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Abstract

This paper proposes a methodology to jointly generate optimal forecasts
from an autoregression of order p for 1 to h steps ahead. The relevant model is
a Partial Least Squares Autoregression, which is positioned in between a single
AR(p) model for all forecast horizons and different AR models for different
horizons. Representation, estimation and forecasting using the new model are
discussed. An illustration for US industrial production shows the merits of
the methodology.
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1 Introduction and motivation

This paper deals with an autoregressive time series model of order p for a time series

yt, t = 1, 2, . . . , n that is to be used for forecasting 1 to h steps ahead, where the

focus is on point forecasts.

A single model for all horizons

The autoregressive model of order p (AR(p), that is

yt = µ + ρ1yt−1 + ρ2yt−2 + . . . + ρpyt−p + εt, (1)

is often used for forecasting. The parameters can be estimated using ordinary least

squares [OLS]. The 1-step ahead forecast at time n is generated as

ŷn+1 = µ̂ + ρ̂1yn + ρ̂2yn−1 + . . . + ρ̂pyn−(p−1). (2)

The 2-step ahead forecast is created as

ŷn+2 = µ̂ + ρ̂1ŷn+1 + ρ̂2yn + . . . + ρ̂pyn−(p−2), (3)

and so on, while finally, when h > p, the h-step forecast follows from the recursion

ŷn+h = µ̂ + ρ̂1ŷn+h−1 + ρ̂2ŷn+h−2 + ρ̂pŷn−(p−h). (4)

In this case, a single time series model is used for all forecast horizons. This method

of substituting earlier forecasts to forecast further ahead implies that for h large, the

forecasted values converge to the unconditional mean, that is,

ŷn+h → µ

1− ρ1 − ρ2 − . . .− ρp

. (5)

For each horizon a different model

There are various reasons why an alternative strategy for forecasting 1 to h steps

ahead is better. The first is that OLS aims at minimizing the sum of squared ε̂t,

which amounts to the sum of squared 1-step ahead forecast errors. Indeed, abstaining

from estimation errors, the difference between (1) and (2) is εn+1. There is however

no guarantee that this minimization also implies a minimum of the sum of squared
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h−step forecasts errors. The second reason is that one may want to have different

models for different forecast horizons, that is, for each h there would be a different

model. The third reason is that for stationary time series h−step forecasts quickly

converge to the unconditional mean, which may be implausible in some practical

situations.

An obvious alternative is then to have different models for different forecast

horizons, and hence to replace (1) by

yt+h = µh + ρ1,hyt−1 + ρ2,hyt−2 + . . . + ρp,hyt−p + εt,h, (6)

for h = 0, 1, 2, .. where the variance of εt,h is σ2
h and hence can also vary with the

forecast horizon1. This line of thought is followed in Tiao and Xu (1993), Weiss

(1991), Bhansali (1996), and Kang (2003) among others, where these studies derive

properties of OLS-based estimators, propose model selection criteria and give illus-

trations of the merits of this approach. Note that the model orders may also differ

across horizons, so one may also use the notation ph instead of p.

Towards something in between

To have a different model for different forecast horizons has an important shortcom-

ing and that is that in these models the correlation between adjacent time series

observations is not exploited. Indeed, in an autoregression the variables yt and yt−j

are correlated, and so must be the forecasts yn+h and yn+h−j for any j. This suggests

that yet an alternative view on forecasting from an AR(p) model would be that one

aims to jointly predict (yt+h, yt+h−1, yt+h−2, . . . , yt+1) from (yt, yt−1, . . . , yt−p). The

regression technique that enables one to do this is called Partial Least Squares [PLS],

and it is this method that shall be introduced in this paper for jointly forecasting

1 to h steps ahead from an AR(p) model. It will be shown that the resulting PLS

Autoregression [PLSAR] amounts to a case in between (1) and (6).

The outline of this paper is as follows. In Section 2 the PLS Autoregressive model

for order (h,p) is introduced. Parameter estimation and forecasting will be addressed

1This notion of having a different forecasting model for different forecasting horizons comes
close to the idea behind periodic models, which allow for different models for different seasons, see
Franses and Paap (2004) for a recent review.
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as well. Section 3 illustrates this new model for quarterly seasonally adjusted US

industrial production. It is shown that forecasts for 2 to 5 quarters ahead are indeed

better when the PLSAR model is used. Section 4 deals with an outline of further

research topics.

