Comparison of heuristic approaches for the
multiple depot vehicle scheduling problem

Ann-Sophie Pepin,¥ Guy Desaulniers,” Alain Hertz,'
Dennis Huisman?

YGiro Inc., Montreal, Canada
annsophie.pepin@giro.ca

tEcole Polytechnique and GERAD
Department of mathematics and industrial engineering
Montreal, Canada
{Guy.Desaulniers, Alain.Hertz}@gerad.ca

Y Econometric Institute and ECOPT,
Erasmus University Rotterdam, Rotterdam, the Netherlands
huisman@few.eur.nl

Econometric Institute Report EI2006-34

Abstract

Given a set of timetabled tasks, the multi-depot vehicle scheduling
problem is a well-known problem that consists of determining least-
cost schedules for vehicles assigned to several depots such that each
task is accomplished exactly once by a vehicle. In this paper, we pro-
pose to compare the performance of five different heuristic approaches
for this problem, namely, a heuristic MIP solver, a Lagrangian heuris-
tic, a column generation heuristic, a large neighborhood search heuris-
tic using column generation for neighborhood evaluation, and a tabu
search heuristic. The first three methods are adaptations of exist-
ing methods, while the last two are novel approaches for this problem.
Computational results on randomly generated instances show that the
column generation heuristic performs the best when enough compu-
tational time is available and stability is required, while the large

neighborhood search method is the best alternative when looking for
a compromise between computational time and solution quality.

Keywords: Vehicle scheduling, multiple depot, heuristics, col-
umn generation, Lagrangian heuristic, tabu search, large neighbor-
hood search.

1 Introduction

The class of vehicle routing/scheduling problems is an important class of
problems studied by many researchers in Operations Research. Because most
of these combinatorial optimization problems are N P-hard, exact methods
often cannot solve large instances encountered in practice. For tackling these
instances, various heuristic approaches have been developed, ranging from
local search methods to methods based on mathematical programming de-
composition techniques, including metaheuristics. On the one hand, heuris-
tics based on decomposition techniques such as column generation and La-
grangian relaxation can often provide very good quality solutions when suf-
ficient computational time is available. On the other hand, metaheuristics
such as tabu search are known to be able to find good solutions rather rapidly,
especially when solving very large-scale instances. Therefore, both types of
approaches which are very popular nowadays have different advantages and
disadvantages.

To our knowledge, no single study comparing decomposition-technique-based
heuristic methods to metaheuristics for solving the same vehicle routing /scheduling
problem has been published in the literature. In this paper, we propose such
a study and compare the performance of five heuristic methods for solving
the multiple depot vehicle scheduling problem (MDVSP). These heuristics
are the CPLEX MIP solver applied heuristically, a Lagrangian heuristic, a
column generation heuristic, a large neighborhood search heuristic using col-
umn generation for neighborhood evaluation, and a tabu search heuristic.
The first and third heuristics are adaptations of the exact methods proposed
by Kliewer et al. (2006) and Ribeiro and Soumis (1994), the second heuristic
is a variant of the heuristic approach developed by Lamatsch (1992), while
the other two heuristics are novel approaches for the MDVSP.

The MDVSP is a well-known problem that has several applications in differ-
ent fields such as public transit and the trucking industry. It consists of
determining least-cost schedules for vehicles housed in several depots such
that each timetabled task of a given set is accomplished exactly once by a
vehicle. The literature on this problem is abundant (see the surveys of Bodin
et al., 1983, Odoni et al., 1994, Desrosiers et al., 1995, and Desaulniers and

Hickman, 2007). From the 1970s to the early 1990s, several heuristic solu-
tion approaches have been proposed, for instance, by Bodin et al. (1978),
Bodin et al. (1983), Bertossi et al. (1987), Mesquita and Paixao (1992),
Lamatsch (1992), and Dell’Amico et al. (1993). Then, exact solution ap-
proaches have been developed, among others, by Carpaneto et al. (1989),
Ribeiro and Soumis (1994), Lobel (1997), Lobel (1998), Hadjar et al. (2006),
and Kliewer et al. (2006). In particular, Lobel (1997), Lobel (1998) and
Kliewer et al. (2006) succeeded to solve real-world public transit instances
to optimality involving up to 7000 tasks. These instances, however, have a
particular structure that ease their solution process. Indeed, for most trips
(tasks), it is easy to determine the successor trip in optimal vehicle schedules
covering them because, in general, when a trip ends at a terminal, another
trip starts from there a few minutes later. For less structured MDVSP in-
stances such as the randomly generated ones proposed in Carpaneto et al.
(1989) and used subsequently by many other researchers, instances involving
only up to 800 tasks can be solved to optimality (see Hadjar et al., 2006).

The contributions of this paper are as follows. We develop two novel heuristic
approaches for the MDVSP, including the first metaheuristics for this problem,
and adapt three other approaches. For these heuristics, we provide compu-
tational results that allow to compare their performance. To our knowledge,
this comparison is the first involving decomposition-technique-based heuris-
tics and metaheuristics applied in exactly the same setting. The results also
show the effectiveness of most of these algorithms.

This paper is organized as follows. In Section 2, we formally define the MDVSP
and provide two mathematical formulations for it that will be used by some of
the solution approaches. The following five sections present the five heuristic
solution approaches. Computational results on random instances generated
as in Carpaneto et al. (1989) are then reported and discussed in Section 8.
Finally, we draw some conclusions in Section 9.

2 MDVSP definition and formulations

The MDVSP can be formally defined as follows. Given a set 1" of timetabled
tasks and a fleet of vehicles housed in a set K of depots, find least-cost
feasible vehicle schedules such that each task is accomplished exactly once
by a vehicle and the number vy of vehicles available in each depot k € K
is not exceeded. Each task ¢ € T is defined by a start location s;, an end
location e; (which might be the same as s;), a start time a;, and a duration
0; that includes travel time between s; and e;. A vehicle schedule must start
and end at the same depot and is composed of an ordered sequence of tasks.
It is feasible if, for every pair ¢ and j of consecutive tasks it contains, the

relation a; 4 9; +t;; < a; holds, where t;; is the travel time between locations
e; and s;. The cost of a schedule assigned to a vehicle in depot £ is given
by the sum of the traveling and waiting costs incurred between two of its
consecutive tasks, between the pull-out of the depot and its first task, and
between its last task and the return to the depot. The cost of a schedule
may also include a fixed vehicle cost.

