presented and illustrated for the standard epidemiological SIR model.

Next, we formulate the two vaccine allocation problems that are the main focus of the paper. Section 3

discusses the assumptions and some technical details that are needed for the analysis of the optimization

problems. In Section 4 we prove that the two vaccine allocation problems are equivalent. Section 5 is

dedicated to solving these problems. Section 6 contains an application of our solution method. We conclude

the paper with a discussion in Section 7 and conclusions in Section 8.
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2 Problem formulation

2.1 The SIR model

We consider the standard epidemiological SIR model for a set J consisting of n interacting populations

indexed by j, i.e., |J | = n. Every population is divided into three compartments for which the evolution is

tracked (cf. Hethcote, 2000). Let sj(t), ij(t) and rj(t) be the fractions of population j respectively susceptible,

infected and removed at time t. Let γj denote the recovery rate in population j and let βjl denote the

transmission rate between susceptible people from population j and infected people from population l. The

SIR model describes the time course of an epidemic and consists of the following system of differential

equations:

dsj
dt

= −
∑
l∈J

βjlsjil ∀j ∈ J

dij
dt

=
∑
l∈J

βjlsjil − γjij ∀j ∈ J

drj
dt

= γjij ∀j ∈ J

(1)

Figure 1 illustrates the time course of an epidemic according to the SIR model. As time progresses the

number of infected individuals will approach zero and the epidemic will die out, i.e., limt→+∞ ij(t) = 0 for

all j ∈ J . When the state of the system no longer changes, it is in the disease free equilibrium (DFE).

We include vaccination in the SIR model at time t = 0. We assume that all individuals are vaccinated

before the start of the epidemic. That the fractions of vaccinated individuals may differ between populations.

Let fj denote the fraction of people vaccinated in population j. We assume that one dose of vaccine suffices

and that vaccination instantaneously leads to perfect immunity against infection. For a relaxation of the

assumption of perfect vaccines we refer to Appendix D. Upon vaccination the system changes from state

(sj(0), ij(0), rj(0)) to state ((1− fj)sj(0), ij(0), rj(0) + sj(0)fj) for all j ∈ J .

We are interested in the final state of an outbreak, i.e., limt→+∞ sj(t), which depends on the initial state

at time 0. In the remainder of this paper we consider one specific initial state, namely the situation that

vaccination takes place prior to an outbreak in a completely susceptible population. In literature this type

of vaccination is called pre-pandemic vaccination. Let s0, i0 and r0 respectively denote the vectors with

initial fractions of people susceptible, infected and removed. For pre-pandemic vaccination it is assumed

that s0 = 1 and i0 = r0 = 0. Note that without infected individuals, the system in (1) is in equilibrium and

no transmission can occur. To analyze an outbreak after pre-pandemic vaccination many studies therefore

consider that the system is externally exposed to a ‘shock’ or that the disease is introduced after vaccination,
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Figure 1: Illustration of the deterministic SIR model for two populations with parameters γj = 2.3, βjj = 3

for j = 1, 2 and βjl = 1 for j 6= l. We introduce a minor infection of ij(0) = 10−14 for j = 1, 2 to analyze

the time course of the epidemic. Because of symmetry between populations the time course is presented for

only one population.

meaning that an infinitely small fraction of individuals gets infected. By Perron-Frobenius Theory the initial

phase of an epidemic is uniquely determined (see Section 3.1) and it is therefore not necessary to specify the

introduction of the disease in detail (cf. Diekmann, 1977; Metz, 1978).

2.2 Herd effect

Vaccination leads to people escaping infection in two ways: either directly or indirectly. The direct effect is

measured as the proportion of individuals that are vaccinated themselves and hence immune. The indirect

effect, also referred to as the herd effect, is measured as the proportion of individuals that are unvaccinated

and escape infection because of a reduction in force of infection due to vaccination. The individuals that

escape infection without being vaccinated are still susceptible in the disease free equilibrium. Denote by

Gj(f) the final fraction of people susceptible in population j, i.e., the herd effect in population j. Here f

denotes the vector with the vaccination fractions fj for all populations j ∈ J . Then:

Gj(f) = lim
t→+∞

sj(t) ∀j ∈ J (2)
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Denote by σj =
βjj

γj
. From (1) we derive the functions Gj(f) for all j ∈ J using the initial conditions of

pre-pandemic vaccination. This leads to the following implicit set of equations for the herd effect:

0 = −Gj(f) +
log(Gj(f))

σj
− 1

σj
log [(1− fj)] + (1− fj) +

1

σj

∑
l∈J:l 6=j

βjl
γl

[1− fl −Gl(f)] ∀j ∈ J (3)

For the remainder of the paper it is more convenient to reformulate (3) in matrix notation. Denote by γ, σ

and B the following matrices, with γ and σ diagonal matrices:

γ =


1
γ1

0

. . .

0 1
γn

 σ =


−1
σ1

0

. . .

0 −1
σn

 B =


β11 · · · β1n

...
. . .

...

βn1 · · · βnn

 (4)

Furthermore, let G denote the vector [G1(f) · · ·Gn(f)]T . Let 1 denote the all ones vector of length n. Then

(3) can be written as follows, with log(·) used element wise.

σ log(G) = σ log (1− f)− σBγ [1− f −G] (5)

We used the SIR model to illustrate the implicit expression for the herd effect. This implicit expression is

an extension of the final size formula, for which the generality is shown in Ma and Earn (2006). The final

size of an outbreak equals the total number of people that have become infected and is therefore directly

related to the number of people that have escaped infection, i.e., the total effect of vaccination. This total

effect is the sum of the direct effect and the herd effect.

2.3 Reproduction ratio

The basic reproduction ratio, denoted by R0, is defined as the number of new infections caused by a single

infectious individual in a completely susceptible population. In the initial phase of an epidemic there are

very few infected individuals, so the population is almost completely susceptible. R0 is therefore related to

the exponential initial growth rate of epidemic (cf. Wallinga & Lipsitch, 2007). For compartmental models

R0 can be determined from the differential equations (Diekmann et al., 2012).

After vaccination the population is no longer completely susceptible, so we can no longer use the basic

reproduction ratio. In this paper we therefore consider the effective reproduction ratio. To formally define

the effective reproduction ratio we introduce the following notation: Let S(t) denote the diagonal matrix

with entries sj(t), and let B and γ be defined in accordance to (4).

Definition 1. The effective reproduction ratio at time t, denoted by Re(t), is determined as follows:

Re(t) = ρ(S(t)Bγ), with ρ(·) denoting the spectral radius, i.e., the largest eigenvalue.
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The matrix S(t)Bγ is also referred to as the next generation matrix at time t. Hence, the effective

reproduction ratio is the largest eigenvalue of the next generation matrix. Note that the effective reproduction

ratio at time t does only depend on the parameters and on the fractions of individuals susceptible. The

fractions of infected individuals do not play a role. We denote by Rf = Re(0) the effective reproduction

ratio at time 0, directly after vaccination. At time t = 0 it holds that sj(0) = (1 − fj) for all j ∈ J . This

implies that Rf = ρ(FBγ), with F denoting the following diagonal matrix:

F =


(1− f1) 0

. . .

0 (1− fn)

 (6)

Vaccination allocations f that result in Rf = 1 are referred to as ‘critical vaccination fractions’ or ‘critical

vaccination coverages’. In a homogeneous population, or in a population where vaccine is allocated at

random, such a critical vaccination coverage would be a single number. Here we deal with multiple interacting

populations, where vaccine is not distributed at random, and hence we have multiple critical vaccination

coverages, each of which is a vector with a vaccination fraction for every population. In Section 4 critical

vaccination coverages and their importance for the herd effect are discussed further.

