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Abstract

We create a support system for predicting end prices on eBay. The

end price predictions are based on the item descriptions found in the

item listings of eBay, and on some numerical item features. The system

uses text mining and boosting algorithms from the field of machine

learning. Our system substantially outperforms the naive method of

predicting the category mean price. Moreover, interpretation of the

model enables us to identify influential terms in the item descriptions

and shows that the item description is more influential than the seller

feedback rating, which was shown to be influential in earlier studies.
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1 Introduction

Online auctions are hot. The world’s largest online auction site eBay reports

in its first quarter financial report over 2006 a net revenue of $1.390 billion,

realizing a growth rate of 35% in consecutive years [10]. For researchers with

an interest in data mining, online auctions offer the opportunity to collect

and mine large data sets at low costs.

The market price of a product is generally non-stationary at eBay – it

fluctuates over time. It is even possible that identical items receive different

bids at any given point in time. Merchants might buy item at eBay and try to

re-sell these items with a profit. The success of these merchants depends on

their ability to find bargains and, of course, their bidding strategy. Finding

these bargains can be made easier by using a support system.

A recent paper [15] introduces the ‘Auction Advisor’ system, which sim-

plifies the search for bargains by presenting its user with relevant informa-

tion like the current bid and a recommended price based on recently closed

auctions. Using this standardized presentation, the user is able to make bid-

ding decisions within a short amount of time. In this paper we improve this

recommended price by making a price prediction based on several relevant

characteristics of the auction: the number of pictures, the feedback rating

and the description of the item.

A substantial amount of research has been carried out on the analysis

of historical auctions using data mining and statistical techniques. (An

interesting review of this work from an economics perspective is given in [5].)

Most of this work focuses on finding factors determining the auction end

price. Reference [9] for example, tries to find such factors using a data set of

ancient coin sales at eBay and finds that the number of participants, the use

of reserve prices, and seller reputations are determinants of the end price.

2



Others aim at characteristic behavior like last moment bidding [25]. For only

a few studies the prediction of auction prices is the central problem. Several

data mining methods are compared in [14] in order to find the most suitable

method for price predictions, while [29] constructs a dynamical forecasting

model, which can update the predicted price of an ongoing auction based

on newly arrived information.

Unlike previous studies, we incorporate the textual information con-

tained in the item description in our system when predicting the auction

end price. To this end, our system downloads data on a large number of

closed auctions from the eBay site. These data are then pre-processed and

fed to a price-prediction model. Section 2 below discusses the data collection

system and the pre-processing steps. The price-prediction model makes use

of a vector space representation of the descriptions of the items [26]. Each

position in the vector represents the occurrence-count of a specific word in

an item description. This representation, known as the bag-of-words repre-

sentation, is often used in Information Retrieval Systems. In these systems,

the distance between the bag-of-word vectors of strings is used to find similar

strings or documents.

Instead of using similarity calculations, our price-prediction model is

based on boosting [13]. Boosting creates an ensemble of models that collec-

tively make a prediction, in our case for the end price of the auction. We

use decision trees as the individual models that form the ensemble, as is

often done. Decision trees select important input dimensions in the course

of their calibration process. This is a desirable property in text mining, as

the number of input dimensions is very high. Section 3 discusses the models

that we use in our system in more detail.

We test our system in two experiments described in Section 4. The paper

3



ends with conclusions and a discussion in Section 5.

2 Data

Collecting data from eBay can be done using a web crawler or using eBay’s

API (Application Programmers Interface). Our system uses a web crawler

since the API allows only a limited number of calls per day. The crawler

was written in Java. For our experiments, this web crawler was programmed

to download closed auction pages at eBay during a period of one month,

in August 2005. The downloaded auction pages are the main HTML pages

from eBay, they do not include the seller’s feedback pages nor do they include

the bidding history. Figure 1 shows an example of (part of) a downloaded

auction page.

[Figure 1 about here.]

Features Included

The prediction module in our system does not deal with the unstructured

HTML data downloaded by the crawler. Instead, it needs input features with

clear semantics that are relevant for the auction end price. Our prediction

model is based upon the following features: The feedback rating, the number

of pictures, and the description of an item. First, we will summerize the

reasons for using these features. Next, we will discuss how we construct

these features from an eBay HTML page.

