
                        A study 
                    of the complex 
   genetic inheritance of 
lipids:  from common 
to rare, from single
  association to 
     interaction

Elisabeth M. 
van Leeuwen

UITNODIGING
voor het bijwonen 

van de openbare verdediging 
van het proefschrift

 A study of 
the complex genetic 
inheritance of lipids:  
from common to rare, 

from single association 
to interaction

door 
Elisabeth M. van Leeuwen

woensdag 20 april -11.30 uur

Elisa van Leeuwen 
Molenmeesterslag 24 

2805 GV Gouda
elisavanleeuwen@gmail.com 

e.vanleeuwen.1@erasmusmc.nl
06-55752958

Paranimfen: 
Lieke Geerts - liekje_86@hotmail.com 

Nikkie Olde Loohuis - n.oldeloohuis@gmail.com

Sara Willems - sara.m.willems@gmail.com

Professor Andries Queridozaal 
Erasmus MC 

Faculteit der Geneeskunde & 
Gezondheidswetenschappen 

Dr. Molewaterplein 50 
Rotterdam

U bent ook van harte welkom 
op de receptie na afloop 

van de promotie.



A Study of the Complex Geneti c Inheritance of Lipids:

From common to rare, from single associati on to interacti on

Elisabeth M. van Leeuwen



The work presented in this thesis was conducted at the Gene  c Epidemiology Unit, 
Department of Epidemiology, Erasmus Medical Center, Ro  erdam, the Netherlands.

The ERF study was supported by the joint grant from the Netherlands Organisa  on for 
Scien  fi c Research (NWO, 91203014), the Center for Medical Systems Biology (CMSB), and 
the Interuniversity A  rac  on Poles (IUAP) program. The ERF study as a part of EUROSPAN 
(European Special Popula  ons Research Network) was supported by European Commission 
FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the 
European Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement 
HEALTH-F4-2007-201413 by the European Commission under the program “Quality of Life 
and Management of the Living Resources” of the Fi  h Framework Programme (no. QLG2-
CT-2002-01254). High-throughput analysis of the ERF data was supported by a joint grant 
from Netherlands Organisa  on for Scien  fi c Research and the Russian Founda  on for Basic 
Research (NWO-RFBR 047.017.043). Exome sequencing in ERF was supported by the ZonMw 
grant (project 91111025). Exome-chip genotyping was supported by BBMRI-NL.

The genera  on and management of GWAS genotype data for the Ro  erdam Study is 
supported by the Netherlands Organisa  on of Scien  fi c Research NOW Investments (nr. 
175.010.2005.011, 911-03-012). This study is funded by the Reasearch Ins  tute for Diseases 
in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Ini  a  ve (NGI)/Netherlands 
Organisa  on for Scien  fi c Reaserach (NOW) project nr. 050-060-810. The Ro  erdam 
Study is supported by grants from the Netherlands Organisa  on for Health Research and 
Development (ZonMw; Priority Medicines Elderly 113102005), by the Earsmus MC and 
Erasmus University Ro  erdam; the Netherlands Organisa  on for Scien  fi c Research (NOW); 
the Netherlands Organisa  on for Health Research and Development (ZonMw); the Reaserach 
Insi  ute for Diseases in the Elderly (RIDE); the Netherlands Genomics Ini  a  ve (NGI); the 
Ministry of Educa  on, Culture and Science; the Ministry of Health Welfare and Sport; the 
European Commission (DG XII), and the Municipality of Ro  erdam. 

The publica  on of this thesis was fi nancially supported by: ABN AMRO, the Erasmus University, 
Ro  erdam and the department of Epidemiology, Erasmus MC, Ro  erdam. Financial support 
by the Dutch Heart Founda  on for the publica  on of this thesis is gratefully acknowledged.

For reasons of consistency within this thesis, some terms and abbrevia  ons have been 
standardized throughout the text. As a consequence the text may diff er in this respect from 
the ar  cles that have been published. 

Cover lay-out: Carin van der Kooi.
Layout and printed by: Gildeprint, Enschede
© Elisabeth M. van Leeuwen, 2015
ISBN: 978-94-6233-249-2

For ar  cles published or accepted for publica  on, the copyright has been transferred to the 
respec  ve publisher. No part of this thesis may be reproduced, stored in a retrieval system, 
or transmi  ed in any form or by any means without the permission of the author, or, when 
appropriate, from the publishers of the manuscript.



A Study of the Complex Geneti c Inheritance of Lipids:

From common to rare, from single associati on to interacti on

Een Studie naar de Complexe Gene  sch Natuur van Lipiden:
Van frequent tot zeldzaam, van enkele associa  e tot interac  e

Proefschri  

ter verkrijging van de graad van doctor aan de
Erasmus Universiteit Ro  erdam

op gezag van de
rector magnifi cus

Prof.dr. H.A.P. Pols

en volgens besluit van het College voor Promo  es.
De openbare verdediging zal plaatsvinden op 

woensdag 20 april om 11.30 uur

door

Elisabeth Maria van Leeuwen

geboren te Amsterdam



PROMOTIECOMMISSIE:

Promotor:                  Prof.dr.ir. C.M. van Duijn

Overige leden:  Prof.dr. L.A. Cupples
Prof.dr. B. Müller-Myhsok
Prof.dr. E.J.G. Sijbrands

 



Voor papa en mama





PUBLICATIONS AND MANUSCRIPTS BASED ON THE STUDIES DESCRIBED 
IN THIS THESIS

1 Elisabeth M. van Leeuwen, Jennifer E. Huff man, Joshua C. Bis, Aaron Isaacs, Monique 
Mulder, et al. Fine mapping the CETP region reveals a common intronic inserti on 
associated to HDL-C. NPJ Aging and Mechanisms of Disease (in press). [Chapter 2.1]

2 Elisabeth M. van Leeuwen, Aniko Sabo, Joshua C. Bis, Jennifer E. Huff man, Ani Manichaikul, 
et al. Meta-analysis of 49,549 individuals imputed with the 1000 Genomes Project 
reveals an exonic damaging variant in ANGPTL4 determining fasti ng TG levels. Journal 
of Medical Gene  cs (in press). [Chapter 2.2]

3  Elisabeth M. van Leeuwen, Alexandros Kanterakis, Patrick Deelen, Mathijs V. Ka  enberg, 
The Genome of the Netherlands Consor  um, et al. Populati on-specifi c genotype 
imputati ons using minimac or IMPUTE2. Nature Protocols (Nat Protoc. 2015 
Sep;10(9):1285-96). [Chapter 3.1]

4 Patrick Deelen, Androniki Menelaou, Elisabeth M. van Leeuwen, Alexandros Kanterakis, 
Freerk van Dijk, et al. Improved imputati on quality of low-frequency and rare variants 
in European samples using the ‘Genome of The Netherlands’. European Journal of 
Human Gene  cs (Eur J Hum Genet, Jun 2014). [Chapter 3.2]

5 Elisabeth M. van Leeuwen, Lennart C. Karssen, Joris Deelen, Aaron Isaacs, Carolina 
Medina-Gomez, et al. Genome of the Netherlands populati on-specifi c imputati ons 
identi fy an ABCA6 variant associated with cholesterol levels. Nature Communica  ons 
(Nat Commun, 6:6065, 2015). [Chapter 3.3]

6 Elisabeth M. van Leeuwen, Françoise A. S. Smouter, Tony Kam-Thong, Nazanin Karbalai, 
Albert V. Smith, et al. The challenges of genome-wide interacti on studies: lessons to 
learn from the analysis of HDL C blood levels. PLoS One (PLoS One, 9(10):e109290, 
2014). [Chapter 4.1]

7 Elisabeth M. van Leeuwen, Ayşe Demirkan, Najaf Amin, Aaron Isaacs, Jan Bert van Klinken, 
et al. Identi fi cati on of rare variants associated with high density lipoprotein cholesterol 
(HDL-C) by exome sequencing in a family based study. Submi  ed. [Chapter 4.2]





CONTENT

Part 1  Introducti on and methods 11
   

Part 2   The 1000 Geno m es  
 2.1 Fine mapping the CETP region r e veals a common intronic  29
   inser  on associated to HDL-C 
 2.2 Meta-analysis of 49,549 individuals with the 1000 Ge n omes  49
   Project reveals an exoni c  damaging variant in ANGPTL4 
   determining fas  ng TG levels 

   
Part 3   Genome of the Netherlands, a populati on-specifi c reference panel 

 3.1 Popula  on-specifi c genotype imputa  ons using minimac or IMPUTE2 65
 3.2 Improved imputa  on quality of low-frequency and rare variants  87
   in European samples using the Genome of the Netherlands 
 3.3 Genome of the Nethe r lands popula  on-specifi c imputa  ons  99
   iden  fy an ABCA 6  variant associated with cholesterol levels 

   
Part 4   New approaches to reveal variants associated with HDL-C 

 4.1 The challenges of genome-wide interac  on studies: lessons to  113
   learn from t h e analysis of HDL C blood levels 
 4.2 Iden  fi ca  on of rare variants associated with HDL-C by  135
   exome sequencing in a family based study 

   
 Part 5   General discussion and sum ma ry 

 5.1 General Discussion 161
 5.2 Summary 177
 5.3 Samenva   ng 181

   
Part 6   Epilogue 

 6.1 Dankwoord/Acknowledgements 189
 6. 2  About the author 197
 6.3 L i st of publica  ons 201
 6.4 PhD por  olio summary 211





PART 1
INTRODUCTION AND METHODS



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

12 | Part 1



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

| 13

The past century major progress has seen in the understanding of the gene  c e  ology of lipid 
metabolism. In this thesis I aim to further dissect the complex gene  c nature of circula  ng 
lipid levels, in par  cular four types of lipids: high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglycerides (TG). Blood 
concentra  on of these lipids are highly heritable1 with gene  c heritabili  es of 0.485 ± 0.029 
for HLD-C, 0.539 ± 0.028 for LDL-C, 0.556 ± 0.028 for TC, and 0.358 ± 0.028 for TG. Circula  ng 
lipid levels are determinants of artherosclerosis and cardiovascular disease (CVD)2,3. They have 
been targets for therapeu  c interven  on of CVD. CVD are the leading cause of morbidity and 
the number one cause of death worldwide4. The goal of this thesis is to iden  fy new variants 
associated with circula  ng lipid levels. Ul  mately understanding the gene  cs of lipids may 
lead to earlier detec  on, and improved preven  on through iden  fi ca  on of new targets for 
therapeu  c inven  on of CVD.

Circulati ng lipid levels
LDL-C transports cholesterol from the liver to the artery wall. It plays a key role in the 
pathogenesis of arthesclerosis, and is strongly associated with an increased risk of 
cardiovascular disease5,6. Circula  ng LDL-C levels are a target for preven  on. Sta  ns and 
other lipid lowering therapy has been successful in reducing the LDL-C levels. LDL-C levels are 
strongly correlated with total cholesterol levels in humans, which is o  en used in a clinical 
se   ng either by itself or in rela  on to HDL-C. Although it is preferred to measure the LDL-C 
levels in the circula  on, the LDL-C levels can also be es  mated with the Friedewald equa  on7: 
LDL-C = TC  HDL-C  k · TG where k is 0.20 if the quan   es are measured in mg/dl and 0.45 
if in mmol/l. This method has o  en been used in epidemiological and gene  c studies, though 
there are limita  ons to this method, most notably that samples must be obtained a  er a 12 
to 14 hour fas  ng and that LDL-C cannot be calculated if plasma TG is above 4.52 mmol/L 
(400 mg/dL). 
HDL-C transports various fat molecules including cholesterol out of the artery walls to 
the liver8. In that, its func  on is the an  pode of that of LDL-C and indeed HDL-C has been 
associated with a decreased risk of CVD. However, HDL-C also is an eff ec  ve an  oxidant and 
it possesses an  -infl ammatory proper  es. In terms of protec  ng against the development of 
cardiovascular disease9, these an  oxidant and an  -infl ammatory proper  es of HDL-C may 
be as important as its cholesterol effl  ux func  on. The key player in the reverse transport of 
cholesterol from the artery walls to the liver is the protein encoded by the Cholesteryl Ester 
Transfer Protein (CETP) gene10, as shown by func  onal analyses in mice11, hamsters12 and 
rabbits13. CETP has been a target for drug development. CETP is one of the genes that has 
been associated to longevity14. Up un  l now, developments of therapy targe  ng low HDL-C 
have failed15.
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Although there is scep  cism on the value as HDL-C for preven  on of CVD, there are major 
gaps in our knowledge. Figure 1 gives an overview of the common gene  c variants iden  fi ed 
to date for HDL-C, LDL-C, TC and TG. Remarkably, CETP plays a key role in not only HDL-C, but 
also LDL-C and TC levels sugges  ng the gene is a target for various lipids. This is also the case 
for TRIB1, FADS1-2-3 and APOA1 (see Figure 1). Genome-wide associa  on studies have also 
brought to light many new HDL-C genes that are more specifi c for HDL-C (see Figure 1). A key 
ques  on to answer is how diff erent genes relate to the various HDL-C par  cles. There are a 
large number of sub par  cles of HDL-C. HDLs are a class of heterogeneous lipoproteins; their 
heterogeneity is a  ributable to a diff erent content of apolipoproteins, lipids and enzymes 
and to the remodelling of HDL-C par  cles by lipoly  c enzymes, lipid transporters and by lipid 
and apolipoprotein exchange with other circula  ng lipoproteins and  ssues16,17. Large HDL-C 
par  cles are inversely associated while small HDL-C par  cles are posi  vely associated with 
CVD16,17.

Figure 1: Overlap of loci associated with diff erent lipid traits, as discovered by Teslovich et al32 and GLGC 
et al33. The Venn diagram illustrates the number of loci that show associa  on with mul  ple lipid traits. 
The number of loci primarily associated with only one trait is listed in parentheses a  er the trait name, 
and locus names are listed below. Loci that show associa  on with two or more traits are shown in the 
appropriate segment. Source: GLGC et al33.
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HDL-C levels are strongly inversely related to triglycerides. Triglycerides are esters derived 
from glycerol and three fa  y acids which enables bidirec  onal transference of adipose fat 
and circula  ng glucose from the liver. There are at present 16 genes that are involved in both 
HDL-C and TG, as expected. This overlap is larger compared to the overlapping genes that are 
involved in both LDL-C and TC. There has been debated whether lowering TG has not resulted 
in preven  on of CVD18. Yet, epidemiological and gene  c research found evidence that raised 
triglycerides are a risk factor for cardiovascular disease also in the general popula  on19.
The high heritability of circula  ng lipids20 has fuelled the great interest in gene  c research 
that has already been successful in the second half of the previous century. These studies 
have revealed that many lipid related syndromes are caused by a rela  ve rare muta  on in a 
single gene. In these Mendelian forms of dyslipidemia, such as familiar hyperlipidemia, the 
circula  ng lipid levels are strongly elevated and carriers have an increased risk of early onset 
CVD (before the age of 65 years)21. This disease is segrega  ng from genera  on to genera  on, 
both as a dominant form with up to 50% of fi rst degree rela  ve aff ected as well as recessive 
forms with recurrence risk in siblings of 25%. There are also lipoprotein defi ciency disorders in 
which the circula  ng lipid levels lead to the pathology, e.g. Tangier disease22,23. Tangier disease 
(TD) is an autosomal recessive disorder of lipid metabolism. It is characterized by absence of 
plasma HDL-C and deposi  on of cholesteryl esters in the re  culo-endothelial system with 
splenomegaly and enlargement of tonsils and lymph nodes. Although low HDL-C is associated 
with an increased risk for coronary artery disease, this condi  on is not consistently found in 
TD pedigrees. Metabolic studies in TD pa  ents have revealed a rapid catabolism of HDL-C and 
its precursors. The TD locus has been mapped to chromosome 9q31 within the ABC1 gene22. 
There are many more Mendelian genes involved in lipid related syndromes, of note that 
these are various genes overlapping with the fi ndings of the GWAS, like LDL-R and APOB24,25.
Despite that many rare and common variants found to date, not all heritability is explained 
yet and thus there are s  ll many variants to be found, probably with even smaller eff ects and/
or smaller frequencies worldwide. There may be various explana  ons why these have not 
been found so far. This lack of informa  on is o  en referred to as the missing heritability26, 
or more precisely our missing knowledge of the heritability, which may be a  ributed to the 
fact that:
1. Many regions in the genome have been associated with circula  ng lipid levels, however, 

the causal variant is s  ll to be iden  fi ed. Iden  fi ca  on of the causal variant may improve 
the heritability explained. Due to improved technologies, it is now possible to fi ne-map 
these regions and locate the causal variant.

2. Mainly common have been studied in the general popula  on and low-frequency variants 
segrega  ng in families but these have not been studied together with rare variants. 
However, also rare variants are expected to determine circula  ng lipid levels in the 
popula  on.
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3. Interac  ons of gene  c variants may explain part of the heritability. This may concern gene 
environment interac  ons or gene-gene interac  ons. Gene environment interac  ons have 
been studies as part of the ENGAGE contor  um27. There has been li  le work on gene 
interac  ons, par  cular gene-gene interac  ons. Persistent evidence for interac  ng loci 
involved in lipid metabolism comes from experimental animal research in which various 
loci interact with each other28. 

4. Gene  c mechanisms like structural varia  on, DNA methyla  on and histone modifi ca  on 
are also poten  al candidates determining circula  ng lipid levels29,30. 

This thesis focuses on the explana  on 1, 2 and 3 and specifi cally aims to iden  fy variants 
associated with individual circula  ng lipid levels in the general popula  on. Common variants 
typically have small eff ects compared to the Mendelian variants. Although the variants 
segregate according to Mendelian principles, there is no typical aggrega  on of disease in 
families in contrast to the clinical expression of the Mendelian variants. At present, genome-
wide associa  on studies (GWAS) and sequencing of exomes have iden  fi ed many common 
variants with small eff ects on circula  ng lipid levels31-33. I aim to iden  fy common variants 
integra  ng the GWAS data with that of large scale sequencing projects such as the 1000 
Genomes and genome of the Netherlands (GoNL). This will allow me to fi nemap regions and 
search for independent variants explaining the heritability and fi nd new variants. Further I 
aim to study gene-gene interac  ons and fi nd rare variants both in families associated with 
HDL-C.

Geneti c epidemiological approaches
In this thesis several gene  c epidemiological approaches are used to dissect the complex 
nature of circula  ng lipid levels. The genes iden  fi ed in families have o  en used a linkage 
approach which is depicted in fi gure 2. Linkage occurs in a family when alleles located close 
together on a chromosome with the disease muta  on are inherited together during meiosis. 
The discovery of the common variants is based on the same principle of inheritance, but 
used another sta  s  cal approach, associa  on. The basic ra  onale of the methods is that 
if a variants is causally associated to a disease, the variant is expected to be found more 
o  en in cases than controls. However, as genes are segrega  ng from parents to off spring 
as chromosomes, large pieces of chromosomes may be linked to each other also in the 
popula  on (linkage disequilibrium) and also nearby non-causal variants are shared. Thus it 
is not necessary to determine all variants in the genome but for GWAS variants are used 
to cover the full genome based on linkage disequilibrium34 (Figure 2). This principle can be 
applied genome-wide, allowing iden  fi ca  on of new variants or regions associated with the 
trait without any prior hypothesis but also to candidate genes, i.e., genes that based on the 
protein they encode for as expected to be associated to a trait because the protein has been 
implicated in the outcome. 
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Figure 2: Linkage and Linkage Disequilibrium. Within a family, linkage occurs when two gene  c 
markers (points on a chromosome) remain linked on a chromosome rather than being broken apart 
by recombina  on events during meiosis, shown as red lines. In a popula  on, con  guous stretches of 
founder chromosomes from the ini  al genera  on are sequen  ally reduced in size by recombina  on 
events. Over  me, a pair of markers or points on a chromosome in the popula  on move from linkage 
disequilibrium to linkage equilibrium, as recombina  on events eventually occur between every possible 
point on the chromosome. Source: Bush and Moore34.
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GWAS have been extensively used to iden  fy variants associated with various traits among 
which circula  ng lipid levels32,33,35-37. In a GWAS, millions of gene  c variants along the genome 
are tested to be associated with a par  cular trait38,39. However, tes  ng millions of variants, 
will lead to a large mul  ple tes  ng correc  on and therefore the threshold for signifi cance 40 in 
these studies is 5 · 10-8. In the early stages of GWAS of circula  ng lipid levels, only one or a few 
cohorts were used yielding 6 and 17 variants35,36. Subsequently, more to cohorts were meta-
analysed due to the imputa  on strategies and sample sizes increased yielding in total 72, 55, 
71 and 42 variants for HDL-C, LDL-C, TC and TG respec  vely32,33,41, see Figure 1. Mul  ple tools 
have been developed to enable fast and accurate tes  ng of all variants on the genome37,42,43. 
Although GWAS replaced the candidate-gene approach in which a gene is studied in detail as 
opposed to the full genome, it has produced large number of new candidate regions, where 
the causal variant remains to be found by sequencing or imputa  on of clinical studies. 
In my thesis I have also used exome-wide associa  on studies (ExWAS). Whereas GWAS makes 
use of genotype data, mostly imputed to a certain reference panel (see below), ExWAS makes 
use of exome sequencing data and is thus targe  ng a subset of the genome, i.e., the region 
of the genome that encodes for proteins (exome). As the main diff erence between GWAS 
and ExWAS is that in an ExWAS only coded variants are tested for associa  on whereas GWAS 
also test not coding variants, there are no principle diff erences in the analyses. However, 
there are major technical diff erences in how the variants are assesses. In GWAS genotyping 
arrays are used while exome sequencing uses next genera  on sequencing. The analysis 
used for GWAS determine classical genotypes at a locus while they are usually common bi-
allelic single nucleo  de polymorphism (SNPs). SNPs are DNA sequence varia  ons occurring 
commonly within a popula  on in which a single nucleo  de (A, T, C or G) in the genome diff ers 
between individuals. To allow pooling of studies using diff erent arrays, common SNPs are 
usually imputed. Also rare variants are imputed but these are not always present, depending 
on the reference panel. The next genera  on sequencing of exonic variants is a probabilis  c 
approach in which the quality of genotyping depends on the read depth, i.e. how o  en a 
variant is seen. Next genera  on sequencing therefore may results in more reliable results as 
the variants in the GWAS dataset are only es  mates of the variants.
Genome-wide interac  on studies (GWIS) are used to discover interac  ons between gene  c 
variants. GWIS has been hampered by the computa  on  me needed for tes  ng all unique 
pairs of SNPs on a regular Computer Processing Units (CPUs). In this thesis I make use of the 
GLIDE so  ware package44 which makes use of modern Graphics Processing Units (GPUs) to 
perform linear regression for all pairs of SNPs in a rela  vely short  me period. Just like with 
GWAS and ExWAS, also in GWIS, the large number of tests that are performed need to be 
taken into account and therefore the threshold for signifi cance for this GWIS was 1 · 10-8, 
which is debatable.
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Bioinforma  cs plays a key role in the current gene  c fi eld, where much work is performed 
by the computer, not only the analysis itself, but also crea  ng the datasets for the analysis. 
Bioinforma  cs is needed to create large datasets, harmonizing gene  c informa  on over 
data sets by gene  c imputa  ons, develop the tools for the analysis and run the analysis. 
A  er the analysis, the results of the gene  c epidemiologic research needs to be interpreted. 
Bioinforma  c tools for annota  on, for predic  on of func  onal eff ects, for amino acid 
subs  tu  ons, for pathway analysis can be of help for the interpreta  on of the results. In 
my thesis, I have performed various imputa  ons of sequence data using diff erent referent 
panels, which is discussed below. 

Reference panels for imputati ons
A common approach in GWAS studies to fi nd new variants has been to enlarge the samples 
by pooling studies. This requires all cohorts to have the same variants in their GWAS. This is 
not always the case, as diff erent chips of diff erent size and diff erent manufactors are available 
for genotyping. Using the principles of LD, it has been possible to impute genotypes based 
on a set of common reference haplotypes. The HapMap reference set45-47 was the basis 
of the fi rst gene  c imputa  ons. This set has been used in the past intensively to iden  fy 
variants associated with various phenotypes. The Phase I HapMap version47 was based on 
90 YRI, 90 CEU, 45 CHB and 44 JPT. The CEU and YRI samples were 30 parent-off spring trios. 
The genotyping goal of the Phase I HapMap Project was to genotype at least one common 
SNP (MAF≥0.05) every 5 kilobases (kb) across the genome in the 269 samples, resul  ng 
in approximately 1.3 million SNPs. In Phase II of the HapMap Project, a further 2.1 million 
SNPs were successfully genotyped on the same individuals resul  ng in an SNP density of 
approximately one per kilobase45. The HapMap 3 Project contains 1.6 million common SNPs 
in 1,184 individuals from 11 global popula  ons (including the 269 individuals from HapMap 
Phase I and II), and sequenced ten 100-kilobase regions in 692 of these individuals46. 
These popula  ons were included to provide further varia  on data from each of the three 
con  nental regions represented in HapMap Phase I and II, as well as data from some more 
admixed popula  ons residing in the US. Although HapMap was successful for most European 
common variants, rare variants (MAF < 0.01) cannot be imputed as too few haplotypes are 
available in the reference panel.
The 1000 Genomes (1kG) project48,49 aimed to make a reference panel for rare variants. One 
of the aims of the pilot phase of the project48 was to develop and compare diff erent strategies 
for genome-wide sequencing with high-throughput pla  orms. Therefore 179 individuals were 
sequenced low-coverage, 6 individuals in two trios were deep sequenced and 8,140 exons 
in 697 individuals were sequenced. The phase I of the project contained49 1,092 individuals 
sampled from 14 popula  ons drawn from Europe, East Asia, sub-Saharan Africa and the 
Americas analysed through a combina  on of low-coverage (2-6x) whole-genome sequence 
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data, targeted deep (50-100x) exome sequence data and dense SNP genotype data. The fi nal 
version of the project (phase 3 version 5) of the 1kG reference set contains a total of about 
81.2M polymorphic variants coming from low-coverage whole-genome sequencing of 2,500 
unrelated samples from 19 popula  ons.
The main diff erence between HapMap and 1kG project is that the former has fewer 
genotypes: as it is based on fewer persons it capture less varia  on in the popula  on. There 
also is a diff erence in quality of haplotypes between HapMap and 1kG. The reliability of the 
imputa  ons is determinant by: (1) the number of haplotypes in the reference set and (2) 
the quality of the haplotypes which diff ers in parent-off spring trios and sta  s  cal es  mates. 
A variant may not be represented adequately in the reference data set. This explains why 
imputa  ons of common variants are more reliable compared to imputa  ons of rare variants. 
In  ally HapMap haplotypes were es  mated for diff erent ethnic groups as LD is expected 
to be diff erent between ethnic groups. The 1kG aims to create maps of gene  c varia  on 
across mul  ple popula  ons, but the number of individuals per popula  on is modest in this 
reference panel. Spli   ng groups reduces the size of the reference set and as rare variant 
haplotypes may occur in the diff erent ethnic groups mixing diff erent ethnic popula  ons in 
one reference set appears to improve imputa  on quality par  cular for the rare variants50-52, 
even the addi  on of samples are from ethnic groups are not closely related to the samples 
in the target set. However, when the percentage of unrelated samples is beyond a certain 
propor  on, the imputa  on quality does not improve, especially for low-frequency variants52. 
Nowadays, many eff orts are ongoing to further increase the sample size of the reference 
panels. The larger the reference panel, the larger the change it will contain the haplotype 
of interest and thus the more accurate the imputa  ons will be. As the frequency of rare 
variants may increase in certain popula  ons due to dri   and founder eff ects53, the power 
of searches for rare func  onal variants may improve by the use of reference sets specifi c 
to dis  nct popula  ons. Such references allow for be  er quality imputa  on of rare variants 
especially those with increased frequency in the popula  on of interest53-55. However, to 
characterize a popula  on, it is crucial to sequence as many individuals as possible to maximize 
the probability of capturing rare variants55. This approach has been applied by the Genome 
of the Netherlands consor  um to develop the GoNL reference panel. For this custom-built 
reference panel for the Dutch popula  on the whole genome of 250 parent-off spring trios 
were sequenced at approximately 13x coverage54,55. An approximately equal representa  on 
from the original 11 Dutch provinces were choosen, and an oversampling from the two major 
ci  es, Amsterdam and Ro  erdam. 
One of the fi rst ques  ons addressed whether there are diff erences in the genome across 
the Netherlands. Figure 355 shows the results of the Principal Component Analysis (PCA) of 
all 769 GoNL samples. The three PCs correlated signifi cantly with geographic loca  on and 
dis  nguished between: (1) the North and South of the Netherlands; (2) between the East 
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and West; and (3) between the middle-band of the Netherlands and the rest of the country. 
The PCs capture the geographical varia  on in the data very well. Due to the trio design, the 
phasing quality of the reference panel was be  er than that of the 1kG Phase 1 panel56. The 
GoNL reference panel was used in this thesis for the imputa  ons of the Dutch biobanks prior 
to a meta-analysis of circula  ng lipid levels with the aim to iden  fy low-frequency and rare 
variants associated with circula  ng lipid levels. 

Figure 3: PCA results highligh  ng diff erences in gene  c make-up across the Netherlands: the plots give 
PC1 versus PC2, and PC1 versus PC3. Source: Boomsma et al55

Scope of this thesis
The aim of this thesis is to dissect the complex gene  c nature of circula  ng lipid levels, in 
par  cular HDL-C, LDL-C, TC and TG. One of the approaches used in this thesis to iden  fy 
new variants associated with these circula  ng lipid levels are meta-analysi  s of GWAS of 
mul  ple cohorts. This requires all cohorts to have the same variants in their GWAS. To this 
end, genotypes that have not been measured in a given cohort can be imputed based on 
a set of reference haplotypes. In Chapter 2 the 1000 Genomes reference panel was used 
for imputa  ons of the cohorts of the CHARGE consor  um. Chapter 2.1 describes the fi ne-
mapping of the CETP region, a region that has been known to be associated with HDL-C for 
a long  me32. Though the causal variant has not been determined so far and by using the 
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1kG as a reference panel, there will be more power to fi ne-map the associa  on between 
CETP and HDL-C. Chapter 2.2 focuses on new variants associated with one of the four 
circula  ng lipid levels. Chapter 3 focuses on the Genome of the Netherlands reference panel. 
Chapter 3.1 provides guidelines for performing imputa  ons with this popula  on-specifi c 
reference panel and Chapter 3.2 uses this popula  on-specifi c reference panel there was a 
signifi cant improvement for rare variants (MAF between 0.05 and 0.5%) compared to the 
1000 Genomes, both for Dutch, Bri  sh and Italian samples. Chapter 3.3 uses GoNL for the 
iden  fi ca  on of novel variants associated with circula  ng lipid levels a  er imputa  ons with 
the GoNL reference panel, followed by a meta-analyses. Meta-analysis of GWAS of mul  ple 
cohorts has been applied on various phenotypes before with various reference panels being 
used for the imputa  ons and although also in this thesis the method showed to iden  fy even 
more variants associated with circula  ng lipid levels, I also applied new methods to dissect 
the complex gene  c nature of HDL-C (Chapter 4). In Chapter 4.1 I performed the fi rst GWIS to 
iden  fy SNPxSNP interac  ons associated with HDL-C. In Chapter 4.2 I performed an ExWAS to 
iden  fy rare coding variants associated with HDL-C. Finally, in Chapter 5, I discuss the fi ndings 
of this thesis, and their implica  ons for future research. 
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ABSTRACT 

Background: Individuals with excep  onal longevity and their off spring have signifi cantly 
larger high-density lipoprotein concentra  ons (HDL-C) par  cle sizes due to the increased 
homozygosity for the I405V variant in the cholesteryl ester transfer protein (CETP) gene. 
In this study we inves  gate the associa  on of CETP and HDL-C further to iden  fy novel, 
independent CETP variants associated with HDL-C in humans.

Methods: We performed a meta-analysis of HDL-C within the CETP region using 59,432 
individuals imputed with 1000 Genomes data. We performed replica  on in an independent 
sample of 47,866 individuals and valida  on was done by Sanger sequencing. 

Results: The meta-analysis of HDL-C within the CETP region iden  fi ed fi ve independent 
variants, including an exonic variant and a common intronic dele  on. We replicated these 
fi ve variants signifi cantly in an independent sample of 47,866 individuals. Sanger sequencing 
of the dele  on within a single family confi rmed segrega  on of this variant. 
The strongest reported associa  on between HDL-C and CETP variants, was rs3764261; 
however, a  er condi  oning on the fi ve novel variants we iden  fi ed, the support for 
rs3764261 was highly reduced (βunadjusted=3.179 mg/dL (p-value=5.25·10-509), βadjusted=0.859 
mg/dL (p-value=9.51·10-25)), and this fi nding suggests that these fi ve novel variants may 
partly explain the associa  on of CETP with HDL-C. Indeed, three of the fi ve novel variants 
(rs34065661, rs5817082, rs7499892) are independent of rs3764261.

Conclusions: The causal variants in CETP that account for the associa  on with HDL-C remain 
unknown. We used studies imputed to the 1000 Genomes reference panel for fi ne mapping 
of the CETP region. We iden  fi ed and validated fi ve variants within this region that may partly 
account for the associa  on of the known variant (rs3764261) as well as other sources of 
gene  c contribu  on to HDL-C.
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INTRODUCTION

Aging is characterized by a deteriora  on in the maintenance of homeosta  c processes over 
 me, leading to func  onal decline and increased risk for disease and death1. One of the 

genes linked to healthy aging and longevity is the cholesteryl ester transfer protein (CETP) 
gene1,2. Homozygosity in the 405VV variants of CETP is associated with lower concentra  ons 
of CETP, higher concentra  ons of high-density lipoprotein concentra  ons (HDL-C) and greater 
HDL-C par  cle size, all associated with both protec  on against cardiovascular disease3 and 
excep  onal longevity4. 
Func  onal analyses in mice5, hamsters6 and rabbits7 have revealed that the protein encoded 
by the CETP gene mediates the transfer of cholesteryl esters from HDL-C to other lipoproteins 
such as atherogenic (V)LDL par  cle and is a key par  cipant in the reverse transport of 
cholesterol from the periphery to the liver8. Due to the func  on of CETP and the associa  on of 
the gene with HDL-C in humans9,10, the CETP gene is one of the targets for drug development 
for dyslipidemia6,11,12. CETP-inhibi  on leads to an increase of HDL-C from 30% up to 140% 
depending on the compound used. The fi rst drug of its class, Torcetrapib was unfortunately 
associated with an increased mortality and morbidity in pa  ents receiving the CETP-inhibitor 
in addi  on to atorvasta  n13,14. 
The es  mated heritability of HDL-C levels is high in humans: 47-76%15-23. Previously published 
whole-genome sequence data23 reported that common variants (minor allele frequency 
(MAF) > 1%) explain up to 61.8% of the variance in HDL-C levels and that rare variants (MAF 
< 1%) explain an addi  onal 7.8% of the variance. Genome-wide associa  on studies (GWAS) 
revealed that numerous variants are associated with HDL-C, among which are various 
common9,10 and rare24,25 variants within the CETP gene in mul  ple ancestries4,8,26-28. In this 
paper we inves  gate the associa  on between CETP and HDL-C in humans in further detail to 
iden  fy variants that are likely to be causal. 
To this end, we used a meta-analysis of associa  on studies with imputed genotypes within 
the CETP region. Our study consisted of data from 59,432 samples, of which the genotypes 
were imputed to the 1000 Genomes project reference panel (version Phase 1 integrated 
release v3, April 2012, all popula  ons). By using 1000 Genomes imputed data we expected to 
fi nd more rare or low-frequent variants as well as novel inser  ons and dele  ons. 

METHODS

Study descripti ons
The descrip  ons of the par  cipa  ng cohorts can be found in the supplemental material. 
All studies were performed with the approval of the local medical ethics commi  ees, and 
wri  en informed consent was obtained from all par  cipants.
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Study samples and phenotypes
The total number of individuals in the discovery phase was 59,432 and in the replica  on 
phase, 47,866. Of the discovery samples, 44,108 individuals (74.21%) were of European 
ancestry. Of the replica  on samples, 47,081 individuals (98.36%) were of European ancestry. 
A summary of the details of both the discovery and replica  on cohorts par  cipa  ng in this 
study can be found in Supplemental Table 1.

Genotyping and imputati ons
All cohorts were genotyped using commercially available Aff ymetrix or Illumina genotyping 
arrays, or custom Perlegen arrays. Quality control was performed independently for each 
study. To facilitate meta-analysis and replica  on, each discovery and replica  on cohort 
performed genotype imputa  on using IMPUTE229 or Minimac30 with reference to the 1000 
Genomes project reference panel (version Phase 1 integrated release v3, April 2012, all 
popula  ons). The details per cohort can be found in Supplemental Table 2.

