
A heuristic for real-time crew rescheduling
during small disruptions

Thijs Verhaegh1 Dennis Huisman2,3 Pieter-Jan Fioole3

Juan C. Vera1

1 Department of Econometrics and Operations Research, Tilburg University,

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

2 Econometric Institute & ECOPT, Erasmus University Rotterdam,

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

3 Process quality and Innovation, Netherlands Railways,

P.O. Box 2025, 3500 HA, Utrecht, The Netherlands

thijsverhaegh@gmail.com, huisman@ese.eur.nl,

pieterjan.fioole@ns.nl,j.c.veralizcano@tilburguniversity.edu

Econometric Institute Report EI2016-09

Abstract

Due to unforeseen problems, disruptions occur at railway passen-
ger operators. Proper real-time crew management is needed to prevent
disruptions to spread over space and time. Netherlands railways (NS)
has algorithmic support from a solver to obtain good crew reschedul-
ing solutions during big disruptions. However, small disruptions are
still manually solved by human dispatchers who have limited solving
capacity. In this paper the rescheduling for crews during small disrup-
tions is modeled as an iterative-deepening depth-first search in a tree,
which is combined with several OR techniques, obtaining a heuristic
method. The heuristic focuses on real-life usability and uses the up-
dated rolling-stock schedule as input. Testing the heuristic on about
5,000 test instances shows that the heuristic delivers good and desir-
able rescheduling solutions within fraction of seconds, outperforming
other well-known methods from the literature.

1



1 Introduction

Every day, Netherlands’ largest railway passenger operator, Netherlands rail-
ways (NS), faces disruptions due to unforeseen problems with the infrastruc-
ture, rolling stock, weather conditions, accidents, etcetera. These disruptions
might lead to conflicts in the crew schedules. Human dispatchers try to solve
these conflicts by adapting the schedules. However, they have limited solv-
ing capacity. During busy days, the workload and pressure on dispatchers
is enormous and in extreme cases this could lead to canceled trains or even
cancelation of all train traffic, leading to unsatisfied customers and reputa-
tional damage. One of NS highest priorities is to improve their worst case
performance; therefore NS is building on more algorithmic support for human
dispatchers. For big disruptions such as blocked tracks, NS has algorithmic
support from a solver developed by Potthoff (2010). However, smaller disrup-
tions such as delays, canceled trains and detours are still manually solved by
dispatchers. In this paper the rescheduling for crews in case of small disrup-
tions is modeled as an iterative-deepening depth-first search in a tree, which
is combined with several OR techniques, obtaining a heuristic method that
finds good rescheduling solutions within fraction of seconds. The heuristic
focuses on real-life usability and uses the updated rolling stock schedule as in-
put. Some ideas from an actor-agent approach, as discussed in the literature
by Abbink et al. (2010), are combined with other OR techniques.

2 Literature review

Although many papers are written about crew scheduling, Potthoff (2010)
discussed that operations research models are hardly applied in practice to
solve disruptions for passenger railway operators. Crew rescheduling dur-
ing disruptions in airline transport has been investigated as is reviewed by
Clausen et al. (2010). A crew rescheduling problem for train driver du-
ties, which are disrupted due to maintenance work on the tracks is dis-
cussed by Huisman (2007). Walker, Snowdon and Ryan (2005) solve the
train timetabling and crew rescheduling during disruptions at the same time.
However, their method is not applicable to NS since it is assumed that the
railway system is of a relatively simple structure, which is not the case at NS.
Jespersen-Groth et al. (2009) wrote a paper about disruption management
in passenger railway transportation. They discuss the structure of disrup-
tion problems in railway transportation, but they do not provide an explicit
solution method to solve the rescheduling problem.

An approach for the real-time rescheduling of train drivers in Denmark is

2



discussed by Rezanova and Ryan (2010). They model the problem as a set
covering constraint model, just as Potthoff (2010). Potthoff uses the modified
rolling stock schedule and modified timetable as input for his Operational
Crew Rescheduling Problem, in which the crew schedule is adapted in such
a way that the modified timetable can be carried out. Since there can be
millions of feasible adaptions to the crew schedule, Potthoff considers a core
problem first to solve the set covering constraint model. He solves the core
problem using a column generation based heuristic, which combines column
generation with dynamic duty selection and Lagrangian Relaxation. This
heuristic “can be seen as a depth-first search in a branch-and-bound tree
with column generation in every node” (Potthoff, 2010, p.38). There might be
some canceled tasks in the solution for the initial core problem. Potthoff tries
to cover these tasks by exploring a neighborhood for each uncovered task. For
an exact definition of the core problem, the heuristic and the neighborhood
selection, refer to Potthoff (2010). Poffhoff’s algorithm performs well during
big disruptions, but the quality of the neighborhood choice is questionable
in case of small disruptions.

