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Abstract. Consider the classification task of assigning a test object to
one of two or more possible groups, or classes. An intuitive way to proceed
is to assign the object to that class, to which the distance is minimal. As
a distance measure to a class, we propose here to use the distance to the
convex hull of that class. Hence the name Nearest Convex Hull (NCH)
classification for the method. Convex-hull overlap is handled through the
introduction of slack variables and kernels. In spirit and computationally
the method is therefore close to the popular Support Vector Machine
(SVM) classifier. Advantages of the NCH classifier are its robustness
to outliers, good regularization properties and relatively easy handling
of multi-class problems. We compare the performance of NCH against
state-of-art techniques and report promising results.

1 Introduction

There are many approaches to the classification task of separating two or more
groups of objects on the basis of some shared characteristics. Existing techniques
range from Linear Discriminant Analysis (LDA), Quadratic Discriminant Analy-
sis (QDA) and Binary Logistic Regression to Decision Trees, Neural Networks,
Support Vector Machines (SVM), etc. Many of those classifiers make use of some
kind of a distance metric (in some n-dimensional space) to derive classification
rules. Here, we propose to use another such classifier, called Nearest Convex Hull
(NCH) classifier.

As the name suggests, the so-called hard-margin version of the NCH classifier
assigns a test object x to that group of training objects, which convex hull is
closest to x. This involves solving an optimization problem to find the distance
to each class. Algorithms for doing so have been proposed in the literature under
the general heading of finding the minimum distance between convex sets (see,
e.g., [14] and [2]). We confer also to [10] for a more general discussion on distance-
based classification. Existing off-the-shelf algorithms however cannot be directly
applied for classification tasks where a mixture of a soft-margin and a hard-
margin approaches is required. In the separable, hard-margin case, a problem
arises if x lies inside the convex hulls of two or more groups, since its distance
to these convex hulls is effectively equal to zero and the classification of x is



undetermined. To deal with this problem, we introduce a soft-margin version
of the NCH classifier, where convex-hull overlap between x and a given class
is penalized linearly. The difference with the soft-margin SVM approach lies in
the requirement that the soft approach is applied to all data points except the
test point x. As an alternative solution to convex-hull overlaps, one could map
the training data from the original space into a higher-dimensional space where
convex-hull overlap can be avoided. A combination of both approaches is also
possible.

The linear (and not, for example, quadratic) penalization of the errors gives
rise to the robustness-to-outliers property of NCH. Another advantage of NCH
in terms of computational speed arises in the context of multi-class classification
tasks. This occurs because only same-class objects are considered in the esti-
mation of a (soft) distance to a convex hull, and not the whole data set. The
decision surface of the NCH classifier is not explicitly computed because the clas-
sification process for each test point is independent of the classification process
for other test points. That is why the classification process is instance-based in
nature. In sum, the NCH method can be considered as a type of instance-based
large-margin classifier.

The paper is organized as follows. First we provide some intuition behind
the NCH classifier and a formal definition of it. Next, we discuss the technical
aspects of the classifier — derivation and implementation. Finally, we show some
experimental results on popular data sets and then conclude.

2 Nearest Convex Hull Classifier: Definition and
Motivation

At the outset, consider a binary data set of positive and negative objects (I, ™)
from R™. Formally, the task is to separate the two classes of objects with a
decision surface that performs well on a test data set. This task is formalized as
finding a (target) function f : R™ — {—1,1} such that f will classify correctly
unseen observations. The extension to the multi-class case is straightforward.
The decision rule of the NCH classifier is the following: a test point x should be
assigned to that class, which convex hull is closest to x.

Let us consider the so-called separable case where the classes are separable by
a hyperplane and draw an intuitive comparison between NCH and the popular
SVM classifier. See Figure 1 for an illustrative binary classification example.
Panels (a) and (c) refer to SVM classification, and Panels (b) and (d) refer to
NCH classification. In SVM classification, the target function is a hyperplane of
the form w'x + b = 0, where w is a vector of coefficients and b in the intercept.
The SVM hyperplane w*'x +b* = 0 (denoted as hsyyr) is the one that separates
the classes with the widest margin, where a margin is defined as the distance
between a (separating) hyperplane and the closest point to it from the training
data set. In terms of Figure 1, Panel (a), the width of white band is equal to
twice the margin, which is shown in Panel (¢). The closest point to hgym is
defined to lie on the hyperplane w*'x + b* = 1 if this point is positively labeled,