Associati on analysis in discovery cohorts
The lipid measurements were adjusted for sex, age and age2 in all cohorts and if necessary 
also for cohort-specifi c covariates (Supplemental Table 1). Some cohorts included samples 
using lipid lowering medica  on; we did not adjust for lipid lowering medica  on in our analysis 
because HDL-C levels are only minimally infl uenced by lipid lowering medica  on. Each 
discovery cohort ran associa  on analysis for all variants within the CETP region (chromosome 
16, 56.99 Mbp – 57.02 Mbp) with HDL-C.

Meta-analysis of discovery cohorts
The associa  on results of all discovery cohorts for all variants within the CETP region 
(chromosome 16, 56.99 Mbp – 57.02 Mbp) were combined using inverse variance weigh  ng 
as applied by METAL31. This tool also applies genomic control by automa  cally correc  ng 
the test sta  s  cs to account for small amounts of popula  on stra  fi ca  on or unaccounted 
relatedness and the tool also allows for heterogeneity. We used the following fi lters for the 
variants: 0.3 < R2 (measurement for the imputa  on quality) < 1.0 and expected minor allele 
count (expMAC = 2 · MAF · R2 · sample size) > 10 prior to meta-analysis. A  er meta-analysis 
of all available variants, we excluded the variants that were not present in at least 3 cohorts, 
to prevent false posi  ve fi ndings. 
 
Selecti on of independent variants
In order to select only variants that were independently associated with HDL-C, we used the 
Genome-wide Complex Trait Analysis (GCTA) tool, version 1.1331. Although this tool currently 
supports mul  ple func  onali  es, we only used the func  ons for condi  onal and joint 
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genome-wide associa  on analysis. This func  on performs a stepwise selec  on procedure to 
select independent SNP associa  ons by a condi  onal and joint analysis approach. It u  lizes 
summary-level sta  s  cs from the meta-analysis and linkage disequilibrium (LD) correc  ons 
between SNPs are es  mated from the 1000 Genomes (1000G Phase I Integrated Release 
Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 haplotypes)). GCTA es  mates the 
eff ec  ve sample size and determines the eff ect size, the standard error and the p-value from 
a joint analysis of all the selected SNPs. In this way we select the best associated variants in 
CETP. We subsequently checked whether these variants were in LD within the 1000 Genomes 
reference panel (1000G Phase I Integrated Release Version 22 Haplotypes (2010-11 data 
freeze, 2012-02-14 haplotypes)) using PLINK32 so  ware (Supplemental Table 3).

Replicati on of independent CETP variants
Five variants were selected for replica  on in a sample of 12 independent cohorts: Athero-
Express, CHS, FINCAVAS, LBC1936, Lifelines, LLS, NTR-NESDA, PREVEND, PROSPER, QIMR, 
TRAILS and YFS. The lipid measurements were adjusted for sex, age and age2 in all cohorts 
and if necessary also for cohort-specifi c covariates (Supplemental Table 1b). The details per 
cohort regarding variant genotyping and imputa  ons can be found in Supplemental Table 2. 
The associa  on results of all replica  on cohorts were combined and the standard error based 
weights were calculated by METAL33. Since none of the fi ve variants are in LD (Supplemental 
Table 3), the Bonferroni-corrected p-value for mul  ple tes  ng was 0.01.

Test previous published results
The meta-analysis of HDL-C as published by Teslovich et al.9 iden  fi ed 38 genome-wide 
signifi cant (p-value < 5 · 10-8) variants within the CETP region (chromosome 16, 56.99 Mbp 
– 57.02 Mbp). Within all discovery and replica  on cohorts, we tested these 38 variants, 
adjus  ng for the 5 newly iden  fi ed independent variants to explore whether the new variants 
explain previously published results. The associa  on results of all cohorts were combined and 
the standard error based weights were calculated by METAL33. 
We used the genotypes of all 1,092 individuals of the 1000 Genomes project (1000G Phase 
I Integrated Release Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 haplotypes)) 
to calculate the correla  on between the 38 variants. This correla  on matrix was used by 
matSpDlite34 which examines the ra  o of observed eigenvalue variance to its theore  cal 
maximum to determine the number of independent variables. For these 38 genome-wide 
signifi cant variants within the CETP region, the eff ec  ve number of independent variables 
is 18 and therefore the experiment-wide signifi cance threshold required to keep type I error 
rate at 5% is 2.85 · 10-3.
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Conditi onal analysis of independent CETP variants
The replicated independent variants were selected for condi  onal analysis in both the 
discovery and the replica  on cohorts. In this analysis we adjusted for the lead SNP for this 
region as reported by Teslovich et al.9 (rs3764261, chromosome 16, posi  on 56,993,324 
basepairs). The associa  on results of all discovery and replica  on cohorts were combined 
and the standard error based weights were calculated by METAL33. The Bonferroni-corrected 
p-value for mul  ple tes  ng was 0.01, since none of the fi ve variants is in LD (Supplemental 
Table 3).

Validati on of the new CETP inserti on within a family
Within the ERF study, 3,658 individuals have been genotyped on various Illumina and 
Aff ymetrix chips, followed by imputa  ons with MaCH (1.0.18c) and Minimac (minimac-
beta-2012-03-14) to the 1000 Genomes reference panel (1000G Phase I Integrated Release 
Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 haplotypes)). Based on the best 
guess imputed genotypes, we selected one family in which we expected the inser  on to 
segregate. 
Valida  on of the inser  on was performed by Sanger sequencing. Genomic DNA was isolated 
from peripheral blood using standard protocols (sal  ng-out). The intron 2-3 of the CETP gene 
(Supplemental Table 4) was amplifi ed using PCR and the following primer sequences were 
used to amplify: forward; tgggggactcaggtctctcc; reverse; aaagcacctggcccacaacc; size 409 bp.
PCR reac  ons was performed in 17.5 μl containing 37.5 ng DNA, 10 pmol/ul of each primer, 
2.5 mM dNTP’s, 10x PCR buff er with Mg+ (Roche) and 5 U/ul FastStart Taq (Roche). Cycle 
condi  ons: 7 min at 94°C; 10 cycles of 30 s denatura  on at 94°C, 30 s annealing at 70°C to 1°C 
per cycle and 90s extension at 72°C; followed by 20 cycles of 30 s denatura  on at 94°C, 30 s at 
60°C and 90 s at 72°C; fi nal extension 10 min at 72°C. Sephadex G50 (Amersham Biosciences) 
was used to purify the sequenced PCR products. Direct sequencing of both strands was 
performed using Big Dye Terminator chemistry version 4 (Applied Biosystems). Fragments 
were loaded on an ABI3100 automated sequencer and analyzed with DNA Sequencing 
Analysis (version 5.3) and SeqScape (version 2.6) so  ware (Applied Biosystems). All sequence 
variants are numbered at the nucleo  de levels according to the following references: NC
_000016.10:g.56963437_56963438insA (NCBI), NM_000078.2:c.233+313_233+314insA, 
Human Feb. 2009 (GRCh37/hg19) Assembly.
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RESULTS

Meta-analysis in all discovery cohorts to select independent variants
The associa  on of all variants within the CETP region (chromosome 16, 56.99 Mbp – 57.02 
Mbp) to HDL-C was tested in all discovery cohorts. These results were combined using the 
inverse-variance weights as applied by METAL33. A  er exclusion of the variants that were 
not present in at least 3 cohorts, 254 variants remained (Figure 1). A condi  onal and joint 
analysis of the 254 variants using GCTA iden  fi ed fi ve independent variants (Figure 2). Three 
variants were intronic (rs5817082, rs4587963 and rs7499892), one variant was intergenic 
(rs12920974) and one variant was exonic (rs34065661) (Table 1). Using PLINK so  ware, 
we calculated the LD between the 5 variants based on the 1000 Genomes reference panel 
(1000G Phase I Integrated Release Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 
haplotypes)), and found that none are in high LD with each other (Supplemental Table 3).
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Figure 1. Results of the meta-analysis of all discovery cohorts within the CETP region.



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

36 | Chapter 2.1

Ta
bl

e 
1.

 T
he

 fi 
ve

 in
de

pe
nd

en
t v

ar
ia

nt
s 

a
 e

r m
et

a-
an

al
ys

is 
in

 th
e 

di
sc

ov
er

y 
co

ho
rt

s.

M
ar

ke
rN

am
e

Ch
r

Po
si

 o
n

EA
*

Ty
pe

Fr
eq

†
A

 e
r m

et
a-

an
al

ys
is

Fr
eq

ge
no

§
A

 e
r G

CT
A 

 an
al

ys
is

β‡
SE

β
p-

va
lu

e
β J‡

SE
βJ

p-
va

lu
e J

rs
12

92
09

74
16

56
,9

9 3
, 0

25
T

SN
P

0.
27

1
-1

.7
48

0.
09

6
1.

41
E-

74
0.

28
1

-1
.8

06
0.

13
9

2.
40

E-
38

rs
34

06
56

61
16

56
,9

95
,9

35
G

SN
P

0.
05

8
7.

20
3

0.
56

0 
7.

04
E-

38
0.

02
0

6.
78

2
0.

58
2

2.
23

E-
31

rs
58

17
08

2
16

56
,9

97
,3

49
CA

IN
D E

L 
0.

28
5

-2
.8

69
0.

09
8

8.
95

E-
18

7
0.

30
5

-4
.2

86
0.

17
2

1.
55

E-
13

7
rs

45
87

96
3

16
56

,9
97

,3
69

A
SN

P
0.

24
0

-0
.9

72
0.

10
1

5.
25

E-
22

0.
26

1
-2

.0
14

0.
16

5
2.

11
E-

34
rs

74
99

89
2

16
57

,0
06

,5
90

T
SN

P
0.

20
9

-3
.3

84
0.

10
7

2.
94

E-
21

8
0.

24
5

-2
.0

83
0.

15
0

1.
31

E-
43

* 
EA

 (e
ff e

ct
 a

lle
le

): 
th

e 
al

le
le

 fo
r w

hi
ch

 th
e 

eff
 e

ct
 o

n 
H

DL
-C

 is
 e

s
 m

at
ed

. 
† 

Fr
eq

: t
he

 fr
eq

ue
nc

y 
of

 e
ff e

ct
 a

lle
le

 in
 th

e 
di

sc
ov

er
y 

co
ho

rt
s.

 
‡ 
β:

 th
e 

eff
 e

ct
 o

f t
he

 e
ff e

ct
 a

lle
le

. Β
j: 

th
e 

eff
 e

ct
 o

f t
he

 e
ff e

ct
 a

lle
le

 a
 e

r j
oi

nt
 a

na
ly

sis
 o

f a
ll 

se
le

ct
ed

 v
ar

ia
nt

s 
by

 G
CT

A.
§ 

Fr
eq

ge
no

: t
he

 fr
eq

ue
nc

y 
of

 t
he

 v
ar

ia
nt

 w
ith

in
 t

he
 r

ef
er

en
ce

 p
an

el
 (1

00
0G

 P
ha

se
 I 

In
te

gr
at

ed
 R

el
ea

se
 V

er
sio

n 
22

 H
ap

lo
ty

pe
s 

(2
01

0-
11

 d
at

a 
fr

ee
ze

, 
20

12
-0

2-
14

 h
ap

lo
ty

pe
s)

). 

A

β

−6 −5 −4 −3 −2 −1 0 1 2

AGES

ARIC (AA)

ARIC (EA)

CHS (EA)

ERF

FamHS

GS

JHS

Korcula

MESA (AFA)

MESA (CAU)

MESA (CHN)

MESA (HIS)

ORCADES

RS−I

RS−II

RS−III

Split

Vis

B

β

−2 0 2 4 6 8 10

ARIC (AA)

ERF

JHS

MESA (AFA)

MESA (HIS)

C

β

−1 0 1 2 3 4 5 6

AGES

ARIC (AA)

ARIC (EA)

ERF

FamHS

GS

JHS

Korcula

MESA (AFA)

MESA (CAU)

MESA (CHN)

MESA (HIS)

ORCADES

RS−I

RS−II

RS−III

Split

Vis



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

| 37

D

β

−4 −3 −2 −1 0 1 2

AGES

ARIC (AA)

ARIC (EA)

CHS (EA)

ERF

FamHS

GS

JHS

Korcula

MESA (AFA)

MESA (CAU)

MESA (CHN)

MESA (HIS)

ORCADES

RS−I

RS−II

RS−III

Split

Vis

E

β

−7 −6 −5 −4 −3 −2 −1 0 1

AGES

ARIC (AA)

ARIC (EA)

CHS (EA)

ERF

FamHS

GS

JHS

Korcula

MESA (AFA)

MESA (CAU)

MESA (CHN)

MESA (HIS)

ORCADES

RS−I

RS−II

RS−III

Split

Vis

Figure 2. Forest plots from the discovery meta-analysis results for the fi ve independent variants 
iden  fi ed within the CETP region. Only cohorts in which the variants passed QC are included in the 
forest plot. A:   rs12920974 (chromosome 16, posi  on 56,993,025), B: rs34065661 (chromosome 16, 
posi  on 56,995,935), C: rs5817082 (chromosome 16, posi  on 56,997,349), D: rs4587963 (chromosome 
16, posi  on 56,997,369) and E: rs7499892 (chromosome 16, posi  on 57,006,590).

Replicati on of the independent CETP variants
The fi ve independent variants within the CETP region were selected for replica  on within 
the following cohorts: Athero-Express, CHS, FINCAVAS, LBC1936, Lifelines, LLS, NTR-NESDA, 
PREVEND, PROSPER, QIMR, TRAILS and YFS. Five variants were replicated at a p-value of 2.99 
· 10-34 (Figure 3 and Table 2). 

Test to explain the previously published results
In each discovery and replica  on cohort we tested if the fi ve independent variants explain the 
associa  ons within the CETP region (chromosome 16, 56.99 Mbp – 57.02 Mbp) as reported 
in Teslovich et al.9. We tested a total of 38 genome-wide signifi cant (p-value < 5 · 10-8) SNPs 
within this region iden  fi ed by Teslovich et al.9 and condi  oned for the fi ve independent 
variants in all discovery and replica  on cohorts. All 38 variants were signifi cantly (p-value 
corrected for mul  ple tes  ng < 2.85 · 10-3) associated with HDL-C in our joint analyses without 
adjus  ng for the fi ve independent variants we iden  fi ed in this work, and 37 (97.37%) were 
genome-wide signifi cant (p-value < 5 · 10-8) despite the fact that our sample size is about 
65% of the study of Teslovich et al.9 (Table 3). When condi  oning on the 5 variants iden  fi ed 
in this work, 27 (71.05%) variants remained signifi cant (p-value < 2.85 · 10-3), though the 
p-values were markedly reduced (Table 3). This fi nding suggests that the new variants we 
iden  fi ed may explain in part the previously reported associa  on. Remarkably, the p-value of 
rs3764261 which was reported as the lead SNP for this CETP region by Teslovich et al.9 was 
highly reduced from 5.25 · 10-509 to 9.51 · 10-25 while the β decreased from 3.179 mg/dL to 
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0.859 mg/dL. This variant is not in LD with any of the 5 new variants. Due to the lack of LD, 
the standard error of rs3764261 does not change much (SEunadj=0.066, SEadj=0.084), but the 
eff ect of rs3764261 does (βunadj=3.179, βadj=0.859) and therefore the chi-square decreases as 
well, and that results in a higher p-value. This indicates that a part of the eff ect of rs3764261 
can be explained by the eff ect of the 5 new variants.

Conditi onal analysis of the independent CETP variants
Next, we performed condi  onal analysis of the independent variants in both the discovery 
and replica  on cohorts. We condi  oned on the lead SNP for the CETP region as reported by 
Teslovich et al.9 (rs3764261, chromosome 16, posi  on 56,993,324 basepairs), see Table 4 and 
Figure 4. This analysis showed that three out of the fi ve variants (rs34065661, rs5817082, 
rs7499892) are independent of rs3764261. For all variants the p-values and β’s decreased, 
but all p-values remained signifi cant. The eff ect of the single variant rs34065661, of the 
inser  on rs5817082 and of the single variant rs7499892 were reduced by 53.20%, 38.48% 
and 32.67%, respec  vely.

Validati on of the inserti on within a family
We selected based on the best guess imputa  ons of the ERF study, a large family of 30 
individuals for Sanger sequencing of rs5817082. Using MERLIN36 we es  mated that the total 
heritability of HDL-C within this family is 27.47%. DNA was available for 16 individuals. Figure 5 
shows the results of the Sanger sequencing for rs5817082 for these 16 individuals within the 
family. The sequencing of the inser  on confi rmed the best guess results for ten individuals 
(62.5%), of which seven were heterozygous for the inser  on, one was homozygous for the 
inser  on and two did not carry the inser  on. Three individuals that are homozygous for the 
inser  on, were predicted to be heterozygous by the best guess imputa  ons. Three individuals 
that are heterozygous for the inser  on, were not predicted to carry the inser  on by the 
best guess imputa  ons. Furthermore, the Sanger sequencing showed that the inser  on 
segregates with the outcome within this family. The propor  on of variance explained by the 
inser  on within this family is 35.50%, while the propor  on explained by rs3764261, the lead 
SNP within the CETP region as reported by Teslovich et al.9 is 14.11%. 
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Figure 3. Forest plots of the replica  on meta-analysis for the fi ve independent variants within the CETP 
region. Only cohorts in which the variants passed QC are included in the forest plot. A: rs12920974 
(chromosome 16, posi  on 56,993,025), B: rs34065661 (chromosome 16, posi  on 56,995,935), C: 
rs5817082 (chromosome 16, posi  on 56,997,349), D: rs4587963 (chromosome 16, posi  on 56,997,369) 
and E: rs7499892 (chromosome 16, posi  on 57,006,590).
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Figure 4. Forest plots of the condi  onal analysis in the combined discovery and replica  on cohorts for 
the fi ve independent variants within the CETP region. Only cohorts in which the variants passed QC 
are included in the forest plot. A: rs12920974 (chromosome 16, posi  on 56,993,025), B: rs34065661 
(chromosome 16, posi  on 56,995,935), C: rs5817082 (chromosome 16, posi  on 56,997,349), D: 
rs4587963 (chromosome 16, posi  on 56,997,369) and E: rs7499892 (chromosome 16, posi  on 
57,006,590).

DISCUSSION

We conducted an analysis to fi ne-map the associa  on between CETP gene  c variants and 
HDL-C. To this end, a total of 59,432 samples were imputed to the latest version of the 1000 
Genomes (version Phase 1 integrated release v3, April 2012, all popula  ons). We iden  fi ed 
and replicated fi ve independent variants within the CETP region (chromosome 16, 56.99 Mbp 
– 57.02 Mbp), of which four are SNPs and one is an inser  on. We validated the inser  on 
by Sanger sequencing within a large family, as the largest eff ect on HDL-C comes from this 
inser  on. 
The rela  onship between the CETP gene and HDL-C has been known for a long  me9 and 
GWAS have revealed many common and rare variants in this region. Although the associated 
gene  c variants are strongly correlated with HDL-C, the causal variants have not been 
determined. Our study showed that when using the latest 1000 Genomes reference panel, 
we have more power to fi ne-map this associa  on. By condi  onal analysis of the fi ve variants, 
we were able to reduce the p-values of the genome-wide signifi cant associa  ons published 
before by Teslovich et al.9. Furthermore, condi  onal analysis showed that three out of the 
fi ve variants are independent of the lead SNP for the CETP region as reported by Teslovich et 
al.9 (rs3764261).
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Figure 5. Valida  on of the dele  on (rs5817082) with a large family. The numbers present the dosage 
for rs5817082 a  er imputa  ons, second row the best guess result (I is inser  on, R is reference) and the 
third row the genotypes of the dele  on from Sanger sequencing.

Several fi ne-mapping eff ort have been previously published37,38 and in all those eff orts 
sequencing was used for the fi ne-mapping. In our project we did not use sequencing, but 
imputa  ons using the 1000 Genomes as a reference panel. This method has been widely-
used in the past and is much lower in cost. With new reference panels available, we were 
able to have a revised study of this region. The 1000 Genomes reference panel consists of 30 
million variants including a million inser  ons and dele  ons. By using this reference panel for 
imputa  on, we were able to impute these inser  ons and dele  ons in 59,432 samples from 
various cohorts. This led to the signifi cant associa  on of an inser  on within a known region 
with HDL-C. So far, no associa  on between a structural varia  on and HDL-C has been found 
in such a large sample size. Valida  on of the inser  on by Sanger sequencing confi rms the 
correct imputa  ons of this inser  on in 62.5% of the individuals, of which seven heterozygous 
carriers, one homozygous carrier and two did not carry the inser  on. 
The results of this study showed that by using the 1000 Genomes reference panel, the 
propor  on of the variance explained can be increased and that mul  ple common variants 
in the same region may be implicated in a single family of the ERF study. The inser  on we 
iden  fi ed in this study explains 35.50% of varia  on in the HDL-C level in a single family of the 
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ERF study; this is in concordance with the results of the whole-genome sequence data23. This 
is much higher than the propor  on of the variance explained (14.11%) in the same family 
by rs3764261 which was reported before as the lead variant of this region. Fine-mapping of 
various associa  ons may help us in unravel the gene  c background of various phenotypes. 
Although rs3764261 was iden  fi ed by Teslovich et al.9 to be the lead SNP of this region, other 
variants are used in clinical se   ngs. Three of the classical variants are located in the promoter 
region of the CETP gene: -1337C/T (rs708272 or Taq1B), -971G/A and -629C/A (rs1800775) 
polymorphisms39. Carriers of the B2 allele of the common Taq1B polymorphism exhibit lower 
plasma CETP levels and higher HDL-C. Furthermore, a recent meta-analysis showed that the 
B2 allele is associated with a reduced risk for coronary heart disease40. One more classical 
variant is rs5882A (405I/V), which is located outside the promoter region41. The -1337C/T 
and -629C/A are in strong linkage disequilibrium (LD), however, they are in very low LD (r2 of 
0.442 for rs708272 and 0.461 for rs1800775) with rs3764261, despite the fact that all three 
variant are within 3,000 basepairs of each other. 
Large HDL-C par  cle sizes have been associated with excep  onal longevity before and with 
an increased homozygosity for the I405V variant within the CETP gene1-4. Many of the studies 
confi rm this rela  onship, however, all are based on genotyping of the I405V variant. Our 
study however shows that more variants within the CETP gene are associated with HDL-C 
levels in the blood circula  on. Therefore we would suggest inves  ga  ng more variants within 
the CETP gene for its associa  on with longevity and healthy aging.
Some gene  c variants iden  fi ed in our study were published before42,43, but so far no 
condi  onal analyses have been performed with these variants. Our study suggests that 
various CETP variants may be relevant for HDL-levels in the blood circula  on and that these 
may have a substan  al role in the heritability of HDL-C in specifi c families. 
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ABSTRACT

So far, more than 170 loci have been associated for circula  ng lipid levels through genome-
wide associa  on studies (GWAS). These associa  ons are largely driven by common loci, their 
func  on is o  en not known, and many are likely to be markers for the causal variants. In 
order to obtain be  er es  mates for rare func  onal variants we used the 1000 Genomes 
Project as a reference panel for the imputa  ons of GWAS data from ~60,000 individuals. 
Replica  on in ~90,000 samples resulted in the iden  fi ca  on of fi ve new associa  ons with 
circula  ng lipid levels at four loci. All four loci are within genes that can be linked biologically 
to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within 
the ANGPTL4 gene. This study illustrates that GWAS with high-scale imputa  on may s  ll help 
us unravel the biological mechanism behind circula  ng lipid levels.
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INTRODUCTION

Genome-wide associa  on studies (GWAS) for circula  ng lipid levels (high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) 
and triglycerides (TG)) have iden  fi ed over 170 loci1-3. These studies have been based on 
imputa  ons to the HapMap reference panel2 or primary versions of the 1000 Genomes 
Project (1kG)1 or genotyping on the Illumina Exome Chip3. None has used imputa  ons with 
the Phase 1 integrated release v3 of the 1kG which allows the imputa  on of rare func  onal 
variants and structural varia  ons with more precision. Evidence of rare func  onal variants 
associated with circula  ng lipid levels comes from recent studies in which exome sequencing 
of the NPC1L1 gene iden  fi ed rare variants associated with reduced LDL-C levels and reduced 
risk of coronary heart disease4. Moreover, exome sequencing of LDLR and APOA5 iden  fi ed 
rare variants associated with an increased LDL-C and increased TG levels5 and exome 
sequencing of APOC3 iden  fi ed rare variants associated with reduced TG levels and reduced 
risk of coronary heart disease6. 
Our goal in this study was to iden  fy rare func  onal variants associated with circula  ng 
lipid levels in a larger sample size compared to the exome sequencing of candidate gene 
approach. To this end, we imputed genotypes for study samples par  cipa  ng in the cohorts 
of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consor  um 
using the Phase 1 integrated release v3 of the 1kG and conducted a meta-analysis of about 
approximately 60,000 individuals, followed by a replica  on in an independent set of 90,000 
individuals.

METHODS

Please see Supplementary Methods for complete descrip  ons of the methods. In summary, 
for the discovery stage of this project, we used the data from 20 cohorts of the CHARGE 
consor  um (Supplemental methods). All cohorts were imputed with reference to the 1kG 
reference panel (version Phase 1 integrated release v3). The total number of individuals in 
the discovery stage was 59,409 for HDL-C, 48,780 for LDL-C, 60,024 for TC and 49,549 for 
TG. Supplemental Table 1 and 2 contain the baseline characteris  cs per cohort and more 
details about SNP genotyping and genotype imputa  ons. Within each cohort, each variant 
was tested for associa  on with each of the lipid traits, assuming an addi  ve gene  c model. 
The associa  on results of all cohorts for all variants were combined using inverse variance 
weigh  ng. We used the following fi lters for the variants: 0.3 < R2 (measurement for the 
imputa  on quality) ≤ 1.0 and expected minor allele count (expMAC=2 · MAF (minor allele 
frequency) · R2 · sample size) > 10 prior to meta-analysis. A  er meta-analysis of all available 
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variants, we excluded the variants that were not present in at least 4 cohorts, to prevent false 
posi  ve fi ndings. In order to select only variants that were independently associated with 
each of the lipid traits, we used the GCTA7 tool. To iden  fy novel loci we selected from the list 
of variants iden  fi ed by GCTA, those variants located more than 0.5Mb away from previously 
iden  fi ed loci of the corresponding trait2,3 and which were signifi cant (p-value < 5·10-8) in 
the ini  al discovery stage. To prevent the iden  fi ca  on of false posi  ve loci, we added a 
second replica  on stage within 23 independent cohorts. The experiment-wide signifi cance 
threshold required to keep type I error rate within the replica  on stage at 5% is 2.63·10-3 
(Bonferroni correc  on based on nineteen variants). We also meta-analyzed the individuals of 
the discovery and replica  on stage together. 

RESULTS

The associa  on of all variants with HDL-C, LDL-C, TC and TG was tested in all discovery cohorts 
(Supplemental Figure 1 and 2). We signifi cantly replicated 88.1% of the loci described by 
Teslovich et al.2 despite a sample size of about 80% (Supplemental Figure 5 and Supplemental 
Table 3). We also signifi cantly replicated 43.4% of the loci described by Global Lipids Gene  cs 
Consor  um (GLGC)3 despite a sample size of about 30% (Supplemental Figure 6 and 
Supplemental Table 4).
A condi  onal and joint analysis using GCTA iden  fi ed 186 independent variants for HDL-C, 175 
for LDL-C, 215 for TC and 120 for TG. Next, we excluded all variants that were not genome-
wide signifi cant (p-value < 5·10-8) in the ini  al discovery stage as these are probably false 
posi  ves and we excluded all variants which are within 0.5 Mb of a loci previously published 
by Teslovich et al.2 or GLGC3, which resulted in three variants for HDL-C, three for LDL-C, 
seven for TC and six for TG. These variants are located at seventeen diff erent loci and includes 
one dele  on (Figure 1 and Table 1). These nineteen variants were selected for replica  on. 
The total number of individuals in the replica  on stage was 84,598, 72,486, 83,739 and 
73,519 for HDL-C, LDL-C, TC and TG respec  vely (see Supplemental Table 1 and 2 for baseline 
characteris  cs and informa  on about SNP genotyping and imputa  on details). The sample 
size in the replica  on stage was larger than the ini  al discovery sample for seventeen out of 
the nineteen variants. The frequencies of the variants were similar between the discovery 
and replica  on cohorts. The direc  ons of eff ect were the same in both the discovery and 
replica  on cohorts for sixteen out of the nineteen variants (Supplementary Figure 7). We 
used a Bonferroni corrected threshold for signifi cance (p-value < 2.63·10-3). Five out of the 
nineteen variants were signifi cantly replicated (Table 1): rs6457374 (TC), rs186696265 (LDL-C 
and TC), rs77697917 (HDL-C) and rs116843064 (TG). The frequency of these variants ranging 
from 0.012 to 0.249 within the discovery sample.
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Table 1. The results for the nineteen variants a  er the meta-analysis of all discovery cohorts, of all 
replica  on cohorts and of all cohorts combined. A1 is allele 1 and A2 is allele 2, Freq is the frequency 
of A1, β is the eff ect of A1.
Trait Chr:Posi  on rs iden  fi er A1/A2 All cohorts combined

Freq β SEβ p-value

HDL-C 3:72,067,255 rs75909755 T/C 0.034 0.002 0.031 9.57E-01

TC 6:31,272,261 rs6457374 T/C 0.807 0.062 0.016 1.18E-04

LDL-C 6:31,325,323 rs9266229 C/G 0.411 -0.029 0.014 4.04E-02

TG 6:36,648,275 - CAG/C 0.464 -0.013 0.003 5.93E-07

TG 6:139,839,498 rs608736 C/G 0.484 -0.013 0.002 9.10E-09

TG 6:160,851,766 rs376563 T/C 0.460 -0.010 0.002 1.36E-05

LDL-C 6:161,111,700 rs186696265 T/C 0.011 0.304 0.076 6.17E-05

TC 6:161,111,700 rs186696265 T/C 0.010 0.278 0.075 1.93E-04

HDL-C 7:80,492,357 rs60839105 T/C 0.070 2.948 0.518 1.25E-08

TC 8:68,351,787 rs151198427 A/G 0.112 4.797 1.035 3.56E-06

LDL-C 9:78,728,065 rs146369471 T/C 0.994 0.110 0.103 2.84E-01

TC 9:78,728,065 rs146369471 T/C 0.994 0.057 0.103 5.79E-01

TC 12:51,207,704 rs829112 A/G 0.732 0.012 0.012 3.18E-01

TG 13:114,544,024 rs7140110 T/C 0.716 -0.015 0.003 5.13E-07

TG 15:43,726,625 rs150844304 A/C 0.961 -0.066 0.008 9.52E-16

TC 17:18,046,290 rs8065026 T/C 0.808 -0.029 0.013 2.66E-02

HDL-C 17:41,840,849 rs77697917 T/C 0.031 -0.241 0.035 1.04E-11

TG 19:8,429,323 rs116843064 A/G 0.031 -0.087 0.012 3.83E-13

TC 20:17,844,684 rs2618566 T/G 0.600 -0.027 0.011 1.38E-02

DISCUSSION 

We conducted a GWAS that included GWAS data imputed to the 1kG to iden  fy rare, 
poten  ally func  onal, variants associated with circula  ng lipid levels. To this end, we imputed 
genotypes in approximately 60.000 individuals from 20 cohorts in the CHARGE consor  um 
with the 1kG reference panel. The meta-analysis, followed by GCTA analysis revealed nineteen 
associa  ons with MAF ranging from 0.01 to 0.48. Of the nineteen associa  ons, we were able 
to replicate fi ve in an independent sample of approximately 90.000 individuals.
One of the fi ve associa  ons we iden  fi ed is between TG and rs116843064, an exonic variant 
in the ANGPTL4 gene on chromosome 19 (Figure 2C). This missense variant changes the 
amino acid glutamic acid into lysine (Glu40Lys) and is predicted to be damaging for the 
structure and func  on of the protein by Polyphen28, Muta  onTaster9 and LRT10. ANGPTL4 
has been associated with HDL-C before using the GWAS approach2 and with TG before using 
an exome sequencing approach11 and more recently using the GWAS approach1. ANGPTL4 
is signifi cantly associated with the KEGG term fa  y acid metabolism, the GO process lipid 
storage and the GO cellular component lipid par  cle (p-value of 1.10·10-6, 1.31·10-10 and 
2.87·10-18, respec  vely, genenetwork.nl). 
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Table 1 conti nued. The results for the nineteen variants a  er the meta-analysis of all discovery cohorts, 
of all replica  on cohorts and of all cohorts combined. A1 is allele 1 and A2 is allele 2, Freq is the 
frequency of A1, β is the eff ect of A1.
Trait rs iden  fi er A1/A2 Discovery cohorts

Freq N β SEβ p-value

HDL-C rs75909755 T/C 0.033 62,607 1.593 0.275 7.27E-09
TC rs6457374 T/C 0.751 46,839 2.339 0.339 5.32E-12
LDL-C rs9266229 C/G 0.526 37,981 -2.201 0.344 1.62E-10
TG (6:36,648,275) CAG/C 0.451 53,425 -0.019 0.003 7.63E-09
TG rs608736 C/G 0.481 53,425 -0.019 0.003 5.67E-09
TG rs376563 T/C 0.459 47,036 -0.020 0.003 3.37E-09
LDL-C rs186696265 T/C 0.012 49,221 11.247 1.241 1.31E-19
TC rs186696265 T/C 0.012 59,859 10.004 1.162 7.20E-18
HDL-C rs60839105 T/C 0.068 7,882 3.355 0.571 4.26E-09
TC rs151198427 A/G 0.108 17,361 6.552 1.147 1.12E-08
LDL-C rs146369471 T/C 0.990 43,398 8.529 1.449 3.99E-09
TC rs146369471 T/C 0.990 53,787 7.978 1.413 1.64E-08
TC rs829112 A/G 0.681 56,924 1.448 0.258 2.02E-08
TG rs7140110 T/C 0.713 48,221 -0.021 0.004 3.65E-08
TG rs150844304 A/C 0.968 52,720 -0.083 0.010 2.52E-17
TC rs8065026 T/C 0.785 56,924 -1.644 0.292 1.76E-08
HDL-C rs77697917 T/C 0.023 45,052 -2.717 0.407 2.38E-11
TG rs116843064 A/G 0.030 35,643 -0.101 0.016 6.46E-11
TC rs2618566 T/G 0.651 63,300 -1.566 0.251 4.68E-10

The second new fi ndings we iden  fi ed is the associa  on between TC and rs6457374, an 
intergenic variant located on chromosome 6 between the genes HLA-C and HLA-B (Figure 
2A). Both genes are associated with the KEGG term ABC transporters (p-value of 4.29·10-5 
and 3.84·10-5 for HLA-C and HLA-B respec  vely, genenetwork.nl) which is in line with among 
others a previously published associa  on between TC and an exonic variant in the ABCA6 gene 
which is also an ABC transporter12. ABC transporters transport a wide variety of substrates 
across extra- and intracellular membranes, including lipids13. 
The third fi nding of this study is the associa  on between HDL-C and rs77697917, an 
intergenic variant on chromosome 17 between the genes SOST and DUSP3 (Figure 2B). 
DUSP3 is associated with the regula  on and func  on of carbohydrate-responsive element-
binding protein (ChREBP) in the liver (p-value=3.03·10-5, genenetwork.nl). ChREBP mediates 
the ac  va  on of several regulatory enzymes involved in lipogenesis14-18. This variant is in high 
linkage disequilibrium (D’=0.936) in the 1kG with rs72836561, an exonic variant in the gene 
CD300LG (MAF=0.027, β=-2.437, seβ=0.381, p-value=1.51·10-10 in the discovery stage). This 
missense variant changes the amino acid arginine into cysteine (Arg82Cys) and is predicted 
to be damaging for the structure and func  on of the protein by Polyphen28, Muta  onTaster9 
and LRT10. This amino acid polymorphism has been associated with HDL-C in exome-wide 
associa  on studies19 and TG in GWAS1 before.
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Table 1 conti nued. The results for the nineteen variants a  er the meta-analysis of all discovery cohorts, 
of all replica  on cohorts and of all cohorts combined. A1 is allele 1 and A2 is allele 2, Freq is the 
frequency of A1, β is the eff ect of A1.
Trait rs iden  fi er A1/A2 Replica  on cohorts