2.4 Vaccine allocation problems

Using the herd effect and the basic reproduction ratio we define two vaccine allocation problems. The herd

effect relates to unvaccinated individuals benefitting from the vaccination of others. An efficient allocation

thus makes the best possible use of the herd effect. We define the optimization problem of maximizing the

herd effect:

max
∑
j∈J

NjGj(f) (7)

s.t. 0 ≤ f ≤ 1 (8)

In words, we maximize the number of susceptible individuals at the end of the epidemic, subject to the

condition that the vaccine allocation f consists of proper proportions between 0 and 1. The objective is to

maximize the total herd effect (7), with Nj denoting the size of population j. The fact that the herd effect

is implicitly defined (see (3)) significantly complicates the analysis of this optimization problem. Therefore,

papers that focus on maximizing the herd effect, or relatedly on minimizing the final size under a capacity

constraint, typically rely on numerical evaluation or enumeration to determine the optimal allocation (e.g.

Arino et al., 2008; Keeling & Shattock, 2012; Yuan et al., 2015).
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We also define a vaccine allocation problem based on the reproduction ratio, using the important threshold

Rf = 1. For this threshold an outbreak will not lead to an increase in infected individuals (cf. Section 4).

There are multiple critical vaccination coverages, i.e., vaccination allocations that result in Rf = 1. We

are interested in finding the critical vaccination coverage that uses the least amount of vaccines, referred to

as ‘the most efficient critical vaccination coverage’. This leads to the following optimization problem that

minimizes the required amount of vaccines such that Rf = 1:

min
∑
j∈J

Njfj (9)

s.t. ρ(FBγ) = 1 (10)

0 ≤ f ≤ 1 (11)

In words, we minimize the number of vaccinated individuals under the condition that the reproduction ratio is

precisely one and the vaccine allocation f is properly defined. Constraint (10) implies Rf = 1. Problem (9) -

(11) has been studied before in literature. Hill and Longini Jr (2003) extensively study critical vaccination

coverages and also pay some attention to minimizing the number of allocated vaccines. The authors propose

to solve the problem using Lagrangian multipliers, which they acknowledge to be computationally inefficient.

For a stochastic epidemic spread and a population split up in households the problem can be approximated

with a linear programming problem (Ball & Lyne, 2002; Becker & Starczak, 1997; Keeling & Ross, 2015).

The remainder of this paper is dedicated to analyzing the two vaccine allocation problems presented in

this section. We prove their equivalence and present explicit solutions for two special cases.

3 Preliminary analysis

In Section 3.1 we present some technical assumptions on the model and in Section 3.2 we derive a number

of basic technical results. This groundwork is needed for the analysis of the optimization problems of

Section 2.4.

3.1 Assumptions

We make the following assumption with respect to the parameters:

Assumption 2. The parameters γj and βjj are strictly positive for all j ∈ J and βij are nonnegative for

all i, j ∈ J with i 6= j.
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Assumption 3. The matrix B with elements βij is irreducible.

The recovery rates γj are assumed to be strictly positive. If γj would equal 0 for some population j an

infected individual in population j would remain infectious forever, which is unrealistic. The parameters βij

represent the transmission rates between populations i and j. It is reasonable to assume that these rates are

nonnegative. Note that βij = 0 implies that there is no transmission between population i and j. This is for

example the case when there is no direct contact between the two populations.

By Assumption 2 and 3 the matrix B and the product Bγ are nonnegative and irreducible which allows us

to use Perron-Frobenius Theory (Meyer, 2000). The irreducibility of the matrix ensures that all populations

interact with each other. This interaction is either direct or indirect, i.e., via other populations. Excluding

the unlikely possibility that the disease can be transmitted from population i to population j but not vice

versa, the assumption that the matrix B is irreducible does not restrict generality. Namely, if B would be

reducible, the problem can be decomposed into subproblems each consisting of a subset of populations with

an irreducible transmission matrix.

By Perron-Frobenius Theory a nonnegative and irreducible matrix has a unique positive eigenvector corre-

sponding to the largest eigenvalue. This eigenvector represents the initial distribution of infected individuals

over the populations and uniquely determines the initial phase of the epidemic.

3.2 Basic technical results

In this section we derive a number of technical results to formally proof our equivalence results in Section 4.

In Lemma 15 in Appendix A we formally prove that the differential equations (1) behave in accordance to

interpretation: sj(t), ij(t), rj(t) ∈ [0, 1] and sj(t) + ij(t) + rj(t) = 1 for all j ∈ J and t ≥ 0. Furthermore, the

fraction of susceptible people is non-increasing over time and the fraction of removed people is non-decreasing

over time. The next theorem formally shows that the differential equations of the SIR model have a unique

solution.

Theorem 4. Given the initial values sj(0), ij(0), rj(0) ∈ [0, 1] such that sj(0) + ij(0) + rj(0) = 1 for all

j ∈ J the differential equations in (1) have a unique solution at any time t.

Proof. We prove that the differential equations in (1) are Lipschitz continuous (see Appendix A). By the

Picard-Lindelöf Theorem (Lindelöf, 1894) there is a unique solution to the initial value problem.

The following lemma establishes bounds on the herd effect Gj(f), that is characterized in (3). We use

these bounds in later sections.
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Lemma 5. For all j ∈ J the following holds:

(i) 0 ≤ Gj(f) ≤ min
{

(1− fj), 1
σj

}
(ii) Gj(f) = 0 if and only if fj = 1.

Proof. See Appendix A.

4 Equivalence results

We are now able to analyze in detail the relation between the basic reproduction ratio and the herd effect.

Section 4.1 relates Rf = ρ(FBγ) to the solutions to the implicit expression of the herd effect in equation (5).

Based on this relation we prove in Section 4.2 that the two optimization problems of Section 2.4 are equivalent.

4.1 The relation between Rf and the herd effect

The stability of disease free equilibria and the relation with R0 has been investigated for different types

of compartmental models (among others Andreasen, 2011; Hu, Teng, & Jiang, 2012; Van den Driessche &

Watmough, 2002). Typically, the conclusion is that a disease free equilibrium (DFE) is stable for R0 < 1 and

unstable for R0 > 1. A DFE represents a solution to the final size equation, which is directly related to the

herd effect as discussed before. In this section we derive the relation between Rf and the herd effect extending

known results to pre-pandemic vaccination. The pre-pandemic vaccination case can directly be translated

to models without vaccination, by changing the initial fraction of people susceptible sj(0) := sj(0)(1− fj).

Our definition of Rf is directly related to R0. We confirm the critical role of Rf and the threshold Rf = 1.

The herd effect is defined according to the implicit set of equations (5). By Lemma 5 we know that any

solution Gj(f) lies in the interval [0, (1− fj)] for all j ∈ J . By Theorem 4 the differential equations (1) have

a unique solution at any point in time. This implies that there is also a unique solution for Gj(f), which is a

stable disease free equilibrium (DFE). Let G̃ denote the vector with elements Gj(f)/(1− fj). We use log(·)

element wise and rewrite (5) into:

0 = log
(
G̃
)

+BγF
(

1− G̃
)

(12)

It can easily be verified that equation (12) always has the solution G̃ = 1, i.e., Gj(f) = (1−fj). This solution

will be referred to as the trivial solution in accordance to Andreasen (2011) and corresponds to the situation

of no outbreak. Recall that directly after vaccination the fraction of people susceptible equals (1 − fj) in

population j. Hence, in the trivial solution all susceptible people will remain susceptible. Additionally, we
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consider solutions that do correspond to outbreaks. We use the term ‘interior solution’ to refer to a solution

for which Gj(f) ∈ (0, (1− fj)) for all j ∈ J . We extend Lemma 1 of Andreasen (2011) to include vaccination

and the case that Rf equals 1.

Lemma 6. For Rf ≤ 1 equation (12) does not have an interior solution.