Next, we present two mathematical formulations for the MDVSP : an integer
multi-commodity formulation which is used by the heuristic CPLEX MIP solver
and the Lagrangian heuristic, and a set partitioning type formulation which
is at the basis of the column generation heuristic.

2.1 Multi-commodity formulation

Several authors, including Bodin et al. (1983), Bertossi et al. (1987), Forbes
et al. (1994), Ribeiro and Soumis (1994), and Kliewer et al. (2006), have
formulated the MDVSP as an integer multi-commodity network flow model,
where a commodity is defined for each depot in K. Here, we begin by pre-
senting the model described in Bodin et al. (1983) and Ribeiro and Soumis
(1994). Consider a network G* = (V*, A*) for each depot k € K, where V*
and A* denote its node and arc sets, respectively. Set V* contains one node
for each task i € T and one pair of nodes, o(k) and d(k), representing the
start and the end of a vehicle schedule associated with depot k, respectively.
Thus, V* = {o(k),d(k)} UT. Set A* contains three types of arcs: pull-out,
pull-in, and connection arcs. There is a pull-out arc (o(k),) for each task
node i € T. Symmetrically, there is a pull-in arc (i, d(k)) for each task node
i € T. Finally, there is a connection arc (7, j) for each pair of task nodes, i
and j in T, such that a;+; +t;; < a;. The cost of an arc (4, j) € A*, denoted
¢ij, 1s equal to the travel and waiting costs associated with it. If i = o(k) and
a fixed cost must be paid for each vehicle used, ¢;; also includes this cost. It
is easy to see that there is a one-to-one correspondence between the paths
from o(k) to d(k) in G* and the feasible vehicle schedules for depot k. In the
following, we refer to this type of network as a connection network.

The proposed formulation involves the binary variables ij, (i,7) € Ak k€
K. Such a variable indicates the flow of commodity & on the arc (7, j). Using

this notation, the MDVSP can be modeled as:

Minimize Z Z Cinfj (1)

keK (i,j)e Ak

subject to: Z Z Xikj =1, VieT, (2)

keK j: (i,5)€Ax

Z Xo(k) < 'Uk;, Vk € K, (3)
j: (o(k).j)eAk

> Xi— Y X Vi VA {o(k),d(k)}, k € K3)

j:(ja)eAk j:(i,5)€Ak

X5 e{0,1}, V(i,j) € A* k€ K. (5)

The objective function (1) seeks at minimizing total costs. Constraints (2)
ensure that each task is executed exactly once by a vehicle. Constraints (3)
limit the number of vehicles that can be used from each depot, while con-
straints (4) are flow conservation constraints which define a multiple-path
structure for each depot. Finally, variable binary requirements are provided

by (5).

Very recently, Kliewer et al. (2006) proposed a similar multicommodity
model based on a different network structure, namely, a time-space network
structure. This network structure can be quite advantageous with respect
to the connection network structure when the number of start and end task
locations is small compared to the number of tasks. For depot k € K, the
time-space network G¥ = (V¥ A*) can be defined as follows. Its node set
V¥ contains the nodes o(k) and d(k), the nodes i € T that in this case
only represent the starts of the tasks, and finally nodes that represent the
ends of the tasks. The set of these end tasks nodes is denoted E. Thus,
V¥ = {o(k),d(k)} UT U E. Each node in T U E is associated with a time
and a location (start or end time and location of the corresponding task).
Let W be the set of these start and end locations and assume that the nodes
associated with each location w € W are sorted in chronological order (end
nodes before start nodes in case of equality). Denote by f,, and [, the first
and last nodes at location w € W, respectively. Arc set AF contains five
arc types: pull-out, pull-in, task, wait, and deadhead arcs. There is a pull-
out arc (o(k), f,) and a pull-in arc (l,,, d(k)) for each location w € W. For
each task in T, there is a task arc (7, 7) linking its start node i € T to its
end node 7 € E. For each location w € W, there is a chain of wait arcs
linking the consecutive nodes associated with this location. Deadhead arcs
allow to reposition a vehicle from one location where a task just ended to a
different location where a task is about to start. Instead of considering all

possible deadhead arcs, Kliewer et al. (2006) proposed to aggregate them for
drastically reducing their number. With this aggregation procedure, there
is a deadhead arc linking an end node i € F (associated with time a; + ¢;
at location e;) to a start node j € T' (associated with time a; and location
s;) if and only if there is no task ¢ ending at e; after time a; + J; such that
ay + 0y + ty; < a; and no task j' starting at s; before time a; such that
a; + (SZ + tijf S ajr.

With such a time-space network structure, model (1)—(5) remains valid for
the MDVSP after replacing A* by A* and constraints (2) and (5) by

o> XkE=1, VieT, (6)

kEK j: (i,5)cAk
ij € {0,1}, V(i,j) € A}, k € K, (7)
Xikj > 0, integer, V(i,j) € AF\ AL ke K, (8)

where A% is the subset of task arcs in A*, k € K. Indeed, with a time-space
network structure, the flow on all arcs except the task arcs can exceed one.

2.2 Set partitioning type formulation

Ribeiro and Soumis (1994) also formulated the MDVSP as a set partitioning
model with side constraints which can be derived from model (1)—(5) using
Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960, Desaulniers et al.,
1998). Let QF be the set of all feasible vehicle schedules for depot k& € K. For
each schedule p € QF, define the following parameters: its cost ¢, and, for
cach task ¢ € T, a binary parameter a;, equal to 1 if schedule p includes task
i and 0 otherwise. Furthermore, with each schedule p € QF, define a binary
variable 0, that takes value 1 if p is retained in the solution and 0 otherwise.