The first feature included is the feedback rating. EBay has a reputation

system called the Feedback Forum. This system captures the reputation of

an eBay member based on earlier transactions this member participated in.

There are several studies indicating that there is a relationship between a
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seller’s reputation and the expected auction end-price, see, e.g., [4,23]. This

is why we added the feedback score as an element in our price prediction

model.

A feedback mechanism falls into the broader category of trust mecha-

nisms in e-commerce, which has receives a lot of attention in the literature,

see, e.g. [1–3, 16, 20]. Trust is not only created as a result of a high feed-

back rating. Bidders want to have as much information as possible about

the item for sale. This information helps to reduce the uncertainty on the

item’s quality, rather than reducing uncertainty on the seller as reputation

mechanisms do.

Some elements of information are difficult to describe in words. For ex-

ample, a ‘slightly worn shoe’ could be seriously worn or be in near-mint

condition. In such a case, pictures of the item provide bidders with use-

ful and objective information. For that reason we included the number of

pictures in an item description as a feature.

Another way for the seller to overcome the information asymmetry be-

tween the seller and the buyer is by describing the item in words. This

description of an item is written in natural language. The text usually con-

tains information like the possible uses of an item and the state of the item.

It may also contain information on the transaction, such as return policies

and shipping fares. Since this information is useful to the bidders the item

description is included in the feature set.

Interestingly, it is a well-known result in auction theory [17] that the

seller should disclose all information about the object being auctioned that

is potentially of use to the bidders. This policy of making information

publicly available raises the expected revenue for the seller. This is again a

motivation for trying to capture the available information is the features of
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our prediction module.

Data Pre-processing

We now describe how the above mentioned features were constructed from a

raw eBay HTML page, of which Figure 2 shows an example. Retrieving price

and feedback rating was straightforward: they are parsed from the page by

looking for the first occurrence of Winning bid: and Feedback respectively.

The number of pictures can be found by counting the number of < img >

tags in the description of the item.

[Figure 2 about here.]

The description of an item is written in natural language. Since the

datamining method we use requires numerical input data, we need to trans-

form the text of an item description into a numerical representation. This

transformation is performed using a dictionary. Each individual item de-

scription is encoded by the frequency of occurrence of each word from the

dictionary. This frequency can be either Boolean, indicating whether the

word does or does not appear in the text, or numerical, indicating the num-

ber of occurrences in the text. This method is known as the bag-of-words

(BOW) method [26,30].

There has been some criticism on BOW. One argument is that when we

use BOW, we lose semantics [19]. By looking at words only, we lose the

extra information given in a sentence. For instance, adding the word not to

a sentence may change its semantics completely. This change in meaning

is not detectable by just increasing the occurrence of not, when using large

texts. The key assumption of BOW, namely that the position of a word in a

document does not matter, does not hold, but in practice BOW does perform
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quite well [18, 27], and it is easy to implement. The following paragraphs

illustrate how the dictionary of a description is made.

When creating the vectors we use a local pooled dictionary. This dic-

tionary is therefore created by the words in the observed documents. Using

these local pooled dictionaries over widely used ones is recommended in [30].

The authors of [30] conclude that the words in and the size of the dictio-

nary are very important for the computational speed and the results of the

prediction model.

To diminish the size of the dictionary we use Porter’s stemming algorithm

[21]. This algorithm strips the endings from many words in English. One

example of this stripping is to convert plurals to their singular form by

stripping the letter s. It is used as part of a term normalization process

that is usually done when setting up Information Retrieval Systems. It

assumes that although these words differ in quantity, they do belong to the

same term. Therefore, we can change words to their root by stripping off

the suffix, without changing what is meant. In Figure 3 you can read this

paragraph stripped by Porter’s stemming algorithm.

[Figure 3 about here.]

The frequency of occurrence of each word was counted after stemming

the description. We introduced a lower bound, fl, to filter out infrequently

used words from our dictionary. This means that only words which have at

least a total occurrence of fl were considered. Besides lowering the compu-

tational requirements of the systen, the motivation for this lower bound is

that our prediction model needs a certain number of examples to be able to

correctly recognize the importance of a word: The model could easily over-fit

on a misspelled or infrequent word, because it lacks counter examples.
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The over-fitting problem does not only occur with infrequent words,

but also with words which occur too frequently. These words are referred

to as stop words. Stop words are commonly used words like I, is and and.