Proof. By contradiction assume that there is an interior solution, denoted by Y. Let Ỹ denote the vector

with elements Yj/(1− fj) which are all in (0, 1). Recall that Rf = ρ(FBγ) and let v be the left eigenvector

corresponding to this largest eigenvalue. From Perron-Frobenius Theory (Meyer, 2000) we know that we can

choose v such that all elements are nonnegative and ||v||1 = 1. Left multiplication of (12) with vTF results

in the following:

0 = vTF log
(
Ỹ
)

+ vTFBγF
(

1− Ỹ
)

= vTF log
(
Ỹ
)

+Rfv
TF
(

1− Ỹ
)

= vTF
[
log
(
Ỹ
)

+ (1− Ỹ)
]

+ (Rf − 1) vTF
(

1− Ỹ
) (13)

Note that vTF ∈ (0, 1)n and also
(

1− Ỹ
)
∈ (0, 1)n. Furthermore, using that log x < x − 1 for x 6= 1 we

derive: [
log
(
Ỹ
)

+ (1− Ỹ)
]
< 0

Thus, the third line of (13) is the summation of a strictly negative and a nonpositive term for Rf ≤ 1 and

is therefore strictly negative. We arrive at a contradiction, which completes the proof of this lemma.

The interpretation of Lemma 6 is as follows: in case Rf ≤ 1 the system is in a stable disease free

equilibrium. Introduction of a disease in the population will not lead to an outbreak in that case.

To analyze the case that Rf > 1 we use a variable transformation and introduce the variable vector x(f)

with elements xj(f) = 1− Gj(f)
1−fj . We rewrite (5) into:

x(f) = 1− exp
{
− [BγFx(f)]j

}
(14)

From (14) and Lemma 5 we can derive that the variables xj(f) lie in the interval [0, 1) for all j ∈ J .

Theorem 7. For Rf0 > 1 equation (12) has a unique interior solution.

Proof. This theorem is equivalent to the statement that (14) has a unique positive solution in case Rf > 1.

Equation (14) has a positive solution if and only if ρ(BγF) > 1 (Theorem 3.1 of Chan, Nishiura, Diekmann,

& Bootsma, 2014). Note that F is an invertible matrix, which implies that the matrices BγF and FBγ are
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similar and have the same eigenvalues. Hence, Rf := ρ(FBγ) = ρ(BγF). This completes the proof of this

theorem.

Recall that the herd effect expression is directly related to the final size equation. Theorem 7 therefore

coincides with Diekmann and Heesterbeek (2000) who claim (in exercise 6.19) that the final size equation

has a unique non-trivial (i.e., non-zero) solution in case R0 > 1.

4.2 Equivalence of the two problems

Based on the results in the previous section we prove the equivalence of the two vaccine allocation problems

discussed before.

Theorem 8. The overall herd effect,
∑
j∈J NjGj(f), is maximized for a vaccine allocation f that results in

Rf = 1.

Proof. We will prove this lemma by contradiction in two steps. First we show that the overall herd effect

cannot be maximized for a vaccine allocation that results in Rf < 1 and in the second step we will exclude

the possibility that an allocation with Rf > 1 maximizes the overall herd effect.

Step 1: by contradiction assume that there is a vaccine allocation x resulting in Rf < 1, which maximizes

the overall herd effect. Denote by X the diagonal matrix with entries (1 − xj). Furthermore, define the

function g(t) = ρ[(tI+(1− t)X)Bγ] for t ∈ [0, 1]. By construction g(0) = ρ(XBγ) < 1 and to avoid triviality

we can assume that g(1) = ρ(Bγ) > 1. By Lemma 16, which is formulated and proven in Appendix B, the

function g(t) is continuous in t. Hence, there exists a t∗ ∈ (0, 1) for which g(t∗) = 1 by the intermediate

value theorem. Let Y := t∗I + (1 − t∗)X. Note that Y is also a diagonal matrix and let the vector y be

such that (1− yj) for all j ∈ J are the diagonal elements of Y. We compare the vaccine allocation vectors y

and x: It holds that yi ≤ xi for all i ∈ J and a strict inequality for at least one population by the fact that

t∗ ∈ (0, 1). By Lemma 6 the trivial solution holds for both x and y, because ρ(XBγ) < 1 and ρ(YBγ) = 1.

Hence, ∑
j∈J

NjGj(y) =
∑
j∈J

Nj(1− yj) >
∑
j∈J

Nj(1− xj) =
∑
j∈J

NjGj(x)

We arrive at a contradiction: x cannot maximize the overall herd effect. Thus, we conclude that the overall

herd effect is maximized for a vaccination fraction that results in Rf ≥ 1.

Step 2: by contradiction assume that there is a vaccine allocation z resulting in Rf > 1, which max-

imizes the overall herd effect. By definition of Rf we have that Re(0) > 1 which implies by Lemma 21
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(see Appendix B) that limt→+∞Re(t) < 1. We know that Re(t) is continuous in t (Lemma 19 in Ap-

pendix B) and hence by the intermediate value theorem there exists a time τ > 0 at which Re(τ) = 1. Since

limt→+∞Re(t) < Re(τ) and Re(t) can only decrease by a decrease in the fraction of people susceptible, the

following holds: ∑
j∈J

NjGj(z) = lim
t→+∞

∑
j∈J

Njsj(t) <
∑
j∈J

Njsj(τ) (15)

Let us now consider an alternative vaccination allocation denoted by y, such that yj = (1− sj(τ)) for all

j ∈ J . The definition of Re(τ) does not depend on the fraction of people infected at time τ . By construction

we thus have that y results in Rf = 1. From Lemma 6 we conclude the following:

∑
j∈J

NjGj(y) =
∑
j∈J

Nj(1− yj) =
∑
j∈J

Njsj(τ) >
∑
j∈J

NjGj(z),

where the inequality follows from (15). We arrive at a contradiction: z cannot maximize the overall herd

effect.

We conclude that the vaccine allocation f that maximizes the overall herd effect cannot result in Rf > 1

nor in Rf < 1. Thus, Rf must equal 1, which completes the proof of this lemma.

Theorem 9 presents the main result of this section:

Theorem 9. Problem (7) - (8) and Problem (9) - (11) are equivalent.

Proof. We conclude the following:

max
∑
j∈J NjGj(f)

s.t.

f ∈ [0, 1]n

⇔

max
∑
j∈J NjGj(f)

s.t. Rf = 1

f ∈ [0, 1]n

⇔

max
∑
j∈J Nj(1− fj)

s.t. Rf = 1

f ∈ [0, 1]n

⇔

min
∑
j∈J Njfj

s.t. Rf = 1

f ∈ [0, 1]n

The first implication follows from Theorem 8. For the second implication we apply Lemma 6 which states

that Gj(f) = (1− fj) for all j ∈ J in case Rf = 1.

By Theorem 9 the two optimization problems presented in Section 2.4 are equivalent. The intuitive

explanation of this result is that the problem of minimizing the number of vaccines to attain Rf = 1 requires

a very efficient allocation of vaccines. Maximizing the herd effect thus leads to the most efficient allocation

of vaccines.
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5 Solving the problems

Optimization problem (9) - (11) has a simple linear objective function. The main difficulty of this problem

is the constraint Rf = 1, which is not in general convex (or concave) (c.f. Hill & Longini Jr, 2003). By

Theorem 9 Problem (7) - (8) can also be formulated as an optimization problem with a linear objective

function and the constraint R1 = 1. In this section we show that this constraint simplifies for two special

cases. For these cases the vaccine allocation problem can be solved to optimality. In Section 5.1 we assume

a special structure on the contact matrix B: separable mixing. Section 5.2 studies the important special

case of two populations. Finally, in Section 5.3 a solution method is presented that is able to solve the

vaccine allocation problems for the general case, without additional assumptions on the contact matrices or

the number of populations.

5.1 Separable mixing

For notational convenience we will use kij to denote the elements of the matrix Bγ. We consider a special

structure on the matrix Bγ, where kij = aibj . This structure is called separable mixing and means that

population j is equally susceptible to all other populations and population i is equally infectious to all other

populations (Diekmann et al., 2012). The special case that a is proportional to b, i.e., ai = δbi for all i ∈ J ,

is called proportionate mixing. Separable and proportionate mixing are often studied (e.g., Cairns, 1989;

Hethcote & Van Ark, 1987; Ross & Black, 2014). For separable mixing Rf can explicitly be determined.