The MDVSP can then be modeled as:

Minimize Z Z by (9)

keK peQk
subject to: Z Z apf, =1, Viel, (10)
keK peQk
> 6, <, VkeK, (11)
peEQk
0, € {0,1}, VpeQF ke K. (12)

In this model, the objective function (9) aims at minimizing total costs.
Set partitioning constraints (10) impose that each task be accomplished by

6

exactly one vehicle, while inequalities (11) express the availability constraints
per depot. Finally, binary requirements on the variables are given by (12).

3 Heuristic MIP approach

The first heuristic approach for the MDVSP that we propose is to solve the
integer multi-commodity model (1), (3), (4), (6)—(8) relying on time-space
networks using a heuristic branch-and-cut method, namely, the CPLEX MIP
solver, version 9.0.1. The implemented method is heuristic because it stops
as soon as it finds a first integer solution. To favor the obtention of good
quality solutions in relatively fast solution times, we set the CPLEX MIP em-
phasis parameter to “balance optimality and feasibility”. Preliminary tests
also showed that it was preferable to use the barrier algorithm at the root
node of the search tree. All other CPLEX parameters were left to their default
values.

Notice that preliminary tests on the instances used for experiments were also
performed using the connection networks and model (1)—(5). The results of
these tests indicated that solution times were reduced by approximately 30
to 50% using the time-space networks instead of the connection networks,
while maintaining the same level of solution quality.

4 Lagrangian heuristic

For the mDvsP, Bertossi et al. (1987) and Kokott and Lobel (1996) pro-
posed heuristic solution approaches based on Lagrangian relaxation (see Ge-
offrion, 1974) in which the task covering constraints are relaxed. Alterna-
tively, Mesquita and Paixao (1992), Lamatsch (1992), and Kokott and Lobel
(1996) developed Lagrangian relaxation approaches where the flow conserva-
tion constraints are relaxed. In this section, we present a heuristic Lagrangian
relaxation approach similar to those of Lamatsch (1992) and Kokott and Lo-
bel (1996) for computing lower bounds and that can be used to derive feasible
solutions throughout the solution process. This approach relies on the con-
nection networks and model (1)—(5) augmented by the redundant constraints:

Y Xxh=1, VieT. (13)

kEK j: (j,i)e Ak
To obtain a lower bound on the optimal value, the availability constraints (3)
are omitted and the flow conservation constraints (4) are relaxed in a La-

grangian way using Lagrangian multipliers A\¥, i € T, k € K. The Lagrangian

7

subproblem is then formulated as follows:

$(A) = Minimize Y Y (e + M —M)XE (14)
keK (i,j)€ Ak

subject to: Z Z Xikj =1, Viel, (15)

keK j: (i,j)eAF

Y Xp=1, VieT, (16)

keK j: (ji)eAk

X} e {0,1}, V(i,j) € AF k € HT)

The Lagrangian subproblem is equivalent to a single-depot vehicle scheduling
problem (SDVSP), which can be solved in polynomial time. This can be
seen by replacing, for each arc (i, j), the variables ij by a single variable
corresponding to the variable ij with the lowest reduced cost, i.e., with the
smallest value)\f — A¥ over all valid k. The other variables are set to 0. To

solve the SDVSP, we use the auction algorithm as described in Freling et al.
(2001).

In this way, for each set of Lagrangian multipliers A, we obtain a lower
bound. Moreover, we can use the values of the variables ij to construct a
feasible solution for the overall problem. Indeed, after assigning to each arc
(4,7) the depot k for which ij = 1 in the Lagrangian subproblem solution,
this solution can be seen as a set of disjoint paths from a source node to a
sink node, but where the arcs in the same path can be assigned to different
depots. A feasible solution for the MDVSP can be obtained by assigning a
unique depot to each of these paths, where at most vy paths can be assigned
to depot k. The cost of assigning a path p to a depot k is again given by cl;
(see Section 2.2). The problem of finding the best such solution corresponds
to a transportation problem, which can be solved in polynomial time using
the Hungarian method (see Ahuja et al., 1993).

Since the Lagrangian dual function ¢(\) yields a lower bound for each vector
A, the best lower bound can be obtained by solving the Lagrangian dual
problem: maxy ®(A). We use subgradient optimization to obtain a good
lower bound. Furthermore, an upper bound is computed at each iteration of
the subgradient algorithm. The complete method is detailed in Algorithm 1,
where the index n is an iteration counter.

The algorithm is initialized by setting the Lagrangian multipliers equal to
0. In step 1, the Lagrangian subproblem is solved and a subgradient is
calculated. In step 2, we construct a feasible solution in the way described
above. This solution provides an upper bound on the objective value. The

8

Algorithm 1 Lagrangian heuristic
Step 0: Initialization

Choose parameters nq., a’, v, €
Set UB « 00, LB « —00, n < 0, m « 0, and A° « 0

Step 1: Lower bound and subgradient

Solve the Lagrangian subproblem (14)—(17) to obtain a solution X"
and a lower bound ¢(A™)

Compute the subgradient components Ylk" — > XJkZ" —
J: (G i)eA*
> X"
j:(i,j)eAk

Step 2: Upper bound

Compute an upper bound UB" by solving a transportation problem
IfUB" < UB then set UB «— UB"

Step 3: Lagrangian multipliers update

k,n+1 k,n n UB—¢(A™) k,n
Set)\’L —)\Z _I_ « Z Z (}/ik,n)z}/;'

keK €T

Step 4: Parameters update

If ¢(A") > LB then set m « 0 and LB « ¢(A")
else set m «— m+1
If m =~ then set o™ « a"/2

else set o™ «— "

Step 5: Termination criterion
If UB = ¢(A"), .S ke K(Y/")? <€, a" < € or n > Ny, then

i€T
STOP
else return to Step 1

best upper bound UB is then updated every time we find an improvement.
In step 3, the subgradient vector is used to update the multipliers in the
direction of the subgradient. The step size is determined by the difference
between the lower and the best upper bound found so far, the norm of the
subgradient, and a certain parameter .. This parameter is updated in step
4 in order to ensure the convergence of the subgradient algorithm, that is,
a is halved after a certain number of iterations () without improvement
in the lower bound. Finally, the procedure terminates when the best lower
bound is found, i.e., the subgradient vector is the 0-vector and/or the upper
bound is equal to the lower bound, « is very small, or a maximum number of
iterations (nmyay) is reached. Note that, for our tests, the parameters were set
to the following values: nya., = 10000, o’ = 1.0, v = 10, and € = 0.000001.