Fig. 1. Classification of a test point x with SVM in Panels (a) and (c), and NCH in
Panels (b) and (d) on a binary data set. In Panel (a), the white band has the largest
possible width, which is equal to twice the margin, shown in Panel (c). The points to
the left and to the right of the band form shaded sets S_ and Sy, respectively. Test
point x receives label +1 since it is farther from S_ than Sy. In Panel (b) point x is
classified as —1 since it is farther from the convex hull of the positive points, CH,
than from the convex hull of the negative points, CH_.

or on the hyperplane w*'x + b* = —1 if this closest point is negatively labeled.
For all points x that lie outside the margin it holds that either w*'x + b* < —1
or w*'x 4+ b* > 1. The former set of points is defined as S_, and the latter set
of points is defined as Sy . For any test point x, the SVM classification rule can
be formulated as follows: a test point x should be classified as —1 if it is farther
away from set S than from set S_; otherwise x receives label +1.

It has been argued (see, e.g., [4], [14]) that SVM classification searches for a
balance between empirical error (or, the goodness-of-fit over the training data)
and complexity, where complexity is proxied by the distance between sets S,
and S_ (that is, twice the margin). In the separable case at hand, the empirical
error of hgynm is zero since it fits the data perfectly. Also, complexity and margin
width are inversely related: the larger the margin, the lower the associated com-



plexity. The balance between empirical error and complexity can intuitively be
approached from an instance-based viewpoint as well. In this case, complexity
is imputed in the classification of each separate test object/instance. Thus, the
larger the distance from a test object x to the farther one of the two sets S,
and S_, the lower the complexity associated with the classification of x.

The NCH classifier can also be considered from a fit-versus-complexity stand-
point. Let us denote by CHy and C'H_ the set of points that form the convex
hulls of the positive and negative objects, respectively (see Figure 1, Panel (b)).
Somewhat similarly to SVM, in NCH classification one considers the distance to
the farther one of the two convex hulls CH; and C'H_ as a proxy for the com-
plexity associated with the classification of x. Quite interestingly, this distance
is always as big as or bigger than the distance from x to the farther of sets S,
and S_. This property holds since the convex hull of the +1 (—1) points is a
subset of S (S_), as can be seen in Figure 1. Therefore, if one considers the
distance to the farther-away convex hull as a proxy for complexity associated
with the classification of x, then NCH classification is characterized by a lower
complexity than SVM classification. However, the fit over the training data of
NCH may turn out to be inferior to SVM in some cases. Let hpcy denote the
hyperplane that is tangent to the farther-away convex hull of same-class train-
ing data points, and is perpendicular to the line segment that represents the
distance between x and this convex hull, as in Figure 1, Panel (d). Thus, the
distance between x and hpcpg equals the distance between x and the farther
convex hull. Effectively, in NCH classification x is classified using hpcp. Notice
that by definition hrpcpg separates without an error either the positive or the
negative observations, depending on which convex hull is farther from x. Thus,
hrcu is not guaranteed to have a perfect fit over the whole data set that consists
of both positive and negative points, as illustrated in Figure 1, Panel (d). As a
consequence, it is not clear a priory whether NCH or SVM will strike a better
balance between fit and complexity in the classification of a given point x: there
is a gain for NCH coming from decreased complexity (in the form of an increased
distance) vis-a-vis SVM on the one hand, accompanied by a potential loss arising
from a possible increased empirical error of hpcy over the whole training data
set, on the other.

NCH has the property that the extent of proximity to a given class is deter-
mined without taking into consideration objects from other classes. This prop-
erty contrasts with the SVM approach, where the sets S, and S_ are not created
independently of each other. A similar parallel can be drawn between LDA and
QDA methods. In LDA, one first determines the Mahalanobis distances from x
to the centers of the classes using a common pooled covariance matrix and then
classifies x accordingly. In QDA, one uses a separate covariance matrix for each
class. Analogically, the NCH classifier first determines the Euclidean distance
from x to the convex hulls of each of the classes and then classifies x accord-
ingly. In sum, loosely speaking one may think of the shift from SVM to NCH as
resembling the shift from LDA to QDA.
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Fig. 2. Classification of a test point x with NCH on the binary data set in Panel (a) in
two steps. At stage one (Panel (b)), a test point x is added to a data set that contains
only the positive class, and the distance a from x to the convex hull of this class is
computed. At stage two (Panel (c)), x is added to a data set that contains only the
negative class, and the distance b from x to the convex hull of this class is computed.
If a > b (a < b), then x is assigned to the negative (positive) class.