2 PLS Autoregression

The interest is in jointly predicting (yt+h, yt+h−1, yt+h−2, . . . , yt+1) to be collected in

Y , using the available information on the time series until and including t, that

is for (yt, yt−1, . . . , yt−p), which will be collected in X. Note that the focus is on

prediction and not on correlation. The latter would amount to computing the so-

called canonical correlations (CCA), see Esposito Vinzi et al. (2007) for details of

the PLS technique and its comparison with related methods2.

Representation

The data matrices that are input to the regression problem are Y and X, and they

are of size n × h and n × (p + 1), respectively3. The idea behind PLS is that it

seeks for components of X which are also relevant for Y . PLS regression aims at

finding a set of latent variables which together simultaneously decompose Y and X,

given that these latent variables explain most of the covariance between Y and X.

Note that this last feature makes PLS different from Principal Components Analysis

(PCA).

Suppose there are k such latent variables, where k can take values from 0 to p+1.

The first step is now to decompose X as

X = KW, (7)

where K collects these k latent variables, with K is of size n × k, and where the

loadings are collected in a k × (p + 1) matrix W .

2Further readings on PLS and related techniques include Helland (1990) and Wold (1966). The
last author is said to be the first to have put forward the PLS technique.

3It is assumed that there are n effective observations, and hence that the full sample contains
n + p observations where the first p are needed for start-up.
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Next, it is assumed that the fit of Y , given the PLS regression model, is

Ŷ = KBC, (8)

where the regression weights are collected in the k × k matrix B and where C is

again a loading matrix, where now these loadings concern K on Ŷ . This C matrix is

of size k × h. These two equations underlie the PLS regression model, which in the

present application is called a Partial Least Squares Autoregression of order (h, p),

or PLSAR(h, p).

Estimation

The method of estimation of the components in K, the parameters in B and the

loadings in W and C bears similarities with related techniques such as PCA and

CCA, see also Esposito Vinzi et al. (2007) and for example Abdi (2003). A popular

approach is an iterative least squares method, see Abdi (2003) for the sequential

steps, and which is also used below. Another approach would follow eigenvalue and

singular value decompositions, and in practice small numerical differences can be

expected. Note that, as is usual, prior to estimation, the variables in Y and X are

scaled towards z−scores (that is the mean is subtracted and the variables are scaled

with their standard deviation) in order to facilitate computations.

Like PCA, the estimation method also delivers the degree of the variance of Y

and and of X that is explained by each of the latent variables in K. Comparing

the percentages of explained variance allows one to fix the value of k, if one indeed

wants to make a choice.

Forecasting

Taking (7) and (8) together shows that the forecasting scheme based on the PLSAR

is

Ŷ = XB̂pls, (9)

where B̂pls is a (p + 1) × h matrix computed as B̂pls = Ŵ−1B̂Ĉ, where the inverse

potentially is the Moore-Penrose inverse. In the present paper the focus is on the

quality of the forecasts Ŷ , which of course are ŷn+h, ŷn+h−1, ŷn+h−2, . . . , ŷn+1.
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Interestingly, when K is a full rank matrix, that is k is equal to p + 1, then the

number of latent variables is equal to the number of explanatory variables. In that

case the B̂pls matrix has full rank too, and hence (9) implies a different model for

each of the columns of Y , and hence a model like (6). In the exceptional case that

B̂pls has rank 1, the AR(p) model in (1) appears.

3 Illustration

To illustrate the PLSAR model, consider the quarterly index of US industrial pro-

duction, for the period 1945.1 to 2000.4. The data have been seasonally adjusted.

For the full sample, the estimated (partial) autocorrelation functions suggest that

the value of p could well 4, which means an AR(5) in (1). Next, it is assumed that

there is an interest in forecasting 1 to 5 quarters ahead.

The models

To compare models on their forecasting performance a recursive procedure is fol-

lowed. First, the sample 1945.1 to 1990.4 is used, and forecasts are made for 1991.1

to 1992.1. Then the sample moves one quarter, that is, it becomes 1945.1 to 1991.1

and again 1- to 5-step ahead forecasts are made. This results in 40 1-step ahead

forecasts, 39 2-step ahead forecasts and finally 36 5-step ahead forecasts. Each time,

the model parameters are re-estimated. Before estimation, the variable is standard-

ized to have mean zero and scaled by the standard deviation for the full sample. A

second exercise is that we keep the estimation sample fixed at 120 observations, that

is, a moving window sample. Each time we move on in time with 1 step, the first

observation is dropped.