Denote by Tr(·) the trace of a matrix and let σj =
βjj

γj
. By definition σj can be seen as an internal

reproduction ratio in population j. For separable mixing Rf is defined as follows:

Rf = Tr(FBγ) =
∑
j∈J

βjj
γj

(1− fj) =
∑
j∈J

σj(1− fj)

By Lemma 6 and Lemma 18 any solution for which Rf < 1 can never be optimal. Hence, the solution to

Problem 9 - (11) does not change if we relax the constraint Rf = 1 to Rf ≤ 1. The linear definition of Rf

for separable mixing significantly simplifies the optimization problems of Section 2.4 which now become:

max
∑
j∈J

Nj(1− fj) (16)

s.t.
∑
j∈J

σj(1− fj) ≤ 1 (17)

0 ≤ f ≤ 1 (18)
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In words, we maximize the herd effect subject to the constraint that Rf ≤ 1 and properly defined vaccination

fractions.

Based on the relaxation we are able to derive a solution method for the problem. Observe that Prob-

lem (16) - (18) is the linear programming (LP) relaxation of a knapsack problem, one of the basic problems

in combinatorial optimization. This LP relaxation can be solved to optimality by a simple greedy algorithm

(Dantzig, 1957). A greedy algorithm is a procedure that consecutively makes decisions that are locally opti-

mal. For the LP relaxation of a knapsack problem such a procedure also results in the global optimum. We

propose the greedy algorithm in Algorithm 1 to solve Problem (16) - (18) to optimality.

Algorithm 1 The greedy algorithm for solving Problem (16) - (18)

1: procedure Greedy Algorithm

2: reorder the populations such that N1

σ1
≤ ... ≤ Nn

σn

3: fj ← 0 for all j ∈ J . Initialize the solution

4: k ← 1

5: while
∑n
j=k+1 σj(1− fj) > 1 do

6: fk ← 1

7: k ← k + 1

8: end while

9: fk = 1− 1
σk

[
1−

∑n
j=k+1 σj(1− fj)

]
10: f = [fj ]j

11: return f . Return the optimal solution

12: end procedure

The ordering of the populations in line 2 can be done without loss of generality. The allocation resulting

from Algorithm 1 prioritizes small populations and populations with a high σj . Vaccinating these populations

costs relatively few vaccines, but has a large impact on lowering the reproduction ratio Rf . Note that

population j has a high σj either because this population has a high transmission rate or a long infectious

period (and therefore a low recovery rate). i.e., either βjj is high or γj is low. Because of the structure

of separable mixing, a population with a high internal transmission rate also plays an important role in

the transmission between itself and other populations. Thus, the prioritized populations either contribute

heavily to the transmission or have a long infectious period. The algorithm uses these simple characteristics

to derive the vaccination allocation that results in the highest overall herd effect (and equivalently, the most

efficient critical vaccination coverage).
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The optimal order in the greedy algorithm is identical to the optimal order reported for a related problem

studied by Cairns (1989), who considers vaccination with a fixed rate during a time interval and the objective

of minimizing the effective reproduction ratio at a certain time. The authors prove that for separable mixing

it is optimal to allocate all vaccination effort to one population during a specific time interval. During

consecutive time intervals the populations are vaccinated in order of increasing activity, which is exactly the

order used in our greedy algorithm. Although the problem studied by Cairns (1989) differs in many respects

from the problem in this paper, it is interesting to observe that under the assumptions of separable mixing

the same optimal population ordering is found.

5.2 Two populations

For two populations an explicit expression for the condition Rf = 1 is derived in Section 5.2.1. Based on

this expression we are able solve the optimization problem explicitly. In Section 5.2.2 we present this explicit

solution.

5.2.1 Explicit expression for Rf = 1

Recall that Rf = ρ(FBγ). Denote by σ1 = β11

γ1
, by σ2 = β22

γ2
. Denote by d = det(Bγ) = β11β22−β12β21

γ1γ2
. We

use det(·) and Tr(·) to denote respectively the determinant and trace of a matrix. From the definition of

the largest eigenvalue for a 2 × 2 matrix we derive that any vaccination allocation f1, f2 for which Rf = 1

satisfies the following condition:

(1− f1)(1− f2) det(Bγ)− Tr(Bγ) + σ1f1 + σ2f2 + 1 = 0

Furthermore, we use that Tr(FBγ) = Tr(Bγ)−σ1f1−σ2f2 and det(FBγ) = (1− f1)(1− f2) det(Bγ). After

substituting Tr(Bγ) = σ1 + σ2 and det(Bγ) = d we obtain that the critical vaccination fractions satisfy the

following equation:

(1− f1)(1− f2)d− σ1(1− f1)− σ2(1− f2) + 1 = 0 (19)

Not all solutions to (19) are critical vaccination coverages. In fact, (19) is a hyperbola and all critical

vaccination coverages lie on one branch of the hyperbola (cf. Hill & Longini Jr, 2003). The part of the correct

branch of the hyperbola that contains the critical vaccination coverages is characterized in the following

Lemma:

Lemma 10. Let D denote the feasible region for the vaccination fractions: D = {(f1, f1)|f1, f1 ∈ [0, 1]}.

The part of the hyperbola for which Rf = 1 is described by (f1, f2) ∈ D and the condition σ2 − (1− f1)d > 0
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(equivalently the very same part of the hyperbola may also be characterized by (f1, f2) ∈ D and the condition

σ1 − (1− f2)d > 0).

Proof. We first show that the condition σ2 − (1 − f1)d > 0 results in the correct branch of the hyperbola.

The condition (f1, f2) ∈ D stipulates that the vaccination fractions are properly defined. Secondly, we show

that the other condition can be derived analogously. Rewriting (19) gives:

(1− f2) =
1− σ1(1− f1)

σ2 − (1− f1)d
(20)

From (20) we derive that the hyperbola has an asymptote for σ2 − (1 − f1)d = 0. Distinguish between the

following two cases: (i) d > 0 and (ii) d ≤ 0. First we analyze case (i): For Rf = 1 we have Gj(f) = (1− fj)

and by Lemma 5 we know that Gj(f) < 1
σj

. This implies the following:

(1− f1) <
1

σ1
=

γ1
β11
≤ γ1β22
β11β22 − β12β21

=
σ2
d

Thus, vaccination fractions that result in Rf = 1 can only occur in the branch of the hyperbola for which

σ2− (1− f1)d > 0. Consider case (ii): For d ≤ 0 the asymptote lies outside the feasible region and therefore

it is not needed to specify a single branch. However, the condition σ2 − (1− f1)d > 0 is always satisfied for

(f1, f2) ∈ D. It can thus be added without changing the solution space.

In the same way the condition on f2 can be derived by noting that (20) can be rewritten as follows:

(1− f1) =
1− σ2(1− f2)

σ1 − (1− f2)d

Using the same argument, we can show that the correct branch of the hyperbola is described by σ1−(1−f2)d >

0. Hence, the symmetry between the two populations is still retained.

5.2.2 Solution

The conditions derived in Lemma 10 to specify the part of the hyperbola that contains the critical vaccination

coverages can replace the constraint Rf = 1 in the vaccine allocation problem:

max N1(1− f1) +N2(1− f2) (21)

s.t. (1− f1)(1− f2)d− σ1(1− f1)− σ2(1− f2) + 1 = 0 (22)

σ2 − (1− f1)d > 0 (23)

fj ∈ [0, 1] j = 1, 2 (24)

Constraints (22) and (23) stipulate that Rf = 1. It suffices to use only one of the equivalent conditions

of Lemma 10. Problem (21) - (24) can be solved by substituting (1 − f2) in the objective function using
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equality constraint (22). By setting the derivative of the objective function with respect to f1 equal to zero

we obtain a solution, which is presented in Theorem 12. However, it is possible that this solution does not

satisfy (23) - (24). In that case, we will show that the optimal solution to (21) - (24) must be a boundary

solution: i.e., a solution (f1, f2) that satisfies (22) - (23) for which f1 ∈ {0, 1} and/or f2 ∈ {0, 1}. It will

therefore be useful to obtain an exhaustive list of all possible boundary solutions:

Lemma 11. There are always precisely two boundary solutions to Problem (21) - (24). The first solution

depends on σ1:

(i) f1 = 0 f2 = 1− 1− σ1
σ2 − d

if σ1 ≤ 1

(ii) f1 = 1− 1

σ1
f2 = 1 if σ1 > 1

The second solution depends on σ2:

(iii) f1 = 1− 1− σ2
σ1 − d

f2 = 0 if σ2 ≤ 1

(iv) f1 = 1 f2 = 1− 1

σ2
if σ2 > 1

Proof. To derive the four boundary solutions we use that fj ∈ [0, 1] for j = 1, 2 by (24). We fix the

vaccination fractions per population to the two boundary values 0 and 1. Condition (22) is used to derive

the expression for the other vaccination fraction. In the remainder of the proof we analyze the feasibility of

the boundary solutions with respect to constraints (23) - (24) for the different ranges of σ1 and σ2.