5 Heuristic column generation

Column generation (Dantzig and Wolfe, 1960, and Gilmore and Gomory,
1961) embedded in a branch-and-bound scheme is a well-known approach for
solving a wide variety of vehicle routing and crew scheduling problems (see
Barnhart et al., 1998, and Desaulniers et al., 1998). Such an approach, also
called branch-and-price, was first introduced for the exact solution of the
MDVSP by Ribeiro and Soumis (1994). Here, we present a heuristic version
of this approach similar to the one proposed by Desaulniers et al. (1998) for
the MDVSP with time windows and waiting costs.

5.1 Column generation

Column generation is used for solving the linear relaxation of model (9)-
(12), called the master problem, which typically contains a huge number of
variables. It is an iterative method that avoids enumerating all variables by
decomposing the problem into two parts: a restricted master problem and
one subproblem per depot. At iteration n, the restricted master problem is
simply the master problem restricted to a subset of the variables 6,, that
is, those for which schedule p belongs to a subset QF C QF k € K, of the
schedules. Solving the restricted master problem provides a primal solution
and a dual solution. To prove that this primal solution is optimal for the
overall master problem, one must verify that the reduced costs of the variables
not yet generated (those for which p € |J (Q%\ Q%)) are all non-negative.
keK

The role of the subproblems is to verify if this condition is satisfied and, if
not, to propose one or several variables (columns) with a negative reduced
cost. For the MDVSP, the subproblem for depot k € K is a shortest path
problem from o(k) to d(k) in the connection network G* with a modified
cost structure. Denoting by 7, i € T, and 8%, k € K, the values of the dual
variables associated with constraints (10) and (11) of the restricted master
problem at iteration n, the modified cost of arc (i, j) € A* is given by ¢;; — 7!,
if i € T and ¢;; — 8% if i = o(k). With these altered costs, the cost of a path
p in G* corresponds to the reduced cost of the variable 6,. Hence, by solving
this subproblem at iteration n, we can identify the schedule p € QF with
the smallest reduced cost. The current restricted master problem solution
is thus optimal for the overall master problem if the optimal value of each

subproblem is non-negative.

An exact column generation method proceeds as follows. Starting the first
iteration with an initial set of columns and/or artificial variables in the re-
stricted master problem, the method solves at each iteration the current
restricted master problem using a linear programming algorithm and then

10

each shortest path subproblem using a label-setting algorithm (see Ahuja et
al., 1993). If the optimal value of each subproblem is non-negative, the solu-
tion process stops and the optimal primal solution of the current restricted
master problem is declared also optimal for the master problem. Otherwise,
columns associated with the negative reduced cost paths identified by the
subproblems are added to the restricted master problem and another itera-
tion is performed.

It is well-known that the convergence of the column generation method is
rather slow at the end of the solution process, that is, the restricted master
problem objective value does not decrease much in the last iterations. To
avoid such a tailing-off which is, in general, useless in a heuristic approach,
the column generation process is halted when the optimal value of the re-
stricted master problem has not decreased by more than Z,,;, in the last I
iterations, where Z,,;, and I are predefined parameters. To obtain different
computational times and solutions of varying qualities, we ran tests using
different values for these parameters. The first parameter varied from 0 to
500000, while the second parameter was set to either 2 or 5.

The column generation heuristic was implemented using version 4.5 of the
GENCOL software package commercialized by Kronos Inc. This package re-
lies on version 9.0.1 of the CPLEX solver for solving the restricted master
problems. Based on preliminary test results, we opted for the primal simplex
algorithm for the 500-task instances, and the barrier algorithm for the 1000-
and 1500-task instances.

5.2 Rounding procedure

The following iterative rounding procedure is applied to compute rapidly an
integer solution for the MDVSP. At each iteration, the column generation
method described in the preceding section is applied for solving the master
problem, modified according to the decisions made in the previous iterations.
Then, all variables 6, taking a fractional value greater than or equal to a
predetermined threshold value (0.7 for our experiments) in the computed
master problem solution are rounded up to 1. If no such variables exist
but there are fractional-valued variables, then the variable with the highest
fractional value is rounded up to 1. Otherwise, the procedure ends with an
integer solution. Note that this procedure might fail to generate an integer
solution when vehicle availability is tight. In this case, the master problem
may become infeasible after rounding up several variables. However, this
situation did not occur in our experiments.

Note also that, in order to reduce the size of the master problem to solve at
each iteration, instead of rounding up the variables in the master problem,

11

we rather remove from the master problem these variables and the covering
constraints (10) of the tasks covered in the schedules associated with them.
Also, we remove all other variables covering these tasks, as well as the nodes
representing these tasks in the networks G*, k € K, and their incident arcs.
Finally, the schedules associated with the rounded up variables together with
their assigned depots are kept in memory and the right-hand side members
of the availability constraints (11) are updated accordingly.

6 Large neighborhood search

Introduced by Shaw (1998), large neighborhood search (LNS) is a metaheuris-
tic that starts with an initial solution and destroys, at each iteration, a part
of the current solution before reoptimizing it to obtain hopefully an improved
overall solution. For the MDVSP, we propose to destroy at each iteration r
schedules from the current solution and reoptimize the MDVSP restricted to
the tasks contained in these schedules using the column generation heuris-
tic described in Section 5. When r is not too large, the column generation
approach typically computes a very good quality solution for the restricted
MDVSP in a very reasonable time. Hence, this approach can generate feasible
solutions regularly throughout the solution process. To diversify the search,
three different strategies for selecting the schedules to reoptimize are used.
The strategy applied at a given iteration is chosen randomly according to
weights that are dynamically adjusted throughout the solution process.