Another approach for the real-time rescheduling of train drivers is an
actor-agent approach as discussed by Abbink et al. (2010), in which train
drivers and dispatchers are represented in a computer model by agents. The
main idea behind their approach is that agents interact with each other by
sending messages, in order to solve the problems they face. As Abbink et
al. (2010, p.253) state, “the main principle underlying the actor-agent based
rescheduling process is that of task-exchange”, meaning that drivers who
help each other often exchange some tasks. This is similar to the approach
human dispatchers use to solve real-time scenarios.

Both methods from Potthoff (2010) and Abbink et al. (2010) outperform
human dispatchers. Testing by experts of NS show that Potthoff’s algorithm
provides better results during big disruptions and therefore NS uses his solver
nowadays. For small disruptions, still no algorithmic support is used. In this
paper, ideas from the literature are combined with operations research tech-
niques in order to present a method to solve small disruptions. Testing shows
that, in the case of small disruptions, our proposed method outperforms the
methods from Potthoff and Abbink et al.

3 Problem Formulation

The schedule of a single driver for a day is called a driver duty and consists
of several tasks that the driver has to perform. An example of a task might
be driving an intercity train from station sdep to sarr from time tdep to tarr.

3



Sometimes, a passenger task is included for reallocation reasons, meaning the
driver uses the train as passenger but is not actively involved in driving the
train. There are several rules a duty must satisfy to be feasible, including
labor rules regarding working times. Examples are minimum times for check
in and check out, maximum duty length, rules regarding breaks and minimum
transfer times between consecutive tasks. A crew schedule consist of all duties
and is considered to be feasible if all driver duties are feasible and all tasks
that have to be performed on a day are divided among the crews.

Disruptions lead to infeasibilities in the duties. During big disruptions
such as blocked tracks, it is not straightforward how to repair infeasible
duties; NS uses Potthoff’s algorithm to find feasible solutions. During small
disruptions as delays, canceled trains, detours and staff absence, dispatchers
at NS are usually able to repair infeasible duties into feasible ones by dropping
tasks from some driver duties. This creates unplanned tasks, that is, driving
tasks that need to be performed by one of the drivers but which have not been
planned in any driver duty yet. Dispatchers have to plan these unplanned
tasks into driver duties in order to prevent canceled trains.

Feasible
schedule

Small
disruption

Infeasible
duties
and no

unplanned
tasks

Feasible
duties and
unplanned

tasks

Solve
unplanned

tasks

Feasible
schedule

Figure 1: Flow chart of solving a small disruption

We assume that dispatchers are able to convert infeasible duties into
feasible ones by creating unplanned tasks. Planning unplanned tasks in driver
duties is the ‘bottleneck’ in the rescheduling process, since it is the most
time-consuming part. Often, dispatchers are even not able to find feasible
solutions without use of the so-called reserve drivers, who are standby drivers
at railway stations. However, during small disruptions NS prefers not to use
reserve drivers, as they are saved for larger disruptions which might occur
later in time. Therefore in our solution method we try to find solutions
for unplanned tasks without the use of reserve drivers. Since we
are concerned with real-time rescheduling, it is important that rescheduling
solutions are found in fractions of seconds.

To distinguish between different solutions an objective function is defined.
The objective is chosen such that solutions are desired by both dispatchers
as crews. Both parties desire to stick to the original schedule as much as
possible and therefore a penalty is included for a changed duty. Drivers prefer

4



not having any overtime (especially during small disruptions), nor having a
break at a different time or location than planned, and so penalties for used
overtime and changed breaks are included. The weights of these penalties
are carefully defined after consultations with crews, dispatchers and experts
of NS.

4 Solution Methodology

When planning an unplanned task in a duty some new unplanned tasks
might be created. These are iteratively solved in order to solve the origi-
nal unplanned task. Inserting the unplanned task in a duty and iteratively
solving new ones can be seen as a search in a tree. The root node of the
tree is the original schedule, consisting of all feasible duties and a non-empty
set of unplanned tasks M . An edge (s, si) indicates the insertion of the first
unplanned task in M in duty i, where si denotes the new schedule after inser-
tion. The root node has an outgoing edge for each driver in the population
of train drivers, with exception of the reserve ones.

