Bidirectional A*: Comparing balanced and symmetric
heuristic methods*

Wim Pijls’ and Henk Post?

Econometric Institute Report EI 2006-41

Abstract

A widely known algorithm for finding the shortest path in a network is Bidirec-
tional A*. The version of bidirectional A* that is considered the most appropriate
hitherto, uses so-called balanced heuristic estimates. In this paper, we focus on sym-
metric heuristic estimates. First, we show that bidirectional A* using the symmetric
heuristic estimate provides us with a feasible approximation. Next a framework is in-
troduced for solving the shortest path problem exactly. It turns out that both the
balanced and the symmetric heuristic estimate are instances of a general bidirectional
A* framework. The symmetric instance surpasses the balanced instance in space and
time.

Keywords: Shortest path, Network flow, Graph theory, Operations Research, Search.

*This research is part of a Ph.D. project of the second author at Delft University of Technology, depart-
ment of Electrical Engineering, Mathematics and Computer Science.

fCorresponding author. Econometric Institute, Erasmus University Rotterdam, P.O.Box 1738, 3000 DR
Rotterdam, The Netherlands, email: pijls@few.eur.nl, tel: +31-10-4082588; fax: +31-10-4089162

fConnexxion Taxi Services b.v., The Netherlands, email: h.post@connexxion.nl

1 Introduction

In the past few years large digital road maps have become available, to be used in car
navigators. This have given rise to a revival of shortest path algorithms. We consider
the point-to-point instance of the shortest path problem. The best-known algorithms in
Operations Research are Bellman-Ford and Dijkstra [1]. In Artificial Intelligence the A*
algorithm is widely known [8]. Both Dijkstra’s algorithm and A* start from the origin
point and continue their search process until the destination is reached. A new approach,
bidirectional search, was introduced by Pohl [7], who proposed two simultaneous processes
starting from either point. On two sides Dijkstra or A* is executed. The processes meet
somewhere in the middle between the two points. Before a meeting point is obtained, we
are in the so-called main phase. As soon as the processes meet, the remaining steps of
bidirectional search are called the postprocessing phase or briefly the post-phase. Some
variants of Pohl’s approach were discussed in [4] and [6].

The difference between Dijkstra’s algorithm and A* is the use of an heuristic estimate
function. This function estimates for any node the remaining distance to the destination.
Dijkstra may be regarded as an instance of A* with the estimate function = 0.

Balanced and symmetric heuristics Bidirectonal search is implemented mostly using
symmetric heuristic functions, where each process computes the remaining distance in a
similar way. Another type is the heuristic which is called balanced in the current paper.
This type of heuristic has been introduced in [3]. The exact definitions of symmetric and
balanced are found in Section 3.2 and Section 4.1 respectively.

The balanced heuristic estimate is incorporated in recently published experiments with
large-scale real road networks, see [2, 5]. According to those papers the balanced heuristic
is very beneficial, because the post-phase is very short. However, we return to symmetric
heuristic functions. First, we found out that, when the post-phase is skipped, the symmetric
heuristics still give a tight approximation to the shortest path distance. Second, it turns out
that the benefits of the balanced heuristic can be carried over to the symmetric heuristic.
To that end a new framework covering both methods is defined. We focus on a version
using a symmetric heuristic. This algorithm outperforms in space and time the versions
with balanced heuristics in aforementioned papers.

Which estimating method? The obvious estimate is the astronomical distance between
two nodes. Many papers discussing large-scale road networks have been published in the
past few years, most of which propose novel heuristic estimates. In this paper we refrain
from discussions about the quality of the different estimates. The current paper aims at
optimizing the search space and the runtime of the process, given a certain heuristic.

Overview. Section 2 gives some general preliminaries. In Section 3.1 we recall the classical
A* algorithm along with some properties relevant to discuss the bidirectional properties later
on. Section 3.2 contains an elementary but effective and useful bidirectional A* algorithm.
Section 4 presents our new framework for bidirectional A* along with several instances
therein. The properties of the search space of the new framework are treated in Section 5.
Experimental results are shown in Sections 3.2 and 4.3.