The proposed algorithm is described in Algorithm 2, where z(s) denotes the
value of solution s and s* the current best solution. In the following para-
graphs, we present the procedure building the initial solution, the schedule
selection strategies, and the procedure choosing the schedule selection strat-

egy.

6.1 Initial solution

To build an initial solution, we use a variant of the two-phase heuristic ap-
proach introduced by Bodin et al. (1983). In the first phase, the MDVSP is
transformed into an SDVSP by replacing all depots k£ € K by a single ficti-
tious depot. The SDVSP is defined over a single network G = (V, A). Node
set V' contains a start of schedule node o, an end of schedule node d, and a
node for each task in 7. Arc set A contains all connection arcs of any set A*,
k € K, (these arcs exist for all depots). It also contains a pull-out arc (o, j)
for each task node j € T corresponding to the cheapest pull-out arc (o(k), j),
k € K, and a pull-in arc (7, d) for each task node ¢ € T" corresponding to the

12

Algorithm 2 Large neighborhood search algorithm

1: Assign a weight of 1 to each selection strategy

2: Build an initial solution s

3: Set s* «— s and z* « z(s)

4: while no stopping criterion is satisfied do
Choose a schedule selection strategy according to their weights
Apply this strategy to select r schedules to reoptimize
Reoptimize these r schedules using the column generation heuristic
Update the current solution s
if 2(s) < z* then
10: Set s* «— s and z* « z(s)
11: Update the weight of the chosen selection strategy

cheapest pull-in arc (i,d(k)), k € K. Hence, a path from o to d in G repre-
sents a schedule that can start and end at different depots. Furthermore, the
SDVSP definition does not take into account the number of available vehicles
per depot. The sDVSP is thus a relaxation of the MDVSP which guarantees
finding a minimum number of vehicles to cover all the tasks in 7" when a
sufficiently large fixed cost is comprised in the cost of the pull-out arcs. The
solution of the SDVSP provides a set of vehicle schedules unassigned to the
depots. The second phase thus consists of assigning these schedules to the
depots using their real costs while respecting vehicle availability per depot.
This problem is a transportation problem that we solve heuristically using a
greedy procedure. In this procedure, each schedule is assigned to the depot
yielding the least cost for this schedule and for which there is still at least
one vehicle available.

6.2 Schedule selection strategies

At each iteration of the large neighborhood search metaheuristic, r schedules
are selected using one of the following three strategies.

Random schedules: The r schedules are chosen at random.

Less frequent schedules: This strategy selects the r schedules that have
been the least frequently chosen to be reoptimized (ties are broken randomly).
Hence, for each feasible schedule that appeared in a solution, we keep in
memory the number of times that it was selected for reoptimization.

Closest schedules: A first schedule p; is selected among those that have not
been chosen as the first schedule in the last J iterations (J = 20 for our tests).
Then, we select » — 1 other schedules that are the “closest” to p; in time and

in space according to the following measure: ieTmi]I‘le . (weij + tij, wegi + i),
Py P

13

where p # p; is a schedule in the current solution, 7, is the set of tasks
contained in schedule p, t;; = oo if task j cannot be followed by task ¢, and
w is a weighting factor (w = 10 for our tests).

As in Ropke and Pisinger (2004), the schedule selection strategy to use at a

given iteration is randomly chosen. A strategy ¢ has probability wa - of being

chosen where w; is a positive weight assigned to strategy 7. Such a weight w;
is updated to the value pw; + (1 — p)(2(sprev) — 2(s)) at every iteration that
strategy i is selected. In this expression, p is a constant in the interval [0, 1]
(p = 0.5 for our tests), z(Sprey) is the value of the solution before, and z(s) the
value of the solution after reoptimization. Hence, these weights are weighted
averages of the gains (losses) yielded by the corresponding strategy. They
assign a high probability of being selected to the most efficient strategies.

6.3 Implementation details

In our experiments, the number r of schedules to reoptimize at each iteration
was set to 30 for the 500- and 1000-task instances and to 40 for the 1500-task
instances. Given the small size of the reoptimization problems, the column
generation approach used for these reoptimizations relied on the primal sim-
plex algorithm to solve the restricted master problem and the parameter Z,,;,
was set to 0 (column generation was not halted prematurely).

7 Tabu search

Let S be a set containing all feasible, and possibly also non-feasible solutions
to a combinatorial optimisation problem. Let f be a function to be minimized
over the set of feasible solutions in S. For a solution s € S, let N(s) denote
the neighborhood of s which is defined as the set of solutions in S obtained
from s by performing a local change, called move. Local search techniques
visit a sequence s, ..., s; of solutions, where sy is an initial solution and
Sit1 € N(s;) (i = 1,...,t —1). Tabu search is one of the most famous
local search techniques. It was introduced by Glover in 1986, and follows
the general scheme of Algorithm 3, where T'L is a list of forbidden moves.
A more detailed description of the method and its concepts can be found in
Glover and Laguna (1997).