Note that solutions (i) and (ii) are identical in case σ1 = 1. The same holds for solutions (iii) and (iv)

in case σ2 = 1. To investigate the feasibility of solution (i) we substitute the value f1 = 0 in constraint (23)

and obtain that σ2 − d > 0. This implies that solution (i) cannot satisfy constraints (23) and (24) at the

same time if σ1 > 1. Namely, in that case satisfying constraint (23) would result in f2 > 1. Equivalently,

solution (iii) cannot satisfy both constraints (23) and (24) if σ2 > 1. Using constraint (24) we can easily

verify that solution (ii) is not feasible in case σ1 < 1, because it would result in f1 < 0. Equivalently, σ2 < 1

renders solution (iv) infeasible.

Based on these conclusions we proved which of the boundary solutions are feasible for which values for

σ1 and σ2. This completes the proof of this lemma.

Theorem 12. The optimal solution to Problem (21) - (24) can be found among the boundary solutions given
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in Lemma 11 and the following solution:

f1 = 1− 1

d

σ2 −
√
N2(σ1σ2 − d)

N1

 and f2 = 1− 1

d

σ1 −
√
N1(σ1σ2 − d)

N2


For d ≤ 0 only the boundary solutions need to be considered.

The proof of Theorem 12 can be found in Appendix E.

5.3 The general case

In this section we present a general solution approach for the vaccine allocation problems. Thereto we

reformulate the optimization problems using Perron-Frobenius theory (Meyer, 2000). Rf is the largest

eigenvalue of the nonnegative and irreducible matrix FBγ by Assumption 2 and 3.

Perron-Frobenius theory states that a nonnegative and irreducible matrix has exactly one right eigenvec-

tor, the so-called Perron vector which is normalized and strictly positive. This eigenvector corresponds to the

largest eigenvalue and has the following epidemiological interpretation: the Perron vector is the frequency

distribution over the populations of the number of cases in the initial phase of an epidemic. The Perron

vector can be used to reformulate the optimization problem of Section 2.4 (cf. Hill & Longini Jr, 2003). Let

v denote the right eigenvector that corresponds to Rf = 1. The following holds:

FBγv = v⇒
∑
j∈J

(1− fi)
βij
γj
vj = vi

We normalize the vector v such that ‖v‖ = 1, using the `1-norm. The optimization problems of Section 2.4

are then equivalent to the following problem:

max
∑
j∈J

Nj(1− fj) (25)

s.t. (1− fi)
∑
j∈J

βij
γj
vj = vi i ∈ J (26)

∑
j∈J

vj = 1 (27)

vj > 0 j ∈ J (28)

(1− fj) ∈ [0, 1] j ∈ J (29)

Given the objective function and the nonnegativity of the parameters βij and γj , constraints (26) can be

relaxed to:

(1− fi)
∑
j∈J

βij
γj
vj ≤ vi i ∈ J (30)
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Lemma 13. For any solution to Problem (25) - (29) we have fi ≥ 1− γi
βii

.

By constraints (29) we have that fj ∈ [0, 1]. In case βii

γi
> 1 the lower bound derived in Lemma 13

is stronger than the bound fi ≥ 0. For βii

γi
≤ 1 the lower bound of Lemma 13 is already satisfied by the

nonnegativity of fi.

Lemma 14. The feasible region of Problem (25) - (29) is not convex.

Problem (25) - (29) contains two classes of variables: (1 − fj) and vj for all j ∈ J . The objective

function (25) and the constraints (27) - (29) are all linear in these variables. Constraints (26) are quadratic

constraint in the two classes of variables, which makes this problem a quadratically constrained programming

problem (QCP). The quadratic constraints (26) are not convex.

The lack of convexity makes it difficult to solve Problem (25) - (29) to optimality. We therefore propose a

solution algorithm that cannot guarantee global optimality, but works well in our numerical experiments. We

implement the formulation of our solution algorithm in Matlab and use the built-in function fmincon. This

function is able to minimize non-linear programming problems with different types of constraints: linear

(in)equality constraints, bounds on the variables and non-linear (in)equality constraints. It is therefore

suitable to solve the QCP formulation (25) - (29). The problem formulation can easily be transformed into

a minimization problem by multiplying the objective function with -1. The solution approach of fmincon is

based on interior point methods and barrier functions (c.f. Waltz, Morales, Nocedal, & Orban, 2006). Global

optimality cannot be guaranteed, because constraints (26) are not convex. To reduce the likelihood of ending

up in a local optimum, we propose to use a multi start approach where we solve the problem multiple times

for random start solutions. In our numerical experiments we compare the outcome of the solution algorithm

to the optimal solutions derived in the previous sections for randomly generated cases with separable mixing

or two populations. For these problems our proposed solution algorithm is able to find the optimal solution

within seconds.

Generating a random start solution that is feasible with respect to constraints (26) - (29) is not trivial,

as the feasible region is not convex by Lemma 14. We propose the following approach to generate start

solutions that satisfy most constraints. We can easily generate a random unit vector in (0,1), that satisfies

constraints (27) - (28). We then determine fi with constraint (26) and set fi = 0 in case this results in a

negative vaccination fraction. This guarantees (29) and possibly also constraints (26) for some i ∈ J .
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6 Case study

We apply our optimization model to a case study using the model and parameter values of Wallinga et al.

(2010).

6.1 Case description

An age-structured population is considered with six age groups: 0-5, 6-12, 13-19, 20-39, 40-59 and 60+.

The population sizes Nj and contact parameters, denoted by δij are presented respectively in Table 1 and

Table 2.

Age group 0-5 6-12 13-19 20-39 40-59 60+ total

Population (×103) 1060 1265 1642 4857 3312 2477 14613

Table 1: The population sizes of the different age groups.

δij (10−7 day−1) 0-5 6-12 13-19 20-39 40-59 60+

0-5 1.393 0.259 0.146 0.284 0.130 0.094

6-12 0.259 2.261 0.266 0.287 0.170 0.095

13-19 0.146 0.266 1.847 0.418 0.309 0.123

20-39 0.284 0.287 0.418 0.623 0.407 0.207

40-59 0.130 0.170 0.309 0.407 0.504 0.272

60+ 0.094 0.095 0.123 0.207 0.272 0.447

Table 2: The age-specific contact matrix.

The disease is modeled with a heterogeneous SIR model, see Section 2.1. The transmission rates βij as

presented in this paper can be calculated as follows: βij = δijNj , with δij being the proportion of age group

i contacted by an infected individual in age group j per unit of time. The recovery rate is assumed to be

the same for every age group: γj = 0.286 for all j ∈ J . This results in an expected duration in the infected

compartment (i.e., the generation interval) of 3.5. The reproduction ratio without vaccination is equal to

ρ(Bγ) = 2.1. The parameter values for both the generation interval and the reproduction ratio are in line

with other studies in literature (Boëlle, Ansart, Cori, & Valleron, 2011; Vink, Bootsma, & Wallinga, 2014).
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6.2 Solution

We solve our optimization problems to determine the optimal vaccine allocation. This optimal allocation is

compared to the following four allocation schemes:

• Random allocation - The vaccines are allocated at random (i.e., pro rata) over the age groups.