2 Preliminaries.

Let a directed graph or network G be given by a pair (V, E) with V the set of nodes and
FE the set of edges. A path is a sequence of nodes without duplicate elements. We assume
that two particular nodes are given, an origin o and a destination node d respectively. The
shortest path and its length from the origin to the destination is looked for. The weight
or length of an edge (u,v) is denoted by d(u,v), whereas d*(u,v) denotes the length of a
shortest path from u to v.

We define a heuristic estimate h as a function from V into R. An estimate h is called
consistent if h obeys the inequality h(u) — h(v) < d*(u,v) for any two vertices u,v € V. In
some textbooks a different definition is found: h(u) — h(v) < d(u,v) for any edge u,v € V.
The two definitions are equivalent, as can readily be shown. If a function h is consistent,
so is h + ¢ for any constant c.

Heuristic estimates. Let d(v, w) denote a underestimate of d*(v,w) with the property
that § obeys the triangle inequality, i.e. d(v,w) < (v, u) + d(u,w) for any triple u,v,w.
Then h(v) = §(v, t) with ¢ a fixed node in the graph is a consistent heuristic function, because
applying the triangle inequality we have h(v) —h(w) = §(v,t) —0(w,t) < §(v,w) < d*(v,w).
As said before, the most obvious choice for d(v,w) is the astronomical distance between u
and v.

Apart the above heuristic h(v) = d(v,t), we can derive other heuristic functions from d.
More generally, we can define a heuristic function A for given a distance function § as:

h=a-d(v,t)—F-d(s,v) (1)

with and 8 two non-negative numbers such that a + 3 = 1. In the remainder of this
paper we pay special attention to three options for the combination a-3:

a=1p=0: h; =9u,t)
a=1p8=2%: hy=6(v,1)/2—6(s,v)/2
a=0pF=1: hz=-4(s,0).

Experiments We conducted multiple experiments on the road network of the Netherlands
and Belgium, including the border regions of Germany. This network is part of the Multinet
version 2006 provided by TeleAtlas[10]. Speaking formally the network is a directed graph
consisting of 3,304,638 nodes and 6,942,109 directed edges. When one can drive in a road
into two directions, this road corresponds to two edges. A one-way road corresponds to
one edge. In all experiments the astronomical distance acts as heuristic estimate. The
experiments were conducted on a Dell Latitude D600 with a 2 Ghz processor and 2 Gb
memory, where the programs are developed using Borland Delphi 2006. Experiments with
the same environment were shown in [5].

3 The A* algorithm

In this section we recall A*. First unidirectional A* is treated and next we discuss a version
of bidirectional A* without the post-processing steps.

Algorithm 1 The Unidirectional A* algorithm

1: for allv € V do

22 g(v) = oo;

3: end for

4: § = @;

5: g(s) =0;

6: while t € S do

. C={v|vgS}

8: wp=argmin{g(v) + h(v) |veC}
9: F = g(uo) + h(uo);

10: S=5+ {uo};

11: for all edges (ug,v) with v ¢ S do
12: if g(v) > g(up) + d(up,v) then
13 gv) = glug) + dluo, v);

14: pred(v) = up;

15: end if

16: end for
17: end while

3.1 The description of the A* algorithm

Before discussing a new bidirectional A* algorithm, we elaborate on the classical A* algo-
rithm. To distinguish this algorithm from its bidirectional counterpart, we call this algo-
rithm unidirectional A*. The pseudo-code is displayed in Algorithm 1. The values g(v) and
pred(v) are called the label and the predecessor respectively of v. We see that, whenever
a node wug assigns a new value ¢g(v) to a node v (line 13), up becomes the predecessor of
v. In unidirectional A* node s denotes the origin node o and ¢ denotes the destination d.
The h-function involved conforms to formula (1). Notice that A(t) # 0 if 5 > 0. With each
finite label value g(v) a path can be associated which goes from s to v, where each node is
the predecessor of the next node in the path. Therefore this path is called the predecessor
path of v. The set S is the set of nodes with a permanent label.