3 Estimation

3.1 Separable case

Consider a data set of [ objects from k different groups, or classes. Let [, denote
the number of objects in the k" class. According to NCH, a test point x is
assigned to that class, to which the distance is minimal. In the separable case,
the distance to a class is defined as the distance to the convex hull of the objects
from that class. The algorithm for classifying x can be described as follows (see
Figure (2)): first, compute the distance from x to the convex hull of each of the
k classes; second, assign to x the label of the closest class. Formally, to find the
distance from a test point x to the convex hull of the nearest class, the following
quadratic optimization problem has to be solved for each class k:
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such that  wix; +b, >0, i =1,2,... 1
—(wWix+bp) =1

The distance between hyperplane wjx+b; = 0 and x is defined as 1//w} wy,
by the last constraint of (1). This distance is maximal when §wj,wy, is minimal.
At the optimum, it represents the distance from x to the convex hull of class k.
The role of the first [ inequality constraints is to ensure that the hyperplane
classifies correctly each point that belongs to class k. Effectively, for each of the
k classes, the [, same-class objects are assigned label 1, and the test point is
assigned label —1. Eventually, x is assigned to that class to which the distance
is minimal, that is, which corresponding value for the objective function in (1)
is maximal.



3.2 Nonseparable case

Optimization problem (1) can be solved for each k only if the test point lies
outside the convex hull of each class k. A further complication arises if some of
the convex hulls overlap. Then a test point could lie simultaneously in two or
more convex hulls and its classification label would be undetermined. To cope
with these situations, so-called slack variables can be introduced, similarly to the
SVM approach. Consequently, the nonseparable version of optimization problem
(1) that has to be solved for each class k becomes:
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such that.  wix; +by >0—¢&, & >0, i=1,2,..., 1

—(Wix +bg) = 1.

Note that in (2) the points that are incorrectly classified are penalized linearly
via the term Zi’; 1 & If one prefers a quadratic penalization of the classification
errors, then the sum of squared errors Zi":l €2 should be substituted for Zi":l &
in (2). One can go even further and extend the NCH algorithm in a way analogical
to LS-SVM ([7]) by imposing in (2) that constraints wjx; + by > 0 — ¢; hold as
equalities, on top of substituting Zf’;l €2 for Zi’;l i

Each of the k& (primal) optimization problems pertaining to (2) can be ex-
pressed in dual form! as:

Ii+1
max Qlp+1 — % i:chrzl @i ayiy; (Xi%;) (3)

such that 0<a; <C,i=1,2,...,1, and Zi’;‘;l yia; = 0,

where the a’s are the Lagrange multipliers associated with the respective k** pri-
mal problem. Here oy, +1 is the Lagrange multiplier associated with the equal-
ity constraint —(wjx + by) = 1. In each problem y; = 1,7 = 1,2,...,l; and
y1,+1 = —1. The advantage of the dual formulation (3) is that different Mercer
kernels can be employed to replace the inner product x/x; in (3) in order to
obtain nonlinear decision boundaries, just like in the SVM case. Three popular
kernels are linear x(x;, x;) = x}x;, polynomial of degree d r(x;,x;) = (x/x;+1)?
and the Radial Basis Function (RBF) kernel x(x;,x;) = exp(—7 || x; — x; [|?),
where the manually-adjustable v parameter determines the proximity between
x; and Xx;.

A total of K NCH optimization problems have to be solved to determine the
class of any test point x. This property provides for the fact that the NCH deci-
sion boundary is in general implicit and nonlinear, even in case the original data
is not mapped into a higher-dimensional space via a kernel. Figure 3 demon-
strates that this property does not hold in general for Support Vector Machines,

! The derivation of the dual problem resembles the one used in SVM (see, e.g., [4]).
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Fig. 3. Decision boundaries for NCH and SVM using the linear and RBF kernels on
a linearly separable data set. The dashed contours for the NCH method are iso-curves
along which the ratio of the distances to the two convex hulls is constant.

for instance. This figure also illustrates that the NCH decision boundary ap-
pears to be less sensitive to the choice of kernel and kernel parameters than the
respective SVM boundary.

Technically speaking, in case the convex hulls do not overlap, NCH could be
solved using the standard SVM optimization formulation (see, e.g., [14], [4]). In
this case one searches for the widest margin between each of the k classes and
a test point x. This margin represents the distance from x to the convex hull of
the k' class. The class for which the margin is smallest is the winning one. The
standard nonseparable-case SVM formulation cannot however be automatically
applied to the nonseparable NCH case, since the equality constraint in (2) will
not be satisfied in general.

