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1 Introduction

A number of papers have studied inventory policies under consideration of random returns
(see Fleischmann et al. (1997) for an overview), but most of these assume that the return
process is independent of the demand process (see e.g. Inderfurth, 1997). This type
of modeling may be good for situations in which no information about a dependence
structure is available or situations with many different sources for the returns. But there
are also situations in which a model with a dependence structure between the demands
and the returns seems to fit better. We have such situations in the case of rented or leased
products, or if delivered items are returned to the original manufacturer only. We can
also think about packaging and transportation materials.

In this paper we develop and investigate an inventory model for a single, reusable product
in which the random returns depend explicitly on the demand stream. A similar situation
is also discussed in Cohen and Pierskalla (1980), but without considering backorders.
Additionally, they do not consider the leadtime for purchasing. Also Yuan and Cheung
(1998) consider a model with dependent returns, but without a purchasing leadtime. We
relax this assumption and allow a positive purchasing leadtime.

Silver and Kelle (1989) determine an optimal purchasing policy for reusable containers by
transferring the stochastic model in a deterministic one. We use a Markov-Chain approach
in order to determine the optimal order-up-to policy with respect to total average relevant
cost.

Although in many papers the long-term behaviour of the inventory is investigated (see
e.g. Van der Laan and Salomon, 1997) we consider a finite planning horizon. The reason
for this is that nowadays, the life-cycle of products is getting shorter and shorter, because
of fast changing trends and new developments. This can be observed, in particular,
for electronic products. Therefore, inventory models for short-term control have to be
investigated and preferably objective functions should be used where no steady state
assumptions are necessary.

In this paper we show that there is a great difference between a situation with indepen-
dent demands and returns and a situation, where the returns depend on the demand.
Therefore, neglecting the dependency of the returns on demands may lead to poor pol-
icy performance. We show how to compute the optimal order-up-to level for a situation
with dependent returns. In such a situation the optimal inventory level is less than in
the other case and the average relevant costs can be reduced by using the information
about the dependence structure. The influence of the return probability and the length of
the planning horizon on policy performance is investigated. Additionally, we compare a
system with product returns with a system without product returns. Our results enable
to answer questions regarding the profitability of product reuse in relation with return
probability and time-in-market.

The paper is further organized as follows. In Section 2 we start with a detailed description
of the model and its underlying assumptions. In Section 3 we develop an approximation
to the total average costs, which we use as the objective function, followed by a numerical
study (Section 4). Finally, we summarize our results and conclusions and give an outlook
for further research.
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2 Model Definition and Assumptions

We consider a single, reusable product. Because of fast changing trends in the market,
this product is planned to be produced only for a limited planning horizon T which is
the same as the time in market. Practical limitations are the reason for reviewing the
inventory only periodically. We assume, that the length of one period is known and
constant. Without loss of generality, we take the length of a period equal to one, and the
periods are numbered by t = 1, 2, . . . , T .

We assume that the demands per period t, Dt, are mutually independent and follow a
Poisson distribution with parameter λt:

P (Dt = i) = e−λt
(λt)

i

i!
i ∈ IN0, t = 1, 2, . . . , T − 1, T (1)

All demands that cannot be fulfilled immediately are backordered. All demands that are
outstanding at the end of the planning horizon are lost. Figure 1 gives an illustration of
the reuse network.

INSERT FIGURE 1

We assume a constant probability, pl, that an item is lost because a customer has not
returned it to the manufacturer after use. Returned items are either remanufactured or
disposed depending on their quality. With the probability pd a returned item cannot be
remanufactured because of poor quality, and has to be disposed. With probability 1− pd
an item is remanufactured. Only at the end of the planning horizon all the returned
items have to be disposed, because there is no longer demand for them. After reman-
ufacturing, the item is as good as new and can be sold at the same market as newly
manufactured products. Therefore, there is a common servicable inventory for both new
and remanufactured items, since we do not need to distinguish between them.

All leadtimes are assumed to be constant: the time the item is in use by the customer L1,
the transportation time L2, the remanufacturing time L3 and the purchasing leadtime L.
For computational reasons we assume

L = L1 + L2 + L3 (2)

With the above assumptions we have all the necessary information to determine the
probability distribution of the returns in one period. The returns in period t are defined
as the number of used and remanufactured items which enter the inventory in period t.
Obviously, the returns in period t are dependent on the demands L periods before.