For the MDVSP, we use an adaptation of the tabu search algorithm developed
by Cordeau et al. (2001) for vehicle routing problems with time windows. We
define a solution as a set of vehicle schedules which satisfy all constraints,
except that tasks are possibly accomplished too late. Hence, each vehicle
starts and ends at the same depot, we never exceed the number of available

14

Algorithm 3 Tabu search algorithm

1: Generate an initial feasible solution s

2: Set TL « () and s* « s

3: while no stopping criterion is satisfied do

4: Determine a solution s’ € N(s) with minimum value f(s’) such that
either s’ is obtained from s by performing a move m ¢ T'L or §' is
feasible and f(s) < f(s*)

5. if ¢ is feasible and f(s) < f(s*) then

6: Set s* « &
Set s «+ s" and update T'L

vehicles at each depot, and each task is accomplished exactly once by a vehi-
cle. No task is performed too early, which means that the vehicle performing
task ¢ € T waits if it arrives at the start location before time a;. Tasks can
however be accomplished too late, and this constraint violation is penalized
in f. Function f also penalizes solutions which are visited too often. More
precisely, we denote z(s) the usual total cost of the vehicle schedules, w(s)
the total delay in s, p;; the number of solutions visited by the tabu search
in which task 7 is accomplished by vehicle k, and o}, a variable taking value
1 if task 7 is accomplished by vehicle k in solution s, and 0 otherwise. The
cost f(s) of a neighbor solution s’ € N(s) is defined as z(s") +~yw(s") + p(s'),
where:

e 7 is a parameter which gives more or less importance to the penalty due
to the delays. Parameter + is initially set equal to 1 and is then adjusted
every iteration: if the current solution s is feasible (i.e., w(s’) = 0) then
v is divided by 14 pu, else v is multiplied by 1+ u, where p is a random
number in the open interval (0, 1).

e p(s') = 02(s) X n as.pir is a penalty factor that helps to diversify
the search. Parameter o is equal to 0 if z(s') + yw(s") < z(s) + yw(s)
or s is feasible and z(s) < z(s*); otherwise ¢ is chosen randomly in
0,/ T K]].

Notice that if s is a feasible solution and z(s) < z(s*), then f(s) = z(s) since
w(s) and p(s) are equal to 0.

We use the same initial solution as for the LNS algorithm. A neighbor solution
s € N(s) is obtained from s by using two kinds of moves:

1-move: In a 1-move, a taks 7 is moved from a vehicle £ to a vehicle
k" # k. The position of 7 in k" is chosen so that the cost of the new
vehicle schedule is minimized. When performing such a move, the pair
(i,k) is introduced in the tabu list T'L, with the meaning that it is
forbidden for several iterations to move i back into k.

15

swap-move: Let i and i’ be two tasks accomplished by two different
vehicles k and k', respectively. A swap-move consists in moving ¢ from
k to k' and ¢ from k' to k. The positions of 7 in &’ and ¢’ in k are chosen
so that the cost of the new vehicle schedules are minimized. When
performing such a move, the pairs (i, k) and (7, k") are introduced in
the tabu list T'L, with the meaning that it is forbidden for several
iterations to move i back into & and ¢’ back into &'.

The duration of the tabu status of a move is chosen randomly in [0, \/t | T | |,
at each iteration, where ¢ is the total number of vehicles used in the current
solution.

As explained above, neigbhor solutions are obtained by modifying the set of
tasks for two vehicles. If there is a change in the first or the last task of a
vehicle, then we check if we can reduce the costs for this vehicle by assigning
the modified schedule to a different depot having at least one available vehicle.

8 Computational results

In this section, we describe the results of the experiments that we conducted
for comparing the five heuristic solution methods described above. For those
tests, we used random MDVSP instances generated as in Carpaneto et al.
(1989) (class A instances). In these instances, the objective consists of min-
imizing first the number of vehicles used and second the total operational
costs. In fact, a large fixed cost (10000) is incurred for each vehicle used to
put a very high priority on the first objective. To our knowledge, the largest
of these instances reported to be solved to optimality, involves 800 tasks and
6 depots (see Hadjar et al., 2006).

For our tests, we used MDVSP instances where |T'| € {500, 1000, 1500} and
|K| € {4,8}. All reported results correspond to averages over 5 instances
of the same size that were generated with different random seeds. All tests
were run on an Intel Xeon 2.66 GHz workstation with 1 Gb of memory.

Recall that three of the five implemented solution methods (Lagrangian
heuristic, LNS, and tabu search) produce integer solutions throughout the
solution process, while the other two (MIP and column generation) stop when
the first feasible solution is obtained. For the MIP approach, we have no con-
trol on the computational time required for obtaining this first solution. For
the column generation approach, this computational time can be adjusted by
modifying the values of the parameters I and Z,,;,, giving us the possibility
of producing different solutions in different times.

The computational results for the 4-depot instances are reported in Fig-

16

ures 1 to 3 and in Table 1. These figures present the results for the 500-,

1000-, and 1500-task instances, respectively, using curves and points in a

two-dimensional space (objective value versus computational time). There

is a curve for each of the three methods that regularly produce integer solu-
5

tions. Such a curve represents the average function (> z;(t))/5, where 5 is
i=1

the number of random instances and z;(t) is the value of the best solution
found before time ¢ for instance ¢ by the corresponding method. Each point
along such a curve shows when an improved solution was found for one of
the 5 instances. For the column generation heuristic, the figures exhibit sev-
eral points, each of them indicating the average result for one setting of the
parameters I and Z,,;,. The rightmost point corresponds to the case when
column generation is not halted prematurely (Z,,;, = 0), providing in gen-
eral the best quality solution. Finally, in Figure 1, a single point is shown to
illustrate the average result of the MIP heuristic. Such a point is not shown in
the other two figures because the corresponding average computational time
is much higher than that required by the column generation method.

For each heuristic, Table 1 indicates the average computational time and the
average best solution value (obtained in a limited amount of time for the
Lagrangian, LNS, and tabu search heuristics). These time limits were set
at 85, 700, and 2300 seconds for the 500-, 1000-, and 1500-task instances,
respectively, in order to slightly exceed the times required by the column
generation heuristic. The best solution values are highlighted in bold.