Freq N β SEβ p-value

HDL-C rs75909755 T/C 0.034 86,252 -0.019 0.031 5.45E-01

TC rs6457374 T/C 0.807 74,417 0.057 0.016 4.23E-04

LDL-C rs9266229 C/G 0.411 61,582 -0.025 0.014 7.37E-02

TG (6:36,648,275) CAG/C 0.486 59,018 -0.003 0.004 5.20E-01

TG rs608736 C/G 0.486 73,512 -0.008 0.003 2.67E-02

TG rs376563 T/C 0.46 73,512 -0.001 0.003 8.22E-01

LDL-C rs186696265 T/C 0.011 59,497 0.263 0.076 5.42E-04

TC rs186696265 T/C 0.01 75,821 0.238 0.075 1.46E-03

HDL-C rs60839105 T/C 0.078 4,971 1.067 1.228 3.85E-01

TC rs151198427 A/G 0.128 1,419 -2.858 2.396 2.33E-01

LDL-C rs146369471 T/C 0.994 51,367 0.068 0.103 5.11E-01

TC rs146369471 T/C 0.994 70,241 0.015 0.103 8.84E-01

TC rs829112 A/G 0.732 87,659 0.009 0.012 4.63E-01

TG rs7140110 T/C 0.721 60,437 -0.006 0.005 2.68E-01

TG rs150844304 A/C 0.945 63,884 -0.026 0.015 8.85E-02

TC rs8065026 T/C 0.808 76,913 -0.026 0.013 4.93E-02

HDL-C rs77697917 T/C 0.031 67,843 -0.222 0.036 4.27E-10

TG rs116843064 A/G 0.031 44,194 -0.065 0.019 4.53E-04

TC rs2618566 T/G 0.6 88,946 -0.024 0.011 2.83E-02

The fourth variant we iden  fi ed is rs186696265, which is located on chromosome 6 and 
associated with both LDL-C and TC (Figure 2D and 2E). This intergenic variant is between 
the LPA (Lipoprotein, Lp(A)) gene and the PLG (Plasminogen) gene. The LPA gene has been 
associated before with LDL-C and TC before2. The reported lead SNP was rs1564348, which 
is in the newer human genome versions is annotated to the SLC22A1 (Solute Carrier Family 
22 (Organic Ca  on Transporter), Member 1) gene instead of the LPA gene. This explains why 
we iden  fi ed again a locus near the LPA gene, which has been iden  fi ed by others as well1. 
Fourteen out of the nineteen variants were not replicated despite similar sample size and 
similar frequencies within the replica  on stage as compared to the discovery stage. Of 
those fourteen variants, eleven exhibited eff ect sizes in the same direc  on in both stages. 
A possible explana  on might be that the replica  on sample size is much larger compared to 
that of the discovery sample size. Two variants might have lacked signifi cant replica  on due 
to small sample size, rs60839105 and rs151198427. Both variants only pass quality control in 
the cohorts in the discovery stage that contain individuals of African ancestry (Supplementary 
fi gure 7). Although there are several cohorts with individuals of African ancestry in the 
replica  on stage, both variants did not pass quality control in most cohorts which leads to 
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the conclusion that these variants might be popula  on-specifi c. This is also suggested by the 
1kG data (Phase 3) as the frequency of the C-allele is 92% in African samples and 100% in 
the European samples for rs60839105 and the frequency of the G-allele is 86% in the African 
samples and 100% in the European samples for rs151198427. Imputa  ons of cohorts with 
individuals of African ancestry with the African Genome Varia  on Project20 might confi rm the 
associa  on of rs60839105 with HDL-C and rs151198427 with TC.
To our knowledge, this is the fi rst GWAS of circula  ng lipid levels using the Phase 1 integrated 
release v3 of the 1kG, therefore we cannot compare the posi  ve replica  on rate with other 
studies. However, we did replicate 88.1% of the fi ndings of Teslovich et al.2 and 43.4% of the 
fi ndings of GLGC3 despite our smaller sample. We also tried to replicate fi ndings from exome 
sequencing of candidate genes. The p.Arg406X muta  on in the NPC1L1 gene (rs145297799), 
which was reported to be associated with reduced LDL-C levels and reduced risk of coronary 
heart disease4, is not available in the 1kG reference panel and, therefore, we were not able 
to replicate this fi nding. Do et al.5 described the exome sequencing of the genes LDLR and 
APOA5 and iden  fi ed rare variants associated with an increased risk of myocardial infarc  on, 
increased LDL-C and TG levels. Of those rare variants, only two in the LDLR gene and seven 
in the APOA5 gene exist in our discovery meta-analysis. Both LDLR variants are associated 
with TG in our discovery meta-analysis (rs34282181, β=-0.093, SEβ=0.023, p-value=4.827·10-5 
and rs2075291, β=0.219, SEβ=0.046, p-value=2.092·10-6), but not signifi cantly associated 
with LDL-C (rs34282181, β=-3.939, SEβ=1.861, p-value=0.034 and rs2075291, β=-2.316, 
SEβ=3.001, p-value=0.440). None of the seven APOA5 variants were signifi cantly associated 
with TG or LDL-C in our discovery meta-analysis (lowest p-value is for LDL-C with rs72658860, 
β=-18.430, SEβ=7.140, p-value=9.848·10-3). The third published fi nding we tried to replicate, 
was the associa  on between APOC3 and TG levels6. Of the seven variants reported, only 
one existed in our discovery meta-analysis (chromosome 11, posi  on 116,701,354), which 
is associated with TG (β=-0.343, SEβ=0.113, p-value=2.311·10-3). Those authors also reported 
an associa  on between an APOA5 variant (rs3135506) and TG as the most signifi cant fi nding. 
This variant was also signifi cantly associated with TG in our discovery meta-analysis (β=0.129, 
SEβ=0.007, p-value=1.099·10-87). These replica  on eff orts demonstrate that many of the 
published results of exome sequencing can be replicated through the use of 1kG imputa  ons.
In conclusion, we iden  fi ed and replicated fi ve variants associated with circula  ng lipid levels. 
These variants are in genes that can be linked biologically to lipid metabolism. Although 
there were a large number of variants that did not replicate at the accepted genome-wide 
signifi cance threshold, the low-cost, hypothesis-free approach that we applied uncovered fi ve 
variants. This study, therefore, illustrates that GWAS may s  ll help us unravel the biological 
mechanisms behind circula  ng lipid levels. 
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Figure 2: The regional associa  on results of the ini  al meta-analysis of all discovery cohorts for (A) TC 
on chromosome 6, (B) HDL-C on chromosome 17, (C) TG on chromosome 19, (D) LDL-C on chromosome 
6 and (E) TC on chromosome 6.
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ABSTRACT

In order to meaningfully analyse common and rare gene  c variants, results from Genome-
Wide Associa  on Studies (GWAS) of mul  ple cohorts need to be combined in a meta-analysis 
in order to obtain enough power. This requires all cohorts to have the same Single Nucleo  de 
Polymorphisms (SNPs) in their GWAS. To this end, genotypes that have not been measured in 
a given cohort can be imputed based on a set of reference haplotypes. This protocol provides 
guidelines for performing imputa  ons with two widely used tools: minimac and IMPUTE2. 
These guidelines were developed and used by the Genome of the Netherlands consor  um 
that has created a popula  on-specifi c reference panel for gene  c imputa  ons and used this 
reference to impute various Dutch biobanks. We also examine several factors that might 
infl uence the fi nal imputa  on quality. This protocol, which has been used by the largest 
Dutch biobanks should take approximately several days, depending on the sample size of the 
biobank and the computer resources available.
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INTRODUCTION

Data from Genome-Wide Associa  on Studies (GWAS) of diff erent cohorts can be combined 
into a meta-analysis even when the samples of the cohorts have been typed on diff erent 
genotyping pla  orms. By impu  ng missing genotypes, a homogeneous data set for meta-
analysis can be created. Genotype imputa  on allows es  ma  on of genotypes in a target 
data set, based on one or more available reference sets of Single Nucleo  de Polymorphisms 
(SNPs) and is based on searching common haplotypes between an individual’s genome 
and a reference panel with a high density of genotyped SNPs, such as those provided by 
the HapMap1, 1000 Genomes2 and the Genome of the Netherlands (GoNL)3-5 projects. 
Missing genotypes are then inferred from common haplotypes found in the reference set. 
Implementa  on of these methods usually results in es  mates of the posterior probability 
distribu  ons Pg = (PAA, PAB, PBB) of the genotypes based on the available data6.
Weaknesses in both genotype calling and imputa  on of missing genotypes can lead to biases 
in GWAS and subsequently in meta-analysis. Therefore, Anderson et al.7 have previously 
published a protocol dealing with quality control of genotype data, and our work can be seen 
as an extension of that protocol. A guideline for imputa  ons with the Beagle8 and IMPUTE29 
tools, as well as post-imputa  on quality control has been published by Verma et al.10, and a 
protocol for doing meta-analysis of GWAS results for large numbers of cohorts is described 
in Winkler et al.11.
In this protocol, we show how to perform genotype imputa  ons with a popula  on-specifi c 
reference panel including how to deal with factors that may adversely aff ect the imputa  on 
result (e.g. how to properly split up large data sets for imputa  on). This protocol diff ers to the 
previous guideline from Verma et al.10, providing instruc  ons for imputa  ons with IMPUTE29 
and minimac12. We describe the diff erent pipelines for imputa  ons using the genome-wide 
SNP data provided by Anderson et al.7 as a target data set. We will start with the quality 
control of this target set using the pipeline from Anderson et al.7. We will show how to 
li   the target set over to the correct NCBI build and then provide pipelines for imputa  on 
using IMPUTE29 and minimac12 (Figure 1). All pipelines are developed for GNU/Linux based 
computer resources and all commands should be typed at the Bash shell prompt where 
Bash variables are indicated by ${variablename}. This protocol does not include commands 
to submit compute intensive tasks to a job scheduling system like OpenPBS (see Sec  on 
Computer Resources), as diff erent computer clusters may use diff erent scheduling systems.
This protocol has been used to impute the genotypes of individuals of various Dutch biobanks, 
using the GoNL reference panel. This has resulted in the discovery of fi ve novel associa  ons 
at four loci for cholesterol levels including a rare missense variant in the ABCA6 gene which 
is predicted to be deleterious13. 
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Figure 1: Workfl ow of the imputa  on protocol for imputa  ons of unobserved genotypes with the GoNL 
reference panel. The fi rst stage of the protocol is to perform quality control of the target data set 
consis  ng of measured genotypes, followed by li  over to the correct human genome build. The human 
genome build of the GoNL reference panel is UCSC hg19. These steps are independent of the tools that 
are used for the actual phasing and imputa  on. The next step is to download the reference set, which is 
necessary to create the correct input fi le for phasing and imputa  ons. The reference set fi le format are 
diff erent for each tool. Next, MaCH or SHAPEIT are used for phasing, followed by minimac and IMPUTE2 
for the imputa  ons. 

Genome of the Netherlands reference set
The construc  on of a novel imputa  on reference data set is a complex procedure that 
requires dense genotyping and accurate es  ma  on of haplotypes from genotype data (known 
as phasing) of samples from a specifi c popula  on. The most thoroughly documented and 
widely available imputa  on reference sets are coming from the HapMap1 and 1000 Genomes 
projects2. Both projects contain samples from various popula  ons and consequently a given 
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genotype of a low-frequency variant may not be represented adequately in the reference 
data set. Moreover, when the percentage of samples belonging to a diff erent geographical 
popula  on is beyond a certain propor  on, the imputa  on quality does not improve. Jos  ns 
et al.14 found that when impu  ng samples from the 1,958 Bri  sh Birth Cohort, the accuracy 
starts to fall off  when the propor  on of non-CEU samples exceed 20%, as the eff ect of 
increased diversity is outweighed by the eff ect of mismatching. This rela  onship is specifi c 
to low-frequency variants. Morever, Pis  s et al.15 found that the eff ec  veness of popula  on-
specifi c reference panels can be appreciable for other popula  ons, but will vary depending 
on the size of the panels and the demographic history of the isolate. 
As the interest of the fi eld of gene  c epidemiology is shi  ing towards low-frequency variants, 
the GoNL consor  um created a popula  on-specifi c reference set for imputa  on with the goal 
of iden  fying associa  ons between various phenotypes and low-frequency gene  c variants. 
To this end, 231 parent-off spring trios and 19 parent-off spring quartets of Dutch descent had 
their complete genome sequenced with at least 12× coverage3-5. The strength of this reference 
set comes from several factors. First, the trio design which improves the haplotype quality, 
second, the coverage which is higher than that of the 1000 Genomes Project, and third, 
the sequencing of samples from a homogeneous popula  on. The quality of the haplotypes 
boosts imputa  on accuracy in independent samples, especially for lower frequency alleles4. 
The GoNL reference set is available by applying through h  p://www.nlgenome.nl/, menu 
op  on “Request data”, which leads to the applica  on form. A  er fi lling in the form, the request 
will be evaluated by the GoNL steering commi  ee. A  er posi  ve evalua  on, a data access 
agreement needs to be signed and subsequently, the reference panel can be downloaded in 
Variant Call Format (VCF). For this protocol the fourth release of the GoNL reference panel 
was used, which contains 499 individuals of Dutch ancestry and 19,562,004 autosomal SNPs.

Tools for imputati on
The three most commonly used tools for genotype imputa  on are minimac12, IMPUTE29 
and Beagle8. Mul  ple aspects of the three tools, e.g. their imputa  on accuracy, error rates 
and computa  onal performance have been compared previously6,10,16,17. The choice for a 
given tool depends on the target set that is to be imputed and on the type of computa  onal 
resources available as discussed in this paper. Within the GoNL3-5 consor  um, only minimac 
and IMPUTE2 were used for imputa  ons, and therefore Beagle will not be discussed in this 
manuscript. It is, however, possible to impute samples with the GoNL reference panel using 
Beagle. Minimac can be downloaded freely from the web, its source code is available under 
an open source licence. IMPUTE2 is available for download for academic use only, no source 
code is provided. 
IMPUTE2 performs both the phasing and the imputa  on, whereas minimac only imputes 
data sets that have been phased by MaCH18 or SHAPEIT219. However, although IMPUTE2 
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can perform phasing, its authors recommend to use SHAPEIT219 for the phasing followed 
by using IMPUTE2 for the imputa  ons. Of the three tools, only IMPUTE2 can combine two 
reference panels. This allows imputa  on with both the 1000 Genomes reference panel as 
well as the GoNL reference panel, which has been shown to improve imputa  on quality3. 
MaCH/minimac make their own recombina  on map based on input data, IMPUTE2 requires 
a recombima  on map. 
The requested fi le format of the reference set is also diff erent among the tools. Both the 
GoNL project3-5, 1000 Genomes project2 and the HapMap project1 provide their data in 
Variant Call Format (VCF)20. The VCFtools20 so  ware package can convert these VCF fi les 
into phased haplotypes in IMPUTE2 reference-panel format. The authors of IMPUTE2 also 
provided a Perl script to perform this conversion. Minimac can handle the original VCF fi les 
without conversion. 
Both tools produce several output fi les. The fi rst one is the so-called info fi le containing 
the SNP name, the basepair posi  ons, the frequencies of the alleles and the R2. Here R2 is 
the es  mated squared correla  on (between zero and one) between the allele dosage with 
highest posterior probability in the genotype probabili  es fi le and the true allele dosage for 
the marker; larger values of allelic R2 indicate more accurate genotype imputa  on. In a second 
fi le IMPUTE2 gives the probabili  es of the three genotypes AA, AB and BB, whereas minimac 
gives the probability of a homozygote for allele 1 and the probability of the heterozygote. 
Only minimac has the op  on to output best-guess alleles. Dosage fi les are produced only 
by minimac, however, it takes only one addi  onal step to convert the genotype probabili  es 
from IMPUTE2 into dosages. If a sample has genotype probabili  es (PAA, PAB, PBB) for a marker, 
then the es  mated B-allele dosage (dB) is dB = PAB + 2 PBB. All formats can be converted using 
fcGene21.

Quality control of the target data set
In order to achieve high-quality imputa  on standard GWAS quality control fi lters need to be 
applied to the target data set and if necessary also to the reference set prior to imputa  on. 
The purpose of these fi lters is to exclude both markers and samples with low-quality data. 
Anderson et al.7 and Verma et al.10 provide a detailed protocol that deals with both per-maker 
and per-individual fi ltering.
Other factors infl uencing the imputa  on quality are the type of arrays used for genotyping, 
strand and build issues. Present day high-density arrays are of high quality, however, the 
low-density arrays used in the beginning of the GWAS era were less so. It is therefore useful 
to check the type of array that was used for genotyping of the target set. The genotype calls 
from the arrays are aligned to a specifi c strand22. In order to obtain high-quality imputa  ons it 
is important to correct possible strand alignment issues. Although IMPUTE2 and MaCH have 
op  ons to fi x misaligned alleles between study and reference panel by inver  ng the alleles 
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when possible, the alignment of the target set should be fi xed prior to impu  ng the target set 
with for example SHAPEIT219. This only holds for ambiguous strands (AT and TA for example), 
detec  ng and correc  ng the strand of the non-ambiguous SNPs (AT and GC for example) is 
more of a challenge, Deelen et al. have published a method for solving the strand issues of 
non-ambiguous SNPs23. For imputa  on purposes, the alleles should be aligned to the forward 
strand, since the imputa  on tools assume that the target set is on the same strand as the 
reference panel, which is the forward strand. 
It is important for imputa  on that both the target set and the reference set are on the same 
NCBI build as SNP names may change or SNPs may be relocated or merged between builds. 
Release four of the GoNL reference set uses NCBI build 37 (human genome 19, hg19). If the 
reference and the target set are aligned using a diff erent genome assembly, it is recommend 
to re-align the target panel to the assembly of the reference rather than the other way 
around. This is because the phased haplotype structure of the reference panel will be 
distorted if the posi  on of the markers is altered. Moreover, re-aligning of the target set costs 
less  me compared to re-aligning the reference panel. The li  Over tool from UCSC24 converts 
genome posi  ons between diff erent genome builds (see Sec  on Perform quality control and 
http://genome.sph.umich.edu/wiki/LiftOver).
A major pi  all of genotype imputa  on is a diff erence between groups of individuals which 
a  er imputa  ons can be (falsely) associated with a phenotype. Array diff erences or quality 
diff erences (for example call rates) between cases and controls should be avoided. Therefore, 
the most ideal situa  on would be to genotype all individuals on the same array. If this is not 
possible, it is highly advised to apply strict quality control. The type of array is also of infl uence 
on the imputa  ons, chunking the observed genotypes of low-density arrays as discussed in 
Sec  on “Handling large target data sets” may lead to empty chunks. High-density genotype 
arrays are therefore advised. Other important imputa  on pi  alls are monomorphic and 
extremely rare SNPs25, therefore these should be removed from both the target set and the 
reference panel.
A  er performing all quality control steps, the target data set needs to be converted into the 
correct input format (see BOX 1) for the imputa  on tool of choice.

Quality metrics
The quality of an imputa  on experiment can be assessed by various metrics10. These can be 
divided into two categories based on whether true genotypes are available or not. The most 
common imputa  on metric is the R2 that represents the correla  on between the imputed 
and the real genotypes.
When the true genotypes are unknown, various sta  s  cs can be used to es  mate the R2. 
Marchini et al.6 present a thorough review of the R2 metrics used by MaCH, Beagle, SNPTEST 
and IMPUTE2. Comparison of these measures showed that they are highly correlated. 
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Another R2 metric26 is the ra  o of the variance of the imputed allele dosage and the variance 
of the true allele dosage. Although the variance of the true allele dosage is unknown, it can 
be es  mated as 2p(1-p) under Hardy-Weinberg equilibrium, where p is the es  mated allele 
frequency. To illustrate how well rare and common SNPs were imputed, a plot can be made 
with the percentage of SNPs at various cut-off s for the R2 for various minor allele frequency 
(MAF) bins8,27.
In case the true genotypes are available, the quality of the imputa  on can also be evaluated 
by calcula  ng the false posi  ve and false nega  ve genotypes4. False posi  ve genotypes are 
the ones that have a high imputa  on R2, but were in fact imputed incorrectly. False nega  ve 
genotypes are the ones that have a low R2, but were actually imputed correctly. Another 
qualita  ve metric is the concordance between real and imputed genotypes. A graph of the 
percentage of discordance versus percentage of missing genotypes for various thresholds of 
the genotype probability can be used to compare diff erent imputa  on methods9.

Handling large target data sets
To successfully iden  fy rare variants associated with par  cular phenotypes large sample 
sizes are needed. Spli   ng up the target sets and distribu  ng the computa  onal burden of 
phasing and imputa  on over several computers allows imputa  on of such large sets to fi nish 
within a reasonable  me frame. Spli   ng up the target set reduces the  me to fi nish the 
imputa  ons (see Supplementary Figure S1), however it does require a computer cluster. A 
target set can be split up in two ways: (1) spli   ng into subsets of samples and (2) spli   ng 
into chunks of chromosomes. The division into groups of samples can be done randomly, 
although the distribu  on of cases and controls should be similar in the subgroups. However, 
since imputa  ons are mostly done once per cohort followed by the subsequent analysis of 
many phenotypes using the same imputed genotype data, spli   ng a target set into equal 
propor  ons of cases and controls provides a challenge and we therefore do not recommend 
this. This only holds for the imputa  ons and not for phasing, as the samples do not aff ect each 
other in phasing. Spli   ng up in samples may, however, be helpful to op  mize the capacity 
u  liza  on of a compute cluster.
The second, more useful, strategy of spli   ng up the target set is to split the chromosomes 
into chunks of a few Mb. Depending on the imputa  on tool, the strategy to split up into 
chunks is diff erent. When using minimac, the ChunkChromosome tool (http://genome.
sph.umich.edu/wiki/ChunkChromosome) can be used to split each chromosome prior 
to imputa  on (see Sec  on Imputa  ons with MaCH and minimac). When impu  ng with 
IMPUTE2 it is not necessary to fi rst split up the chromosome as one of the command line 
arguments of IMPUTE2 is the posi  on interval to impute. 
To evaluate the quality of the imputa  ons a  er the chromosome is split into chunks, we 
imputed chromosome 21 of all 5,974 samples of the Ro  erdam Study cohort I with the 
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European part of the 1000 Genomes reference set (release August 2010) using minimac 
a  er phasing with MaCH using two approaches. In both approaches the data set was split 
up before phasing with MaCH. The fi rst approach was to split the SNPs on chromosome 21 
into chunks of 500kb, 1Mb, 2Mb, 3Mb, 4Mb, 5Mb, 7.5Mb and 10Mb, respec  vely, each with 
an overlap of 5% on each side of the chunk. The second approach was to split the same 
chromosome into chunks of 5Mb with an overlap of 2.5% (250kb), 5% (500kb), 7.5% (750kb), 
10% (1Mb) and 12.5% (1.25Mb) on each side, respec  vely. Figures 2a and 2b show that the 
target set can be split into subsets of at least 5Mb with an overlap of at least 250kb without 
decreasing imputa  on quality.

A B

Figure 2: The percentage of SNPs with R2 > 0.3 a  er impu  ng chromosome 21 of 5,974 samples of 
Ro  erdam Study cohort I (a) when the target set is split into several chunks of chromosomes and the 
percentage overlap between chunks is 10% and (b) when the chromosome of the target set is split into 
5Mb chunks and the size of the overlap is varied. This fi gure illustrates that the target set can be split 
into subsets of at least 5Mb with an overlap of at least 250kb without decreasing imputa  on quality.

MATERIALS

Equipment
Data
• Genome-wide SNP data (raw-GWA-data.tgz). See supplementary data from Anderson 

et al.7.
• GoNL reference panel for imputa  ons. The reference set is available by applying through 

http://www.nlgenome.nl/. 

2 4 6 8 10

0
10

20
30

40
50

60

chunk size (Mb)

pe
rc

en
ta

ge
 o

f S
N

P
s 

w
ith

 R
2  >

 0
.3

400 600 800 1000 1200

0
10

20
30

40
50

60

chunk overlap (kb)

pe
rc

en
ta

ge
 o

f S
N

P
s 

w
ith

 R
2  >

 0
.3



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

74 | Chapter 3.1

So  ware
This protocol assumes that the computer uses GNU/Linux as its opera  ng system (which is 
the case for most, if not all computer clusters), and the analyst uses Bash as his/her shell 
(which is the default on most GNU/Linux systems).
• Several tools like gawk, sort, uniq, wget, tar, sed, and head, which are usually installed by 

default on a GNU/Linux system.
• PLINK v1.0728; the binaries compiled for various pla  orms and installa  on instruc  ons 

can be downloaded from h  p://pngu.mgh.harvard.edu/~purcell/plink/download.shtml.
• li  Over; this tool can be used to li   over from one human genome build to the other 

and can be downloaded from h  p://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
li  Over

• VCFtools v0.1.12b; this tool can be downloaded from h  p://sourceforge.net/projects/
vc  ools/fi les/latest/download/vc  ools_0.1.12b.tar.gz

• ChunkChromosome (release 2014-05-27); this tool can be downloaded from h  p://www.
sph.umich.edu/csg/cfuchsb/generic-ChunkChromosome-2014-05-27.tar.gz

• MaCH (release 1.0); this tool can be downloaded from h  p://www.sph.umich.edu/csg/
abecasis/MaCH/download/mach.1.0.18.Linux.tgz

• Minimac (release 2013.7.17); this tool can be downloaded from h  p://www.sph.umich.
edu/csg/cfuchsb/minimac-beta-2013.7.17.tgz

• SHAPEIT v2.790; this tool can be downloaded from h  ps://mathgen.stats.ox.ac.uk/
gene  cs_so  ware/shapeit/shapeit.v2.r790.RHELS_5.4.sta  c.tar.gz

• IMPUTE2 v2.3.1; this tool can be downloaded from h  ps://mathgen.stats.ox.ac.uk/
impute/impute_v2.3.1_x86_64_sta  c.tgz

Computer resources
Impu  ng SNPs in data sets of several thousands of samples using reference sets consis  ng of 
several millions of SNPs (e.g. HapMap1 up to several tens of millions of SNPs (GoNL project3-5 
or the 1000 Genomes project2 cannot be done on a commodity desktop computer since 
that would take months of  me and requires more memory (RAM) than is usually available. 
As discussed earlier, the answer lies in spli   ng the imputa  on task into smaller pieces and 
running these sub-tasks on a computer cluster.
The work described in this paper was done on two such clusters. The Lisa cluster at SARA 
(http://www.surfsara.nl/systems/lisa/) is a heterogeneous cluster consis  ng of 
more than 500 machines with a total of more than 6000 cores and 16 to 24 GB of RAM each, 
running Debian Linux (http://www.debian.org). The Millipede cluster at Groningen 
University is a heterogeneous cluster with 252 nodes with a total of 3216 cores and 24 
to 128 GB of RAM each. It runs RedHat Enterprise Linux 5 (http://www.redhat.com/
products/enterprise-linux/). Both clusters use the OpenPBS (http://www.mcs.
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anl.gov/research/projects/openpbs/) system to schedule tasks across their nodes. 
The memory requirements for MaCH are about 100MB and for the minimac protocol 3GB, 
whereas SHAPEIT requires about 1.5MB and IMPUTE2 about 3GB. 

PROCEDURE
Perform quality control (TIMING ~8 hours)
1. The fi rst step is to perform standard quality control on the target set. To do this, complete 

the protocol for quality control as described by Anderson et al.7. We assume that the 
genotypes have been called by a genotyping center and returned in PLINK format named 
raw-GWA-data.ped, raw-GWA-data.map. All genotypes are annotated to the 
forward strand. A  er performing quality control of this genome-wide SNP data, 1,919 
samples and 313,878 markers remain. The resul  ng fi les are named clean-GWA-data.
bed, clean-GWA-data.bim and clean-GWA-data.fam.

Converti ng the target set to the correct genome build (TIMING ~20 min)
2. If the target set is on another genome build than the reference set, it is important to li   

the target set over to the same build as the reference set. The following protocol shows 
how to convert the target set from UCSC hg17 (NCBI build 35) to UCSC hg19 (Genome 
Reference Consor  um GRCh37). First download the chain fi le: 

 wget http://hgdownload.cse.ucsc.edu/goldenPath/hg17/liftOver/hg17 

ToHg19.over.chain.gz 
 and type gunzip hg17ToHg19.over.chain.gz to unzip the chain fi le.
3. To start the li  over, convert the target set with PLINK to a map and ped fi le: 
 plink --noweb --bfi le clean-GWA-data --recode --out clean-GWA-data

 This will create the fi les clean-GWA-data.map and clean-GWA-data.ped.
4. The next step is to create a BED fi le based on the map fi le using the following command: 
 gawk ‘{print “chr”$1, $4, $4+1, $2}’ OFS=”\t” clean-GWA-data.map > 

clean-GWA-data_HG17.BED 
5. Then perform the li  over: ./liftOver -bedPlus=4 clean-GWA-data_HG17.

BED hg17ToHg19.over.chain clean-GWA-data.HG19.BED clean-GWA-data_

unmapped.txt

6. Use the resul  ng fi le clean-GWA-data_unmapped.txt to create a list of unmapped 
SNPs:

 gawk ‘/^[^#]/ {print $4}’ clean-GWA-data_unmapped.txt > clean-GWA-

data_unmappedSNPs.txt

7. Create a mapping fi le using the new BED fi le: 
 gawk ‘{print $4, $2}’ OFS=”\t” clean-GWA-data.HG19.BED > clean-GWA-

data.HG19.mapping.txt
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8. Use PLINK to remove the unmapped SNPs from the target data set: 
 plink --noweb --fi le clean-GWA-data --exclude clean-GWA-data_

unmappedSNPs.txt --update-map clean-GWA-data.HG19.mapping.txt 

–-make-bed --out clean-GWA-data.HG19.temp

 plink --noweb --bfi le clean-GWA-data.HG19.temp --recode --out clean-

GWA-data.HG19

9. Create a new SNP list for the data set: 
 gawk ‘{print $2}’ clean-GWA-data.HG19.map > clean-GWA-data.HG19.

snplist

The resul  ng fi les produced a  er quality control and li  ing over the data set to the correct 
build, are named clean-GWA-data.HG19.map and clean-GWA-data.HG19.ped. In this 
case the data set was li  ed over from build 35 to build 37, however, other li  overs are also 
possible, the UCSC Genome Browser website provides mul  ple chain fi les.

Imputati ons with minimac or IMPUTE2
10. SNP imputa  ons can be performed using either a combina  on of MaCH/minimac (Op  on 

A) or IMPUTE2 (Op  on B).
(A) MaCH/minimac (Timing ~60 hours)

(i) Download the reference set for minimac. This pipeline for imputa  ons with MaCH and 
minimac imputes the target set a  er quality control and (if necessary) li  ed over to the 
correct build with the GoNL reference panel release 4. First create a new directory for the 
reference set: mkdir reference-GoNL-v4. The zipped VCF fi les of the GoNL reference 
panel should be placed in this directory. In this protocol we assume the names of the fi les 
are as follows: gonl.chr{1-22}.release4.gtc.vcf.gz.
(ii) Use VCFtools to create info fi les for all chromosomes by running: 
for chr in {1..22}; do vcftools –-gzvcf reference-GoNL-v4/gonl.

chr${chr}.release4.gtc.vcf.gz --get-INFO NS --out reference-

GoNL-v4/gonl.chr${chr}.release4.gtc; done

(iii) Create a fi le with all the posi  ons that are in the reference set:
rm –f snps-reference.txt

for i in reference-GoNL-v4/gonl.chr*.release4.gtc.INFO; do gawk 

‘$1!=”CHROM” {print $1”_”$2}’ $i >> snps-reference.txt; done

(iv) Crea  ng the input fi les for phasing and imputa  on. To get a list of posi  ons of SNPs 
that are in the target set and/or in the reference set:
gawk ‘{print $1”_”$4}’ clean-GWA-data.HG19.map > snps-reference-

and-rawdata

and
sort snps-reference.txt | uniq >> snps-reference-and-rawdata
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To get only those SNPs that are in both the target set and reference set:
sort snps-reference-and-rawdata | uniq -d | gawk -F “_” ‘{$3=$2+1; 

print $1, $2, $3, “R”NR}’ > snps-reference-and-rawdata-duplicates

? TROUBLESHOOTING
(v) The names of the SNPs that are in both the target set and in the reference set need to 
be extracted from the target set. Using PLINK this can be done as follows:
plink --noweb --fi le clean-GWA-data.HG19 --extract snps-reference-

and-rawdata-duplicates --range --make-bed --out clean-GWA-data.

HG19.for-impute.plink

(vi) MaCH and minimac need one fi le per chromosome. Extract SNPs for each chromosome:
for chr in {1..22}; do plink -–noweb --bfi le clean-GWA-data.HG19.

for-impute.plink --chr ${chr} --recode --out clean-GWA-data.HG19.

for-impute.plink.chr${chr}; done

(vii) Convert the resul  ng PLINK sets into merlin fi le format since minimac requests this:
for chr in {1..22}; do gawk ‘{$6=0; print $0}’ clean-GWA-data.HG19.

for-impute.plink.chr${chr}.ped > clean-GWA-data.HG19.for-impute.

merlin.chr${chr}.ped; echo “T faket1” > clean-GWA-data.HG19.for-

impute.merlin.chr${chr}.dat; gawk ‘$2=”M “$2 {print $2}’ clean-

GWA-data.HG19.for-impute.plink.chr${chr}.map >> clean-GWA-data.

HG19.for-impute.merlin.chr${chr}.dat; echo “chromosome markername 

position” > clean-GWA-data.HG19.for-impute.merlin.chr${chr}.map; 

gawk ‘{print $1, $2, $4}’ clean-GWA-data.HG19.for-impute.plink.

chr${chr}.map >> clean-GWA-data.HG19.for-impute.merlin.chr${chr}.

map; done

(viii) Split the merlin fi les so they contain 2500 markers with a 500 marker overlap using 
the ChunkChromosome tool:
for chr in {1..22}; do ./generic-ChunkChromosome/executables/Chunk 

Chromosome -d clean-GWA-data.HG19.for-impute.merlin.chr${chr}.dat 

-n 2500 -o 500; done

(ix) Using MaCH for phasing. Use MaCH to phase the haplotypes in each chunk:
for chunk in chunk*.dat; do machfi le=”${chunk%.*}”; merlinfi le 

=”${machfi le#*-}.ped”; executables/mach1 -d ${chunk} -p ${merlinfi le} 

--rounds 20 --states 200 --phase --interim 5 --sample 5 --compact 

--prefi x ${machfi le}; done

? TROUBLESHOOTING
(x) Imputa  on with minimac. Execute the following commands to impute all chunks using 
minimac:
for chunk in chunk*.dat; do fi lename1=”${chunk%.*}”; fi lename2 

=”${fi lename1#*-}.ped”; chr=`echo “${fi lename1##*.}” | sed ‘s/
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chr//’`; minimac --vcfReference --rs --refHaps reference-GoNL-v4/

gonl.chr${chr}.release4.gtc.vcf.gz --haps ${fi lename1}.gz --snps 

${fi lename1}.dat.snps --rounds 5 --states 200 --autoClip autoChunk-

clean-GWA-data.HG19.for-impute.merlin.chr${chr}.dat --gzip --phased

--probs --prefi x ${fi lename1}; done

? TROUBLESHOOTING
(B) Imputa  ons with IMPUTE2 (Timing ~7 hours)
(i) Download the reference set for IMPUTE2: This pipeline for imputa  ons with IMPUTE2 
imputes the target set a  er quality control and (if necessary) li  ed over to the correct build 
with the GoNL reference panel release 4. First create a new directory for the reference set: 
mkdir reference-GoNL-v4.All fi les of the GoNL reference panel should be placed in 
this directory. In this protocol we assume the names of the fi les are as follows: gonl.
chr{1-22}.release4.gtc.{hap.gz, legend.gz, geneticmap.txt}.
(ii) Now a fi le can be created with all the SNP names that are in the reference set:
rm –r snps-reference.txt; for chr in {1..22}; do gunzip -c reference-

GoNL-v4/gonl.chr${chr}.release4.gtc.legend.gz | gawk -v chr=${chr} 

‘$5==”SNP” && $1!=”id” {print chr”_”$2}’ >> snps-reference.txt;  

done

(iii) Crea  ng the input fi les for phasing and imputa  on. Use the following commands to 
get a list of posi  ons of SNPs that are in the target set and/or in the reference set:
gawk ‘{print $1”_”$4}’ clean-GWA-data.HG19.map > snps-reference-

and-rawdata

and
sort snps-reference.txt | uniq >> snps-reference-and-rawdata

To get only those SNPs that are in both the target set and reference set:
sort snps-reference-and-rawdata | uniq -d | gawk -F “_” ‘{$3=$2+1; 

print $1, $2, $3, “R”NR}’ > snps-reference-and-rawdata-duplicates

? TROUBLESHOOTING
(iv) The names of the SNPs that are in both the target set and in the reference set need to 
be extracted from the target set. Use PLINK to run:
plink --noweb --fi le clean-GWA-data.HG19 --extract snps-reference-

and-rawdata-duplicates --range --make-bed --out clean-GWA-data.