With respect to the planning horizon T ≥ 2L we can distinguish three different time
phases (Figure 2):

• Phase I: Start Phase (1 ≤ t ≤ L)
During this phase there are no remanufactured or new items delivered to the inven-
tory. Therefore, the stock on hand is always decreasing in each of these periods.
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• Phase II: Main Phase (L+ 1 ≤ t ≤ T − L)
In this phase both remanufactured and new items enter the inventory. The stock
on hand can decrease and increase during each period.

• Phase III: End Phase (T − L+ 1 ≤ t ≤ T )
In this phase no procurement orders take place. At the end of this phase all the
items that are returned to the company are disposed, so that no used items enter
the inventory.

INSERT FIGURE 2

Although it is not the optimal policy, we consider a periodic order-up-to policy, since it
is widely used in practice and very effective. For recent results on optimal policies in the
context of inventory systems with returns we refer to [3] and [4].

At the beginning of the planning horizon the inventory is filled up with A items. An
order is placed at the beginning of a period if the inventory position, which we will define
later on, is smaller than S in order to fill it up to this level S. This policy only depends
on two parameters, i.e., the inventory level S and the number of items A that are in the
inventory at the beginning. The set of all possible order-up-to policies is given by

K = {(A, S) | A ∈ IN, S ∈ IN} (3)

In order to compare different parameter sets (A, S) ∈ K for the review policy we use
the average total relevant cost as an objective function. They are defined as the sum of
the average relevant cost in each period Ct, the starting cost for filling up the inventory
before the first period C0, and the average cost at the end of the planning horizon for the
disposal of the remaining items CE:

CR(A, S) := C0(A) +
T∑

t=1

Ct(A, S) + CE(A, S) ∀(A, S) ∈ K (4)

The optimal policy (Aopt, Sopt) ∈ K is defined as the parameter set that minimizes expres-
sion (4).

The starting costs only depend on the number of items in the inventory at the beginning
of the planning horizon and on some fixed costs cA:

C0(A) := C0(A) = cA + cP · A (5)

The average costs at the end of the planning horizon CE(A, S) are determined later on.
The average relevant cost in one period are composed of the average costs for procurement,
backorders and stockkeeping.

We assume that the costs are proportional to the number of items and that holding and
backorder costs are charged at the end of each period. We get:

Ct(A, S) = cPE[Ot] + cBE[X−
t ] + cHE[X+

t ], (6)
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where the random variables are defined as follows:

Ot : Number of procured items at the beginning of period t

X−
t : Number of backorders at the end of period t

X+
t : Stock on hand at the end of period t

The cost parameters are defined as:

cP : Procurement cost per item
cH : Holding cost per item per period
cB : Backorder cost per item per period

For the description of the inventory process it is necessary to introduce some additional
random variables:

Xt : Net stock at the end of period t; (Xt := X+
t −X−

t )
It : Inventory position at the beginning of period t before a procurement order
Rt : Number of remanufactured items that enter the servicable inventory in pe-

riod t

Additionally, we define pr as the probability that an item is recovered, which means that
it is returned to the manufacturer and it can be remanufactured:

pr := (1− pl)(1− pd) (7)

3 Determination of the Objective Function

In order to determine the average relevant costs in one period we first introduce the inven-
tory position It and illustrate the differences between the dependent and the independent
case. Then we are able to determine the optimization problem.

3.1 The Inventory Position It

In the model described in Section 2, a strong relation between the demands in period t

and the returns in period t+ L is given. If all demands are fulfilled in period t, then the
distribution function of the random variable Rt+L is only determined by the distribution
function of the random variable Dt and the recovery probability pr. Otherwise it is also
dependent on the number and the duration of backorders. Let R̂t be a random variable,
defined as the number of returns in period t+L under the condition that all the demands
in period t are fulfilled. Then we can use R̂t as an approximation for Rt+L in situations
with a high service level.