• Greedy allocation - The age groups are prioritized in accordance to the priority order presented in

Algorithm 1.

• High-infection scheme 1 - The age groups are prioritized based on the final size as a fraction of the

age group size, which results in the following order: 13-19, 20-39, 6-12, 40-59, 0-5, 60+.

• High-infection scheme 2 - The prioritization is determined based on the absolute final sizes (i.e.,

fractional final size weighted by age group size). This leads to the following priority order: 20-39,

40-59, 13-19, 60+, 6-12, 0-5.

A high-infection risk scheme is also studied by Mylius, Hagenaars, Lugnér, and Wallinga (2008). To

determine the priority order in these allocation schemes we determine for every age group the expected final

size (i.e., infection attack rate) without vaccination. These final sizes are presented in Figure 2.

Figure 2: The final size without vaccination for the different age groups in fractions of the age group size

(left) and in absolute numbers (right).

For the greedy allocation and the high-infection schemes we vaccinate according to the priority order

until we achieve the threshold Rf = 1 in a similar way as in Algorithm 1. The resulting vaccine allocations

are presented in Table 3.

We compare the vaccine allocation schemes in terms of the herd effect and the required vaccine stockpile

to achieve the threshold Rf = 1. The differences between the different allocations can be substantial, as can
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Age groups

0-5 6-12 13-19 20-39 40-59 60+

Optimal allocation 0.000 0.515 0.862 0.791 0.000 0.000

Random allocation 0.530 0.530 0.530 0.530 0.530 0.530

Greedy allocation 1.000 1.000 1.000 0.635 0.000 0.000

High-infection scheme 1 0.000 0.124 1.000 1.000 0.000 0.000

High-infection scheme 2 0.000 0.022 1.000 1.000 1.000 1.000

Table 3: The optimal vaccination fractions in every age group.

be seen in Table 4.

Herd effect Required vaccine stockpile

Optimal allocation 8.705 5.908

Random allocation 6.867 7.746

Greedy allocation 7.563 7.050

High-infection scheme 1 7.957 6.656

High-infection scheme 2 2.297 12.316

Table 4: The herd effect and required vaccine stockpile to attain Rf = 1 for different allocation schemes

(unit 106).

The results in Table 4 show that the optimal allocation significantly outperforms the other allocation

schemes. High-infection scheme 1 results in the second best performance, but nevertheless achieves a herd

effect of approximately 9% below the optimum. High-infection scheme 2 results by far in the lowest herd effect

(and equivalently in the largest required vaccine stockpile). Even when we disregard this worst performing

allocation scheme, the optimal allocation still increases the herd effect with 9 to 26%.

We analyzed the robustness of our optimal allocation for different values of γ. The analysis shows that

the optimal allocation only changes minimally, for example for γ = 0.30 the optimal allocation for the

consecutive age groups is as follows: f = [0, 0.4905, 0.8545, 0.7297, 0, 0].
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7 Discussion

In this paper we use the SIR model with interacting populations to illustrate the derivation of the expression

for the herd effect and the next generation matrix. We stress that our results will also hold for more general

class of epidemic models. The basic reproduction ratio is derived as the largest eigenvalue of this next

generation matrix. The herd effect function is a rewritten version of the final size formula of which the

generality is shown in Ma and Earn (2006). We refer to Van den Driessche and Watmough (2002) and

Diekmann et al. (2012) for the derivation of next generation matrices and basic reproduction ratios for

general compartmental models. Van den Driessche and Watmough (2002) also shows that for these general

models the disease free equilibrium is stable if R0 < 1 and unstable if R0 > 1. Thus, the results in this paper

hold for more general compartmental models than the SIR model.

The results derived in the Case Study in Section 6 show that the optimal allocation significantly outper-

forms other allocations. To determine the optimal allocation we assume that the disease parameters B and

γ are known, which may be problematic in practice. In case there is no information about the parameters

available, one could use observable data to estimate the disease parameters (cf. Wallinga, Teunis, & Kret-

zschmar, 2006). We performed additional numerical analysis which indicates that the optimal allocation

is robust to small changes in the parameter γ (±10%). Our methods could thus be used with the best

parameter estimates. When even estimates of parameters are not available, simple allocation rules could be

constructed that do not rely on parameters but only on observable information (cf. Wallinga et al., 2010).

In the formulation of the optimization problems in Section 2.4 we assume an unlimited supply of vac-

cines. For the problem of minimizing the required amount of vaccines under the constraint that Rf = 1,

this is needed to ensure that the constraint can be satisfied. The second optimization problem considers

maximization of the herd effect. To prove equivalence of the two problems we also assumed unlimited supply

of vaccines in the second problem. However, it would be interesting to study the allocation that maximizes

the herd effect under a limited vaccine stockpile. This changes the problem for vaccine stockpiles that are

insufficient to prevent an outbreak. Namely, in those cases vaccination cannot lead to Rf = 1. In previous

work we analyzed this problem of maximizing the herd effect under a capacity constraint on the vaccine

stockpile for weakly interacting populations (Duijzer et al., 2015). Further research is needed to investi-

gate the effects of adding a capacity constraint to the maximization of the herd effect for general types of

interaction.

In Section 5.3 we present a solution approach for the general problem. To use Perron-Frobenius theory we

assume that the matrix FBγ is irreducible. Although irreducibility is technically lost in case fk = 1 for some
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k ∈ J , this does not affect our solution method. In that case Rf = ρ(FBγ) is equal to the largest eigenvalue

of the reduced matrix that contains only the rows and columns of FBγ that correspond to populations with

a vaccination fraction strictly smaller than 1 (cf. Section 7.2 of Diekmann et al., 2012). This reduced matrix

is nonnegative and irreducible.

In this paper we apply optimization techniques to determine vaccine allocations. The results from the case

study in Section 6 show that the optimal allocation significantly outperforms other allocations. This study

focuses on the entire time horizon of the epidemic and assumes that we are able to reduce the reproduction

ratio to 1. In case you are only interested in reducing the reproduction ratio on the short term, other

allocations such as the ones proposed by Wallinga et al. (2010) might be better. Nevertheless, the differences

in performance between the different allocations in our case study are such that it is worthwhile to investigate

other application possibilities of our optimal allocation and optimization in general. For example, further

analysis of the optimization results could be used to derive decision rules to construct vaccination policies

that perform close to optimal.

8 Conclusion

In this paper we analyze the impact of vaccination on the reproduction ratio and the herd effect. A com-

partmental model for disease progression is used to model the outbreak. We prove that a vaccine allocation

maximizes the overall herd effect if and only if Rf = 1.

We formulate two optimization problems: finding a vaccine allocation that minimizes the number of

vaccines needed to attain Rf = 1 and finding a vaccine allocation that maximizes the herd effect. We show

that these two problems are equivalent. Based on this equivalence result we propose solution methods. For

two special cases the optimal solution can be characterized completely: For separable mixing we provide an

exact greedy algorithm and for two populations we derive an explicit solution. For the general case an efficient

solution approach is presented based on Perron-Frobenius theory. We illustrate this solution approach for a

case study. The results show that using our optimization problem to derive vaccine allocations can increase

the herd effect by 9 to 26%. Equivalently, using our optimal allocation we are able to significantly reduce

the required vaccine stockpile to attain Rf = 1.

The optimal allocations derived in this paper potentially have wider applicability than for the pre-

pandemic situation discussed in this paper. Further research is needed to investigate these application

possibilities for optimization in vaccine allocation.
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Appendix A Analysis of the SIR model

Lemma 15. For initial values sj(0), ij(0), rj(0) ∈ [0, 1] and sj(0) + ij(0) + rj(0) = 1 for all j ∈ J , the

solution (sj(t), ij(t), rj(t)) to (1) satisfies the following conditions:

(i) sj(t) + ij(t) + rj(t) = 1 for all j ∈ J and at any time t ≥ 0

(ii) sj(t), ij(t), rj(t) ∈ [0, 1] for all j ∈ J and at any time t ≥ 0

(iii) sj(t) is non-increasing over time and rj(t) is non-decreasing over time for all j ∈ J

Proof. We prove the statements consecutively.