HG19.for-impute.plink

(v) Since we will phase per chromosome, split the PLINK fi le into 22 fi les:
for chr in {1..22}; do plink --bfi le clean-GWA-data.HG19.for-impute.

plink --chr $chr --recode --out clean-GWA-data.HG19.for-impute.

plink.chr${chr}; done
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This creates the following fi les per chromosome: clean-GWA-data.HG19.for-
impute.plink.chr${chr}.ped and clean-GWA-data.HG19.for-impute.plink 

.chr${chr}.map.
? TROUBLESHOOTING
(vi) Using SHAPEIT for phasing. For every chromosome, the haplotypes are phased using 
SHAPEIT:
for chr in {1..22}; do namefi le=”clean-GWA-data.HG19.for-impute.

plink.chr${chr}”; ./shapeit.v2.r790.RHELS_5.4.static --input-ped 

${namefi le}.ped ${namefi le}.map --input-map reference-GoNL-v4/gonl.

chr${chr}.release4.gtc.geneticmap.txt --output-max ${namefi le}.

phased --thread 8 --output-log ${namefi le}.phased; done

(vii) Imputa  on with IMPUTE2. For every chromosome, perform imputa  ons in chunks 
of 5Mb:
refdir=”reference-GoNL-v4”; for chr in {1..22}; do namefi le=”clean-

GWA-data.HG19.for-impute.plink.chr${chr}.phased”; maxPos=$(gawk ‘$ 

1!=”position” {print $1}’ ${refdir}/gonl.chr${chr}.release4.gtc.

geneticmap.txt | sort -n | tail -n 1); nrChunk=$(expr ${maxPos} 

“/” 5000000); nrChunk2=$(expr ${nrChunk} “+” 1); start=”0”; for 

chunk in $(seq 1 $nrChunk2); do endchr=$(expr $start “+” 5000000); 

startchr=$(expr $start “+” 1); ./impute_v2.3.1_x86_64_static/impute2

-known_haps_g ${namefi le}.haps -m ${refdir}/gonl.chr${chr}.release4 

.gtc.geneticmap.txt -h ${refdir}/gonl.chr${chr}.release4.gtc.hap.gz

-l ${refdir}/gonl.chr${chr}.release4.gtc.legend.gz -int ${startchr}

${endchr} -Ne 20000 -o ${namefi le}.chunk${chunk}.impute2; start=$ 

{endchr}; done done

(viii) Convert the fi les with the probabili  es for the three genotypes into dosage fi les:
for chr in {1..22}; do namefi le=”clean-GWA-data.HG19.for-impute.

plink.chr${chr}.phased”; maxPos=$(gawk ‘$1!=”position” {print $1}’ 

${refdir}/gonl.chr${chr}.release4.gtc.geneticmap.txt | sort -n | 

tail -n 1); nrChunk=$(expr ${maxPos} “/” 5000000); nrChunk2=$(expr 

${nrChunk} “+” 1); for chunk in $(seq 1 $nrChunk2); do gawk ‘{tp = 

$1 “ “ $2 “ “ $3 “ “ $4 “ “ $5; for (i=6; i<=NF; i+=3) tp = tp “ “ 

$(i+1) + 2.0*$(i+2); print tp }’ ${namefi le}.chunk${chunk}.impute2 

> ${namefi le}.chunk${chunk}.impute2.dosage; done done

? TROUBLESHOOTING
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Timing
Step 1, Perform quality control: ~8 hours
Step 2 – 9, Conver  ng the target set to the correct build: ~20 min 

Imputa  ons with minimac or IMPUTE2: 
(A) Minimac: ~ 60 hours
Step i – iii, Download the reference set for minimac: ~15 min 
Step iv – viii, Crea  ng the input fi les for imputa  on: ~5 min 
Step ix, Using MaCH for phasing per chunk: ~15 hours 
Step x, Imputa  on with minimac: ~45 hours 
(B) IMPUTE2
Step i – ii, Download the reference set for IMPUTE2: ~10 min 
Step iii – v, Crea  ng the input fi les for imputa  on: ~10 min 
Step vi, Using SHAPEIT for phasing per chromosome: varies per chromosome from 1.5 hours 
up to 5.5 hours.
Step vii, Imputa  on with IMPUTE2 per chunk: ~1 hour 
Inexperienced analysts will typically require more  me. The es  mated  mes and memory 
requirements are based on the target and reference sets used in this protocol, the es  mates 
may also vary with diff erent cohort designs. Moreover, given the computa  onal nature of 
this protocol,  ming will also heavily depend on the computa  onal resources available to the 
analyst, and to a lesser extent on the versions of the tools. The phasing and imputa  on steps 
are the most  me consuming steps.

Troubleshoo  ng
It is likely that many of the tools used in this protocol will be updated as  me passes, we 
therefore recommend checking if there are new versions of the tools each  me the protocol 
is run and what the changes between versions are.
Imputa  on with MaCH and minimac, step 10A(iv) and imputa  on with IMPUTE2, step 10B(iii): 
This step checks the concordance between SNPs within the target set and the reference 
panel based on posi  on on the chromosome, assuming the SNP names are equal in both. 
This requires both panels to be aligned to the correct human genome build. Another op  on is 
to leave the SNPs which are in the target set and not in the reference panel. In that case, step 
10A(iv) and 10A(v) (for MaCH and minimac) or step 10B(iii) and 10B(iv) (for IMPUTE2) can 
be replaced by plink --noweb --fi le clean-GWA-data.HG19 --make-bed --out 
clean-GWA-data.HG19.for-impute.plink. It is also important to have both the 
target set and the reference panel on the same human genome build, as IMPUTE2 links the 
two panels based on chromosome and posi  on, not on SNP name.
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Imputa  on with MaCH and minimac, step 10A(ix): The command line parameters --interim 5 
(to save intermediate results), --sample 5 (random (but plausible) sets of haplotypes for each 
individual should be drawn every 5 itera  ons) and --compact (reduces memory use at the 
cost of run  me) can be removed from the command line to save  me and disk space.
Imputa  on with MaCH and minimac, step 10A(x): The command line parameter --rs allows 
the use of rs GWAS SNP iden  fi ers in the target set. This command line parameter can be 
removed if the target set does not include rs iden  fi ers.
Imputa  on with IMPUTE2, step 10B(v): To increase the speed of the IMPUTE2 protocol, 
the target set could be reforma  ed into binary PLINK format (see BOX 1), therefore the 
--recode command should be replaced by --make-bed. The follow up steps 10B(vi) and 
10B(vii) should be adjusted for binary fi les in that case. 
Imputa  on with IMPUTE2, step 10B(vii): When the analyst wants to use two phased reference 
panels, the IMPUTE2 command should be replaced with ./impute_v2.3.1_x86_64_
static/impute2 -known_haps_g ${namefi le}.haps -m ${refdir}/gonl.

chr${chr}.release4.gtc.geneticmap.txt -h ${refdir}/gonl.chr${chr}.

release4.gtc.hap.gz ${refdir}/1000g.chr${chr}.release4.gtc.hap.gz -l

${refdir}/gonl.chr${chr}.release4.gtc.legend.gz ${refdir}/1000g.chr$ 

{chr}.release4.gtc.legend.gz -int ${startchr} ${endchr} -Ne 20000 -o 

${namefi le}.chunk${chunk}.impute2;

When combining several of the commands into Bash shell script fi les, be sure to add set 
-e and set -u as the fi rst two actual commands in the script. This makes sure that the 
script halts on errors and when undefi ned variables are being used, respec  vely. If addi  onal 
debugging of Bash scripts is required, running a script like this: bash -x scriptfi le.sh 

will run the script in debug mode, showing the value of variables, etc. Alterna  vely, if only a 
certain part of a Bash script is to be debugged, adding set -x before and set +x a  er the 
problema  c part will enable debugging only for that part.

ANTICIPATED RESULTS
Converti ng the target set to the correct build. The genome-wide SNP data used in this 
protocol consists of 1,919 samples and 313,878 markers a  er performing quality control. 
A  er li  ing this data set over from hg17 to hg19, the data set consists of 1,919 samples and 
304,930 markers.
Imputati on with MaCH and minimac. Imputa  on with minimac results in 8 fi les per chunk. 
Each fi les is a compressed (zipped) fi le. If needed such a fi le can be decompressed by running 
gunzip -c fi lename.gz > fi lename. Given the command for minimac specifi ed earlier, 
the names of the outpu  iles start with chunk1-clean-GWA-data.HG19.for-impute.
merlin.chr1 for chunk 1 of chromosome 1.
• a fi le with the extension .dose.gz which contains the imputed dosage for each genotype. 

Each row in the output will include one column per marker.
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• a fi le with the extension .erate.gz which contains the error rate per marker.
• a fi le with the extension .hapDose.gz which contains the dosage for each haplotype 

separately.
• a fi le with the extension .haps.gz which contains the most likely alleles for each haplotype 

separately. 
• a fi le with the extension .info.dra   which contains the reference allele, non reference 

allele, frequency per marker. It also gives which markers were genotyped.
• a fi le with the extension .info.gz which contains the informa  on about reference allele, 

frequencies and quality of imputa  ons per marker. It also lists which markers were 
genotyped. 

• a fi le with the extension .prob.gz which contains the imputed probabili  es for each 
genotype. Each row in the output will include two columns per marker. The fi rst of these 
columns denotes the probability of a homozygote for allele 1. The second column denotes 
the probability of a heterozygote.

• a fi le with the extension .rec.gz which contains the switch error rate per interval.
Imputati on with IMPUTE2. Imputa  ons of IMPUTE2 results in 5 fi les per chunk. Given the 
command for IMPUTE2 specifi ed earlier, the names of the outpu  iles start with clean-
GWA-data.HG19.for-impute.plink.chr1.phased.chunk1.impute2 for chunk 1 of 
chromosome 1:
• a fi le without any extra extension, this fi le contains the main results of the imputa  ons. 

The fi rst 5 entries of each line should be the SNP ID, rs ID of the SNP, base-pair posi  on 
of the SNP, the allele coded A and the allele coded B. The subsequent columns contain 
the probabili  es for the three genotypes AA, AB and BB for the each individual in the 
target set. This format allows for genotype uncertainty and therefore the probabili  es for 
a given individual need not sum to 1.

• a fi le with the extension _info, this fi le contains the following columns: SNP iden  fi er, 
rsID, base pair posi  on, expected frequency of allele coded 1, measure of the observed 
sta  s  cal informa  on associated with the allele frequency es  mate, average certainty of 
best-guess genotypes and the internal “type” assigned to SNP.

• A fi le with the extension _info_by_sample which contains the concordance and the R2 per 
sample.

• a fi le with the extension _summary which contains a summary of the screen output.
• a fi le with the extension _warnings which contains all warnings generated by IMPUTE2.
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Box 1: input fi les for imputa  ons

The input fi les for the various imputati on tools
For MaCH and minimac, the target set that will be imputed needs to be stored per chromosome 
in Merlin29 format. The Merlin pedigree fi le contains both the rela  onships, the phenotypes and 
the genotypes per individual per row. The fi rst columns of the pedigree fi le contains the family 
iden  fi er, the individual iden  fi er, the father and mother iden  fi ers, the sex of the individual 
(with females decoded as 2 and the males decoded as 1). The subsequent columns can encode 
phenotypes for discrete and quan  ta  ve traits followed by the genotypes. The alleles should be 
coded as ‘A’, ‘C’, ‘G’ or ‘T’ and missing alleles should be encoded with ‘N’, ‘X’ or ‘0’. Since MaCH and 
minimac assume samples to be unrelated, both the father and mother iden  fi ers should be zero. 
The descrip  on of the columns is stored in the data fi le, with one row per column, indica  ng the 
data type (encoded as M - marker, A - aff ec  on status, T - quan  ta  ve trait and C - covariate) and 
providing a one-word label for each column.
For IMPUTE2 the genotype informa  on should be stored in a one-line-per-SNP format. The fi rst 5 
entries of each line should be the SNP ID, rs ID of the SNP, base-pair posi  on of the SNP, the allele 
coded A and the allele coded B. The subsequent columns contain the prior probabili  es for the 
three genotypes AA, AB and BB for the each individual in the target set. This format allows for 
genotype uncertainty and therefore the probabili  es for a given individual need not sum to 1. The 
order of samples in the genotype fi le should match the order of the samples in the sample fi le. The 
sample fi le has three parts (a) a header line detailing the names of the columns in the fi le, (b) a line 
detailing the types of variables stored in each column, and (c) a line for each individual detailing 
the informa  on for that individual (more details on the IMPUTE2 fi le formats can be found at 
http://www.stats.ox.ac.uk/~marchini/software/gwas/fi le_format.html) .
 
PLINK format to store genotyped data
The most commonly used fi le format for storing genotype data of the samples in the target set is the 
PLINK format (http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped). 
The pedigree fi le (extension .ped) in PLINK format is a headerless white-space (space or tab) 
delimited fi le which contains the pedigree informa  on, the phenotype informa  on and the 
genotype informa  on for all samples in the data set. Every row corresponds to one individual 
and contains at least six columns which contain the family iden  fi er, the individual iden  fi er, the 
paternal and maternal iden  fi er, the sex of the samples (with males encoded as 1 and females 
encoded as 2) and the phenotype of the sample, just like the Merlin format. Genotypes (column 
7 onwards) can be any character (e.g. 1, 2, 3, 4 or A, C, G, T or anything else) except 0 which is, by 
default, the missing genotype character. All markers should be biallelic. All SNPs (whether haploid 
or not) must have two alleles specifi ed and either both or neither alleles should be missing. The 
SNPs are described in the map fi le (extension .map), each line of the this fi le describes a single 
marker and must contain exactly 4 columns, the chromosome, the SNP iden  fi er, the gene  c 
distance in Morgans and the base-pair posi  on in bp units. The ped and map fi le can be converted 
into a more memory- and  me-effi  cient binary fi les with the extensions .bed, .bim and .fam.
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ABSTRACT

Although genome-wide associa  on studies (GWAS) have iden  fi ed many common variants 
associated with complex traits, low-frequency and rare variants have not been interrogated in a 
comprehensive manner. Imputa  on from dense reference panels, such as the 1000 Genomes 
Project (1000G), enables tes  ng of ungenotyped variants for associa  on. Here we present 
the results of imputa  on using a large, new popula  on-specifi c panel: the Genome of The 
Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference 
sets by comparing imputa  on genotypes with ‘true’ genotypes typed on ImmunoChip in three 
European popula  ons (Dutch, Bri  sh, and Italian). GoNL showed signifi cant improvement in 
the imputa  on quality for rare variants (MAF 0.05–0.5%) compared with 1000G. In Dutch 
samples, the mean observed Pearson correla  on, r2, increased from 0.61 to 0.71. We also 
saw improved imputa  on accuracy for other European popula  ons (in the Bri  sh samples, 
r2 improved from 0.58 to 0.65, and in the Italians from 0.43 to 0.47). A combined reference 
set comprising 1000G and GoNL improved the imputa  on of rare variants even further. The 
Italian samples benefi  ed the most from this combined reference (the mean r2 increased 
from 0.47 to 0.50). We conclude that the crea  on of a large popula  on-specifi c reference is 
advantageous for impu  ng rare variants and that a combined reference panel across mul  ple 
popula  ons yields the best imputa  on results.
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INTRODUCTION

Although genome-wide associa  on studies (GWAS) have been very eff ec  ve in iden  fying 
loci associated with diseases or traits1, it has proved diffi  cult to fi ne-map the associa  on 
signals to causal variants2,3. To overcome these limita  ons, there has been increasing interest 
in the interroga  on of less frequent variants, especially given the enrichment of deleterious 
alleles at low frequencies4-7. There are specialized chips that can assess a larger number of 
rare variants, like the ImmunoChip8 or Metabochip9, although they do not provide uniform 
genome-wide coverage. Hence, most inves  gators will use sta  s  cal imputa  on from SNP 
arrays in GWAS using dense reference panels.
Imputa  on using a densely typed reference set can be performed to infer untyped variants 
that can be used to improve the power of a GWAS10, and there are numerous examples 
in which imputa  on has eff ec  vely enriched the results in GWAS11,12. Although most large 
studies have so far been based on meta-analysis of HapMap-based imputa  ons across 
cohorts, the primary limita  on is that HapMap is essen  ally restricted to common varia  on 
(MAF > 5%). Thanks to the sequencing of larger samples, such as 1000G, more complete 
reference panels are now being assembled, se   ng off  a new wave of meta-analyses.
The power of detec  ng an associa  on in a GWAS is determined by its sample size and 
eff ec  ve genome-wide coverage of the included variants, among other things13,14. The 
eff ec  ve coverage depends directly on the number and quality of the imputed genotypes15. 
In turn, the quality of the reference panel will depend largely on the number of samples, the 
quality of the haplotypes, and the number of variants included16.
The Genome of The Netherlands (GoNL) has the poten  al to provide a good imputa  on 
reference panel. GoNL is a popula  on based sequencing project, in which 769 Dutch samples 
were sequenced at, on average, 14x coverage17. In par  cular, the fact that GoNL sequenced 
trios (231) or quartets (19) has enabled improved haplotype phasing by using one of the 
children18. The GoNL imputa  on reference set contains 998 unrelated haplotypes. In this 
paper, we report a quan  ta  ve analysis to assess the quality of imputed genotypes from 
using both GoNL and 1000G in Dutch and other European popula  ons.
We adopted a ‘gold standard’ approach using samples genotyped on two dis  nct pla  orms, 
HumanHap550 and ImmunoChip. Hap550 is a commonly used genotyping chip designed to 
tag as many haplotypes as possible using common variants. ImmunoChip, however, is a fi ne-
mapping chip: it contains a large number of low frequency and rare variants for a limited 
number of loci (primarily selected on the basis of loci iden  fi ed in immune-related traits). 
Star  ng from the Hap550-genotyped SNPs, we were able to impute a large number of variants 
present on ImmunoChip. We then compared these imputed genotypes with the measured 
(‘gold standard’) genotypes on ImmunoChip to quan  fy the imputa  on performance. We 
have such a data set for three European popula  ons: the Dutch, Bri  sh, and Italians. For each 
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popula  on we used 745 samples genotyped on both pla  orms. These three popula  ons 
allowed us to ascertain popula  on-specifi c diff erences in the imputa  on quality of SNPs.

MATERIAL AND METHODS

Genome of the Netherlands
GoNL is a project in which 769 individuals from diff erent Dutch provinces were sequenced at, 
on average, 14x coverage17. All samples are part of either one of the 231 trios or one of the 19 
quartets. The phasing was performed using the trio informa  on18, and for the quartets one of 
the children was used to enhance the phasing. Because of sequence failures of two parents, 
from diff erent trios, these samples were excluded from the imputa  on reference set. Instead, 
from these two trios, we used the haplotype of the child that was not present in the other 
parent. This resulted in an imputa  on reference set containing 998 unrelated haplotypes. We 
used GoNL release 4 for all our analyses (see h  p://www.nlgenome.nl). The current GoNL 
release 5 also contains over one million indels but did not change the SNPs.

Benchmarking samples
Samples from a celiac disease pa  ent cohort were selected, since they had been genotyped 
on both the Hap550 and ImmunoChip19. The 745 Dutch and the 745 Bri  sh samples were all 
cases, while the 745 Italian samples comprised 371 cases and 374 controls. The clustering for 
the genotype calling of the ImmunoChip data was performed manually in the past, to ensure 
proper genotyping results.
The Hap550 (516,426 SNPs) data was fi ltered on MAF > 1% and HWE p-value > 1 · 10-4 for 
each popula  on separately. The ImmunoChip (113,991 SNPs) data was fi ltered on MAF > 
0.05% and HWE p-value of 1 · 10-4. Both datasets are fi ltered on variants present in both the 
1000G reference set as in the GoNL reference set. A  er QC the Dutch, Bri  sh and Italian 
Hap550 data contain 509,888, 509,984 and 510,225 SNPs. The ImmunoChip data contains in 
the same order 107,383, 107,212 and 107,611 SNPs.

Combining 1000G and GoNL data
The reference set combining data from 1000G and GoNL was created using the Impute2 
op  on: “--merge_ref_panels”. This merged reference set was wri  en to a fi le and subsequently 
used for the benchmarking. Since our benchmarking data is fi ltered for variants present in 
both reference sets, we did not assess the imputa  ons of variants that are unique to either 
reference set.
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Pre-phasing
The 745 samples for each popula  on were pre-phased using SHAPEIT215. This was done per 
chromosome using the default se   ngs. 

Imputati on
The imputa  ons were performed using Impute2 2.3.016. The diff erent popula  ons were 
imputed separately and in chunks of 5 Mb. For the comparison using an equal number of 
iden  cal European haplotypes, we performed an imputa  on using all 379 European 1000G 
samples and a random selec  on of 379 GoNL samples. The random selec  on of GoNL 
samples was performed stra  fi ed on the Dutch provinces. These samples were selected using 
the Impute2 op  on: “--exclude_samples_h”.
We used MOLGENIS compute to implement the imputa  on pipeline, run the 8,835 imputa  on 
chunks in parallel on a PBS compute cluster, and to keep track of the 15 imputa  ons (fi ve for 
each popula  on). All pipelines are available as open source via h  p://www.molgenis.org/
wiki/ComputeStart.

Gold standard method
As stated above, we used samples genotyped on two dis  nct pla  orms. We imputed the 
Hap550 genotypes from these samples and compared the imputed genotypes to the SNPs 
previously only present in the ImmunoChip data. We used the ImmunoChip data as our 
‘gold standard’. The concordance between imputed genotypes and ImmunoChip genotypes 
was determined by calcula  ng the Pearson correla  on r2 between the imputed dosage and 
ImmunoChip observed genotypes. The mean concordances were calculated for three MAF 
bins: rare (≥ 0.05% and < 0.5%), low-frequency (≥ 0.5% and < 5%) and common (> 5%) SNPs. 
The MAF used to stra  fy the SNPs into the bins was calculated separately for each popula  on. 
The results were plo  ed using R 2.14.2. The signifi cance of the diff erences between the 
reference sets was calculated using the Wilcoxon signed-rank test implementa  on in R.

Principal component analysis
The principal component analysis (PCA) was performed using the EIGENSOFT 4.2 package20. 
The components were calculated using the European 1000G, GoNL, and the 3 GWAS datasets 
that we used for benchmarking. Before the components were calculated, all datasets were 
fi ltered to only include variants with a MAF > 5%. A joint dataset, featuring variants present in 
all 5 datasets, was created. This dataset was again fi ltered for MAF > 5%, the merged data was 
also fi ltered on HWE p-value > 1 · 10-4 and a call rate of 95%. This dataset was pruned using 
PLINK 1.0721 with the “--indep-pairwise” op  on, windows: 1000, step: 5, r2 threshold: 0.2. 
The fi rst component explained 0.33% of the varia  on and the second 0.10%. All subsequent 
components described less than 0.06%.
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RESULTS

We stra  fi ed our analysis into three groups: common variants (MAF ≥ 5%), low-frequency 
variants (MAF 0.5%–5%), and rare variants (MAF 0.05%–0.5%). We focused mainly on the 
rare variants, since these are more diffi  cult to impute and most can be gained in terms of 
imputa  on quality when using a be  er reference set. We observed a large increase in the 
imputa  on quality of rare variants when using GoNL as the reference compared to 1000G 
(Figure 1, Table 1). The mean observed Pearson correla  on (r2) showed a signifi cant increase 
from 0.61 to 0.71 for Dutch samples (Wilcoxon p-value = 7.16 · 10-60). The Bri  sh and Italian 
imputa  ons also showed a signifi cant improvement when impu  ng rare variants, from 0.58 
to 0.65 (p = 3.70 · 10-35) and from 0.43 to 0.47 (p = 2.64 · 10-13), respec  vely. GoNL also 
signifi cantly outperformed the 1000G reference set in the imputa  on of variants with higher 
MAFs (Supplementary Figures/Appendices S1, S2, S3). 
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Figure 1. Comparison of imputa  on quality of rare variants using the 1000G data, GoNL, and the 
combined reference panel.

Table 1. Mean observed r2 of rare variants.
Reference set Dutch Briti sh Italian
1000G 0.61 0.58 0.43
GoNL 0.71 0.65 0.47
1000G + GoNL 0.72 0.67 0.50

Diff erences in the mean imputa  on quality between the reference sets was signifi cant for each 
popula  on (p < 0.001).
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Using a combined reference set composed of the 1000G and GoNL samples, we could improve 
the imputa  on further. The imputa  on of rare variants using the combined reference in Dutch 
and Bri  sh samples showed a small increase in quality compared to GoNL-only imputa  on, 
respec  vely 0.02 (p = 1.16 · 10-3) and 0.02 (p = 2.70 · 10-5). The Italians benefi  ed most from 
the combined reference with an increase of 0.04 (p = 3.62 · 10-30) compared to a GoNL-
only reference, resul  ng in a mean concordance for rare variants of 0.5. The diff erences in 
imputa  on quality when using the combined reference set for more frequent alleles were 
either very small or not signifi cant (Supplementary Figure S1, Supplementary Tables S2 and 
S3).
A striking trend in these results is that the imputa  on quality of rare variants in Italians 
samples is lower than that in Dutch and Bri  sh samples. The Dutch and Italian samples were 
genotyped at the same center and have similar call rates, and there were no indica  ons that 
the genotyping quality of the Italian samples was lower. However, a principal component 
analysis (PCA) revealed that the Italian samples were not as well represented by either 1000G 
or GoNL compared to the Dutch and Bri  sh GWAS samples used for benchmarking (Figure 2).
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Figure 2. Clustering of reference and study samples. PC1 and PC2 reveal 3 main clusters: Tuscans from 
Italy (TSI), Finnish (FIN), and a Western European cluster with the CEU (Utah Residents with Northern 
and Western European ancestry), the GBR (Bri  sh) and the GoNL samples (Panel A). Panel B shows 
that most of our GWAS samples clustered in a similar way to the corresponding 1000G/GoNL samples.

We assessed whether the be  er performance of GoNL compared to 1000G was due to the 
larger number of European haplotypes in the reference set (998 vs. 578 in 1000G). We did this 
by performing an imputa  on using solely the 379 European samples in 1000G and a random 
subset of 379 GoNL samples. We found that the GoNL subset also signifi cantly outperformed 
the European 1000G subset (Table 2). 
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Table 2. Mean observed r2 of rare variants for reference sets of equal sample size from 1000G and GoNL 
(all of European descent).
Reference set Dutch Briti sh Italian
1000G European 0.59 0.57 0.40
GoNL random subset 379 samples 0.68 0.64 0.45

Diff erences in the mean imputa  on quality between the reference sets was signifi cant for each 
popula  on (p < 0.001).

Figure 3. Calibra  on of posterior probabili  es. The posterior probabili  es were, in general, well 
calibrated, although there were a few devia  ons from the expected accuracy (panel A). For common and 
low-frequency variants (panels B & C), we observed a strong correla  on (r2 0.97 and 0.91, respec  vely) 
between the impute2 info metric and the observed r2. However, for the rare variants (panel D), the 
rela  on between predicted and observed quality was less profound. We also observed a correla  on of 
0.70 and several large devia  ons from the diagonal.
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Our experimental design also allowed us to assess the calibra  on of the posterior probabili  es 
of the genotypes as they are output by IMPUTE2. We observed that the posterior probabili  es 
were, in general, well calibrated, although we did observe a few devia  ons for low-frequency 
and rare variants (Figure 3A). To ascertain if these devia  ons in posterior probabili  es 
aff ect the predicted imputa  on quality, the IMPUTE2 info metric, we plo  ed the predicted 
quality against the observed r2. This showed a strong correla  on between the predicted 
and observed quality for common variants and low-frequency variants (correla  on of 0.97 
and 0.91, respec  vely; Figure 3B & 3C). However, the info metric is not as accurate for rare 
variants, and the correla  on with observed r2 dropped to 0.70 (Figure 3D). We also observed 
some discrepancies where a near perfect imputa  on was predicted while in fact there was 
poor imputa  on, and vice versa when assessing rare variants.

DISCUSSION

We have shown that the new GoNL reference set provides higher downstream imputa  on 
accuracy than the 1000G reference set, not only for Dutch samples, but also for other 
European popula  ons studied in this paper. Aside from the increase in imputa  on quality 
of rare variants in Dutch samples from 0.61 (1000G) to 0.71 (GoNL), we also observed an 
increase in imputa  on quality in Bri  sh (0.58 to 0.65) and Italian (0.43 to 0.47) samples. We 
show that GoNL yielded be  er imputed genotypes for at least these European popula  ons. A 
combined reference set, of 1000G and GoNL, increased the mean imputa  on quality of rare 
variants even further to 0.72, 0.67 and 0.50 for the Dutch, Bri  sh and Italians, respec  vely. 
By selec  ng an iden  cal number of European haplotypes from 1000G and from GoNL, we 
showed a strong added value for GoNL in all the tested popula  ons, confi rming that the trio 
design of GoNL and the resulted accurate haplotypes aid the downstream imputa  on quality. 
We also observed a popula  on-specifi c added value of GoNL when impu  ng Dutch samples. 
The added value (i.e. mean increase in imputa  on quality) was largest when comparing 
GoNL to 1000G in impu  ng the Dutch samples. Of course, it was already known that a be  er 
matched reference set will result in be  er imputed genotypes13, however, the results from 
this paper were based on low-frequency variants and we show that there is also an inter-
European eff ect of reference sets. 
It is important to note that we only assessed variants present on the ImmunoChip. Although 
these variants were not randomly selected, we have no reason to assume that the imputa  on 
quality will be posi  vely biased or that they do not represent low-frequency variants in 
general. The ImmunoChip was made to fi ne map loci previously associated to autoimmune 
diseases using a large number of low-frequency and rare variants.
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We were encouraged to observe that the posterior probabili  es were, in general, well 
calibrated with respect to the gold standard genotypes. We observed no adverse eff ects on 
the accuracy of the IMPUTE2 info metrics, although for rare variants we did observe a few 
instances with large devia  ons between the predicted and observed quality. This is in line 
with previous observa  ons22. This observed inaccuracy also emphasizes the importance of 
valida  ng associa  ons from imputed genotypes.
It was shown earlier that a larger and more diverse reference set can improve the imputa  on 
of low-frequency variants23. We observed that a combina  on of 1000G and GoNL showed 
limited added value for the imputa  on of rare variants in the Dutch and Bri  sh samples. It 
was, however, interes  ng to observe that the imputa  on of the Italian samples was improved 
more by this combined reference panel, leading us to speculate that popula  ons that are 
poorly represented in the reference panel benefi t more from a large and diverse reference 
set. Despite the limited added value for the Dutch and Bri  sh datasets, such a large reference 
set may s  ll be of interest for consor  a aiming to impute cohorts of both European and non-
European origin. All these cohorts can be imputed using the same combined reference set 
and then use IMPUTE2 to automa  cally select the best matching haplotypes24. We should 
note that we were only able to assess variants present in both reference sets, since there are 
very few variants on the ImmunoChip that are unique to either GoNL or 1000G. Nonetheless, 
our results show that popula  on-specifi c reference sets and cosmopolitan panels, such as 
1000G, can augment each other. This even holds true for the imputa  on of samples with 
ancestry other than those present in the popula  on-specifi c reference sets, which provides 
further mo  va  on for interna  onal eff orts towards large and integrated reference sets.
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ABSTRACT

Variants associated with blood lipid levels may be popula  on-specifi c. To iden  fy these low-
frequency variants associated with this phenotype, popula  on-specifi c reference panels may 
be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the popula  on-
specifi c reference panel created by the Genome of the Netherlands Project and perform 
associa  on tes  ng with blood lipids levels. We report the discovery of fi ve novel associa  ons 
at four loci (p-value < 6.61 · 10-4), including a rare missense variant in ABCA6 (rs77542162, 
p.Cys1359Arg, frequency 0.034) which is predicted to be deleterious. The frequency of this 
ABCA6 variant is 3.65-fold increased in the Dutch and its eff ect (βLDL-C=0.135, βTC=0.140) is 
es  mated to be very similar to those observed for single variants in well-known lipid genes, 
such as LDLR.
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INTRODUCTION

Genome-wide associa  on studies (GWAS) have iden  fi ed a large number of loci associated 
with blood lipid levels and analysis suggest there are addi  onal suscep  bility loci that have 
not yet been discovered1-3. Despite the fact that rare func  onal variants are known to play 
a major role in lipid metabolism1-3, there has been limited success in fi nding such variants 
in popula  on-based studies using next genera  on sequencing. Even if the eff ect of these 
variants is expected to be larger than that of common variants, the sample size needed to 
detect these rare or low frequent variants increases drama  cally with variant rarity. As the 
frequency of rare variants may increase in certain popula  ons due to dri   and founder eff ects4, 
the power of searches for rare func  onal variants may improve by the use of reference sets 
specifi c to dis  nct popula  ons. Such references allow for be  er quality imputa  on of rare 
variants especially those with increased frequency in the popula  on of interest3,5,6. Previous 
studies have successfully detected rare variants by imputa  on into larger sets of individuals 
in isolated popula  ons followed by associa  on tes  ng to detect variants associated to the 
trait of interest7-9. 
Here we describe an imputa  on-based GWAS for circula  ng lipid levels using a custom-built 
reference panel for the Dutch popula  on (Genome of the Netherlands, GoNL, h  p://www.
nlgenome.nl/), in which the whole genome of 250 parent-off spring trios were sequenced at 
approximately 13x coverage5,6. Due to the trio design, the phasing quality of the reference 
panel was be  er than that of the 1000 Genomes Phase 1 panel. In this study we show that 
using this popula  on-specifi c reference panel we were able to iden  fy fi ve novel associa  ons 
at four loci.

METHODS

Study descripti ons
The descrip  ons of the including cohorts can be found in the supplementary methods. A 
wri  en informed consent was obtained from all study par  cipants for all cohorts and local 
ethical commi  ees at par  cipa  ng ins  tu  ons approved individual study protocols.

Study samples and phenotypes
A summary of the details of both the discovery and replica  on cohorts par  cipa  ng in this 
study can be found in Supplementary Tables 1 and 12.
Only samples of Dutch ancestry were used in the discovery cohorts, the samples in the 
replica  on cohorts are from various ancestries, see Supplementary Table 12. In all studies 
except MESA Whites, all individuals that used lipid lowering medica  on at the  me the 
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lipid levels were measured, were excluded. In MESA Whites the total cholesterol values for 
individuals on lipid lowering medica  on was divided by 0.8. In all studies except for LLS and 
PREVEND, the subjects were fas  ng when the lipid levels were measured. In LLS all samples 
were non-fasted and in PREVEND 2.99% were non-fasted. The LDL-C levels were measured 
within the ERF, Croa  a Korcula, Croa  a Split, Croa  a Vis, FamHS and Lifelines cohorts, within 
the other cohorts the Friedewald equa  on was used to calculate the LDL-C levels10.
The lipid measurements were adjusted for sex, age and age2 in all cohorts. Various methods 
were used to account for family rela  onships: in ERF grammar-gamma (GenABEL version 
1.7.611,12, was used, in the Croa  a Korcula, Croa  a Split, Croa  a Vis and Genera  on Scotland 
cohorts mmscore (GenABEL11 was used, and in LLS qt-assoc was used. In CHS the clinic was 
used as extra covariate, in Lifelines PC1 and PC2, in FamHS the fi eld center, the genotyping 
array (Illumina 550k, 610k and 1M), PC5 only for TC and PC1 only for LDL, in FHS the cohort 
(off spring and third genera  on) and PCs, in MESA Whites 2 PCs and study site, in NTR-NESDA 
PCs and chip eff ect, in ORCADES the genotyping array and PC1, PC2 and PC3, in PROSPER-
Dutch only PC1 and in both PROSPER-Sco   sh and PROSPER-Irish PC1-PC4.

Genotyping and imputati ons
Detailed informa  on about genotyping and imputa  ons per cohort can be found in the 
supplementary methods. In summary, all cohorts were genotyped using commercially 
available Aff ymetrix or Illumina genotyping arrays, or custom Perlegen arrays. Quality control 
was performed independently for each study. To facilitate meta-analysis, each replica  on 
cohort performed genotype imputa  on using IMPUTE13, or Minimac14 with reference to the 
GoNL project data for the discovery cohorts and with reference to the 1-kG project data for 
the replica  on cohorts.

GWAS in all discovery cohorts
All nine discovery cohorts ran separate the genome-wide associa  on study for each of the 
four traits: HDL-C, LDL-C, TC and TG. Supplementary Table 13 shows the genomic control 
factor λ per trait per cohort and Supplementary Figs 10-13 show the λ per MAF bin per trait 
per cohort. We therefore used only the SNPs with a R2 > 0.3, R2 < 1.1 and expected minor 
allele count (expMAC = 2 · MAF · R2 · sample size) > 10. Most infl a  on is observed within the 
ERF study, especially in the lowest-frequency variants, this is probably caused by the family 
structure in this cohort.

Meta-analysis of discovery cohorts
The associa  on results of all studies were combined and the standard error-based weights 
were calculated by METAL15. This tool also applies genomic control by automa  cally correc  ng 
the test sta  s  cs to account for small amounts of popula  on stra  fi ca  on or unaccounted 
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relatedness. METAL also allows for heterogeneity. We used the following fi lters: 0.3 < R2 < 1.1 
and expMAC > 10.
A  er meta-analyses of all available variants, we excluded the variants that are not present 
in at least 6 of the 9 cohorts. We also excluded all variants that are labeled as being in the 
inaccessible genome, since the quality of those SNPs cannot be guaranteed16. The remaining 
variants per trait, see Supplementary Table 14, were used to create Manha  an plots and QQ-
plots, see Supplementary Figs 14-15. The meta-analysis resulted in 1,905 SNPs with a p-value 
less than 5 · 10-8 for HDL-C, 2,626 SNPs for LDL-C, 3,133 SNPs for TC and 1,310 for TG.