The strong relation between the demands in period t and the returns in period t+L is also
important for practice. If the demands in period t are known, we have some information
about the returns L periods later. This information should be used for the procurement
decision in period t. In order to take this aspect into account we define the inventory
position It, at the beginning of period t before ordering, as the stock on hand minus
backorders plus the outstanding orders plus the outstanding returns. Because of the high
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service level we get as an approximation for the inventory position for 1 ≤ t ≤ T − 1

It+1 := Xt +
L−1∑

i=0

Ot−i +
L−1∑

i=0

R̂t−i, (8)

or the following recursive equation:

It+1 = It +Ot −Dt + R̂t. (9)

This means that the inventory position in period t+ 1 is given by the inventory position
of the period before, the procurements and the number of demands in period t, and the
number of fulfilled demands that will return to the inventory L periods later. Therefore,
It describes a non-homogeneous Markov-Chain, because the inventory position in period
t+1 depends only on the period before. The state space of this Markov-Chain is discrete
and infinite.

If we consider the dependence of the demands and the returns, then Dt−R̂t is always non-
negative, since obviously it is not possible to have more returns in period t+L than there
are demands in period t. It follows from (9) that the inventory position never exceeds S,
so that we have It ∈ {i | i ≤ S}, 1 ≤ t ≤ T . As a contrast, if the dependence of demands
and returns is not considered, then Dt − R̂t can also be negative, so that It ∈ ZZ.

For a description of the system we need the state probabilities νj(t), which are the prob-
abilities that the inventory position in period t is equal to j:

νj(t) := P (It = j) 1 ≤ t ≤ T, j ∈ ZZ (10)

At the beginning of period 1, both the inventory position and the stock on hand have the
value A, which leads to

νA(1) = 1, and νj(1) = 0 ∀j 6= A (11)

All the other state probabilities are given by the recursive formula

νj(t+ 1) =
∞∑

k=−∞

pk,j(t)νk(t), (12)

where pk,j(t) denotes the transition probability to go from state k in period t to state j

in period t+ 1, i.e.,

pk,j(t) := P (It+1 = j | It = k) 1 ≤ t ≤ T − 1, j, k ∈ ZZ. (13)

For the transition probabilities we get different formulas for the dependent and the inde-
pendent case (see Appendix 1.3 and 2.3). They are mainly determined by the distribution
of the random variables Dt − R̂t. In case of dependent returns this difference is Poisson
distributed with parameter λt(1 − pr) while in the other case with independent returns
another distribution is derived (see Appendix 1.1 and 2.1).
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3.1.1 Numerical Illustration

In Figure 3 and 4 we illustrate the different behaviour for one sample path of the inventory
position in the case of dependent returns and independent returns as a function of the
time t for different values of the recovery probability pr.

INSERT FIGURE 3

In Figure 3, the dependent case, it can be seen, that the inventory position never exceeds
the level S. With decreasing pr the variance of the inventory position is increasing. For
the independent case the inventory position is given in Figure 4 for the same parameter
values.

INSERT FIGURE 4

Both figures show that the behaviour of the inventory position is quite different in the
dependent and the independent case. Because of the independence there can be more
returns in one period than demands. This leads to an inventory position larger than S.
Not surprisingly, this happens more often if the recovery probability is large. Additionally,
the variance of Dt− R̂t is much larger in the independent case than in the dependent case
(see Table 1), which has a large influence on the variance of the inventory position.

INSERT Table 1

3.2 The Objective Function

In order to get a formula for the objective function we have to determine the average
shortage and holding costs in period t which are given for all t = 1, 2, . . . , T − 1, T by

cHE[X+
t ] + cBE[X−

t ] = cH

∞∑

i=1

i · P (Xt = i) + cB

∞∑

i=1

i · P (Xt = −i) (14)

where the probability distribution of the net stock P (Xt = i) is given in the Appendix
(1.4 and 2.4). Again, this distribution is different in case of dependent and independent
returns.

Additionally, we have to consider the average procurement cost in the objective function.
In the case of an order-up-to policy different procurement sizes are possible which leads
to an average procurement size:

E[Ot] =







0 t = 1
S−1∑

k=−∞

(S − k)νk(t) 2 ≤ t ≤ T − L

0 T − L+ 1 ≤ t ≤ T

(15)
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The formula for the average number of orders is equal for the dependent and the indepen-
dent scenario, but the numerical values for the state probabilities νk(t) will be different.

With (14) and (15) the average costs in one period Ct(A, S) can be computed for t =
1, 2, . . . , T .