In view of Section 4 we have two variables C' and F. The set C' contains the candidates
for insertion into S. The variable F' is a lower bound of the set {g(v) + h(v)|v & S} after
line 9 has been executed. When line 13 is executed, this property is preserved, because
F = g(ug) + h(up) < g(ug) + d(u,v) + h(v) = g(v) + h(v). The inequality in this relation is
a result of the consistency of h. The variable F' will play an important role in Section 4.

In order to discuss the features of bidirectional A* we first give the following lemma referring
unidirectional A*.

Lemma 1 The A* algorithm has two invariant properties:

a) ifve s, then d*(s,v) = g(v).

b) if v S but g(v) is finite, then g(v) is equal to the length of the shortest path through
S from s to v, so the shortest path with the restriction that any intermediate node
between s and v is in S.

Proof a) Suppose ug is to be added to S. Consider a path P from s to uy with minimal
length. We denote the first node beyond S on this path by p (maybe p = ug). As a result of
part b) g(p) = d*(s,p) holds. The consistency of h says: d*(p,ug) > h(p) — h(ug). Because
g(uo) + h(up) is minimal outside S by the selection criterion, g(ug) + h(uo) < g(p) + h(p).
The following (in)equalities apply:

d*(s,p) + h(p)

d*(s,p) + d*(p,uo) + h(uo)
g(uo) + h(uo)

9(p) + h(p).

We conclude that the above inequalities are equalities and consequently g(ug) = d*(s, ug).
b) For a node v ¢ S the shortest path through S may change when ug is added to S. A
shorter path may arise by inserting ug in front of v in the existing path for v. To check
whether this is the case, lines 11 through 16 are executed. O

9(p) + h(p)

ININIA

Note. Suppose that multiple consistent h-functions are available. The above proof shows
that it is allowed to switch randomly from one h-function to another. Both parts of Lemma 1
keep valid in that case.

The nodes in S are called scanned and the nodes outside S but with a finite label are called
labeled. A node with an infinite label is called unreached. These names are adopted from
[2] and [4]. Notice that each node that is a predecessor of another node, is included in S.
At any time we have a set S surrounded by labeled nodes.

3.2 Bidirectional A*, an elementary version

Now we study the bidirectional version. The code of Algorithm 1 may run simultaneously
in a forward and a backward direction. In the forward search s denotes the origin and ¢
denotes the destination; in the backward process s and ¢ play inverse roles. The backward
search runs on the original set of nodes with a new edge set. The original set F is replaced
with the set Ej, such that (i,7) € E with length d(i, j) corresponds to an edge (j,i) € E}
with dp(j,7) = d(i,7). We apply symmetric heuristic functions. This means that formula
(1) takes the following shape in the forward and backward search respectively.

he(w) = a-6(v,d)—B-6(0,0) 2)
hy(v) = a-&(v,0) —F-0p(d,v) =a-(0,v) — (- (v,d) (3)

where o and d denote the origin and the destination respectively. We can define hq, ho or
hs, each corresponding to a combination of a and as listed in Section 2. The definition
of symmetric also assumes that either side takes the same combination a-£.

For this elementary version, we decide that the algorithm stops as soon as the forward
and the backward S set have one node in common. Then a path from the origin to the
destination has been found, which is not necessarily a shortest path.

Table 1 shows the experimental results of bidirectonal A*. In each experiment we considered
100 random origin-destination pairs. Alternately the forward and the backward search
executed one iteration. The figures in the tables show the summation of the results of the
100 runs. In each run the results of the two search processes are added. The times are

a) after the main phase using hj.

b) after the main phase using ho.