(i) Immediate from
dsj
dt +

dij
dt +

drj
dt = 0.

(ii) By item (i) it suffices to prove that sj(t), ij(t), rj(t) are nonnegative for all j ∈ J . Note that the

differential equations in (1) are continuous. Assume by contradiction that sj(t2) < 0 at t2 > 0. Due

to the continuity of the differential equations there must be a time 0 < t1 < t2 at which sj(t1) =

0. However, by (1) we then have
dsj
dt = 0, implying that sj(t) must then stay 0. We arrive at a

contradiction: it is not possible for sj(t) to become negative. Analogous we can prove that ij(t) is

nonnegative, since
dij
dt ≥ 0 when ij(t3) = 0 for some t3 > 0. Finally, ij(t) being nonnegative implies

that rj(t) is non-decreasing and thus rj(t) is also nonnegative. We proved the lemma for a single

population j, but the proof applies to all j ∈ J .

(iii) The result follows directly from the differential equations in (1) and the nonnegativity of sj(t) and ij(t)

for all j ∈ J and for any time t proven in item (ii).

Theorem 4. Given the initial values sj(0), ij(0), rj(0) ∈ [0, 1] such that sj(0) + ij(0) + rj(0) = 1 for all

j ∈ J the differential equations in (1) have a unique solution at any time t.

Proof. We will also show that they are Lipschitz continuous: a function f(x) : Rn → R is Lipschitz continuous

if and only if there is a bounded nonnegative constant K and a norm such that:

|f(x1)− f(x2)| ≤ K||x1 − x2||

We prove Lipschitz continuity for one population, but the proof applies to all populations j ∈ J . Denote by

x = [s1(t), ..., sn(t), i1(t), ..., in(t)] and define the functions f1(x) =
dsj(t)
dt , f2(x) =

dij(t)
dt , f3(x) =

drj(t)
dt . By
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Lemma 15 we have 0 ≤ x ≤ 1 element wise. We derive the following, using the `1-norm:

|f1(x1)− f1(x2)| =

∣∣∣∣∣−∑
l∈J

βjls
1
j i

1
l +

∑
l∈J

βjls
2
j i

2
l

∣∣∣∣∣
=

∣∣∣∣∣(s2j − s1j )∑
l∈J

βjli
1
l + s2j

∑
l∈J

βjl(i
2
l − i1l )

∣∣∣∣∣
≤
∑
l∈J

βjl

(∣∣(s2j − s1j )∣∣+

∣∣∣∣∣∑
l∈J

(i2l − i1l )

∣∣∣∣∣
)

≤
∑
l∈J

βjl ‖x1 − x2‖1

For f2(x) we derive that:

|f2(x1)− f2(x2)| =

∣∣∣∣∣∑
l∈J

βjls
1
j i

1
l − γji1j −

∑
l∈J

βjls
2
j i

2
l + γji

2
j

∣∣∣∣∣
=

∣∣∣∣∣∣(s1j − s2j )
∑
l∈J

βjli
1
l + s2j

∑
l∈J:l 6=j

βjl(i
1
l − i2l ) +

(
s2jβjj − γj

)
(i1j − i2j )

∣∣∣∣∣∣
≤

(
γj +

∑
l∈J

βjl

)∣∣(s1j − s2j )∣∣+

∣∣∣∣∣∣
∑

l∈J:l 6=j

(i1l − i2l )

∣∣∣∣∣∣+
∣∣(i1j − i2j )∣∣


≤

(
γj +

∑
l∈J

βjl

)
‖x1 − x2‖1

Finally, we also conclude that f3(x) is Lipschitz continuous:

|f3(x1)− f3(x2)| =
∣∣γji1j − γji2j ∣∣ ≤ γj ‖x1 − x2‖1

Given the initial value and the Lipschitz continuous differential equations, we can apply the Picard-Lindelöf

Theorem (Lindelöf, 1894). This theorem states that there is a unique solution to the differential equations

for any point in time, which completes the proof.

Lemma 5. For all j ∈ J the following holds:

(i) 0 ≤ Gj(f) ≤ min
{

(1− fj), 1
σj

}
(ii) Gj(f) = 0 if and only if fj = 1.

Proof. We can rewrite (3) using the Lambert W function (cf. Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996;

Ma & Earn, 2006):

Gj(f) =
−1

σj
W

−σj(1− fj) exp

−σj
(1− fj) +

1

σj

∑
l∈J:l 6=j

βj,l
γl

[1− fl −Gl(f)]


 (31)
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Denote by Bj(f) the following function, such that Gj(f) = −1
σj
W [Bj(f)]:

Bj(f) = −σj(1− fj) exp

−σj
(1− fj) +

1

σj

∑
l∈J:l 6=j

βjl
γl

[1− fl −Gl(f)]


Note that σj > 0 for all j ∈ J by Assumption 2. By definition of the Lambert W function W (0) = 0 and

W (x) ∈ [−1, 0) for x ∈
[−1
e , 0

)
. To complete the proof of this lemma, it therefore suffices to show that

Bj(f) ∈
[−1
e , 0

]
and Bj(f) = 0 if and only if fj = 1. From the nonnegativity of the exponential function, it

follows directly that Bj(f) ≤ 0 and Bj(f) = 0 if and only if fj = 1. Using that Gj(f) ≤ (1 − fj) and that

the function f(y) = −y
ey is minimized for y = 1, the following holds:

Bj(f) = −σj(1− fj) exp

−σj
(1− fj) +

1

σj

∑
l∈J:l 6=j

βjl
γl

[1− fl −Gl(f)]


≥ −σj(1− fj) exp {−σj(1− fj)} ≥

−1

e

We showed that 0 ≤ Gj(f) ≤ 1
σj

and that Gj(f) = 0 if and only if fj = 1. To complete the proof of this

lemma it suffices to show that Gj(f) ≤ (1− fj), which holds by Lemma 5.

Appendix B Theoretical results on Rf

Lemma 16. The largest eigenvalue of a matrix A, denoted by ρ(A), is a continuous function of A.

Proof. The eigenvalues of a matrix A are equal to the roots of the characteristic polynomial of A. By Naulin

and Pabst (1994) the roots of a polynomial depend continuously on the coefficients of the polynomial. That

implies that the eigenvalues of A are continuous in the matrix A. Let A be a n×n matrix. Denote by a and

b the vectors with elements ai and bi for i = 1, ..., n, i.e., the vectors with the eigenvalues of the matrices

A and B respectively. This implies that ρ(A) = maxi |ai| and ρ(B) = maxi |bi|. For every i the following

holds:

|ai| ≤ |bi|+ |ai − bi| by the triangle inequality

≤ ρ(B) + ‖a− b‖∞

This implies that ρ(A) ≤ ρ(B)+‖a−b‖∞ and by symmetry also ρ(B) ≤ ρ(A)+‖a−b‖∞. Thus, |ρ(A)−ρ(B)| ≤

‖a − b‖∞, meaning that the largest eigenvalue of a matrix continuously depends on the eigenvalues. Since

the eigenvalues are continuously dependent on the matrix, the largest eigenvalue is a continuous function of

the matrix. This completes the proof of this lemma.
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The largest eigenvalue of a matrix can be defined with Gelfand’s formula, which holds for any norm:

ρ(A) = lim
k→+∞

∥∥Ak∥∥ 1
k (32)

Using Gelfand’s formula we derive the following result:

Corollary 17. Let A and B be two nonnegative matrices with A ≤ B element wise. If the inequality between

A and B is strict for at least one element, then ρ(A) < ρ(B). Otherwise, ρ(A) ≤ ρ(B).