From these results, one can notice that the behavior of the different methods
are quite similar for all instance sizes, except for the MIP approach which
requires long computational times (compared to the times needed by the
column generation method) for the 1000- and 1500-task instances. One can
also make the following observations. First, the MIP heuristic and the column
generation heuristic with Z,,;, = 0 provide the best solutions when enough
computational time is available. It seems, however, difficult to substantially
reduce the computational time needed by the latter approach without sig-
nificantly deteriorating solution quality. Nevertheless, average solution times
remain reasonable (less than 35 minutes) with this approach compared to
the solution times required by the MIP approach. Second, the LNS method is
the best method when the available computational time is restricted. In fact,
it succeeds to rapidly improve the initial solution and continues afterwards
to produce small improvements at a slower pace until reaching a plateau.
Third, the Lagrangian heuristic consistently improves the quality of the so-
lutions found until reaching good quality solutions. Finally, the tabu search
rapidly improves the initial solution at the very beginning of the solution
process before struggling to yield improvements afterwards. The quality of
the solutions obtained with this heuristic is far from the quality reached by

17

4 Heuristic column generation
1289000 1 | x| ® Heuristic MIP

1 —&— Lagrangian heuristic

—e— Tabu search

—*— Large neighborhood search

1287000 A

1285000 -

1283000 -

objective value

1281000 A

1279000 -

1277000

0 10 20 30 40 50 60 70 80
time (sec)

Figure 1: Results for the 4-depot, 500-task instances

the other methods.

Because the results for the 8-depot MDVSP instances are very similar to those
obtained for the 4-depot instances, we only report the average solution times
and the average best solution values in Table 2. No results are given for
the MIP heuristic applied to the 1500-task instances because this heuristic
could not find a feasible solution within ten hours of computational time for
one of the five test instances. This lack of solution for the MIP heuristic
combined with high average computational times indicate that this heuristic
is relatively unstable.

Finally, let us mention that all methods compute solutions involving a min-
imum number of vehicles. Indeed, the procedure used to compute an initial
solution for the tabu search and LNS methods ensures a minimum number
of vehicles in the initial solution. For the other three methods, the use of
powerful mathematical programming tools allows to reach this minimum.

To conclude this section, we present in Table 3 the average optimality gaps
(in percentage) obtained by each heuristic for all instance sizes (except again
by the MIP heuristic for the 1500-task, 8-depot instances). As proposed in
Carpaneto et al. (1989) and Dell’Amico et al. (1993), these gaps have been
computed without taking into account the large fixed vehicle cost (10000).

18

& Heuristic column generation

—&— Lagrangian heuristic

2497000 1 ¢
4 —e— Tabu search

—*— Large neighborhood search

2492000 -

objective value

2487000 -

2482000 -

2477000

0 100 200 300 400 500 600 700

time (sec)

Figure 2: Results for the 4-depot, 1000-task instances

. L0C _ soc
The formula used is: Gap = 222, where 275 and 27% are the value of the

best integer solution (as reported in Tables 1 and 2) and the linear relaxation
optimal value (computed by the column generation heuristic with Z,,;, = 0).
The very small gaps for the column generation heuristic clearly highlight the
effectiveness of this heuristic to produce very high quality solutions. Based
on the results presented in Figures 1 to 3, we can also say that the LNS
approach is effective at generating good quality solutions in relatively small
computational times.

9 Conclusions

In this paper, we have presented a comparison of five different heuristic ap-
proaches for solving the MDVSP, including heuristics based on mathematical
programming techniques and metaheuristics. This comparison showed that,
for the tested instances, the column generation heuristic produces the best
quality solutions when sufficient computational time is available and stability
is required. To obtain faster solution times without deteriorating too much
solution quality, our results indicate that the LNS method, which relies on the
column generation heuristic for neighborhood evaluation, is the best alterna-

19

® Heuristic column generation
3630000 - —&— Lagrangian heuristic

—8—Tabu search

—¥— Large neighborhood search

3625000 -

3620000 1 §

3615000

objective value

3610000 -

3605000 -

3600000

T T T T
0 500 1000 1500 2000
time (sec)

Figure 3: Results for the 4-depot, 1500-task instances

tive. Hence, embedding mathematical programming tools in a metaheuristic
framework seems to guarantee success when looking for a compromise be-
tween computational time and solution quality.

Acknowledgments The authors would like to thank Tsjitske Groen for
implementing the Hungarian method in the Lagrangian heuristic, and Guil-
laume Dereu for developing preliminary versions of the column generation,
large neighborhood search, and tabu search heuristics.

References

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin (1993). Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, New-Jersey.

Barnhart, C., E.L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P.
H. Vance (1998). Branch-and-Price: Column Generation for Solving Huge
Integer Programs. Operations Research 46, 316-329.

Bertossi, A.A., P. Carraresi, and G. Gallo (1987). On Some Matching Prob-
lems Arising in Vehicle Scheduling Models. Networks 17, 271-281.

20

500 tasks 1000 tasks 1500 tasks
Heuristic time (s) Sol val time (s) Sol val time (s) Sol val
MIP 81 1278181.6 1287 2478545.6 | 4149 3602758.0

Lagrangian heuristic 85 1279816.9 700 2483082.4 2300 3610871.4
Column generation 77 1278107.6 651 2478739.0 2203 3603044.0
LNS 85 1279275.7 700 2480065.3 2300 3605551.3

Tabu search 85 1284342.8 700 2488500.3 2300 3618857.8

Table 1: Average best solution values for the 4-depot instances

500 tasks 1000 tasks 1500 tasks
Heuristic time (s) Sol val | time (s) Sol val | time (s) Sol val
MIP 612 1285640.2 | 6206.63 2495918.4

Lagrangian heuristic 125 1287924.1 900 2501648.9 3200 3637341.8
Column generation 119 1285575.4 857 2496005.6 3085 3625731.8
LNS 125 1286820.9 900 2498458.9 3200 3629288.8

Tabu search 125 1293769.6 900 2514100.8 3200 3650643.0

Table 2: Average best solution values for the 8-depot instances

Bodin, L., D. Rosenfield, and A. Kydes (1978). UCOST: A Micro Approach
to a Transit Planning Problem. Journal of Urban Analysis 5, 47-69.

Bodin, L., B. Golden, A. Assad, and M. Ball (1983). Routing and Scheduling
of Vehicles and Crews: The State of the Art. Computers and Operations
Research 10, 63-211.

Carpaneto, G., M. Dell’Amico, M. Fischetti, and P. Toth (1989). A Branch
and Bound Algorithm for the Multiple Vehicle Scheduling Problem. Networks
19, 531-548.