These words do not contribute to the information that a description conveys.

Therefore, these words are filtered out. Our list of stop words was not

generated from the local dictionary, but a predefined frequently used list

was downloaded from the internet.1

[Figure 4 about here.]

A BOW representation is usually stored as a vector where each dimension

holds the occurence or count of a specific word. An example of such a vector

is shown in Figure 4. It shows the previously stemmed paragraph, after

filtering it with our list of stop words. (In this example the lower bound

fl was set to 1.) For use in the support system, we extended our BOW

vectors with dimensions for the feedback rating, the number of pictures and

the price, as was discussed earlier.

Data sets used in the Experiments

We downloaded two independent data sets from two well defined auction

categories over a period of 4 weeks in August 2005. These data sets were used

to test our price prediction algorithm in a series of experiments described in

Section 4.

The first data set concerns auctions of Canon digital cameras. We hy-

pothesized that our learning algorithm would use technical terms in the item

description among other terms as indicators for item value. Having these

technical terms it would be able to classify cameras by type or model. We
1The url for this list is http://www.lextek.com/manuals/onix/stopwords1.html
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should remark that the data set does not only contain cameras, but also

contains accessories like lenses and batteries.

The second data set concerns auctions of Nike men’s shoes. Prior to our

experiment we expected the learning algorithm to classify auctions based on

the terms ‘used’ and ‘new’. Our algorithm should also be able to recognize

models.

We used the search mechanism of eBay to select the auctions for our data

sets. Unfortunately, the search mechanism also returned auctions outside

our category. For example, our dataset included an auction of Nike shoes

previously belonging to the famous basketball player Michael Jordan. Al-

though these are Nike men’s shoes, we did not want to predict collectibles.

We therefore excluded outliers of this type by filtering them using a box-plot

of the item’s price. Both very large and very small values were excluded.

Table 1 gives a summary of the data sets and the pre-processing parameters.

[Table 1 about here.]

3 Methodology for Price Prediction

This section discusses the machine learning techniques used in our system.

We denote the available data by D = {(~xi; yi)}N
i=1. An instance (observation,

row) (~x; y) consists of a vector of J attribute values ~x = (x1, . . . , xJ) and

a target value y. The J attributes are the explanatory or independent

variables, in our case the term counts and other input features cf. Section 2.

The target is the explained or dependent variable, in our case the auction

end-price.
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Classification and Regression Trees

CART (Classification And Regression Trees) [8] is one of the most frequently

used methods for constructing decision trees. In this paper we use the CART

regression tree.

A regression tree (see Figure 5 for an example) consists of decision nodes

and leaf nodes. Each decision node has two child nodes, which may again

be decision nodes or leaf nodes. The root of the tree is on the very top – it

is the only node in the tree without an ancestor. Every decision node (also

called non-terminal node) contains a split criterion, which divides the data

at that point into two parts. This split criterion has the format xj ≤ cs

for continuous variables, where xj is the jth variable and cs is a constant

that may be different for each split s. For a categorical variable the split

criterion looks like xj ∈ V , with V ⊂ Wj . Here Wj collection of all possible

categories of variable xj . The terminal nodes (leafs) contain a ŷ value, an

estimate for the target value in that leaf. In practice this value is taken to

be the average of all observed y values in that leaf.

The example regression tree shown in Figure 5 can be used for prediction

as follows. Suppose a new vector ~x is presented to us, what will be our

prediction of the target value for this vector? We begin at the root and if

~x satisfies the split criterion we turn left; if not we turn right. We keep on

doing this until we reach a terminal node and use the ŷ value in that node

as our prediction of the target value for ~x.

[Figure 5 about here.]

Decision trees are usually built in two phases. The first phase is a grow-

ing phase, the second phase is a pruning phase. In the growing phase, the

tree is grown until error reduction on the training set is no longer possible or
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a predetermined threshold has been reached. The resulting model usually

overfits the data, and this is countered in a pruning phase, where the tree

is shrunk until the error on a hold-out sample, the pruning set, is minimal.