Figure 1: Search spaces.

scanned | finite label | CPU time distance
hy | 18,936,207 | 19,180,997 32.891 | 23,487,238
ho | 25,708,396 | 26,034,428 51.039 | 23,499,216
hs | 71,569,899 | 72,586,139 180.666 | 24,452,889

Table 1: The algorithm stops when the processes meet.

measured in seconds, the distances in meters. An illustration for one randomly chosen pair
is shown in Figure 1. The bright areas represent the two S sets on termination.

The exact distance is 23,486,861 meters. The closed approximation to the distance is
reached by h1 The deviance for h; is less than 0.01%!. Our conclusion is that the elementary
bidirectional A* implementation using h; is a feasible algorithm for practical applications.
For ho the deviance is slightly greater. The table shows that hy dominates by far hs and
hs in space and time.

4 The extended bidirectional description

The process studied in Section 3.2 stops as soon as the two searches have one node in
common. The path from the origin to the destination provided at that time needs not to be
the shortest path. To obtain the exact shortest distance we have to continue the process.
The process after the first meeting point has been achieved, has been called the post-phase
in Section 1.

4.1 Postprocessing for balanced heuristics

When the A* algorithm is running on a certain side, it can benefit from intermediate results
in the opposite process. The variables on the opposite process are denoted using a tilde. So
we have the set S and for any v we have the functions: g(v) and h(v). Notice that ¢t = §

and s = . An heuristic is called balanced if for any v € V: h(v)4h(v) = 0. (In [2] this type
of heuristic was confusingly called ‘consistent’. By far most of the literature uses the term
consistent in the same sense as we do). An example of a balanced heuristic is ha applied
in a symmetric setting: if ho(v) = 6(v,t)/2 — 8(s,v)/2 then ho(v) = d(v,1)/2 — §(5,v)/2 =
d(s,v)/2 = d(v,t)/2.

For a balanced heuristic the post-phase is short, as has been pointed out in [2] and [3]. The
post-phase is short, because only nodes that are labeled in the own search and scanned in
the opposite search, need to be inspected. Let £ denote the length of the path found at the
end of the main phase. We show that any path through a labeled node that is not scanned
in the opposite search is at least as long as £. See Figure 2 (maybe u = v) with u and v
labeled nodes. As F' is a lower bound to the g + h-values outside S, g(u) + h(u) > F and
§(v) + h(v) > F. Consider a shortest path P from the the origin to the destination with u
and v the nodes immediately outside S and S respectively. Using Lemma 1 we state that
the length of P equals g(u) + g(v) + d*(u,v). A lower bound to this value is obtained as
follows:

9(u) +g(v) + d*(u,v) =
9(u) +g(v) + h(u) = h(v) =
9(u) +h(u) +g(v) + h(v) =

Both F and F are non-decreasing values and F' + F > £ is an invariant relation in the
post-phase. It follows that the value £ cannot be improved by any path through u or v. So
only nodes that are scanned on one side, are eligible to be scanned on the alternate side.
An equivalent statement is: only edges connecting two nodes scanned in either side need to
be inspected in the post-phase.

Figure 2: Pruning nodes using h(u) — h(v) or h(v) — h(u).

4.2 The new description

The above reasoning can be generalized to an arbitrary heuristic. See again Figure 2.
Similarly to Section 4.1 we can derive that any shortest path P has length > g(u) + g(v) +
h(v) — h(u). This value is > g(u) + F — h(u). This implies that any node u ¢ S satisfying

g(u) + F —h(u) > £

can be eliminated. Those nodes are excluded from being scanned. This feature is imple-
mented in Algorithm 2.
Algorithm 2 is an extended version of Algorithm 1. It it designed to run simultaneously on

two sides, like Algorithm 1, starting from the origin (s = o,t = d) and from the destination
(s = d,t = 0). The code contains a number of additional statements related to the post-
phase. The novel feature is included in lines 13 and 14. The entire process stops when one
side stops, i.e. when one side has an empty candidate set. The variable £ is equal at any
time to the length of a path from o to d through a doubly scanned node. On termination
this path is the desired path.