As we show in section 4.3, insertion of an unplanned task in a duty is
sometimes impossible. In this case we consider the new schedule (node)
impossible. This notation is somewhat imprecise, since there is not really a
schedule at this node, but this notation is used to explain the search through
the tree. In other situations insertion might be possible, either by creation
of new unplanned tasks (insertion is conditionally possible), or without
creation of new unplanned tasks (insertion is unconditionally possible).
As long as M 6= ∅ at a certain node, and this node is also not impossible, we
branch further. To avoid cycling, we do not allow the removal of a task
from a duty once this task has been inserted in a duty.

In order to find the best solution we have to do a complete enumeration
of the tree, which would take lots of time due to the size of the tree1. The
emphasis of rescheduling is on obtaining the best possible solution within
fraction of seconds of computation time. Therefore, only the most promising
parts of the tree are searched and heuristics are used to improve the speed and
quality of the search. The heuristic finds solutions which are not guaranteed
to be optimal, but good enough for the given set of goals and outperforming
human dispatchers. Several OR techniques are combined to find solutions in

1As we see later on, each node has over 1,000 children. On average 124 children survive
the basic feasibility check. Inserting an unplanned task in a duty is conditionally possible
in about 17% of the cases. This means we branch further at on average 21 children. If the
depth of the tree is bounded to 7, this already leads to more than a billion leafs. However,
the depth of the tree is unbounded.

5



the tree.

4.1 Basic feasibility check

Insertion of an unplanned task in a duty might not be possible at all. There-
fore a basic feasibility check is developed to prune branches of the tree
that would lead to impossibilities. By using the basic feasibility check com-
putation time is saved. The check detects many (but not all) of the impos-
sibilities in an early stage and consists of two parts: the license check and
the time check. In the license check, we check whether the driver is allowed
to take over the unplanned task regarding his route knowledge and rolling
stock knowledge. If so, continue to the time check. If not, inserting the task
in this duty is impossible.

The time check determines whether unplanned task possibly fit into the
driver duty. Minimum travel times between each pair of locations and maxi-
mum overtime are used. For example, a driver duty from 8 a.m. to 4 p.m. is
not able to take over a task from 10 p.m. to 11 p.m. Furthermore, a driver
who starts his duty in Rotterdam at 8 a.m., is not able to take over a task
from Groningen to Leeuwarden, starting at 8.15 a.m., since it takes at least
two hours to reach Groningen from Rotterdam by the geographical location.
These two examples do not pass the time check.

The output of the basic feasiblity check is a subset of driver duties who
survive the basic feasibility check and remain possible candidates duties to
take over the unplanned task. The basic feasibility check is performed on
each driver duty each time an unplanned task is solved.

4.2 Priority system

After the basic feasibility check the unplanned task can still be inserted in
many duties. Inserting a task in a duty is time consuming, so we try to insert
the task in promising duties first. Therefore, we define a priority system
which predicts how good the unplanned task would fit in each of these du-
ties. The system uses prediction values based on linear regression, which are
sorted using bucket sort. For example, drivers who are geographically close
to the unplanned task or drivers who have lots of spare time in their duty
obtain higher priority. The task is inserted in the most promising duty first,
expecting to find a solution more quickly.

To obtain prediction values, we use exogenous variables indicating the
occupation of the driver duty, whether the driver already had a break or not,
whether the driver is (close) to the departure and/or arrival station or the

6



unplanned task, whether the driver will be able to take over the unplanned
task without overtime and the end time of the duty.

The parameters for the prediction values are obtained by ordinary least
squares regression on over half a million observations. Each observation
passed the basic feasibility check and is an unique insertion of a task in a duty.
Note that this not necessarily means that insertion is possible in each of these
observations. Only insertions that are impossible for sure are detected by the
basic feasibility check. If insertion is possible, the prediction value is equal
to the corresponding value of the objective function plus a penalty for each
new created unplanned task. When insertion is impossible, the prediction
value is set to a big number. Hence, unconditionally possible insertions are
better than conditionally possible insertions and have the best prediction
values. Conditionally possible insertions with only one new unplanned task
are better than conditionally possible insertions with 10 new unplanned tasks.
Conditionally possible insertions are better than impossible insertions, which
have the worst prediction values.