Confi rmati on of known loci
Previously, Teslovich et al.1 and Willer et al.2 iden  fi ed 157 loci associated with one of more 
of the lipids. Teslovich et al.1 iden  fi ed 47, 37, 52 and 32 loci to be associated with HDL-C, 
LDL-C, TC and TG, respec  vely. The posi  ons of these loci were reported on human genome 
build 36, we therefore li  ed these posi  ons over to human genome build 37 and checked 
the associa  on results a  er the meta-analysis of all discovery cohorts. The eff ect size of 
these loci was reported in mg dL-1, whereas in this study we use mmol L-1. We therefore 
mul  plied the eff ect size for the loci associated with TG with 0.0259 and the other loci with 
0.011. Supplementary Fig. 2 and Supplementary Table 6 show the comparison per trait of 
our meta-analysis of all discovery cohorts with the results of the meta-analysis by Teslovich 
et al.1. We did the same for the loci iden  fi ed by Willer et al.2, see Supplementary Fig. 3 and 
Supplementary Table 7. The eff ect size of these loci could not be compared with our results, 
since trait residuals within each study par  cipa  ng in the meta-analysis of Willer et al.2 were 
adjusted for sex, age and age2 and subsequently quan  le normalized. Their GWAS was done 
with the inverse normal transformed trait values.

Selecti on of independent variants
In order to select only associated variants that were independent of previous fi ndings, we 
used the GCTA tool17. This tool performs a stepwise selec  on procedure to select mul  ple 
associated SNPs by a condi  onal and joint analysis approach using summary-level sta  s  cs 
from a meta-analysis and linkage disequilibrium (LD) correc  ons between SNPs es  mated 
from the GoNL reference panel, release 4. This analysis revealed 60 independent variants 
associated with HDL-C, 142 independent variants associated with LDL-C, 134 independent 
variants associated with TC and 16 independent variants associated with TG. By using this 
approach, we were able to iden  fy addi  onal independent variants in known loci. Figure 1 
shows that we iden  fi ed both common and rare variants and more rare variants compared 
to Teslovich et al.1 and Willer et al.2. There is overlap between the genome-wide signifi cant 
SNPs of the diff erent traits, and also between the independent SNPs of the diff erent traits, as 
shown in Supplementary Fig. 1.
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Figure 1. Iden  fi ed variants for plasma lipid levels. Distribu  on of the variants iden  fi ed by condi  onal 
analysis implemented by GCTA to be independently associated with the lipid traits (A: HDL-C (60 
variants), B: LDL-C (142 variants), C: TC (134 variants) and D: TG (16 variants)) over MAF bins a  er 
meta-analysis of discovery cohorts (black). The histograms also includes loci iden  fi ed by Teslovich et 
al.1 (gray) and Willer et al.2 (white).

Identi fi cati on of potenti al novel variants
To iden  fy poten  al novel variants, we fi rst excluded all variants within 1 Mb of a known 
loci from Teslovich et al.1 and from Willer et al.2. Since the number of loci associated with 
the four traits diff er, we end up with 7,946,245 SNPs for HDL-C, 8,014,693 SNPs for LDL-C, 
7,923,530 SNPs for TC and 7,468,790 SNPs for TG. For all traits we do fi nd some genome-wide 
signifi cant loci, see Supplementary Figs 16 and 17. We used the GCTA tool to select only those 
variants that are independent associated with the lipid trait. This analysis revealed 2 novel 
independent variants associated with HDL-C, 1 novel independent variants associated with 
LDL-C, 2 novel independent variants associated with TC and 1 novel independent variants 
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associated with TG, see Supplementary Table 8 and Supplementary Fig. 18. We used PLINK 
to test if these 6 variants are in LD with the knowLn loci from Teslovich et al.1 and from Willer 
et al.2. None of the 6 variants are in LD with known loci associated with the same trait on the 
same chromosome (R2 < 0.14).

Replicati on of potenti al novel variants
The 6 poten  al novel loci were replicated in 11 cohorts: CHS, Croa  a-Korcula, Croa  a-Split, 
Croa  a-Vis, FamHS, FHS, Genera  on Scotland, MESA Whites, ORCADES, PROSPER-Sco   sh 
and PROSPER-Irish. The associa  on results of all cohorts were combined and the standard 
error based weights were calculated by METAL15. The Bonferroni-correc  on for mul  ple 
tes  ng was 8.33 · 10-3. This resulted in the signifi cant replica  on of 5 out of the 6 variants, 
see Supplementary Fig. 19 and Supplementary Table 11.

Conditi onal analysis
Within the discovery cohorts we performed a condi  onal analysis to see if the novel variants 
are independent of the known loci from Teslovich et al.1 and from Willer et al.2. Supplementary 
Table 10 shows the results within these cohorts with and without adjus  ng for the known loci 
for the trait in ques  on, if available in the GoNL reference panel. Since the unadjusted and 
adjusted results are similar, we conclude that the newly iden  fi ed variant are independent 
of the known loci.

RESULTS

Nine large Dutch epidemiological cohorts (comprising 36,000 samples in total) were imputed 
with the GoNL reference panel (~ 19.5 million SNPs) on an iden  cal protocol6,18. All cohorts 
conducted associa  on analysis on the imputed variants assuming an addi  ve gene  c eff ect 
on high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), 
total cholesterol (TC) and triglyceride (TG) levels (Methods, Supplementary Methods and 
Supplementary Table 1) and results were meta-analysed. We used condi  onal analysis 
implemented in GCTA17 to iden  fy variants associated independently with lipid levels. 
Both rare (minor allele frequency (MAF) < 0.01), low (0.01 < MAF < 0.05) and common variants 
(MAF > 0.05) were associated with HDL-C (N = 60 variants), LDL-C (N = 142 variants), TC (N = 
134 variants) and TG (N = 16 variants) in both known and novel loci (Methods, Supplementary 
Table 2-5 and Supplementary Fig. 1). In Figure 1 we compare the allele frequencies that 
reach genome-wide signifi cance in the GCTA analysis (p-value < 5 · 10-8) to those reported 
by Teslovich et al.1 and Willer et al.2 (Figure 1). The majority of the known HDL-C (31 of 45, 
68.9%), LDL-C (24 of 34, 70.6%), TC (33 of 48, 68.6%) and TG (13 of 30, 43.3%) loci described 
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by Teslovich et al.1 replicated at a p-value < 3.18 · 10-4 (Bonferroni correc  on based on 
157 variants) (Methods, Supplementary Figs 2-3 and Supplementary Tables 6-7). We also 
confi rmed several of the HDL-C (6 of 27, 22.2%), LDL-C (7 of 21, 33.3%), TC (4 of 23, 17.4%) 
and TG (1 of 12, 8.3%) loci described by Willer et al.2 at a p-value < 6.02 · 10-4 (Bonferroni 
correc  on based on 83 variants) despite a sample size of about 20% of the other studies. 
To iden  fy novel loci associated with blood lipid levels, we selected from the list of variants 
iden  fi ed by GCTA, those variants located more than 1Mb away from previously iden  fi ed loci. 
This resulted in six novel associa  ons at fi ve loci (Methods, Table 1 and 2 and Supplementary 
Table 8). The fi ve loci are not in linkage disequilibrium (LD) with previously described GWAS loci 
(Methods and Supplementary Table 9). Condi  onal analysis in the discovery cohorts showed 
that these new variants were independent from previously iden  fi ed loci (Supplementary 
Table 10 and Supplementary Fig. 4). Of the fi ve loci, three (rs149580368, rs77542162 and 
rs144984216) have an increased frequency in GoNL compared to 1000 Genomes (1-kG, 
Phase 1 integrated release v3, April 2012, all ancestries; Table 1), sugges  ng there may have 
been gene  c dri   in the Dutch popula  on for these loci4. Yet, as each of these loci has a 
MAF > 0.005, we assumed these alleles also segregate in other popula  ons of European 
descent4, such as those of the Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) consor  um. Therefore, we set out replica  on in independent samples from the 
CHARGE cohorts using the 1-kG reference panel (Phase 1 integrated release v3, April 2012, 
all ancestries). We were able to replicate fi ve out of the six variants using the Bonferroni 
corrected p-value threshold of 8.33 · 10-3 (Table 2, Methods and Supplementary Table 11). 
Of the replicated variants, rs77542162 is the most interes  ng variant. This missense variant is 
associated with both LDL-C and TC (Supplementary Figs 5 and 6) and located on chromosome 
17 within the ABCA6 gene (ATP-binding casse  e, sub-family A (ABC1), member 6). The 
frequency of this variant is 1.31-fold higher in the discovery cohorts than in the replica  on 
cohorts and even 3.65-fold higher in the GoNL popula  on than in the 1-kG popula  on. This 
missense variant changes the amino acid cysteine into arginine at posi  on 1359 (Cys1359Arg) 
and is predicted to be damaging for the structure and func  on of the protein by Polyphen219, 
Muta  onTaster20 and LRT21. The eff ect size of rs77542162 (βLDL-C=0.135 and βTC=0.140) is very 
similar to those observed for other single variants in well-known lipid genes, such as LDLR and 
CETP as reported by Teslovich et al.1. The membrane-associated protein encoded by this gene 
is a member of the superfamily of ATP-binding casse  e (ABC) transporters that transport 
various molecules across extra- and intracellular membranes. This protein is a member of 
the ABC1 subfamily, which is the only major ABC subfamily found exclusively in mul  cellular 
eukaryotes. ABCA6 is clustered with four other ABC1 family members on chromosome 17q24 
and appears to play a role in macrophage lipid homeostasis.
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One other replicated variant, rs149580368, is also enriched with a 1.92-fold increase in 
frequency in the Dutch popula  on compared to the 1-kG popula  on. This intergenic variant 
(Supplementary Fig. 7) without a signifi cant cis-eQTL eff ect, is located between the protein-
coding genes C17orf105 (chromosome 17 open reading frame 105) and MPP3 (membrane 
protein, palmitoylated 3). Two replicated variants have similar frequencies in the GoNL 
and 1-kG reference sets: rs4752801 (Supplementary Fig. 8), an new intergenic variant 
with a high frequency (MAF = 0.355) that is located in a region previously iden  fi ed1 and 
rs117162033 (Supplementary Fig. 9), an intronic variant in the myosin F (MYO1F) coding 
gene. C17orf15, MPP3 and MYO1F have no known impact on lipid levels. As the imputa  on 
quality of rs117162033 is lower than the other variants, we validated the imputa  on of this 
variant using the same approach as published by Sco   et al22. We compared in a random 
sample of 65 par  cipants of the GoNL reference panel their sequence and best-guess 
GoNL imputed genotypes and found that the concordance was 100% (all par  cipants were 
correctly imputed). The associa  on between TG and the intronic variant in the MYO1F gene 
is remarkable because of the low frequency of the variant. This confi rms the conclusions as 
published before about the GoNL reference panel, that the trio-based phasing contributed 
signifi cantly to the imputa  on quality of rare variants5.
In this current study, the GoNL reference panel was used for imputa  ons of the discovery 
cohorts and the 1-kG reference panel for the imputa  on of the replica  on cohorts. Though, 
it would be interes  ng to impute with a combined reference panel of both the GoNL data, the 
1-kG data and other sequence data, this eff ort is ongoing.
This study shows that the imputa  on of a popula  on-specifi c reference panel into large 
epidemiological cohorts can reveal both low-frequency and rare variants associated with 
blood lipid levels using classical associa  on tes  ng approaches. The three variants with 
increased frequency in the Dutch popula  on as compared to the 1-kG popula  on include a 
rare, predicted to be deleterious missense variant in ABCA6, which has increased frequency 
3.65  mes larger in the Dutch popula  on. The eff ect of this variant is comparable to that of 
variants in the LDLR gene, a gene for which several popula  on-based screening programs 
have been ini  ated. Our fi ndings suggests that next genera  on sequencing eff ort may yield 
clinically relevant fi ndings. Our paper further shows that next genera  on sequencing eff orts 
in specifi c homogeneous popula  ons as the Dutch may yield clinically relevant fi ndings 
worldwide.
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ABSTRACT 

Genome-wide associa  on studies (GWAS) have revealed 74 single nucleo  de polymorphisms 
(SNPs) associated with high-density lipoprotein cholesterol (HDL-C) blood levels. This study 
is, to our knowledge, the fi rst genome-wide interac  on study (GWIS) to iden  fy SNP×SNP 
interac  ons associated with HDL-C levels. We performed a GWIS in the Ro  erdam Study (RS) 
cohort I (RS-I) using the GLIDE tool which leverages the massively parallel compu  ng power 
of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of 
SNPs. By performing a meta-analysis together with Ro  erdam Study cohorts II and III (RS-II 
and RS-III), we were able to fi lter 181 interac  on terms with a p-value < 1 · 10-8 that replicated 
in the two independent cohorts. We were not able to replicate any of these interac  on 
term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30,011) when adjus  ng 
for mul  ple tes  ng. Our GWIS resulted in the consistent fi nding of a possible interac  on 
between rs774801 in ARMC8 and rs12442098 in SPATA8 being associated with HDL-C levels. 
However, p-values do not reach the preset Bonferroni correc  on of the p-values. Our study 
suggest that even for highly gene  cally determined traits such as HDL-C the sample sizes 
needed to detect SNP×SNP interac  ons are large and the 2-step fi ltering approaches do not 
yield a solu  on. Here we present our analysis plan and our reserva  ons concerning GWIS.
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INTRODUCTION

To date, genome-wide associa  on studies (GWAS) have revealed 95 gene  c loci associated 
with lipid levels in human plasma. Of these, 74 SNPs were associated with high-density 
lipoprotein cholesterol (HDL-C) levels1-5. Together, these 47 SNPs explain approximately 
25% of the heritability of HDL-C levels. Although the largest meta-analysis of plasma lipid 
concentra  ons4 to date, already included more than 100,000 individuals of European 
descent, it is expected that with increasing sample size and larger, be  er reference panels 
for imputa  on, more variants will be found to be associated with HDL-C levels, probably 
resul  ng in an increase of the explained heritability. Nevertheless, single SNP eff ects may not 
fully explain the heritability of HDL-C levels. Gene  c processes like DNA methyla  on, histone 
modifi ca  on and interac  ons between SNPs are also poten  al candidates determining HDL-C 
levels6-9. A previous large study did not fi nd evidence of gene-environment interac  ons 
infl uencing HDL-C levels, although this might also play a role with other environmental 
factors10. We defi ned interac  ons between SNPs as a departure from a linear sta  s  cal model 
allowing for the addi  ve marginal eff ects of both SNPs. Persistent evidence for interac  ng loci 
involved in lipid metabolism comes from experimental animal research in which various loci 
interact with each other11. 
Based on the loci for HDL-C levels iden  fi ed to date, fi nding evidence for SNP×SNP interac  ons 
in humans has proven to be diffi  cult. Ma et al.8 iden  fi ed a signifi cant associa  on interac  on 
between a locus within the HMGCR gene and a locus near the LIPC gene in rela  on to HDL-C 
cholesterol. Furthermore, Turner et al.9 found 8 SNP×SNP interac  ons to be associated 
with HDL-C levels of which the strongest model included an interac  on between LPL and 
ABCA1. These studies suggest that SNP×SNP interac  ons can indeed also explain some of the 
heritability of HDL-C levels in humans. However, only loci were studied that had previously 
been successfully replicated in GWAS of lipid levels, thus mo  va  ng a genome-wide search 
for interac  ons associated with HDL-C levels. 
Genome-wide searches for associa  ons between phenotypes and SNP×SNP interac  ons have 
been hampered by the computa  on  me needed for tes  ng all unique pairs of SNPs, given 
by NSNPs(NSNPs-1)/2, with NSNPs the total number of SNPs. Consequently, the  me for tes  ng 
all interac  on terms is propor  onal to NSNPs

2, transla  ng into months of computa  on  me. 
Modern Graphics Processing Units (GPUs) are op  mised for highly parallel computa  on tasks 
and are well-suited to replace regular processors (Central Processing Units or CPUs) for these 
kind of tasks. The GLIDE so  ware package12 makes use of GPUs to perform linear regression 
for all pairs of SNPs. In this study, we aim to iden  fy SNP×SNP interac  ons for HDL-C levels 
in the Ro  erdam Study cohort I (RS-I) using GLIDE. The most signifi cant interac  ons terms 
in RS-I are fi rst fi ltered by a meta-analysis in cohorts II and III of the Ro  erdam Study (RS-II 
and RS-III, respec  vely). The resul  ng interac  ons were subsequently sent for replica  on in 
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the CHARGE cohorts (AGES, ARIC, CHS, ERF, FHS) and the NFBC-66 cohort. We also tested 
whether the iden  fi ed interac  on terms are associated to dyslipidemia treatment within the 
cohorts of the Ro  erdam Study.

METHODS

Study descripti ons
Ethics Statement
The AGES Reykjavik Study Genome Wide Associa  on study was approved by the Na  onal 
Bioethics Commi  ee (00-063) and the Data Protec  on Authority. The ARIC study was approved 
by ‘The University of Texas Health Science Center at Houston Commi  ee for the Protec  on of 
Human Subjects’. The CHS study was approved by the following ins  tu  onal review boards: 
Wake Forest University, University of California (Davis), Johns Hopkins University (Bloomberg 
School of Public Health), University of Pi  sburgh, University of Washington, University of 
Vermont. The ERF study was approved by the Medical Ethics Commi  ee of the Erasmus 
MC. The commi  ee is cons  tuted according to the WMO (Na  onal act medical-scien  fi c 
research in human beings). The FHS was approved by the Boston University Medical Campus 
Ins  tu  onal Review Board. The NFBC66 was approved by the Ethical Commi  ee of the 
Northern Ostrobothnia Hospital District. The Ro  erdam Study has been approved by the 
medical ethics commi  ee according to the Popula  on Study Act Ro  erdam Study, executed 
by the Ministry of Health, Welfare and Sports of the Netherlands. A wri  en informed consent 
was obtained from all study par  cipants for all cohorts.

Discovery cohort
Ro  erdam Study cohort I (RS-I). The Ro  erdam Study is an ongoing prospec  ve popula  on-
based cohort study, focused on chronic disabling condi  ons of the elderly. The study 
comprises an outbred ethnically homogenous popula  on of Dutch Caucasian origin. The 
ra  onale of the study has been described in detail elsewhere13. In summary, 7,983 men and 
women aged 55 years or older, living in Ommoord, a suburb of Ro  erdam, the Netherlands, 
were invited to par  cipate in the fi rst phase. Fas  ng blood samples were taken during the 
par  cipant’s third visit to the research center.

Filtering cohorts
Ro  erdam Study cohort II (RS-II). The Ro  erdam Study cohort II prospec  ve popula  on-
based cohort study comprises 3,011 residents aged 55 years and older from the same district 
of Ro  erdam. The ra  onale and study designs of this cohort is similar to that of the RS-I13. 
The baseline measurements, including the fas  ng HDL-C measurements, took place during 
the fi rst visit.
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Ro  erdam Study cohort III (RS-III). The Ro  erdam Study cohort III prospec  ve popula  on-
based cohort study comprised 3,932 residents aged 45 years and older from the same district 
of Ro  erdam. The ra  onale and study designs of this cohort is similar to that of the RS-I13. 
The baseline measurements, including the fas  ng HDL-C measurements, took place during 
the fi rst visit.

Replica  on cohorts
Age, Gene/Environment Suscep  bility (AGES Reykjavik) Study. The Age, Gene/Environment 
Suscep  bility (AGES Reykjavik) Study was ini  ated to examine gene  c suscep  bility and 
gene/environment interac  on as these contribute to phenotypes common in old age, and 
represents a con  nua  on of the Reykjavik Study cohort begun in 1967. The study is approved 
by the Icelandic Na  onal Bioethics Commi  ee, (VSN: 00-063) and the Data Protec  on 
Authority. The researchers are indebted to the par  cipants for their willingness to par  cipate 
in the study.
Atherosclerosis Risk in Communi  es (ARIC) Study. The Atherosclerosis Risk in Communi  es 
Study (ARIC), sponsored by the Na  onal Heart, Lung, and Blood Ins  tute (NHLBI) is a 
prospec  ve epidemiologic study conducted in four U.S. communi  es. ARIC is designed 
to inves  gate the causes of atherosclerosis and its clinical outcomes, and varia  on in 
cardiovascular risk factors, medical care, and disease by race, gender, loca  on, and date. 
To date, the ARIC project has published over 800 ar  cles in peer-reviewed journals. ARIC 
includes two parts: the Cohort Component and Community Surveillance Component.
The ARIC Cohort Component began in 1987, and each ARIC fi eld center randomly selected 
and recruited a cohort sample of approximately 4,000 individuals aged 45-64 from a defi ned 
popula  on in their community, to receive extensive examina  ons, including medical, social, 
and demographic data. Follow-up also occurs semi-annually, by telephone, to maintain 
contact and to assess health status of the cohort.
In the Community Surveillance Component, the four communi  es are inves  gated to 
determine the long term trends in hospitalized myocardial infarc  on (MI) and coronary heart 
disease (CHD) deaths in approximately 470,000 men and women aged 35-84 years.
Cardiovascular Health Study (CHS). The CHS14 is an NHLBI-funded observa  onal study of risk 
factors for cardiovascular disease in adults 65 years or older. Star  ng in 1989, and con  nuing 
through 1999, par  cipants underwent annual extensive clinical examina  ons. Measurements 
included tradi  onal risk factors such as blood pressure and lipids as well as measures of 
subclinical disease, including echocardiography of the heart, caro  d ultrasound, and cranial 
magne  c-resonance imaging (MRI). At six month intervals between clinic visits, and once 
clinic visits ended, par  cipants were contacted by phone to ascertain hospitaliza  ons and 
health status. The main outcomes are coronary heart disease (CHD), angina, heart failure 
(HF), stroke, transient ischemic a  ack (TIA), claudica  on, and mortality. Par  cipants con  nue 
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to be followed for these events. CHS par  cipants who were free of cardiovascular disease at 
the start of the study, and who consented to gene  c tes  ng, were included in these analyses.
Erasmus Rucphen Family (ERF) Study. The ERF study has been described in detail previously15. 
A total of approximately 3,000 par  cipants descend from 22 couples who lived in the Rucphen 
region in The Netherlands in the 19th century. The 2,755 individuals with genotype data and 
lipid measurements were included in the current analysis.
Framingham Heart Study (FHS). The Framingham Heart Study (FHS), funded by the Na  onal 
Heart Lung and Blood Ins  tute, is an observa  onal popula  on-based cohort study composed 
of three genera  ons of Framingham (MA) residents predominately of European descent. The 
Original cohort (N = 5,209) was enrolled in 1948. The children and spouses of the Original 
cohort comprise the Off spring cohort (N = 5,124), which was enrolled in 1971-197516. The 
Third Genera  on (N = 4,095) consists mostly of the children of the Off spring cohort, and was 
enrolled in 2002 to 200517. All par  cipants were examined every 4-8 years. DNA for surviving 
par  cipants was collected in the late 1990s and early 2000s (1995-2005). Cholesterol and 
gene  c data from 3,464 Off spring subjects and 3,569 Third Genera  on subjects contribute 
to this paper.
Northern Finland Brith Cohort 1966 (NFBC-66). The Northern Finland Birth Cohort 1966 
(NFBC-66) study18 is a longitudinal one-year birth cohort study designed to study the risk 
factors of perinatal deaths and low birth weight. Mothers living in the two northern-most 
provinces of Finland were invited to par  cipate if they had expected delivery dates during 
1966. Individuals s  ll living in Helsinki area or Northern Finland were asked at age 31 to 
par  cipate in a detailed examina  on (N = 5,923). Extensive data on intermediate phenotypes 
related to obesity and behavioral traits have also been collected.

Genotyping and imputati on
All cohorts were genotyped using commercially available Aff ymetrix or Illumina genotyping 
arrays, or custom Perlegen arrays. Quality control was performed independently for each 
study. To facilitate meta-analysis, each replica  on cohort performed genotype imputa  on 
using BIMBAM, IMPUTE, or MaCH with reference to HapMap or the 1000 Genomes project 
data.
The fi rst two cohorts of the Ro  erdam Study were genotyped using the Illumina 550K 
chip, the third cohort was genotyped using the Illumina 610K and 660K chip. The following 
exclusions were applied to iden  fy a fi nal set of SNPs that was used in this study: MAF < 0.05, 
SNP callrate < 0.95 and/or HWE p-value < 1 · 10-7. The QC was done per cohort.
In ARIC, genotyping was performed with the Aff ymetrix 6.0 chip. A  er genotyping, the 
following quality control tresholds were applied: (1) comparison of genotype calls to sample 
replicates, with exclusion of samples with greater than 1% mismatch, (2) exclusion of samples 
with greater than 5% missing genotypes, (3) exclusion of samples with a mismatch between 
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reported sex and that determined by genotyping, (4) exclusion of SNPs with greater than 
10 % missing genotypes across samples, (5) exclusion of SNPs monomorphic in both races 
and (6) exclusion of SNPs (MAF > 0.05) with HWE p-values of less than 1 · 10-6. Prior to 
imputa  ons, principal component analysis was performed to exclude outliers. Imputa  on 
to HapMap release 23a was performed using MaCH v.1.0. A  er imputa  on SNPs with an 
imputa  on quality less than 0.90 were excluded. 26.8% of the SNPs in the replica  on were 
genotyped, the rest was imputed.
In AGES only imputed SNPs were used for the replica  on. The genotypes originated on 
Illumina Hu370CNV. For imputa  on, only the SNPs were included which were completed in 
97% of individuals and had a MAF above 1%. Imputa  on was performed by MaCH against 
HapMap Release 22. Quality of the imputa  ons was evaluated by the MaCH R2 metric.
In CHS, genotyping was performed at the General Clinical Research Center’s Phenotyping/
Genotyping Laboratory at Cedars-Sinai using the Illumina 370CNV BeadChip system. 
Genotypes were called using the Illumina BeadStudio so  ware. The following exclusions 
were applied to iden  fy a fi nal set of 306655 autosomal SNPs that were used for imputa  on: 
call rate < 97%, HWE p < 1 · 10-5, > 2 duplicate errors or Mendelian inconsistencies (for 
reference CEPH trios), heterozygote frequency = 0 and SNP not found in HapMap. Imputa  on 
to HapMap release 22 (build 36) was performed using BimBam v.0.99. Most of the replica  on 
SNPs were genotyped (58.4%), the remaining were imputed.
In ERF genotyping was done on various Illumina and Aff ymetrix chips. QC was done for 
each chip separately. On average, the following QC criteria were applied: callrate > 0.98, per 
individual callrate > 0.96, HWE p-value > 5 · 10-8 and MAF > 0.005. IBS checks, sex chromosome 
checks and ethnicity checks were also performed. The imputa  on to Hapmap 2 release 22 
was performed with MaCH and minimac. All SNPs in the replica  on were imputed.
In FHS genotyping was done on Aff ymetrix 250K Nsp and 250K Sty mapping arrays and the 
Aff ymetrix 50K supplemental gene-focused array. The following QC criteria were applied 
before imputa  ons: pHWE < 1 · 10-6, callrate > 0.97, mishap test of non-random missingness 
p < 1 · 10-9, < 100 Mendelian errors. The genotyped SNPs were imputed against HapMap 
(release 22, build 36, CEU popula  on) with MaCH (version 1.0.15). All SNPs in the replica  on 
were imputed.
In NFBC-66 genotyping was done on Illumina 370K whole-genome SNP array. The following 
QC criteria were observed: SNP clustering probability of genotypes > 95%, sample call rate > 
95%, SNP call rate > 95%, MAF > 1% and HWE p-value > 1 · 10-6. Heterozygosity, gender check 
and relatedness checks were performed and any discrepancies were removed. 10 individuals 
with cryp  c relatedness were also excluded from the analysis. To iden  fy a fi nal set of SNPs 
for imputa  ons, a SNP call rate fi lter of > 99% was applied to all SNPs with MAF < 5%. The 
imputa  on to 1000 Genomes Phase I integrated variant set (Mar 2012) was performed using 
IMPUTE v2.2.2. A  er imputa  on only those variants with info score > 0.9 were analysed. 
58.6% of the SNPs in the replica  on were genotyped, the rest was imputed.
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Study samples and phenotypes
A summary of the details of the nine studies par  cipa  ng in this analysis can be found in Table 
1. In all studies, the subjects were fas  ng when the HDL-C levels were measured. The HDL-C 
measurements were adjusted for sex and age, except for NFBC-66 in which only was adjusted 
for sex since all individuals are from the same age. In ERF mmscore (GenABEL version 1.7.019 
was used to account for family rela  onships. In ARIC, the HDL-C levels were also adjusted for 
the three ARIC fi eld center with two 0,1 indicator variables. In CHS the HDL-C was adjusted for 
study clinic site as well and in NFBC-66 HDL-C was also adjusted for 10 PC components. In FHS 
the HDL-C levels were also adjusted for related individuals with the lmekin func  on within 
the coxme package in R (h  p://cran.r-project.org/web/packages/coxme/) and adjusted for 
PCs. In the discovery and fi ltering stage, the HDL-C levels a  er adjustment for sex and age 
were normalised around zero as this is a requirement of GLIDE. To compare the βint in the 
discovery and fi ltering stage with the βint in the replica  on stage, we also calculated the βint in 
the Ro  erdam Study cohorts without scaling around zero for the most promising interac  on 
terms.

GWIS with GLIDE in RS-I
To systema  cally search for the epista  c interac  ons associated with HDL-C levels in RS-I 
we used GLIDE12. GLIDE makes use of the computa  onal power of consumer-grade graphics 
cards to detect interac  ons between SNPs via linear regression. To reduce computa  on  me, 
we chose to run GLIDE on genotyped SNPs only. In order to run GLIDE, the genotype data 
of RS-I was stored per chromosome as a text fi le with one row per SNP and one column 
per individual. Individuals using lipid-lowering medica  on were excluded. The fi le does not 
contain column headers or row names and the SNPs need to be coded 0 (homozygous for the 
major allele), 1 (heterozygous) or 2 (homozygous for the minor allele). We only used SNPs 
with a MAF (Minor Allele Frequency) > 0.05 within the samples of RS-I, RS-II and RS-III which 
were used in this study, since the sample size is not large enough to inves  gate low-frequency 
variants.
The names of the SNPs are stored in a separate one-column text fi le in the same order as 
the SNPs in the fi le with the genotype data. The values of the scaled residuals are stored in 
a separate text fi le in the same order as the individuals in the fi le with the genotype data. 
GLIDE requires the phenotype to be normalised around zero. GLIDE uses the fi les with the 
genotypes and the fi le with the scaled residuals to perform linear regression for all possible 
unique SNP×SNP combina  ons. In order to fi t the data into the GPU’s memory, GLIDE splits 
up the genotypes in subsets of SNPs. In this study we chose to split up in subsets of 1000 
SNPs. GLIDE outputs a t-score for each interac  on term and a threshold can be set to only 
output interac  ons with a t-score above this threshold.
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The output of GLIDE does not contain the SNP names, but the number of the chunk and the 
number of the SNP within a given chunk. With help of the previously created SNP fi les, we 
assigned SNP names to the interac  on terms output by GLIDE. Since GLIDE handles the data 
in chunks, interac  on terms occur mul  ple  mes in the output of GLIDE, consequently, the 
results had to be fi ltered on unique interac  on terms.

Filtering of interacti on terms by meta-analysis of RS-I, RS-II and RS-III.
To reduce the number of false posi  ve interac  on terms, we fi ltered the interac  on terms 
with an absolute value of the t-score > 5 (p-value < 6.06 · 10-7) by a meta-analysis of RS-I, RS-
II and RS-III. For these interac  ons, we used linear regression to determine the βs, standard 
errors and p-values in RS-I, RS-II and RS-III. The HDL-C levels a  er adjustment for sex and age 
were normalised around zero in all three cohorts. The βs and standard errors of all three 
cohorts of the Ro  erdam Study were subsequently meta-analyzed to fi lter out only those 
with a p-value less than 1 · 10-8.

Replicati on of SNP×SNP interacti ons
The interac  on terms which had a p-value less than 1 · 10-8 a  er meta-analysis of the three 
Ro  erdam Study cohorts, were replicated in 6 cohorts: AGES, ARIC, CHS, ERF, FHS and NFBC-
66. Only individuals that do not use lipid-lowering medica  on were included, except for 
AGES. The linear regression model for replica  on was HDLadj = α + β1 (SNP1) + β2 (SNP2) + 
βint (SNP1×SNP2) + ε, where HDLadj are the HDL-C levels adjusted for sex and age. We meta-
analysed the βint from all 6 replica  on cohorts.
To see if the fi ltered interac  on terms eff ect the probability of using lipid-lowering 
medica  on, we performed a case-control study in the three Ro  erdam Study cohorts. Those 
individuals that have HDL-C levels available and use lipid-lowering medica  on were defi ned 
as cases and the individuals in the discovery or fi ltering stage were defi ned as controls. The 
logis  c regression model for replica  on was Medica  onyes/no = α + β1 (SNP1) + β2 (SNP2) + βint 
(SNP1×SNP2) + ε. We performed the analysis in the three cohorts separately, and also in the 
three cohorts combined, in which we included the cohort number as an addi  onal covariate.

Power calculati ons
To es  mate the eff ect we could have detected with the current sample size, a certain type I 
error and various type II errors, we used G*Power ,  (version 3.1.9.2).
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RESULTS

GWIS with GLIDE in RS-I
Figure 1 shows a fl ow diagram illustra  ng the analysis plan. A total of 495,508 genotyped 
SNPs that passed quality control, had a Minor Allele Frequency (MAF) > 0.05 in the sample of 
2,996 individuals from RS-I, and were also genotyped in RS-II and RS-III were used to iden  fy 
SNP×SNP interac  ons associated with HDL-C using GLIDE. For this analysis the HDL-C levels 
a  er adjustment for sex and age were normalized around zero as this is a requirement of 
GLIDE. This resulted in 84,031 SNP×SNP interac  ons with an absolute value of the t-score > 
5 (i.e. p < 6.06 · 10-7). 

Figure 1: Flow diagram overview of the analysis plan.
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Filtering of interacti on terms by a meta-analysis of RS-I, RS-II and RS-III
Using linear regression we calculated the regression coeffi  cient βint for the interac  on term, 
the standard errors and the p-values for the 84,031 interac  on terms in RS-I (N = 2,996), RS-II 
(N = 1,602) and in RS-III (N = 1,621). For these analyses the HDL-C levels a  er adjustment for 
sex and age were normalized around zero since this was done in RS-I in the ini  al analysis with 
GLIDE as this is a requirement of GLIDE. The calculated βint and standard errors were used to 
meta-analyse the associa  on between each of the 84,031 interac  on terms and HDL-C levels. 
A  er meta-analysis, 181 interac  on terms with a p-value below 1 · 10-8 remain, of which 5 
interac  on terms with a p-value less than 1 · 10-10. The pooled βint for the 84,031 interac  on 
terms range from -0.507 to 0.746. The 181 interac  on terms with a p-value less than 1 · 
10-8 were taken forward for replica  on, see Supplementary Table 1. The number of unique 
interac  on terms for replica  on was reduced to 132 by fi ltering on linkage disequilibrium 
(LD) between interac  on terms (R2 > 0.8). Consequently, the p-value for replica  on a  er 
Bonferroni correc  on is 3.79 · 10-4. We also calculated the βint of RS-I, RS-II and RS-III for these 
181 interac  on terms using linear regression with the unscaled phenotype to compare these 
with the βint within the replica  on cohorts.

b
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Figure 2: The forest plots for βint of the four most signifi cant interac  on terms a  er meta-analysis of 
the replica  on cohorts: rs2315598-rs2853228 (a), rs6848132-rs7863451 (b), rs3756856-rs11758333 
(c) and rs4596126-rs11676467 (d). Although the analysis in the discovery and the fi ltering was done 
with scaled phenotypes, for these forest plots, the HDL-C levels are not scaled in the Ro  erdam Study 
cohorts.