Details on the CART procedure for growing and pruning can be found in,

e.g., [8,24]. Here, it is sufficient to remark that, given a data set {(~xi; yi)}N
1 ,

the CART algorithm constructs a regression tree B that attempts to mini-

mize the squared error loss

E~x,y(B(~x)− y)2,

where B(~x) denotes the prediction of tree B for input vector ~x.

In the context of boosting, discussed below, the pruning phase of the

decision tree algorithm is usually skipped and instead the tree size is limited

to a predetermined depth. In the most extreme case the tree depth is 1.

The tree then consists of a single decision node and two leaves. Such a

special tree is called a decision stump. Although a single decision stump has

very limited modeling power, an ensemble of such stumps is able to model

complex relationships.

Regression trees have some advantages over the commonly used method

of linear regression. In the first place, in contrast to regression functions,

regression trees are able to determine themselves which of the attributes are

to be used for modeling the relationship with the target variable. Another

advantage is that regression trees are able to model interactions between

attributes and non-linear relationships with the target, without a required

explicit transformation of the inputs. Furthermore, in contrast to many

parametric models, regression trees can handle categorical variables and

missing values without transformation of the data.
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A drawback of decision trees is their instability – the implemented model

depends heavily on the exact data set used for model creation, and a small

change in the data may have large consequences for the model. Ensem-

ble methods, such as bagging [6] and boosting, have a stabilizing effect by

averaging over a number of decision trees. We discuss boosting next.

Boosting

Boosting is a method to combine multiple models to improve performance,

i.e. to reduce the error on unseen data. Boosting was first applied to and

developed for classification problems (with categorical response) in [11, 12].

In a classification context boosting seemed to be able to strongly reduce

the error rate on out-of-sample data in many cases [7]. The idea behind

boosting is to create a sequence of models, called base learners, in which

each subsequent base learner focuses on the residual error of the previous

base learners. Often, these base learners are decision trees or stumps.

The original Freund and Schapire boosting algorithm for classification,

AdaBoost.M1, was only applicable to binary classification problems. For

these problems, the model predicts whether an instance belongs to a class

or not. The model thus has a 0/1 output and the quality of the model is

measured with the 0− 1 loss function, which counts the number of misclas-

sifications. For modeling eBay end-prices this loss function is not suitable.

Instead, we need a regression loss function that measures the deviance be-

tween two numerical values, as usual in regression. This means that we

cannot apply the AdaBoost.M1 algorithm to eBay end-prices. Instead, we

use a special boosting algorithm, suitable for regression problems.

Various boosting algorithms have been designed for regression. Fried-

man [13] developed LSBoost, LADBoost and MBoost based on the squared,
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absolute and Huber loss function respectively. (All these loss functions apply

to regression problems.) In this paper we will use Friedman’s LSBoost algo-

rithm. This algorithm was chosen because, contrary to many other boosting

algorithms, it has a solid mathematical foundation: it is an instantiation of a

general boosting algorithm for general loss functions named GradientBoost.

We now give a brief description of GradientBoost and LSBoost. Contrary

to fitting a single model, like the decision tree B above, boosting starts with

an initial guess F0 and then fits a sequence of M models B1, . . . , BM (the

base learners) which are subsequently combined in a weighted manner. The

final model is thus

FM (~x) = F0(~x) + ν

M∑
m=1

ρmBm(~x).

Here, ρm denotes the weight for model m and is determined by the algorithm.

M , the number of iterations, is set by the user. The number ν with 0 < ν ≤ 1

denotes a regularization parameter called the learning rate. Small values of

ν will help prevent the algorithm to overfit the training data.

Note that at the mth iteration, Bm() is added to Fm−1:

Fm(~x) = Fm−1(~x) + νρmBm(~x).

It makes sense to choose Bm() such that it minimizes the residual error of

Fm−1. Roughly speaking, given a general loss function L(y, F ), Bm attempts

to minimize the expected value of this loss function over the data set:

Bm = arg min
B

N∑
i=1

L(yi, [Fm−1(~xi) + B(~xi)]). (1)
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In practice this is done by fitting pseudo responses ỹi in each iteration

Bm = arg min
B

N∑
i=1

{ỹi −B(~xi)}2.