For each of the possible candidate duties the prediction value is calcu-
lated. The logical solution seems to sort the duties according to their pre-
diction values. Sorting an array of n elements can be done in log-linear time
O(n log n) and bucket sorting of n elements can be done in linear time O(n)
as showed by Shutler, Sim and Lim (2008). Since prediction values remain
rough predictions about the solvability of the new schedule and the sort is
done many times during the tree search, we decided to place the duties in
buckets according to their prediction value and use the bucket sort to sort
the possible candidates. Analysis turns out that it is indeed more efficient
to put the prediction values into buckets.

We give duties who use the unplanned task as a passenger task a deviation
by placing them in the highest bucket. These drivers are able to drive the
unplanned task for sure, without the creation of any new unplanned tasks.
Also, duties that are already changed on the path from the root node to
the branch node are placed in a more promising bucket. These duties are
preferred to be used, since we do not have to charge the costs of changing
a duty in the objective function again. Driver duties in the bucket with
the worst prediction values indicate that inserting the unplanned task in this
duty would probably lead to impossibilities and are not considered as possible
candidates duties anymore, meaning we prune the unpromising parts of
the tree. In this way the solving time decreases significantly while hardly
any feasible solution is lost.

Summarizing, the priority system calculates the prediction value for each
of the candidate duties, puts the duties in buckets according to those predic-
tion values and sorts them using bucket sort. Then, in the tree search the

7



unplanned task is inserted in the most promising duty first.

4.3 Method to insert a task in a duty

Since there are several possible outcomes when inserting a task in a duty,
we develop a systematic method to insert a task in a duty. The out-
come of this method is either: insertion is possible without creating any new
unplanned tasks (unconditionally possible), insertion is possible by creating
unplanned tasks (conditionally possible), or insertion is impossible.

The first step of the inserting method is to insert the unplanned task
in the driver duty and make all tasks with overlap with the inserted task
unplanned. If the minimum transfer time between two consecutive tasks
and is violated, this is considered as overlap as well. As soon as one of the
new created unplanned tasks starts before the time of rescheduling, report
that insertion is impossible. Unplanned positioning tasks do not have to
be rescheduled and are canceled. By inserting the original unplanned task
and possibly creating new ones, some location conflicts might be created. A
location conflict is generalized to the situation where the driver has to be at
a location s0 at a time t0 and at a location s1 at time t1 > t0, where s0 6= s1,
while no such trip is included in his duty.

The second step of the inserting method is solving possible location con-
flicts. We try to solve location conflicts by inserting positioning trips. These
trips are not allowed to start before the time of rescheduling. First search
for a positioning trip consisting of a single task. If this task does not exist,
search for a trip consisting of two tasks. To limit computation time position-
ing trips are restricted to at most two tasks. Outcomes of positioning trip
searches are saved in a register. Whenever such a computation is required
again, results from the register are used, saving computation time. When
looking for positioning trips two cases can happen: A positioning trip exists
or it does not. If it exists, the task(s) of the positioning trip are included in
the driver duty and the driver uses these task(s) as a passenger. If there are
multiple positioning trips available, take the one starting first in time. If a
positioning trip does not exist, we iteratively take an extra task out of the
duty, make it unplanned and see whether we still have a location conflict. If
so, we check whether we can find positioning trips now. If it turns out that a
location conflict cannot be solved, the method reports insertion is impossible.

The last part of the inserting method checks whether the meal-break
of the driver is affected. If so, try to plan a new meal-break in the duty,
satisfying the labor rules. Furthermore, the break may not start before the
time of rescheduling. If a new meal-break is needed but no break possibilities
occur in the duty, report that inserting the unplanned task in the duty is

8



impossible. Improvements might be achieved by creating extra unplanned
tasks in order to find a break possibility, but this is left for future work.

Summarizing, inserting an unplanned task in a duty can be impossible,
conditionally possible or uncondionally possible. We illustrate the insertion
method with the example in figure 2. We insert unplanned task from Ams-

unplanned task
asd ut

old duty

new duty

new unplanned task

8 a.m. tres 10 a.m. 12 a.m. 2 p.m. 4 p.m. time

ut asd asd wp

p

amf amf

∗

∗
ut ht ut ut ah ut

asd utut asd asdwp amf ut ht ut ut ah ut

ut asd asd wp

p

asd ut ut ht ut ut ah ut

wp amf

p

amf ut
Unplanned positioning tasks do not have to be replanned!