At the end of the planning horizon the company is responsible for the items that are still
in the reuse network. They have to be transported back and must be disposed of. They
also have to dispose of the items that are remaining in the inventory. We have

CE(A, S) = cD

(

E[X+
T ] + (1− pl)

L1+L2−1∑

i=0

λT−i

)

+ cT · (1− pl)

L1−1∑

i=1

λT−i. (16)

Now that we have determined all the necessary expectations, we can calculate the objective
function CR(A, S) for arbitrary parameter sets (A, S) ∈ K. In case of a high service level
a nearly optimal policy can be found solving the following problem:

min
(A,S)∈K

CR(A, S) (17)

Because of the difficult structure of the objective function, the optimization problem is
only solved numerically.

4 Numerical Study

Before we discuss the influence of the recovery probability and the length of the planning
horizon on the economic profitability of product reuse (Section 4.2), we first compare the
case of dependent returns with the case of independent returns. In our numerical examples
we limit ourselves on constant demand and return rates since the focus of our investiga-
tions are effects resulting from the dependency and not from dynamic demand and return
patterns. The following base case scenario for the system parameters is investigated. In
the numerical studies we will vary some elements of this scenario.

λ = 10
T = 24
pl = 0.2
pd = 0.25

L1 = 1
L2 = 1
L3 = 1
L = 3

cH = 1
cB = 50
cP = 40
cA = 0

Since we have assumed relatively high backorder cost, we get a high service level and our
approach can be used.

4.1 A Comparison Between Dependent Returns and Indepen-

dent Returns

In Table 2 and 3 the optimal policies and the average minimal relevant costs are given
for different values of pr and pl in case of dependent returns and independent returns.
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Additionally the relative difference between both is given, which is defined as the difference
between the average minimal costs in the independent and the dependent case divided by
the average minimal costs in the dependent case.

INSERT TABLE 2

INSERT TABLE 3

It can be seen that the minimal average relevant costs for the independent case are larger
than for the dependent case, and the difference between both is increasing with increasing
recovery probability pr. The difference is smaller, if the loss probability pl is larger.

Obviously, the optimal inventory level Sopt and the optimal value Aopt are increasing with
decreasing recovery probability. The parameters of the optimal policy in the independent
case are never smaller than in the dependent case. The reason for this is that the service
level ε cannot be fulfilled with lower values of the decision parameters, because the variance
of the returns is larger in the independent case. The influence of this effect is decreasing
if the recovery probability is decreasing. Therefore, for small values of pr the difference
between the dependent and the independent case is not significant, both for the optimal
policy and for the minimal average relevant costs. At the same time the difference is
substantial for large values of pr. This is further illustrated in Figure 5.

INSERT FIGURE 5

In Table 4 the optimal policy and the minimum of the objective function (4) for the
dependent and the independent scenario are shown for different values of the planning
horizon T . The recovery probability is chosen as pr = 0.95.

INSERT TABLE 4

Again we can see that the minimal average relevant costs in the independent scenario are
larger than in the dependent scenario. This holds also for the optimal policy parameters,
which are nearly constant in T . Furthermore it can be seen that the relative difference of
the minimal average relevant costs is non-decreasing in T .

4.2 Economic Profitability of Reuse

Here we compare, for the case of dependent returns, a system in which products can be
reused with a system in which no products are reused. For the latter system we distinguish
between two different situations:

S1: The company is not responsible for the disposal of the items. This can be modeled
by pl = 1.
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S2: The company is responsible for a proper disposal of all returned items. This can be
modeled by pd = 1, pl < 1.

For the comparison of the situations we have to include the average transportation, dis-
posal and remanufacturing cost. Therefore, we have assumed the following cost parameter
values

cT = 1
cD = 5
cR = 2

In Figure 6 we show the minimal average costs as a function of the recovery probability pr
for different values of pl. It can be seen that the minimal average costs decrease remarkably
with increasing pr. Moreover, we are able to compute the minimal recovery probability
that is necessary to make reuse profitable in comparison with traditional manufacturing.

INSERT FIGURE 6

Next we investigate the influence of the length of the planning horizon on the economic
profitability of product reuse. In order to do so, we compare the minimal average costs
for the base scenario and those for a system without product reuse as a function of the
planning horizon T (Figure 7).

INSERT FIGURE 7

It can be seen that the recovery probability has a large influence on the economic prof-
itability. If pr = 0.6 then a planning horizon of T = 50 is not large enough to make
reuse profitable in comparison with the situation in which the company is not responsible
for disposal (S1). Only if the company has to pay for the disposal (S2), then reuse is
profitable if the planning horizon is larger then 15 periods.