The values of the pseudo-responses depend upon the loss function in ques-

tion. When GradientBoost is applied to the squared error function L(y, F ) =

(y−F )2/2 that is common in regression, the pseudo-responses are given by

ỹi|m = yi − Fm−1(~xi).

The minimization over B in Equation 1 is performed by minimizing over

B’s parameter space. If B is a tree, these parameters are the split variables

and split points in the decision nodes, and Bm is the tree that gives the

best fit of the ỹ values in iteration m. Figure 1 summarizes the LSBoost

algorithm.

Input: data set with instances {~xi; yi}N
1

number of iterations M
learning rate ν
Output: Model F (~x)
F0(~x) = ȳ
for m = 1 to M do

{ỹi = yi − Fm−1(~xi)}N
1

train Bm(~x) using {~xi; ỹi}N
1

ρm = arg minρ
∑N

i=1[ỹi − ρBm(~xi)]2

Fm(~x) = Fm−1(~x) + νρmBm(~x)
end

Algorithm 1: LSBoost algorithm [13].

Interpretation

Parametric techniques often have the advantage that a useful interpretation

can be given to the model parameters, e.g., in linear regression the model

parameters can be interpreted as the weights of the item characteristics.

Although not parametric, regression trees are also highly interpretable and
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can be written as an equivalent set of if-then rules. Boosted trees lack both

these appealing properties. Fortunately, at least to some degree boosted

models can be interpreted by using relative importance plots.2

Relative importance plots visualize how important the various indepen-

dent variables are relative to one another in predicting the dependent vari-

able. Relative importance plots were developed for trees by Breiman et

al. [8], but they are easily generalizable to an ensemble of trees. For a single

CART model, the following formula measures the importance of variable xj :

Î2
j (B) =

K−1∑
n=1

î2nχ(vn = xj) .

Here the summation is over the K − 1 non-terminal nodes in tree B having

K terminal nodes and χ() denotes the indicator function. vn is the split

variable of node n. The factor î2n measures the improvement in squared

error as a result of the split in node n, and can be computed as follows:

î2n =
wlwr

wl + wr
(ȳl − ȳr)2 .

Here wl and wr are the probabilities an instance turns to the left or right

child node of node n, ȳl and ȳr are the mean target values for both children.

Both the probabilities and the means are computed on the training set and

saved in the CART model.

To compute the Î2
j ’s of a boosting model it is sufficient to average the

2Another frequently used interpretation tool is the partial dependence plot, which
graphically depicts the shape of the dependency of the target variable upon an input
variable, see [13].
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Î2
j ’s of the base learners:

Î2
j =

1
M

M∑
m=1

Î2
j (Tm) .

A variable xjgets a high importance I2
j when it is used in many splits,

but more importantly when it is used in splits that divide the data in two

almost equally large parts with a large difference in mean target value, thus

contributing a lot to the total error reduction.

Finally, the variable xj with the highest importance gets a relative im-

portance index of RI = 100 and the other indices are adjusted to this:

RIj =
Î2
j

Î2
max

100 .

We will use relative importance plots below in Section 4 to identify the

most important terms that influence prices in both the Nike and the Canon

data sets.

4 Experiments & Results

We experimented with our price prediction system using the datasets men-

tioned in Section 2. The datasets were randomly partitioned into a training

set (80%) and a test set (20%). We repeated such splits 3 times for each

data set, and built separate models on each training set. (The low num-

ber of repetitions, 3, is caused by the computational requirements of each

experiment.)

For our experiments, we used the decision tree implementation rpart [28]

available in the statistical computing environment R [22] as a base learner.

This implementation uses several parameters. The first parameter is a regu-
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larization parameter cp that helps control the size of the trees. Any split that

does not decrease the overall lack of fit by a factor of cp is not attempted by

rpart. This parameter was set to 0.0005 for the Canon- and 0.0001 for the

Nike dataset. The second parameter is the maxdepth parameter which was

set to 2. Although trees of depth 2 are unable to model complex functions,

an ensemble of such trees is a very flexible model.

We implemented the LS Boost algorithm ourselves in R . The learning

rate parameter ν was set to 0.1. The boosting algorithm was run until it

became impossible to build an individual decision tree other than a single

root node. Thus, we did not use a predetermined number of iterations M .