Algorithm 2 may be viewed as a framework covering arbitrary heuristics. Apart from the
consistency property, nothing is required of the heuristic estimates.

The algorithm utilizes the variables S , F and h of the opposite search. These variables are
read-only variables and can only be set by the opposite search process. The variable L is a
shared variable, which is a read/write variable for both running instances.

Instead of three states for a node, as was the case in unidirectional A*, we now have four
states. Next to the states scanned, labeled and unreached, we also have rejected. A candidate
node in C' may come into the state scanned (line 16) or rejected (line 14) respectively. Like
scanned the state rejected for a node v is kept until the end. Notice that g(v) + h(v) < F
is an invariant property for a such a node. The union of the sets of labeled and rejected
nodes respectively is called the open set. Notice that rejected nodes do not contribute to
the F-value.

The eliminating method in lines 13 and 14 reduces the search space considerably. Two other
methods to restrict the search space, already mentioned in [6], are also applied. Any node
v with g(v) + h(v) — h(t) > L should not to be scanned, because a path through v is not
able to improve the shortest path found so far (This was called ‘trimming’ in [6]). A node
that becomes doubly scanned does not expand any new node ('nipping’), so for such a node
the lines 25 through 30 are skipped. If a node up has a doubly scanned direct or indirect
predecessor, ug needs not to be scanned ('pruning’). The code of Algorithm 2 does not
reflect this idea because checking the condition does not outweigh the savings. We show in
Section 5.2, that, even when this idea is not implemented explicitly, a node v with a doubly
scanned predecessor will not be scanned, if the condition v & S holds.

Does Lemma 1 still hold? Because a node u that becomes doubly scanned does not
update neighbor labels, Lemma 1b) is not valid for a node v, if v has a doubly-scanned
node on its shortest path from s. Fortunately, such a node v is not relevant for improving
the value of £

Apart from this exception, Lemma 1 is still correct, but the proof needs a small extension.
Suppose a node uyg is selected. We have to consider the case that p, as defined in the proof
of Lemma 1, is rejected. Then g(ug) > d*(s,up) = d*(s,p) +d*(p,uo) = g(p) +d*(p, up). By
the definition of the graph used in the opposite search d*(p, ug) = J(uo, p). The latest value
is > h(ug)—h(p) due to the consistency. It follows that g(uo)+F —h(ug) > g(p)+d*(p, ug)+
F — h(ug) > g(p) + F — h(p). Because p is rejected, ug also satisfies g(ug) + F — h(ug) > L
and therefore ug is not selected. We conclude that p cannot be rejected, when wug is to be
scanned.

The correctness proof of Algorithm 2 is rather complex. As rejected nodes do not contribute
to the F-value (rejected nodes u have g(u) + h(u) < F), F is not a lower bound to the
g + h-values of the open nodes in the opposite search. Consequently g(u) + F — h(u) is not
a lower bound to the path lengths between u and ¢. In Section 5 we complete the proof.

Algorithm 2 The Bidirectional A* algorithm

1: for allv € V do
22 g(v) = oo;
3: end for
4: § = @;
5: L = o0;
6: g(s) =0; // s becomes labeled
7: boolean cand-found=true; //stands for ‘candidate found’
8: while cand-found==true do
9: C ={v|vis labeled and g(v) + h(v) — h(t) < L};
10: cand-found=false;
11: while C #) and cand-found==false do
12: up = arg min{g(v) + h(v) |v e C};
13: if ug & S and g(ug) + F — h(ug) > £ then
14: C=C—{up} // uo becomes rejected
15: else
16: cand-found=true; // a suitable candidate is found
17: end if
18: end while
19: if cand-found==true then
20: S =S5+ {uo}; //uo becomes scanned
21: F = g(uo) + h(uo);
22: if ug € S then
23: L =min(L, g(ug) + §(uo)); // uo becomes doubly scanned, £ is updated.
24: else
25: for all edges (ug,v) € E with v labeled or unreached do
26: if g(v) > g(uo) + d(up,v) then
27: g(v) = g(ug) + d(up,v); //g(v) becomes (re-)labeled
28: pred(v) = up;
29: end if
30: end for
31: end if
32: end if