The situation is quite different if the recovery probability is larger (pr = 0.75). In this
case reuse is profitable after 17 periods (if the company is not responsible for disposal),
or after 10 periods (if the company is responsible for the disposal).

4.3 Practical Application

In order to calculate the inventory position in period t + 1 we always need the number
of returns L periods later (see equation (9)). So our calculations only hold for the rather
idealistic situation in which all the necessary information is known at each time point.
In practice no realization of the random variable R̂t will be available in period t. For
that reason an estimate of the number of returns has to be used. We suggest to use the
expectation of the number of returns at time t+L conditioned on the number of realized
demands at time t, as an estimator for the returns:

E[R̂t | Dt = n] = npr (18)
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Then instead of using (9), the inventory position is computed recursively via

It+1 = Xt +
L−1∑

i=0

Ot−i + pr

L−1∑

i=0

Dt−i (19)

and
Xt = Xt−1 +Ot−L −Dt +Rt; X0 = A (20)

Then realizations are available for all the necessary random variables for the computation
of the inventory position. The equation for the inventory position is continuously adapted
by replacing the forecasted values of the returns by the actual ones in the equation (20)
for the net stock.

By means of simulation we show that our analytical results are very close to the results
that we get if we implement the above procedure, which makes use of an estimation for
the returns. In order to see the influence of the estimation we also have simulated a
situation, in which the number of returns in period t+L is exactly known in period t. For
each set of (policy) parameters we have conducted 50,000 simulation runs. The results
are shown in Table 5 and Table 6.

INSERT TABLE 5

INSERT TABLE 6

It shows that the simulation results from the situation in which the future returns are
known and from the situation in which the returns are estimated, are very close. This
holds for both the minimal average costs and the optimal policy (Aopt, Sopt). Additionally,
there are only small differences between our analytical results and the simulations. So,
we can conclude that the procedure described by (19) and (20) leads to a near optimal
policy. Of course the quality of the procedure depends on the estimator. If the variance
of the estimator is larger, then the difference between the minimal average costs will also
be larger. That is the reason why we can expect worse results for the independent case.

5 Summary, Conclusions and Outlook

In this paper we have developed a periodic review inventory system with product returns
that depend explicitly on the demand stream. The system, which includes leadtimes and a
finite planning horizon, is controlled by a fill-up policy. We showed how both the optimal
policy and the minimal average total relevant cost depend on the recovery probability.
Also we indicated the influence of the planning horizon on the minimal total average
costs. The influence of the planning horizon on the optimal policy was found to be not
significant. Central result of the paper however is that it pays off to use information
about the dependence between the demand and return process. Not only minimal costs
are generally lower, also the variance of inventory processes are considerably reduced. The
potential benefits are higher with a higher recovery rate.
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Furthermore, our results enable us to determine the minimal recovery probability for
an item that is necessary to make reuse beneficial. We can also determine the minimal
planning horizon, for which a reusable product is profitable. Additionally, quantitative
statements are possible about different products. Therefore, our results help to decide
whether to reuse or not.

Although our model provides some insights, it depends on several limiting assumptions.
It would be interesting to extend the model with a more general (stochastic) leadtime
structure or more sophisticated control policies, which we get in case of set-up costs and
if batch sizing is assumed. Additionally, non-stationary policies should be investigated.
We have concentrated on Poisson distribution. Further research should be done in order
to investigate other demand processes.

In our model we have only one inventory for the servicable items. An interesting extension
would be a second inventory ahead of the remanufacturing process for the returned items.
Another generalization that is worth to be discussed, is that a remanufactured item is
not like a new one. In this case the recovery probability for an item is not constant but
decreasing.
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Appendix

1 Dependent Returns

1.1 The Distribution of the Returns R̂t and of Dt − R̂

If pr denotes the probability that an item is recovered (pr = (1−pl)(1−pd)), then we get the
following formula for the distribution of the returns, R̂t, for all t = L+1, L+2, . . . , T −1:

P (R̂t = i) =
∞∑

j=i

P (R̂t = i|Dt−L = j)P (Dt−L = j)

=
∞∑

j=i

(
j

i

)

pir(1− pr)
j−ie−λt−L

λ
j
t−L

j!