As a benchmark model, we used the most naive model possible: predict-

ing the mean of the sales price in the training data per category.

To evaluate our models we use the error measures Mean Absolute Error

(MAE) and Mean Relative Error (MRE):

MAE =
1
N

N∑
i=1

|Predicted pricei −Observed pricei|, (2)

MRE =
1
N

N∑
i=1

|Predicted pricei −Observed pricei|
Observed pricei

. (3)

[Table 2 about here.]

The experiments and the obtained results are summarized in Table 2.

The errors reported in this table are test set errors. The reported errors

clearly show that our system based on boosting outperforms the naive model

of predicting the category mean price: for the Canon dataset the MAE is

reduced from $165 to $72, for the Nike dataset it is reduced from $22 to $14.

The reductions for the MRE are also substantial. However, we see that the

MRE values reported are relatively high: 0.58 for Canon and 0.34 for Nike.
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In the light of this observation, it is interesting to consider the cumulative

distribution of the relative errors. These are shown in the top graphs of

Figure 6. These graphs reveal that boosting predicts 57% of the Nike-

auctions and 59% of the Canon auctions within a 20% range of the final

auction price. For the naive method, these numbers are much lower: 33%

and 24% respectively. When considering a 5% relative error range these

numbers are 21% versus 7% for Canon and 21% versus 10% for Nike. So,

although the average MRE values are high, a substantial number of auctions

is predicted with reasonable accuracy.

[Figure 6 about here.]

As was explained in Section 3, relative importance plots visualize the im-

portance of the indicators relative to one-another. Figure 7 shows these rel-

ative importance plots for the Canon- and Nike- auctions that we analyzed.

The importances in these plots are averaged over the three experiments we

performed.

The top part of Figure 7 shows the importance of the total item descrip-

tion (Dict.) versus the number of pictures (PICS) and the seller feedback

rating (FB). It is clear that the item description is by far the most important

predictor in both cases.

The bottom graphs in Figure 7 show the relative importances of the 52

most influential terms in the dictionary. The most important terms for the

Canon data set were mostly technical terms as ef (extended focus), CMOS

(a sensor which helps increases the quality of picture) and powershot. There

are also important terms which identify models for example EOS and XT

(Rebel XT series). The relative importance plot for the Nike data set shows

a broad variety of split variables. Although a split term identifying one of

18



the existing Nike shoe models (jordan) is the most important, other terms

like deadstock and authentic, are also influential.

[Figure 7 about here.]

5 Summary, Conclusions & Discussion

In this article we present a decision support system for predicting prices for

online auctions. The predictions are based on a boosting model, which uses

closed auctions of some product to predict prices for current auctions of the

same product. The system uses the seller’s feedback rating, the number

of pictures on the web page and the seller’s description of the item. The

contribution of this study is twofold: it is the first study that uses the item

descriptions in the prediction of eBay end prices, and it is the first study that

uses boosting to this end. Boosting is based on combining decision trees,

and therefore it is suitable for identifying important terms from a large term

collection.

Gregg and Walczak have introduced an Auction Advisor system to sup-

port decisions for buyers and sellers [15]. Their support system summarizes

several statistics about currently active and closed auctions. Our price pre-

diction gives the user additional information. It would enable the Auction

Advisor to leave out those items, for which the current bid exceeds the

predicted end price.

We tested our price prediction model in a series of experiments. Inter-

pretation yielded some interesting insights. Based upon the split variables,

used the prediction model is able to identify influential terms in the descrip-

tion. These terms often relate to product subclasses and technical properties

of the items and they are found without input of expert knowledge. In the
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current system we are unable to identify the directions of these influences,

but the system is easily extended towards this functionality.

In our experiments, the prediction model was capable of predicting ap-

proximately 21% of the auctions within a 5% range of the actual selling

price. We remark that it may not be possible to achieve a much lower error.

There are various reasons, such as bidding wars and sniping, why an item

may be sold below or above its actual market value in practice. We can

never model these effects fully, merely based on features that are available

at auction start-time – part of the variance in the observed prices is ‘in-

trinsic noise’. Nevertheless, it would be an attractive feature if we were to

extend our system so that it would recognize when a prediction is likely to

be accurate, and when it is likely to have a large error. This functionality

could be added by using a bootstrap procedure, but we leave this for further

research.