Figure 2: Conditionally possible insertion of unplanned task asd-ut

terdam (asd) to Utrecht (ut) in a duty. It is a duty starting in ut at 8 a.m.,
driving to asd, Weesp (wp), and then using a train as a passenger to Amers-
foort (amf) where the driver has a break around 10.30 a.m. After the lunch
the driver has tasks from amf to ut, back and forth to ’s Hertogenbosch
(ht) and back and forth to Arnhem (ah) after which the driver finishes his
duty at ut at 3 p.m. Inserting the unplanned task creates overlap with the
positioning task wp−amf , which is removed the duty and made unplanned.
This task does not have to be rescheduled since it is a passenger task. Two
location conflicts are created. For location conflict wp − asd around 9 a.m.
we find a positioning trip and the location conflict is solved. For location
conflict ut− amf no positioning trip exists, task amf − ut is removed from
the duty and hence considered as new unplanned task. The location conflict
is solved. The new break is in ut and satisfies the labor rules. Insertion of
asd−ut is conditionally possible by creation of new unplanned task amf−ut.

9



4.4 Restricting the growth of the tree

As explained, rescheduling can be seen as a tree search. We defined the
order in which we consider the children and how to insert a task in a duty.
Much time is needed to search the complete tree, but large parts of the tree
have undesired solutions. We want to prune these parts of the tree to save
computation time.

As we search deeper in the tree the number of changed duties does not
decrease. Solutions in some branches of the tree are of poor quality since
they require too many changed duties. Therefore, the number of allowed
changed duties, maxChangedDuties, is bounded. Iteratively this bound
is increased. The maximum on this bound is set to 5, since solutions with
more changed duties are not desired by NS. If more than 5 duties are affected
to solve an unplanned task, other solutions are preferred, such as the use of a
reserve driver. Changing duties is charged by the objective function. When
maxChangedDuties is equal to a low value large parts of the tree are pruned,
but also solutions with low costs are found quickly. Therefore we start the
tree search that we with maxChangedDuties equal to 1 and then iteratively
increase this number when the tree search is completed.

Moreover, inserting a task in a duty might be conditionally possible by
creating one or more new unplanned tasks. It is more likely that we end
up in a feasible schedule if we create only one new unplanned task, then by
creating 10 new unplanned tasks. If we create 10 new unplanned tasks, the
problem is much larger than before and we probably are not able to solve
all these new unplanned tasks (especially not since maxChangedDuties is at
most 5). Furthermore, it takes computation time to solve the new unplanned
tasks. So, insertions which lead to a small number of new unplanned tasks
are expected to give better solutions in the subtree below. Therefore intro-
duce the threshold maxNewUnplannedTasks, bounding the number of
new unplanned tasks that is created by inserting a task in a duty. Stop
branching at conditionally feasible nodes when this bound is exceeded. We
start the tree search with maxNewUnplannedTasks equal to 1 and then
iteratively increase this threshold. In this way the most promising part of
the tree is searched first.

4.5 Fathoming

The objective function is non-decreasing as we search deeper in the tree.
Therefore, at each node lower bounds for the solutions are defined. Some
parts of the tree only have solutions at very (undesired) high costs. Therefore,
we prune parts of the tree where the lower bound is above a certain upper

10



bound. As soon as a solution is found, we set the cost of this solution as
upper bound. We fathom parts of the tree with lower bounds higher than the
upper bound (fathoming idea from branch and bound). This idea works
well when a solution of good quality is found quickly, because large parts of
the tree can be pruned. Furthermore, we define a threshold for the maximum
value for the lower bound. Possible feasible solutions with costs higher than
this value are undesired by NS and therefore parts of the tree with lower
bounds above this threshold are pruned.

4.6 Depth-first iterative-deepening

We develop a depth-first iterative-deepening (DFID) search in a tree,
in which the depth is bounded by the number of changed duties. DFID
combines breadth-first searchs completeness and depth-first search space ef-
ficiency, which is optimal when the path cost is a non-decreasing function of
the depth of the node (Korf 1985).