Replicati on of SNP×SNP interacti ons
Replica  on was conducted in 6 cohorts: AGES, ARIC, CHS, ERF, FHS and NFBC-66. In the 
replica  on cohorts only individuals not on lipid-lowering medica  on were included, with the 
excep  on of AGES, see Table 1. In AGES, ARIC, CHS, ERF and FHS, 8, 7, 7, 10 and 7 interac  on 
terms, respec  vely, could not be tested for replica  on since one or both of the SNPs in the 
interac  on term had not been genotyped or imputed. In NFBC-66 all interac  on terms 
could be tested for replica  on. A total of 170 out of the 181 interac  ons could be tested for 
replica  on in all six cohorts. None of the interac  on terms reached a signifi cant p-value a  er 
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Bonferroni correc  on (3.79 · 10-4) in any of the replica  on cohorts and a  er meta-analysis of 
all replica  on cohorts. Four interac  on terms reached nominal signifi cance at p = 0.05, see 
Figure 2. The lowest p-value for βint a  er meta-analysis of all replica  on cohorts (N = 30,011) 
was 7.57 · 10-3 for the interac  on between rs2315598 (chromosome 2, posi  on 132,994,224, 
gene GPR39) and rs2853228 (chromosome 8, posi  on 103,296,258, gene RRM2B). The 
second lowest p-value for βint a  er meta-analysis of all replica  on cohorts (N = 30,011) was 
8.1 · 10-3 for the interac  on between rs6848132 (chromosome 4, posi  on 93,460,610, gene 
GRID2) and rs7863451 (chromosome 9, posi  on 129,112,065, gene GARNL3). The βint is 
nega  ve in all nine cohorts. Table 2 shows the 20 interac  on terms with the lowest p-values. 
Five of these terms are interac  ons between an intergenic locus at chromosome 6, situated 
between the TCP11 and SCUBE3 genes, and a locus at the same chromosome in the SOBP 
gene which are in LD with each other (R2 > 0.872).

Table 1: Baseline characteris  cs for discovery and replica  on cohorts
Study Country of origin N (% male)

RS-I Ro  erdam Study cohort I Netherlands 2996 (57.7)
RS-II Ro  erdam Study cohort II Netherlands 1602 (54.9)
RS-III Ro  erdam Study cohort III Netherlands 1621 (58.3)
AGES Age, Gene/Environment Suscep  bility Study Iceland 3219 (42.0)
ARIC Atherosclerosis Risk in Communi  es Study United States 9315 (46.9)
CHS Cardiovascular Health Study Americans of European descent 3175 (40)
ERF Erasmus Rucphen Family study Netherlands 2755 (44.7)
FHS Framingham Heart Study Americans of European descent 7033 (46)
NFBC-66 Northern Finland Brith Cohort 1966 Finland 5243 (47.98)

Mean age (SD), years HDL-C (SD), mmol/L lipid lowering medicati on users
RS-I 66.2 (7.2) 1.39 (0.39) excluded
RS-II 64.7 (8.1) 1.38 (0.37) excluded
RS-III 55.6 (5.7) 1.47 (0.44) excluded
AGES 76.4 (5.5) 1.58 (0.45) included (22.6%)
ARIC 54.3 (5.7) 1.31 (0.43) excluded
CHS 72.5 (5.4) 1.43 (0.41) excluded
ERF 48.9 (14.4) 1.27 (0.36) excluded
FHS 37.5 (9.6) 1.37 (0.40) excluded
NFBC-66 31 (0) 1.56 (0.38) excluded
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Individuals with high levels of low-density lipoprotein (LDL) or low levels of HDL-C are treated 
with lipid-lowering medica  on. The 181 selected interac  on terms were also tested to see 
whether their presence might explain the use of lipid-lowering medica  on and therefore 
the extreme lipid levels. To this end the individuals of the Ro  erdam Study in the discovery 
and fi ltering stage were used as controls, and the individuals of the Ro  erdam Study who 
use lipid-lowering medica  on were used as cases. Table 3 shows the 20 interac  on terms 
with the lowest p-values for βint a  er tes  ng in the three cohorts of the Ro  erdam Study 
combined. The interac  on between rs6442460 (chromosome 3, posi  on 14,551,071, gene 
GRIP2) and rs10914332 (chromosome 1, posi  on 31,471,589, gene NKAIN1) had the lowest 
p-value (p = 3.98 · 10-3).

Three interac  on terms overlap between the top 20 hits a  er the replica  on and the top 20 
hits a  er the case-control test, as shown in Table 4. None of the SNPs of these interac  on 
terms are in high LD with each other (R2 > 0.8). The interac  on between rs754950 and 
rs10926977 has an opposite eff ect direc  on a  er the meta-analysis in the Ro  erdam Study 
cohorts compared to the one a  er meta-analysis in the replica  on cohorts and thus will 
probably be a false-posi  ve fi nding. The second interac  on term (between rs2242312 and 
rs11190870) had a posi  ve eff ect on HDL, but increases the risk of lipid lowering medica  on 
which is counter-intui  ve and consequently this interac  on term is likely a false-posi  ve 
fi nding as well. The third interac  on term, however, between rs774801 (chromosome 3, 
posi  on 139,413,035, gene ARMC8) and rs12442098 (chromosome 15, posi  on 95,385,874, 
close to gene SPATA8) has a nega  ve eff ect on HDL-C combined with a posi  ve eff ect on 
the use of lipid lowering medica  on. Although this last interac  on term is not replicated, 
the direc  ons of the eff ects are consistent since this interac  on lowers the HDL-C level and 
increases the chance of using lipid lowering medica  on.
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Table 4: The overlap between the top 20 interac  on terms a  er replica  on and case-control analysis.
Interacti on Meta-analysis of RS-I, RS-II and RS-III Meta-analysis of replicati on cohorts 

βint SE p-value βint SE p-value

rs754950 - rs10926977 0,0876 0,0148 2,92E-009 -0,01028 0,00548 0,06078
rs2242312 - rs11190870 0,1238 0,0205 1,65E-009 0,01121 0,00671 0,09511
rs774801 - rs12442098 -0,096 0,0167 8,57E-009 -0,01009 0,00588 0,08656

Interacti on Case-control in combined RS
βint SE p-value

rs754950 - rs10926977 -0,172 0,1026 0,09409
rs2242312 - rs11190870 0,304 0,1437 0,03462
rs774801 - rs12442098 0,293 0,1175 0,01267

Power calculati ons
As none of the fi ndings replicated, we explored the sta  s  cal power of our analyses. Figure 3 
shows the power calcula  ons using the program G*Power20,21. With our current sample size 
of 2,996 individuals the smallest detectable eff ect will be 0.11, 0.095 and 0.05 when the type 
I error is less than 1 · 10-7 and the type 2 error is 20% (power is 80%), 50% (power is 50%) and 
99% (power is 1%), respec  vely.

DISCUSSION

Here we presented the, to our knowledge, fi rst GWIS of HDL-C levels in blood. Our study 
shows that in a single popula  on a GWIS results in 84,031 SNP×SNP interac  ons associated 
with HDL-C levels (p-value < 6.06 · 10-7). Our two-step approach to fi lter these SNP×SNP 
interac  ons using two addi  onal cohorts resulted in 181 interac  ons with a p-value below 
1 · 10-8. Although some reached nominal signifi cance, none of these interac  ons terms were 
signifi cantly replicated in a meta-analysis of 30,011 samples when adjus  ng for mul  ple 
tes  ng. We also did not fi nd a signifi cant associa  on between any of the interac  on terms 
and treatment with lipid lowering medica  on in the cohorts of the Ro  erdam Study a  er 
adjustment for mul  ple tes  ng.
To our knowledge, no other GWIS studies with HDL-C exist with which we can compare our 
results. However, we did try to replicate previously published SNP×SNP interac  ons. We 
adjusted for the same covariates as the authors did, except for smoking, which was used as a 
covariate by Turner et al.9. Turner et al. published an interac  on between rs253 and rs2515614 
associated with HDL, however, the p-values of βint a  er tes  ng this interac  on term were 
0.986, 0.189 and 0.594 in the RS-I, RS-II and RS-III cohorts, respec  vely. The p-value of βint 
a  er meta-analysing this interac  on term is 0.614. The interac  on term between rs3846662 
and rs1532085, as published by Ma et al.8, only replicated in RS-III (p = 0.0214), but not in
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RS−I RS combined

0

7310781729 2302

Figure 3: The smallest detectable eff ect with the current sample size of 2,996 individuals at 80% (a), 
50% (b) and 1% (c) power levels.

RS-I (p = 0.212) or RS-II (p = 0.162). The p-value of βint a  er meta-analysing this interac  on 
term is 0.335.

There can be mul  ple reasons why we were not able to uncover SNP×SNP interac  ons using 
a hypothesis-free approach. First, in this study we selected only common variants (MAF > 
0.05) which were genotyped in the Ro  erdam Study. We chose these variants to avoid false 
posi  ve fi ndings in rare variants. Furthermore, the power to detect interac  on terms with 
rare variants is low since our sample size in the two-stage discovery phase was 6,219. A 
second limita  on that we chose to only inves  gate genotyped SNPs instead of imputed SNPs. 
Therefore, we may have missed true posi  ve causal SNPs which are not on the genotyping 
array. However, even with only genotyped SNPs the number of poten  ally true posi  ve 
fi ndings is enormous, resul  ng in 84,031 sugges  ve hits at p = 6.06 · 10-7. This prompted us 
to use a two-stage discovery phase in which we used the RS-II and RS-III cohorts to fi lter out 
the false posi  ves, reducing the number of fi ndings from 84,031 to 181. The total number 
of individuals in this two-step discovery phase is 6,219. This might be considered low for 
the iden  fi ca  on of SNP×SNP interac  ons. As a commonly used rule-of-thumb, the sample 
size within a GWIS should be 3 to 4  mes the size of GWAS. As the fi rst GWAS iden  fying 
loci associated with HDL-C levels1 included 2,758 individuals, our study is expected to be 
underpowered by that rule. To improve power, an alterna  ve approach could have been to 
combine the three cohorts of the Ro  erdam Study into an one-step discovery with GLIDE. 
This, however, s  ll yielded 75,409 interac  ons with a p-value below our threshold of 6.06 · 
10-7 as compared to the 84,031 interac  ons seen in the RS-I only GWIS, see Figure 4. It should 
be noted that both numbers are well in keeping with expecta  ons.
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Figure 4: The overlap between the interac  on terms with p-value < 3.03 · 10-7 a  er a GWIS with GLIDE 
in RS-I only and a  er a GWIS with GLIDE in RS-I, RS-II and RS-III combined.
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The proposed genome-wide signifi cance level for GWIS  is 1 · 10-13, however, in this study we 
used all interac  on terms with a p-value less than 1 · 10-8 for replica  on. We chose a much 
less stringent p-value to prevent us from missing true posi  ves due to the rela  vely small 
sample size. However, none of the 84,031 interac  on terms had a p-value below 1 · 10-13 in 
the separate Ro  erdam Study cohorts and a  er meta-analysis of the three Ro  erdam Study 
cohorts.
The success of GWAS has been its hypothesis-free approach and this worked well for studying 
lipids even in studies we consider small by today’s standards (1000 – 3000 individuals). A 
GWIS is now technically feasible but needs larger sample sizes. Our study shows that the 
number of hits is overwhelming at a p-value of 1 · 10-8. The fi ltering approach in a similar 
popula  on did not resolve this problem. Our GWIS resulted in the consistent fi nding of a 
possible interac  on between rs774801 in ARMC8 and rs12442098 in SPATA8 being associated 
with HDL-C levels, both in the quan  ta  ve analysis and the case-control analysis. However, 
p-values do not reach the preset Bonferroni correc  on of the p-values. Other major issues 
related to the sample size and apparent lack of replica  on also needs to be overcome.
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ABSTRACT 

Finding rare variants implicated in complex traits has proven to be diffi  cult. Large family-
based studies in isolated popula  ons are enriched for rare variants due to founder eff ects 
and thus yield increased power for iden  fying these. We explored the role of rare variants 
by exome sequencing in determining high-density lipoprotein cholesterol (HDL-C) in the 
Erasmus Rucphen Family (ERF) study, a family based study. We iden  fi ed 9 common (MAF 
> 0.1) and 9 rare variants (MAF < 0.01). The 9 common variants are all located within the 
CETP region, a region which is known to be associated with HDL-C level. We replicated these 
variants in 85,597 individuals. The 9 rare variants are located within genes not associated 
with HDL-C before. Carriers of the 9 rare variants have an extremely high HDL-C which is 
associated to a reduced risk of cardiovascular disease. We validated 7 out of the 9 rare 
variants by segrega  on analysis within pedigrees of at least 4 genera  ons. Since HDL-C is a 
component of the metabolic syndrome, we addi  onally tested if the variants aff ec  ng HDL-C 
are also associated with several metabolomic compounds. Both rare and common variants 
were associated with clearly dis  nct metabolomic compounds in a locus-specifi c manner, 
indica  ng that dis  nct mechanisms underlie the associa  on of the various loci with HDL-C. 
The present exome sequencing study shows that power of fi ne genotyping and phenotyping 
approaches in family based se   ngs as follow up of genome-wide associa  on studies, 
provides addi  onal insight in the mechanisms underlying the associa  on between specifi c 
loci and HDL-C.
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INTRODUCTION

In recent years, various approaches have been successfully applied to unravel the gene  c 
architecture of high density lipoprotein cholesterol (HDL-C) levels in humans. High HDL-C 
levels are associated with reduced risk of cardiovascular disease1. The es  mated heritability 
of HDL-C is high: 47-76%2-8. Genome-wide associa  on studies (GWAS) have revealed 
>70 common variants associated with HDL-C9-11 while family based linkage studies have 
iden  fi ed a large number of rare variants with large eff ects12-14. An extensive eff ort has been 
performed to iden  fy variants with an in-between (0.001-0.01) minor allele frequency (MAF) 
associated with HDL-C. This includes genotyping, exome and whole genome sequencing and 
impu  ng the low-frequency and rare coding-sequencing variants15-18. However, few of these 
variants with an in-between frequency have been associated with HDL-C due the fact that 
these rela  vely rare single-variants have a modest to small impact on HDL-C and their low 
frequency requires large sample sizes to obtain suffi  cient sta  s  cal power. The stories of 
success concern primarily candidate-genes, which are deep sequenced15-18.
An alterna  ve approach to iden  fy rare variants is to study extended families. Whole exome 
sequencing in families has been very successful in iden  fying rare variants with a large eff ect 
size19-22. However rela  vely few studies have addressed the contribu  on of rare variants with 
a modest eff ect size to specifi c traits, in par  cular circula  ng blood lipid levels15,16,18. In this 
study, we combined GWAS with whole exome sequencing in a family based popula  on study 
to iden  fy rare variants with modest eff ect sizes on HDL-C. To this end, we used the Erasmus 
Rucphen Family (ERF) study23, a family-based study which includes a total of approximately 
3,000 par  cipants descending from 22 couples who lived in the Rucphen region in the 
southwest of the Netherlands in the 19th century. Therefore, the par  cipants are not selected 
for a specifi c disease, allowing us to study genes that are associated with high and low HDL-C. 
Family-based studies have the advantage that the frequencies of genomic variants are 
increased due to founder eff ects and segrega  on of these variants with the disease can be 
studied23, which increases the power to detect true posi  ve associa  ons. To gain addi  onal 
insight in the molecular mechanisms underlying the associa  on of specifi c variants with 
HDL-C, we determined their associa  on with a variety of metabolomic compounds.
  

METHODS

Study populati on
This study as described here was conducted within the ERF study. The ERF study is a family 
based study that includes inhabitants of a gene  cally isolated community in the South-
West of the Netherlands, studied as part of the Gene  c Research in Isolated Popula  on 
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(GRIP) program23. Study popula  on includes approximately 3,000 individuals who are living 
descendants of 22 couples who had at least six children bap  zed in the community church. 
All data were collected between 2002 and 2005. The popula  on shows minimal immigra  on 
and high inbreeding, therefore frequency of rare alleles is increased in this popula  on23. 
All par  cipants gave informed consent, and the Medical Ethics Commi  ee of the Erasmus 
University Medical Centre approved the study. 
 
High density lipoprotein measurements
Fas  ng blood samples were collected during the par  cipant’s visit to the research center. A 
Synchron LX20 (Beckman Coulter Inc., Fullerton, CA. U.S.A.) spectrophotometric chemical 
analyzer was u  lized for the determina  on of plasma lipid values, among which HDL-C. 
Par  cipants were asked to present the medica  ons they used, including lipid-lowering 
medica  ons. In individuals using sta  ns, to account for the eff ect of sta  ns on lipids, HDL-C 
was divided by 1.056. These adjustments are based on the sample-size weighted mean 
propor  onal diff erences in a large prospec  ve meta-analysis including fourteen randomized 
trials of sta  ns24. 

Exome sequencing
The exomes of 1,336 individuals from the ERF popula  on were sequenced “in-house” at the 
Center for Biomics of the Department of Cell Biology of the Erasmus MC, The Netherlands. 
Sequencing was done at a median depth of 57x using the Agilent version V4 capture kit 
on an Illumina Hiseq2000 sequencer using the TruSeq Version 3 protocol. The sequence 
reads were aligned to the human genome build 19 (hg19) using BWA and the NARWHAL 
pipeline25,26. Subsequently, the aligned reads were processed further using the IndelRealigner, 
MarkDuplicates and TableRecalibra  on tools from the Genome Analysis Toolkit (GATK)27 and 
Picard (h  p://picard.sourceforge.net) to remove systema  c biases and to recalibrate the 
PHRED quality scores in the alignments. A  er processing, gene  c variants were called using 
the Unifi ed Genotyper tool from the GATK. About 1.4 million Single Nucleo  de Variants 
(SNVs) were called and a  er removing the low quality variants (QUAL < 150) we retrieved 
577,703 SNVs in 1,309 individuals. Further, for comparison and to predict the func  onality 
of the variants, annota  ons were also performed using the dbNSFP (database of human 
non-synonymous SNPs and their func  onal predic  ons, h  p://varian  ools.sourceforge.net/
Annota  on/DbNSFP) and Sea  le (h  p://snp.gs.washington.edu/Sea  leSeqAnnota  on131/) 
databases. These databases gave func  onal predic  on results from four diff erent programs 
(polyPhen2, SIFT, Muta  onTaster and LRT), apart from gene and variant annota  ons. 
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Exome-wide associati on study of exome sequence data
For every SNV we did run a score test for associa  on with HDL-C measures (Figure 1), thereby 
adjus  ng for age, age2, sex and family relatedness using mmscore of GenABEL package 
(version 1.6-7)28,29. The Bonferroni corrected signifi cance threshold applied for this step is 
2.572·10-6 (0.05/19,438), as Sea  le predicted the SNVs to be annotated within 19,438 unique 
genes. Linkage disequilibrium (LD) between the signifi cant SNV’s was es  mated using the 
exome sequence data of the 1,309 individuals of the ERF study to defi ne the independent 
number of signifi cant SNVs.

Replicati on of the common SNVs
All SNVs with a MAF above 0.1 are considered common variants. These variants all occur in 
commonly used reference panels, like the 1000 Genomes reference panel and the Genome of 
the Netherlands (GoNL)30. We therefore replicated the common variants in an independent 
set of 85,597 individuals (Figure 1). Of these individuals, 33,613 individuals are from Dutch 
descent and therefore imputed to the GoNL reference panel (Lifelines, LLS, NTR-NESDA, 
PREVEND, PROSPER, RS-I, RS-II and RS-III). More details can be found in the Supplementary 
Material of van Leeuwen et al.31. The remaining 51,984 individuals are not of Dutch descent 
and therefore imputed to the 1000 Genomes reference panel (AGES, ARIC (African Americans 
(AA) and European Americans (EA)), CHS (EA), CROATIA KORCULA, CROATIA SPLIT, CROATIA 
VIS, FHS, FamHS, Genera  on Scotland, JHS, MESA (AFA, CAU, CHN and HIS) and ORCADES). 
Cohort descrip  ons of the individuals imputed to the 1000 Genomes reference panel can 
be found in Supplementary Methods and Supplementary Table 1 and 2. All studies were 
performed with the approval of the local medical ethics commi  ees, and wri  en informed 
consent was obtained from all par  cipants. In most individuals, HDL-C was measured at 
fas  ng in subjects. We did not adjust for lipid lowering medica  on within the replica  on 
cohorts. 

Replicati on and validati on of rare SNVs
All SNVs with a MAF below 0.1 are considered rare variants. We tried to replicate (Figure 1) 
the rare SNV fi ndings in the Ro  erdam study cohort I (RS-I) exome sequence (N=1,387) and 
GoNL imputa  ons (N=2,989). The RS-I is an ongoing prospec  ve popula  on-based cohort 
study, focused on chronic disabling condi  ons of the elderly. The study comprises an outbred 
ethnically homogenous popula  on of Dutch Caucasian origin. The ra  onale of the study has 
been described in detail elsewhere32. In summary, 7,983 men and women aged 55 years or 
older, living in Ommoord, a suburb of Ro  erdam, the Netherlands, were invited to par  cipate 
in the fi rst phase. The Ro  erdam Study has been approved by the medical ethics commi  ee 
according to the Popula  on Study Act Ro  erdam Study, executed by the Ministry of Health, 
Welfare and Sports of the Netherlands. A wri  en informed consent was obtained from all 
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study par  cipants. Fas  ng blood samples were taken during the par  cipant’s third visit to the 
research center. In the RS-I exomes of 2,628 individuals were sequenced at an average depth 
of 20x using the Nimblegen SeqCap EZ V2 capture kit on an Illumina Hiseq2000 sequencer 
and the TrueSeq Version 3 protocol. The sequences reads were aligned to hg19 using BWA26. 
Subsequently, the aligned reads were processed further using Picard, SAMtools33 and GATK27. 
Gene  c variants were called using Unifi ed Genotyper Tool from GATK. Samples with low 
concordance to genotyping array (< 95%), low transi  on/transversion ra  o (< 2.3), high 
heterozygote to homozygote ra  o (> 2.0) and low call rate (< 90%) were removed from the 
data. SNVs with a low call rate ( < 90%) and out of HWE (p-value < 10-8) were also removed 
from the data. The fi nal dataset consisted of 600,806 SNVs in 2,356 individuals. File handling 
and forma   ng was done using vc  ools and PLINK. Annota  on of the variants was performed 
using Sea  leSeq annota  on 138. The total number of individuals with both fas  ng HDL-C 
measurements and exome sequence data available which did not use any lipid lowering 
medica  on was 1,387. More details of the imputa  ons with the GoNL reference panel can be 
found in the supplementary material of van Leeuwen et al.31. The total number of individuals 
with both fas  ng HDL-C measurements and GoNL imputa  ons available which did not use 
any lipid lowering medica  on was 2,989.
Next, using the pedigree available for ERF par  cipants, we visualized the pedigrees in 
which the rare (MAF < 0.1) SNVs are detected (Figure 1). Visual inspec  on of the pedigrees 
confi rmed if the variants are ar  facts or not.

Test for associati on with metabolomics compounds
For about 1,100 individuals within the ERF study, addi  onal measurements of metabolomics 
compounds are available on 5 pla  orms. The fi rst two, include lipid and TG species were 
quan  fi ed either by using liquid chromatography mass spectrometry (LC-MS)34 or by 
electrospray ioniza  on tandem mass spectrometry (ESIMS/MS)35. In addi  on to the lipidomics, 
a third one included aminoacids and acyl-carni  nes were analyzed using the AbsoluteIDQTM 
p150 Kit of Biocrates Life Sciences AG, according to the manufacturer’s recommenda  ons 
and quan  fi ed using MetIQ so  ware as integrated a part of the kit36. The fourth and fi  h 
include two diff erent extrac  on windows from nuclear magne  c resonance spectroscopy 
(NMR); small molecular compounds window as described before37 and lipoprotein window 
as extracted using a commercially available algorithm developed by Bruker Corpora  on, Life 
Sciences services.
We tested whether the replicated or validated SNVs are also associated with any of the 713 
metabolites (Figure 1). The sample sizes varies between the metabolomic compounds, for 
the analysis of phospha  dylcholine data is available for around 400 individuals, whereas the 
analysis of HDL-C par  cles contains about 1,150 samples. We therefore did run a score test 
for associa  on, thereby adjus  ng for age2, sex, lipid lowering medica  on (binary variable: yes 
or no) and family relatedness using mmscore of GenABEL package (version 1.6-7)28,29. 
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As metabolites are related to each other we used the method of Li and Ji38 to determine 
the number of eff ec  ve number of independent variables. In our study, the number of 
independent variables was calculated to be 58.0047 and therefore the experiment-wide 
signifi cance threshold required to keep type I error rate at 5% is 8.84·10-4. Since we test 8 
independent variants the fi nal signifi cance threshold for this sec  on is 1.08·10-5. 

Figure 1. Flow diagram overview of the analysis plan.

Biocrates measurements
Serum samples from 992 individuals were analyzed using the AbsoluteIDQTM p150 Kit of 
Biocrates Life Sciences AG, according to the manufacturer’s recommenda  ons and quan  fi ed 
using MetIQ so  ware as integrated a part of the kit. Liquid handling of serum samples (100 
μl) was performed with a Hamilton Star (Hamilton Bonaduz AG) robot. Sample analyses 
were done on API 4000 Q TRAP LC/MS/MS System (Applied Biosystems) equipped with a 
Schimadzu Prominence LC20AD pump and a SIL-20AC autosampler. Briefl y, the methods 
include fl ow injec  on, ESI-MS/MS detec  on and extrac  on. Quan  fi ca  on of the metabolites 
of the biological sample is achieved by reference to appropriate internal standards. 
Concentra  ons of all analyzed metabolites are reported as micromolar concentra  ons. The 
kit enables measurement of 14 amino acids, hexose (H1), free carni  ne (C0), 40 acylcarni  nes 
(Cx:y), hydroxylacylcarni  nes (C(OH)x:y), and dicarboxylacylcarni  nes (Cx:y-DC), 15 
sphingomyelins (SMx:y) and N-hydroxylacyloylsphingosylphosphocholine (SM (OH)x:y), 77 
phospha  dylcholines (PC, aa = diacyl, ae = acyl-alkyl) and 15 lyso-phospha  dylcholines. Lipid 
side chain composi  on is abbreviated as Cx:y, where x denotes the number of carbons in the 
side chain and y the number of double bonds. For example, “PC ae C33:1” denotes an acyl-
alkyl phospha  dylcholine with 33 carbons in the two fa  y acid side chains and a single double 
bond in one of them. Five reference samples included in each plate were used calculate the 
coeffi  cient of variance (CV) and metabolites which have more than 25% of CV were excluded 
from the analysis. Outlying data points that were 5 standard devia  ons outside of the mean 
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were excluded from each variable. For the 27 metabolites which were measured by absolute 
quan  fi ca  on, 9 (C12, C14, C16, C18, C3, C4, C5, C6 (C4:1-DC) had lower median values than 
of their experimentally determined lower limit of quan  fi ca  on (LLOQ) and were excluded 
from the analysis. By defi ni  on LLOQ considers the lowest concentra  on that meets all 
quality criteria with respect to accuracy and precision according to the FDA guidelines. The 
precise posi  on of the double bonds and the distribu  on of the carbon atoms in diff erent 
fa  y acid side chains cannot be determined with this technology. 

Bioinformati c analysis
The biological relevance of the fi ndings was validated by bioinforma  c analysis with dbSNP, 
GeneCards and STRING interac  on network. Specifi cally, to facilitate the manual process of 
assigning genes to a locus, we used an automated workfl ow developed in-house to generate 
reports containing the associated protein, enzyme, metabolic reac  on, pathway, and disease 
phenotypes about each gene within a distance of +/- 200 kbp of the locus. In addi  on, SNVs 
published in the GWAS catalog39 and eQTLs from the GTEx-eQTL database (h  p://www.ncbi.
nlm.nih.gov/gtex/GTEX2) were given. In detail, the reports created by our workfl ow were 
based on the dbSNP40, NCBI-Gene (h  p://www.ncbi.nlm.nih.gov/gene), GTEx-eQTL, GWAS 
catalog, ConsensusPathDB41, UniProtKB42, OMIM43, Gene Ontology44, TCDB45, ExPASy46 and 
KEGG database47. The databases had been downloaded earlier from the respec  ve  p servers 
and have been integrated offl  ine. For the KEGG database the last freely available version was 
used (30-6-2011).
    

RESULTS

Exome-wide associati on study of exome sequence data
Figure 1 shows a fl ow diagram illustra  ng the analysis plan. We fi rst conducted an exome-
wide associa  on study of HDL-C within 1,252 individuals who had both fasted HDL-C levels 
and the use of lipid lowering medica  on available. All individuals are part of the ERF study. 
Of the 1,252 individuals, 500 are male (39.94%) and 752 are female (60.06%). The mean age 
of the 1,252 individuals was 47.90 years (standard devia  on of 14.19), the mean age of the 
males was 48.72 years (14.27) and the mean age of the females 47.36 years (14.13). 148 
individuals out of the 1,252 individuals indicated using sta  ns and we corrected their HDL-C 
as described in the methods sec  on. Figure 2 and 3 show the results of the exome-wide 
associa  on study. Although there is some infl a  on in the q-q plot (λ=1.05). The infl a  on is 
explained by both the common variants (par  cularly in the cholesteryl ester transfer protein 
(CETP) region) and the rarest variants (MAF < 0.01). There was no evidence for infl a  on for 
the low frequency variants (MAF between 0.01 and 0.1). There are 18 SNVs with a p-value 
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below 2.572·10-6, see Table 1. Of note is that the direc  on of the eff ect of all 18 SNVs except 
2 SNVs in the CETP region are posi  ve and thus increase the HDL-C, see Figure 4. 

Figure 2. Results of a genome wide associa  on analyses in 1,252 par  cipants of the ERF study. The black 
line is the exome-wide signifi cance line (2.572 · 10-6).
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Figure 3. Q-Q plot for the genome wide associa  on analyses in 1,252 par  cipants of the ERF study. 
Figure a shows the q-q plot including all 563,909 SNVs, fi gure b shows the q-q plot a  er the 68 SNV’s in 
the CETP region (chromosome 16, 56.99 Mbp – 57.02 Mbp) are removed.
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Figure 4. Histogram of (a) the HDL-C and (b) the residuals a  er adjus  ng HDL-C for sex, age, age2 and 
family rela  onship in the 1,252 par  cipants of the ERF study marking the carriers of the rare SNVs. The 
red line indicate the heterozygous carriers that use lipid lowering medica  on (the HDL-C is corrected 
for this lipid lowering medica  on). The magenta lines indicate the heterozygous carriers that do not 
use lipid lowering medica  on. The blue line indicate the homozygous carriers, these do not use lipid 
lowering medica  on.
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Figure 4. Conti nued. Histogram of (a) the HDL-C and (b) the residuals a  er adjus  ng HDL-C for sex, age, 
age2 and family rela  onship in the 1,252 par  cipants of the ERF study marking the carriers of the rare 
SNVs. The red line indicate the heterozygous carriers that use lipid lowering medica  on (the HDL-C is 
corrected for this lipid lowering medica  on). The magenta lines indicate the heterozygous carriers that 
do not use lipid lowering medica  on. The blue line indicate the homozygous carriers, these do not use 
lipid lowering medica  on.

LD analysis between the 18 signifi cant SNV’s using PLINK within the 1,309 individuals of the 
ERF study showed that all SNVs in the CETP region on chromosome 16 are in LD (R2 > 0.3). 
This is also the case for the SNVs on chromosome 11 and 15 (Supplementary Table 3). Thus, 
we iden  fi ed 9 independent loci. 
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To evaluate whether the fi ndings are infl uences by the correc  on of HDL-C in the 148 
individuals that used sta  ns, we re-evaluated the 18 variants excluding those treated. There 
were 4 CETP variants that are not signifi cant anymore when we exclude treated individuals 
(Supplementary table 4). This may in part be explained by the lower sta  s  cal power a  er 
excluding 148 out of 1,252 individuals. As the eff ect was in the same direc  on and very similar 
as in the ini  al discovery analyses, we took these variants forward to the replica  on. All rare 
variants remained signifi cant when both excluding the individuals using sta  ns.

Replicati on of the common SNVs
Table 2 shows the associa  on results for the common variants a  er the meta-analysis of 
33,613 individuals from Lifelines, LLS, NTR-NESDA, PREVEND, PROSPER, RS-I, RS-II and RS-III 
imputed to the GoNL reference panel and 51,984 individuals from AGES, ARIC (AA and EA), 
CHS (EA), CROATIA KORCULA, CROATIA SPLIT, CROATIA VIS, FamHS, FHS, Genera  on Scotland, 
JHS, MESA (AFA, CAU, CHN and HIS) and ORCADES imputed to the 1000 Genomes reference 
panel combined. All common variants are genome-wide signifi cantly replicated including 
those that lost their signifi cance when excluding those treated. 

Table 2. The replica  on of the signifi cant common SNVs within 85,597 samples. 
* A1 is allele1, A2 is allele2. † Freq is the frequency of A1. ‡ β is the eff ect of A1. § Direc  on: AGES – 
ARIC (AA) – ARIC (EA) – CHS (EA) – CROATIA KORCULA – CROATIA SPLIT – CROATIA VIS – FamHS – FHS 
– Genera  on Scotland – JHS – Lifelines – LLS – MESA (AFA) – MESA (CAU) – MESA (CHN) – MESA (HIS) 
– NTR – ORCADES – PRVEND – PROSPER – RS-I – RS-II – RS-III.
rsID A1* A2* Freq† β‡ seβ p-value

rs13306677 A G 0.075 0.040 0.006 9.03E-12
rs17231506 T C 0.330 0.095 0.003 6.74E-189
rs1800775 A C 0.474 0.086 0.003 1.92E-167
rs3816117 C T 0.477 0.085 0.003 4.30E-166
rs711752 A G 0.435 0.085 0.003 1.18E-164
rs708272 A G 0.435 0.085 0.003 1.07E-164
rs7205804 A G 0.437 0.082 0.003 8.68E-159
rs1532625 T C 0.438 0.082 0.003 1.92E-158
rs1532624 A C 0.438 0.083 0.003 7.27E-160

rsID Direc  on§

rs13306677 + - + + + - - + + + + + + - + - + + + + + + + +
rs17231506 + + + + + + + + + + + + + + + + + + + + + + + +
rs1800775 + + + + + + + + + + + + + + + + + + + + + + + +
rs3816117 + + + + + + + + + + + + + + + + + + + + + + + +
rs711752 + + + + + + + + + + + + + + + + + + + + + + + +
rs708272 + + + + + + + + + + + + + + + + + + + + + + + +
rs7205804 + + + + + + + + + + - + + + + + + + + + + + + +
rs1532625 + + + + + + + + + + - + + ? ? ? ? + + + + + + +
rs1532624 + + + + + + + + + + - + + + + + + + + + + + + +
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              k

Figure 5. Segrega  on of the rare variants within families of the ERF studies. (a) chr2s189898907 
family 1, (b) chr2s189898907 family 2, (c) chr10s44227551 family 1, (d) chr11s102221002 family 1, (e) 
chr11s102564690 family 1, chr11s104879478 family 1, (f) chr15s63893739 family 1, (g) chr15s63893739 
family 2, (h) chr15s64222558 family 1, (i) chr17s3937518 family 1, (j) chr17s3937518 family 2, (k) 
chr21s43786630 family 1. No exome data was available for the individuals colored in black. Individuals 
colored in red do have exome data available, but no variant was detected. Individuals colored green are 
heterozygous for the variant and individuals colored in blue are homozygous for the variant.
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Replicati on and validati on of rare SNVs
Replica  on eff orts within the exome sequencing project of CHARGE failed due to diff erent 
phenotype defi ni  ons and chip diff erences. We tried to replicate the rare SNV fi ndings in the 
Ro  erdam study cohort I exome sequence (N=1,387) and GoNL imputa  ons (N=2,989) and 
found 4 rare SNVs in the exome sequence data (rs146100075, rs150868637, rs141354791 
and rs143777468) and 5 rare SNVs in the GoNL imputa  ons (rs146100075, rs117090827, 
rs140242880, rs143777468 and rs35511240). Supplementary table 5 gives the eff ect of the 
variants, none of the rare variants were marginally signifi cant. 
As none of the rare variants (MAF < 0.1) could be replicated by imputa  on or exome 
sequencing, we studied segrega  on of these variants within families. SNVs not segrega  ng 
from one genera  on to the next genera  on, might be de novo muta  ons but more likely are 
technique errors. Only the two rare loci on chromosome 15 (rs140242880 and rs143777468) 
did not segregate within pedigrees of mul  ple genera  ons and may therefore be false 
posi  ves, see Figure 5f, 5g and 5h. Out of the 6 carriers of rs146100075, 4 could be linked in 
a single pedigree within 4 genera  ons, the 24 carriers of rs117090827 could be linked within 
6 genera  ons, the 8 carriers of rs150868637 could be linked within 5 genera  ons, just like 
the 9 carriers of rs141354791 and the 9 carriers of the SNV on chromosome 11 without an rs-
iden  fi er on posi  on 104,879,478, the 11 carriers of rs35511240 could be linked in 2 families, 
one including 8 carriers and the other 3 carriers and of the 18 carriers of rs190797467, 17 
could be linked within 5 genera  on, see Figure 5. The 9 carriers of rs141354791 are the 
same individuals as the 9 carriers of the SNV on chromosome 11 without an rs-iden  fi er on 
posi  on 104,879,478. Of those 9 carriers, 8 are also carrier of the rs150868637 variant.