We believe that using a prediction model can prove profitable for a re-

seller on eBay. Another use of our system could be helping a seller by

suggesting a reserve price or pointing him at terms in the item description

he should use or avoid in order to raise revenue. Our system thus supports

both buyers and sellers on eBay.
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Figure 1: One of the downloaded eBay auction pages.
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<html>

[non-relevant code omitted]

<td align=left valign=top nowrap>Winning bid: </td>

<td> <b> US $96.00 </b>

[non-relevant code omitted]

Positive Feedback: 99.5%

[non-relevant code omitted]

<!-- Begin Description -->

Great condition Canon Coolpix 2100 digital camera. Comes with an 8

megabyte compact flash card. Camera works perfectly with minor

blemishes. The following are the features/specifications:

<xml:namespace prefix = o ns = urn:schemas-microsoft-com:office:office />

<o:p> </o:p>

</FONT> </SPAN> </P>

<!-- End Description -->

[non-relevant code omitted]

</html>

Figure 2: Relevant source code of an eBay auction page.
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to diminish the size of the dictionari we us porter stem algorithm

thi algorithm strip the end from mani word in english on exampl of

thi strip i to convert plural to their singular form by strip the

letter s it i us a part of a term normal process that i usual done

when set up inform retriev system it assum that although these word

differ in quantiti thei do belong to the same term therefor we can

chang word to their root by strip off the suffix without chang what

i meant in figur you can read thi paragraph strip by porter stem

algorithm

Figure 3: A sample text stripped by Porter’s stemming algorithm.
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Terms
plural, normal, form, strip, suffix, retriev, belong, read,

singular, algorithm, figur, meant, letter, end, process, chang,

word, assum, usual, quantiti, system, stem, english, exampl,

term, root, set, convert, porter, inform, paragraph, diminish,

size, dictionari

Vector
(1,1,1,5,1,1,1,1,1,3,1,1,1,1,1,2,3,1,1,1,1,2,1,1,2,1,1,1,2,1,1,1,1,1)

Figure 4: Vector representation of the sample text.
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ŷ4 ŷ5

R3

-

6

R2

R1

R4

R5

c4

c2

x1

c1 c3

x2

Figure 5: A decision tree for a dataset with two explanatory variables(left),
and the corresponding partitioning of the feature space (right). For each
leaf ` and each corresponding region R` the estimate of the target value is
the average ŷ` of the observed y values within that region.
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Figure 6: Distribution of the errors in the datasets. The horizontal axis
values for the relative error, the vertical axis shows the percentage of auctions
in the test set predicted with a relative error below that value.
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Figure 7: Relative importance plots for Nike (l) and Canon (r) datasets.
The upper two graphs show the importance of the total item description
(Dict.) versus the number of pictures (PICS) and the seller feedback rating
(FB). In the lower graphs we displayed the relative importance of the most
important terms in the dictionary.
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Nike Canon
Download period August 2005 August 2005
Downloaded auctions 5945 5042
Position upper whisker (price) 163.5 1175
Position lower whisker (price) 5 5
Non-outlier auctions 5546 4603
Average selling price ($) 60.61 355.86
Lower bound word occurrence (fl) 50 80
Number of words in dictionary 1258 1926

Table 1: Summary of the data sets on auctions of Nike men shoes and Canon
cameras. The whiskers refer to the box-plot used for filtering outliers. The
parameter fl was set in a series of preliminary experiments.

34



Nike Canon
data set size 5546 4603
training set size 4437 3683
test set size 1109 920
number of repetitions 3 3
cp 0.0001 0.0005
maxdepth 2 2
avg number of boosting iterations 2538 609
ν 0.1 0.1
avg/min/max MAE Boosting 14.18/13.69/14.90 71.99/69.62/74.46
avg/min/max MRE Boosting 0.343/0.32/0.38 0.585/0.58/0.59
avg/min/max MAE Naive 22.1/21.74/22.71 165.69/163.22/170.02
avg/min/max MRE Naive 0.55/0.52/0.58 1.2/1.18/1.25

Table 2: Summary of the performed experiments and the obtained results.
The reported errors are average, minimal and maximal error over the three
repetitions. All errors are test set errors.
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