4 Experiments on Some UCI and SlatLog Data Sets

The basic optimization algorithm for Nearest Convex Hull classification (3) is
implemented via a modification of the freely available LIBSVM software ([5]).
We tested the performance of NCH on several small- to middle-sized data sets
that are freely available from the SlatLog and UCI repositories ([12]) and have
been analyzed by many researchers and practitioners (e.g. [3], [8], [9], [13] and
others): Sonar, Voting, Wisconsin Breast Cancer (W.B.C.), Heart, Australian
Credit Approval (A.C.A.), and Hepatitis (Hep.). Detailed information on these
data sets can be found on the web sites of the respective repositories.

We compare the results of NCH to those of several state-of-art techniques:
Support Vector Machines (SVM), Linear and Quadratic Discriminant Analysis



Table 1. Leave-one-out accuracy rates (in %) of the Nearest Convex Hull classifier as
well as some standard methods on several data sets. Rbf, 2p and lin stand for Radial
Basis Function, second-degree polynomial and linear kernel, respectively

NCH NCH NCH SVM SVM SVM
rbf  2p lin  rbf 2p lin NB LR LDA QDA MLP ENN DS C4.5

Sonar 91.4 90.4 88.0 88.9 82.2 80.8 67.3 73.1 755 74.9 81.3 86.5 73.1 T71.2
Voting 95.9 85.5 959 96.5 96.3 96.8 90.3 96.5 95.9 94.2 94.9 93.3 95.9 97.0
W.B.C. 97.4 97.1 97.3 97.0 96.9 96.9 96.0 96.1 96.0 91.4 950 97.0 92.4 95.3
Heart 85.6 82.6 84.1 85.6 81.1 85.6 83.0 83.7 83.7 81.5 78.9 84.4 76.3 752
A.C.A. 864 854 86.1 87.4 799 87.1 77.1 86.4 85.8 85.2 84.8 85.9 85.5 83.8
Hep. 85.2 84.5 84.5 86.5 86.5 86.5 83.2 83.9 85.8 83.9 79.4 85.8 79.4 80.0

(LDA and QDA), Logistic Regression (LR), Multi-layer Perceptron (MLP), k-
Nearest Neighbor (kKNN), Naive Bayes classifier (NB) and two types of Decision
Trees — Decision Stump (DS) and C4.5. The experiments for the NB, LR, MLP,
kNN, DS and C4.5 methods have been carried out with the WEKA learning
environment using default model parameters, except for kENN. We refer to [15] for
additional information on these classifiers and their implementation. We measure
model performance by the leave-one-out (LOO) accuracy rate. Because we aim
at comparing several methods, LOO seems to be more suitable than the more
general k-fold cross-validation (CV), because it always yields one and the same
error rate estimate for a given model, unlike the CV method (which involves a
random split of the data into several parts).

Table 1 presents performance results for all methods considered. Some meth-
ods, namely kNN, NCH and SVM, require tuning of model parameters. In these
cases, we report only the highest LOO accuracy rate obtained by performing
a grid search for tuning the necessary parameters. Overall, the NCH classifier
performs quite well on all data sets, and achieves best accuracy rates on three
data sets. SVM also perform best on three data sets. The rest of the techniques
show relatively less favorable and more volatile results. For example, the C4.5
classifier performs best on the Voting data set, but achieves rather low accuracy
rates on two other data sets — Sonar and Heart. Note that not all data sets are
equally easy to handle. For instance, the performance variation over all classifiers
on the Voting and Breast Cancer data sets is rather low, whereas on the Sonar
data set it is quite substantial.

5 Conclusion

We have introduced a new technique that can be considered as a type of
an instance-based large-margin classifier, called Nearest Convex Hull classifier
(NCH). NCH assigns a test observation to the class, which convex hull is closest.
Convex-hull overlap is handled via the introduction of slack variables and /or ker-
nels. NCH induces an implicit and generally nonlinear decision surface between



the classes. One of the advantages of NCH is that an extension from binary
to multi-class classification tasks can be carried out in a straightforward way.
Others are its alleged robustness to outliers and good generalization qualities. A
potential weak point of NCH, which also holds for SVM, is that it is not clear
a priori which type of kernel and what value of the tuning parameters should
be used. Furthermore, we do not address the issue of attribute selection and the
estimation of class-membership probabilities. Further research could also con-
centrate on the application of NCH in more domains, on faster implementation
suitable for analyzing large-scale data sets, and on the derivation of theoretical
test-error bounds.
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