33: end while

a) after the post-phase using h;.

b) without rejected nodes using h.

Figure 3: Search spaces.

4.3 Experiments

The experimental outcomes are shown in Table 2. The same instances as in Section 3.2 are
used. As mentioned there, the results of the two search processes are added. This means
that doubly scanned or doubly labeled nodes are counted twice. The search space for one
instance is depicted in Figure 3.

The table in combination with Table 1 conforms to our conclusion in Section 4.1, viz. the
post-phase for hs generates only new doubly scanned nodes and does not generate new
labeled nodes.

The advantage of h; in space has diminished, but still it is. In time it far defeats ho.

scanned | finite label | CPU time distance
hy | 25,465,177 | 25,793,947 43.234 | 23,486,861
ho | 25,708,620 | 26,034,428 51.542 | 23,486,861
hs | 74,975,861 | 75,998,025 188.401 | 23,486,861

Table 2: After the post-phase.

According the experiments in [2] and [5] the best implementation of bidirectional A* is
achieved, when the balanced heuristic hs is applied, due to its short post-phase. We now see
that we are not bound to balanced functions. The symmetric heuristic function h; performs
better. The somewhat awkward function hs which also takes more time to compute than
hy or hs, is no longer needed.

The tables 1 and 2 and the maps in Figure 3 exhibit another phenomenon. The major
differences between the h-functions arise during the main phase. h; has a short main phase
but looses its benefit in the post-phase. For h3 the other way round holds: the post-phase
is very short compared to the main phase. Moreover, we found that the number of updates
of the variable £ in the post-phase is small. So we may regard the post-phase as a certifying
process, generating a certificate for the (nearly) shortest path length obtained in the main
phase.

10

To show the effectiveness of the eliminating rule, we have also conducted experiments with
lines 13 and 14 omitted. The algorithm obtained this way is identical to bidirectional A*
with the symmetric heuristic, as discussed in [2] next to the version with the balanced heuris-
tic. However, leaving out the criterion of line 13 deteriorates the search space dramatically,
as we see in Table 3.

scanned | finite label | CPU time distance
hi | 45,229,047 | 45,377,809 67.601 | 23,486,861
ho | 173,358,453 | 173,475,559 276.661 | 23,486,861
hs | 301,975,719 | 301,999,525 662.230 | 23,486,861

Table 3: After the post-phase without eliminating rule.

For a node v € S we have shown in Section 4.2 that F — B(v) is a lower bound to the length
of the paths from v to t. This bound may be used as the heuristic estimate governing the
selection of the node to be scanned. This was suggested in [4]. The heuristic F' — h(v)
is equivalent to —71(11). The experiments in this section show that this a weak estimate.
Therefore the lower bound F — h(v) is only suitable to eliminate nodes from the search, as
we do in our algorithm.

5 The search space

In this section we study the shape of the search space of Bidirectonal A*. By the search
space we mean the set of visited nodes during execution. The properties of the search space
also imply the correctness of the algorithm.

5.1 Some properties of the search space

Some formal properties First of all we present two Lemma’s. Next we draw some
conclusions about the shape of the search space. Finally we show that the shape is almost

independent of the choice of a-3.