Test for associati on with other phenotypes
The 16 exome wide signifi cant SNVs which were replicated or validated, were tested for 
associa  on with other related metabolomic compounds. The T-scores (β divided by standard 
error) and p-values of all associa  ons were used to create a heatmap, see Figure 6. In total 47 
associa  ons between a SNV and metabolomic compounds were signifi cant a  er Bonferroni 
correc  on (p-value < 1.08·10-4), see Table 3. In Figure 6, the column of the dendograms 
show a clear separa  on in the common variants on chromosome 16 and the other (rare) 
variants. This is most likely explained by the smaller eff ect sizes of the common variants 
compared to the eff ect sizes of the rare variants for most metabolomic compounds. As 
expected, we found associa  on between apolipoprotein A-I (ApoA1) and CETP48 and between 
apolipoprotein A-II (ApoA2) and CETP49. There is a signifi cant cluster of two variants within 
the CETP region (rs3816117 and rs1800775) and M-HDL-ApoA1 (p-value of 5.19·10-5 and 
5.05·10-5, respec  vely), L-HDL-ApoA2 (p-value of 4.83·10-5 and 3.72·10-5, respec  vely) and 
M-HDL-ApoA2 (p-value of 6.96·10-5 and 6.89·10-5, respec  vely). Carriers of the minor allele 
of the gene  c variants on chromosome 16 showed decreased levels of these metabolomics 
compounds.
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Figure 6. Heatmap based on the T-score of the associa  ons between all replicated or validated SNVs 
and metabolomic phenotypes. Only the metabolomics phenotypes are shown which are signifi cantly 
associated with at least one SNV. Associa  ons marked with . have a p-value between 0.05 and 1.08 · 
10-4, associa  ons marked with * have a p-value between 1.08 · 10-4 and 5 · 10-7 and associa  ons marked 
with ** have a p-value between 5 · 10-7 and 5 · 10-9.
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Table 3. The signifi cant results of the test for associa  on with metabolomic compounds. 
rsID chr posi  on metabolite name β seβ p-value N
rs35511240 17 3,937,518 XL-HDL-cholesterol 1.661 0.283 5.52E-09 1145
rs35511240 17 3,937,518 XL-HDL-Free cholesterol 1.602 0.282 1.80E-08 1146
rs35511240 17 3,937,518 HDL-Free cholesterol 1.488 0.283 1.75E-07 1151
rs35511240 17 3,937,518 HDL-cholesterol 1.451 0.285 4.27E-07 1151
rs190797467 21 43,786,630 XL-HDL-ApoA1 1.134 0.227 6.67E-07 1146
rs190797467 21 43,786,630 PC 34:2 1.531 0.311 1.29E-06 413
rs35511240 17 3,937,518 XL-HDL-phospholipids 1.373 0.290 2.54E-06 1149
11:104879478 11 104,879,478 PC(36:3) 1.648 0.349 2.56E-06 1074
rs141354791 11 102,564,690 PC(36:3) 1.648 0.349 2.56E-06 1074
11:104879478 11 104,879,478 Sphingomyeline C26:1 4.439 0.933 2.76E-06 382
rs150868637 11 102,221,002 Sphingomyeline C26:1 4.439 0.933 2.76E-06 382
rs141354791 11 102,564,690 Sphingomyeline C26:1 4.439 0.933 2.76E-06 382
rs190797467 21 43,786,630 XL-HDL-ApoA2 1.028 0.227 6.78E-06 1143
rs35511240 17 3,937,518 XL-HDL-ApoA1 1.340 0.298 7.38E-06 1146
rs150868637 11 102,221,002 PC(36:3) 1.673 0.373 7.99E-06 1074
rs190797467 21 43,786,630 SPM 23:1 1.475 0.331 1.09E-05 415
11:104879478 11 104,879,478 HDL-phospholipids 1.399 0.319 1.27E-05 1156
rs141354791 11 102,564,690 HDL-phospholipids 1.399 0.319 1.27E-05 1156
rs190797467 21 43,786,630 XL-HDL-phospholipids 0.969 0.222 1.40E-05 1149
rs35511240 17 3,937,518 S-HDL-triglycerides -1.216 0.282 1.76E-05 1151
rs117090827 10 44,227,551 PC O 40:6 1.571 0.363 1.90E-05 406
rs190797467 21 43,786,630 PC 36:2 1.272 0.301 2.90E-05 413
rs35511240 17 3,937,518 XL-HDL-phospholipids 1.188 0.283 2.91E-05 1149
rs190797467 21 43,786,630 Phospha  dylcholine diacyl C36:6 1.671 0.395 3.01E-05 378
rs150868637 11 102,221,002 HDL-phospholipids 1.408 0.339 3.49E-05 1156
rs141354791 11 102,564,690 PC(34:3) 1.550 0.374 3.61E-05 1072
11:104879478 11 104,879,478 PC(34:3) 1.550 0.374 3.61E-05 1072
rs1800775 16 56,995,236 L-HDL-ApoA2 -0.278 0.067 3.72E-05 1152
rs3816117 16 56,996,158 L-HDL-ApoA2 -0.273 0.067 4.83E-05 1152
rs141354791 11 102,564,690 M-HDL-Free cholesterol 1.272 0.312 4.92E-05 1157
11:104879478 11 104,879,478 M-HDL-Free cholesterol 1.272 0.312 4.92E-05 1157
rs1800775 16 56,995,236 M-HDL-ApoA1 -0.276 0.068 5.05E-05 1152
rs3816117 16 56,996,158 M-HDL-ApoA1 -0.274 0.067 5.19E-05 1152
rs141354791 11 102,564,690 M-HDL-cholesterol 1.274 0.315 5.55E-05 1156
11:104879478 11 104,879,478 M-HDL-cholesterol 1.274 0.315 5.55E-05 1156
rs1800775 16 56,995,236 M-HDL-ApoA2 -0.269 0.067 6.89E-05 1152
rs3816117 16 56,996,158 M-HDL-ApoA2 -0.267 0.067 6.96E-05 1152
rs190797467 21 43,786,630 Phospha  dylcholine diacyl C36:5 1.541 0.383 6.97E-05 378
rs190797467 21 43,786,630 PC O 36:2 1.377 0.344 7.39E-05 413
rs141354791 11 102,564,690 L-HDL-ApoA1 1.273 0.320 7.56E-05 1156
11:104879478 11 104,879,478 L-HDL-ApoA1 1.273 0.320 7.56E-05 1156
rs190797467 21 43,786,630 PE(38:2) 0.952 0.240 7.60E-05 1068
rs190797467 21 43,786,630 HDL-ApoA1 0.868 0.219 7.82E-05 1150
rs141354791 11 102,564,690 HDL-ApoA1 1.319 0.336 8.99E-05 1155
11:104879478 11 104,879,478 HDL-ApoA1 1.319 0.336 8.99E-05 1155
rs117090827 10 44,227,551 PC O 32:0 1.504 0.384 1.07E-05 406
rs35511240 17 3,937,518 Phospha  dylcholine acyl-alkyl C30:0 2.011 0.514 1.08E-04 380
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Another cluster includes the three rare variants located on chromosome 11 (rs150868637, 
rs141354791 and a SNV without a rs-iden  fi er on posi  on 104,879,478) and the metabolites 
sphingomyelin C26:1 (p-value of 2.76·10-6 for all three variants), phospha  dylcholine diacyl 
C34:3 (p-value of 1.60·10-3 , 3.61·10-5 and 3.61·10-5, respec  vely) and phospha  dylcholine 
diacyl C36:6 (p-value of 7.99·10-6, 2.56·10-6 and 2.56·10-6, respec  vely). Both 
phospha  dylcholine diacyl species can accommodate a linoleic acid (C18:2) moiety. Also 
rs190797467 on chromosome 21 is signifi cantly associated with mul  ple metabolites of 
linoleic acid (C18:2). Carriers of the variants on chromosome 11 and 21 showed increased 
levels of these metabolomics compounds.
The variant on chromosome 17, rs35511240 clusters strongly with mul  ple large HDL-C 
par  cles including XL-HDL-ApoA1 (p-value = 7.38·10-6), XL-HDL-cholesterol (p-value = 5.52·10-

9), XL-HDL-Free cholesterol (p-value = 1.80·10-8), XL-HDL-phospholipids (p-value = 2.54·10-

6) and XL-HDL-phospholipids (p-value = 2.91·10-5). Carriers of this variant showed increased 
levels of these large HDL-C par  cles.

DISCUSSION

Combining GWAS with whole exome sequencing and metabolomics in a family-based study, 
resulted in 18 signifi cant SNVs (p-value < 2.572·10-6), among which 9 common variants 
within the CETP-region. These fi ndings provide a bench mark, as this region is known to 
be associated with HDL-C11 levels. As expected, the CETP clustered with ApoA1 and ApoA2 
metabolites48,49 providing a proof-of-principle of the cluster analyses of the new variants 
with the metabolomics compounds. We found 9 rare variants which were too rare in other 
popula  ons to replicate. However, with the excep  on of the two chromosome 15 variants, 7 
variants segregated in families. Of interest are the 7 rare variants (MAF < 0.1) associated with 
HDL-C levels and their associa  on to various metabolomic compounds. 
We found two clusters of variants and metabolites The fi rst rare variant cluster involves 
variants on chromosome 11 and 21 and various metabolomics compounds of linoleic acid 
(18:2). This fi nding is in line with earlier publica  ons on the associa  on between linoleic acid 
and HDL-C50. The three variants on chromosome 11 are located in three dis  nct genes in a 
2,6558,476 base pair region: the BIRC2 (baculoviral IAP repeat containing 2) gene, MMP27 
(matrix metallopep  dase 27) gene and the CASP5 (caspase 5, apoptosis-related cysteine 
pep  dase) gene. The protein encoded by the BIRC2 gene is a member of a family of proteins 
that inhibits apoptosis by binding to tumor necrosis factor receptor-associated factors 
TRAF1 and TRAF2, probably by interfering with ac  va  on of ICE-like proteases. Proteins of 
the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular 
matrix in normal physiological processes, such as embryonic development, reproduc  on, and 
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 ssue remodeling, as well as in disease processes, such as arthri  s and metastasis. The CASP5 
gene encodes a member of the cysteine-aspar  c acid protease (caspase) family. Sequen  al 
ac  va  on of caspases plays a central role in the execu  on-phase of cell apoptosis. There 
is some evidence that this gene is involved in pantothenate and CoA biosynthesis (p-value 
= 4.34·10-4, genenetwork.nl). The chromosome 21 locus, rs190797467, is located within 
the TFF1 (trefoil factor 1) gene. Members of the trefoil family are stable secretory proteins 
expressed in gastrointes  nal mucosa. The func  on is not defi ned, but they may protect 
the mucosa from insults, stabilize the mucus layer, and aff ect healing of the epithelium. Of 
note is that the chromosome 21 variant in TFF1 is 69 kbp downstream of the ATP-binding 
casse  e, subfamily G, member 1 (ABCG1) gene. This gene encodes an ac  ve lipid transporter 
and possesses diff erent binding sites for cholesterol51. GO annota  ons related to this gene 
include phospholipid binding.
The third cluster involves the associa  on of rs35511240 on chromosome 17 with mul  ple 
large metabolites like XL-HDL-ApoA1, XL-HDL-cholesterol, XL-HDL-Free cholesterol, XL-HDL-
phospholipids and XL-HDL-phospholipids. The chromosome 17 variant (rs35511240) is 
located within the ZZEF1 (zinc fi nger, ZZ-type with EF-hand domain 1) gene. There is some 
evidence that this locus is involved in phospha  dylinositol signaling system (p-value = 1.24·10-

4, genenetwork.nl). The chromosome 17 locus is associated with high levels of HDL-C and XL-
HDL, which both are associated to a reduced risk of cardiovascular disease52. 
Two rare variants do not cluster with the metabolic products: rs146100075 located on 
chromosome 2 within the COL5A2 (collagen, type V, alpha 2) gene and an intergenic variant 
on chromosome 10 (rs117090827).
A poten  al limita  on of our study is the lack of replica  on of the rare variants. Replica  on 
failed due to the extremely low frequency of these variants and study specifi c discrepancies 
in study design and SNV imputa  on. However, segrega  on analysis within the ERF study 
confi rmed that all variants, except the two variants on chromosome 15 (rs140242880 and 
rs143777468), segregate in pedigrees of at least 4 genera  ons. This suggests that these 7 
SNVs are not ar  facts in the ERF cohort but do not prove a causal associa  on to HDL-C. 
The strength of our study is the popula  on based design. As opposed to clinical studies, 
popula  on based studies may yield clues to mechanisms involved in “healthy” individuals. 
This study shows that combining GWAS with next-genera  on sequencing and metabolomics 
within large family studies can help us unraveling the process from variant into biological 
processes infl uencing clinical measurements. By using a family based study instead of a 
clinical study, this study yielded clues to mechanisms involved in “healthy” individuals. Large 
popula  on-based samples will be needed to replicate the fi ndings and fi nal replica  on of our 
fi ndings await the result of ongoing sequencing eff orts. The combina  on of exome sequencing 
and metabolomics in the general popula  on allows to iden  fy specifi c lipid compounds that 
may be of interest for therapy development. 
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Although lifestyle and environmental risk factors such as body weight and nutri  on play at key 
role in circula  ng lipid regula  on, in humans lipid levels are in part determined by genomic 
varia  ons1-10, including rare and common coding variants and alterna  ve processes like DNA 
methyla  on. This thesis focuses on gene  c varia  ons which cause an increased or decreased 
level of circula  ng lipid levels in the general popula  on. I inves  gated the associa  on of 
common and rare variants, both single associa  ons and interac  ons of muta  ons, using 
various reference databases to impute unmeasured variants. This chapter summarizes the 
fi ndings of this thesis, addresses methodological issues, links the fi ndings to other related 
research and discusses the implica  ons of the fi ndings towards the understanding of the 
gene  c background of circula  ng lipid levels. 

The 1000 Genomes reference panel
The two projects described in Chapter 2 have been conducted in the Cohorts for Heart and 
Aging Research in Gene  c Epidemiology (CHARGE) consor  um11 using the 1000 Genomes 
(1kG) reference panel12. This diverse reference panel is the largest catalogue of human 
gene  c varia  on available at this moment including 1,092 samples and about 39.7 million 
bi-allelic polymorphic markers.
In Chapter 2.1 I used the associa  on analysis of the variants of 59,432 individuals within 
the CETP region to fi ne-map the associa  on between this gene and high-density lipoprotein 
cholesterol (HDL-C). The CETP gene is a target for drug development for dyslipidemia due 
to it’s associa  on with HDL-C13-15. The strongest reported associa  on between HDL-C and 
CETP found by genome-wide associa  on studies (GWAS) was rs376426116. This variant is 
located 2,8kbp outside the CETP gene. The T-allele of this variant is associated with 3.47 mg/
dl increase in HDL-C cholesterol. Although rs3764261 was iden  fi ed by Teslovich et al.16 to 
be the lead Single Nucleo  de Polymorphism (SNP) of this region, other variants are used in 
clinical se   ngs. Three of the classical variants are located in the promoter region of the CETP 
gene: -1337C/T (rs708272 or Taq1B), -971G/A and -629C/A (rs1800775) polymorphisms17. 
In this project I used the GCTA tool18 to iden  fy the independent variants associated with 
HDL-C in the CETP region. I discovered and replicated fi ve variants, including an exonic variant 
and a common intronic dele  on in an independent sample of 47,866 individuals. I validated 
the intronic dele  on with Sanger sequencing in a single family from the Erasmus Rucphen 
Family study (ERF). The associa  on to the variant reported by Teslovich et al16, rs3764261, 
as measured by the regression coeffi  cient was highly reduced a  er condi  oning on the fi ve 
novel variants I iden  fi ed (βunadjusted = 3.179 mg/dL (p-value = 5.25·10-509), βadjusted = 0.859 mg/
dL (p-value = 9.51·10-25)) but remained highly signifi cant. This fi nding suggests that these 
fi ve novel variants may partly explain the associa  on of CETP with HDL-C. Moreover, these 
variants may have an independent eff ect. The dele  on I iden  fi ed in this study explains 
35.50% of varia  on in the HDL-C level in a single family of the ERF study, which is much higher 
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than the propor  on of the variance explained (14.11%) in the same family by rs3764261. This 
also suggests that CETP may have a major eff ect on HDL-C in a single family.
Several fi ne-mapping eff orts have been previously published19,20, including genotyping 
with the exome chip. Our imputa  on analysis shows that the 1kG may be an cost eff ec  ve 
alterna  ve to fi netype regions. Further, using the Phase 1 integrated release v3 of the 1kG I 
was able to impute successfully a structural varia  on and associate this varia  on signifi cantly 
with HDL-C in a large sample.
In Chapter 2.2 I performed a meta-analysis of HDL-C, low-density lipoprotein cholesterol 
(LDL-C), total cholesterol (TC) and triglycerides (TG) genome-wide using the 1kG imputa  ons 
in approximately 60.000 individuals from the same cohorts of Chapter 2.1. I replicated 88.1% 
of all loci described by Teslovich et al16 and 43.4% all loci described by Global Lipids Gene  cs 
Consor  um (GLGC) et al21 despite the reduced sample size. More important, I iden  fi ed 
and replicated fi ve new variants: rs6457374 associated with TC, rs186696265 associated 
with both LDL-C and TC, rs77697917 associated with HDL-C and rs116843064 associated 
with TG. These variants are all within or nearby genes that can be linked biologically to lipid 
metabolism (Chapter 2.2). 
Of the fi ve variants, rs116843064 is the most interes  ng fi nding as it is an exonic missense 
variant within the ANGPTL4 that is predicted to be damaging for the structure and the 
func  on of the protein by Polyphen222, Muta  onTaster23 and LRT24. ANGPTL4 has been 
associated with HDL-C before using the GWAS approach16 and with TG before using an 
exome sequencing approach25 and more recently using the GWAS approach26. This missense 
variant changes the amino acid glutamic acid into lysine at posi  on 40 (Glu40Lys). ANGPTL4 
is associated signifi cantly with the KEGG term fa  y acid metabolism, the GO process lipid 
storage and the GO cellular component lipid par  cle (p-value of 1.10·10-6, 1.31·10-10 and 
2.87·10-18, respec  vely, genenetwork.nl). 
rs6457374 is an intergenic variant between the genes HLA-C and HLA-B which are both 
associated with the KEGG term ABC transporters (p-value of 4.29·10-5 and 3.84·10-5 for 
HLA-C and HLA-B respec  vely, genenetwork.nl). ABC transporters transport a wide variety 
of substrates across extra- and intracellular membranes, including metabolic products, lipids 
and drugs. The third fi nding of this study is the associa  on between HDL-C and rs77697917, 
an intergenic variant located between the genes SOST and DUSP3. DUSP3 is associated with 
regula  on and func  on of ChREBP in the liver (p-value of 3.03·10-5, genenetwork.nl). ChREBP 
mediates ac  va  on of several regulatory enzymes of lipogenesis. This variant is in high linkage 
disequilibrium (D’=0.936) in the 1kG reference panel with rs72836561, an exonic variant 
within the gene CD300LG which is predicted to be damaging for the structure and func  on of 
the protein and has been associated with HDL-C in exome-wide associa  on studies27 and TG 
in GWAS26 before. The fourth fi nding of this study was the associa  on between rs186696265 
and both LDL-C and TC. This intergenic loci is between the LPA (Lipoprotein, Lp(A)) gene and 
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the PLG (Plasminogen) gene. The LPA gene has been associated before with LDL-C and TC 
before16,21.
Remarkable in Chapter 2.2 is the high number of variants that were not signifi cantly replicated 
despite the similar sample size and frequencies and direc  on of eff ect within the replica  on 
phase as compared to the discovery phase. Although not extremely low, the frequency of 
the variants that were not replicated varied between 0.01 and 0.48. One explana  on may be 
that the more rare variants are spurious fi ndings but it also includes a few common variants, 
rs9266229, rs608736 and rs376563 with a frequency above 45%. Non-replica  on occurred 
despite a high imputa  on quality. Only for two variants (rs60839105 and rs151198427), the 
sample sizes in both the discovery and the replica  on phase were much lower as compared 
to the other variants. An explana  on for the smaller sample size might be the lack of African 
popula  ons in the discovery. As these variants are specifi c for the African popula  on as 
suggested by the 1kG data (Phase 3) in which the frequency of the C-allele is 92% in African 
samples and 100% in the European samples for rs60839105 and the frequency of the G-allele 
is 86% in the African samples and 100% in the European samples for rs151198427, many 
studies were not informa  ve. Imputa  ons of cohorts with individuals of African ancestry with 
the African Genome Varia  on Project28 might confi rm the associa  on of rs60839105 with 
HDL-C and rs151198427 with TC.
Both projects described in Chapter 2 show that GWAS based on the 1kG reference panel are 
crucial in fi nding new loci and fi ne-map known loci for circula  ng lipid levels and thus help us 
unraveling the biological mechanism behind circula  ng lipid levels.

The Genome of the Netherlands reference panel
The two projects described in Chapter 2 made use of the data of the 1kG project. Before 
fi nalizing the 1kG, there has been growing awareness that many more rare variants are 
popula  on specifi c. The 1kG contains human variants from various popula  ons, however, 
the sample size per popula  on in this reference panel is limited. The expected power to fi nd 
for rare variants which are specifi c for a popula  on, is therefore low when using the 1kG 
reference panel. In Chapter 3 I made use of a reference panel for the Dutch popula  on, the 
Genome of the Netherlands (GoNL) reference panel with the goal to iden  fy rare variants 
associated with circula  ng lipid levels. 
The GoNL consor  um enabled many researchers of the Netherlands to collaborate. A 
popula  on-specifi c reference set for imputa  on was created by the consor  um with the goal 
of iden  fying associa  ons between various phenotypes and low-frequency gene  c variants. 
To this end, 231 parent-off spring trios and 19 parent-off spring quartets of Dutch descent had 
their complete genome sequenced with at least 12× coverage. The strength of this reference 
set comes from several factors. First, the trio design which improves the haplotype quality, 
second, the coverage which is higher than that of the 1kG Project, and third, the sequencing 
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of samples from a homogeneous popula  on. The quality of the haplotypes boosts imputa  on 
accuracy in independent samples, especially for lower frequency alleles. 
The collabora  on resulted in a pipeline for imputa  ons with the GoNL reference panel 
(Chapter 3.1) which is now used by all main Dutch biobanks for imputa  ons. Chapter 3.2 
shows that using the popula  on-specifi c reference panel there was a signifi cant improvement 
for rare variants (Minor Allele Frequency (MAF) between 0.05 and 0.5) compared to the 1kG. 
Of note is that the improved imputa  on accuracy is also seen for Bri  sh and Italian samples. 
A combined reference set comprising both the 1kG and the GoNL improves the imputa  on of 
rare variants even further in both Dutch, Bri  sh and Italian samples. This raises the ques  on 
to what extent the reference panel for imputa  ons should be enlarged to impute even the 
rarest variants with high quality.
To illustrate the advantage of a popula  on-specifi c reference panel for the iden  fi ca  on of 
variants associated with a par  cular phenotype, I HDL-C, LDL-C, TC and TG. The meta-analysis 
of all four traits confi rmed the previously reported associa  ons16,21 and revealed fi ve new 
associa  ons at four loci (Chapter 3.3). Among the fi ve loci is a missense variant (rs77542162) 
which is associated with both LDL-C and TC. This exonic variant changes within the ABCA6 
gene the amino acid cysteine into arginine and is predicted to be damaging for the structure 
and func  on of the protein. Of the fi ve loci, three have an increased frequency in the GoNL 
compared with 1kG, sugges  ng gene  c dri   in the Dutch popula  on and confi rming the 
benefi t of a popula  on-specifi c reference panel. Replica  on in European samples from the 
CHARGE cohorts resulted in Bonferroni-corrected signifi cant p-values, but four associa  ons 
were not genome-wide signifi cant replicated, which again confi rms that these loci would not 
have been found by using the 1kG.
Of the fi ve loci iden  fi ed for circula  ng lipid levels using the GoNL reference panel, three 
rare variants (rs149580368, rs77542162 and rs144984216) are heavily enriched in the 
Dutch popula  on. Again these variants are rela  vely rare (MAF between 0.02 and 0.03). The 
enrichment of rare variants may be due to founder eff ects and dri   in the Netherlands. Such 
eff ects are seen for instance for rare variants in LDL-R and APOB, which are known to be 
highly popula  on specifi c not only in the Netherlands but also elsewhere. Even in a small 
country as the Netherland, there are geographical diff erences in frequencies of rare variants. 
The enrichment of specifi c variants is highly relevant for discovery of rare variants. It has 
proven to be diffi  cult to iden  fy popula  on-specifi c variant(s) associated with circula  ng lipid 
levels, because: (1) the sample sizes in a single popula  on are usually not large enough to 
signifi cantly associate rare variants with circula  ng lipid levels as the number of carriers are 
very low. The imputa  on of the variant in the large Dutch popula  on cohorts boosted our 
power. (2) It is diffi  cult to replicate popula  on-specifi c variants. The variants iden  fi ed were 
rela  vely rare but are also found outside the Netherland and studying an universal outcome 
as lipid levels made it possible to replicate the fi ndings rapidly. (3) Last but not least, one 
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might argue that the be  er imputa  ons are partly explained by the improved haplotyping in 
trios. In conclusion, chapter 3.3 shows that high quality popula  on-specifi c reference panels 
are valuable to iden  fy rare variants associated with circula  ng lipid levels.

New approaches to reveal variants associated with HDL-C
Imputa  ons with reference panels, followed by a GWAS and fi nally a meta-analysis have been 
successful approaches to iden  fy associa  ons between traits and single variants for many 
traits, among which also circula  ng lipid levels16,21,29-31. Also in this thesis, this approach has 
revealed many new loci associated with the HDL-C, LDL-C, TC and TG. In Chapter 4, less 
commonly used gene  c approaches are used; in Chapter 4.1 I conducted a genome-wide 
interac  on study and in Chapter 4.2 I conducted an exome-wide associa  on study. As is the 
case for GWAS, these approaches are hypothesis free, which means that we search for new 
variants or interac  ons associated with HDL-C. The sta  s  cal approach used is associa  on, 
though in Chapter 4.2 this approach is combined with segrega  on analysis in families. 
Chapter 4.1 describes the fi rst genome-wide interac  on study. Persistent evidence for 
interac  ng loci involved in lipid metabolism comes from experimental animal research in 
which various loci interact with each other32. Finding evidence for SNPxSNP interac  on in 
humans has proven to be diffi  cult as this has so far only been based on the common variants 
known to be associated with circula  ng lipid levels33,34. This mo  vated a hypothesis free 
genome-wide search for SNPxSNP interac  ons. However, these searches were hampered by 
computa  onal  me needed for tes  ng all unique pairs of SNPs. In this thesis, I therefore 
used the GLIDE so  ware package35, which makes uses of Graphic Processing Units (GPUs) to 
perform linear regression for all pairs of SNPs. Although the computa  onal issues are now 
solved, I was not able to signifi cantly replicate any SNPxSNP interac  on that were genome-
wide signifi cant in the discovery in the Ro  erdam Study. This might be because I only included 
genotyped, common variants in this project and thus limited ourself to 495,508 genotyped 
variants. Also the sample size in our project might have been too low as I used only 2,996 
individuals who did not received lipid lowering medica  on. The ques  on is not only why I did 
not iden  fy and replicate SNPxSNP interac  ons, but also how to improve the approach. First, 
the sample size should be enlarged, as I stated in Chapter 4.1, as a rule-of-thumb, the sample 
size within a genome-wide interac  on studies (GWIS) should be 3 to 4  mes the size of a 
GWAS. However, with sequence data become available, also rare variants, both intergenic, 
intronic and exonic, should be included. This willrequire more computa  onal power, but will 
also further increase the sample size needed. Although the computa  onal problem may 
be solved by improving computer resources which enable fast and parallel compu  ng, the 
increase in sample size may be the major limi  ng factor in classical GWIS. This raises the 
ques  on whether alterna  ve approaches such as Random Forrest and machine learning will 
be more powerful. Up un  l now, also these have failed to yield replicatable fi ndings.
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The approach of an exome-wide associa  on study (ExWAS) as described in Chapter 4.2 is 
related to the GWAS approach. In the ExWAS, all exonic variants are tested for associa  on with 
circula  ng lipid levels. The exonic variants are not imputed as is done in a classical GWAS, but 
sequenced. I conducted this study in the ERF. Par  cipants (N=1,252) were exome sequences. 
I iden  fi ed 18 variants, nine common (MAF ≥ 0.1) and nine rare variants (MAF < 0.1). The 
common variants are all located with the CETP region. The associa  on between HDL-C and 
this gene has been extensively studied in Chapter 2.1 and this fi nding therefore provide a 
bench mark of the approach16. All common variants were replicated in an independent set of 
85,597 individuals. I further studied the rela  on of the newly iden  fi ed variants with other 
metabolites in the circula  on. As expected, the CETP variants clustered with ApoA1 and 
ApoA2 metabolites36,37 providing again a proof-of-principle of the cluster analyses of the new 
variants with the metabolomics compounds. The nine rare variants are located on mul  ple 
chromosomes within genes that have not been associated with HDL-C before. I was not able 
to replicate these variants in an independent sample due to the extremely low frequency of 
these variants and study specifi c discrepancies in study design and imputa  ons. However, 
segrega  on analysis within the ERF study validated that 7 out of the 9 variants segregate 
in pedigrees of at least 4 genera  ons. This suggests that these 7 Single Nucleo  de Variants 
(SNVs) are not ar  facts in the ERF cohort but do not prove a causal associa  on to HDL-C. Of 
interest are the 7 rare variants (MAF < 0.1) associated with HDL-C levels and their associa  on 
to various metabolomic compounds. I found two clusters of variants and metabolites. The fi rst 
rare variant cluster involves variants on chromosome 11 and 21 and various metabolomics 
compounds of linoleic acid (18:2). This fi nding is in line with earlier publica  ons on the 
associa  on between linoleic acid and HDL-C38. The second cluster involves the associa  on of 
rs35511240 on chromosome 17 with mul  ple large metabolites like XL-HDL-ApoA1, XL-HDL-
cholesterol, XL-HDL-Free cholesterol, XL-HDL-phospholipids and XL-HDL-phospholipids. High 
levels of HDL-C and XL-HDL are both associated to a reduced risk of cardiovascular disease39. 
Although the fi ndings on the rare variants are of interest, the fi ndings await replica  on. This 
chapter highlight the problem of replica  ng rare variants. The lack of replica  on of rare 
variants is a major problem when more (extremely) rare variants are iden  fi ed in specifi c 
families. To validate the fi ndings in the general popula  on asks for extremely large replica  on 
studies in which the variant is either imputed with high precision (not o  en the case for 
extremely rare variants) or assessed by direct genotyping (which is rather costly). 

The end of the GWAS era?
Recent exome sequence analysis have revealed variants in NPC1L140, LDLR41, APOA541 and 
APOC342 using a classical associa  on approach. Of interest is the fact that these were all 
candidate genes that were known to be associated to lipid metabolism before, sugges  ng 
that the candidate gene study may make a comeback in the era of whole genome sequencing. 
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Using a hypothesis-free approach like GWAS approach, it is possible to discover new loci 
associated to lipid metabolism. It has been long speculated that GWAS has reached its limit 
in iden  fying variants with large eff ects. The eff orts described in Chapter 2.1, 2.2 and 3.3 
show that the era of GWAS is not over and that this method can s  ll help us in unraveling the 
gene  c background of circula  ng lipid levels, both for fi ne-mapping known regions and for 
the discovery of new loci. Enlarging sample size has resulted in new fi ndings. The fi rst results 
of GWAS of a few cohorts with circula  ng lipid levels were published in 200829-31 iden  fying 
a few common loci associated with HDL-C, LDL-C and TC. Later on in 2010, Teslovich et al.16 
published a genome-wide meta-analyses using more than 100,000 individuals of European 
ancestry which has resulted in 95 common loci for HLD-C, LDL-C, TC and TG, of which 59 
show genome-wide signifi cant associa  ons for the fi rst  me. A follow-up meta-analysis of 
circula  ng lipid levels by the GLGC contained 188,577 individuals of various ancestry and 
revealed an addi  onal 62 loci21. The latest published meta-analysis of circula  ng lipid levels 
was published by ENGAGE, it contained 62,166 samples of European ancestry and iden  fi ed 
10 new loci associated with circula  ng lipid levels26. All these projects have revealed mostly 
common loci associated with HLD-C, LDL-C, TC and TG and underscore that the sta  s  cal 
power of GWAS has not been op  mal and thus many of rela  vely common variants (0.05 
< MAF < 0.20) have not surfaced yet in the GWAS conducted to date. The reference panel 
used for these fi rst lipid GWAS, the HapMap reference panel, is most likely the reason why 
only common variants are iden  fi ed as this reference panel mainly contains predominantly 
common variants. Reference panels that were larger in numbers of variants as they were based 
on larger popula  on, revealed new variants but are also crucial to fi ne-map a region iden  fi ed 
earlier. As more and more popula  ons are sequenced, reference panels will improve and new 
imputa  ons into studies with GWAS are likely to lead to the discovery of more rare variants. 
How to proceed: do we s  ll need new GWAS to be conducted in the age of next genera  on 
sequencing? Without a doubt, GWAS is s  ll cheaper than next genera  on sequencing and 
therefore the most cost effi  cient way to increase the sample size. There s  ll is an urgency to 
study popula  on that are not of European ancestry, which have been overrepresented so 
far in GWAS. Using more samples of mul  ple ancestries may increase the power of fi ndings 
an associa  on of a variants with an increases frequency in a par  cular ancestry. GWAS is 
expected to fi nd new loci by the use of improved reference panels for imputa  ons. Impu  ng 
improved reference panels into current GWAS may be suffi  cient to iden  fy new rela  vely rare 
variants. In this thesis I did not use the HapMap reference panel like the previously published 
meta-analysis. I used in Chapter 2.1 and 2.2 the 1kG reference panel and in Chapter 3.3 the 
GoNL reference panel. The improved reference panels contain much more rare variants then 
the HapMap reference panel. Is one reference panel be  er than the other? I showed that 
using the GoNL reference panel signifi cantly improved the imputa  ons of the rare variants 
compared to the 1kG, but both successfully mediated the iden  fi ca  on of rare variants 
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associated with circula  ng lipid levels. However, if popula  on specifi c reference panels are 
not available, one may also argue that including as many reference panels as possible may 
be the most powerful approach to impute rare variants. This approach is currently followed 
for imputa  ons of the 1kG mixing samples of European, Asian and African descent. Chapter 
3.2 shows that a combined reference set improves the imputa  on of rare variants further. 
Another ques  on to be answered is what is the most powerful approach to fi nd new rare 
variants in the general popula  on: sequencing the general popula  on, not selected for any 
phenotype or sequencing those with dyslipidemia, i.e., those within the extremes in the 
lipid distribu  on and impu  ng their variants into the large popula  on based studies. The 
la  er approach is likely to be most powerful in that a smaller number of persons will have 
to undergow sequencing and the probability of fi nding a predicted damaging muta  on22-24 is 
higher. 