DFID heuristic to solve unplanned tasks

Set maxTime = 2 seconds;
for
maxNewMancos = 1,maxNewMancos ≤ 10,maxNewMancos + +
do

for maxChangedDuties = 1,maxChangedDuties ≤
5,maxChangedDuties + + do

Depth First Search(maxNewMancos, maxChangedDuties,
maxTime);

end

end
Report the best feasible schedule that is found, if any

To save time and memory, the tree is represented implicitly. In every
moment a single node is maintained. When moving from a node to a child,
the differences between the two nodes are saved (as edge information), since
loading the data for a node is more expensive than constructing by performing
the corresponding changes. The tree search stops as soon as no further
explorations occur or two seconds of solving time have elapsed.

5 Test Instances

The daily schedule of Thursday June 14, 2012 is used as input data. This
day was an average work day at NS with over 10,000 tasks planned in about

11



1,000 feasible duties. There were no unplanned tasks at the beginning of the
day. A test instance is created by copying one of the 10,000 tasks and adding
this task as unplanned task. We try to solve this unplanned task, meaning
that we look for solutions with only feasible duties and no unplanned tasks.
This procedure is repeated for each task to create 10,000 test instances. Half
of them are used for fine-tuning the heuristic and obtaining the parameters
for the prediction values, the other half are used to test the heuristic. For
each instance, we assume it is known that the given task is unplanned only
45 minutes in advance, that is, changes are not allowed to any of the duties
more than 45 minutes earlier than the starting of the unplanned task.

6 Results

The heuristic has been implemented in C++ on an Intel Core i7 processor
with 2.96 GB RAM clocked at 2.80 GHz. An overview of the main results
include the following items:

• Within two seconds, the heuristic finds solutions in over 78% of the
instances. (See figure 3.)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0

0
.1

0
.2

0
.2

0
.3

0
.4

0
.5

0
.6

0
.6

0
.7

0
.8

0
.9 1 1

1
.1

1
.2

1
.3

1
.4

1
.4

1
.5

1
.6

1
.7

1
.8

1
.8

1
.9

P
er

ce
n

ta
g

e 
o

f 
in

st
a

n
ce

s 

Time in seconds 

First Solution (avg. 0.088s)

Best solution (avg. 0.246s)

Heuristic finished (avg. 1.667s)

Figure 3: Even within one fifth of a second over 70% of the instances are
solved

• The average time to find the best solution (among the ones found within
2 seconds) is only 0.246 seconds, while the first solution was found in
on average 0.088 seconds, i.e. good solutions are found quickly.

• The best solution changes on average two duties, uses seven minutes of
overtime and changes half a break.

12



• If we run the heuristic longer (up to a half a minute), the solution
capacity tend to converge to 83%, while the average cost of the solutions
increases with 3.5%.

• Initial analysis shows that the heuristic outperforms the methods from
Potthoff (2010) and Abbink et al. (2010), in both calculation times as
solution quality.

• Rescheduling is more difficult around 2 p.m. and during the nights.
(See figure 4.) At NS, many duties start in the early morning and
end around 2 p.m., and many new duties start around 2 p.m. Drivers
have to return home around 2 p.m. so around this time there are
less rescheduling possibilities. Without using overtime still 64% of the
unplanned tasks can be solved. More solutions can be found when the
allowed overtime increases, but also extra costs are charged for those
solutions. In figure 4 the solvability over the different time slots of the
day is plotted using allowed overtime of 0, 30 and 60 minutes. The
purple dotted line indicates the total number of test instances in each
time slot.

0

50

100

150

200

250

300

N
u

m
b

er
 o

f 
in

st
a

n
ce

s 

Time Slot 

0 min of overtime

allowed (avg. 64%

solvable)

30 min of overtime

allowed (avg. 71%

solvable)

60 min of overtime

allowed (avg. 78%

solvable)

Figure 4: Without using overtime it is harder to solve unplanned tasks

• If we perform depth first search without iterative deepening, i.e. fixing
maxChangedDuties to 5 and maxNewUnplannedTasks to 10, within
two seconds we find solutions in 33.7% of the instances. The average
time needed to find a solution increases with over 400% and the cost
of the best solutions almost doubles.

• Unplanned tasks which last longer, are harder to reschedule. (See fig-
ure 5).

13



0

200

400

600

800

1000

1200

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

er
 o

f 
in

st
a

n
ce

s 

P
er

ce
n

ta
g

e 
so

lv
ed

 

Task length (min) 

Percentage solved

Number of instances

Figure 5: Rescheduling is more difficult for longer tasks

• Rescheduling of tasks in the Randstad2, the most occupied part of the
network, is easier. (See figure 6.)