Lemma 2 The bidirectional A* algorithm has the following invariant: for any open u and
any v that is open in the opposite search (maybe u = v) at least one of the following
conditions holds:

a) (u is labeled) N\ (v is labeled in the opposite search)

b) (u is rejected) A g(u) + §(v) + h(v) — h(u) > L

¢) (v is rejected in the opposite search) A g(u) + g(v) + h(u) — h(v) > L.
Proof. We distinguish between the primary process and the opposite process.
The invariant holds when the algorithm starts. There are three events, which may affect

the invariant.
Suppose u becomes rejected in the primary process, while v is labeled on the opposite side.

11

Figure 4: The search space on termination.

Apparently the condition in line 13 holds and b) becomes valid, because g(u)+ g(v)+h(v) —
h(u) > g(u) + F — h(u) > L.

Suppose u becomes rejected in the primary process, while v is already rejected in the
opposite search. This is the mirror of b), expressed by c). Notice that the inequality in
line 13 of the code does not imply the inequality in b), due to the relation §(v) + h(v) < F
on the opposite side. So b) needs not to hold.

Suppose a node ug becomes scanned and generates a new label for u, while v is rejected.
Then g(u) + h(u) = g(up) + d(ug,w) + h(u) > g(ugp) + h(ug). As invariant c) applied to the
pair ug, v, it now applies to v and v. O

If w = v in the Lemma 3b) can transform into: if a node u is rejected and w is open on the
opposite side, then g(u) + g(u) > L.

Lemma 3 If v is rejected, then v & S.

Proof By the first condition in line 13 a node v € S will not be rejected in the primary
process. Conversely, assume that v has taken the status rejected in the primary process.
We show that v will not be added to S. Because v is rejected, g(v) + h(v) < F and,
as a consequence of Lemma 3b): g(v) + g(v) > L. Now we have: g(v) + F — h(v) >
G(v) + g(v) + h(v) — h(v) > £ and thus v will not be added to S. O

For illustration see Figure 4 which displays a configuration with open nodes. Suppose the
process on the left-hand side has an empty candidate set, causing the entire algorithm to
terminate. Apparently none of the three open w nodes is a suitable candidate on the left
side for getting scanned. As Lemma 3 implies that us € S is not rejected, us must satisfy
the relation:

g(u) + h(u) — h(t) > L. (4)

According to Lemma 2, each of the pairs us-vo and u1-v1 obeys at least one of the following
relations:

L (5)
L (6)

AVANAY

provided that the u-nodes are rejected; otherwise (4) holds for u-nodes.

Now that we have derived some properties of the search space, we prove the correctness of
the algorithm and we pose a statement on the shape of the search of the space.

12

Correctness of the Algorithm 2 Suppose a shortest path P from the origin to the
destination has zero, one or multiple intermediate nodes between S and S. This corresponds
to situations with respectively the combinations w-us, w-us or u;-v; on P. In each case
relation (4), (5) or (6) holds, implying that a path with length = £ is minimal. This shows
that Algorithm 2 is correct.

The influence of a-f on the search space In practice the relation (4) mostly occurs
in the areas farthest from target t. A non-rejected open node in S, as is the case with us,
is very rare. Such a situation nearly always leads to a doubly scanned node. When the
algorithm stops, mainly (5) or (6) holds in the area where the S-sets are close to each other.

If v and v have a short distance between themselves, which is relatively short compared
with the distance to their start node, we may state that d(u,v) =~ d(s,v) — (s,u) and
0(u,v) = §(u,t) — d(v,t). Then the following derivation is allowed:

h(u) —h(v) = «a-6(u,t)—F-0(s,u) —a-d(v,t)+ 5-(s,v)

— a0t - < 0) + 8- (6(s,v) — 8(s,u)
a-6(u,v) + B 6(u,v) = 6(u,v).
(v

A similar derivation leads to: h(v) — h(u) = &(v,u) = 6(u,v).
For nodes close to the opposite S set, the relations (5) and (6) mostly apply. Using the
above derivations we can transform (5) and (6) into:

9(u) +g(v) +0(u,v) = L, (7)
avoiding the h-function and hence avoiding a and /.