Future research
In 2008, Maher commented on that gene  c components of common traits and diseases 
were not found, although that was expected once the human genome was unraveled43. Up 
to now, for HDL-C, LDL-C, TC and TG indeed, about ~25-30% of the gene  c components have 
been unraveled. In this thesis I aimed to iden  fy new variants and fi ne-map known loci. In 
this way, I did iden  fy new rare, low-frequency and common variants, in new and known 
loci combining the GWAS, the ExWAS and imputa  on approaches. However, also this thesis 
does not resolve the case of the missing heritability of circula  ng lipid levels and many new 
loci remain to be iden  fi ed. Although this thesis shows that GWAS has not reached its limits, 
there are also other gene  c mechanisms that contribute to the total heritability. For example, 
structural variants, DNA altera  ons and gene-gene and gene-environment interac  ons. 
Inves  ga  on these might also be very helpful in unraveling the biological mechanism behind 
circula  ng lipid levels. 
There is increasing interest in DNA methyla  on in lipid research. From an epidemiological 
perspec  ve the methyla  on of the DNA is of interest, par  cularly in rela  on to environmental 
metal exposure related to lipid levels. For example, TC and HDL-C levels in very young children 
are associated with epigene  c metabolic programming, which may aff ect their vulnerability 
for developing cardiovascular disease (CVD) in later life44. Tissue-specifi c methyla  on pa  erns 
of the APOA1/C3/A4/A5 cluster on chromosome 11q23-24 regulate liver-specifi c expression 
of the genes which are associated with blood lipid levels45. Within this thesis, I found several 
associa  ons between circula  ng lipid levels and ABC transporters. DNA methyla  on studies 
indeed confi rmed that DNA methyla  on changes at the ABCA1 gene locus is one of the 
molecular mechanisms involved in HDL-C interindividual variability46.
Besides DNA altera  ons, also gene-gene interac  ons are yet to be discovered to be associated 
with circula  ng lipid levels. In this thesis I present the fi rst genome-wide interac  on study. 
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Although, no gene-gene interac  ons were iden  fi ed, I expect large meta-analysis of genome-
wide interac  on studies may iden  fy gene-gene interac  on associated with circula  ng lipid 
levels in humans as interac  ng loci have been seen in experimental animal research32.
Although many of the gene  c components of HDL-C, LDL-C, TC and TG are not found, 
the ques  on has already been raised, how to translate the gene  c components into a 
pharmaceu  cal solu  on for CVD47. The benchmark of GWAS is the proprotein Convertase 
Sub  lisin/Kexin Type 9 (PCSK9) gene. This gene plays a crucial role in the regula  on of plasma 
cholesterol homeosta  s and fa  y acid metabolism48-51. Development of drugs targe  ng 
PCSK9 has resulted in a drug for pa  ents with high cholesterol at risk of CVD52. This drug 
inhibits PCSK9 and thereby preven  ng the binding of PCSK9 to an LDLR which will therefore 
be able to remove LDL-C from the blood. This drug lowers LDL-C. There is also interest in 
drugs which increase HDL-C. So far, development of medica  on that raises HDL-C has failed. 
One way to prevent the costly failure of medica  on is to use Mendelian Randomiza  on in 
the se   ng of therapy development. Mendelian Randomiza  on is used to es  mate the causal 
eff ect. Although Mendelian Randomizaton has its limita  on, par  cular if pleiotropy occurs, 
it has yielded interes  ng fi ndings. For instance GWAS challenged the view that TG are not 
important for CVD by showing variants in TG levels that are also relevant for CVD53. It has been 
speculated that, besides LDL-C lowering and HLD-C raising medica  on, the pharmaceu  cal 
companies may also try to develop TG lowering medica  on in the future.
As CVD is s  ll the leading cause of mobility and the number one cause of death worldwide54, 
future research may also focus on new targets for therapeu  c interven  on of CVD. Therapeu  c 
interven  on is most straight forward for variants with large eff ect. An important problem to 
solve in GWAS is that the func  onally relevant variant has o  en not been discovered. This 
limits the use of GWAS as a way to discover new drug targets. The fi rst requirement for 
the development of a new medicine, is to priori  ze the fi ndings of GWAS in terms of the 
likelihood of a func  onal eff ect. Within this thesis, three genes have been described in more 
detail: CETP, ABCA6 and ANGPTL4. There are several func  onal variants within these genes. 
One of the methods to priori  ze these variants, is to look at the C score. The C score is a single 
measure resul  ng from the Combined Annota  on-Dependent Deple  on (CADD) method55 
which objec  vely integrates many diverse annota  ons. The higher the C score of a par  cular 
variant, the more predicted to be deleterious. A C-score of greater of equal 10 indicates that 
the variant is predicted to be the 10% most deleterious subs  tu  ons that can occur within 
the human genome, a score of greater or equal 20 indicates the 1% most deleterious and 
so on. Table 1 shows the C scores for the variants within the CETP, ABCA6 and ANGPTL4 
genes within the 1kG data. Although there are also variants within these genes which are 
not predicted to be deleterious, there do exists some variants within these gene that are 
predicted to be the 1% most deleterious subs  tu  ons that you can do to the human genome. 
Table 2 shows the top fi ve highest C scores iden  fi ed within this thesis. More inves  ga  on in 
these variants may results in new targets for pharmaceu  cal developments.
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Table 1: the C scores for the variants within the CETP, ABCA6 and ANGPTL4 genes within the 1kG data.
Gene Posi  on Variants within the 1kG Range C score
CETP 16:56,961,850-56,983,845 312 0.001-34.000
ABCA6 17:69,078,691-69,143,262 987 0.001-22.100
ANGPTL4 19:8,363,289-8,374,375 161 0.001-26.200

Table 2: the top fi ve highest C scores for the variants iden  fi ed within this thesis within the 1kG data.
rs iden  fi er Gene Posi  on C score
rs116843064 ANGPTL4 19:8,429,323 35
rs77542162 ABCA6 17:67,081,278 29.1
rs35511240 ZZEF1 17:3,937,518 10.26
rs34065661 CETP 16:56,995,935 9.047
rs711752 CETP 16:56,996,211 8.457

Conclusion
In conclusion, this thesis describes the search for diff erences in the human genome that cause 
a change in the level of circula  ng lipid levels. I used therefore the GWAS, GWIS and ExWAS 
approach. Although the GWIS did not reveal new signifi cant SNPxSNP interac  ons associated 
with HDL-C, the project gave us some lessons for follow-up GWIS projects for the future. For 
the GWAS I used both the 1kG reference panel and the GoNL reference panel for imputa  ons 
to improve the power of our studies which were rela  vely small samples for GWAS. The 1kG 
has not been used before for GWAS of circula  ng lipid levels, just like the popula  on-specifi c 
reference panel. The fact that I found new variants in new and known regions, suggest that 
the era of GWAS is far from over. As the sample sizes of the projects described in this thesis 
are rela  vely small, it might be expected that there is s  ll a lot of missing heritability to be 
found using GWAS. A ques  on to be answered is whether the genes fall into novel pathways 
or fall into the same ones. The next fron  er will be whole genome sequencing. Up un  l now, 
whole genome sequencing idenfi ed rare variants within candidate geness, but  me will tell 
whether also hypothesis free approaches will work for these rare variants.
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Cardiovascular disease (CVD) are the leading cause of morbidity and the number one cause 
of death worldwide. Risk factors for CVD are four types of circula  ng lipid levels: high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol 
(TC) and triglycerides (TG). These four types of circula  ng lipid levels are highly heritable. 
Despite the large number of research that has been performed about circula  ng lipid 
levels, the gene  c varia  ons driving this heritability are s  ll largely unknown. Most gene  c 
varia  ons discovered today come from genome-wide associa  on studies (GWAS), however, 
these varia  ons are mostly common and the eff ect of these varia  ons on circula  ng lipid 
levels are small.

In this thesis I aimed to iden  fy new variants associated with circula  ng lipid levels. Therefore 
I used several gene  c epidemiological approaches to dissect the complex nature of circula  ng 
lipid levels: GWAS, genome-wide interac  on studies (GWIS) and exome-wide associa  on 
studies (EWAS). The GWAS was applied on genomic data of individuals imputed to both the 
Genome of the Netherlands reference panel and the 1000 Genomes reference panel. These 
individuals are part of several popula  on-based and family-based cohorts. The hypothesis 
free GWIS was applied on the Ro  erdam Study, an ongoing prospec  ve popula  on-based 
cohort study and the EWAS was applied on the Erasmus Rucphen Family study, an isolated 
family-based popula  on.

In Chapter 2 individuals of several cohorts of the Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE) consor  um imputed with the 1000 Genomes reference 
panel were used. I fi rst run a GWAS for HDL-C in the CETP-region to iden  fy the causal 
variant for the associa  on between the CETP gene and HLD-C in Chapter 2.1. I iden  fi ed 
and replicated fi ve variants, including an exonic variant and a common intronic dele  on. 
These variant explain most of the eff ect of a previously reported variant within this region. 
In Chapter 2.2 the same individuals were used, but run a GWAS for HDL-C, LDL-C, TC and TG 
genome-wide. This resulted in the discovery and replica  on of new variants; rs6457374 for 
TC, rs77697917 for HDL-C, rs116843064 for TG and rs186696265 for both LDL-C and TC.

In Chapter 3 the Genome of the Netherlands reference panel was introduced. I fi rst present 
a protocol for imputa  ons with this popula  on-specifi c reference panel in Chapter 3.1 and 
compared this reference panel with the 1000 Genomes reference panel in Chapter 3.2. This 
comparison shows that using the GoNL reference panel there was a signifi cant improvement 
in imputa  on accuracy for rare variants, not only for Dutch samples, but also for Bri  sh and 
Italian samples. The GoNL reference panel in Chapter 3.3 was used to impute the nine largest 
Dutch biobanks followed by a GWAS per cohort with HDL-C, LDL-C, TC and TG. The meta-
analysis of all four traits revealed fi ve new associa  ons at four loci among which a missense 
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variant (rs77542162) within the ABCA6 gene which is predicted to be damaging for the 
structure and func  on of the protein. 

In Chapter 4 a less commonly used gene  c approaches was applied to search hypothesis-
free for new variants or interac  ons between variants associated with HDL-C. To this end, 
I performed the, to my knowledge, fi rst GWIS (Chapter 4.1). As these were hampered by 
computa  onal  me need for tes  ng all unique pairs of SNPs, I used the GLIDE so  ware 
package which makes uses of Graphic Processing Units (GPUs) to perform linear regression 
for all pairs of SNP. Although the computa  onal issues are now solved, I was not able to 
iden  fy and signifi cantly replicate any SNPxSNP interac  on. The lack of replica  on might be 
because of the sample size and because I only included genotyped, common variants in this 
project.

The second less commonly used gene  c approach I applied was an exome-wide analysis 
study in an isolated popula  on, the ERF study. Tes  ng all exonic SNPs for an associa  on with 
HDL-C resulted in iden  fi ca  on of 18 variants, nine common variants within the CETP region 
and nine rare variants located on mul  ple chromosomes within genes that have not been 
associated with HDL-C before. I replicated the common variants in an independent sample 
of 85,597 individuals and confi rmed seven of the rare variants by segrega  on analysis within 
pedigrees of the ERF study of at least 4 genera  ons. 

To summarize, in this thesis I fi rst applied the commonly used gene  c approach, GWAS 
with two new reference panels: the 1000 Genomes reference panel and the Genome of the 
Netherlands reference panel. This enabled me to fi ne-map a known region and to discover 
new regions associated with circula  ng lipid levels. This showed me that the era of GWAS 
is not over as using a larger reference panel provided more informa  on about the gene  c 
background of circula  ng lipid levels. Secondly, I applied two less commonly used gene  c 
approaches; GWIS and EWAS. Although the fi rst was not successful in iden  fi ca  on of 
common SNPxSNP interac  ons, the second resulted in nine new variants associated with 
HDL-C. The conclusion of the work as described in this thesis is that I was able to reveal some 
of the gene  c varia  ons driving the heritability of circula  ng lipid levels, but there is s  ll 
much more work to do.



CHAPTER 5.3
Samenvatti  ng



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

182 | Chapter 5.3



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

| 183

Hart- en vaatziekten vormen wereldwijd de belangrijkste oorzaak van morbiditeit en 
mortaliteit. Risicofactoren voor hart- en vaatziekten zijn vier typen circulerende lipide 
levels: high-density lipoproteïne cholesterol (HLD-C), low-density lipoproteïne cholesterol 
(LDL-C), totaal cholesterol (TC) en triglyceriden (TG). Deze vier typen circulerende lipide 
levels zijn in hoge mate erfelijk. Ondanks het vele onderzoek dat is gedaan naar circulerende 
lipide levels, is de meeste gene  sche varia  e die de hoge erfelijkheid bepaald, nog steeds 
grotendeels onbekend. De meeste gene  sche varia  e die tot op heden bekend is, is ontdekt 
in genoomwijde associa  estudies (GWAS), echter, deze varia  es zijn voornamelijk veel 
voorkomende varia  es en de eff ecten van deze varia  es op circulerende lipide levels zijn erg 
klein. 

In dit proefschri   streef ik ernaar nieuwe varia  es te ontdekken die geassocieerd kunnen 
worden met circulerende lipide levels. Daarvoor gebruikte ik meerdere gene  sche 
epidemiologische benaderingen: GWAS, genoomwijde interac  e studies (GWIS) en 
exoomwijde associa  e studies (ExWAS). GWAS heb ik toegepast op genoom-data van 
individuals die geimputeerd zijn met ofwel het Genoom van Nederland referen  e panel 
ofwel het 1000 Genomes referen  e panel. Deze individuen zijn deels a  oms  g uit popula  e 
gebaseerde cohorten en deels a  oms  g uit familie gebaseerde cohorten. De hypothese vrije 
GWIS benadering was enkel toegepast op de Ro  erdam Study, een lopende studie en de 
ExWAS benadering werd toegepast op een geisoleerde familie gebaseerde popula  e.

In hoofdstuk 2 heb ik meerdere individuen gebruikt uit verschillende cohorts die behoorde tot 
the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consor  um. 
Deze individuen zijn allen geimputeerd met het 1000 Genomes referen  e panel. Allereest 
heb ik in hoofdstuk 2.1 een GWAS uitgevoerd voor HDL-C in de CETP-regio om de variant 
te iden  fi ceren die de associa  e tussen het CETP gen en HDL-C veroorzaakt. Hierbij zijn vijf 
varianten gevonden waaronder een exonische variant en een veelvoorkomende intronische 
dele  e. Deze vijf varianten verklaren grotendeels het eff ect van een variant binnen deze regio 
die voorheen is gepubliceerd. In hoofdstuk 2.2 heb ik dezelfde individuen gebruikt maar dit 
keer een GWAS uitgevoerd voor HDL-C, LDL-C, TC en TG genoomwijd. Dit resulteerde in de 
ontdekking en replica  e van drie nieuwe varianten: rs6457374 voor TC, rs77697917 voor 
HDL-C, rs116843064 voor TG en rs186696265 voor zowel LDL-C als TC.

In hoofdstuk 3 besprak ik het Genoom van Nederland referen  e panel. Allereerst beschreef 
hoofdstuk 3.1 een protocol om de genotype data van individuen te imputeren met deze 
popula  e-specifi eke referen  e panel. Ook vergeleken we dit referen  e panel met het 
1000 Genomes referen  e panel in hoofdstuk 3.2. Deze vergelijking liet zien dat wanneer 
de GoNL referen  e panel gebruikt word, er een signifi cante verbetering is in de imputa  e 



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

184 | Chapter 5.3

kwaliteit voor zeldzame varianten in zowel Nederlandse als Italiaanse en Britse individuen. In 
hoofdstuk 3.3 laat ik een GWAS zien voor HDL-C, LDL-C, TC en TG waarbij de individuen van 
de negen grootste Nederlandse biobanken geimputeerd zijn met het Genoom van Nederland 
referen  e panel. De meta-analyse van alle vier de phenotypes resulteerde in vijf signifi cante 
associa  es op vier posi  es waaronder een missense variant (rs77542162) binnen het ABCA6 
gen van welke voorspelt is dat deze schadelijk is voor de structuur en de func  e van het eiwit 
dat door het gen geproduceerd wordt. 

In hoofdstuk 4 hebben we minder voorkomende gene  sche benaderingen toegepast om 
hypothese-vrij te zoeken naar nieuwe varia  es of interac  on die met HDL-C geassocieerd 
kunnen worden. Ik voerde de eerste GWIS voor HDL-C uit in hoofdstuk 4.1. Deze methode 
werd tot dus ver tegengehouden door de computa  onele  jd die ervoor nodig is om alle 
unieke SNP paren te testen. Daarom gebruikte ik de GLIDE so  ware die gebruik maakt van 
Graphic Processing Units (GPUs) om lineare regressies voor alle SNP paren te testen. Ondanks 
dat de computa  onele problemen nu konden worden opgelost, werden de bevindingen 
niet signifi cant gerepliceerd. De oorzaak hiervan is mogelijk het aantal individuen of de 
veelvoorkomende varianten die gebruikt zijn in de studie. 

The tweede minder voorkomende gene  sche benadering die ik heb toegepast was een 
exoomwijde assoca  estudie in een geisoleerde popula  e, de ERF studie. Door alle exonische 
SNPs te testen voor een associa  e met HDL-C, iden  fi ceerde ik 19 varianten waaronder 
negen veelvoorkomende varianten binnen het CETP gen en negen zeldzame varianten op 
verschillende chromosomen binnen genen die nog niet met HDL-C geassocieerd zijn. We 
repliceerde de veelvoorkomende varianten in een ona  ankelijke set van 85,597 individuen 
en beves  gden zeven van de negen zeldzame varianten aan de hand van seggrega  e analyse 
binnen stambomen van de ERF studie van tenminste vier genera  es. 

Samenva  end, in dit proefschri   heb ik een veelvoorkomende gene  sch epidemiologische 
aanpak toegepast, namelijk een GWAS met twee verschillende referen  e panels: het 
1000 Genomes referen  e panel en het Genoom van Nederland referen  e panel. Hierdoor 
hebben we bekende regio’s nader kunnen besturen en nieuwe regio’s kunnen iden  fi ceren 
die geassocieerd zijn met circulerende lipide levels. Dit laat zien dat het  jdperk van GWAS 
nog niet over is aangezien grotere referen  e panels ons meer informa  e hee   opgeleverd 
over de gene  sche achtergrond van circulerende lipide levels. Daarnaast hebben we twee 
minder veelvoorkomende gene  sche benaderingen toegepast; GWIS en ExWAS. Ook al was 
de eerste niet succesvol in het iden  fi ceren van veelvoorkomende SNPxSNP interac  es, de 
tweede hee   wel zeven nieuwe variaten geassocieerd met HDL-C opgeleverd. De conclusie 
van het werk beschreven in dit proefschri   is dan ook dat ik een deel van de gene  sche 
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varia  e die leidt tot de hoge erfelijkheid van circulerende lipide levels heb kunnen opsporen 
maar dat er nog een hoop werk te verze  en is. 





PART 6
EPILOGUE





CHAPTER 6.1
Dankwoord/Acknowledgements
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Zo, na 5 jaar dan eindelijk toe aan het belangrijkste van alles: het dankwoord. Want ook al 
staat mijn naam voorop dit boek, een proefschri   schrijf je niet alleen en ook kun je niet 
alleen wetenschap uitvoeren. Daarom zijn er een heleboel mensen zowel in Nederland als 
erbuiten, zowel op de werkplek als erbuiten die ik moet bedanken voor hun bijdrage. En 
mocht ik iemand vergeten: sorry, sorry en nog eens sorry!

Allereerst mijn promotor, professor Cornelia van Duijn. Beste Cock, samen hebben we 
gestreden, tegen elkaar en met elkaar, met dit boekwerk als resultaat. Je hebt al  jd een 
doel voor ogen, voor de afdeling en voor al je werknemers. En ook ik heb daarvan mogen 
profi teren. Je hebt mij kansen gegeven om op na  onaal en interna  onaal niveau samen te 
werken, om congressen bij te wonen en om te mogen proeven van de wetenschappelijke 
wereld. Daar vroeg je wel wat voor terug, je zei onlangs dat je zelf veeleisend bent en dat 
klopt! Ondanks dat was je er ook in de minder vrolijke  jden, je hield rekening met de soms 
erg moeilijke omstandigheden thuis en op je eigen wijze vroeg je me hoe het met me ging en 
dat heb ik erg enorm gewaardeerd. Dank je wel!

Daarnaast wil ik ook graag alle leden van de kleine commissie bedanken: professor Betram 
Müller-Myhsok, professor Adrienne Cupples en professor Eric Sijbrands. Dear Bertram, it was 
a pleasure working with you on the SNPxSNP interac  ons, unfortunately did not resulted in 
any signifi cant replicated fi ndings, but it did give me the oppurtunity to work together with 
you and to learn a lot from you. Dear Adrienne, thank you for leading the Lipids Working 
Group of the CHARGE consor  um, thank you for sharing so much knowledge about lipids and 
last but not least, thank you for giving me an amazing experience in your lab. Beste Eric, ook 
u wil ik graag bedanken voor het lezen van mijn proefschri   en uw bijdrage aan de meeste 
van mijn ar  kelen. Uw kennis van lipiden was zeer waardevol!
Ook alle leden van de grote commissie wil ik graag hartelijk bedanken: professor Eline 
Slagboom, professor Ko Willems - van Dijk, professor Oscar Franco, professort Robert Hofstra 
en professor Andre Ui  erlinden. Beste Eline, hartelijk dank voor de fi jne samenwerking de 
afgelopen jaren binnen het Genoom van Nederland consor  um. Beste Ko, uw sugges  es voor 
hoofdstuk 4.2 zijn zeer leerzaam geweest, dank u wel dat u de  jd nam mijn manuscript 
te lezen en mijn proefschri   te beoordelen. Dear Oscar, thank you for being part of the 
commi  ee. Beste Robert, ook u wil ik graag hartelijk bedanken voor het lezen van mijn 
proefschri  . Beste Andre, dank u wel voor alle samenwerking van de afgelopen jaren, ik hoop 
van harte dat voortaan iedereen het asfalt op  maler zal benu  en zodat u zich niet meer 
hoe   te storen aan ongebruikte asfalt in Nederland ;).

Ook professor Ben Oostra wil ik bedanken. Beste Ben, toen ik mijn PhD baan niet meer zag 
zi  en en het liefste wilde stoppen, liet jij me zien dat het eigenlijk allemaal zo slecht niet was. 
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Je sprak me weer moed in en gaf me  ps om door te gaan. Die zijn me al  jd bij gebleven 
en daar ben ik je dan ook erg dankbaar voor. Ik zie een grote glimlach als u praat over uw 
“nieuwe” leven, genieten met een grote G van reizen en de kleinkinderen. Geniet ervan, het 
is u gegund!

Beste Lennart, je hebt mij de eerste jaren van mijn PhD begeleidt. Je leerde me op alle (kleine) 
details te le  en, in papers, in presenta  es en  jdens het programmeren. Samen zijn we op 
meerdere plekken geweest voor congressen en mee  ng: Nürnberg, Lunteren, München, 
Boston en New York. Met een grote glimlach denk ik terug aan het terrasje in New York 
waar we iets te veel cocktails dronken om de zon achter de skyline van New York te zien 
zakken! Helaas kon je me de laatste jaren niet meer begeleiden maar ben blij dat we toch in 
contact bleven en ik al  jd op je kon blijven rekenen. Bedankt voor je begeleiding, je geduld 
en de gezelligheid! Dear Aaron, I also have to thank you for serving as a second supervisor. 
Unfortunately you have only been my supervisor for a few months, but I would like to let you 
know that your knowledge about lipids and experience within this fi eld, have really moved 
me forward. I appreciate our conversa  ons, also the ones about science ;). Your enthusiasm 
when you start talking about Noah, is priceless!

Wat ben ik een bo  ont om drie paranimfen te hebben, om dus drie meiden te mogen kennen 
die er al  jd voor me zijn geweest de laatste jaren! Lieve Sara, dank je wel voor zoveel, het 
was leeg in de trein toe je naar Cambridge verhuisde, niemand om mandarijntjes mee te 
eten, niemand om kri  sch maar rechtvaardig de dag mee door te nemen. Je huilde mee 
toen ik slecht nieuws over mijn moeder kreeg en juichte van harte mee toen ik zwanger 
van Lo  e bleek te zijn. Binnenkort in Cambridge maar eens de nabeschouwing van al die 
jaren gene  sche epidemiologie. Lieve Lieke, mijn langste en kleinste vriendinnetje: na jaren 
van alleen maar lol en feestjes in Leiden, werd t voor ons “serieus business”, allebei een 
PhD, Amsterdam en Ro  erdam. Jullie huis, mijn mama, Lo  e, wat er ook allemaal voor 
zaken waren, wij bleven geregeld samen eten (en drinken), gewoon even ontspannen en 
alle frustra  es eruit gooien! Nu we beide onze PhD afgerond hebben, hoop ik dat er weer 
nieuwe frustra  es komen, zodat we nog vaak samen een excuus hebben om uit eten te 
gaan. Lieve Nikkie, alhoewel we nu niet meer wekelijks elkaar spreken, weet ik dat jij er al  jd 
voor me bent, al  jd voor mij klaar staat en dat is echt heel fi jn! Geen feestje is een success 
zonder jouw hulp en hopelijk als alle feestjes straks gevierd zijn, is er vast weer meer  jd voor 
winkelen, theetjes drinken en uit eten gaan. Lieve Nikkie, Sara en Lieke, drie vriendinnen die 
ook een PhD doen/gedaan hebben, die de tegenslagen kennen, die de frustra  es kennen en 
met je meeleven in goede en slechte  jden zowel op t werk als thuis, is enorm waardevol! 
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Stress has nothing to do with how many hours you work, and everything to do with how you 
feel during those hours. Dear colleagues from gene  c epidemiology, dear Adriana, Andrea, 
Andy, Annelies, Ashley, Ayse, Bernade  e, Carla, Claudia, Constanza, Dina, Dream, Elena, 
Elena, Eline, Elza, Fizzah, Ivana, Jeanne  e, Linda, Maaike, Maarten, Maksim, Najaf, Natalia, 
Petra, Revanius, Robert, Sara, Shazad, Sofi a, Sven and Yurii: thank you for being my colleagues, 
thank you for the nice moments. Sushi on a boat, not in a boat ;). Dear Adriana, no ma  er 
how busy you are, you always have  me for anyone else. Thank you for your interest in my 
work and life. I really hope that the fi shes will have the phenotype you want them to have 
and that your thesis will be “een eitje” and that “je niet uit het raam hoe   te springen”! Dear 
Dina, thank you for the nice conversa  ons, you are a hard working person and I would like to 
give you once again the advice: take a break some now and then ;). Beste Sven, je posi  viteit 
was vanaf het begin opvallend, dat je die maar mag behouden en iets van dat chao  sche mag 
verliezen. Succes met de laatste loodjes rich  ng thesis. Beste Carla en Linda, al enige  jd weg 
van de afdeling, toch heb ik een hoop van jullie geleerd, mijn dank daarvoor. Succes op jullie 
nieuwe plekken. Beste Ashley, wat fi jn dat jij tegenover me kwam te zi  en, een heel fi jn lief 
kletsmaatje! Ik weet zeker dat jij er ook wel komt!  

Daarnaast wil ik ook de afdeling Epidemiologie van het Erasmus MC bedanken. Beste 
professor Albert Hofman, de gestructureerde opzet van de Ro  erdam Studie hee   ook mij 
de mogelijkheid geboden om deel te nemen in consor  a en om onderzoek te doen naar 
lipiden is zoveel individuen. Drie dames van de Epidemiologie verdienen ook een plekje in het 
dankwoord: Gabriëlle, Virginie en Henrië  e. Dank jullie wel voor de gezelligheid, tussen het 
werk door,  jdens congressen en  jdens cursussen. Ik mis de snoeppot! Also some individuals 
of the Internal Medicine of the Erasmus MC should be thanked: Carolina, Karol and Fernando.

Mijn onderzoek zou niet hebben plaatsgevonden als zoveel mensen vrijwillig hadden 
bijgedragen aan de Ro  erdam Studie en de Erasmus Rucphen Familie Studie, maar ook aan 
alle andere studies waar ik mee heb samengewerkt. Ook al weet ik niet wie jullie zijn, jullie 
deelname is van enorme waarde!

Alle deelnemers van het GoNL consor  um wil ik hierbij ook bedanken. Beste Cisca, Dorret, 
Gert-Jan, Eline, Morris en Paul: dank jullie wel dat jullie dit consor  um hebben opgezet en 
geleidt hebben naar verschillende publica  es. Daarnaast gaat mijn dank ook uit naar de 
andere leden van het consor  um waaronder Androniki, Freerk, Jeroen, Jessica, Jouke-Jan, 
Kai, Laurent, Mar  jn, Mathijs, Patrick, Pieter en Sara. Dank jullie wel voor de samenwerking, 
voor de input in mijn werk, dank jullie wel voor de kri  sche vragen. De samenkomsten in 
Utrecht waren al  jd weer bijzonder en zorgden voor een hoop nieuwe wetenschappelijke 
vraagstukken. Menig één van jullie ben ik tegen gekomen bij conferen  es en dat was al  jd 
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weer gezellig. Een speciaal word van dank gaat uit naar Cisca en Paul. Beste Cisca, graag wil 
ik je bedanken voor je steun voor mijn werk binnen het consor  um, je nam al  jd de  jd 
om mijn werk te beoordelen en hierdoor heb ik me al  jd enorm gesteund gevoeld in mijn 
werk voor dit consor  um. Beste Paul, ik wil je graag bedanken voor al je kri  sche vragen 
die je mij de afgelopen jaren over mijn werk binnen het Genoom van Nederland stelde. Je 
liet me hierdoor nog meer nadenken over mijn eigen projecten en dat hee   toch mooie 
manuscripten opgeleverd. 

It has also been a privilege to work within the CHARGE consor  um, in par  cular the Lipids 
Working Group. Dear Prof. Bruce Psaty, your comments and sugges  ons for my analysis 
plan, papers and grant proposal have been very helpful and I learned very much from this, 
thank you. Dear CHARGE RSC, thank you for giving me the opportunity to go to Boston for 
two month, a fantas  c experience. Dear Gina, thank you for organizing the Lipids Working 
Group and your input in my projects. Dear Jennifer, thank you for always replying so fast on 
emails, thank you for the input in my projects and thanks for the nice collabora  on during the 
CHARGE commons project. Thank you for showing me around in Boston and Framingham, 
you have been a great hostess!  

My papers would not have existed without the help of so many co-authors. I could fi ll a whole 
chapter with the names of my co-authors: thank you all for the collabora  on, the sugges  ons 
for my papers and for keeping fi ngers crossed a  er submission.

Collega’s van de afdeling oog-epi, na een half jaar thuis met de kinderen, is het heerlijk om 
weer uitgedaagd te worden, om weer aan het werk te zijn. Dank jullie wel voor jullie warme 
welkom! Op naar de toekomst met mooie projecten!

Maar zonder vrienden buiten het werk zou het leven ook maar saai zijn! Lieve Jan, je 
opgewektheid is zo inspirerend, gewoon doen waar je zin in hebt, dat zou ik ook meer moeten 
doen! Lieve Lisa, je bent een lieverd, al  jd een luisterend oor. Jij weet als geen ander wie ik op 
dit moment heel erg mis, hoe het voelt en dat ik dat met je kan delen, is heel waardevol. Dank 
je wel dat we al  jd welkom zijn in Almere/Arnhem, dikke kus, ook voor (al) je mannen. Lieve 
Bjel, al je apjes met zoveel uitroeptekens maakt me al  jd glimlachen, zoveel interesse als je 
al  jd toont is echt heel fi jn. Ook al is Maastricht niet om de hoek, je lijkt al  jd dichtbij! Lieve 
mama’s uit Gouda: niet al  jd kan wetenschap de vragen over Lo  e en Gijs beantwoorden, 
jullie wel! Samen zwemmen, naar de kinderboerderij, naar de speeltuin, of een kopje thee 
en dan even al die verhalen over Lo  e en Gijs kunnen vertellen, alle vragen kunnen stellen, 
zo fi jn! Nie  emin wil ik natuurlijk ook Pim’s mannen bedanken, lieve Hein, Johan, Mar  jn, 
Rob, Robert, dank je wel dat jullie er al  jd zijn voor Pim, hem de nodige afl eiding van thuis 
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geven. Dan neem ik wel op de koop toe hoe hij vaak weer afgeleverd word ;). Maar ook 
Myrthe, Rens, Remco, Loes, Arno, Silvie: even geen boekje schrijven, gewoon een drankje, 
een kletspraatje, even ontspanning.

Hierbij wil ik ook alle ooms, tantes, neven en nichten van de familie van Leeuwen, de familie 
Jonker, de familie Tempelaars en de familie van der Velden bedanken. Familie: je kan ze niet 
uitzoeken dus bof ik zeker met zoveel lieve familieleden! Weliswaar zie ik niet iedereen even 
veel maar als we elkaar zien, is het al  jd gezellig. Lieve oma, wat een eer dat u hierbij kunt 
zijn. Lieve Ger  e, Carlo, Coen, Marleen, Rob en Maaike: nou, dat genen tellen zit erop ;). Dank 
jullie wel dat jullie er al  jd gewoon zijn en ons steunen in onze plannen. 

Lieve broertjes, voor jullie ook een belangrijk plekje in mijn dankwoord. Ik ben apetrots 
op twee van die grote broers, broers die al  jd vragen hoe het gaat, die er al  jd zijn op de 
belangrijke momenten, die zelf hun eigen dromen achternagaan en die geweldige ooms zijn 
voor kleine Lo  e en Gijs. Het was zeker niet al  jd even makkelijk de afgelopen jaren voor ons 
alledrie maar door het verdriet met jullie te kunnen delen, was het verdriet een stuk beter te 
dragen. Lieve Michiel, het gaat goed met je, als gepromoveerde in Denemarken en dat heb jij 
allemaal zelf bereikt door hard te werken en je eigen doelen na te schreven. Je mag trots op 
jezelf zijn daarvoor en anders ben ik het in ieder geval! Lieve Alexander, je bent en blij   mijn 
kleine broertje maar ik heb enorm veel respect voor hoe je je zaakjes al  jd op orde hebt, alles 
probeert te regelen. Jij gaat vast een hele mooie carriere tegemoet. Lieve Steffi  e, dank je wel 
dat je zo’n leuke lieve meid bent, al  jd opgewekt en enthousiast!

Lieve papa en mama: voor jullie is dit boek. Om jullie te bedanken voor alle onvoorwaardelijke 
steun die ik al mijn hele leven van jullie krijg, of ik nu voor t eerst moet gaan lopen, fi etsen, 
boeken moet lezen, proefwerken maken of ar  kelen schrijven, jullie waren er al  jd naast de 
zijlijn. Jullie hebben me geleerd dat door hard werken je heel veel kan bereiken maar vooral 
ook veel moet genieten, dank jullie wel daarvoor, wat een belangrijke en waardevolle lessen! 
Lieve papa, je schreef je proefschri   op je papadagen en nu deed ik dat op m’n mamadagen. 
Je verteld trots dat je door “al die ar  kelen” van je dochter, je eigen ar  kelen niet meer kan 
vinden op pubmed! Ik ben ook trots op jouw, het waren geen makkelijke jaren maar je doet 
het geweldig! Lieve mama, het mocht niet zo zijn dat je trots dit boekje aan de wereld kunt 
showen, dat je op de eerste rij zit bij de verdediging. Dat we samen kleding kopen voor  jdens 
de verdediging. Dat je even tegen me zegt dat het vast wel gaat lukken. Ik mis je enorm veel, 
elke dag, zoveel momenten die ik met je zou willen delen, even met je zou willen bespreken, 
maar toch ben je erbij, in mijn gedachte! 
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Lieve Lo  e en Gijs, dank je wel dat jullie bestaan, dat jullie er zijn, dat jullie al  jd zo vrolijk en 
lief zijn en dat jullie me laten zien dat het leven zo simpel, zo leuk kan zijn. Vanavond even 
geen werk, geen onderzoek maar gewoon een boekje lezen voor het slapengaan!

Lieve Pim, we hebben zoveel meegemaakt de afgelopen jaren, geweldige dagen en vreselijk 
verdrie  ge dagen maar al  jd samen. Je bent er al  jd voor me geweest, stond al  jd klaar, ik 
mocht bij je uithuilen en samen vierden we de leuke dingen. Zoals op onze trouwkaart: samen 
met jouw aan mijn zijde, kon en kan ik het allemaal aan. Sorry dat ik soms geen aandacht voor 
je had, geen  jd voor je had, je bent al  jd in mijn hoofd, en komt al  jd op de eerste plaats. 
Jij bent mijn thuis, waar ik elke dag het liefste weer naar terugkeer. Dus lieve Pimmie, dank je 
wel dat je er bent, ik hou van je.
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- Dutch Techcentre for Life Sciences kickoff  event, Amersfoort, the 
Netherlands: “Exome sequencing in an isolated popula  on reveals 
mul  ple rare variants aff ec  ng both high-density lipoprotein 
cholesterol and the levels of certain blood metabolites” (poster)

2014 1

Oral presenta  ons at lab mee  ngs:
- Semi-annual presenta  ons at the Gene  c Epidemiology Unit, 

Department of Epidemiology, Erasmus MC, Ro  erdam, the 
Netherlands.

2011-2015 1

- 2020 mee  ng of the Department of Epidemiology, Erasmus MC, 
Ro  erdam, the Netherlands.

2013 1

Seminars, symposia and workshops
- Weekly seminars and 2020 mee  ngs at the Department of 

Epidemiology, Erasmus MC, Ro  erdam, the Netherlands.
2011-2015 2

- Bridge mee  ngs, Erasmus MC, Ro  erdam, the Netherlands. 2011-2015 1
- Annual Centre for Medical Systems Biology Symposium 2011-2013 3
- European Human Gene  cs Conference, Amsterdam, the 

Netherlands.
2011 1

- CHARGE inves  gators mee  ng, Ro  erdam, the Netherlands 2013 1
- Genome of the Netherlands consor  um mee  ngs, Utrecht, the 

Netherlands
2011-2012 1

Other
- Research fellow at the Department of Biosta  s  cs, Boston University 

School of Public Health, Boston, MA, USA. Supervised by Prof. 
Adrienne Cupples and supported by the CHARGE consor  um

2015 2 months
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2. Teaching
Year Workload 

(Hours/ECTS)
Lecturing

- Advances in Genome-Wide Associa  on Studies 2015 1

Supervising practi cals and excursions
- Assis  ng in the “Principles of Gene  c Epidemiology” course 2012 1

Supervising Master’s theses
- Supervision Annelies Smouter (Bachelor student Bioinforma  cs): 

“The search for high-density lipoprotein cholesterol correlated SNP-
SNP interac  ons in the Ro  erdam Study cohort I”.

2011-2012 3
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