= e−λt−L
pir
i!

∞∑

j=i

j!

(j − i)!
(1− pr)

j−i
λ
j
t−L

j!

= e−λt−L
(prλt−L)

i

i!

∞∑

j=i

(λt−L(1− pr))
j−i

(j − i)!

= e−λt−L
(prλt−L)

i

i!
e(1−pr)λt−L

= e−prλt−L
(prλt−L)

i

i!
(21)

Therefore, the number of returns in period t is Poisson distributed with parameter prλt−L.

R̂t ∼ Po(prλt−L) t = L+ 1, L+ 2, . . . , T − 1 (22)

The distribution is independent of t, if λt = λ. For t = 1, 2, . . . , L− 1 and for t = T there
are no returns, which means R̂t = 0.

The distribution of the number of items that are not returned, Dt−R̂t, can be determined
similarly. We get

Dt − R̂t ∼ Po
(

λt(1− pr)
)

(23)

1.2 The Distribution of
L∑

i=0

Dt−i − R̂t

In order to determine the distribution of
L∑

i=0

Dt−i − R̂t we have to consider, that the

random variables R̂t and Dt−L are dependent, while the other random variables not. We
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can write:

L∑

i=0

Dt−i − R̂t = Dt−L − R̂t
︸ ︷︷ ︸

dependent

+
L−1∑

i=0

Dt−i

︸ ︷︷ ︸

independent

(24)

Dt−L − R̂t is Poisson distributed with parameter λt−L(1− pr)

Dt−L − R̂t ∼ Po
(

λt(1− pr)
)

(25)

and
L−1∑

i=0

Dt−i is Poisson distributed with parameter
L−1∑

i=0

λt−i

L−1∑

i=0

Dt−i ∼ Po
( L−1∑

i=0

λt−i

)

(26)

Dt−L − R̂t and
L−1∑

i=0

Dt−i itself are independent. Therefore the sum of these terms is again

Poisson distributed, which means

L∑

i=0

Dt−i − R̂t ∼ Po
(

λt−L(1− pr) +
L−1∑

i=0

λt−i

)

(27)

1.3 The Transition Probabilities

Because of the non-homogeneous Markov-Chain the transition probabilities are dependent
on time.

• t = 1

The initial distribution (11) and the fact that Dt − R̂t is always non-negative leads
to

pk,j(1) =

{

P (D1 − R̂1 = A− j), j ≤ A, k = A

0, elsewhere
(28)

and the state probability

νj(2) = P (D1 − R̂1 = A− j). (29)

• 2 ≤ t < T− L

In these periods from all the demands a portion will be returned to the inventory
L periods later, which means R̂t ≥ 0. Additionally, the inventory position after an
order is always S, so that It +Ot = S. Therefore, we have

pk,j(t) = P (Dt − R̂t = S − j). (30)

14



These transition probabilities are independent of k, so that the state probabilities
are given by:

νj(t+ 1) = P (Dt − R̂t = S − j) (31)

• t = T− L

For t = T−L we still have a procurement, but none of the items that are delivered to
the customer will be returned to the serviceable inventory (R̂T−L = 0). Therefore,
we get

pk,j(T − L) = P (DT−L = S − j) (32)

and
νj(T − L+ 1) = P (DT−L = S − j). (33)

• T− L + 1 ≤ t ≤ T− 1

In these periods we have again R̂t = 0 but there are no orders (Ot = 0), which leads
to

pk,j(t) = P (Dt = k − j). (34)

1.4 The Distribution of the Netstock

Different formulas are needed for different periods.

• 1 ≤ t ≤ L

Because of no returns in phase I, the net stock only depends on the demands and
is monotonously decreasing. There are also no deliveries of new items. For i ∈ ZZ it
holds that

P (Xt = i) = P
( t∑

k=1

Dk = A− i
)

, t = 1, 2, . . . , L. (35)

These probabilities can easily be computed, since the sum of independent Poisson
distributed random variables is again Poisson distributed:

t∑

k=1

Dk ∼ Po(
t∑

k=1

λk) (36)

• L + 1 ≤ t ≤ T− 1

In phase II and III the net stock at the end of period t is dependent on the inventory
position in period t− L:

Xt = It−L +Ot−L + R̂t −

L∑

k=0

Dt−k L+ 1 ≤ t ≤ T (37)