Cordeau, J.-F., G. Laporte, and A. Mercier (2001). A Unified Tabu Search
Heuristic for Vehicle Routing Problems with Time Windows. Journal of the
Operational Research Society 52, 928-936.

Dantzig, G.B. and P. Wolfe (1960). Decomposition Principle for Linear Pro-
grams. Operations Research 8, 101-111.

Dell’Amico, M., M. Fischetti, and P. Toth (1993). Heuristic Algorithms for
the Multiple Depot Vehicle Scheduling Problem. Management Science 39,
115-125.

Desaulniers, G., J. Desrosiers, 1. Toachim, M.M. Solomon, and F. Soumis
(1998). A Unified Framework for Deterministic Time Constrained Vehicle
Routing and Crew Scheduling Problems. In: T.G. Crainic and G. Laporte

21

4 depots 8 depots
500 1000 1500 500 1000 1500
Heuristic tasks | tasks | tasks tasks | tasks | tasks

MIP 0.298 | 0.171 | 0.217 || 0.684 | 0.581 -
Lagrangian heuristic || 3.117 | 3.880 | 5.540 || 5.511 | 6.590 | 10.148
Column generation | 0.170 | 0.329 | 0.405 | 0.547 | 0.672 | 0.837
LNS 2.184 | 1.414 | 2.050 | 3.179 | 3.245 | 3.690

Tabu search 10.919 | 8.309 | 10.779 || 17.865 | 19.647 | 20.816

Table 3: Average optimality gaps in percentage

(eds.), Fleet Management and Logistics, Kluwer, Norwell, MA | 57-93.

Desaulniers, G., and M. Hickman (2007). Public Transit. In: G. Laporte
and C. Barnhart (eds), Transportation, Handbooks in Operations Research
and Management Science, Elsevier Science, Amsterdam. (To appear.)

Desaulniers, G., J. Lavigne, and F. Soumis (1998). Multi-Depot Vehicle
Scheduling Problems with Time Windows and Waiting Costs. FEuropean
Journal of Operational Research 111, 479-494.

Desrosiers, J., Y. Dumas, M. M. Solomon, and F. Soumis (1995). Time
Constrained Routing and Scheduling. In: M. O. Ball, T.L. Magnanti, C.L.
Monma, and G.L. Nemhauser (eds.), Network Routing, Handbooks in Oper-
ations Research and Management Science 8, Elsevier Science, Amsterdam,
35-139.

Forbes, M.A., J.N. Holt, and A.M. Watts (1994). An Exact Algorithm for
Multiple Depot Bus Scheduling. Furopean Journal of Operational Research
72, 115-124.

Freling, R., A.P.M. Wagelmans, and J.M.P. Paixao (2001). Models and Al-
gorithms for Single-Depot Vehicle Scheduling. Transportation Science 35,
165-180.

Geoffrion, A. (1974). Lagrangian Relaxations for Integer Programming.
Mathematical Programming Study 2, 82-114.

Gilmore, P.C. and R.E. Gomory (1961). A Linear Programming Approach
to the Cutting-Stock Problem. Operations Research 9, 849-859.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research 13, 533-549.

Glover, F. and M. Laguna (1997). Tabu Search. Kluwer Academic Publish-
ers, Boston.

Hadjar, A., O. Marcotte, and F. Soumis (2006). A Branch-and-Cut Algo-

22

rithm for the Multiple Depot Vehicle Scheduling Problem. Operations Re-
search 54, 130-149.

Kliewer N., T. Mellouli, and L. Suhl (2006). A Time-Space Network Based
Exact Optimization Model for Multi-Depot Bus Scheduling. Furopean Jour-
nal of Operational Research. (To appear.)

Kokott, A. and A. Lobel (1996). Lagrangean Relaxations and Subgradient
Methods for Multiplie-Depot Vehicle Scheduling Problems. ZIB-Report 96-
22, Konrad-Zuse-Zentrum fiir Informationstchnik, Berlin, Germany.

Lamatsch, A. (1992). An Approach to Vehicle Scheduling with Depot Capac-
ity Constraints. In: M. Desrochers and J.-M. Rousseau (eds.), Computer-
Aided Transit Scheduling, Lecture Notes in Economics and Mathematical
Systems 386, Springer-Verlag, Berlin, 181-195.

Lobel, A. (1997). Optimal Vehicle Scheduling in Public Transit. Ph.D. thesis,
Technische Universitdat Berlin, Berlin, Germany.

Lobel, A. (1998). Vehicle Scheduling in Public Transit and Lagrangian Pric-
ing. Management Science 44, 1637-1649.

Odoni, A.R., J.-M. Rousseau, and N.H.M. Wilson (1994). Models in Urban
and Air Transportation. In: S.M. Pollock, M.H. Rothkopf, and A. Barnett
(eds.), Operations Research and the Public Sector, Handbooks in Operations
Research and Management Science 6, North-Holland, Amsterdam, 107-150.

Mesquita, M. and J. Paixao (1992). Multiple Depot Vehicle Scheduling
Problem: A New Heuristic Based on Quasi-Assignment Algorithms. In: M.
Desrochers and J.-M. Rousseau (eds.), Computer-Aided Transit Scheduling,

Lecture Notes in Economics and Mathematical Systems 386, Springer-Verlag,
Berlin, 167-180.

Ribeiro, C. and F. Soumis (1994). A Column Generation Approach to the
Multiple Depot Vehicle Scheduling Problem. Operations Research 42, 41-52.

Ropke, S. and D. Pisinger (2004). An Adaptative Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows. Tech-
nical report, Copenhagen University, Denmark. To appear in Transportation
Science.

Shaw, P. (1998). Using Constraint Programming and Local Search Meth-
ods to Solve Vehicle Routing Problems. In: M. Maher, J.-F. Puget (eds.),
Principles and Practice of Constraint Programming - CP98, Lecture Notes
in Computer Science, Springer-Verlag, New-York, 417-431.

23