The consequence is that in the region of the network where the S sets are close to each
other, the shape of the search space hardly depends on the choice of the combination a-(.
The experiments in Section 4.3 support this statement. This also explains why the space
advantage of hy over ho in the main phase reduces in the post-phase.

5.2 Doubly scanned nodes

Pruning a node u with a doubly scanned predecessor is not expressed by the code of Algo-
rithm 2, as we mentioned in Section 4. However, a special case of pruning is carried out
implicitly by this code. Assume a labeled node u & S is selected to be scanned and u has a
doubly scanned predecessor a. When u is to be scanned, its predecessors including a make
up a shortest path from s to u. Clearly £ < g(a) + §(a) and j(a) + h(a) < F. Lemma 1
tells us that g(a) = d*(s,a). The following relations are invariant relations.

g(u) + F = h(u)

*

> d'(s,u) +gla) + o) ~hw)
> d*(s,a) +d"(a,u) + g(a) + ~(a) - ~(u)
= d*(s,a) + d*(u,a) + §(a) — (h(u) — h(a))
> d'(s,a) + g(a) = g(a) + gla) = L.

We conclude that u & S with a doubly scanned predecessor is not selected to be scanned.

Figure 5 illustrates a situation in which a node inside S with a doubly scanned predecessor
is scanned. Suppose node a is labeled in the right-hand process with b as predecessor.

13

Likewise b and c are labeled in the left-hand process with a as predecessor. Next, suppose
that a (or perhaps a left-hand predecessor of a) becomes scanned in the right-hand process.
Then b and ¢ have doubly scanned predecessors in the left-hand process, but presumably

Figure 5: Scanning nodes with a doubly scanned predecessor.

they are scanned in one of the subsequent iterations of that process.

We also see a somewhat curious phenomenon: b pulls successor a into S, whereas a pulls
successor b into S. This embrace can be prevented by a small addition to the code of
Algorithm 2.

6 Concluding remarks

In this paper we have first introduced a useful method closely approximating the shortest
path distance. Next a framework has been introduced with the quick algorithm of [2] and
[3] as special cases. Another instance viz. the instance using the symmetric heuristic h;
turns out to be slightly more efficient in space and far more efficient in time. Therefore we
recommend this instance for practical applications.

Besides, studying the generalized form has provided more insight into the working of bidi-
rectional search.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, Theory, Algorithms and
Applications, Prentice Hall, 1993.

[2] Goldberg A.V. and C.Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory, In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’05) 2005.

[3] Ikeda T.K., M.-Y. Hsu, H. Inai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Ten-
moku, and K. Mitoh. A Fast Algorithm for Finding Better Routes by Al Search

Techniques, In: Proceedings Vehicle Navigation and Information Systems Conference.
IEEE, 1994.

[4] Kaindl H. and G. Kainz. Bidirectional Heuristic Search Reconsidered, In: Journal of
Artificial Intelligence Research 7, 1997, p. 283-317.

[5] Klunder G.A. and H.N. Post. The Shortest Path Problem on Large Scale Real Road
Networks, In: Networks, 48:4, 2006, p. 182-194.

14

Kwa J. B. H. BS*: An Admissible Bidirectional Staged Heuristic Search Algorithm,
In: Artificial Intelligence 38:1, 1989, p. 95-109.

Pohl I. Bi-Directional Search, Machine Intelligence 6, 1971, p. 124-140.

S.J. Russell and P. Norvig, Artificial Intelligence, A modern Approach, Prentice Hall,
2003.

Yamaguchi K. and S. Masuda. An A* Algorithm with a New Heuristic Distance Func-
tion for the 2-Terminal Shortest Path Problem, In: IEICE Transactions on Funda-
mentals of Electronics E89-A, 2006, p. 544-550.

www.teleatlas.com.

15