2581 

1288 

548 

510 

0

500

1000

1500

2000

2500

3000

3500

Randstad

(avg. costs 1032)

Outside Randstad

(avg. costs 1337)

N
u

m
b

er
 o

f 
in

st
a

n
ce

s 

Not solved

Solved

Figure 6: Rescheduling is more difficult outside the Randstad

• If the working rules regarding the minimum break length during reschedul-
ing change, this influences the rescheduling. Increasing the minimum
break length to 40 minutes, drops the solution quality and increases
the time needed to find rescheduling solutions. (See figure 7.)

• So far, we supposed we know an 45 minutes in advance that a task is
unplanned. In reality, the time in advance fluctuates a lot. Sickness

2Randstad is a conurbation in the Netherlands, consisting of the four largest cities
and its surroundings. We include the following cities with all its train stations: Almere,
Amersfoort, Amsterdam, Alphen aan den Rijn, Barendrecht, Capelle aan den IJssel, Delft,
Dordrecht, Gouda, Haarlem, Hilversum, Hoofddorp, Hoek van Holland, Houten, Katwijk,
Leiden, Maassluis, Purmerend, Rijswijk, Rotterdam, Schiedam, The Hague, Utrecht,
Vlaardingen, Voorburg, Zeist, Zoetermeer.

14



0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

62
64
66
68
70
72
74
76
78
80
82

20 22 24 26 28 30 32 34 36 38 40

S
ec

o
n

d
s 

P
er

ce
n

ta
g

e 
so

lv
ed

 

Minimum break length (min) 

Percentage

solved

Avg. solving

time to best

solution

Figure 7: Changing the minimum break length to 20 minutes has minor
effects on rescheduling

notices cause that hours before the task starts we might know the task
is unplanned, while delays might occur at the latest moment and up
to 0 minutes before the task start. Consider figure 8 in which we vary
the time in advance from 0 to 95 minutes. Even if we need a driver
instantaneously, we have solutions in over 45% of the instances.

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
g

e 
so

lv
ed

 

Changes allowed x minutes before start of task 

Percentage solved

Figure 8: Even if a driver is needed instantaneously, 45% of the instances are
solved

7 Conclusions and future work

Concluding, the heuristic works fast, delivers good and desirable solutions
and outperforms other well-known methods from the literature. This paper
focuses on train drivers only and a similar approach might be developed for
train guards. The process from small disruption to unplanned tasks might
be modelled and the solution method might be improved. Furthermore, this
solution method might be useful to improve the solver for larger disruptions.

15



It might be interesting to test the solution method in case of larger disrup-
tions. Last but not least it might be interesting to consider the rolling stock
rescheduling and crew rescheduling at once.

References

[1] Abbink EJW, Mobach DGA, Fioole PJ, Kroon LG, Van der Heijden
EHT, Wijngaards NJE (2010) Real-time train driver rescheduling by actor-
agent techniques. Public Transp. doi 10.1007/s12469-010-0033-6

[2] Clausen J, Larsen A, Larsen J, Rezanova NJ (2010) Disruption manage-
ment in the airline industry - concepts, models and methods. Computers
& Operations Research 37: 809-821

[3] Huisman (2007) A column generation approach for the rail crew
rescheduling problem. Eur. J. of Operations Research 180: 163-173

[4] Jespersen-Groth J, Potthoff D, Clausen J, Huisman D, Kroon L, Marti G,
Nielsen MN (2009) Robust and Online Large-Scale Optimization. Springer
Berlin Heidelberg

[5] Korf RE (1985) Depth-first iterative-deepening: An optimal admissible
tree search. Artif. Intell. doi 10.1.1.91.288

[6] Potthoff D (2010) Railway Crew Rescheduling: Novel Approaches and
Extensions. PhD thesis, Erasmus University Rotterdam

[7] Rezanova NJ, Ryan DM (2010) The train driver recovery problem - a set
partitioning based model and solution method. Computers & Operations
Research 37: 845-856

[8] Shutler PME, Sim SW, Lim WYS (2008) Analysis of linear time sorting
algorithms. The Computer J. 51-4: 451-469

[9] Walker CG, Snowdon JN, Ryan DM (2005) Simultaneous disruption re-
covery of a train table and crew roster in real time. Computers & Opera-
tions Research 32: 2077-2094

16