The forecasting experiment concerns a comparison of the same AR(5) model for

all forecast horizons with five versions of the PLSAR(5,4) model. Each of these

five versions assumes a different amount of latent variables. The case with 5 such

latent variables is the same as assuming 5 different AR(5) models for the 5 different

forecast horizons.

For the full sample, the full PLSAR model gives latent explanatory variables
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which contribute the fractions 0.376, 0.349, 0.139, 0.097 and 0.039 of the variance

of Y . Hence, based on these values one would tentatively set k equal to 2.

Results

The forecasting results are displayed in Table 1. The first panel gives the results

for the case of recursive samples, and the second panel deals with the 120-quarters

moving window. With PLSk we denote a Partial Least Squares Autoregression with

k latent variables, for k is 1 to 4. The last column is the case with k = 5, which

amounts to a different AR(5) model for each h. The first column is the AR(5) model

with the same parameters for each forecast horizon h.

For the recursive samples, the results are quite conclusive. Of course, for 1-step

ahead forecasts the AR(5) model is best. However, for horizons 2 to 5, the PLSAR

models quickly become better relative to both competitors, notably the PLS1 model

with a single latent explanatory variable. Note that this would not be the selected

model based on the explained fractions of the variance though.

For the moving samples, the results suggest that for horizons 1, 4 and 5 one

would be better off using a single AR(5) model. For horizons 2 and 3, the PLSAR

model gives the best forecasts. Different models for different horizons are never the

best. This seems to echo the findings in Kang (2003) who finds that models like (6)

are not very successful in practice.

4 Conclusion

This paper has put forward a simple autoregressive time series model that can be

used to jointly predict 1- to h-steps ahead. The models nests two specific cases,

one is an AR model with the same parameters for all horizons and the other is an

AR model with different parameters for different forecast horizons. The illustrative

results showed that the resultant Partial Least Squares Autoregression can deliver

more accurate forecasts than these two specific cases. Hence, this new model deserves

further analysis and application.

There are quite a number of further issues that need to be studied, additional
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to extensive applications to other time series. The first is that this paper only

looked at point forecasts and not at forecast densities. Perhaps bootstrapping-based

techniques can be used to retrieve this forecast distribution based on the errors

defined by Ŷ −XB̂pls.

Another interesting area concerns the derivation of a formal test for the rank of

B̂pls, which would allow for a choice between the various PLSAR models. Also, if the

rank of that matrix is equal to 1, one ends up with the standard fixed-parameters

AR model.

Finally, this paper dealt with a single time series, but one can easily extend the

PLSAR model to the case of 2 or more variables. Even more interesting would be to

put forward a method to analyse 2 or more such series when they are non-stationary

and have a unit root. At present, the most popular test for cointegration is based on

canonical correlation, see Johansen (1995), and perhaps a PLS-based method would

give more power to the test procedure.
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Table 1: Root Mean Squared Prediction Errors for an AR(5)
model for all forecast horizons, PLSAR(5,4) models with the
number of latent variables being 1, 2, 3, or 4, and finally, the
AR(5) model with different parameters for different forecast hori-
zons, denoted as ARh(5). Boldface numbers are smallest in the
row.
Horizon h AR(5) PLS1 PLS2 PLS3 PLS4 ARh(5)

Recursive samples
1 0.893 0.992 0.963 0.973 0.929 0.893
2 0.785 0.779 0.785 0.785 0.779 0.779
3 0.784 0.770 0.783 0.778 0.779 0.779
4 0.792 0.771 0.787 0.801 0.810 0.815
5 0.770 0.766 0.773 0.798 0.791 0.791

Moving window samples
1 0.872 0.979 0.923 0.902 0.900 0.872
2 0.776 0.763 0.770 0.775 0.776 0.778
3 0.775 0.772 0.772 0.768 0.769 0.771
4 0.777 0.796 0.803 0.810 0.819 0.816
5 0.774 0.788 0.809 0.814 0.812 0.813
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