For the probabilities we have to distinguish between t = L+ 1 and t 6= L+ 1.
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• t = L + 1

In this case there are no procurements (O1 = 0) and the inventory position in
period 1 is given by I1 = A. Therefore, we get

P (XL+1 = i) = P
( L∑

k=0

DL+1−k − R̂L+1 = A− i
)

, (38)

• t 6= L + 1

In this case the probabilities for the net stock can be computed as follows:

P (Xt = i) = P
( L∑

k=0

Dt−k − R̂t = S − i
)

(39)

• t = T

For t = T the random variable R̂t in (37) is equal to 0 and we get

P (XT = i) = P
( L∑

k=0

DT−k = S − i
)

(40)

2 Independent Returns

In case of independent returns the distribution of the returns, R̂t, cannot be computed
by means of the model and the assumptions. Therefore we have to assume a probability
distribution for the returns. We suppose a Poisson distribution with parameter prλt−L for
the returns R̂t, which is similar to the dependent case, so that a comparison is possible.

2.1 The Distribution of Dt − R̂t

We get the following formula for the distribution of the items that are lost, Dt − R̂t, for
all t = 1, 2, . . . , T − L− 1:

• i ≥ 0

P (Dt − R̂t = i) =
∞∑

j=0

P (Dt = j + i|R̂t = j)P (R̂t = j)

=
∞∑

j=0

e−λt
λ
j+i
t

(j + i)!
e−prλt

(prλt)
j

(j)!

= e−λt(1+pr)

∞∑

j=0

λ
j+i
t

(j + i)!

(prλt)
j

(j)!
(41)
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• i < 0

P (Dt − R̂t = i) =
∞∑

j=−i

P (Dt = j + i|R̂t = j)P (R̂t = j)

=
∞∑

j=−i

e−λt
λ
j+i
t

(j + i)!
e−prλt

(prλt)
j

(j)!

= e−λt(1+pr)

∞∑

j=−i

λ
j+i
t

(j + i)!

(prλt)
j

(j)!
(42)

2.2 The Distribution of
L∑

i=0

Dt−i − R̂t

Now all the random variables in
L∑

i=0

Dt−i − R̂t are independent. This leads to

• i ≥ 0

P
( L∑

k=0

Dt−k − R̂t = i
)

=
∞∑

j=0

P
( L∑

k=0

Dt−k = j + i|R̂t = j
)

P (R̂t = j)

= e
−(prλt+

L∑

k=0

λt−k)
∞∑

j=0

(
L∑

k=0

λt−k)
j+i

(j + i)!

(prλt)
j

(j)!
(43)

• i < 0

P
( L∑

i=0

Dt−i − R̂t = i
)

=
∞∑

j=−i

P
( L∑

i=0

Dt−i = j + i|R̂t = j
)

P (R̂t = j)

= e
−(prλt+

L∑

k=0

λt−k)
∞∑

j=−i

(
L∑

k=0

λt−k)
j+i

(j + i)!

(prλt)
j

(j)!
(44)

2.3 The Transition Probabilities

Also in the case of independent returns the transition probabilities are dependent on time,
but additionally they are dependent on the inventory position.

• t = 1

pk,j(1) =

{

P (D1 − R̂1 = A− j) k = A

0 k 6= A
(45)
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and
νj(2) = P (D1 − R̂1 = A− j) (46)

In contrast with the dependent case, j can be larger than S, which means that the
inventory position can also increase.

• 2 ≤ t < T− L

In these periods we have R̂t ≥ 0. Depending on the inventory position we get

pk,j(t) =







P (Dt − R̂t = S − j) k ≤ S

P (Dt − R̂t = k − j) k > S
(47)

These transition probabilities are only independent of k, if the inventory position is
less than S, which means that an order takes place.

• t = T− L

For t = T − L we still may have a procurement, but R̂T−L = 0. Therefore we get

pk,j(T − L) =







P (DT−L = S − j) k ≤ S

P (DT−L = k − j) k > S
(48)

• T− L + 1 ≤ t ≤ T− 1

Here we have again R̂t = 0, but additionally we have Ot = 0, which leads to

pk,j(t) = P (Dt = k − j). (49)

2.4 The Probability Distribution of the Netstock

• 1 ≤ t ≤ L

For the first periods we get the same probabilities as in the dependent case (equa-
tion 27).