Proof. This proof is based on Meyer (2000) (Example 7.10.2). The Frobenius norm is defined as follows:

‖A‖F =

√∑
i

∑
j

|aij |2

Note that the following holds:

A ≤ B ⇒ Ak ≤ Bk ⇒ ‖Ak‖F ≤ ‖Bk‖F

The proof can easily be completed using (32):

‖Ak‖F ≤ ‖Bk‖F ⇒ ‖Ak‖
1
k

F ≤ ‖B
k‖

1
k

F ⇒ lim
k→+∞

‖Ak‖
1
k

F ≤ lim
k→+∞

‖Bk‖
1
k

F

Above result implies that ρ(A) ≤ ρ(B). Using the Frobenius norm we establish that ‖Ak‖F < ‖Bk‖F when

A is strictly smaller than B for at least one element. In that case we thus have ρ(A) < ρ(B). This completes

the proof.

From Corollary 17 we can derive the following result:

Lemma 18. Let f i denote a vector of vaccination fractions with corresponding reproduction ratio Rf (f i) for

i = 1, 2. If f2 ≥ f1 for all elements and f1 6= f2, then Rf (f2) < Rf (f1).

Proof. Denote by F1 and F2 the matrices with on the diagonal respectively the elements of (1 − f1) and

(1− f2). It holds that Rf (f2) = ρ(F2Bγ) and Rf (f1) = ρ(F1Bγ). We also have that F2 ≤ F1 with at least

one element strict, because f1 6= f2. We can apply Corollary 17:

Rf (f2) = ρ (F2Bγ) < ρ (F1Bγ) = Rf (f1)

Lemma 19. Re(t) is continuous in t.
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Proof. In Lemma 16 we show that the largest eigenvalue of a matrix A, denoted by ρ(A), is a continuous

function of A. From the differential equations (1) we conclude that sj(t) is a continuous function for all

j ∈ J . By Definition 1 this implies that Re(t) is continuous in t, which completes the proof.

Corollary 20. Re(t) is monotonically non-increasing in t, i.e., Re(t+ ε) ≤ Re(t) for any δ > 0.

Proof. By Lemma 15 sj(t) is non-increasing and thus S(t + δ) ≤ S(t). By Corollary 17 this implies: Re(t+

δ) = ρ(S(t + δ)Bγ) ≤ ρ(S(t)Bγ) = Re(t).

Lemma 21. If Rf > 1 then limt→+∞Re(t) < 1. [Lemma 3.2 in Chan et al. (2014)]

Appendix C Optimization Problem

Lemma 13. For any solution to Problem (25) - (29) we have fi ≥ 1− γi
βii

.

Proof. Let k ∈ arg minj∈J\{i}
βij

γj
. We derive the following relation for fi using (26) - (28):

fi = 1− vi∑
j∈J

βij

γj
vj
≥ 1− vi

βik

γk
(1− vi) + βii

γi
vi

To derive a lower bound on fi we maximize above expression with respect to vi:

d

dvi

[
1− vi

βik

γk
(1− vi) + βii

γi
vi

]
=

βik

γk[
βik

γk
(1− vi)βii

γi
vi

]2 ≥ 0

By Assumption 2 the derivative is nonnegative and the expression is thus maximized for vi = 1. This proves

the lower bound on fi: fi ≥ 1− γi
βii

.

Lemma 14. The feasible region of Problem (25) - (29) is not convex.

Proof. It suffices to give a counter example. Consider the case that |J | = 2 and define the matrix Bγ and

the variable vector x:

Bγ =

1 3

3 1

 x[(1− f1), (1− f2), v1, v2]

One can easily check that the following two vectors are feasible with respect to constraints (26) - (29):

x1 = [0.25 0.25 0.5 0.5] and x2 = [0.1 0.5 0.25 0.75]. Take the convex combination x3 = αx1 + (1 − α)x2

with α = 0.5, that results in x3 = [0.175 0.375 0.375 0.675]. Constraints (27) - (29) are clearly satisfied by

x3. However, x3 is not feasible with respect to constraint (26) nor to the relaxation in (30):

0.175× [1× 0.375 + 3× 0.675] ≈ 0.3937 > 0.375 and 0.375× [3× 0.375 + 1× 0.675] ≈ 0.6563 6= 0.675
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This completes the proof.

Appendix D Vaccine efficacy

In this paper we assumed that a vaccine is completely effective and leads to complete immunity. In literature

this assumption is often relaxed by including a vaccine efficacy parameter (cf. Hill & Longini Jr, 2003). In

this section we study the effects of such a relaxation. Let ψj denote the vaccine efficacy rate in population

j. Vaccination then implies a shift from state (sj(0) = 1, ij(0) = 0, rj(0) = 0) to state ((1 − ψjfj), 0, ψjfj)

for all j ∈ J . Introducing a vaccine efficacy parameter is simply a rescaling of the vaccination fraction fj .

However, this rescaling has consequences for the equivalence of the two optimization problems defined in

Section 4.2. As a result of reduced vaccine efficacy, the number of allocated vaccines is no longer equal to the

number of effective vaccines. The total herd effect attained when Rf = 1 is now equal to
∑
j∈J Nj(1−ψjfj),

whereas the number of allocated vaccines still equals
∑
j∈J Njfj . Thus, the last implication in the proof of

Theorem 9 no longer holds. Only for the special case that ψj = ψ for all j ∈ J the equivalence still holds.

Without equivalence the two problems can still be solved with the solution approach of Section 5.3. The

quadratic equality constraint in (26) can be reformulated as follows:

(1− ψifi)
∑
j∈J

βij
γj
vj = vi ⇔ fi =

1

ψi

1− vi∑
j∈J

βij

γj
vj

 i ∈ J (33)

The objective function and the other constraints of Problem (25) - (29) remain valid for the problem of

minimizing the required amount of vaccines to achieve Rf = 1. For maximizing the herd effect the objective

function must be changed to max
∑
j∈J(1− ψjfj)Nj .

Appendix E Proof for n = 2

Theorem 12. The optimal solution to Problem (21) - (24) can be found among the boundary solutions given

in Lemma 11 and the following solution:

f1 = 1− 1

d

σ2 −
√
N2(σ1σ2 − d)

N1

 and f2 = 1− 1

d

σ1 −
√
N1(σ1σ2 − d)

N2


For d ≤ 0 only the boundary solutions need to be considered.
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Proof. By (20) we rewrite the objective function of Problem (21) - (24) into:

O(f1) = N1(1− f1) +N2

[
1− σ1(1− f1)

σ2 − (1− f1)d

]
We analyze the extrema of this function by setting the derivative of O(f1) with respect to f1 equal to 0:

d

df1
O(f1) =−N1 +

N2(σ1σ2 − d)

[σ2 − (1− f1)d]2
= 0⇔ [σ2 − (1− f1)d]2 =

N2(σ1σ2 − d)

N1

⇔ f1 = 1− 1

d

σ2 −
√
N2(σ1σ2 − d)

N1


In the third step we use (23). The objective function O(f1) thus has a unique extreme:

f1 = 1− 1

d

σ2 −
√
N2(σ1σ2 − d)

N1

 and f2 = 1− 1

d

σ1 −
√
N1(σ1σ2 − d)

N2

 (34)

where f2 is derived by substituting the expression for f1 in (20). To verify whether this extreme is a minimum

or a maximum, we analyze the second order derivative of O(f1):

d2

d(f1)2
O(f1) =

−2dN2(σ1σ2 − d)

[σ2 − (1− f1)d]3

Note that σ1σ2 − d = β12β21

γ1γ2
≥ 0. We distinguish between the following three cases: (a) d = 0, (b) d < 0

and (c) d > 0. In case (a) the function O(f1) is linear. For case (b) the second order derivative is positive,

implying that the extreme in (34) is a minimum. For both case (a) and (b) the function O(f1) is thus

maximized in one of the boundary points. In case (c) the second order derivative is positive.

Thus, for d ≤ 0 the optimal solution can be found among the two boundary solutions that are feasible

according to Lemma 11. For d > 0 the solution in (34) is a candidate for the optimal solution. However,

this candidate possibly results in f1, f2 that violate constraints (23) or (24), rendering the candidate solution

infeasible. Therefore, also the feasible boundary solutions must be compared. This completes the proof of

this theorem.
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