• L + 1 ≤ t ≤ T− 1

For these periods we have the same equation for the net stock as in the dependent
case (equation 37), but we get different probabilities. We have to distinguish between
t = L+ 1 and t 6= L+ 1.

• t = L + 1

P (XL+1 = i) = P
( L∑

k=0

DL+1−k − R̂L+1 = A− i
)

, (50)
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• t 6= L + 1

In this case the probabilities for the net stock are dependent on the procurement
size and on the inventory position. They can be computed as follows:

P (Xt = i) =
∞∑

k=S

P
( L∑

j=0

Dt−j − R̂t = k − i
)

νk(t− L)

+P
( L∑

j=0

Dt−j − R̂t = S − i
) S−1∑

k=−∞

νk(t− L) (51)

• t = T

For t = T the random variable R̂t in (37) is equal to 0 and we get

P (XT = i) =
∞∑

k=S

P
( L∑

j=0

DT−j = k − i
)

νk(T − L)

+P
( L∑

j=0

DT−j = S − i
) S−1∑

k=−∞

νk(T − L) (52)
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dependent independent

p V AR[Dt − R̂t] V AR[Dt − R̂t]
0.95 0.5 19.5
0.75 2.5 17.5
0.50 5.0 15.0
0.25 7.5 12.5

Table 1: Variance of Dt − R̂t

pl = 0
Dependent Independent Relative difference

pr Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt)
1.00 40 40 2102 42 42 2863 36.2%
0.75 42 42 2185 44 44 2357 7.9%
0.50 45 45 2290 46 46 2380 3.9%
0.25 48 48 2417 48 48 2457 1.6%
0.00 51 51 2558 51 51 2559 0.0%

Table 2: Optimal policy and minimal average relevant costs

pl = 0.25
Dependent Independent Relative difference

pr Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt)
0.75 42 42 4125 44 44 4297 4.2%
0.50 45 45 4230 46 46 4320 2.1%
0.25 48 48 4357 48 48 4397 0.9%
0.00 51 51 4498 51 51 4498 0.0%

Table 3: Optimal policy and minimal average relevant costs
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pr = 0.95
Dependent Independent Relative difference

T Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt)
10 40 40 1900 42 42 2157 13.5%
20 40 40 2056 42 42 2509 22.0%
30 40 41 2208 42 42 2825 27.9%
40 40 41 2354 42 42 3129 32.9%
48 40 41 2471 42 42 3368 36.3%

Table 4: Optimal policy and minimal average relevant costs

Analytical model Simulation without estimation Simulation with estimation
pr Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt)
1.00 43 43 2169 43 45 2272 44 43 2238
0.90 45 45 2249 48 45 2286 45 45 2337
0.80 46 46 2290 47 46 2325 46 46 2290
0.70 47 47 2332 47 47 2429 47 47 2356
0.60 48 48 2377 49 48 2428 48 48 2458
0.50 49 49 2423 50 50 2385 50 50 2457
0.40 51 51 2526 51 51 2350 52 51 2594
0.30 51 52 2575 54 52 2543 52 52 2612
0.20 53 53 2625 53 53 2698 54 53 2660
0.10 54 54 2675 54 54 2679 56 54 2662
0.00 55 55 2726 55 55 2796 56 56 2763

Table 5: Optimal policy and minimal average relevant costs; λ = 10, pl = 0

Analytical model Simulation without estimation Simulation with estimation
pr Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt) Aopt Sopt CR(Aopt, Sopt)
1.00 341 341 17899 341 342 18309 341 344 18397
0.90 352 352 17840 352 352 18102 352 357 18176
0.80 362 362 17786 364 362 18061 362 362 18015
0.70 373 373 17758 374 374 18143 374 374 18133
0.60 384 384 17787 385 385 18145 384 386 18261
0.50 394 394 17890 395 394 18350 394 394 18455
0.40 405 405 18134 406 406 18597 405 405 18767
0.30 415 415 18458 417 416 18934 416 415 19084
0.20 426 426 18918 426 427 19424 428 426 19470
0.10 437 437 19436 437 438 19867 437 437 19926
0.00 447 447 19922 447 447 20481 448 447 20355

Table 6: Optimal policy and minimal average relevant costs; λ = 100, pl = 0
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